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Abstract

Multiplexed single-cell sequencing (mux-seq) using single-nucleotide polymorphisms
(SNPs) has emerged as an efficient approach to perform expression quantitative trait loci (eQTL)
studies that map interactions between genetic variants and cell types, cell states, or experimental
perturbations. Here we introduce the clue framework, a novel approach to encode mux-seq
experiments that eliminates the need for reference genotypes and experimental barcoding. The
clue framework is made possible by the development of freemuxlet, an algorithm that clusters
cells based on SNPs called from single-cell RNA-seq or ATAC-seq data. To demonstrate the
feasibility of clue, we profiled the surface protein and RNA abundances of peripheral blood
mononuclear cells from 64 individuals, stimulated with 5 distinct extracellular stimuli — all within
a single day. Our analysis of the demultiplexed data identified rare immune cell types and cell
type-specific responses to interferon and toll-like receptor stimulation. Furthermore, by integrating
genotyping data, we mapped response eQTLs specific to certain cell types. These findings
showcase the potential and scalability of the clue framework for reference-free multiplexed single-

cell sequencing studies.
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37 Introduction

38 Understanding the genetic architecture of gene expression remains a critical challenge in
39 human genetics. The overwhelming enrichment of disease-associated variants in the cis-
40 regulatory regions of the genome points to the crucial role of transcription regulation in conferring
41  disease risk'?. Although expression quantitative trait loci (€QTL) studies in bulk tissues have
42 identified numerous genetic variants associated with proximal gene expression, their enrichment
43 for disease-associated variants remains modest**. This might be because disease-causing
44  variants affect enhancer rather than promoter activities, modifying gene expression in particular
45  cell types, cell states, or in response to specific environmental factors. In such situations, it can
46  be challenging to identify eQTLs that interact with cellular states using bulk gene expression
47  analysis, as the composition of cell types and the molecular states of cells within the same type
48 may vary between individuals, and functionally important cell populations could be rare®. One
49  method for mapping eQTL interactions is to sort and perturb specific cell types and then profile
50 their gene expression. However, this approach is cost prohibitive for large population cohorts, can
51  be susceptible to experimental confounding, and fails to capture heterogeneity within sorted
52  populations. Consequently, there is a need for more efficient and unbiased methods for mapping
53 eQTL interactions in the human genome.

54 Multiplexed single-cell sequencing (mux-seq) using single-nucleotide polymorphisms
55  (SNPs) as sample barcodes has enabled population-scaled studies for assessing the impact of
56  case-control status®, experimental perturbations’, and genetic variants on gene expression across
57  single cells®. Recently, our analyses of mux-seq data revealed that cell type-specific cis-eQTLs
58 are more enriched for disease associations than those shared across circulating immune cell
59  types®. Mux-seq is highly adaptable, requires minimal experimental modification over standard
60 single-cell sequencing workflows, and has been shown to be compatible with single-cell RNA-

61  seq, single-nuclei RNA-seq®, and CITE-seq'’. However, current mux-seq implementations require
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either reference genotypes or experimental barcoding to unambiguously assign cells to each
sample. This limitation precludes the application of mux-seq for studies involving cells that are
sensitive to manipulation or for samples where genotyping may not be feasible due to privacy or
availability concerns.

Here, we introduce clue, a framework for mux-seq experiments that eliminates the need
for reference genotypes or experimental barcoding. Clue incorporates a series of pooling
schemes for efficient experiment encoding and a demultiplexing algorithm to determine the unique
sample identity of each cell. This is made possible by the development of freemuxlet, an extension
of demuxlet'" that allows clustering of genetically-identical cells from pooled scRNA- and scATAC-
seq experiments without reference genotypes. We applied clue to investigate the response of
peripheral blood mononuclear cells (PBMCs) to five different agonists targeting the type | and
type Il interferon responses (recombinant IFNB and IFNy), viral sensing (R848), inflammatory
response (TNFa), and broad immune cell activation (PMA/I). The clue framework allowed us to
perform multiplexed CITE-seq across 384 samples from 64 individuals across 12 pools in just one
day. Analyzing 134,831 cells, we discovered rare cell types and identified cell type-specific
transcriptional responses that were validated by bulk RNA-sequencing. We identified shared and
specific transcriptional responses to interferons in monocytes, highlighted by the discovery of
specific effects in non-classical monocytes related to a migratory phenotype induced by type |
interferon and complement activation induced by type Il interferon. Lastly, by integrating imputed
genotyping data, we mapped cell type-specific cis response eQTLs (cis-reQTLs) to each
stimulation, identifying specific associations in R848-stimulated naive B cells (/FITM2) and IFN(3-
stimulated classical monocytes (UBEZ2F). These findings showcase the efficiency and robustness

of clue as a framework for reference-free multiplexed single-cell sequencing.
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85 Results

86 clue: genetic multiplexing without reference genotypes

87 Here, we introduce clue (compressed, lossless, unambiguous multiplexing), a workflow
88  for multiplexed single-cell sequencing (mux-seq) that enables population-scale single-cell studies
89  without reference genotypes or experimental barcoding (Fig. 1A). We illustrate the key features
90 of clue utilizing a toy study that profiles n individuals over r conditions, where r <n. The
91  conditions could be different perturbations (as illustrated), time points, or aliquots of the same
92 cells. The core of clueis ap x n pooling matrix that assigns each of n samples to one of p pools.
93  After single-cell profiling of the pools, the resulting data is first analyzed through freemuxlet, a
94  novel algorithm that clusters cells based on genetic variants identified directly from the single-cell
95 sequencing data. Genetic clusters of cells from different pools are then demultiplexed, where
96 each cell is correctly assigned to an individual and condition.

97 In order to ensure successful demultiplexing, clue aims to produce a pooling matrix that

98 assigns the n x r samples to a minimum number of pools while meeting three key objectives:

99
100 e Identifiability: each cell can be uniquely assigned to a sample (e.g., individual and
101 condition);
102 e Robustness: samples are distinguishable while tolerating errors in the pooling or genetic
103 clustering;
104 e Balance: cells from each individual and each condition are uniformly distributed across
105 pools.
106

107  There are several different multiplexing schemes that can achieve these objectives. The naive

108  all-minus-one (AMO) scheme which omits each individual’s cells from exactly one pool meets the
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109 identifiability objective but requires n pools, which limits the experimental efficiency of sample
110  multiplexing (Fig. 1B). The clue_logarithmic scheme assigns samples using at least p =
111 2 x log,(n) pools motivated by previous work describing logarithmic encoding'?, which achieves
112  significant compression compared to AMO and is experimentally easy to perform (Fig. 1C). In a
113  toy example, multiplexing n = 20 individuals over r = 3 conditions can be encoded using p = 10
114  pools. However, it may not be the most compressed or error-tolerant scheme.

115 The clue_ILP scheme uses integer linear programming (ILP) to identify the optimal
116  multiplexing scheme (Methods). This scheme can further be optimized for condition
117  randomization and error tolerance, by distributing the samples and maximizing the differences in
118  the multiplexing matrix profiles, respectively (Fig. 1E, Fig. S1). In our toy example, the most
119  compressed scheme only needed p = 6 pools to ensure demultiplexing (Fig. 1D), and an error-

120  tolerant multiplexing scheme required p = 12 (Fig. 1E).

121 freemuxlet: genetic clustering of single cells without reference genotypes

122 The clue framework requires the ability to group genetically identical cells without relying
123  on reference genotypes obtained from a genotyping array or sequencing. To meet this need, we
124  developed freemuxlet, an approach based on demuxlet'" that genetically clusters cells using only
125  SNPs captured from multiplexed single-cell sequencing data (Fig. 2A). Instead of relying on
126  reference genotypes, freemuxlet uses unsupervised learning to efficiently cluster genetically-
127 identical cells and identify heterotypic multiplets — droplets containing two or more cells from
128  different individuals.

129 At its core, freemuxlet uses a modified Expectation-Maximization (E-M) algorithm to
130  assign barcoded droplets containing cells to clusters, updating the cluster assignments iteratively.
131 A droplet is labeled as a singlet if it has been successfully assigned to a single cluster, or a

132  multiplet if it cannot be unequivocally assigned to any given cluster. Compared to existing genetic
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133 clustering algorithms like scSplit'®, vireo™, and souporcell’®, freemuxlet stands out with two key
134  features. Firstly, freemuxlet incorporates a singlet score based solely on allele frequencies,
135  significantly improving the quality of initial clustering and the speed and accuracy of convergence.
136  This becomes especially crucial when dealing with a large number of multiplexed individuals or
137  high multiplet rates. Secondly, freemuxlet refines cluster assignments using an identity-aware
138  Bayes factor that leverages both base and read quality to extract the maximum information from
139 the sequence data. Indeed, these two aspects may explain the superior performance of
140  freemuxlet compared to existing methods'®.

141 To showcase the performance of freemuxlet and its suitability for the clue framework, we
142  conducted multiplexed single-cell RNA- and ATAC-seq experiments assaying PBMCs from 5
143  individuals across 4 conditions using the AMO multiplexing scheme. By using a set of curated
144  SNP locations (Methods), freemuxlet was able to group cells based on their genotypes estimated
145  from either the single-cell RNA-seq or the ATAC-seq data. The results from the ATAC-seq data,
146  visualized using Uniformed Manifold Approximation and Projection (UMAP) of the pairwise
147  genetic distances, showed 5 distinct clusters of singlets and putative doublets occupying regions
148  of the UMAP between clusters (Fig. 2B, Fig. S2A). Analysis of the RNA-seq data revealed allele-
149  specific expression only in certain cell types or in response to certain perturbations, which
150  highlights the importance of incorporating allele frequency in the clustering algorithm (Fig. S2B).
151 The demultiplexing results from both the RNA-seq and ATAC-seq data matched the pooling
152  matrix (Fig. 2C) and were consistent with demultiplexing using demuxlet with reference genotypes
153  (Fig. S2C). Furthermore, the genotypes detected from both RNA-seq and ATAC-seq were in
154  agreement with those obtained from a SNP genotyping array (Fig. S2D). By visualizing the
155  resulting demultiplexed single-cell RNA- and ATAC-seq profiles using UMAP, we observed cells
156  clustered primarily by type, and to a lesser extent by stimulation. Differential expression analysis
157 of the same cell type between different conditions provides further evidence of correct
158  demultiplexing (Fig. 2D, Fig. S3). For example, PMA/I stimulation induced the strongest effects,

7


https://doi.org/10.1101/2023.05.29.542756
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.29.542756; this version posted June 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

159  with stimulated cells of each major cell type forming distinct clusters from unstimulated cells of
160 the same type. On the other hand, IFNy stimulation had the weakest effects, with stimulated cells
161 mostly clustering with unstimulated cells. These results show that freemuxlet is a reference-free
162  method for clustering cells based on genetic variation, suitable for both single-cell RNA-seq and
163  ATAC-seq data and can be deployed in the clue framework to enable population-scale single-cell

164  sequencing studies.

165 Application of clue to parse cell type-specific immune responses

166 To demonstrate the suitability and scalability of the clue framework for population-scale
167  single-cell sequencing studies, we performed a multiplexed single-cell CITE-seq experiment to
168  study the genetic modulation of immune response in PBMCs. We assayed PBMCs from 64
169 female, non-hispanic white healthy individuals either at rest (unstimulated control) or stimulated
170  with one of five immunomodulatory molecules: tumor necrosis factor alpha (TNFa), interferons
171 gamma (IFNy) and beta (IFNB), TLR7/8 agonist resiquimod-848 (R848), and phorbol-myristate-
172  acetate with ionomycin (PMA/I) (Fig. 3A). The cells were profiled at 9 hours post-stimulation, a
173  time point that was found to induce potent transcriptional effects in response to most stimuli from
174  bulk RNA-sequencing of PBMCs (Fig. S4A-B). The full experiment of 384 samples (64
175 individuals by 6 conditions) was profiled in 12 pools according to a pooling matrix produced by
176  clue_logarithmic. The matrix assigned 32 genetically-distinct samples per pool, utilizing an
177  internally-symmetric tree structure that is experimentally simple to execute (Fig. 3B). Upon
178  sequencing, alignment, genetic clustering of cells using freemuxlet, and demultiplexing, we
179  correctly reconstructed 98.9% elements of the pooling matrix (760/768 matrix elements; Fig. 3C,
180 Fig. S5A-B). The errors were due to a mis-pooling event (genotype cluster 11) and the loss of

181  one individual’'s cells during culture due to low viability (genotype cluster 59; Fig. S5C). Although
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182  not explicitly optimized to be error-tolerant, the multiplexing scheme was robust to these errors
183  and cells were assigned to 64 individuals across 6 conditions.

184 The demultiplexed CITE-seq data was visualized with UMAP, and the cell clusters
185 determined by Leiden clustering generally tracked with cell type and stimulation and not with batch
186  or other technical parameters (Fig. 3D-E; Fig. S6A—C). T and NK cells stimulated by IFNy and
187  TNFa clustered together with control cells and separately from those stimulated by IFNB and
188 R848. For B cells, R848- and IFNB-stimulated cells clustered together, whereas IFNy-stimulated
189  and control cells clustered together. In monocytes, cells stimulated by each stimulus formed their
190  own distinct cluster. PMA/I-stimulated lymphoid cells clustered out separately from other stimuli,
191 replicating the strong effects observed in the AMO and bulk experiments, while PMA/I-stimulated
192  myeloid cells were significantly depleted, likely due to differentiation and adhesion to the tissue
193  culture plate after stimulation (Methods).

194 After performing differential expression (DE) analysis between stimulated and
195 unstimulated cells, we identified 1853 DE genes in at least one cell type and one perturbation
196  (log,(Fold Change) > 1, p,q; < 0.05). We then used K-means clustering to group these genes
197 into functional modules that were enriched for immune-related pathways such as cytokine
198  signaling, activation, response to exogenous stimulation (e.g. LPS, virus, other organism), type |
199  IFN signaling, adaptive immune response, and apoptosis (Fig. 3F, Fig. S6D—-G, Table S1). TNFa
200 induced the lowest fold change, except for genes related to cellular ion homeostasis (e.g., MT7),
201  while PMA/I induced the highest fold change, especially for genes related to ribosome biogenesis,
202  RNA processing, and proliferation. IFNy, IFNB, and R848 induced intermediate fold changes for
203 genes implicated in TLR signaling, defense response, and antigen processing/presentation.
204  Importantly, the log fold change estimates from the pseudobulk analysis of the scRNA-seq data
205 were highly consistent with those estimated from the bulk PBMC RNA-sequencing data after 9

206  hours of stimulation (Fig. 3F, Fig. S4C). These findings demonstrate the clue framework can be
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207  deployed at scale to map cell type-specific responses to immune modulation in circulating immune

208 cells.

209 Identification of rare Ilymphoid cell types and stimulation-specific

210 transcriptional responses

211 To assess the impact of stimulation on PBMC subsets, we next analyzed the data after
212  subclustering cells based on their lineage (Methods). We first jointly analyzed T and NK cells,
213  identifying 22 distinct cell clusters consisting of naive and memory T cell subsets, gamma delta T
214  cells (Tys), mucosal associated invariant T (MAIT) cells, and NK cells (Fig. 4A-B). Within naive

215 CD4" and CD8" T cells (confirmed by CD45RA* surface expression), we identified 4 subclusters

216  that were differentiated by the expression of SELL (CD62L) and CD69 (CD69) transcript and
217  protein, indicating a spectrum of stimulation-specific phenotypes. Cluster 7 consisted of R848-
218  stimulated CD4" and CD8" cells, which suggested condition-specific effects shared between the
219 T cell subsets. Activated (CD45RO", cluster 5) and resting (CD45RA", cluster 6) Tregs were
220  marked by their specific expression of FOXP3. Among other CD45RO* CD4" T cells, we identified
221 T2 cells (CDO1, PTGDR?Z; cluster 10) and a cluster of cells that did not polarize to any particular
222 T helper cell state (CXCR3, CXCR5, RORC, CCR4, CCR5, CCRG6; cluster 9; Fig. STA). Notably,
223  we found a subset of CD8" T cells with high transcript and protein expression of ITGAE (CD103)
224  (cluster 11), which is a marker for tissue resident memory cells (Trm). Among the cytotoxic cells
225 marked by the expression of granzyme family members (GZM™), we identified expected subsets

226  of memory CD8" T cells, Tys cells, MAIT cells, and NK cells. We also found a cluster of CD56-

227  expressing cells with high expression of IL2RA (CD25) and c-kit (CD117), and lower expression
228 of granzymes and transcription factors (TFs) EOMES and TBX21 (Tbet), supporting their
229 annotation as circulating innate lymphoid cells (ILCs)'"'® (Fig. S7B). Lastly, we identified two

230  small populations (clusters 13 and 14) marked by the expression of TFs ZNF683 (HOBIT) and

10
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231 IKZF2 (HELIOS) and differentiated by the expression of MME (CD10) (Fig. S7C-D). Cluster 13

)'%20an annotation further

232 s labeled as immature T cells or common lymphoid progenitors (CLPs
233  supported by their expression of other genes shown to be involved in T cell development (e.g.
234  SOX4?', FXDY2?% shared with SELL" and SELL™ naive subsets, respectively; Fig. S7E). Cluster
235 14 resembles the recently-described HOBIT*/HELIOS* T cells®, an unexpected finding in
236  circulation since HOBIT has been shown to identify non-circulating resident memory T cell
237  precursors®.

238 To systematically identify cell type-specific transcriptional responses to perturbation, we
239 ordered the DE genes by the ratio of their log>(FC) from control to their mean expression in all
240  other cell types of the same condition (Fig. S8A, Table S2, Methods). For example, we identified
241  several genes that were upregulated in IFNB- and R848-stimulated NK cells (cluster 20) but lowly
242  expressed in almost all other cell types (Fig. 4C-E, Fig. S8B). Two of the most notable genes
243  thatemerged were RNF165 and FRMD3, both of which have been recently associated with worse

244 prognosis in colorectal cancer®?

and possibly marking tumor-infiltrating NK cells.

245 In addition to T and NK cells, we identified 5 subtypes within the B and plasma cells,
246  including naive and memory B cells, plasmablasts (PB), polyclonal plasmablastic cells (PPC), and
247  mature plasma cells (PC), which were observed across all conditions (Fig. 4F, Fig. S8C). PPCs,
248 marked by PCNA, TYMS, and MKI67, comprised less than 0.02% of all cells (Fig. S8D) and have
249  not been described in other PBMC datasets to the best of our knowledge. This likely reflects their
250 in vitro differentiation from circulating B cells in culture, consistent with previous reports of their
251  generation from cytokine stimulation?”. We found that PMA/I, and to a lesser extent R848, induced
252  the expression of canonical PB genes in memory B cells (CD226, MET, TVP23A, MGLL,; Fig.
253  S8E-F), suggesting that these specific perturbations may be inducing early differentiation of
254  memory B cells into PBs. Furthermore, we identified genes specifically upregulated in IFNB-

255  stimulated memory B cells, including the striking upregulation of ERICH3 encoding glutamate rich

256  protein 3, a poorly-understood vesicle- and cilium-associated gene mainly expressed in the

11
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257  central nervous system?®?° (Fig. 4G-H). In addition to memory B cells, ERICH3 was also
258  upregulated in NK cells, CD8" T memory subsets, and pDCs specifically in response to IFNB.

259  Outside neuronal cells, ERICH3 has been shown to be upregulated in B cell aggregates in the
260 meninges of the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple

261  sclerosis®, a disease commonly controlled with IFNB treatment that requires B cells for efficacy®’.

262 Type | and Il interferons elicit shared and specific transcriptional responses

263 in monocytes

264 We next performed a focused analysis to characterize the specific and shared
265 transcriptional responses of classical (cM) and non-classical (ncM) monocytes to type | (IFNB)
266  and type Il (IFNy) interferons. In response to either IFN, hundreds of genes were upregulated to
267  similar levels in both cMs (452) and ncMs (205), including CXCL10 and GBP4 (log>(FC) > 0.5,
268  pagj < 0.05; Fig. 5A). We also observed genes that were more highly induced in response to IFNy
269  (cM: 587, ncM: 140) including CXCL9, IFNB (cM: 903, ncM: 315) including CCL8, or exhibited
270  opposing effects in response to the two IFNs, such as LRRK2 and CCL?7.

271 To annotate the upregulated genes, we performed gene ontology (GO) biological pathway
272  enrichment analysis using BINGO®?, which generates a network graph of enriched GO terms as
273 nodes and shared genes between terms as edges (Fig. 5B). We grouped similar terms into
274  “pathway clusters” using Leiden clustering and identified similar pathway clusters shared between
275 the IFNs based on high Jaccard Index of ontology terms (Fig. 5C; Methods). In cMs, we identified
276 30 clusters, with 10 clusters (clusters 0-9) highly similar between the IFNs and 11 (IFNB) and 9
277  (IFNy) clusters specific to each IFN. Clusters specific to IFNB-stimulated cells were enriched for
278 defense response (13), chloride ion homeostasis (14), and RNA catabolic processes (1) while
279  clusters specific to IFNy-stimulated cells were enriched for antigen presentation (24), lymphocyte-

280 mediated immunity (21), and protein catabolic processes (26). In ncMs, we observed 27 clusters,
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281  with 6 highly similar clusters shared between the IFNs (clusters 0-5) enriched for many of the
282  same terms as in cMs (Jaccard Index: IFNB, 0.397; IFNy, 0.501), and 11 (IFNB) and 10 (IFNy)
283 clusters specific to each interferon. Directly comparing the significance of terms enriched for each
284  IFN, we note that even in highly similar pathway clusters, terms may be much more significant for
285 one IFN than the other, including those related to lymphocyte activation in IFNy and NF-kB
286  signaling in IFNB (Fig. 5D).

287 We further analyzed DE genes that may contribute to the enrichment of specific pathway
288 terms for each IFN (Fig. 5E). While many genes involved in inflammatory response were similarly
289  upregulated in cMs stimulated with either IFN, some genes exhibited specificity either in response
290 to IFNB, including CCL8, IL27, CCL7, IL1RN, and SIGLEC1, or IFNy, including APOL3, P2RX7,
291 CD40, CXCL9, and IDO1. In ncMs compared to cMs, many of the same genes and annotated
292  pathways exhibited similar specific and shared responses to IFNB and IFNy. We next
293  systematically searched for genes that exhibit an ncM-specific response to either interferon.
294  Among the top ncM-specific genes induced by IFNB were CXCL12, CH25H, FMNL2, LILRAS, and
295 KCNMAT1, all of which have been implicated in the polarization of ncMs to a migratory
296  phenotype®~* (Fig. 5F). In particular, CH25H, a known ISG with established antiviral function®’,
297  has been implicated in adipose-tissue inflammation in obesity and diabetes*®. Among the top ncM-
298  specific genes induced by IFNy were CTLA4, C1Q complement genes, C2, P2Y receptors
299 P2RY13, P2RY14, and the P2Y receptor-like SUCNR1. The P2Y paralogs have been previously
300 described as ISGs in various disease and stimulation contexts***°. We note that the expression
301  of C1Q and C2 further distinguished two subpopulations of ncMs in response to IFNy (Fig. 5G).
302 C1Q-expressing ncMs have been reported in autoimmune diseases including systemic lupus
303 erythematosus (SLE)®, while early growth response gene EGR3 is known to be upregulated
304  during differentiation of ncMs into macrophages and has also been implicated in autoimmune
305 diseases with complement system dysfunction such as SLE*'*2, However, the induction of these
306  populations specifically by IFNy has not been previously reported to the best of our knowledge.
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307 clue enables the discovery of cell type-specific response expression

308 quantitative trait loci

309 With its ability to encode orthogonal experimental information into each condition, the clue
310 framework is uniquely suited for single-cell eQTL studies aimed to identify interactions between
311 genetic variants and experimental conditions such as perturbations. To demonstrate this, we

312  performed an eQTL analysis across 16 different cell types and 6 conditions, which yielded
313 158,445 significant cis-eQTLs (Fig. 6A). Naive CD4" T cells had the highest number of eQTLs

314  (52,016) likely reflecting the large number of cells comprising this group and the low transcriptional
315  heterogeneity across individuals (Fig. S9A). Across all cell types, HLA locus genes, ribosomal
316  proteins (e.g. RPS26, RPL8), and the aminopeptidase ERAP2 were among the most significant
317  eQTLs. Both shared (PLEC, DNAJC15) and cell type-specific eQTLs (CTSW, ARHGAP24,
318 CD151) were observed, some of which only emerged in response to stimulation (GBP7, IFITM3,
319 and SLFNS; Fig. S9B-D).

320 We and others have previously shown that cell type-specific cis-eQTLs are enriched in
321 cell type-specific cis-regulatory elements. To confirm this observation, we performed enrichment
322  analysis using cell type-specific regions of chromatin accessibility estimated from the single-cell
323 ATAC-seq data from the AMO experiment. In unstimulated cells, cis-eQTLs were enriched in
324  ATAC peaks called across all cell types (Fig. 6B, Methods). Furthermore, cis-eQTLs detected in
325  agiven cell type are significantly enriched for peaks specific to the same cell type (Mann Whitney

326  U: CD4" Tnawe, p = 6.4 X 10%; NK, p =4.1 X 10%; B cell, p = 9.7 X 10""%; ¢M, p = 8.3 X 107"; Fig.

327 6C).

328 We further explored how cis-eQTLs could modify the effects of stimulation by comparing
329 the effect sizes and significance for shared and condition-specific eQTLs (Fig. 6D). For example,
330 we identified R848-specific cis-eQTLs for TMEMZ220, IFITM2, and P2RX5 in naive B cells and

331 TNFa-specific cis-eQTLs for MAP3K5 and NINJ1 in cMs. Both MAP3K5 and NINJ1 are known to
14
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332 be induced by TNFa and have been previously reported as eQTLs in lung® and heart*.
333  Furthermore within cMs, we observed some of the most significant cis-eQTLs in response to the
334  interferons including IFNB-specific cis-eQTLs for ITSN1, which has been previously reported in
335  whole blood and skin, and IFNy-specific cis-eQTLs for UPF2, a regulator of nonsense-mediated
336  decay implicated in developmental disorders and with links to immune infiltration into the brain by
337 macrophages and other immune cells®*. Finally, we demonstrate that a subset of these
338  associations are specific to both cell type and condition. For example, significant associations in
339  IFITM2 were found solely in R848-stimulated naive B cells, while associations in UBE2F were
340 restricted to IFNB-stimulated cMs (Fig. 6E—F). These findings demonstrate the power of utilizing
341  the clue framework for population-scale single-cell eQTL analyses, mapping genetic variants that

342  interact with experimental perturbations to impact gene expression across multiple cell types.

343 Discussion

344 Multiplexed single-cell sequencing (mux-seq) is emerging as a systematic approach to
345  characterize the molecular profiles of cell types in large population cohorts. The integration of
346  experimental perturbations and donor genetics enables the analysis of interindividual variability
347  in molecular response and its genetic determinants. However, existing mux-seq implementations
348  require reference genotyping or experimental barcoding, which incurs additional cost and may be
349 experimentally challenging to deploy. To overcome these challenges, we developed clue, a
350 framework for designing mux-seq experiments where single cells can be deterministically
351  demultiplexed utilizing only the genotypes detected from the data. Central to clue is the
352  development of freemuxlet, an algorithm that clusters single cells based on their genetic profiles
353 and identifies instances where multiple cells from distinct individuals receive the same partition

354  (droplet or well) barcode. clue obviates the need for reference genotyping while yielding high
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355  quality single-cell epigenomic, transcriptomic, and surface protein profiles from many individuals
356  that can be used in studies of the genetic determinants of gene regulation.

357 To demonstrate the utility of the clue framework, we performed RNA and surface proteome
358 sequencing in PBMCs from 64 individuals, introduced perturbations by taking advantage of
359  redundant samples (creating 384 unique individual-conditions profiled in 12 pools), and performed
360 differential expression and eQTL analyses with the resulting data. Genetic clustering using
361  freemuxlet, followed by demultiplexing, assigned cells to individuals with high signal-to-noise and
362 was robust to technical errors. The resulting demultiplexed data showed enrichment of
363 differentially expressed genes and proteins in relevant biological pathways across 12 broad cell
364 types and 6 conditions. Stimulation induced cell type and stimulation-specific expression of genes
365  participating in inflammation, cytokine signaling, and adaptive and innate immune responses.
366 The analysis of our data identified rare cell types and states previously not described from

367  scRNA-seq of PBMCs that likely developed in culture or in response to stimulation. For example,
368 we observed several tissue-resident phenotypes in multiple CD8* T cell subsets, distinguished

369  most notably by the expression of CD103 (/ITGAE) and ZNF683 (which encodes HOBIT). While

370 circulating CD103" CD4+ T cells have been described in healthy individuals and proposed to be
371 the basal recirculation of a skin-resident population*®, their CD8" counterparts have not been

372  previously described or characterized.

373 We found profound cell type-specific responses to TLR and IFNAR stimulation across
374  monocyte and lymphocyte subsets. In particular IFN3, and to a lesser extent R848, induced high
375  expression of RNF165 and ERICH3 in lymphocyte but not monocyte subtypes, genes that have
376  been implicated in colorectal cancer and autoimmunity. IFNB and IFNy induced condition-specific
377 and cell type-specific responses in classical and non-classical monocytes. Specific to non-
378  classical monocytes, we observed that IFN induced a gene program suggestive of a migratory

379  phenotype while IFNy stimulation produced two subpopulations differentiated by the expression
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380 of complement components and EGR3. The two populations may correspond to recently-
381  described subsets of ncMs distinguished by 6-sulfo LacNAc (SLAN, a carbohydrate modification
382  of PSGL-1 protein, encoded by SELPLG), CD9, and CD61 surface expression*’. We see higher
383  albeit not statistically significant mean expression of CD9 transcript and protein, CD61 protein,
384 and SELPLG transcript in the C2-expressing cluster, consistent with their annotations. However,
385 further functional studies of these cell types to determine what role, if any, these genes play in
386  the response to these agonists.

387 Lastly, we demonstrate the clue framework can be deployed for the mapping of eQTLs,
388 demonstrate eQTL enrichment in ATAC peaks separately generated using clue, and explore
389 those eQTLs that emerge only in certain cell types and stimulation conditions. We propose novel
390 cell type- and condition-specific eQTLs in myeloid cells and B cells. We demonstrated clue at
391  scale using CITE-seq but anticipate that clue can also be deployed for ATAC-seq and multiomic
392  profiling of chromatin state and gene expression. While we report eQTLs identified by the
393 integrated analysis of genotyping data, we anticipate that full-length cDNA sequencing and single-
394  cell ATAC-seq may capture sufficient numbers of SNPs to enable high quality imputation and
395  genetic mapping studies from single-cell genomic data alone. Indeed, emerging studies have
396 already demonstrated that genotypes detected solely from scRNA-seq reads may be sufficient
397  for eQTL discovery**°.

398 There are several practical considerations for deploying the clue framework at scale. First,
399 the clue framework is not explicitly developed to identify samples utilizing genotyping data. In fact,
400 any multiplexing scheme can benefit from clue if the same barcoded samples will be profiled
401 across multiple conditions. Second, for large experiments, we advise that statistical power be
402 assessed carefully before employing the framework. Given a total number of cells to be
403 sequenced for an experiment, including tens or hundreds of individuals in a pooling matrix with
404  high compression will result in fewer cells per individual, which may hinder the ability to carry out
405 certain downstream analyses. One way to compensate for low cell numbers per sample would be
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to minimize or omit cross-pool variation (e.g. no stimulation conditions). Another would be to
assay the same pool in multiple single-cell reactions, though this increases overall costs. Finally,
committing to assaying a large number of samples in one experiment involves some assumption
of risk, especially if samples are precious. Robotics are recommended, if available, to minimize
human error and experiment duration. With these considerations, clue is a valuable framework
for highly-multiplexed single-cell sequencing studies, obviates the need for reference genotypes,
can be used for both RNA and ATAC profiling, and is scalable to genetic studies involving tens or

hundreds of individuals.
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414  Methods References:
415  Phred-scale base quality score®’
416  Detecting contamination of human DNA samples®

417  ImmVar studies®°
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Figure 1. Overview of the clue framework. A, lllustrative schematic of the clue framework using the
all-minus-one (AMO) pooling matrix, in which cells from one individual are omitted per pool. After single-cell
sequencing, cells are genetically clustered and can be demultiplexed by identifying which samples are absent
in each pool. Off-diagonal variance in cell numbers in the genotype frequency matrix is due to technical
variability (e.g. unequal mixing of cells). The estimated pooling matrix is overlaid with the shading from the
genotype frequency matrix to indicate the number of cells observed per individual-pool. B, For a toy example of
20 individuals and 3 perturbations, an AMO pooling matrix is identifiable but not most compact. C,
clue_logarthmic is a more compressed pooling matrix with fewer pools. clue ILP enables discovery of D,

optimal (i.e. most compressed) pooling schemes and E, those that are error tolerant and batch effects
minimized.
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Figure 2. Overview of freemuxlet as applied to clue data. A, Schematic of the freemuxlet algorithm, in
which single-cell sequencing data and a curated set of loci are input, and genetically-distinct clusters of
singlets and a variant calling format (VCF) genotype file are output. B, Visualizing the pairwise genetic distance
between droplets in UMAP space shows 5 distinct clusters corresponding to the 5 input individuals, as well as
putative doublets that embed between constituent donor clusters. C, The estimated pooling matrix of singlets
from the AMO experiment recapitulates the actual pooling matrix for both RNA and ATAC assays. Stimulation
conditions are introduced to take advantage of redundancy. D, The resulting single-cell transcriptome and
chromatin accessibility profiles visualized in UMAP space show heterogeneity due to both cell type and

stimulation condition.
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Figure 3. The clue framework enables single-cell profiling of 384 samples in 12 reactions. A,
Experimental overview. PBMCs from 64 donors were incubated with 5 immunomodulatory stimulants for 9
hours, then pooled and sequenced. B-C, The actual pooling matrix and estimated pooling matrix from
freemuxlet show near-perfect concordance. Two deviations (blue arrows), one mis-pooling event (genotype
cluster 11) and one instance of cell loss (low recovery of a low viability sample, genotype cluster 59), are
highlighted with asterisks. Demultiplexing was robust to these errors. D-E, Dimensionality reduction with
UMAP and clustering with Leiden shows heterogeneity in gene expression from both stimulation condition (D)
and cell type (E). F, Heatmap of differentially expressed genes comparing stimulation conditions to controls in
each cell type. Genes are k-means clustered to yield gene modules with significant functional enrichment in
immune-relevant biological pathways. Pseudobulks across all cell types per condition are concordant with bulk
RNA data.
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Figure 4. Iterative clustering and less restrictive gene filtration enable high resolution cell type and cell
state map. A, Portion of UMAP showing T cells and NK cells, with identified cell groups colored and
numbered. Insets show the location of particular cell groups and the condition overlays (C/A/G: Control, TNFa,
IFNy; B/R: IFNB, R848). B, Row-normalized expression heatmap of selected genes used to identify
subpopulations in A. C, Portion of UMAP showing Granzyme® (GZM") T cell and NK cell subsets, colored by
cell type (top) and condition (bottom). D, Expression of RNF165 and FRDM3, genes expressed in both a cell
type- and condition-specific manner. Plot restricted to CD16" NK cells and organized by condition (left) or
restricted to IFNB stimulation and organized by cell type (right). E, Full single-cell UMAP showing specific
expression of RNF165 and FRMD3. Dashed box indicates location of GZM* T and NK cells. F, Portion of
UMAP showing B and plasma cells, colored by cell type and condition. G, Expression of CALD1 and ERICH3
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Figure 5. IFNs induce shared and specific transcriptional effects in classical monocytes. A, log,(FC) of
gene expression from control for each IFN in classical (cM) and non-classical (ncM) monocytes. Each gene is
colored by its direction of change (shared upregulated, red; IFNy upregulated, purple; IFNB upregulated,
green). B, Graph of biological pathways enriched from upregulated genes for each cell type and IFN condition
as determined by BiNGO. Each node is a gene ontology-enriched biological pathway term, and edges indicate
shared enriched genes. Nodes are organized into "pathway clusters" via Leiden clustering using the adjacency
matrix of shared genes. C, Jaccard index of terms between pathway clusters demonstrating some clusters are
similar between the IFNs, and others are specific to either IFN. D, Significance (-logo(p.q)) of enriched terms
comprising various shared pathway clusters in cMs (top 4 plots) and ncMs (bottom 2 plots). Unenriched terms
in a given IFN have a significance set to 0. Terms are colored by their pathway cluster (title of each plot) as
shown in B — C, unless they clustered differently between the IFNs, in which case they are colored black. E,
Heatmap of log,(FC) for the most differentially expressed genes, organized according to direction of change as
shown in A. Genes specific to either IFN enriched in various ontology terms are annotated with a binary matrix.
F-G, Column-normalized heatmap and portions of UMAP showing expression of genes upregulated in
IFN-stimulated non-classical monocytes.
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Figure 6. Genetic variants influence gene expression in a cell type- and condition-specific manner. A,
Genome-wide Manhattan plots for selected cell types. All SNPs are colored gray and significant hits are
colored by condition. Below each scatter plot is a line plot showing relative enrichment using a moving window
average (see Methods). B—C, Enrichment of eQTLs in ATAC peaks, called on all unstimulated cells together
(B) and in a cell type-specific manner (C, column-normalized). D, Comparisons of effect sizes of eQTLs
between conditions in selected cell types. Significant eQTLs in either condition are colored by condition, and
colored black if significant in both. SNPs that were insignificant but reported in both conditions are plotted in
the main plot, colored gray. SNPs for which effect sizes were not reported in one or the other condition are
plotted in the marginal distributions. E-F, Box plots showing eQTLs observed in a combination of cell type and
condition, plotting gene expression with genotype (homozygous reference — heterozygous — homozygous
alternate). Top plots show expression levels by condition in the given cell type. Bottom plots show expression
levels by cell type in the given condition. Box plots showing a significant correlation (BH < 0.001) are noted
with ***,
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