

1 **Physics-informed deep generative learning for quantitative assessment of the retina**
2 Emmeline Brown^{1,2}, Andrew Guy^{1,3}, Natalie Holroyd¹, Paul Sweeney⁴, Lucie Gourmet¹, Hannah
3 Coleman¹, Claire Walsh^{1,5}, Athina Markaki³, Rebecca Shipley^{1,5}, Ranjan Rajendram^{2,6}, Simon
4 Walker-Samuel¹

5
6 ¹Centre for Computational Medicine, University College London, London, UK

7 ²Moorfields Eye Hospital, London, UK

8 ³Department of Engineering, University of Cambridge, Cambridge, UK

9 ⁴Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK

10 ⁵Department of Mechanical Engineering, University College London, London, UK

11 ⁶Institute of Ophthalmology, University College London, UK

12
13 **Abstract**

14
15 Disruption of retinal vasculature is linked to various diseases, including diabetic retinopathy and
16 macular degeneration, leading to vision loss. We present here a novel algorithmic approach that
17 generates highly realistic digital models of human retinal blood vessels based on established
18 biophysical principles, including fully-connected arterial and venous trees with a single inlet and
19 outlet. This approach, using physics-informed generative adversarial networks (PI-GAN),
20 enables the segmentation and reconstruction of blood vessel networks that requires no human
21 input and out-performs human labelling. Our findings highlight the potential of PI-GAN for
22 accurate retinal vasculature characterization, with implications for improving early disease
23 detection, monitoring disease progression, and improving patient care.

24
25 **Introduction**

26
27 Disruption of retinal vasculature is associated with a range of diseases which can result in loss
28 of vision, including diabetic retinopathy (DR) [1] and macular degeneration [2]. It is also
29 increasingly recognized that retinal vasculature can indicate the presence of systemic
30 pathology, such as vascular dementia [3] and cardiovascular disease [4]. Automated methods to
31 characterize changes in retinal vasculature from clinical imaging data therefore offer substantial
32 promise for high-throughput, early detection of disease [5], which is critically required to meet
33 the increasing incidence of retinal disease, potentially alongside other vascular diseases, and
34 their associated burden on healthcare systems [6].

35
36 Much attention has been placed on supervised deep learning in this regard, where deep neural
37 networks are trained to categorise images according to diagnosis or identify the location of
38 features of interest [7]. Supervised learning, particularly with U-net architectures [8], first rose to
39 prominence in retinal image analysis for segmenting retinal layers in optical coherence
40 tomography (OCT) data [9], alongside blood vessels segmentation in retinal photographs [10,
41 11]. A significant limitation to this type of approach is the lack of high-quality, manually-labelled
42 image data in sufficient quantities to enable accurate and generalisable predictions to be made
43 [12]. This problem is particularly acute for the detection of blood vessels, in which manual
44 labelling is highly time-consuming, generally limited to two-dimensional (2D) projections,

45 confined to larger vessels only, and generally does not distinguish between arteries and veins
46 [13].

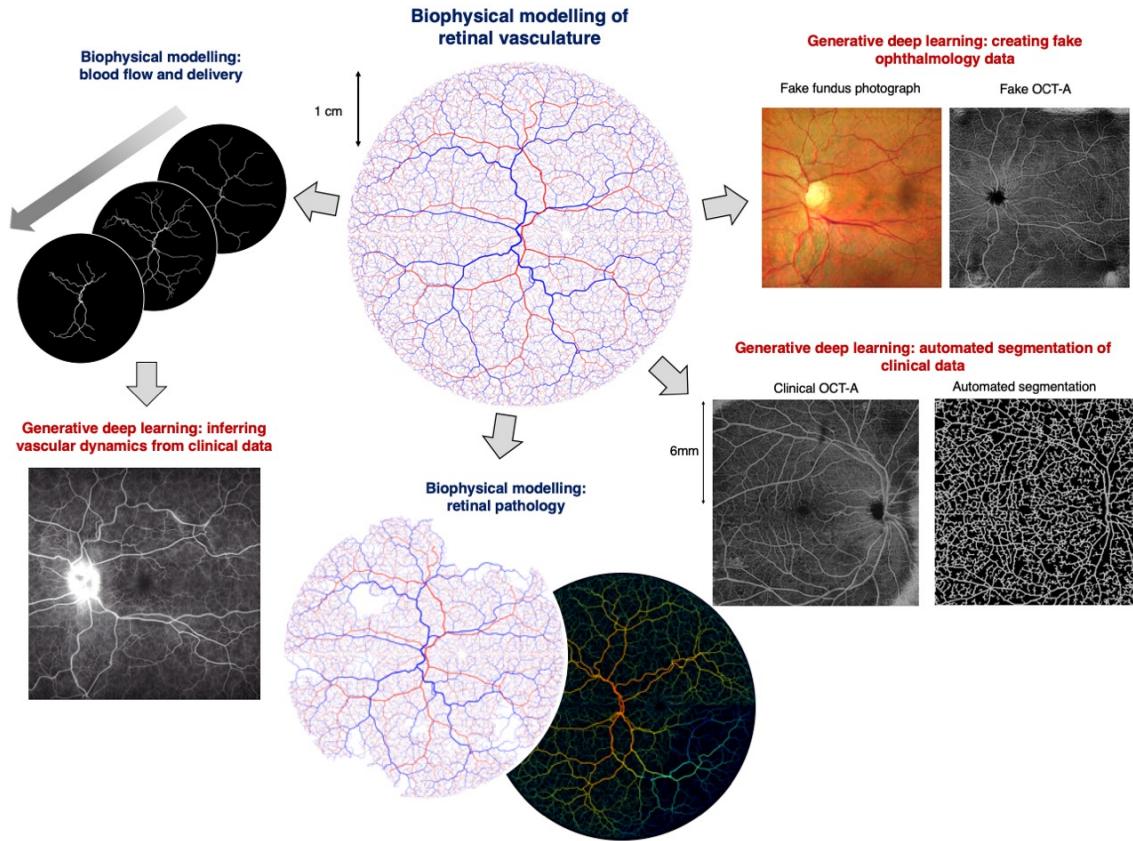
47
48 To address these challenges, we describe here a novel set of algorithms that can generate
49 highly realistic digital models of human retinal blood vessels, using established biophysical
50 principles and unsupervised deep learning. Our biophysical models capture the complex
51 structure of retinal vasculature, with interconnecting arterial and venous trees that are inherently
52 three-dimensional, multi-scale and fully inter-connected via a capillary bed. They also feature
53 dedicated macula and optic disc features. The central biophysical principles we draw on are 1)
54 Murray's Law, in which vessel diameters, branching distances and branching angles are
55 optimised to form a balance between pumping power and blood volume and minimize
56 resistance to flow [14]; and 2) fluid dynamics to model blood flow and vascular exchange. The
57 latter is made possible by our synthetic networks containing fully-connected arterial and venous
58 trees with a single inlet and outlet (the central retinal artery and vein), allowing blood flow and
59 contrast agent delivery (e.g. fluorescein) data to be simulated with minimal assumptions in
60 regard to network boundary conditions.

61
62 In this work, we investigate whether, through the use of generative deep learning, our
63 biophysics-informed vascular network models can be used to infer information from real-world
64 retinal images, such as the segmentation and reconstruction of blood vessel networks, without
65 the need to perform any manual labelling, in an approach termed physics-informed generative
66 adversarial learning (PI-GAN) [15]. An overview of our framework is provided in **Figure 1**.
67 Generative adversarial networks (GANs) incorporating cycle-consistency have previously been
68 used for medical imaging domain machine learning tasks such as chest MRI to X-ray CT
69 transformation [16], PET image denoising [17], and artefact reduction in fundus photography
70 [18]. Likewise Menten et al used the space colonisation algorithm to generate macular blood
71 vessel images, which they coupled with deep learning [19].

72
73 We demonstrate here the ability of our retinal simulation framework to accurately simulate real-
74 world retinal vasculature, including blood flow, and model the presentation of two common
75 vascular pathologies: DR and retinal vein occlusion (RVO). Moreover, we show that our use PI-
76 GAN workflow allows retinal vasculature to be segmented without any human manual labelling,
77 and which outperforms state-of-the-art supervised learning approaches. This therefore offers
78 numerous opportunities for improved detection and quantification of retinal disease in clinical
79 ophthalmology.

80
81
82

Combining biophysical modelling and deep generative learning for automated image analysis



83

84 **Figure 1.** Schematic overview showing the physics-informed generative adversarial learning
85 (PI-GAN) framework developed in this study. Retinal blood vessel networks, featuring arterial
86 and venous trees connected by a capillary bed, and special treatment of macular and optic disc
87 features, were simulated using space filling growth algorithms based on Murray's law. Blood
88 flow and fluorescein delivery were simulated in synthetic vascular networks, using one-
89 dimensional Poiseuille flow. By combining this with cycle-consistent, physics-informed deep
90 generative learning, vessel simulations were converted into synthetic medical image data
91 (fundus photography, Optical coherence tomography angiography (OCT-A) and fluorescein
92 angiography), and the same trained networks used to detect blood vessels in clinical images.

93

94 Results

95

96 Procedural modelling of retinal vasculature

97 Retinal vascular networks were simulated in multiple, linked steps, using a combination of
98 algorithms that draw on the known geometry and biophysics of retinal vasculature. In total, our
99 procedural model of retinal vasculature contained 26 parameters (**Supplemental Table 1**), each
100 of which were randomly sampled to simulate the broad range of retinal geometries occurring in
101 the population (**Figure 2a-c**) [20, 21].

102

103 Networks were seeded using a Lindenmayer-system (L-system) [22], in which initial central
104 retinal artery and vein segments were positioned at the location of an optic disc and iteratively
105 branched within a plane. The first arterial and venous segment radii were $135 \pm 15 \mu\text{m}$ and $151 \pm 15 \mu\text{m}$, respectively [23]. Branching was performed asymmetrically to create characteristically
106 large vessels surrounding the macula, with smaller branches reaching towards the periphery, as
107 observed in retinal images [23].
108

109
110 Seeding L-systems were then grown to the edge of the retina using a variant of constrained
111 constructive optimisation (CCO) [24-28]. This step transformed L-system networks into realistic,
112 space-filling networks with geometries defined by Murrays law [14] (exponent of 2.4 ± 0.11 [29]),
113 whilst retaining the realistic macroscopic branching geometry imposed by the L-system seeding
114 (**Figure 2d-f**). A final growth step was incorporated to create the characteristic branching
115 pattern of the macula, with radial alignment of arterioles and venules, greater relative vascular
116 flow density (between 1.5 and 2.0 times the perfusion fraction) and a central avascular fovea.
117

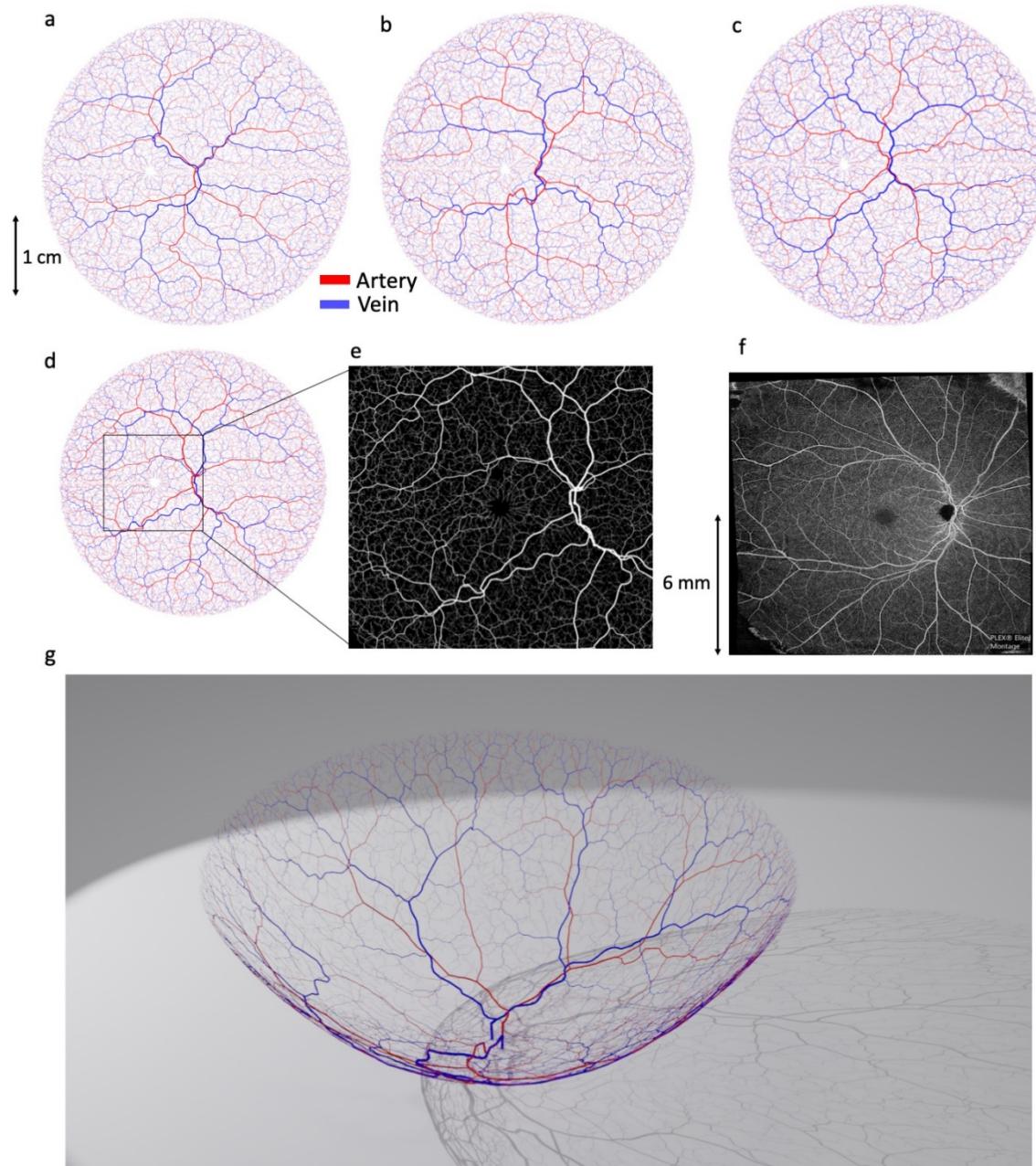
118 Following growth, we augmented vessels with sinusoidal displacements to replicate the tortuous
119 vasculature commonly observed in human retinas, with a greater displacement imposed on
120 veins. A continuous capillary bed was generated using either 1) a 2D Voronoi algorithm that
121 arterial and venous endpoints were connected to [30] or 2) a 2D space colonization algorithm
122 [31]. Following simulation within a 2D plane, vessels were projected onto a hemispherical mesh
123 (radius 23 - 25 mm) featuring macula and optic disc structures generated using a mixed
124 Gaussian profile [32] (**Figure 2, Supplemental Figure 1**).
125

126 **Comparison of synthetic networks with real-world networks**

127 Our set of retinal network growth algorithms is designed to provide an authentic replication of
128 real retinal vasculature, by following established biophysical principles. To quantitatively
129 evaluate the accuracy of these synthetic networks, we manually labelled all visible blood
130 vessels in 19 optical coherence tomography angiography (OCT-A) image datasets, using in-
131 house software. This included differentiating arteries and veins (A-V) in a subset of images
132 (n=5), using retinal photographs as a reference for determining A-V status. Vessel branching
133 angle, inter-branch length, tortuosity, and radius were measured in three regions: the macula,
134 the vessels surrounding the optic disc, and the periphery. The macula was defined as a 5.5 mm
135 diameter circular area centred on the fovea, based on measurements referenced in Remington
136 and Goodwin [33]. The vessels surrounding the optic disc were labelled as a 3.6mm diameter
137 centred at the optic disc, due to mean vertical and horizontal diameters of the optic disc
138 reported as 1.88 and 1.77mm respectively [34]. Vessels outside these regions were defined as
139 'peripheral'. 100 synthetic retinal networks were initially created, with parameter values
140 randomly drawn from the ranges shown in **Supplemental Table 1**.
141

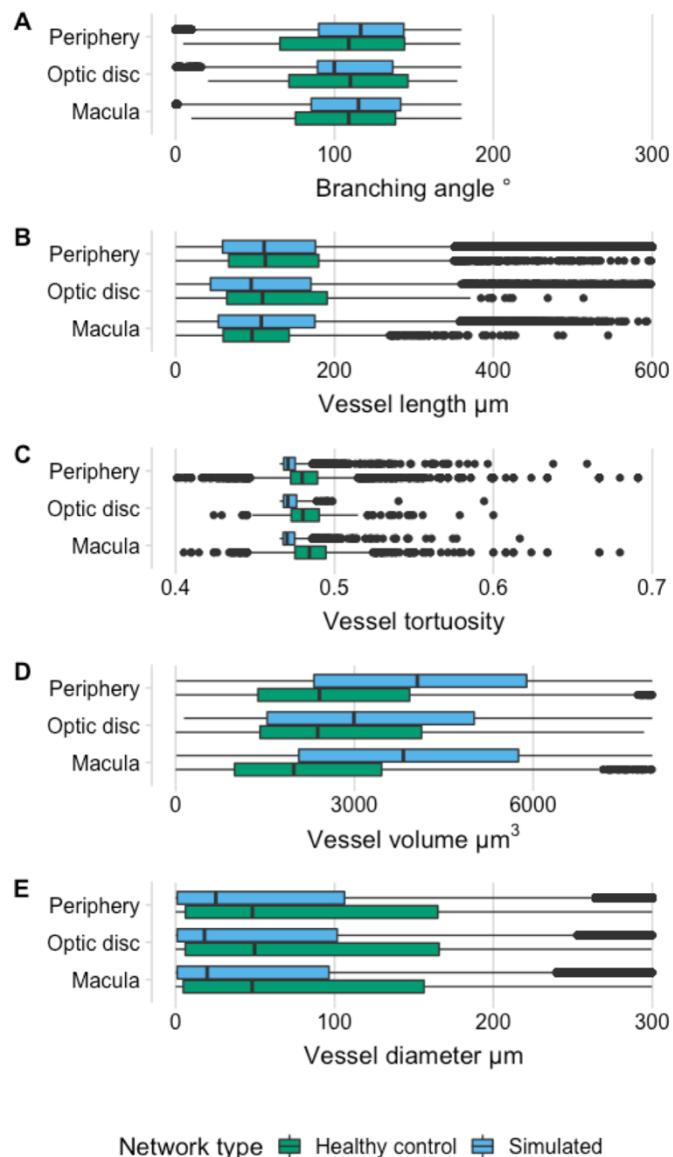
142 According to ANOVA analysis, all geometric parameters associated with synthetic blood vessel
143 networks did not reach the level of statistical significance compared to those measured in
144 normal controls using manual segmentation of OCT-A images (branching angle, $p = 0.82$;
145 vessel length, $p = 0.17$; vessel tortuosity, $p = 0.095$; vessel network volume, $p = 0.061$; vessel
146 diameter, $p = 0.59$) (**Figure 3, Supplemental Table 2**).
147

147
148



149
150 **Figure 2:** Procedural generation of retinal vasculature using constrained constructive
151 optimisation and lattice sequence vascularisation. a-c) Examples of synthetic retinal vascular
152 networks, featuring arterial (red) and venous (blue) trees, and with geometry optimised
153 according to Murray's law. Each simulation run used a different set of physiological parameter
154 values, randomly sampled from the distributions defined in Supplemental Table 1. d-f) A
155 synthetic retina (d) with a 12×12 mm region surrounding the optic disc and macula (e)

156 compared with a real OCT-A image (f). g) A simulated vascular network projected onto three-
157 dimensional surface.



158
159 **Figure 3.** Comparison of retinal vascular geometry distributions visualised with bar plots
160 between manually segmented networks from OCT-A data (normal volunteers not ascertained
161 for disease status) and simulated networks. a) Branching angle, b) vessel length (μm), c) vessel
162 tortuosity, d) vessel network volume and e) vessel diameter (μm), in three regions: macula
163 (5.5mm diameter circular area centred on the fovea [33]), optic disc (3.6mm diameter area
164 centred on the optic disc centre [34]), and periphery (all vessels outside those regions).
165
166
167

168
169

170 **Simulating retinal blood flow and validation using fluorescein angiography**

171 We have previously developed a mathematical framework for simulating blood flow in three
172 dimensional vascular networks, which uses one-dimensional Poiseuille flow [35]. Our simulated
173 retinal networks are ideally suited for this framework, having just one arterial input and one
174 venous outlet meaning that pressure boundary conditions can be easily specified. Setting
175 arterial pressure by sampling from a normal distribution parameterised by mean = 56.2 mmHg,
176 s.d. = 14.0 mmHg [36] and similarly for venous pressure with mean = 20.0 mmHg and s.d. =
177 10.0 mmHg [36] gave an average total retinal flow prediction of $34.4 \pm 1.8 \mu\text{L}/\text{min}$, which is
178 slightly lower, but still in good agreement with reports in the literature from healthy retinas (for
179 example, $45.6 \pm 3.8 \mu\text{L}/\text{min}$ [36] $44 \pm 13 \mu\text{L}/\text{min}$ [37] $50.7 \mu\text{L}/\text{min}$ [37] (**Figure 4a,b**)).

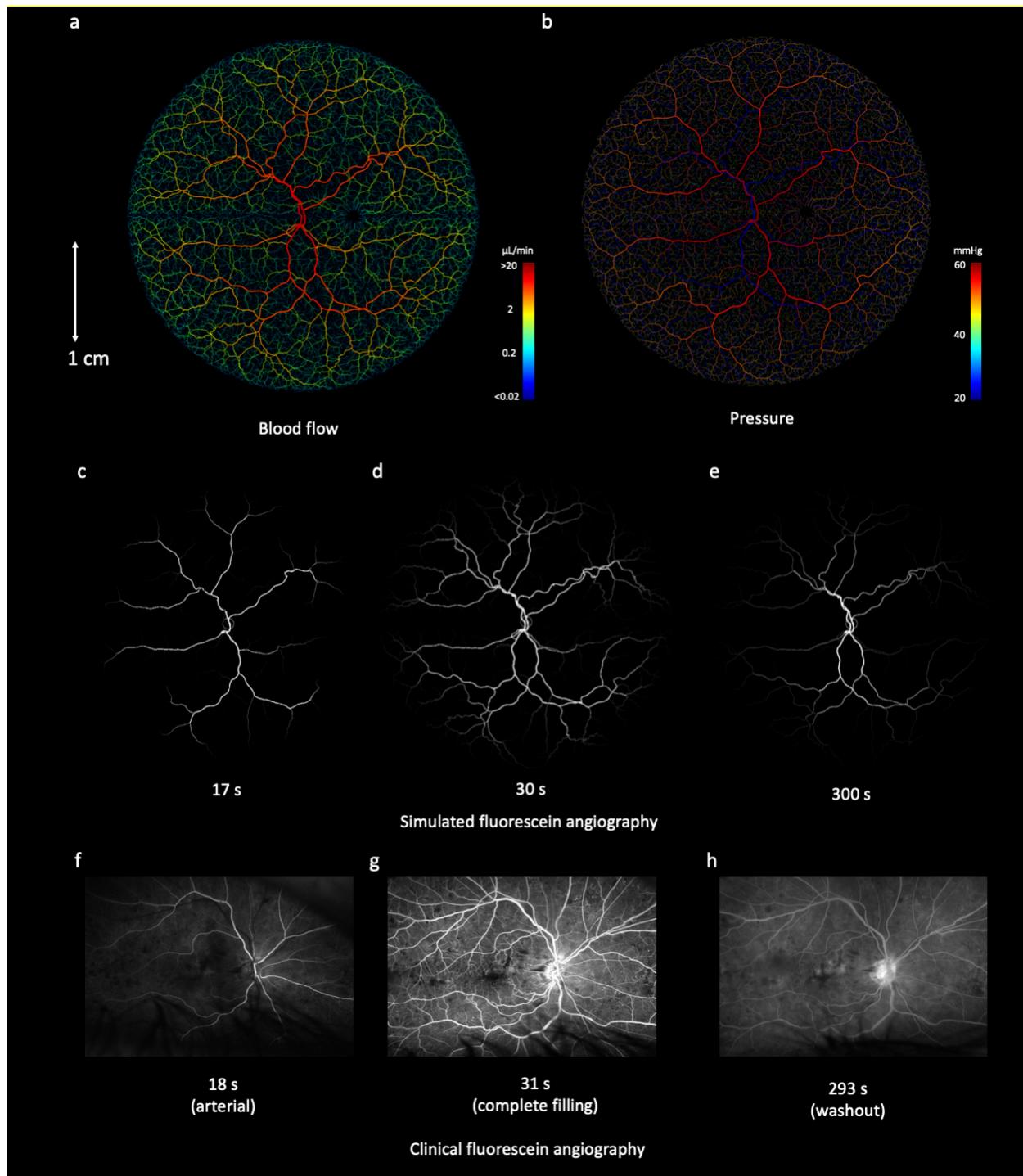
180
181
182
183
184
185
186
187

To further evaluate these flow results, we next performed a simulation of retinal fluorescein
delivery. Fluorescein angiography (FA) is used in ophthalmology for diagnosis of macular
edema, macular degeneration, RVO, DR, and other diseases [38, 39]. Fluorescein is injected as
a bolus into the median cubital vein, and 10-15 seconds later appears in the choroidal
vasculature at the rear of the eye [40]. Within 2 seconds of this, fluorescein appears in the
anterior arteries and arterioles, and a further two seconds later by partial filling of venules and
veins, followed by total filling and recirculation.

188
189
190
191
192
193
194
195
196
197
198

We simulated the systemic pharmacokinetics of fluorescein using literature data (**Supplemental**
Figure 2), with the passage of fluorescein modelled as two displaced Gaussian functions to
model the first and second passes, and an exponential washout term corresponding to systemic
extraction. This time course was propagated through our synthetic retinal networks by
partitioning by flow at branch points and delaying according to cumulative velocities. The delay
between arterial and venous filling with fluorescein, across 1000 simulation runs was 7.3 ± 0.7
s, which is in keeping with timings described in clinical data [40]. Visual inspection of fluorescein
delivery also revealed a good accordance with clinical delivery profiles (**Figure 4c-h**).

199



200
201
202
203
204
205
206

Figure 4: Blood flow simulations in an example biophysical model of a retinal blood vessel network. a) Blood flow ($\mu\text{L}/\text{min}$) and b) vascular pressure (mm Hg) were simulated using Poiseuille flow, with inlet arterial pressure and outlet venous pressure fixed at 56.2 ± 14.0 and 20.0 ± 10.0 mmHg, respectively. c-e) Simulated delivery of fluorescein at 17 s (arterial phase), 30 s (venous phase) and 600 s (recirculation), with clinical fluorescein images (registered to the same coordinate space) shown in f-h for comparison

207

208 **Simulating retinal pathology**

209 Given the physiologically-realistic results provided by our flow models, we next sought to perturb
210 our simulated networks to examine the effect of pathological changes. As a first demonstration,
211 we simulated the effect of RVO. A random location of artery-vein crossover on a large retinal
212 vein was reduced in diameter by 80%. Blood flow within the network was recalculated, revealing
213 a large region of hypoperfusion, as expected. This strongly reflected the presentation of RVO
214 found in clinical FA data (**Figure 5**) and induced a regional reduction in blood flow of 9.8 $\mu\text{L}/\text{min}$
215 in the vessels immediately downstream of the occlusion.

216

217 Next, we constructed a simple model of DR [41-43], in which arterioles with a radius less than
218 35 μm were randomly selected and occluded, and the resultant change in network flow
219 calculated. All vessels that become non-perfused, either up- or downstream of the occluded
220 vessel, were removed from the network, creating regions of ischemia, with occasional surviving
221 vessels passing through (**Figure 5c-d, Supplemental Figure 3**). Occlusions were simulated in
222 batches of 5, initially from the periphery ($>1\text{cm}$ from the macula centre), and then at decreasing
223 minimum distances from the macula, as typically found in the clinical presentation of DR.

224

225 Both our retinal occlusion model and DR model produced images that were highly reminiscent
226 of clinical images of both pathologies (**Figure 5**), with loss of flow in downstream vessels in our
227 RVO model and loss of perfusion and regions of ischaemia in the DR model.

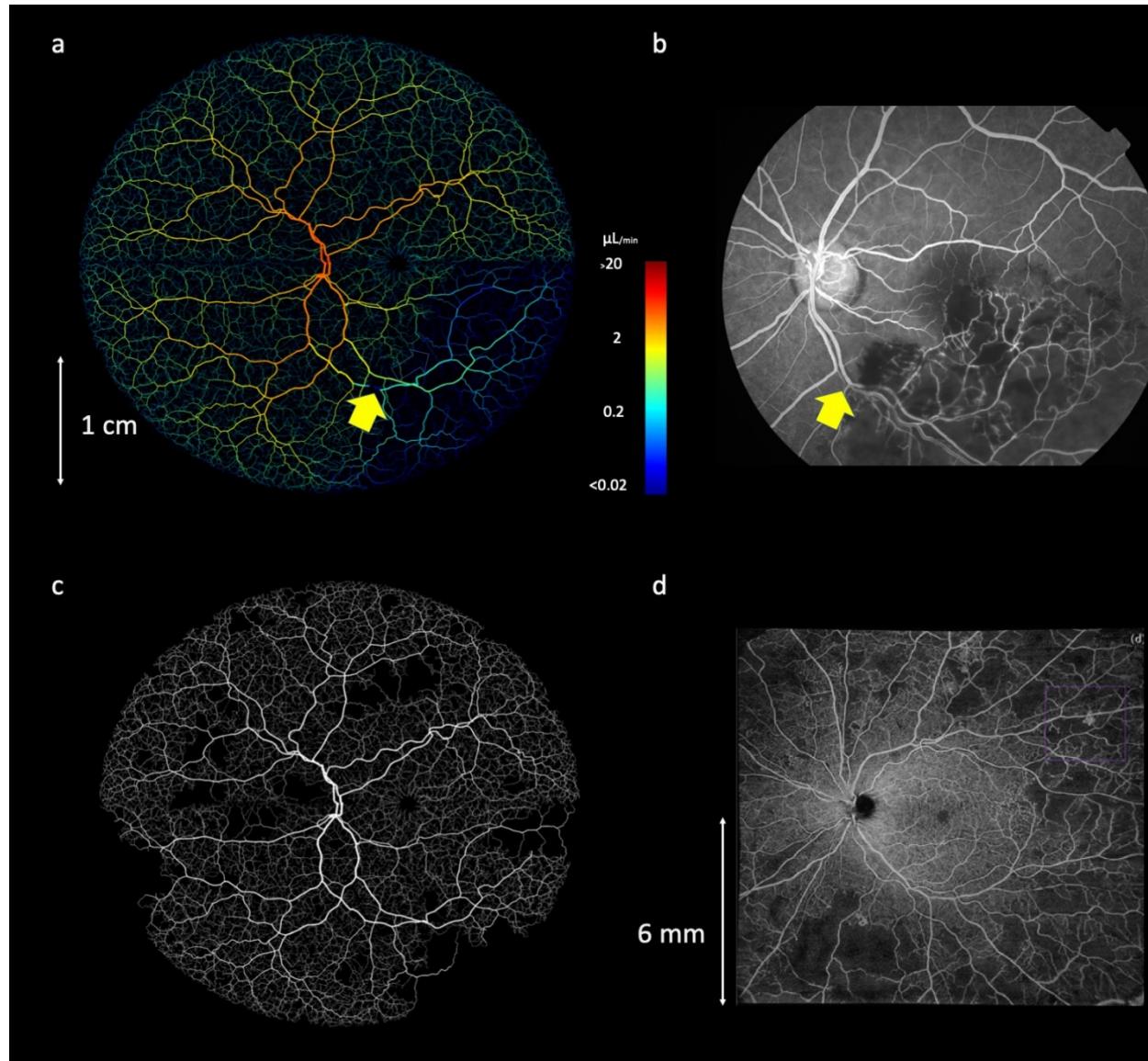
228

229

230

231

232



233
234
235
236
237
238
239

Figure 5: Simulating realistic whole-retina pathology. A) An example of RVO simulation and loss of flow in downstream vessels. The yellow arrow shows the location of an imposed 80% decrease in vein diameter. b) An FA image of retinal occlusion, revealing a similar pattern of perfusion loss as simulated in (a). c) The onset of DR, simulated by inhibiting flow in randomly-selected peripheral arterioles. D) An OCT-A image of a retina exhibiting stage 4 DR, evidenced by extensive loss of perfusion in vessels and regions of ischemia.

240
241

242 **Generating synthetic clinical ophthalmology data with deep learning**
243 Our next challenge was to use deep learning to define a mapping between our biophysical
244 vascular model and clinical ophthalmology data (and vice versa). For this we used cycle-
245 consistent generative adversarial networks that enabled the translation of image texture and
246 style between image domains [44]. We undertook this for three clinical imaging modalities:
247 OCT-A, retinal photographs and FA.

248

249 We embedded our synthetic retinas in three-dimensional grids with axial and lateral resolutions
250 of 6.3 μ m and 21 μ m, respectively, to match our clinical OCT-A data. We then trained three
251 cycle-consistent GANs on these synthetic retinas, with each GAN mapping the conversion
252 between the synthetic images and a different imaging modality. 590 retinal photographs, 43
253 OCT-A en-face images and 570 FA images were used in training for this purpose. PI-GAN
254 enabled the geometry of source images (simulations- domain A) to be translated into a target
255 style (retinal photographs- domain B, OCT-A-domain C, and FA- domain D). As can be seen in
256 **Figure 6a**, following 400 training epochs, the pattern of synthetic vasculature was realistically
257 transferred into the style of each target image. The Frechet Inception Distance (FID) was 6.95
258 for retinal photographs, 5.17 for fluorescein angiographs and 3.06 for OCT-A en-face images,
259 indicating a small distance between feature vectors for real and fake images.

260

261 This process generated authentic-looking retinal image data with matched, fully specified
262 ground truth blood vessels. However, cycle consistency also allows the reverse operation: to
263 generate simulation data from clinical images (**Figure 6b**). This enabled blood vessel networks
264 to be segmented from OCT-A images and compared with manual segmentations of the same
265 data (**Figure 7**). Visual inspection of PI-GAN segmentations revealed many more small 'elusive'
266 vessels [45] than represented within our manually-segmented images, arguably providing
267 superior segmentation accuracy than the manual 'gold standard'. Accordingly, the mean Dice
268 score for OCT-A images was low (mean 0.35, s.d. 0.12 (2.s.f)), but the sensitivity (the
269 percentage of pixels labelled as vessel in the manual segmentation that were also identified as
270 vessel by PI-GAN) was high (87.1% (s.d. 1.20)), showing that PI-GAN is able to accurately
271 label almost all of the vessels identified by human operators (**Figure 7g-j**).

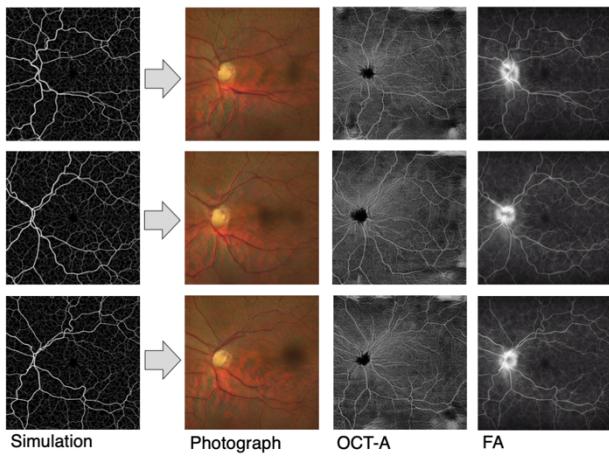
272

273 To further investigate this result, we evaluated PI-GAN on two publicly available retinal
274 photograph data sets with corresponding manual segmentations (STARE and DRIVE).
275 Contrasting the widefield (130 degree and 200 degree montage) images analysed here, these
276 datasets were acquired with a smaller 45 degree FOV, and are widely used in benchmarking
277 vessel segmentation. Again, Dice scores comparing manual and PI-GAN segmentations were
278 low but, as shown in **Figure 7k-m** and **Supplemental Figure 5**, PI-GAN was able to detect
279 most of the manually-segmented vessels, but also many smaller, elusive vessels. Mean DICE
280 score between DRIVE manually segmented data and segmentations generated using PI-GAN
281 was 0.56 (s.d. 0.013) (2.d.p) and for STARE it was 0.64 (s.d. 0.19) (2.d.p). These results call
282 into question how appropriate manual segmentation is as a gold standard in this setting, visual
283 inspection suggests these additional small vessels are indeed physiological and were simply
284 missed by manual segmentation.

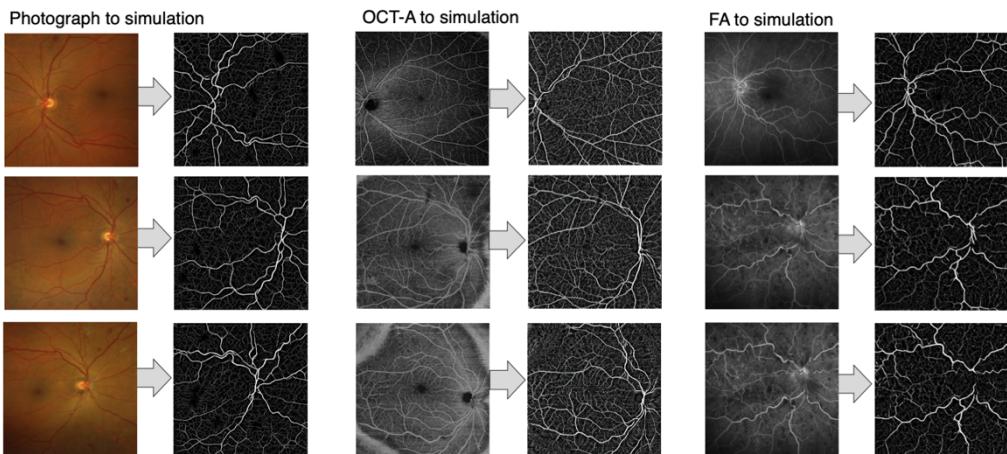
285

286 These results demonstrate the key ability of physics-informed simulations with deep learning to
287 autonomously segment blood vessels within a range of ophthalmology imaging modalities,
288 without the need for any manually-labelled training data.

a) Forward direction

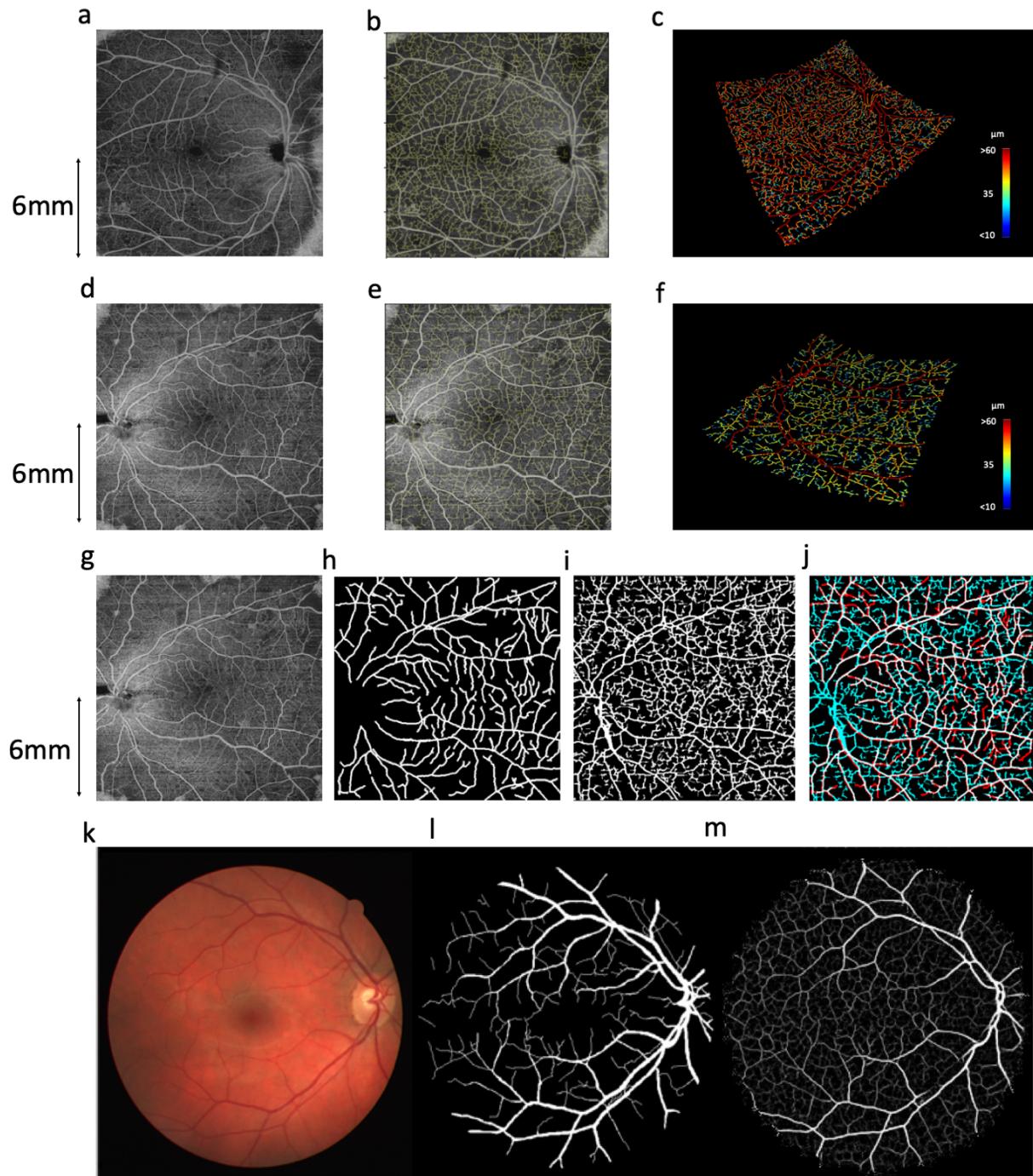


b) Reverse direction



289
290
291
292
293
294
295

Figure 6: Generation of multi-modality retinal images from biophysical simulations, using physics-informed generative adversarial networks. Direction 1 involves conversion of domain A (simulated network) into domains B (fake retinal photograph), domain C (fake OCT-A) and domain D (fake fluorescein angiography). Direction 2 involves conversion of real retinal images (domains B-D) into fully connected networks/segmented data (domain A)



296
297
298
299
300
301

Figure 7: Blood vessel segmentation from OCT-A data with PI-GAN. A and d) OCT-A en-face images of retinal vasculature. B and e) The same OCT-A images with vessel segmentations from PI-GAN. C and f) Segmented vessels projected in three-dimensional space, colour-coded for vessel radius. G) An OCT-A image with h) manually-segmented and i) PI-GAN-segmented blood vessels. J) A composite image of manually- and PI-GAN-segmentations, with overlapping

302 pixels rendered white, pixels with only PI-GAN-detected vessels in blue and pixels with only
303 manual-detected vessels in red. K) A retinal photograph taken from the DRIVE data set [46] with
304 l) manually-segmented and m) PI-GAN-segmented blood vessels.

305

306 Discussion

307

308 Methods that enable the quantitative assessment of retinal vasculature from clinical
309 ophthalmology images are critically needed for evaluating the progression of diseases such as
310 DR, and also to support research into the influence of systemic diseases such as cardiovascular
311 disease and vascular dementia [3, 4]. In this regard, deep learning is rapidly transforming
312 ophthalmology, but requires access to large volumes of well-curated data before it can be
313 implemented with confidence in the clinic [47, 48]. In the assessment of vasculature, manual
314 image labelling constitutes a considerable bottleneck in terms of time, expense and labelling
315 accuracy [49], as manual segmentation of a single 2D retinal image can take multiple hours
316 [50]. Inter and intra grader variability can also be significant within the segmentation process
317 [51, 52]. Most segmentation studies have been conducted in 2D retinal fundus photographs
318 using public datasets [12, 53, 54]. Approaches that can relieve this bottleneck are urgently
319 needed to enable the robust translation of deep learning into the clinic.

320

321 To address these challenges, we have presented here a physics-informed, generative approach
322 that combines biophysical simulation with deep generative learning. A useful outcome of this
323 approach is the ability to automatically segment vascular data from clinical evaluation images,
324 without any need for manual segmentation. Specifically, we created a linked set of algorithms
325 that draw on established principles in biophysics to simulate fully-connected retinal vasculature,
326 in a three-dimensional domain, with special treatment for optic disc and macular regions. The
327 full connectivity of our models, with separate arterial and venous trees, enables realistic blood
328 flow and delivery simulations (for example, as we show in fluorescein angiography). We
329 demonstrated that our synthetic vascular networks are highly concordant with real retinal
330 vasculature metrics, with network statistics matching those from manual segmentations, in three
331 regions: the optic disc, macula and periphery.

332

333 This close accordance between simulation and real-world geometries is key to its ability to
334 segment blood vessels from ophthalmology images. Cycle-consistent deep generative learning
335 allowed us to create realistic fundus photograph, OCT-A and FA images that inherently
336 maintained feature geometry through the translation from simulation to clinical image domains.
337 The resultant data are inherently paired, and so could provide data to augment conventional
338 supervised learning approaches. However, cycle-consistency also facilitates the reverse
339 translation, from clinical image domains back into the simulation domain, allowing the
340 automated segmentation of blood vessels without human-labelled data. Comparing
341 segmentation performance against manual segmentations revealed a much greater ability to
342 label small vessels, and with excellent overlap with larger manually-segmented vessels.
343 However, overall performance assessed via DICE score showed a relatively low accordance,
344 due in part to the greater ability of the PI-GAN approach to detect small blood vessels, but also

345 false-positives in both human-labelled and PI-GAN-labelled vessels. In regard to the latter, there
346 are cases where GANs can 'hallucinate' features in images [55].

347
348 To date, supervised deep learning approaches have yielded impressive results in 2D vessel
349 segmentation relative to manual segmentation, although tend to favour precision over recall [5],
350 resulting in an under-segmentation of faint vessels, underestimation of the width of thicker
351 vessels and some 'elusive' vessels being missed [45]. This is problematic for diagnostic
352 interpretation, because many biomarkers (such as artery-vein (AV) ratio, branching angles,
353 number of bifurcations, fractal dimension and tortuosity) need precise measurements of
354 individual vessels. GANs incorporating cycle-consistency have previously been used for medical
355 imaging domain machine learning tasks such as chest MRI to X-ray CT transformation [16],
356 PET image denoising [17], and artefact reduction in fundus photography [18]. Likewise Menten
357 et al used the space colonisation algorithm to generate macular blood vessel images, which
358 they coupled with deep learning [19].

359
360 Our approach builds on this by incorporating biophysically-informed models of flow within fully-
361 connected artery and venous networks that extend across the entire retina, and our use of it to
362 inform cycle-consistent deep generative learning. These developments allow application in
363 larger field of view images (e.g. wide-field fundus photography), and also enable a large range
364 of future applications, including flow modelling and oxygen delivery [56]. Moreover, given our
365 ability to model arterial and venous trees, there is potential for independent segmentation of
366 both vascular supplies.

367
368 These biophysical simulations also aimed to capture the wide range of variation found in real
369 retinal networks, by varying the 26 simulation parameters across their reported physiological
370 range. A further advantage of developing flow models into our biophysical framework was the
371 ability to simulate pathology, such as the progression of DR and RVO. Many other pathologies
372 could be simulated in follow-on studies, including changes in retinal vessel diameters
373 associated with factors such as aging or hypertension. For example, Wong and colleagues
374 reported retinal arteriolar diameters to decrease by approximately 2.1 μm for each decade
375 increase in age, and by 4.4 μm for each 10 mmHg increase in arterial blood pressure [57].
376 Performing disease-specific deep generative learning runs will enable us to further refine our
377 segmentation approaches and begin to characterise pathology.

378
379 Accordingly, there is also potential to use clinical data to further improve our biophysical
380 simulations, enabling more accurate modelling of retinal physiology (and disease) and the ability
381 to develop interpretable AI systems. The results of several recent studies using deep learning
382 suggest that that retinal vasculature can provide a window into many systemic diseases
383 (including dementia [3], kidney disease [58] and cardiovascular disease [4]), but cannot easily
384 explain the structural basis of these associations. A PI-GAN framework is inherently coupled to
385 biophysical laws, and so could help determine their origins or underpinning mechanistic
386 processes. Additional challenges for segmentation are artery-vein classification [59] and
387 establishing connectivity of the vessels [60], which, having a well-defined ground truth data set
388 from simulations, could be realised through PI-GAN.

389

390 Overall our results demonstrate the potential of biophysical models of the retina, which can be
391 interrogated to understand how physiological perturbations (such as disease) effect vascular
392 function. Further work could explore regional variability in blood flow, with the temporal side
393 exhibiting greater flow than the nasal side in both retinal venules and arteries, which may be
394 related to retinal ganglion cell numbers [61]. Additionally, the model could be used in predicting
395 inhibitors of angiogenesis, such as VEGF inhibitor Bevacizumab. Incorporating this model into
396 a larger-scale retinal model (including the choroidal supply) would enable complete simulation of
397 the retinal supply. The ability to then apply these simulation results for the interpretation of
398 clinical images, via physics-informed generative learning, is a significant step forward.
399

400

Acknowledgements

401 This research was funded by Cancer Research UK (C44767/A29458 and C23017/A27935) and
402 EPSRC (EP/W007096/1). Audit number 1078 was used in accessing ophthalmological image
403 data from Moorfields Eye Hospital NHS Foundation Trust. The audit was authorised by
404 Moorfields Clinical Audit team.

405

406 The authors would like to thank Henry Cole, Andrew Kume, Jinyu Li, Kendra Hilliard, Yiyun
407 Zhang, Jiahao Xu, Shuo Wu who assisted with data pre-processing, labelling and segmentation
408 and the participants and patients who contributed ophthalmological imaging data.
409

410 Author contributions

411 EEB contributed conception and design, analysis and interpretation of data, creation of
412 software, and drafting the work. AG contributed creation of new software used. NH contributed
413 analysis and interpretation of data. PS contributed creation of new software used. LG
414 contributed analysis and interpretation of data. HC contributed analysis and interpretation of
415 data. CW contributed analysis and interpretation of data. AM contributed creation of new
416 software used. RS contributed conception and design, acquisition, and substantial revision to
417 draft. RR contributed conception and design of work, acquisition of data, interpretation of data,
418 and substantially revising draft. SWS contributed conception and design of work, acquisition,
419 interpretation of data, creation of new software, and substantial revision of draft.
420

421

Competing interests

422 The authors have declared no competing interests.
423

424

Materials & correspondence

425 Professor Simon Walker-Samuel
426

427 Code availability

428 Retina simulation software is available in https://github.com/CABI-SWS/vessel_sim, which has a
429 dependency on <https://github.com/AndrewAGuy/vascular-networks>. Deep generative learning
430 was performed using <https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix>.
431
432

433 **Data availability**

434 Simulated retinal networks are available in

435 <https://www.dropbox.com/scl/fo/whwru5rmz8g7cr0h8ytg1/h?rlkey=ynbh2kdhe0pcvpfo6cypm9oc6&dl=0>.

437

438 **Methods**

439

440 **Procedural generation of synthetic retinal vasculature**

441 Generation of synthetic retinas followed multiple, length scale dependent steps. Firstly, the
442 values of geometrical parameters were set by sampling from a normal or uniform distribution
443 according to parameter values shown in **Supplemental Table 1**. Networks in the form of spatial
444 graphs (i.e. branching nodes connected via vessel segments) were constructed using multiple,
445 linked algorithms.

446

447

448 **Lindenmeyer system seeding**

449 Firstly, seeding networks following approximate retinal vascular branching geometry were
450 constructed, starting with a putative central retinal artery and retinal vein positioned at the centre
451 of the optic disc. The diameters of the retinal artery and vein were $135 \pm 15 \mu\text{m}$ and 151 ± 15
452 μm , respectively [23], oriented parallel to the optic nerve (defined as the z-direction). Two
453 branches were added to the end of each of these segments, oriented in the x-y plane, and one
454 directed above and the other below the retinal midline. Subsequent branching of these vessels
455 was performed stochastically, with segment lengths between bifurcations set as a fixed fraction
456 of vessel diameter (18 ± 3) and bifurcation vessel diameters set according to:

457

$$458 \cos \theta_1 = \frac{(1 + \alpha^3)^{\frac{4}{3}} + \alpha^4 - 1}{2\alpha^2(1 + \alpha^3)^{\frac{2}{3}}} \quad [1]$$

459

$$460 \cos \theta_2 = \frac{(1 + \alpha^3)^{4/3} + 1 - \alpha^4}{2(1 + \alpha^3)^{2/3}} \quad [2]$$

461

462

463 Normally-distributed noise was added to branching angle values, with a standard deviation of
464 5° . Vessel bifurcation angles were assigned such that the larger vessel oriented towards the
465 macula to create putative major vessels oriented around the macula. Fifth-order bifurcations
466 were added to the network, or until vessels breached the edge of the retina domain.

467 **Supplemental Figure 1a** shows an example of an L-system seeding network.

468

469 **Major vessel growth**

470 Seed vessel networks were used as input into a multi-scale growth algorithm for the creation of
471 hierarchical vasculature. First, seed networks were amended to provide a uniform distribution of
472 leaf nodes (terminating arteriole and venuole nodes created prior to construction of capillary
473 networks at a later stage) throughout the circular domain, using Accelerated Constrained

474 Constructive Optimisation [28], using a leaf node spacing of 3 mm. Multiscale, two-dimensional
475 lattices were defined (stride lengths ranging from 3000 to 150 μm , with five iterations linearly
476 spaced within that range) and used to grow vessel networks by progressively adding vessels
477 into unoccupied lattice sites from neighbouring occupied sites, choosing the candidate vessel
478 which minimised the expected change in network cost (see below), and progressively reducing
479 the length scale when no more progress could be made. After the initial growth stage, all
480 existing leaf nodes were removed [62]. At all stages of the major vessel growth the macula
481 region was kept free of vessels by removing vessels which intersected it, forcing flow to divert
482 around it.

483
484 As retinal vasculature is positioned in front of the retina itself, we optimised networks to
485 minimise the area of the retina occluded by vessels, according to a cost function based on
486 Murray's law:

487

488

$$C(B, \lambda, \rho) = \sum_{b \in B} r_b^\rho l_b^\lambda$$

489

490 with $\rho=1$ and $\lambda=1$, and where B is the set of vessel segments in the network, with length l and
491 radius r . After each growth step the network geometry was optimised by moving vessel nodes,
492 and highly asymmetric bifurcations were trimmed for regrowth [28] using the thresholds from
493 [27] to account for the high asymmetry of optimal networks [27]. After growth at each length
494 scale was terminated, the networks were optimised topologically by allowing asymmetric
495 bifurcations to move their low-flow side downstream and branches which were short compared
496 to their expected length under the West, Brown and Enquist model [63] to be treated as a single
497 higher-order split for regrouping using a method similar to [64]. Due to the two-dimensional
498 nature of the networks, network self-intersections were tested for using the approach of [28]
499 however, rather than resolving the intersections by making excursions around the contact site
500 we rewire the vessels to prevent future iterations from recreating the same intersection.

501

502 Unlike the implementation of [28], leaf nodes were allowed to move from their nominal location
503 up to a specified "pinning distance", given as a fraction of the leaf spacing. Existing vessels
504 could be specified as frozen, in which case the optimiser did not touch them. This approach was
505 used to perturb the optimal root vessel structure with artificial tortuosity, strip away the
506 downstream branches and regrow the downstream vessels, repeating this down the tree
507 structure.

508

509 **Macula growth**

510 Vessels supplying the macula have a characteristic radial structure, motivating the development
511 of a particular approach to enforce this structure. This uses the same lattice site invasion
512 approach between the macula outer radius and the fovea (which is kept vessel-free), but with
513 the stride set low enough that the majority of the growth arises from spreading over many
514 iterations at the same length scale rather than hierarchical refinement. The macula has a
515 configurable flow rate density compared to the rest of the retina, ranging from 1.5 to 2.0 and leaf
516 nodes are offset by uniformly sampling an offset in a disc around the nominal position to ensure

517 that vessels did not align along the lattice sites. The macula vessels were prevented from
518 doubling back on themselves by setting a hard limit on the vessel angle, preventing obviously
519 non-physiological structures from arising whilst still allowing the radial pattern to develop. After
520 all leaf nodes are created, a sparsity factor is specified and each leaf node removed with this
521 probability, then the remaining vessels are geometrically optimised.

522
523 **Network overpass and interleaving**
524 In the final stage, the arterial and venous networks have their collisions resolved using the
525 method of [28], creating out-of-plane excursions around contact sites between the networks. To
526 enable further micro-scale network growth techniques to create an interdigitated structure, we
527 remove the low-flow side of all arterio-venous intersections with a radius below a critical value (5
528 μm), leaving surviving vessel geometry untouched. Interdigitations were then created using a
529 Space Colonisation implementation [65], interspersed with geometric optimisation.

530
531 **Vessel tortuosity**
532 The multi-scale growth algorithm creates relatively straight paths between branching points, and
533 to simulate tortuous retinal vessels, particularly in veins, sinusoidal displacements were
534 overlaid. Two oscillations were superimposed according to:

535

$$536 d'(x, r) = d(x, r) + a_0 \sin\left(\frac{x}{\tau_0(r)} + \delta_0\right) + a_1 \sin\left(\frac{x}{\tau_1(r)} + \delta_1\right) \quad [3]$$

537

538 where $d(x, r)$ is the path taken by a vessel with radius r , and $d'(x, r)$ is the modulated path. The
539 amplitude of displacements, a_0+a_1 , ranged from r to $3.5r$ for arteries and r to $7.5r$ for veins, with a
540 low frequency period (τ_0 , ranging from $15r$ to $25r$) and a high frequency period (τ_1 , ranging from
541 $30r$ to $50r$). The phase of the modulations, ϕ_0 and ϕ_1 , enabled modulations to be matched
542 between vessel bifurcations.

543
544 **Simulating vascular flow and fluorescein delivery**
545 Blood flow in retinal networks were simulated using our REANIMATE platform [35], which uses
546 a connectivity-based formalism to optimise Poiseuille flow in tree-like spatial graphs. As anterior
547 retinal vasculature features a single arterial inlet and venous outlet, the system requires only
548 one pressure boundary condition (the difference between arterial and venous inlet pressures),
549 which was fixed at 56.2 ± 14.0 and 20.0 ± 10.0 mmHg, respectively.

550
551 Time-dependent delivery of contrast agent (e.g. fluorescein) was simulated as described in
552 d'Esposito *et al* [35]. Briefly, a bolus of fluorescein was simulated according to

553

$$554 C(t) = s_1 G_1(t; t_1, \sigma_1) + s_2 G_2(t; t_2, \sigma_2) + a_0 e^{-(t-t_3)} \quad [4]$$

555

556 where $C(t)$ is the concentration of fluorescein as a function of time t . The first two terms,
557 Gaussian functions, represent the first and second pass of the bolus and the third term, an
558 exponential decay, represents the washout phase [66]. The width of the first and second pass
559 were $\sigma_1 = 10$ s and $\sigma_2 = 25$ s, respectively, and the decay rate of the washout phase, β , was
560
561

562 0.043 /minute. T_1 , t_2 and τ are the time to peak for the first pass, second pass and washout
563 phases, and were set at 0.171, 0.364 and 0.482 minutes, respectively [66]. S_1 , s_2 and α were
564 fixed at 0.833, 0.336 and 1.064 (dimensionless units). Peak concentration was normalised to
565 unity at the inlet to the retinal artery and the time course in each connected vessel segment was
566 time-shifted according to the velocity of blood in each vessel and scaled according to the ratio of
567 flow in the parent and child vessels at bifurcation points.

568

569 **Image datasets**

570 This study was carried out in accordance with the Declaration of Helsinki [67]. Ethical approval
571 of retrospective audit data was obtained through Moorfields Eye Hospital Research and
572 Development Audit number 1078. Clinical ophthalmological retinal images were obtained from
573 equipment at Moorfields Eye Hospital NHS Trust, London, UK: OCT-A images were obtained
574 from a PLEX Elite 9000 (Carl Zeiss Meditec LLC, Dublin, CA, USA), ultra-wide true color retinal
575 photographs were obtained from Zeiss Clarius 500 Fundus machine (Carl Zeiss Meditec LLC,
576 Dublin, CA, USA), fluorescein angiograms were obtained from Optos widefield camera (Optos,
577 Inc. Marlborough, MA, USA). 19 manually segmented OCT-A images were obtained from
578 healthy controls not ascertained for disease status). These manual segmentations were used in
579 comparison of network structure with simulated networks. Datasets of 570 FA images, 590
580 colour retinal photographs, 43 OCT-A en-face images, and 130 simulated networks were used
581 in training and testing the PI-GAN algorithm.

582

583 **Manual labelling of clinical data**

584 Manually labelled data was generated using a custom-built Python package enabling tracing of
585 vasculature in 3D. The process involved placing user defining control points on the 2D image
586 indicating where in a slab the vessel is located via maximum intensity projection. The z-height of
587 the vessel was then fixed by identifying the height of the highest signal intensity voxel, which
588 was manually constrained to exclude the choroid or RPE. The radius of each vessel was
589 automatically calculated by setting a user-defined signal intensity threshold. Review of
590 segmented structures was performed in 3D panel to assess and ensure labelling quality. In
591 images with pathological blood vessels such as DR the abnormal vasculature or areas of
592 neoangiogenesis were traced in the same manner. Vessel information (vessel coordinates,
593 edge connectivity, number of edge points, edge point coordinates, radii, and vessel type) was
594 exported and stored in Amira spatial graph format (ThermoFisher Scientific, Waltham,
595 Massachusetts USA). Retinal regions were labelled. The macula was defined as a 5.5 mm
596 diameter circular area centred on the fovea. The vessels surrounding the optic disc were
597 labelled as a 3.6 mm diameter centred at the optic disc. Vessels outside these regions were
598 defined as 'peripheral'.

599

600 **Deep generative learning**

601 Image-to-image translation was performed using cycle-consistent generative adversarial
602 networks [18]. This algorithm enables automated unsupervised training with unpaired samples,
603 learning a bi-directional mapping function between two different domains with deep generative
604 adversarial networks. It utilises cycle consistency, where the reconstructed image obtained by a
605 cycle adaptation is expected to be identical to the original image for both generative networks.
606 Cycle-consistent GANs are composed of two main deep neural network blocks which are

607 trained simultaneously: an image generator (generator) and an adversarial network
608 (discriminator). There is a loss (G loss) to make a synthesised image from domain A closer to a
609 real image from domain B, and a loss (D loss) to distinguish the synthesised image from domain
610 A from a real image from A. There are also losses facilitating the conversion in the opposite
611 direction (G loss making synthesised image from domain B closer to domain A, and D loss to
612 distinguish synthesised and real domain B images. Additionally, cycle loss is the difference
613 between the input image and the double-synthesised image and identity loss is the difference
614 between output and input images. A train/validation/test split of 75%/5%/20% was used. All PI-
615 GAN training and evaluation was performed using a single NVIDIA Titan RTX GPU.
616

617 We iteratively trained a switchable PI-GAN algorithm with 500 epochs. All networks were trained
618 using the optimizer ADAM solver [35] with $\beta_1 = 0.5$, $\beta_2 = 0.999$. The learning rate for the first 100
619 epochs was 2×10^{-4} , and then linearly decayed to 2×10^{-6} . Images were pre-processed with crop
620 size 256 pixels. The minibatch size was 1. The loss weights λ were set as 10. The model was
621 trained on NVIDIA TITAN RTX in Pytorch v1.9.1.
622

623 **Statistical evaluation of synthetic vessel networks**

624 Vessel metrics of vessel branching angle, length, tortuosity, network volume and diameter were
625 calculated. Analysis of variance (ANOVA) was used to assess differences in these metrics by
626 retina region (optic disc, macula, and periphery) and by status (healthy control and simulated
627 network) (Table 1) with eye (right OD/ left OS), participant sex, and scan pattern used as
628 covariates.
629
630

631 **Evaluation metrics**

633 **Frechet inception distance**

634 GAN output was evaluated using the Fréchet Inception Distance (FID), which evaluates model
635 quality by calculating the distance between feature vectors for real and generated images. FID
636 compares the distribution of generated images with distribution of real images that were used to
637 train the generator. Lower FID scores indicate more similarity between two groups. The FID
638 score is calculated by first loading a pre-trained Inception v3 model. The output layer of the
639 model is removed and the output is taken as the activations from the last pooling layer, a global
640 spatial pooling layer.
641

642 Three FID scores were calculated: real simulation images (domain A) versus manually
643 segmented vasculature clinical images; real retinal photographs (domain B) versus PI-GAN
644 generated retinal photographs; real OCT-A images (domain C) versus PI-GAN generated OCT-
645 A images; real FA (domain D) versus PI-GAN generated OCT-A images.
646

647 **Dice score**

648 Dice scores were additionally calculated. This is a commonly used performance statistic for
649 evaluating the similarity of two samples. For a ground truth segmentation label L and associated
650 prediction P, we measure the binary Dice score D:

651

$$D(P, L) = \frac{2|L \cap P|}{|P| + |L|}$$

652

[5]

653 We carried out benchmarking of the PI-GAN algorithm against other models trained for manual
654 segmentations from segmentation of retinal vessels using STARE, and DRIVE datasets public
655 datasets, which are regularly used for benchmarking of algorithm results [46, 53]. DICE score
656 were evaluated from the output of PI-GAN trained to carry out the mapping between simulated
657 data segmentations and retinal photographs and compared to GAN performance without
658 synthetic data.

659

660

661

662 References

663

1. Shin, E.S., C.M. Sorenson, and N. Sheibani, *Diabetes and retinal vascular dysfunction*. J Ophthalmic Vis Res, 2014. **9**(3): p. 362-73.
2. Trinh, M., M. Kalloniatis, and L. Nivison-Smith, *Vascular Changes in Intermediate Age-Related Macular Degeneration Quantified Using Optical Coherence Tomography Angiography*. Transl Vis Sci Technol, 2019. **8**(4): p. 20.
3. Czako, C., et al., *Retinal biomarkers for Alzheimer's disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis*. Geroscience, 2020. **42**(6): p. 1499-1525.
4. McClintic, B.R., et al., *The relationship between retinal microvascular abnormalities and coronary heart disease: a review*. Am J Med, 2010. **123**(4): p. 374 e1-7.
5. Khanal, A., Estrada, R., *Dynamic Deep Networks for Retinal Vessel Segmentation*. Frontiers in Computer Science, 2020. **2**.
6. Ting, D.S., G.C. Cheung, and T.Y. Wong, *Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review*. Clin Exp Ophthalmol, 2016. **44**(4): p. 260-77.
7. Aljuaid, A. and M. Anwar, *Survey of Supervised Learning for Medical Image Processing*. SN Comput Sci, 2022. **3**(4): p. 292.
8. Ronneberger, O., Fischer, P., and Brox, T., *U-net: convolutional networks for biomedical image segmentation*. MICCAI (Freiburg im Breisgau), 2015.
9. De Fauw, J., et al., *Clinically applicable deep learning for diagnosis and referral in retinal disease*. Nat Med, 2018. **24**(9): p. 1342-1350.
10. Hussain, S., et al., *DilUnet: A U-net based architecture for blood vessels segmentation*. Comput Methods Programs Biomed, 2022. **218**: p. 106732.
11. Ren, K., et al., *An improved U-net based retinal vessel image segmentation method*. Heliyon, 2022. **8**(10): p. e11187.
12. Jin, K., et al., *FIVES: A Fundus Image Dataset for Artificial Intelligence based Vessel Segmentation*. Sci Data, 2022. **9**(1): p. 475.
13. de Moura, J., Novo, J., Ortega, M., & Charlón, P. *3D retinal vessel tree segmentation and reconstruction with OCT images*. in *Image Analysis and Recognition: 13th*

693 *International Conference, ICIAR 2016, in Memory of Mohamed Kamel*. 2016. Póvoa de
694 Varzim, Portugal: Springer International

695 14. Sherman, T.F., *On connecting large vessels to small. The meaning of Murray's law*. *J
696 Gen Physiol*, 1981. **78**(4): p. 431-53.

697 15. Liu, Y., D. Zhang, and G.M. Karniadakis, *Physics-informed generative adversarial
698 networks for stochastic differential equations*. *SIAM Journal on Scientific Computing*,
699 2020. **42**(1): p. A292-A317.

700 16. Matsuo, H., et al., *Unsupervised-learning-based method for chest MRI-CT
701 transformation using structure constrained unsupervised generative attention networks*.
702 *Sci Rep*, 2022. **12**(1): p. 11090.

703 17. Zhou, L., et al., *Supervised learning with cyclegan for low-dose FDG PET image
704 denoising*. *Med Image Anal*, 2020. **65**: p. 101770.

705 18. Yoo, T.K., J.Y. Choi, and H.K. Kim, *CycleGAN-based deep learning technique for artifact
706 reduction in fundus photography*. *Graefes Arch Clin Exp Ophthalmol*, 2020. **258**(8): p.
707 1631-1637.

708 19. Menten, M.J., Paetzold, J. C., Dima, A., Menze, B. H., Knier, B., & Rueckert, D.
709 *Physiology-based simulation of the retinal vasculature enables annotation-free
710 segmentation of OCT angiographs*. in *Medical Image Computing and Computer Assisted
711 Intervention–MICCAI 2022: 25th International Conference*. 2022. Singapore: Springer
712 Nature Switzerland.

713 20. Miller, D., *Optics and Refraction : a User-Friendly Guide*. 1991, Philadelphia, PA, USA:
714 New York: Gower Medical Pub.

715 21. Mukherjee, P.K., *Manual of Optics and Refraction*. 2015, New Delhi: Jaypee Brothers
716 Medical Publishers.

717 22. Lindenmayer, A., *Mathematical models for cellular interactions in development. II.
718 Simple and branching filaments with two-sided inputs*. *J Theor Biol*, 1968. **18**(3): p. 300-
719 15.

720 23. Goldenberg, D., et al., *Diameters of retinal blood vessels in a healthy cohort as
721 measured by spectral domain optical coherence tomography*. *Retina*, 2013. **33**(9): p.
722 1888-94.

723 24. X. Liu, H.L., A. Hao, and Q. Zhao. *Simulation of Blood Vessels for Surgery Simulators*. in
724 *International Conference on Machine Vision and Human-machine Interface*. 2010.

725 25. M. A. Galarreta-Valverde, M.M.G.M., C. Mekkaoui, and M. P. Jackowski. *Three-
726 dimensional synthetic blood vessel generation using stochastic L-systems*. in *Medical
727 Imaging 2013: Image Processing, International Society for Optics and Photonics*. 2013.

728 26. Buxbaum, W.S.a.P.F. *Computer-optimization of vascular trees*. in *IEEE Transactions on
729 Biomedical Engineering*. 1993.

730 27. Schreiner, W., et al., *The influence of optimization target selection on the structure of
731 arterial tree models generated by constrained constructive optimization*. *J Gen Physiol*,
732 1995. **106**(4): p. 583-99.

733 28. Guy, A.A., et al., *3D Printable Vascular Networks Generated by Accelerated Constrained
734 Constructive Optimization for Tissue Engineering*. *IEEE Trans Biomed Eng*, 2020. **67**(6):
735 p. 1650-1663.

736 29. Luo, T., et al., *Retinal Vascular Branching in Healthy and Diabetic Subjects*. *Invest
737 Ophthalmol Vis Sci*, 2017. **58**(5): p. 2685-2694.

738 30. Smith, A.F., et al., *Brain Capillary Networks Across Species: A few Simple
739 Organizational Requirements Are Sufficient to Reproduce Both Structure and Function*.
740 *Front Physiol*, 2019. **10**: p. 233.

741 31. Runions, A., Lane, B., Prusinkiewicz, P. *Modelling Trees with a Space Colonization
742 Algorithm in Eurographics Workshop on Natural Phenomena*. 2007.

743 32. Tariq, A., A. Shaukat, and S.A. Khan. *A Gaussian Mixture Model Based System for*
744 *Detection of Macula in Fundus Images.* in *Neural Information Processing: 19th*
745 *International Conference, ICONIP.* 2012. Doha, Qatar: Springer Berlin Heidelberg.

746 33. Remington, L.A., & Goodwin, D., *Clinical Anatomy and Physiology of the Visual System*
747 *E-Book.* Elsevier Health Sciences., 2021.

748 34. Quigley, H.A., et al., *The size and shape of the optic disc in normal human eyes.* Arch
749 Ophthalmol, 1990. **108**(1): p. 51-7.

750 35. d'Esposito, A., et al., *Computational fluid dynamics with imaging of cleared tissue and of*
751 *in vivo perfusion predicts drug uptake and treatment responses in tumours.* Nat Biomed
752 Eng, 2018. **2**(10): p. 773-787.

753 36. Sun, R., et al., *Central retinal artery pressure and carotid artery stenosis.* Exp Ther Med,
754 2016. **11**(3): p. 873-877.

755 37. Baumann, B., et al., *Total retinal blood flow measurement with ultrahigh speed swept*
756 *source/Fourier domain OCT.* Biomed Opt Express, 2011. **2**(6): p. 1539-52.

757 38. Savastano, M.C., et al., *Fluorescein angiography versus optical coherence tomography*
758 *angiography: FA vs OCTA Italian Study.* Eur J Ophthalmol, 2021. **31**(2): p. 514-520.

759 39. Marmor, M.F. and J.G. Ravin, *Fluorescein angiography: insight and serendipity a half*
760 *century ago.* Arch Ophthalmol, 2011. **129**(7): p. 943-8.

761 40. Ruia, S. and K. Tripathy, *Fluorescein Angiography*, in *StatPearls.* 2023: Treasure Island
762 (FL).

763 41. Bek, T., *Diameter Changes of Retinal Vessels in Diabetic Retinopathy.* Curr Diab Rep,
764 2017. **17**(10): p. 82.

765 42. Wang, W. and A.C.Y. Lo, *Diabetic Retinopathy: Pathophysiology and Treatments.* Int J
766 Mol Sci, 2018. **19**(6).

767 43. Tan, T.E., et al., *Global Assessment of Retinal Arteriolar, Venular and Capillary*
768 *Microcirculations Using Fundus Photographs and Optical Coherence Tomography*
769 *Angiography in Diabetic Retinopathy.* Sci Rep, 2019. **9**(1): p. 11751.

770 44. Zhu, J.Y.P., T; Isola, P; Efros A.A., *Unpaired image-to-image translation using cycle-*
771 *consistent adversarial network.* arXiv, 2017.

772 45. Zhou, Y., et al., *A refined equilibrium generative adversarial network for retinal vessel*
773 *segmentation.* Neurocomputing, 2021. **437**: p. 118-130.

774 46. *DRIVE: Digital Retinal Images for Vessel Extraction.*

775 47. Ting, D.S.W., et al., *Artificial intelligence and deep learning in ophthalmology.* Br J
776 Ophthalmol, 2019. **103**(2): p. 167-175.

777 48. Ting, D.S.W., et al., *Deep learning in ophthalmology: The technical and clinical*
778 *considerations.* Prog Retin Eye Res, 2019. **72**: p. 100759.

779 49. Day, T.G., J.M. Simpson, and R. Razavi, *Improving image labelling quality.* Nat Mach
780 Intell, 2023. **5**: p. 335-336.

781 50. Meng, X., et al., *A framework for retinal vasculature segmentation based on matched*
782 *filters.* Biomed Eng Online, 2015. **14**: p. 94.

783 51. Covert, E.C., et al., *Intra- and inter-operator variability in MRI-based manual*
784 *segmentation of HCC lesions and its impact on dosimetry.* EJNMMI Phys, 2022. **9**(1): p.
785 90.

786 52. Veiga-Canuto, D., et al., *Comparative Multicentric Evaluation of Inter-Observer*
787 *Variability in Manual and Automatic Segmentation of Neuroblast Tumors in Magnetic*
788 *Resonance Images.* Cancers (Basel), 2022. **14**(15).

789 53. Hoover, A., V. Kouznetsova, and M. Goldbaum, *Locating blood vessels in retinal images*
790 *by piecewise threshold probing of a matched filter response.* IEEE Trans Med Imaging,
791 2000. **19**(3): p. 203-10.

792 54. Staal, J., et al., *Ridge-based vessel segmentation in color images of the retina.* IEEE
793 Trans Med Imaging, 2004. **23**(4): p. 501-9.

794 55. Cohen, J.P., Luck, M., Honari, S. *Distribution Matching Losses Can Hallucinate Features*
795 *in Medical Image Translation*. in *Medical Image Computing and Computer Assisted*
796 *Intervention – MICCAI 2018*. 2018. Springer.

797 56. Sweeney, P.W., S. Walker-Samuel, and R.J. Shipley, *Insights into cerebral*
798 *haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical*
799 *modelling*. *Sci Rep*, 2018. **8**(1): p. 1373.

800 57. Wong, T.Y., et al., *Retinal vessel diameters and their associations with age and blood*
801 *pressure*. *Invest Ophthalmol Vis Sci*, 2003. **44**(11): p. 4644-50.

802 58. Yeung, L., et al., *Early retinal microvascular abnormalities in patients with chronic kidney*
803 *disease*. *Microcirculation*, 2019. **26**(7): p. e12555.

804 59. Galdran, A., et al., *State-of-the-art retinal vessel segmentation with minimalistic models*.
805 *Sci Rep*, 2022. **12**(1): p. 6174.

806 60. Shin, S.Y., et al., *Deep vessel segmentation by learning graphical connectivity*. *Med*
807 *Image Anal*, 2019. **58**: p. 101556.

808 61. Garhofer, G., et al., *Retinal blood flow in healthy young subjects*. *Invest Ophthalmol Vis*
809 *Sci*, 2012. **53**(2): p. 698-703.

810 62. Schwen, L.O. and T. Preusser, *Analysis and algorithmic generation of hepatic vascular*
811 *systems*. *Int J Hepatol*, 2012. **2012**: p. 357687.

812 63. Brown, J.H., G.B. West, and B.J. Enquist, *Yes, West, Brown and Enquist's model of*
813 *allometric scaling is both mathematically correct and biologically relevant*. *Functional*
814 *Ecology*, 2005.

815 64. Georg, M., T. Preusser, and H.K. Hahn, *Global Constructive Optimization of Vascular*
816 *Systems*, *All Computer Science and Engineering Research*. All Computer Science and
817 *Engineering Research*, 2010. **WUCSE-2010-11**: p. 16.

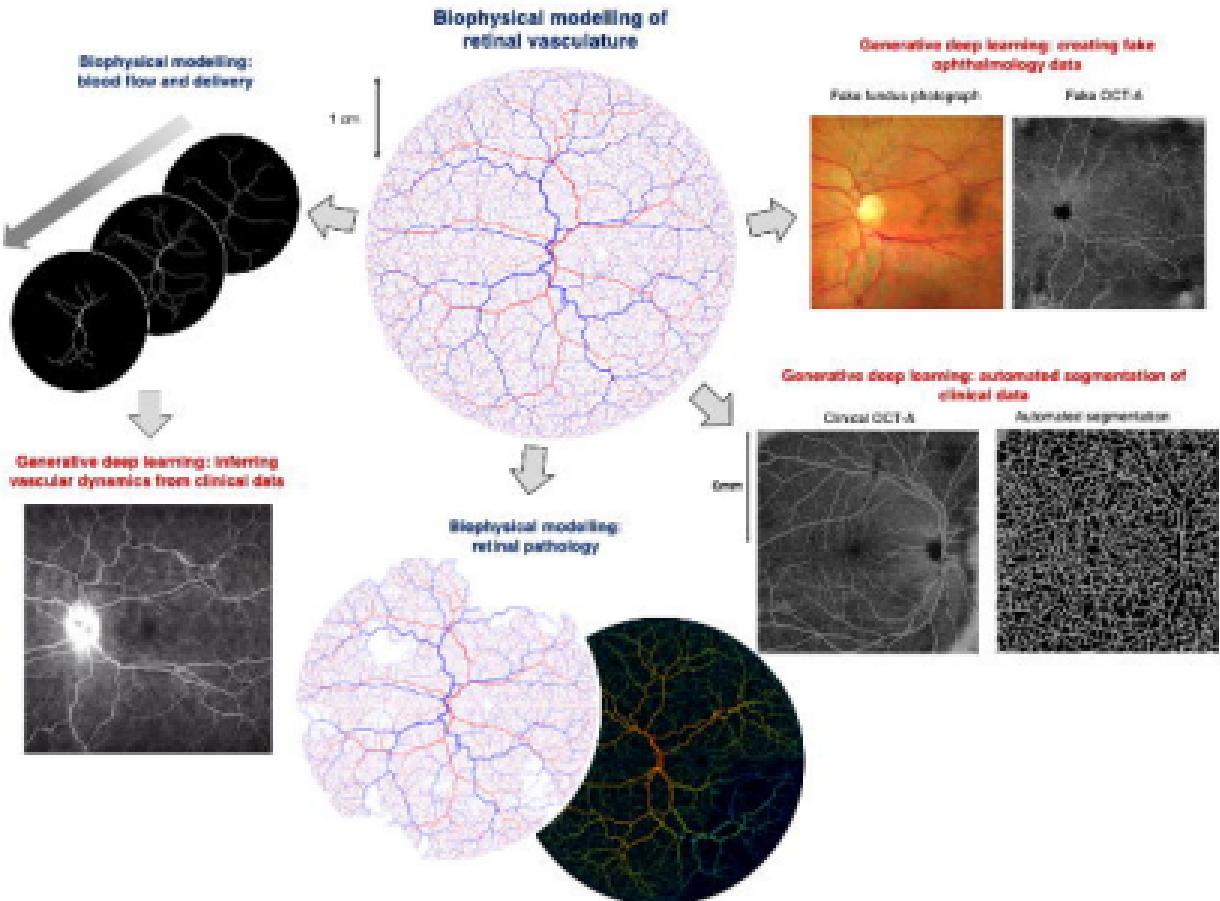
818 65. Runions, A., Lane, B., & Prusinkiewicz, P. *Modeling Trees with a Space Colonization*
819 *Algorithm*. 2007.

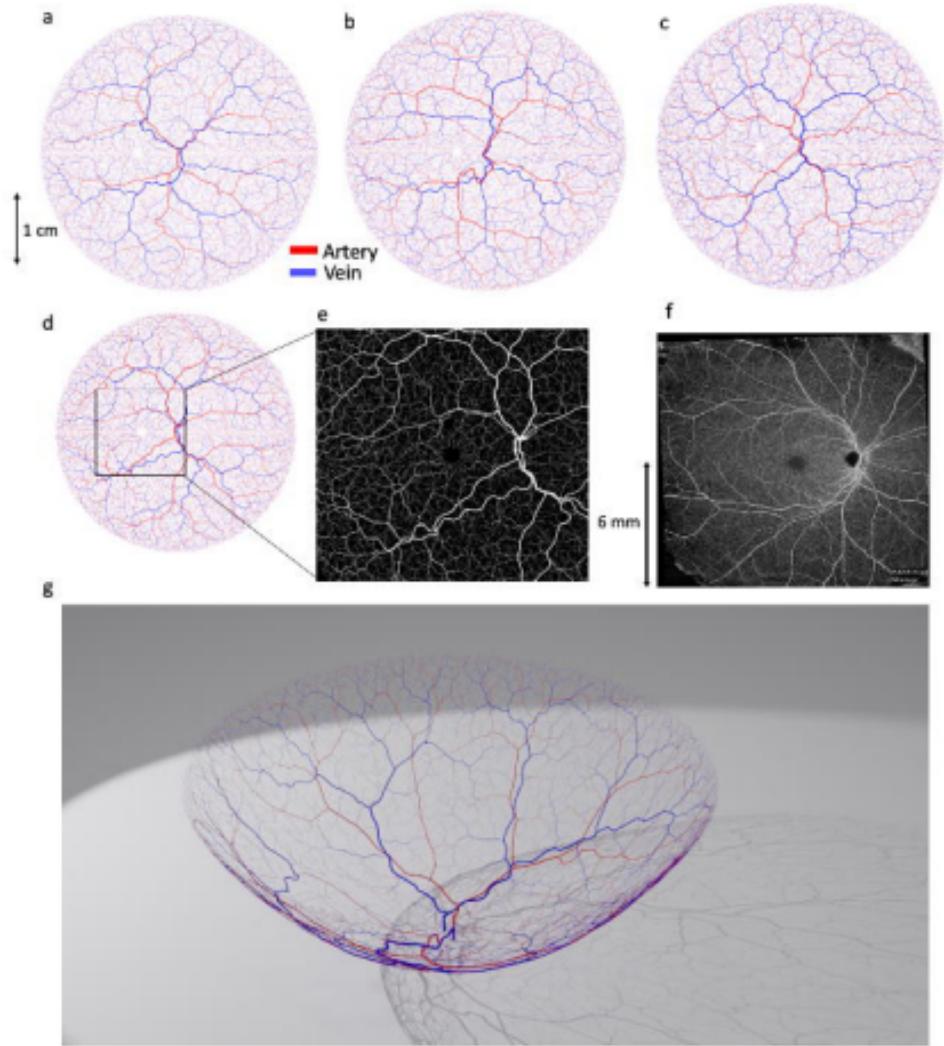
820 66. Parker, G.J., et al., *Experimentally-derived functional form for a population-averaged*
821 *high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI*.
822 *Magn Reson Med*, 2006. **56**(5): p. 993-1000.

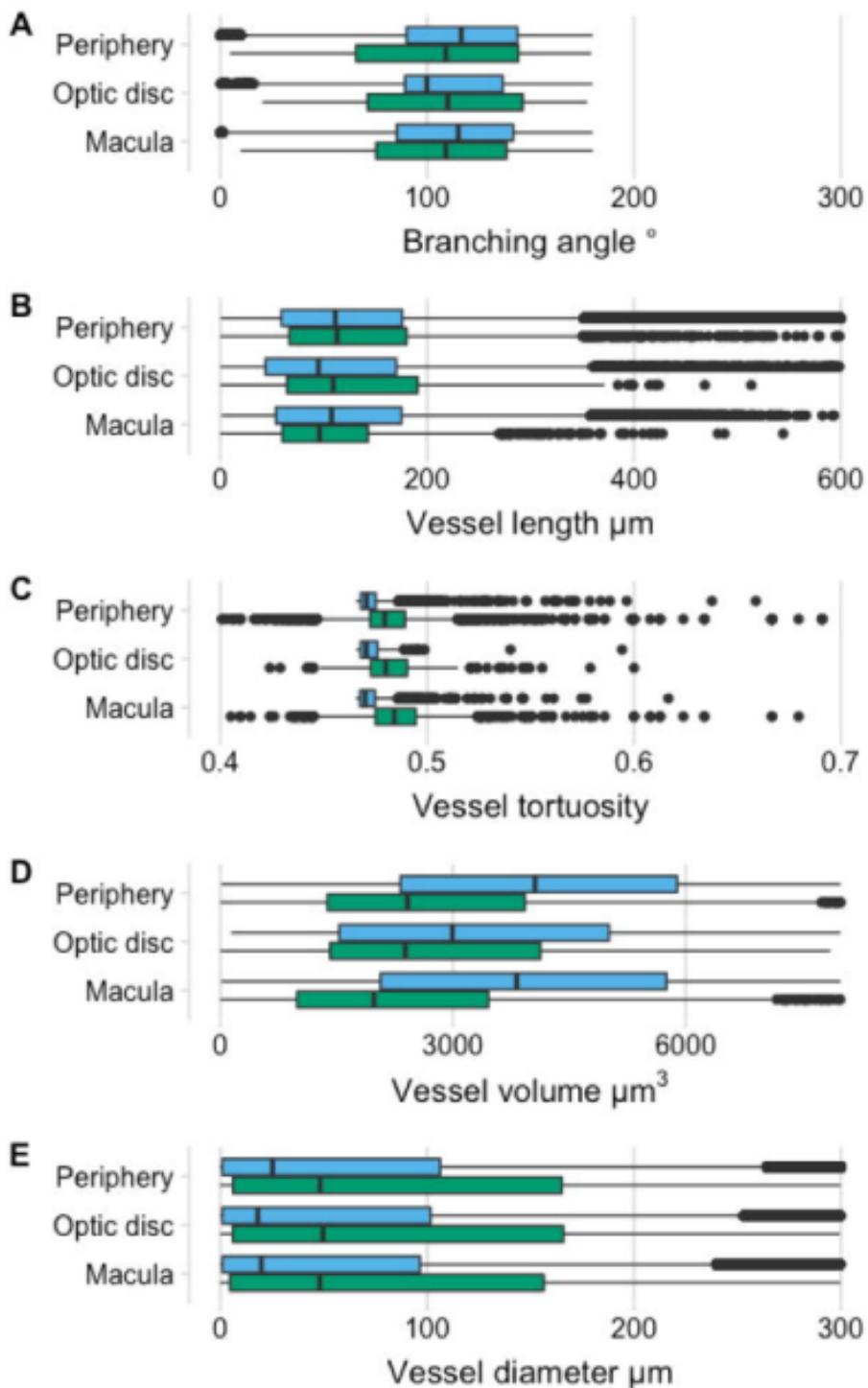
823 67. General Assembly of the World Medical, A., *World Medical Association Declaration of*
824 *Helsinki: ethical principles for medical research involving human subjects*. *J Am Coll*
825 *Dent*, 2014. **81**(3): p. 14-8.

826

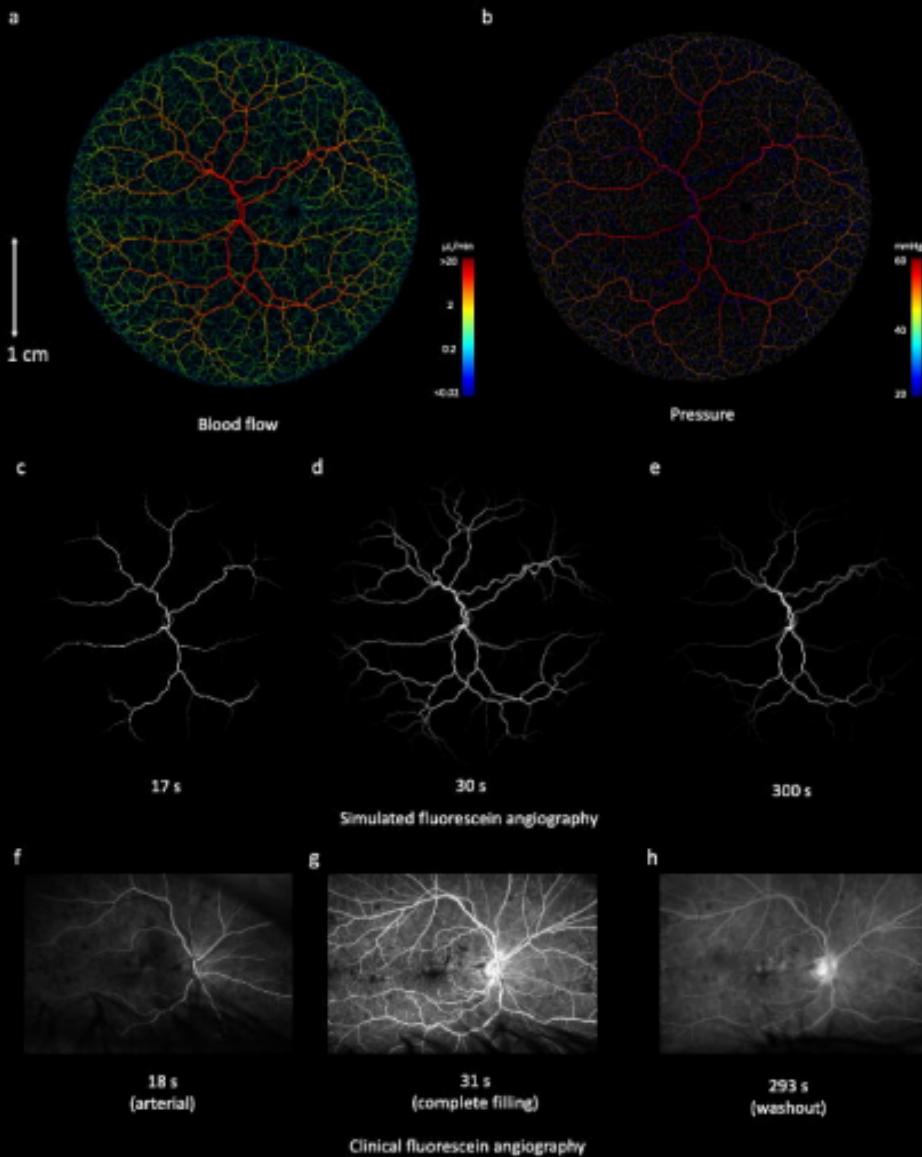
Combining biophysical modelling and deep generative learning for automated image analysis

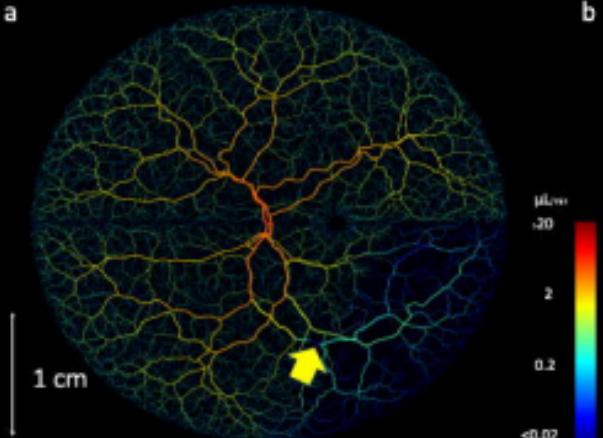
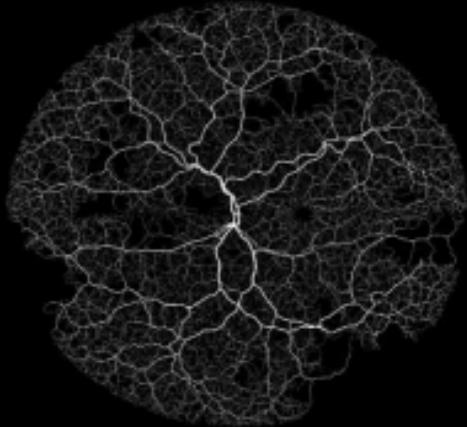
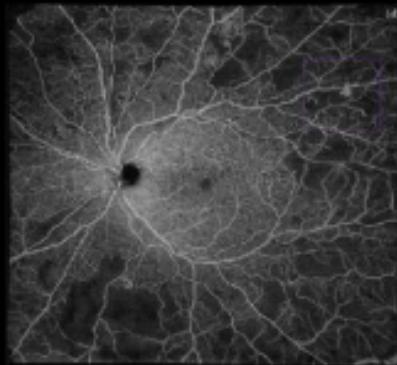




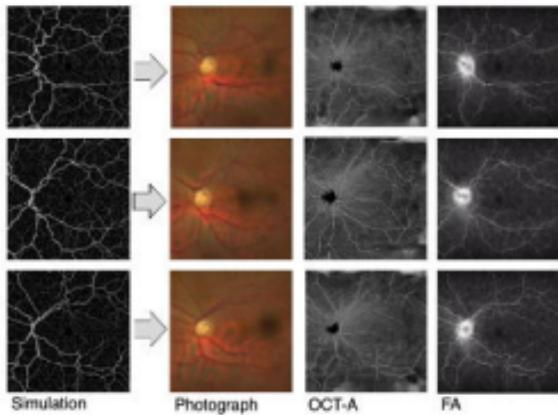


Network type Healthy control Simulated



a**b****c****d**

a) Forward direction



b) Reverse direction

