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Abstract

Disruption of retinal vasculature is linked to various diseases, including diabetic retinopathy and
macular degeneration, leading to vision loss. We present here a novel algorithmic approach that
generates highly realistic digital models of human retinal blood vessels based on established
biophysical principles, including fully-connected arterial and venous trees with a single inlet and
outlet. This approach, using physics-informed generative adversarial networks (PI-GAN),
enables the segmentation and reconstruction of blood vessel networks that requires no human
input and out-performs human labelling. Our findings highlight the potential of PI-GAN for
accurate retinal vasculature characterization, with implications for improving early disease
detection, monitoring disease progression, and improving patient care.

Introduction

Disruption of retinal vasculature is associated with a range of diseases which can result in loss
of vision, including diabetic retinopathy (DR) [1] and macular degeneration [2]. It is also
increasingly recognized that retinal vasculature can indicate the presence of systemic
pathology, such as vascular dementia [3] and cardiovascular disease [4]. Automated methods to
characterize changes in retinal vasculature from clinical imaging data therefore offer substantial
promise for high-throughput, early detection of disease [5], which is critically required to meet
the increasing incidence of retinal disease, potentially alongside other vascular diseases, and
their associated burden on healthcare systems [6].

Much attention has been placed on supervised deep learning in this regard, where deep neural
networks are trained to categorise images according to diagnosis or identify the location of
features of interest [7]. Supervised learning, particularly with U-net architectures [8], first rose to
prominence in retinal image analysis for segmenting retinal layers in optical coherence
tomography (OCT) data [9], alongside blood vessels segmentation in retinal photographs [10,
11]. A significant limitation to this type of approach is the lack of high-quality, manually-labelled
image data in sufficient quantities to enable accurate and generalisable predictions to be made
[12]. This problem is particularly acute for the detection of blood vessels, in which manual
labelling is highly time-consuming, generally limited to two-dimensional (2D) projections,
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confined to larger vessels only, and generally does not distinguish between arteries and veins
[13].

To address these challenges, we describe here a novel set of algorithms that can generate
highly realistic digital models of human retinal blood vessels, using established biophysical
principles and unsupervised deep learning. Our biophysical models capture the complex
structure of retinal vasculature, with interconnecting arterial and venous trees that are inherently
three-dimensional, multi-scale and fully inter-connected via a capillary bed. They also feature
dedicated macula and optic disc features. The central biophysical principles we draw on are 1)
Murray’s Law, in which vessel diameters, branching distances and branching angles are
optimised to form a balance between pumping power and blood volume and minimize
resistance to flow [14]; and 2) fluid dynamics to model blood flow and vascular exchange. The
latter is made possible by our synthetic networks containing fully-connected arterial and venous
trees with a single inlet and outlet (the central retinal artery and vein), allowing blood flow and
contrast agent delivery (e.g. fluorescein) data to be simulated with minimal assumptions in
regard to network boundary conditions.

In this work, we investigate whether, through the use of generative deep learning, our
biophysics-informed vascular network models can be used to infer information from real-world
retinal images, such as the segmentation and reconstruction of blood vessel networks, without
the need to perform any manual labelling, in an approach termed physics-informed generative
adversarial learning (PI-GAN) [15]. An overview of our framework is provided in Figure 1.
Generative adversarial networks (GANSs) incorporating cycle-consistency have previously been
used for medical imaging domain machine learning tasks such as chest MRI to X-ray CT
transformation [16], PET image denoising [17], and artefact reduction in fundus photography
[18]. Likewise Menten et al used the space colonisation algorithm to generate macular blood
vessel images, which they coupled with deep learning [19].

We demonstrate here the ability of our retinal simulation framework to accurately simulate real-
world retinal vasculature, including blood flow, and model the presentation of two common
vascular pathologies: DR and retinal vein occlusion (RVO). Moreover, we show that our use PI-
GAN workflow allows retinal vasculature to be segmented without any human manual labelling,
and which outperforms state-of-the-art supervised learning approaches. This therefore offers
numerous opportunities for improved detection and quantification of retinal disease in clinical
ophthalmology.
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83
84  Figure 1. Schematic overview showing the physics-informed generative adversarial learning

85 (PI-GAN) framework developed in this study. Retinal blood vessel networks, featuring arterial

86  and venous trees connected by a capillary bed, and special treatment of macular and optic disc

87 features, were simulated using space filling growth algorithms based on Murray’s law. Blood

88 flow and fluorescein delivery were simulated in synthetic vascular networks, using one-

89 dimensional Poiseuille flow. By combining this with cycle-consistent, physics-informed deep

90 generative learning, vessel simulations were converted into synthetic medical image data

91  (fundus photography, Optical coherence tomography angiography (OCT-A) and fluorescein

92  angiography), and the same trained networks used to detect blood vessels in clinical images.

93

94  Results

95

96 Procedural modelling of retinal vasculature

97  Retinal vascular networks were simulated in multiple, linked steps, using a combination of

98  algorithms that draw on the known geometry and biophysics of retinal vasculature. In total, our

99  procedural model of retinal vasculature contained 26 parameters (Supplemental Table 1), each
100  of which were randomly sampled to simulate the broad range of retinal geometries occurring in
101  the population (Figure 2a-c) [20, 21].
102
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103  Networks were seeded using a Lindenmayer-system (L-system) [22], in which initial central

104  retinal artery and vein segments were positioned at the location of an optic disc and iteratively
105  branched within a plane. The first arterial and venous segment radii were 135 + 15 ym and 151
106 £+ 15 um, respectively [23]. Branching was performed asymmetrically to create characteristically
107 large vessels surrounding the macula, with smaller branches reaching towards the periphery, as
108 observed in retinal images [23].

109

110  Seeding L-systems were then grown to the edge of the retina using a variant of constrained

111 constructive optimisation (CCO) [24-28]. This step transformed L-system networks into realistic,
112  space-filling networks with geometries defined by Murrays law [14] (exponent of 2.4 + 0.11 [29]),
113  whilst retaining the realistic macroscopic branching geometry imposed by the L-system seeding
114  (Figure 2d-f). A final growth step was incorporated to create the characteristic branching

115  pattern of the macula, with radial alignment of arterioles and venules, greater relative vascular
116  flow density (between 1.5 and 2.0 times the perfusion fraction) and a central avascular fovea.
117

118  Following growth, we augmented vessels with sinusoidal displacements to replicate the tortuous
119  vasculature commonly observed in human retinas, with a greater displacement imposed on

120  veins. A continuous capillary bed was generated using either 1) a 2D Voronoi algorithm that
121 arterial and venous endpoints were connected to [30] or 2) a 2D space colonization algorithm
122 [31]. Following simulation within a 2D plane, vessels were projected onto a hemispherical mesh
123  (radius 23 - 25 mm) featuring macula and optic disc structures generated using a mixed

124  Gaussian profile [32] (Figure 2, Supplemental Figure 1).

125

126  Comparison of synthetic networks with real-world networks

127  Our set of retinal network growth algorithms is designed to provide an authentic replication of
128 real retinal vasculature, by following established biophysical principles. To quantitatively

129  evaluate the accuracy of these synthetic networks, we manually labelled all visible blood

130 vessels in 19 optical coherence tomography angiography (OCT-A) image datasets, using in-
131 house software. This included differentiating arteries and veins (A-V) in a subset of images

132  (n=5), using retinal photographs as a reference for determining A-V status. Vessel branching
133  angle, inter-branch length, tortuosity, and radius were measured in three regions: the macula,
134  the vessels surrounding the optic disc, and the periphery. The macula was defined as a 5.5 mm
135  diameter circular area centred on the fovea, based on measurements referenced in Remington
136  and Goodwin [33]. The vessels surrounding the optic disc were labelled as a 3.6mm diameter
137  centred at the optic disc, due to mean vertical and horizontal diameters of the optic disc

138 reported as 1.88 and 1.77mm respectively [34]. Vessels outside these regions were defined as
139  ‘peripheral’. 100 synthetic retinal networks were initially created, with parameter values

140  randomly drawn from the ranges shown in Supplemental Table 1.

141

142  According to ANOVA analysis, all geometric parameters associated with synthetic blood vessel
143  networks did not reach the level of statistical significance compared to those measured in

144  normal controls using manual segmentation of OCT-A images (branching angle, p = 0.82;

145  vessel length, p = 0.17; vessel tortuosity, p = 0.095; vessel network volume, p = 0.061; vessel
146  diameter, p = 0.59) (Figure 3, Supplemental Table 2).
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150 Figure 2: Procedural generation of retinal vasculature using constrained constructive

151  optimisation and lattice sequence vascularisation. a-c) Examples of synthetic retinal vascular
152  networks, featuring arterial (red) and venous (blue) trees, and with geometry optimised

153  according to Murray’s law. Each simulation run used a different set of physiological parameter
154  values, randomly sampled from the distributions defined in Supplemental Table 1. d-f) A

155  synthetic retina (d) with a 12x12 mm region surrounding the optic disc and macula (e)
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compared with a real OCT-A image (f). g) A simulated vascular network projected onto three-
dimensional surface.
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Figure 3. Comparison of retinal vascular geometry distributions visualised with bar plots
between manually segmented networks from OCT-A data (normal volunteers not ascertained
for disease status) and simulated networks. a) Branching angle, b) vessel length (um), c) vessel
tortuosity, d) vessel network volume and e) vessel diameter (um), in three regions: macula
(5.5mm diameter circular area centred on the fovea [33]), optic disc (3.6mm diameter area
centred on the optic disc centre [34]), and periphery (all vessels outside those regions).
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168

169

170  Simulating retinal blood flow and validation using fluorescein angiography

171  We have previously developed a mathematical framework for simulating blood flow in three

172  dimensional vascular networks, which uses one-dimensional Poiseuille flow [35]. Our simulated
173  retinal networks are ideally suited for this framework, having just one arterial input and one

174  venous outlet meaning that pressure boundary conditions can be easily specified. Setting

175  arterial pressure by sampling from a normal distribution parameterised by mean = 56.2 mmHg,
176  s.d. = 14.0 mmHg [36] and similarly for venous pressure with mean = 20.0 mmHg and s.d. =
177  10.0 mmHg [36] gave an average total retinal flow prediction of 34.4 + 1.8 pL/min, which is

178  slightly lower, but still in good agreement with reports in the literature from healthy retinas (for
179  example, 45.6 + 3.8 yL/min [36] 44 + 13 pL/min [37] 50.7 yL/min [37] (Figure 4a,b).

180

181 To further evaluate these flow results, we next performed a simulation of retinal fluorescein

182  delivery. Fluorescein angiography (FA) is used in ophthalmology for diagnosis of macular

183  edema, macular degeneration, RVO, DR, and other diseases [38, 39]. Fluorescein is injected as
184  a bolus into the median cubital vein, and 10-15 seconds later appears in the choroidal

185  vasculature at the rear of the eye [40]. Within 2 seconds of this, fluorescein appears in the

186  anterior arteries and arterioles, and a further two seconds later by partial filling of venules and
187  veins, followed by total filling and recirculation.

188

189  We simulated the systemic pharmacokinetics of fluorescein using literature data (Supplemental
190 Figure 2), with the passage of fluorescein modelled as two displaced Gaussian functions to

191 model the first and second passes, and an exponential washout term corresponding to systemic
192  extraction. This time course was propagated through our synthetic retinal networks by

193  partitioning by flow at branch points and delaying according to cumulative velocities. The delay
194  between arterial and venous filling with fluorescein, across 1000 simulation runs was 7.3 £ 0.7
195 s, which is in keeping with timings described in clinical data [40]. Visual inspection of fluorescein
196  delivery also revealed a good accordance with clinical delivery profiles (Figure 4c-h).

197

198
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Figure 4: Blood flow simulations in an example biophysical model of a retinal blood vessel
network. a) Blood flow (uL/min) and b) vascular pressure (mm Hg) were simulated using
Poiseuille flow, with inlet arterial pressure and outlet venous pressure fixed at 56.2+14.0 and
20.0+£10.0 mmHg, respectively. c-e) Simulated delivery of fluorescein at 17 s (arterial phase), 30
s (venous phase) and 600 s (recirculation), with clinical fluorescein images (registered to the
same coordinate space) shown in f-h for comparison
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207

208 Simulating retinal pathology

209 Given the physiologically-realistic results provided by our flow models, we next sought to perturb
210  our simulated networks to examine the effect of pathological changes. As a first demonstration,
211 we simulated the effect of RVO. A random location of artery-vein crossover on a large retinal
212 vein was reduced in diameter by 80%. Blood flow within the network was recalculated, revealing
213  alarge region of hypoperfusion, as expected. This strongly reflected the presentation of RVO
214  found in clinical FA data (Figure 5) and induced a regional reduction in blood flow of 9.8 yL/min
215 in the vessels immediately downstream of the occlusion.

216

217  Next, we constructed a simple model of DR [41-43], in which arterioles with a radius less than
218 35 ym were randomly selected and occluded, and the resultant change in network flow

219  calculated. All vessels that become non-perfused, either up- or downstream of the occluded
220 vessel, were removed from the network, creating regions of ischemia, with occasional surviving
221  vessels passing through (Figure 5c-d, Supplemental Figure 3). Occlusions were simulated in
222  batches of 5, initially from the periphery (>1cm from the macula centre), and then at decreasing
223  minimum distances from the macula, as typically found in the clinical presentation of DR.

224

225  Both our retinal occlusion model and DR model produced images that were highly reminiscent
226  of clinical images of both pathologies (Figure 5), with loss of flow in downstream vessels in our
227 RVO model and loss of perfusion and regions of ischaemia in the DR model.

228

229

230

231

232
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Figure 5: Simulating realistic whole-retina pathology. A) An example of RVO simulation and
loss of flow in downstream vessels. The yellow arrow shows the location of an imposed 80%
decrease in vein diameter. b) An FA image of retinal occlusion, revealing a similar pattern of
perfusion loss as simulated in (a). c) The onset of DR, simulated by inhibiting flow in randomly-
selected peripheral arterioles. D) An OCT-A image of a retina exhibiting stage 4 DR, evidenced
by extensive loss of perfusion in vessels and regions of ischemia.

Generating synthetic clinical ophthalmology data with deep learning

Our next challenge was to use deep learning to define a mapping between our biophysical
vascular model and clinical ophthalmology data (and vice versa). For this we used cycle-
consistent generative adversarial networks that enabled the translation of image texture and
style between image domains [44]. We undertook this for three clinical imaging modalities:
OCT-A, retinal photographs and FA.
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248

249  We embedded our synthetic retinas in three-dimensional grids with axial and lateral resolutions
250 of 6.3 umand 21 um, respectively, to match our clinical OCT-A data. We then trained three
251  cycle-consistent GANs on these synthetic retinas, with each GAN mapping the conversion

252  between the synthetic images and a different imaging modality. 590 retinal photographs, 43
253  OCT-A en-face images and 570 FA images were used in training for this purpose. PI-GAN
254  enabled the geometry of source images (simulations- domain A) to be translated into a target
255  style (retinal photographs- domain B, OCT-A-domain C, and FA- domain D). As can be seen in
256  Figure 6a, following 400 training epochs, the pattern of synthetic vasculature was realistically
257  transferred into the style of each target image. The Frechet Inception Distance (FID) was 6.95
258 for retinal photographs, 5.17 for fluorescein angiographs and 3.06 for OCT-A en-face images,
259 indicating a small distance between feature vectors for real and fake images.

260

261 This process generated authentic-looking retinal image data with matched, fully specified

262  ground truth blood vessels. However, cycle consistency also allows the reverse operation: to
263  generate simulation data from clinical images (Figure 6b). This enabled blood vessel networks
264  to be segmented from OCT-A images and compared with manual segmentations of the same
265 data (Figure 7). Visual inspection of PI-GAN segmentations revealed many more small ‘elusive’
266  vessels [45] than represented within our manually-segmented images, arguably providing

267  superior segmentation accuracy than the manual ‘gold standard’. Accordingly, the mean Dice
268  score for OCT-A images was low (mean 0.35, s.d. 0.12 (2.s.f)), but the sensitivity (the

269 percentage of pixels labelled as vessel in the manual segmentation that were also identified as
270  vessel by PI-GAN) was high (87.1% (s.d. 1.20)), showing that PI-GAN is able to accurately
271 label almost all of the vessels identified by human operators (Figure 7g-j).

272

273  To further investigate this result, we evaluated PI-GAN on two publicly available retinal

274  photograph data sets with corresponding manual segmentations (STARE and DRIVE).

275  Contrasting the widefield (130 degree and 200 degree montage) images analysed here, these
276  datasets were acquired with a smaller 45 degree FOV, and are widely used in benchmarking
277  vessel segmentation. Again, Dice scores comparing manual and PI-GAN segmentations were
278 low but, as shown in Figure 7k-m and Supplemental Figure 5, PI-GAN was able to detect
279  most of the manually-segmented vessels, but also many smaller, elusive vessels. Mean DICE
280  score between DRIVE manually segmented data and segmentations generated using PI-GAN
281 was 0.56 (s.d. 0.013) (2.d.p) and for STARE it was 0.64 (s.d. 0.19) (2.d.p). These results call
282  into question how appropriate manual segmentation is as a gold standard in this setting, visual
283  inspection suggests these additional small vessels are indeed physiological and were simply
284  missed by manual segmentation.

285

286  These results demonstrate the key ability of physics-informed simulations with deep learning to
287  autonomously segment blood vessels within a range of ophthalmology imaging modalities,
288  without the need for any manually-labelled training data.
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a ) Forward direction

Simulation Photograph
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b ) Reverse direction
Photograph to simulation OCT-A to simulation FA to simulation

289

290 Figure 6: Generation of multi-modality retinal images from biophysical simulations, using

291 physics-informed generative adversarial networks. Direction 1 involves conversion of domain A
292  (simulated network) into domains B (fake retinal photograph), domain C (fake OCT-A) and

293 domain D (fake fluorescein angiography). Direction 2 involves conversion of real retinal images
294  (domains B-D) into fully connected networks/segmented data (domain A)

295
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296
297  Figure 7: Blood vessel segmentation from OCT-A data with PI-GAN. A and d) OCT-A en-face

298 images of retinal vasculature. B and e) The same OCT-A images with vessel segmentations
299 from PI-GAN. C and f) Segmented vessels projected in three-dimensional space, colour-coded
300 for vessel radius. G) An OCT-A image with h) manually-segmented and i) PI-GAN-segmented
301 blood vessels. J) A composite image of manually- and PI-GAN-segmentations, with overlapping
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302 pixels rendered white, pixels with only PI-GAN-detected vessels in blue and pixels with only
303 manual-detected vessels in red. K) A retinal photograph taken from the DRIVE data set [46] with
304 I) manually-segmented and m) PI-GAN-segmented blood vessels.

305

306 Discussion

307

308 Methods that enable the quantitative assessment of retinal vasculature from clinical

309 ophthalmology images are critically needed for evaluating the progression of diseases such as
310 DR, and also to support research into the influence of systemic diseases such as cardiovascular
311 disease and vascular dementia [3, 4]. In this regard, deep learning is rapidly transforming

312 ophthalmology, but requires access to large volumes of well-curated data before it can be

313  implemented with confidence in the clinic [47, 48]. In the assessment of vasculature, manual
314  image labelling constitutes a considerable bottleneck in terms of time, expense and labelling
315  accuracy [49], as manual segmentation of a single 2D retinal image can take multiple hours
316  [50]. Inter and intra grader variability can also be significant within the segmentation process
317  [51, 52]. Most segmentation studies have been conducted in 2D retinal fundus photographs
318  using public datasets [12, 53, 54]. Approaches that can relieve this bottleneck are urgently

319  needed to enable the robust translation of deep learning into the clinic.

320

321  To address these challenges, we have presented here a physics-informed, generative approach
322  that combines biophysical simulation with deep generative learning. A useful outcome of this
323  approach is the ability to automatically segment vascular data from clinical evaluation images,
324  without any need for manual segmentation. Specifically, we created a linked set of algorithms
325 that draw on established principles in biophysics to simulate fully-connected retinal vasculature,
326 in a three-dimensional domain, with special treatment for optic disc and macular regions. The
327  full connectivity of our models, with separate arterial and venous trees, enables realistic blood
328 flow and delivery simulations (for example, as we show in fluorescein angiography). We

329 demonstrated that our synthetic vascular networks are highly concordant with real retinal

330  vasculature metrics, with network statistics matching those from manual segmentations, in three
331 regions: the optic disc, macula and periphery.

332

333  This close accordance between simulation and real-world geometries is key to its ability to

334  segment blood vessels from ophthalmology images. Cycle-consistent deep generative learning
335 allowed us to create realistic fundus photograph, OCT-A and FA images that inherently

336  maintained feature geometry through the translation from simulation to clinical image domains.
337  The resultant data are inherently paired, and so could provide data to augment conventional
338  supervised learning approaches. However, cycle-consistency also facilitates the reverse

339 translation, from clinical image domains back into the simulation domain, allowing the

340 automated segmentation of blood vessels without human-labelled data. Comparing

341  segmentation performance against manual segmentations revealed a much greater ability to
342  label small vessels, and with excellent overlap with larger manually-segmented vessels.

343  However, overall performance assessed via DICE score showed a relatively low accordance,
344  due in part to the greater ability of the PI-GAN approach to detect small blood vessels, but also
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345  false-positives in both human-labelled and PI-GAN-labelled vessels. In regard to the latter, there
346  are cases where GANs can ‘hallucinate’ features in images [55].

347

348  To date, supervised deep learning approaches have yielded impressive results in 2D vessel
349  segmentation relative to manual segmentation, although tend to favour precision over recall [5],
350 resulting in an under-segmentation of faint vessels, underestimation of the width of thicker

351  vessels and some ‘elusive’ vessels being missed [45]. This is problematic for diagnostic

352  interpretation, because many biomarkers (such as artery-vein (AV) ratio, branching angles,
353  number of bifurcations, fractal dimension and tortuosity) need precise measurements of

354  individual vessels. GANs incorporating cycle-consistency have previously been used for medical
355 imaging domain machine learning tasks such as chest MRI to X-ray CT transformation [16],
356  PET image denoising [17], and artefact reduction in fundus photography [18]. Likewise Menten
357 et al used the space colonisation algorithm to generate macular blood vessel images, which
358 they coupled with deep learning [19].

359

360  Our approach builds on this by incorporating biophysically-informed models of flow within fully-
361  connected artery and venous networks that extend across the entire retina, and our use of it to
362 inform cycle-consistent deep generative learning. These developments allow application in
363 larger field of view images (e.g. wide-field fundus photography), and also enable a large range
364  of future applications, including flow modelling and oxygen delivery [56]. Moreover, given our
365  ability to model arterial and venous trees, there is potential for independent segmentation of
366  both vascular supplies.

367

368 These biophysical simulations also aimed to capture the wide range of variation found in real
369 retinal networks, by varying the 26 simulation parameters across their reported physiological
370 range. A further advantage of developing flow models into our biophysical framework was the
371 ability to simulate pathology, such as the progression of DR and RVO. Many other pathologies
372  could be simulated in follow-on studies, including changes in retinal vessel diameters

373  associated with factors such as aging or hypertension. For example, Wong and colleagues
374  reported retinal arteriolar diameters to decrease by approximately 2.1 ym for each decade

375 increase in age, and by 4.4 ym for each 10 mmHg increase in arterial blood pressure [57].

376  Performing disease-specific deep generative learning runs will enable us to further refine our
377  segmentation approaches and begin to characterise pathology.

378

379  Accordingly, there is also potential to use clinical data to further improve our biophysical

380  simulations, enabling more accurate modelling of retinal physiology (and disease) and the ability
381  to develop interpretable Al systems. The results of several recent studies using deep learning
382  suggest that that retinal vasculature can provide a window into many systemic diseases

383 (including dementia [3], kidney disease [58] and cardiovascular disease [4]), but cannot easily
384  explain the structural basis of these associations. A PI-GAN framework is inherently coupled to
385  biophysical laws, and so could help determine their origins or underpinning mechanistic

386  processes. Additional challenges for segmentation are artery-vein classification [59] and

387  establishing connectivity of the vessels [60], which, having a well-defined ground truth data set
388  from simulations, could be realised through PI-GAN.
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389

390  Overall our results demonstrate the potential of biophysical models of the retina, which can be
391 interrogated to understand how physiological perturbations (such as disease) effect vascular
392  function. Further work could explore regional variability in blood flow, with the temporal side
393  exhibiting greater flow than the nasal side in both retinal venules and arteries, which may be
394  related to retinal ganglion cell numbers [61]. Additionally, the model could be used in predicting
395 inhibitors of angiogenesis, such as VEGF inhibitor Bevacizumab. Incorporating this model into
396 a larger-scale retinal model (including the choroidal supply) would enable complete simulation of
397 the retinal supply. The ability to then apply these simulation results for the interpretation of

398 clinical images, via physics-informed generative learning, is a significant step forward.

399
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433  Data availability

434  Simulated retinal networks are available in

435  https://www.dropbox.com/scl/fo/whwru5rmz8g7crOh8ytg1/h?rlkey=ynbh2kdhe0Opcvpfo6cypm9oc
436  6&dI=0.

437

438 Methods

439

440 Procedural generation of synthetic retinal vasculature

441 Generation of synthetic retinas followed multiple, length scale dependent steps. Firstly, the

442  values of geometrical parameters were set by sampling from a normal or uniform distribution
443  according to parameter values shown in Supplemental Table 1. Networks in the form of spatial
444  graphs (i.e. branching nodes connected via vessel segments) were constructed using multiple,
445  linked algorithms.

446

447

448 Lindenmeyer system seeding

449  Firstly, seeding networks following approximate retinal vascular branching geometry were

450 constructed, starting with a putative central retinal artery and retinal vein positioned at the centre
451  of the optic disc. The diameters of the retinal artery and vein were 135 + 15 ym and 151 + 15
452  um, respectively [23], oriented parallel to the optic nerve (defined as the z-direction). Two

453  branches were added to the end of each of these segments, oriented in the x-y plane, and one
454  directed above and the other below the retinal midline. Subsequent branching of these vessels
455  was performed stochastically, with segment lengths between bifurcations set as a fixed fraction
456  of vessel diameter (18 £ 3) and bifurcation vessel diameters set according to:

457

4
1+a3®)3+a*-1

458 cos 6, = >
202(1 + a3)3
459 [1]
A+a®)*3+1-a*

2(1 + a?)?/3

460 cosf, =

461 [2]
462

463  Normally-distributed noise was added to branching angle values, with a standard deviation of
464  5°. Vessel bifurcation angles were assigned such that the larger vessel oriented towards the
465 macula to create putative major vessels oriented around the macula. Fifth-order bifurcations
466  were added to the network, or until vessels breached the edge of the retina domain.

467  Supplemental Figure 1a shows an example of an L-system seeding network.

468

469 Major vessel growth

470  Seed vessel networks were used as input into a multi-scale growth algorithm for the creation of

471 hierarchical vasculature. First, seed networks were amended to provide a uniform distribution of
472 leaf nodes (terminating arteriole and venuole nodes created prior to construction of capillary
473  networks at a later stage) throughout the circular domain, using Accelerated Constrained
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474  Constructive Optimisation [28], using a leaf node spacing of 3 mm. Multiscale, two-dimensional
475 lattices were defined (stride lengths ranging from 3000 to 150 uym, with five iterations linearly
476  spaced within that range) and used to grow vessel networks by progressively adding vessels
477  into unoccupied lattice sites from neighbouring occupied sites, choosing the candidate vessel
478  which minimised the expected change in network cost (see below), and progressively reducing
479 the length scale when no more progress could be made. After the initial growth stage, all

480 existing leaf nodes were removed [62]. At all stages of the major vessel growth the macula
481 region was kept free of vessels by removing vessels which intersected it, forcing flow to divert
482  around it.

483

484  As retinal vasculature is positioned in front of the retina itself, we optimised networks to

485 minimise the area of the retina occluded by vessels, according to a cost function based on
486  Murray’s law:

487

488 CB AP =) il
beB

489

490 with p=1 and A=1, and where B is the set of vessel segments in the network, with length / and
491 radius r. After each growth step the network geometry was optimised by moving vessel nodes,
492  and highly asymmetric bifurcations were trimmed for regrowth [28] using the thresholds from
493  [27] to account for the high asymmetry of optimal networks [27]. After growth at each length
494  scale was terminated, the networks were optimised topologically by allowing asymmetric

495  bifurcations to move their low-flow side downstream and branches which were short compared
496 to their expected length under the West, Brown and Enquist model [63] to be treated as a single
497  higher-order split for regrouping using a method similar to [64]. Due to the two-dimensional

498  nature of the networks, network self-intersections were tested for using the approach of [28]
499  however, rather than resolving the intersections by making excursions around the contact site
500 we rewire the vessels to prevent future iterations from recreating the same intersection.

501

502  Unlike the implementation of [28], leaf nodes were allowed to move from their nominal location
503 up to a specified “pinning distance”, given as a fraction of the leaf spacing. Existing vessels

504  could be specified as frozen, in which case the optimiser did not touch them. This approach was
505 used to perturb the optimal root vessel structure with artificial tortuosity, strip away the

506 downstream branches and regrow the downstream vessels, repeating this down the tree

507  structure.

508

509 Macula growth
510 Vessels supplying the macula have a characteristic radial structure, motivating the development

511 of a particular approach to enforce this structure. This uses the same lattice site invasion

512  approach between the macula outer radius and the fovea (which is kept vessel-free), but with
513 the stride set low enough that the majority of the growth arises from spreading over many

514  iterations at the same length scale rather than hierarchical refinement. The macula has a

515  configurable flow rate density compared to the rest of the retina, ranging from 1.5 to 2.0 and leaf
516  nodes are offset by uniformly sampling an offset in a disc around the nominal position to ensure
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517  that vessels did not align along the lattice sites. The macula vessels were prevented from

518  doubling back on themselves by setting a hard limit on the vessel angle, preventing obviously
519  non-physiological structures from arising whilst still allowing the radial pattern to develop. After
520 all leaf nodes are created, a sparsity factor is specified and each leaf node removed with this
521 probability, then the remaining vessels are geometrically optimised.

522

523 Network overpass and interleaving
524  In the final stage, the arterial and venous networks have their collisions resolved using the

525 method of [28], creating out-of-plane excursions around contact sites between the networks. To
526  enable further micro-scale network growth techniques to create an interdigitated structure, we
527  remove the low-flow side of all arterio-venous intersections with a radius below a critical value (5
528 um), leaving surviving vessel geometry untouched. Interdigitations were then created using a
529  Space Colonisation implementation [65], interspersed with geometric optimisation.

530

531  Vessel tortuosity
532  The multi-scale growth algorithm creates relatively straight paths between branching points, and

533 to simulate tortuous retinal vessels, particularly in veins, sinusoidal displacements were
534  overlaid. Two oscillations were superimposed according to:
535

536 d(x,r) =d(x,r)+ a, sin( NO) + 60) + a;sin ( o) + 51)

537 [3]

538

539  where d(x,r) is the path taken by a vessel with radius r, and d’(x,r) is the modulated path. The
540 amplitude of displacements, a,+a, ranged from r to 3.5r for arteries and r to 7.5r for veins, with a
541 low frequency period (1., ranging from 15rto 25r) and a high frequency period (1., ranging from
542  30rto 50r). The phase of the modulations, ¢, and ¢, enabled modulations to be matched

543  between vessel bifurcations.

544

545  Simulating vascular flow and fluorescein delivery
546  Blood flow in retinal networks were simulated using our REANIMATE platform [35], which uses

547  a connectivity-based formalism to optimise Poiseuille flow in tree-like spatial graphs. As anterior
548  retinal vasculature features a single arterial inlet and venous outlet, the system requires only
549  one pressure boundary condition (the difference between arterial and venous inlet pressures),
550  which was fixed at 56.2+14.0 and 20.0+£10.0 mmHg, respectively.

551

552  Time-dependent delivery of contrast agent (e.g. fluorescein) was simulated as described in
553  d’Esposito et al [35]. Briefly, a bolus of fluorescein was simulated according to

554

555 C(t) = 5,G,(t; t1,01) + 5,G,(t; 5, 05) + age(E7t3)

556 [4]

557

558  where C(f) is the concentration of fluorescein as a function of time t. The first two terms,

559  Gaussian functions, represent the first and second pass of the bolus and the third term, an
560 exponential decay, represents the washout phase [66] The width of the first and second pass
561 were 0, =10 s and 0. = 25 s, respectively, and the decay rate of the washout phase, 3, was
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562 0.043 /minute. T, t. and 7 are the time to peak for the first pass, second pass and washout

563 phases, and were set at 0.171, 0.364 and 0.482 minutes, respectively [66]. S, s: and a were
564 fixed at 0.833, 0.336 and 1.064 (dimensionless units). Peak concentration was normalised to
565 unity at the inlet to the retinal artery and the time course in each connected vessel segment was
566 time-shifted according to the velocity of blood in each vessel and scaled according to the ratio of
567 flow in the parent and child vessels at bifurcation points.

568

569 Image datasets
570  This study was carried out in accordance with the Declaration of Helsinki [67]. Ethical approval

571  of retrospective audit data was obtained through Moorfields Eye Hospital Research and

572  Development Audit number 1078. Clinical ophthalmological retinal images were obtained from
573  equipment at Moorfields Eye Hospital NHS Trust, London, UK: OCT-A images were obtained
574  from a PLEX Elite 9000 (Carl Zeiss Meditec LLC, Dublin, CA, USA), ultra-wide true color retinal
575  photographs were obtained from Zeiss Clarus 500 Fundus machine (Carl Zeiss Meditec LLC,
576  Dublin, CA, USA), fluorescein angiograms were obtained from Optos widefield camera (Optos,
577  Inc. Marlborough, MA, USA). 19 manually segmented OCT-A images were obtained from

578 healthy controls not ascertained for disease status). These manual segmentations were used in
579  comparison of network structure with simulated networks. Datasets of 570 FA images, 590

580  colour retinal photographs, 43 OCT-A en-face images, and 130 simulated networks were used
581 in training and testing the PI-GAN algorithm.

582

583 Manual labelling of clinical data
584  Manually labelled data was generated using a custom-built Python package enabling tracing of

585  vasculature in 3D. The process involved placing user defining control points on the 2D image
586 indicating where in a slab the vessel is located via maximum intensity projection. The z-height of
587  the vessel was then fixed by identifying the height of the highest signal intensity voxel, which
588  was manually constrained to exclude the choroid or RPE. The radius of each vessel was

589 automatically calculated by setting a user-defined signal intensity threshold. Review of

590 segmented structures was performed in 3D panel to assess and ensure labelling quality. In
591  images with pathological blood vessels such as DR the abnormal vasculature or areas of
592  neoangiogenesis were traced in the same manner. Vessel information (vessel coordinates,
593  edge connectivity, number of edge points, edge point coordinates, radii, and vessel type) was
594  exported and stored in Amira spatial graph format (ThermoFisher Scientific, Waltham,

595 Massachussetts USA). Retinal regions were labelled. The macula was defined as a 5.5 mm
596  diameter circular area centred on the fovea. The vessels surrounding the optic disc were

597 labelled as a 3.6 mm diameter centred at the optic disc. Vessels outside these regions were
598 defined as ‘peripheral’.

599

600 Deep generative learning
601 Image-to-image translation was performed using cycle-consistent generative adversarial

602  networks [18]. This algorithm enables automated unsupervised training with unpaired samples,
603 learning a bi-directional mapping function between two different domains with deep generative
604  adversarial networks. It utilises cycle consistency, where the reconstructed image obtained by a
605 cycle adaptation is expected to be identical to the original image for both generative networks.
606  Cycle-consistent GANs are composed of two main deep neural network blocks which are
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607 trained simultaneously: an image generator (generator) and an adversarial network

608  (discriminator). There is a loss (G loss) to make a synthesised image from domain A closer to a
609 real image from domain B, and a loss (D loss) to distinguish the synthesised image from domain
610 A from a real image from A. There are also losses facilitating the conversion in the opposite

611  direction (G loss making synthesised image from domain B closer to domain A, and D loss to
612  distinguish synthesised and real domain B images. Additionally, cycle loss is the difference

613  between the input image and the double-synthesised image and identity loss is the difference
614  between output and input images. A train/validation/test split of 75%/5%/20% was used. All PI-
615  GANTtraining and evaluation was performed using a single NVIDIA Titan RTX GPU.

616

617  We iteratively trained a switchable PI-GAN algorithm with 500 epochs. All networks were trained
618  using the optimizer ADAM solver [35] with $1= 0.5, B2 = 0.999. The learning rate for the first 100
619  epochs was 2*10™, and then linearly decayed to 2*10°. Images were pre-processed with crop
620 size 256 pixels. The minibatch size was 1. The loss weights A were set as 10. The model was
621  trained on NVIDIA TITAN RTX in Pytorch v1.9.1.

622
623  Statistical evaluation of synthetic vessel networks
624  Vessel metrics of vessel branching angle, length, tortuosity, network volume and diameter were

625 calculated. Analysis of variance (ANOVA) was used to assess differences in these metrics by
626  retina region (optic disc, macula, and periphery) and by status (healthy control and simulated
627  network) (Table 1) with eye (right OD/ left OS), participant sex, and scan pattern used as
628  covariates.

629

630

631 Evaluation metrics

632

633  Frechet inception distance

634  GAN output was evaluated using the Fréchet Inception Distance (FID), which evaluates model

635 quality by calculating the distance between feature vectors for real and generated images. FID
636 compares the distribution of generated images with distribution of real images that were used to
637 train the generator. Lower FID scores indicate more similarity between two groups. The FID
638  score is calculated by first loading a pre-trained Inception v3 model. The output layer of the

639 model is removed and the output is taken as the activations from the last pooling layer, a global
640  spatial pooling layer.

641

642  Three FID scores were calculated: real simulation images (domain A) versus manually

643  segmented vasculature clinical images; real retinal photographs (domain B) versus PI-GAN
644  generated retinal photographs; real OCT-A images (domain C) versus PI-GAN generated OCT-
645 Aimages; real FA (domain D) versus PI-GAN generated OCT-A images.

646

647 Dice score

648 Dice scores were additionally calculated. This is a commonly used performance statistic for
649  evaluating the similarity of two samples. For a ground truth segmentation label L and associated
650  prediction P, we measure the binary Dice score D:
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L) = 1o

[5]

We carried out benchmarking of the PI-GAN algorithm against other models trained for manual
segmentations from segmentation of retinal vessels using STARE, and DRIVE datasets public
datasets, which are regularly used for benchmarking of algorithm results [46, 53]. DICE score
were evaluated from the output of PI-GAN trained to carry out the mapping between simulated
data segmentations and retinal photographs and compared to GAN performance without
synthetic data.
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