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Abstract 13 
 14 
Disruption of retinal vasculature is linked to various diseases, including diabetic retinopathy and 15 
macular degeneration, leading to vision loss. We present here a novel algorithmic approach that 16 
generates highly realistic digital models of human retinal blood vessels based on established 17 
biophysical principles, including fully-connected arterial and venous trees with a single inlet and 18 
outlet. This approach, using physics-informed generative adversarial networks (PI-GAN), 19 
enables the segmentation and reconstruction of blood vessel networks that requires no human 20 
input and out-performs human labelling. Our findings highlight the potential of PI-GAN for 21 
accurate retinal vasculature characterization, with implications for improving early disease 22 
detection, monitoring disease progression, and improving patient care. 23 
  24 
Introduction  25 
 26 
Disruption of retinal vasculature is associated with a range of diseases which can result in loss 27 
of vision, including diabetic retinopathy (DR) [1] and macular degeneration [2]. It is also 28 
increasingly recognized that retinal vasculature can indicate the presence of systemic 29 
pathology, such as vascular dementia [3] and cardiovascular disease [4]. Automated methods to 30 
characterize changes in retinal vasculature from clinical imaging data therefore offer substantial 31 
promise for high-throughput, early detection of disease [5], which is critically required to meet 32 
the increasing incidence of retinal disease, potentially alongside other vascular diseases, and 33 
their associated burden on healthcare systems [6]. 34 
 35 
Much attention has been placed on supervised deep learning in this regard, where deep neural 36 
networks are trained to categorise images according to diagnosis or identify the location of 37 
features of interest [7]. Supervised learning, particularly with U-net architectures [8], first rose to 38 
prominence in retinal image analysis for segmenting retinal layers in optical coherence 39 
tomography (OCT) data [9], alongside blood vessels segmentation in retinal photographs [10, 40 
11]. A significant limitation to this type of approach is the lack of high-quality, manually-labelled 41 
image data in sufficient quantities to enable accurate and generalisable predictions to be made 42 
[12]. This problem is particularly acute for the detection of blood vessels, in which manual 43 
labelling is highly time-consuming, generally limited to two-dimensional (2D) projections, 44 
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confined to larger vessels only, and generally does not distinguish between arteries and veins 45 
[13].  46 
 47 
To address these challenges, we describe here a novel set of algorithms that can generate 48 
highly realistic digital models of human retinal blood vessels, using established biophysical 49 
principles and unsupervised deep learning. Our biophysical models capture the complex 50 
structure of retinal vasculature, with interconnecting arterial and venous trees that are inherently 51 
three-dimensional, multi-scale and fully inter-connected via a capillary bed. They also feature 52 
dedicated macula and optic disc features. The central biophysical principles we draw on are 1) 53 
Murray’s Law, in which vessel diameters, branching distances and branching angles are 54 
optimised to form a balance between pumping power and blood volume and minimize 55 
resistance to flow [14]; and 2) fluid dynamics to model blood flow and vascular exchange. The 56 
latter is made possible by our synthetic networks containing fully-connected arterial and venous 57 
trees with a single inlet and outlet (the central retinal artery and vein), allowing blood flow and 58 
contrast agent delivery (e.g. fluorescein) data to be simulated with minimal assumptions in 59 
regard to network boundary conditions. 60 
 61 
In this work, we investigate whether, through the use of generative deep learning, our 62 
biophysics-informed vascular network models can be used to infer information from real-world 63 
retinal images, such as the segmentation and reconstruction of blood vessel networks, without 64 
the need to perform any manual labelling, in an approach termed physics-informed generative 65 
adversarial learning (PI-GAN) [15]. An overview of our framework is provided in Figure 1. 66 
Generative adversarial networks (GANs) incorporating cycle-consistency have previously been 67 
used for medical imaging domain machine learning tasks such as chest MRI to X-ray CT 68 
transformation [16], PET image denoising [17], and artefact reduction in fundus photography 69 
[18]. Likewise Menten et al used the space colonisation algorithm to generate macular blood 70 
vessel images, which they coupled with deep learning [19].  71 
 72 
We demonstrate here the ability of our retinal simulation framework to accurately simulate real-73 
world retinal vasculature, including blood flow, and model the presentation of two common 74 
vascular pathologies: DR and retinal vein occlusion (RVO). Moreover, we show that our use PI-75 
GAN workflow allows retinal vasculature to be segmented without any human manual labelling, 76 
and which outperforms state-of-the-art supervised learning approaches. This therefore offers 77 
numerous opportunities for improved detection and quantification of retinal disease in clinical 78 
ophthalmology. 79 
 80 
 81 
  82 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.07.10.548427doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548427
http://creativecommons.org/licenses/by-nc/4.0/


 83 
Figure 1. Schematic overview showing the physics-informed generative adversarial learning 84 
(PI-GAN) framework developed in this study. Retinal blood vessel networks, featuring arterial 85 
and venous trees connected by a capillary bed, and special treatment of macular and optic disc 86 
features, were simulated using space filling growth algorithms based on Murray’s law. Blood 87 
flow and fluorescein delivery were simulated in synthetic vascular networks, using one-88 
dimensional Poiseuille flow. By combining this with cycle-consistent, physics-informed deep 89 
generative learning, vessel simulations were converted into synthetic medical image data 90 
(fundus photography, Optical coherence tomography angiography (OCT-A) and fluorescein 91 
angiography), and the same trained networks used to detect blood vessels in clinical images.  92 
 93 
Results 94 
 95 
Procedural modelling of retinal vasculature 96 
Retinal vascular networks were simulated in multiple, linked steps, using a combination of 97 
algorithms that draw on the known geometry and biophysics of retinal vasculature. In total, our 98 
procedural model of retinal vasculature contained 26 parameters (Supplemental Table 1), each 99 
of which were randomly sampled to simulate the broad range of retinal geometries occurring in 100 
the population (Figure 2a-c) [20, 21]. 101 
 102 
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Networks were seeded using a Lindenmayer-system (L-system) [22], in which initial central 103 
retinal artery and vein segments were positioned at the location of an optic disc and iteratively 104 
branched within a plane. The first arterial and venous segment radii were 135 ± 15 µm and 151 105 
± 15 µm, respectively [23]. Branching was performed asymmetrically to create characteristically 106 
large vessels surrounding the macula, with smaller branches reaching towards the periphery, as 107 
observed in retinal images [23].  108 
 109 
Seeding L-systems were then grown to the edge of the retina using a variant of constrained 110 
constructive optimisation (CCO) [24-28]. This step transformed L-system networks into realistic, 111 
space-filling networks with geometries defined by Murrays law [14] (exponent of 2.4 ± 0.11 [29]), 112 
whilst retaining the realistic macroscopic branching geometry imposed by the L-system seeding 113 
(Figure 2d-f). A final growth step was incorporated to create the characteristic branching 114 
pattern of the macula, with radial alignment of arterioles and venules, greater relative vascular 115 
flow density (between 1.5 and 2.0 times the perfusion fraction) and a central avascular fovea.  116 
 117 
Following growth, we augmented vessels with sinusoidal displacements to replicate the tortuous 118 
vasculature commonly observed in human retinas, with a greater displacement imposed on 119 
veins. A continuous capillary bed was generated using either 1) a 2D Voronoi algorithm that 120 
arterial and venous endpoints were connected to [30] or 2) a 2D space colonization algorithm 121 
[31]. Following simulation within a 2D plane, vessels were projected onto a hemispherical mesh 122 
(radius 23 - 25 mm) featuring macula and optic disc structures generated using a mixed 123 
Gaussian profile [32] (Figure 2, Supplemental Figure 1). 124 
 125 
Comparison of synthetic networks with real-world networks 126 
Our set of retinal network growth algorithms is designed to provide an authentic replication of 127 
real retinal vasculature, by following established biophysical principles. To quantitatively 128 
evaluate the accuracy of these synthetic networks, we manually labelled all visible blood 129 
vessels in 19 optical coherence tomography angiography (OCT-A) image datasets, using in-130 
house software. This included differentiating arteries and veins (A-V) in a subset of images 131 
(n=5), using retinal photographs as a reference for determining A-V status. Vessel branching 132 
angle, inter-branch length, tortuosity, and radius were measured in three regions: the macula, 133 
the vessels surrounding the optic disc, and the periphery. The macula was defined as a 5.5 mm 134 
diameter circular area centred on the fovea, based on measurements referenced in Remington 135 
and Goodwin [33]. The vessels surrounding the optic disc were labelled as a 3.6mm diameter 136 
centred at the optic disc, due to mean vertical and horizontal diameters of the optic disc 137 
reported as 1.88 and 1.77mm respectively [34]. Vessels outside these regions were defined as 138 
‘peripheral’. 100 synthetic retinal networks were initially created, with parameter values 139 
randomly drawn from the ranges shown in Supplemental Table 1.  140 
 141 
According to ANOVA analysis, all geometric parameters associated with synthetic blood vessel 142 
networks did not reach the level of statistical significance compared to those measured in 143 
normal controls using manual segmentation of OCT-A images (branching angle, p = 0.82; 144 
vessel length, p = 0.17; vessel tortuosity, p = 0.095; vessel network volume, p = 0.061; vessel 145 
diameter, p = 0.59) (Figure 3, Supplemental Table 2). 146 
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 147 
 148 

 149 
Figure 2: Procedural generation of retinal vasculature using constrained constructive 150 
optimisation and lattice sequence vascularisation. a-c) Examples of synthetic retinal vascular 151 
networks, featuring arterial (red) and venous (blue) trees, and with geometry optimised 152 
according to Murray’s law. Each simulation run used a different set of physiological parameter 153 
values, randomly sampled from the distributions defined in Supplemental Table 1. d-f) A 154 
synthetic retina (d) with a 12×12 mm region surrounding the optic disc and macula (e) 155 
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compared with a real OCT-A image (f). g) A simulated vascular network projected onto three-156 
dimensional surface. 157 

 158 
Figure 3. Comparison of retinal vascular geometry distributions visualised with bar plots 159 
between manually segmented networks from OCT-A data (normal volunteers not ascertained 160 
for disease status) and simulated networks. a) Branching angle, b) vessel length (µm), c) vessel 161 
tortuosity, d) vessel network volume and e) vessel diameter (µm), in three regions: macula 162 
(5.5mm diameter circular area centred on the fovea [33]), optic disc (3.6mm diameter area 163 
centred on the optic disc centre [34]), and periphery (all vessels outside those regions). 164 
 165 
 166 
 167 
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 168 
 169 
Simulating retinal blood flow and validation using fluorescein angiography 170 
We have previously developed a mathematical framework for simulating blood flow in three 171 
dimensional vascular networks, which uses one-dimensional Poiseuille flow [35]. Our simulated 172 
retinal networks are ideally suited for this framework, having just one arterial input and one 173 
venous outlet meaning that pressure boundary conditions can be easily specified. Setting 174 
arterial pressure by sampling from a normal distribution parameterised by mean =  56.2 mmHg, 175 
s.d. = 14.0 mmHg [36] and similarly for venous pressure with mean = 20.0 mmHg and s.d. = 176 
10.0 mmHg [36] gave an average total retinal flow prediction of 34.4 ± 1.8 µL/min, which is 177 
slightly lower, but still in good agreement with reports in the literature from healthy retinas (for 178 
example, 45.6 ± 3.8 µL/min [36] 44 ± 13 µL/min [37] 50.7 µL/min [37] (Figure 4a,b).  179 
 180 
To further evaluate these flow results, we next performed a simulation of retinal fluorescein 181 
delivery. Fluorescein angiography (FA) is used in ophthalmology for diagnosis of macular 182 
edema, macular degeneration, RVO, DR, and other diseases [38, 39]. Fluorescein is injected as 183 
a bolus into the median cubital vein, and 10-15 seconds later appears in the choroidal 184 
vasculature at the rear of the eye [40]. Within 2 seconds of this, fluorescein appears in the 185 
anterior arteries and arterioles, and a further two seconds later by partial filling of venules and 186 
veins, followed by total filling and recirculation. 187 
 188 
We simulated the systemic pharmacokinetics of fluorescein using literature data (Supplemental 189 
Figure 2), with the passage of fluorescein modelled as two displaced Gaussian functions to 190 
model the first and second passes, and an exponential washout term corresponding to systemic 191 
extraction. This time course was propagated through our synthetic retinal networks by 192 
partitioning by flow at branch points and delaying according to cumulative velocities. The delay 193 
between arterial and venous filling with fluorescein, across 1000 simulation runs was 7.3 ± 0.7 194 
s, which is in keeping with timings described in clinical data [40]. Visual inspection of fluorescein 195 
delivery also revealed a good accordance with clinical delivery profiles (Figure 4c-h). 196 
 197 
   198 
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 199 

 200 
Figure 4: Blood flow simulations in an example biophysical model of a retinal blood vessel 201 
network. a) Blood flow (µL/min) and b) vascular pressure (mm Hg) were simulated using 202 
Poiseuille flow, with inlet arterial pressure and outlet venous pressure fixed at 56.2±14.0 and 203 
20.0±10.0 mmHg, respectively. c-e) Simulated delivery of fluorescein at 17 s (arterial phase), 30 204 
s (venous phase) and 600 s (recirculation), with clinical fluorescein images (registered to the 205 
same coordinate space) shown in f-h for comparison 206 
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 207 
Simulating retinal pathology 208 
Given the physiologically-realistic results provided by our flow models, we next sought to perturb 209 
our simulated networks to examine the effect of pathological changes. As a first demonstration, 210 
we simulated the effect of RVO. A random location of artery-vein crossover on a large retinal 211 
vein was reduced in diameter by 80%. Blood flow within the network was recalculated, revealing 212 
a large region of hypoperfusion, as expected. This strongly reflected the presentation of RVO 213 
found in clinical FA data (Figure 5) and induced a regional reduction in blood flow of 9.8 µL/min 214 
in the vessels immediately downstream of the occlusion. 215 
 216 
Next, we constructed a simple model of DR [41-43], in which arterioles with a radius less than 217 
35 µm were randomly selected and occluded, and the resultant change in network flow 218 
calculated. All vessels that become non-perfused, either up- or downstream of the occluded 219 
vessel, were removed from the network, creating regions of ischemia, with occasional surviving 220 
vessels passing through (Figure 5c-d, Supplemental Figure 3). Occlusions were simulated in 221 
batches of 5, initially from the periphery (>1cm from the macula centre), and then at decreasing 222 
minimum distances from the macula, as typically found in the clinical presentation of DR. 223 
 224 
Both our retinal occlusion model and DR model produced images that were highly reminiscent 225 
of clinical images of both pathologies (Figure 5), with loss of flow in downstream vessels in our 226 
RVO model and loss of perfusion and regions of ischaemia in the DR model.  227 
 228 
 229 
 230 
 231 
 232 
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 233 
Figure 5: Simulating realistic whole-retina pathology. A) An example of RVO simulation and 234 
loss of flow in downstream vessels. The yellow arrow shows the location of an imposed 80% 235 
decrease in vein diameter. b) An FA image of retinal occlusion, revealing a similar pattern of 236 
perfusion loss as simulated in (a). c) The onset of DR, simulated by inhibiting flow in randomly-237 
selected peripheral arterioles. D) An OCT-A image of a retina exhibiting stage 4 DR, evidenced 238 
by extensive loss of perfusion in vessels and regions of ischemia.  239 
 240 
 241 
Generating synthetic clinical ophthalmology data with deep learning 242 
Our next challenge was to use deep learning to define a mapping between our biophysical 243 
vascular model and clinical ophthalmology data (and vice versa). For this we used cycle-244 
consistent generative adversarial networks that enabled the translation of image texture and 245 
style between image domains [44]. We undertook this for three clinical imaging modalities: 246 
OCT-A, retinal photographs and FA. 247 
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 248 
We embedded our synthetic retinas in three-dimensional grids with axial and lateral resolutions 249 
of 6.3 µm and 21 µm, respectively, to match our clinical OCT-A data. We then trained three 250 
cycle-consistent GANs on these synthetic retinas, with each GAN mapping the conversion 251 
between the synthetic images and a different imaging modality. 590 retinal photographs, 43 252 
OCT-A en-face images and 570 FA images were used in training for this purpose. PI-GAN 253 
enabled the geometry of source images (simulations- domain A) to be translated into a target 254 
style (retinal photographs- domain B, OCT-A-domain C, and FA- domain D). As can be seen in 255 
Figure 6a, following 400 training epochs, the pattern of synthetic vasculature was realistically 256 
transferred into the style of each target image. The Frechet Inception Distance (FID) was 6.95 257 
for retinal photographs, 5.17 for fluorescein angiographs and 3.06 for OCT-A en-face images, 258 
indicating a small distance between feature vectors for real and fake images.  259 
 260 
This process generated authentic-looking retinal image data with matched, fully specified 261 
ground truth blood vessels. However, cycle consistency also allows the reverse operation: to 262 
generate simulation data from clinical images (Figure 6b). This enabled blood vessel networks 263 
to be segmented from OCT-A images and compared with manual segmentations of the same 264 
data (Figure 7). Visual inspection of PI-GAN segmentations revealed many more small ‘elusive’ 265 
vessels [45] than represented within our manually-segmented images, arguably providing 266 
superior segmentation accuracy than the manual ‘gold standard’. Accordingly, the mean Dice 267 
score for OCT-A images was low (mean 0.35, s.d. 0.12 (2.s.f)), but the sensitivity (the 268 
percentage of pixels labelled as vessel in the manual segmentation that were also identified as 269 
vessel by PI-GAN) was high (87.1% (s.d. 1.20)), showing that  PI-GAN is able to accurately 270 
label almost all of the vessels identified by human operators (Figure 7g-j). 271 
 272 
To further investigate this result, we evaluated PI-GAN on two publicly available retinal 273 
photograph data sets with corresponding manual segmentations (STARE and DRIVE). 274 
Contrasting the widefield (130 degree and 200 degree montage) images analysed here, these 275 
datasets were acquired with a smaller 45 degree FOV, and are widely used in benchmarking 276 
vessel segmentation. Again, Dice scores comparing manual and PI-GAN segmentations were 277 
low but, as shown in Figure 7k-m and Supplemental Figure 5, PI-GAN was able to detect 278 
most of the manually-segmented vessels, but also many smaller, elusive vessels. Mean DICE 279 
score between DRIVE manually segmented data and segmentations generated using PI-GAN 280 
was 0.56 (s.d. 0.013) (2.d.p) and for STARE it was 0.64 (s.d. 0.19) (2.d.p). These results call 281 
into question how appropriate manual segmentation is as a gold standard in this setting, visual 282 
inspection suggests these additional small vessels are indeed physiological and were simply 283 
missed by manual segmentation. 284 
 285 
These results demonstrate the key ability of physics-informed simulations with deep learning to 286 
autonomously segment blood vessels within a range of ophthalmology imaging modalities, 287 
without the need for any manually-labelled training data. 288 
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 289 
Figure 6: Generation of multi-modality retinal images from biophysical simulations, using 290 
physics-informed generative adversarial networks. Direction 1 involves conversion of domain A 291 
(simulated network) into domains B (fake retinal photograph), domain C (fake OCT-A) and 292 
domain D (fake fluorescein angiography). Direction 2 involves conversion of real retinal images 293 
(domains B-D) into fully connected networks/segmented data (domain A) 294 
 295 
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 296 
Figure 7: Blood vessel segmentation from OCT-A data with PI-GAN. A and d) OCT-A en-face 297 
images of retinal vasculature. B and e) The same OCT-A images with vessel segmentations 298 
from PI-GAN. C and f) Segmented vessels projected in three-dimensional space, colour-coded 299 
for vessel radius. G) An OCT-A image with h) manually-segmented and i) PI-GAN-segmented 300 
blood vessels. J) A composite image of manually- and PI-GAN-segmentations, with overlapping 301 
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pixels rendered white, pixels with only PI-GAN-detected vessels in blue and pixels with only 302 
manual-detected vessels in red. K) A retinal photograph taken from the DRIVE data set [46] with 303 
l) manually-segmented and m) PI-GAN-segmented blood vessels. 304 
 305 
Discussion 306 
 307 
Methods that enable the quantitative assessment of retinal vasculature from clinical 308 
ophthalmology images are critically needed for evaluating the progression of diseases such as 309 
DR, and also to support research into the influence of systemic diseases such as cardiovascular 310 
disease and vascular dementia [3, 4]. In this regard, deep learning is rapidly transforming 311 
ophthalmology, but requires access to large volumes of well-curated data before it can be 312 
implemented with confidence in the clinic [47, 48]. In the assessment of vasculature, manual 313 
image labelling constitutes a considerable bottleneck in terms of time, expense and labelling 314 
accuracy [49], as manual segmentation of a single 2D retinal image can take multiple hours 315 
[50]. Inter and intra grader variability can also be significant within the segmentation process 316 
[51, 52]. Most segmentation studies have been conducted in 2D retinal fundus photographs 317 
using public datasets [12, 53, 54]. Approaches that can relieve this bottleneck are urgently 318 
needed to enable the robust translation of deep learning into the clinic. 319 
 320 
To address these challenges, we have presented here a physics-informed, generative approach 321 
that combines biophysical simulation with deep generative learning. A useful outcome of this 322 
approach is the ability to automatically segment vascular data from clinical evaluation images, 323 
without any need for manual segmentation. Specifically, we created a linked set of algorithms 324 
that draw on established principles in biophysics to simulate fully-connected retinal vasculature, 325 
in a three-dimensional domain, with special treatment for optic disc and macular regions. The 326 
full connectivity of our models, with separate arterial and venous trees, enables realistic blood 327 
flow and delivery simulations (for example, as we show in fluorescein angiography). We 328 
demonstrated that our synthetic vascular networks are highly concordant with real retinal 329 
vasculature metrics, with network statistics matching those from manual segmentations, in three 330 
regions: the optic disc, macula and periphery.  331 
 332 
This close accordance between simulation and real-world geometries is key to its ability to 333 
segment blood vessels from ophthalmology images. Cycle-consistent deep generative learning 334 
allowed us to create realistic fundus photograph, OCT-A and FA images that inherently 335 
maintained feature geometry through the translation from simulation to clinical image domains. 336 
The resultant data are inherently paired, and so could provide data to augment conventional 337 
supervised learning approaches. However, cycle-consistency also facilitates the reverse 338 
translation, from clinical image domains back into the simulation domain, allowing the 339 
automated segmentation of blood vessels without human-labelled data. Comparing 340 
segmentation performance against manual segmentations revealed a much greater ability to 341 
label small vessels, and with excellent overlap with larger manually-segmented vessels. 342 
However, overall performance assessed via DICE score showed a relatively low accordance, 343 
due in part to the greater ability of the PI-GAN approach to detect small blood vessels, but also 344 
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false-positives in both human-labelled and PI-GAN-labelled vessels. In regard to the latter, there 345 
are cases where GANs can ‘hallucinate’ features in images [55].  346 
 347 
To date, supervised deep learning approaches have yielded impressive results in 2D vessel 348 
segmentation relative to manual segmentation, although tend to favour precision over recall [5], 349 
resulting in an under-segmentation of faint vessels, underestimation of the width of thicker 350 
vessels and some ‘elusive’ vessels being missed [45]. This is problematic for diagnostic 351 
interpretation, because many biomarkers (such as artery-vein (AV) ratio, branching angles, 352 
number of bifurcations, fractal dimension and tortuosity) need precise measurements of 353 
individual vessels. GANs incorporating cycle-consistency have previously been used for medical 354 
imaging domain machine learning tasks such as chest MRI to X-ray CT transformation [16], 355 
PET image denoising [17], and artefact reduction in fundus photography [18]. Likewise Menten 356 
et al used the space colonisation algorithm to generate macular blood vessel images, which 357 
they coupled with deep learning [19].  358 
 359 
Our approach builds on this by incorporating biophysically-informed models of flow within fully-360 
connected artery and venous networks that extend across the entire retina, and our use of it to 361 
inform cycle-consistent deep generative learning. These developments allow application in 362 
larger field of view images (e.g. wide-field fundus photography), and also enable a large range 363 
of future applications, including flow modelling and oxygen delivery [56]. Moreover, given our 364 
ability to model arterial and venous trees, there is potential for independent segmentation of 365 
both vascular supplies. 366 
 367 
These biophysical simulations also aimed to capture the wide range of variation found in real 368 
retinal networks, by varying the 26 simulation parameters across their reported physiological 369 
range. A further advantage of developing flow models into our biophysical framework was the 370 
ability to simulate pathology, such as the progression of DR and RVO. Many other pathologies 371 
could be simulated in follow-on studies, including changes in retinal vessel diameters 372 
associated with factors such as aging or hypertension. For example, Wong and colleagues 373 
reported retinal arteriolar diameters to decrease by approximately 2.1 µm for each decade 374 
increase in age, and by 4.4 µm for each 10 mmHg increase in arterial blood pressure [57]. 375 
Performing disease-specific deep generative learning runs will enable us to further refine our 376 
segmentation approaches and begin to characterise pathology. 377 
 378 
Accordingly, there is also potential to use clinical data to further improve our biophysical 379 
simulations, enabling more accurate modelling of retinal physiology (and disease) and the ability 380 
to develop interpretable AI systems. The results of several recent studies using deep learning 381 
suggest that that retinal vasculature can provide a window into many systemic diseases 382 
(including dementia [3], kidney disease [58] and cardiovascular disease [4]), but cannot easily 383 
explain the structural basis of these associations. A PI-GAN framework is inherently coupled to 384 
biophysical laws, and so could help determine their origins or underpinning mechanistic 385 
processes. Additional challenges for segmentation are artery-vein classification [59] and 386 
establishing connectivity of the vessels [60], which, having a well-defined ground truth data set 387 
from simulations, could be realised through PI-GAN. 388 
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 389 
Overall our results demonstrate the potential of biophysical models of the retina, which can be 390 
interrogated to understand how physiological perturbations (such as disease) effect vascular 391 
function. Further work could explore regional variability in blood flow, with the temporal side 392 
exhibiting greater flow than the nasal side in both retinal venules and arteries, which may be 393 
related to retinal ganglion cell numbers [61]. Additionally, the model could be used in predicting 394 
inhibitors of angiogenesis, such as VEGF inhibitor Bevacizumab.  Incorporating this model into 395 
a larger-scale retinal model (including the choroidal supply) would enable complete simulation of 396 
the retinal supply. The ability to then apply these simulation results for the interpretation of 397 
clinical images, via physics-informed generative learning, is a significant step forward. 398 
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Data availability 433 
Simulated retinal networks are available in 434 
https://www.dropbox.com/scl/fo/whwru5rmz8g7cr0h8ytg1/h?rlkey=ynbh2kdhe0pcvpfo6cypm9oc435 
6&dl=0.  436 
 437 
Methods  438 
 439 
Procedural generation of synthetic retinal vasculature 440 
Generation of synthetic retinas followed multiple, length scale dependent steps. Firstly, the 441 
values of geometrical parameters were set by sampling from a normal or uniform distribution 442 
according to parameter values shown in Supplemental Table 1. Networks in the form of spatial 443 
graphs (i.e. branching nodes connected via vessel segments) were constructed using multiple, 444 
linked algorithms.  445 
 446 
 447 
Lindenmeyer system seeding 448 
Firstly, seeding networks following approximate retinal vascular branching geometry were 449 
constructed, starting with a putative central retinal artery and retinal vein positioned at the centre 450 
of the optic disc. The diameters of the retinal artery and vein were 135 ± 15 μm and 151 ± 15 451 
μm, respectively [23], oriented parallel to the optic nerve (defined as the z-direction). Two 452 
branches were added to the end of each of these segments, oriented in the x-y plane, and one 453 
directed above and the other below the retinal midline. Subsequent branching of these vessels 454 
was performed stochastically, with segment lengths between bifurcations set as a fixed fraction 455 
of vessel diameter (18 ± 3) and bifurcation vessel diameters set according to: 456 
 457 

cos 𝜃% =
(1 + 𝛼+)

-
+ + 𝛼- − 1

2𝛼0(1 + 𝛼+)
0
+

 458 

            [1] 459 

cos𝜃0 =
(1 + 𝛼+)-/+ + 1 − 𝛼-

2(1 + 𝛼+)0/+  460 

            [2] 461 
 462 
Normally-distributed noise was added to branching angle values, with a standard deviation of 463 
5°. Vessel bifurcation angles were assigned such that the larger vessel oriented towards the 464 
macula to create putative major vessels oriented around the macula. Fifth-order bifurcations 465 
were added to the network, or until vessels breached the edge of the retina domain. 466 
Supplemental Figure 1a shows an example of an L-system seeding network. 467 
 468 
Major vessel growth 469 
Seed vessel networks were used as input into a multi-scale growth algorithm for the creation of 470 
hierarchical vasculature. First, seed networks were amended to provide a uniform distribution of 471 
leaf nodes (terminating arteriole and venuole nodes created prior to construction of capillary 472 
networks at a later stage) throughout the circular domain, using Accelerated Constrained 473 
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Constructive Optimisation [28], using a leaf node spacing of 3 mm. Multiscale, two-dimensional 474 
lattices were defined (stride lengths ranging from 3000 to 150 µm, with five iterations linearly 475 
spaced within that range) and used to grow vessel networks by progressively adding vessels 476 
into unoccupied lattice sites from neighbouring occupied sites, choosing the candidate vessel 477 
which minimised the expected change in network cost (see below), and progressively reducing 478 
the length scale when no more progress could be made. After the initial growth stage, all 479 
existing leaf nodes were removed [62]. At all stages of the major vessel growth the macula 480 
region was kept free of vessels by removing vessels which intersected it, forcing flow to divert 481 
around it. 482 
 483 
As retinal vasculature is positioned in front of the retina itself, we optimised networks to 484 
minimise the area of the retina occluded by vessels, according to a cost function based on 485 
Murray’s law: 486 
 487 

𝐶(𝐵, 𝜆, 𝜌) = 7 𝑟9
:𝑙9<

9∈>

 488 

             489 
with ρ=1 and λ=1, and where B is the set of vessel segments in the network, with length l and 490 
radius r. After each growth step the network geometry was optimised by moving vessel nodes, 491 
and highly asymmetric bifurcations were trimmed for regrowth [28] using the thresholds from 492 
[27] to account for the high asymmetry of optimal networks [27]. After growth at each length 493 
scale was terminated, the networks were optimised topologically by allowing asymmetric 494 
bifurcations to move their low-flow side downstream and branches which were short compared 495 
to their expected length under the West, Brown and Enquist model [63] to be treated as a single 496 
higher-order split for regrouping using a method similar to [64]. Due to the two-dimensional 497 
nature of the networks, network self-intersections were tested for using the approach of [28] 498 
however, rather than resolving the intersections by making excursions around the contact site 499 
we rewire the vessels to prevent future iterations from recreating the same intersection.     500 
 501 
Unlike the implementation of [28], leaf nodes were allowed to move from their nominal location 502 
up to a specified “pinning distance”, given as a fraction of the leaf spacing. Existing vessels 503 
could be specified as frozen, in which case the optimiser did not touch them. This approach was 504 
used to perturb the optimal root vessel structure with artificial tortuosity, strip away the 505 
downstream branches and regrow the downstream vessels, repeating this down the tree 506 
structure. 507 
 508 
Macula growth 509 
Vessels supplying the macula have a characteristic radial structure, motivating the development 510 
of a particular approach to enforce this structure. This uses the same lattice site invasion 511 
approach between the macula outer radius and the fovea (which is kept vessel-free), but with 512 
the stride set low enough that the majority of the growth arises from spreading over many 513 
iterations at the same length scale rather than hierarchical refinement. The macula has a 514 
configurable flow rate density compared to the rest of the retina, ranging from 1.5 to 2.0 and leaf 515 
nodes are offset by uniformly sampling an offset in a disc around the nominal position to ensure 516 
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that vessels did not align along the lattice sites. The macula vessels were prevented from 517 
doubling back on themselves by setting a hard limit on the vessel angle, preventing obviously 518 
non-physiological structures from arising whilst still allowing the radial pattern to develop. After 519 
all leaf nodes are created, a sparsity factor is specified and each leaf node removed with this 520 
probability, then the remaining vessels are geometrically optimised. 521 
 522 
Network overpass and interleaving 523 
In the final stage, the arterial and venous networks have their collisions resolved using the 524 
method of [28], creating out-of-plane excursions around contact sites between the networks. To 525 
enable further micro-scale network growth techniques to create an interdigitated structure, we 526 
remove the low-flow side of all arterio-venous intersections with a radius below a critical value (5 527 
um), leaving surviving vessel geometry untouched. Interdigitations were then created using a 528 
Space Colonisation implementation [65], interspersed with geometric optimisation. 529 
 530 
Vessel tortuosity 531 
The multi-scale growth algorithm creates relatively straight paths between branching points, and 532 
to simulate tortuous retinal vessels, particularly in veins, sinusoidal displacements were 533 
overlaid. Two oscillations were superimposed according to:  534 
 535 

𝑑@(𝑥, 𝑟) = 𝑑(𝑥, 𝑟) + 𝑎C sin F
𝑥

𝜏C(𝑟)
+ 𝛿CI + 𝑎%sin	 F

𝑥
𝜏%(𝑟)

+ 𝛿%I 536 

           [3] 537 
 538 

where d(x,r) is the path taken by a vessel with radius r, and d’(x,r) is the modulated path. The 539 
amplitude of displacements, a0+a1 ranged from r to 3.5r for arteries and r to 7.5r for veins, with a 540 
low frequency period (τ0, ranging from 15r to 25r) and a high frequency period (τ1, ranging from 541 
30r to 50r). The phase of the modulations, φ0 and φ1, enabled modulations to be matched 542 
between vessel bifurcations. 543 
 544 
Simulating vascular flow and fluorescein delivery 545 
Blood flow in retinal networks were simulated using our REANIMATE platform [35], which uses 546 
a connectivity-based formalism to optimise Poiseuille flow in tree-like spatial graphs. As anterior 547 
retinal vasculature features a single arterial inlet and venous outlet, the system requires only 548 
one pressure boundary condition (the difference between arterial and venous inlet pressures), 549 
which was fixed at 56.2±14.0 and 20.0±10.0 mmHg, respectively. 550 
 551 
Time-dependent delivery of contrast agent (e.g. fluorescein) was simulated as described in 552 
d’Esposito et al [35]. Briefly, a bolus of fluorescein was simulated according to  553 
 554 

𝐶(𝑡) = 𝑠%𝐺%(𝑡; 𝑡%, 𝜎%) + 𝑠0𝐺0(𝑡; 𝑡0, 𝜎0) + 𝑎C𝑒Q(RQRS) 555 
           [4] 556 

 557 
where C(t) is the concentration of fluorescein as a function of time t. The first two terms, 558 
Gaussian functions, represent the first and second pass of the bolus and the third term, an 559 
exponential decay, represents the washout phase [66] The width of the first and second pass 560 
were σ1 = 10 s and σ2 = 25 s, respectively, and the decay rate of the washout phase, β, was 561 
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0.043 /minute. T1, t2 and τ are the time to peak for the first pass, second pass and washout 562 
phases, and were set at 0.171, 0.364 and 0.482 minutes, respectively [66]. S1, s2 and α were 563 
fixed at 0.833, 0.336 and 1.064 (dimensionless units). Peak concentration was normalised to 564 
unity at the inlet to the retinal artery and the time course in each connected vessel segment was 565 
time-shifted according to the velocity of blood in each vessel and scaled according to the ratio of 566 
flow in the parent and child vessels at bifurcation points. 567 
 568 
Image datasets 569 
This study was carried out in accordance with the Declaration of Helsinki [67]. Ethical approval 570 
of retrospective audit data was obtained through Moorfields Eye Hospital Research and 571 
Development Audit number 1078. Clinical ophthalmological retinal images were obtained from 572 
equipment at Moorfields Eye Hospital NHS Trust, London, UK: OCT-A images were obtained 573 
from a PLEX Elite 9000 (Carl Zeiss Meditec LLC, Dublin, CA, USA), ultra-wide true color retinal 574 
photographs were obtained from Zeiss Clarus 500 Fundus machine (Carl Zeiss Meditec LLC, 575 
Dublin, CA, USA), fluorescein angiograms were obtained from Optos widefield camera (Optos, 576 
Inc. Marlborough, MA, USA). 19 manually segmented OCT-A images were obtained from 577 
healthy controls not ascertained for disease status). These manual segmentations were used in 578 
comparison of network structure with simulated networks. Datasets of 570 FA images, 590 579 
colour retinal photographs, 43 OCT-A en-face images, and 130 simulated networks were used 580 
in training and testing the PI-GAN algorithm. 581 
 582 
Manual labelling of clinical data 583 
Manually labelled data was generated using a custom-built Python package enabling tracing of 584 
vasculature in 3D. The process involved placing user defining control points on the 2D image 585 
indicating where in a slab the vessel is located via maximum intensity projection. The z-height of 586 
the vessel was then fixed by identifying the height of the highest signal intensity voxel, which 587 
was manually constrained to exclude the choroid or RPE. The radius of each vessel was 588 
automatically calculated by setting a user-defined signal intensity threshold. Review of 589 
segmented structures was performed in 3D panel to assess and ensure labelling quality. In 590 
images with pathological blood vessels such as DR the abnormal vasculature or areas of 591 
neoangiogenesis were traced in the same manner. Vessel information (vessel coordinates, 592 
edge connectivity, number of edge points, edge point coordinates, radii, and vessel type) was 593 
exported and stored in Amira spatial graph format (ThermoFisher Scientific, Waltham, 594 
Massachussetts USA). Retinal regions were labelled. The macula was defined as a 5.5 mm 595 
diameter circular area centred on the fovea. The vessels surrounding the optic disc were 596 
labelled as a 3.6 mm diameter centred at the optic disc. Vessels outside these regions were 597 
defined as ‘peripheral’. 598 
 599 
Deep generative learning 600 
Image-to-image translation was performed using cycle-consistent generative adversarial 601 
networks [18]. This algorithm enables automated unsupervised training with unpaired samples, 602 
learning a bi-directional mapping function between two different domains with deep generative 603 
adversarial networks. It utilises cycle consistency, where the reconstructed image obtained by a 604 
cycle adaptation is expected to be identical to the original image for both generative networks. 605 
Cycle-consistent GANs are composed of two main deep neural network blocks which are 606 
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trained simultaneously: an image generator (generator) and an adversarial network 607 
(discriminator). There is a loss (G loss) to make a synthesised image from domain A closer to a 608 
real image from domain B, and a loss (D loss) to distinguish the synthesised image from domain 609 
A from a real image from A. There are also losses facilitating the conversion in the opposite 610 
direction (G loss making synthesised image from domain B closer to domain A, and D loss to 611 
distinguish synthesised and real domain B images. Additionally, cycle loss is the difference 612 
between the input image and the double-synthesised image and identity loss is the difference 613 
between output and input images. A train/validation/test split of 75%/5%/20% was used. All PI-614 
GANtraining and evaluation was performed using a single NVIDIA Titan RTX GPU. 615 
 616 
We iteratively trained a switchable PI-GAN algorithm with 500 epochs. All networks were trained 617 
using the optimizer ADAM solver [35] with β1 = 0.5, β2 = 0.999. The learning rate for the first 100 618 
epochs was 2*10-4, and then linearly decayed to 2*10-6. Images were pre-processed with crop 619 
size 256 pixels. The minibatch size was 1. The loss weights λ were set as 10. The model was 620 
trained on NVIDIA TITAN RTX in Pytorch v1.9.1. 621 
 622 
Statistical evaluation of synthetic vessel networks 623 
Vessel metrics of vessel branching angle, length, tortuosity, network volume and diameter were 624 
calculated. Analysis of variance (ANOVA) was used to assess differences in these metrics by 625 
retina region (optic disc, macula, and periphery) and by status (healthy control and simulated 626 
network) (Table 1) with eye (right OD/ left OS), participant sex, and scan pattern used as 627 
covariates. 628 
 629 
 630 
Evaluation metrics 631 
 632 
Frechet inception distance 633 
GAN output was evaluated using the Fréchet Inception Distance (FID), which evaluates model 634 
quality by calculating the distance between feature vectors for real and generated images. FID 635 
compares the distribution of generated images with distribution of real images that were used to 636 
train the generator. Lower FID scores indicate more similarity between two groups. The FID 637 
score is calculated by first loading a pre-trained Inception v3 model. The output layer of the 638 
model is removed and the output is taken as the activations from the last pooling layer, a global 639 
spatial pooling layer. 640 
 641 
Three FID scores were calculated: real simulation images (domain A) versus manually 642 
segmented vasculature clinical images; real retinal photographs (domain B) versus PI-GAN 643 
generated retinal photographs; real OCT-A images (domain C) versus PI-GAN generated OCT-644 
A images; real FA (domain D) versus PI-GAN generated OCT-A images. 645 
 646 
Dice score 647 
Dice scores were additionally calculated. This is a commonly used performance statistic for 648 
evaluating the similarity of two samples. For a ground truth segmentation label L and associated 649 
prediction P, we measure the binary Dice score D: 650 
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𝐷(𝑃, 𝐿) = 	
2|𝐿 ∩ 𝑃|
|𝑃| + |𝐿|

 651 

            [5] 652 

We carried out benchmarking of the PI-GAN algorithm against other models trained for manual 653 
segmentations from segmentation of retinal vessels using STARE, and DRIVE datasets public 654 
datasets, which are regularly used for benchmarking of algorithm results [46, 53]. DICE score 655 
were evaluated from the output of PI-GAN trained to carry out the mapping between simulated 656 
data segmentations and retinal photographs and compared to GAN performance without 657 
synthetic data. 658 
 659 
 660 
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