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Abstract13

Predicting plant development, a longstanding goal in plant physiology, involves two interwoven14

components: continuous growth and the progression of growth stages (phenology). Current mod-15

els, like thermal time, assume species-level growth responses to temperature. We challenge this16

assumption, suggesting that cultivar-specific temperature responses significantly affect phenology.17

To investigate, we collected field-based growth and phenology data in winter wheat and soybean18

over multiple years. We used diverse models, from linear to neural networks, to assess growth re-19

sponses to temperature at various trait and covariate levels. Cultivar-specific non-linear models best20

explained phenology-related cultivar-environment interactions. With cultivar-specific models, ad-21

ditional relations to other stressors than temperature were found. The availability of the presented22

field phenotyping tools allows incorporating cultivar-specific temperature response functions in fu-23

ture plant physiology studies, which will deepen our understanding of key factors that influence24

plant development. Consequently, this work has implications for crop breeding and cultivation25

under adverse climatic conditions.26

Keywords: temperature response, genotype-by-environment interaction, thermal time, crop27

model, climate change, machine learning, wheat, soybean28

1. Introduction29

To mitigate the effects of global environmental change on crop production, a profound understand-30

ing of its influence on plant growth is required (Ramirez-Villegas, Watson, and Challinor 2015).31

Crop models promise to be a versatile tool in analyzing and predicting plant growth (Pauli et al.32

2016), in particular for future climate scenarios (White et al. 2011; Tardieu et al. 2020). Yet, the33

model choice represents a challenging trade-off between biological realism and the principle of34

parsimony (Hammer et al. 2019).35

From a temporal (i.e., growth process based) perspective, plant growth appears non-linear (Fig-36

ure 1a). Rapid short-term changes in environmental conditions result in related short-term growth37

patterns (Nagelmüller et al. 2016). These patterns are superimposed on seasonal changes of en-38

vironmental conditions. On top of these relations, stress conditions may result in yet another39

superimposed (and potentially negative) growth pattern (Tschurr et al. 2023).40

Finally, temporal patterns are also caused by advancing plant development, known as phenol-41

ogy. Fundamental influencing factors in cultivar-specific phenology include photoperiod sensitivity42

(Steinberg and Garner 1936), and, in the case of winter cereals, vernalization requirements (Slafer43

1996). If modeling phenology on a rather small scale in environments with neglectable differences44

in photoperiod and vernalization, temperature remains as a dominant driver of phenology (Bogard45

et al. 2014; Ochagavía et al. 2019).46

Consequently, a common modeling approach is to temperature-compensate time, thus ‘linearize’47

growth (Figure 1e) and phenology (Figure 1b) using a species-specific per se temperature growth48
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Figure 1: Schematic visualization of strategies in crop modeling to compensate for fluctuating tem-
peratures on the example of generative growth in winter wheat. Plant growth over time
appears non-linear (a) and reveals irregular, potentially cultivar and environment spe-
cific growth rate patterns (d). By replacing time t with the area under the curve of a
temperature-compensation function,

∫

f (Tt), phenology stages (b) and growth rates (e)
may be synchronized in respect to the independent variable. Temperature-compensation
functions can be based on species-level dose-response curves scaled to cultivar-level in-
trinsic growth rates (c), or on cultivar-specific dose-response curves (f).
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response (Figure 1c) (Bonhomme 2000). Differences in growth rates and phenology between cul-49

tivars are then modeled using cultivar-specific factors that scale the predicted growth rate to mea-50

sured (i.e., cultivar ‘intrinsic’) growth rates (Parent and Tardieu 2012). While it was shown that51

extending linear temperature responses (i.e., thermal time) to non-linear functions can further52

improve predictions (Wang et al. 2017), Parent and Tardieu (2012) provided evidence that mod-53

eling a per se temperature response at species-level is sufficient. They speculated that evolutionary54

processes may have fixed the response for lower plant systematic levels. Hence, using linear and55

non-linear temperature compensation functions with fixed, literature-based parameters seems jus-56

tified.57

Nevertheless, there is evidence that phenology is related to cultivar-specific temperature re-58

sponses (Kronenberg et al. 2020a). Consequently, one may assume that selecting for phenology59

traits in breeding—such as earlier flowering in winter wheat—co-selected for temperature response60

(Roth et al. 2022b). Indeed, we have repeatedly observed cultivar-specific temperature responses61

in our outdoor, high-throughput phenotyping site at ETH Zurich. We found cultivar-specific dif-62

ferences in the temperature response in the early canopy development of winter wheat (Grieder,63

Hund, and Walter 2015; Nagelmüller et al. 2016), as well as in the stem elongation phase of winter64

wheat (Kronenberg et al. 2020a; Roth, Piepho, and Hund 2022) and soybean (Friedli et al. 2016).65

Furthermore, we found that the differences in the stem elongation phase of winter wheat were66

related to the breeding origin of cultivars (Roth et al. 2022b) and allow a ‘phenomic prediction/s-67

election’ for yield (Roth et al. 2023).68

Similar observations have been made in crop modeling for other crops than wheat and soybean.69

Wallach et al. (2018) could demonstrate that it is feasible to include a cultivar-specific temperature70

response parameter (Topt) for flowering time predictions in common bean. Viswanathan et al.71

(2022) were able to optimize two temperature response parameters (Tmin and Topt) for two growth72

stages in maize.73

Given these evidences, it is striking how rarely temperature response parameters are included74

in the optimization process in crop growth and phenology models. Reasons may be found in the75

state-of-the-art use of so-called multi-environmental trials (MET) where the phenology of cultivars76

is measured in different environments. The heterogeneity of the environments often requires in-77

cluding other factors such as photoperiod sensitivity and vernalization requirements (White et al.78

2008). The additional inclusion of temperature response parameters will bring the number of pa-79

rameters that require optimization close to the degrees of freedom of the data. One suggestion80

to overcome this limitation is to incorporate the genetic relatedness of cultivars, e.g, using QTLs81

(Wallach et al. 2018) or whole genome predictions (Messina et al. 2018).82

Another way to address the problem is to massively increase the number of data points per83

cultivar and environment. As phenology consists of single events, this can only be achieved by84

measuring continuous growth instead. Field-based plant organ tracking devices (Mielewczik et al.85

2013; Nagelmüller et al. 2016) and field-phenotyping platforms (Kirchgessner et al. 2017) can86
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provide such dense time series with tens to thousands of growth rate / temperature value pairs.87

Simulation data (Roth, Piepho, and Hund 2022) and real-world data analysis (Millet et al. 2019;88

Roth et al. 2022b) have shown that, provided the temporal density of the time series is high enough,89

a few environments are sufficient to reliably determine cultivar-specific responses.90

The question arises, whether transferring such pre-calibrated cultivar-specific temperature responses—91

determined on dense time series in few environments—to crop models may improve phenology92

predictions. Studies reporting phenology stages in species-specific thermal time often found severe93

genotype-by-environment (G×E) interactions in their data (Sadras et al. 2009; Salazar-Gutierrez94

et al. 2013; Slafer et al. 2015). We suspect that large portions of the reported G×E interactions95

in phenology are artifacts of over-generalizing the per se temperature response on species-level.96

In other words, when explaining the observed performance of plants in different environments,97

thermal time is reificated— its abstract concept is by mistake treated as being a real, interpretable98

object.99

If our assumption holds, using cultivar-specific linear or non-linear temperature responses will100

improve the estimation of growth rates (Figure 1e) and of phenology stages (Figure 1b). To test101

this hypothesis, we evaluated a unique, temporally very dense multi-environment (i.e., one site,102

multiple years) outdoor winter wheat and soybean data set. The setup corresponds to the spe-103

cific situation where the prediction is to be improved for a clearly defined environment (in our104

case, Switzerland). Measurements and predictions are made under near-constant photoperiod and105

vernalization conditions, allowing to focus on temperature response only.106

The data were collected with temporally-resolved leaf growth tracking devices as well as high-107

throughput field phenotyping devices (Figure 2). We evaluated the response of traits to temper-108

ature using models of increasing complexity (ranging from linear models to hierarchical splines109

and neural networks). Additionally, the trait level (leaf growth, canopy development, stem elon-110

gation), the covariate level (soil temperature, air temperature) and the covariate measurement111

level (below/inside canopies, at a reference weather station) were varied. Finally, phenology pe-112

riod estimations for the three main growth phases of wheat (vegetative growth, generative growth,113

maturity) were performed using the pre-parameterized temperature response models.114

2. Results115

2.1. Growth rate prediction116

A first aim of the study was to identify suitable temperature response models to predict continuous117

growth, and to test for the transfer ability of these trained models from one growth stage to oth-118

ers. This step will provide insight into the importance of model choice, explaining covariates, and119

variety versus species-level.120

Parametric models (Equation 3–6), hierarchical splines, and a neural network model were trained121

on leaf and plant height growth data sets (Figure 2a and 2c). For all models, cultivar-specific122
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Figure 2: Evaluated data set for winter wheat and soybean. Leaf elongation and growth was mea-
sured using a leaf length tracker device for wheat and a leaf growth tracker device for
soybean (a). Canopy cover observations were taken using a field phenotyping platform to
collect RGB images, followed by segmenting them in pixels showing plants and soil (b).
Plant height measurements were performed using a phenotyping platform based terres-
trial laser scanner and drone-based Structure-from-Motion (SfM) techniques (c). Four
parametric dose-response models (d) and two semi-parametric dose-response models (e)
were evaluated. Model testing was performed on unseen data in test-train splits (a, b)
and cross-validations (CV) (c).
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(Equation 1) and species-level (Equation 2) variations were considered. Trained models were123

tested on unseen leaf, canopy, and plant height growth data sets (Figure 2a–c). Tests were based on124

measured and predicted differences between consecutive measurements using random regressions125

(Equation 7) that account for year effects (Equation 8) and, in case species-level models were fitted,126

for cultivar-specific scaling (Equation 9).127

In summary, cultivar-level models and species-level models were equally well suited to model128

growth (Figure 3). Scaling species-level models such as thermal time to cultivar-specific intrin-129

sic growth rates successfully predicted growth for unseen test sets (Figure 3b). However, fitted130

cultivar-level models showed clear per se temperature response characteristics, as indicated for ex-131

ample by cross-overs between cultivar-level response curves for the bi-linear model (Figure 3a).132

Using such cultivar-specific models to predict unseen growth data test sets resulted in similar per-133

formance as for species-level models (Figure 3b). More important than the model choice was the134

choice of covariate (soil or air temperature) in relation to the growth phases. In the following,135

detailed results will be reported for wheat and soybean.136

2.1.1. Wheat growth rate predictions137

Cultivar-specific response models outperformed species-level models if training and test sets were138

closely related (Figure 4, first row). If training and test sets originated from the leaf elongation139

measurements, the highest growth prediction accuracy was reached by three cultivar-specific mod-140

els: The bi-linear model, the hierarchical splines, and the neural network (R2 = 0.22, root-mean-141

squared error (RMSE)=0.39 mm/h). Relying on plot-based temperature measurements outper-142

formed reference station measurements (∆R2 = 0.08). Using plot-based soil temperatures slightly143

outperformed using plot-based air temperatures (∆R2 = 0.01).144

If training and test sets differed, species-level response models generalized better (Figure 4,145

second and third row). When applying models trained on leaf elongation measurements to whole-146

canopy measurements made in the same growth phase, the species-level Wang-Engel model (R2 =147

0.68, RMSE= 0.44%/day) outperformed the cultivar-level Wang-Engel and neural network models148

(∆R2 = −0.12) and thermal time (∆R2 = −0.14). Again, using soil temperature at the plot level149

resulted in a higher accuracy than using soil temperature or air temperature measured at a reference150

station (∆R2 ≥ 0.06).151

When further reducing the relatedness of training and test sets by predicting plant height growth152

with leaf elongation models, thermal time (R2 = 0.71, RMSE = 0.18 mm/day) performed slightly153

better than the asymptotic species-level model (∆R2 = −0.01) and the corresponding cultivar-level154

model (∆R2 = −0.13).155

The advantage of cultivar-level models could be restored by training models directly on plant156

height data, thus using closely related training and test sets (Figure 4, last row). Two cultivar-level157

models were suggested, the asymptotic and bi-linear dose-response curves (R2 = 0.72, RSME: 0.16158

mm/day). To predict plant height data, air temperature measured at the reference weather station159
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Figure 3: Overview of performance of the best species-level and cultivar-level models for win-
ter wheat. While species-specific thermal time models (Equation 2) where scaled to
cultivar-specific intrinsic growth rates (Equation 3), cultivar-level bi-linear (Equation 4)
and asymptotic models (Equation 5) were fitted for each cultivar separately (Equation 1)
(a). Models were tested on unseen growth data sets (b) and unseen phenology data sets
(c) to indicate their potential to predict growth and to reduce estimated G×E in phenol-
ogy. For a full comparison of model performance for both wheat and soybean, see Figure
4 for growth predictions and Figure 5 for phenology.

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.08.29.555271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.555271
http://creativecommons.org/licenses/by/4.0/


Thermal time

Bi−linear,

Spline,

Neural net

Bi−linear,

Spline,

Neural net

Thermal time

Wang−Engel
Wang−Engel,

Neural net

Thermal time Asym

Asym

Thermal time Bi−linear

Bi−linear,

Asym

Thermal time
Neural net Neural net

Thermal time

Linear,

Bi−linear

Linear,

Bi−linear

Thermal time

Linear,

Bi−linear,

Asym

Linear,

Bi−linear,

Asym,

Neural net

Thermal time

Bi−linear Bi−linear

Wheat Soybean

Leaf−
>

Leaf
Leaf−

>
C

anopy cover
Leaf−

>
H

eight
H

eight−
>

H
eight

Fixed Species Cultivar Fixed Species Cultivar

0.0

0.2

0.4

0.6

0.2

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

Parameter estimation level

R
2  s

co
re

Tsoil
plot Tair

plot Tsoil
ref Tair

ref
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was better suited than plot-based measurements (∆R2 ≥ 0.02).160

2.1.2. Soybean growth rate predictions161

As for the wheat data set, the model performance in soybean was dependent on the relatedness of162

training and test sets. If the training and test set both originated from the leaf growth measurements163

(Figure 4, first row), the cultivar-level neural network performed best (R2 = 0.39, RMSE = 0.46h).164

Using air temperature clearly outperformed soil temperature (∆R2 = 0.21).165

If training and test sets differed, species-level response models performed as good as cultivar-166

level response models (Figure 4, second and third row). For canopy cover growth predictions,167

simple cultivar or species-specific models (linear and bi-linear) performed best (R2 = 0.82, RMSE168

= 1.0%/day). Strikingly, while air temperature performed better than soil temperature for thermal169

time (∆R2 = 0.05), for species and cultivar-specific models, growth was best predicted by soil170

temperature (∆R2 = 0.30).171

If further reducing the relatedness of training and test sets by predicting plant height with leaf172

growth models, species-level models were more accurate than cultivar-level models. Literature173

based, linear thermal time performed equally well as the three best species-level models; i.e., the174

linear, bi-linear, and asymptotic model (R2 = 0.87, RMSE = 3.8–4.4 mm/day). Nevertheless,175

differences to the best cultivar-level model were very small (∆R2 = 0.01).176

In contrast to winter wheat, training models directly on soybean plant height data could not177

restore the advantage of cultivar-level models (Figure 4, last row). While the bi-linear model178

performed best on the species and cultivar-level (R2 = 0.73, RMSE= 5.1 mm/day), its performance179

was still worse than that of the thermal time model (R2 = 0.87).180

2.2. Phenology prediction181

A second aim of the study was to test the hypothesis whether phenology is driven by the previously182

extracted cultivar-specific temperature responses or not. Time periods between successive growth183

stages (e.g., jointing to heading) per cultivar and year were either expressed in thermal time, using184

species-level non-linear temperature response models, or using cultivar-level models (Equation 11).185

Then, G×E interactions were estimated using a linear mixed model (Equation 12).186

Cultivar-level models showed a clear advantage over species-level models (Figure 3c). While the187

prediction error between models was comparable, using cultivar-level models resulted in higher cul-188

tivar rank correlations between environments, and better correspondences between overall BLUPs189

and year-BLUPs. The findings indicated that temperature-compensating with cultivar-level models190

decreases the estimate G×E effects for phenology, while using thermal time inflates these effects.191

In the following, detailed results and consequences for G×E analysis are provided.192
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2.2.1. Severity of the estimated G×E interaction for different models193

Using thermal time as temperature response model resulted in large estimated variances of G×E194

interactions (Figure 5 and Appendix Figure A.3). Depending on the growth stage, up to 73–82% of195

the total genotypic variance was related to G×E. Consequently, variety rank changes across years196

were frequent, and rank correlations between years and overall means varied widely (r =0.57–197

0.99). RMSEs of predictions in calendar days were larger for earlier growth stages than for later198

growth stages (7.7 days for vegetative growth versus 1.8 days for maturity) (Figure 6).199

Using species-level dose-response curve models further increased estimated G×E variances (81–200

95%) (Figure 5). Correspondingly, rank correlations between years and overall means did not201

improve (r =0.29–0.97).202

In contrast, cultivar-level temperature response models resulted in the lowest G×E estimations203

for two of three phenology periods (vegetative growth, generative growth) (Figure 5a). Highest204

rank correlations and lowest G×E were found for the bi-linear model in the vegetative phase (34%,205

r =0.90–0.92) and the asymptotic model in the generative phase (38%, r =0.57–1.00). Differences206

in RMSEs to thermal time were small (≤ 1.4 days) (Figure 6).207

2.2.2. Explainability of G×E interactions with other environmental factors208

To investigate the sources of the estimated G×E interactions after temperature-compensating time,209

the residuals of the phenology predictions based on genotype effects and the mean of year ef-210

fects (Equation 12) were further decomposed in components related to environmental indices. For211

cultivar-level models, moist conditions and frost best explained differences in vegetative growth212

period duration values and delayed jointing (Figure 6). Extended generative growth and hence213

delayed heading was mainly related to high global radiation values. For maturity, wet conditions214

and/or extremes in global radiation best explained delayed senescence.215

Using thermal time as temperature response model instead of cultivar-level models resulted in216

weaker relations of residuals to environmental indices. Although predictions were temperature-217

compensated, remaining relations to temperature indices were indicated. For the last growth pe-218

riod, only temperature related indices were found to be relevant. Links to drought and limited219

global radiation—as indicated by the cultivar-level models—were entirely missing.220

3. Discussion221

For both soybean and winter wheat, the results indicated an advantage of cultivar-specific non-222

linear temperature response models if training and test sets were closely related. Using these223

cultivar-level models for wheat phenology predictions could reduce the observes G×E significantly.224

The non-linearity of growth responses to temperature has long been suspected and investigated225

(Shaykewich 1995). Conclusively, the herein found best performing response models for winter226
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Figure 5: Performance of linear and non-linear models for temperature compensated phenology
period duration predictions (Equation 11) in winter wheat. Predictions were based on
cultivar-level best linear unbiased estimations (overall BLUPs) of a linear mixed model
(Equation 12) that included effects for cultivars (gi), years (v j), and year-cultivar inter-
actions ((vg)i j). Indicated are the percentage of estimated G×E variance (σ2

(vg)) on the

total genotypic variance (σ2
(vg) +σ

2
g), and Spearman’s rank correlations of year-specific

(v j + gi + (vg)i j) versus overall (gi) phenology duration predictions (Equation 12).
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Figure 6: Temperature compensated phenology period duration predictions (Equation 11) for win-
ter wheat, and corresponding environmental indices. Period predictions are based on
genotype effects plus the mean of year effects (gi + 1/j

∑

v j) estimated using a linear
mixed model (Equation 12). Indicated are (a) residuals of predictions for the thermal
time model and the best performing cultivar-level model (asymptotic and linear) and
related root-mean-squared error (RMSE), and (b) environmental index values per year
for indices that were suggested by an elastic net regression to best explain residuals of
cultivar-level models. Residuals (a) and indices (b) with the same sign indicate a positive
correlation (high index → extended period), differing signs indicate a negative correla-
tion (high index→ shortened period).
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wheat are well-known: The Wang-Engel model (Wang and Engel 1998) that performed best in227

predicting canopy growth is known for its ability to accurately model winter wheat growth (Wang228

et al. 2017). The asymptotic model that performed best in predicting plant height growth can be229

seen as simplified Wang-Engel model, given that temperatures do not exceed supra-optimal ranges230

(Roth, Piepho, and Hund 2022). In contrast, for soybean leaf growth, a neural network model231

performed best, indicating high degrees of freedom required to accurately predict responses. For232

measurements at the coarser canopy level, simpler linear and bi-linear models were more accurate.233

Nevertheless, as other authors noted before (e.g., Parent, Millet, and Tardieu 2019), the su-234

periority of cultivar-level and non-linear models was not given in all situations. In particular the235

transferability to other trait levels (i.e., plant organ versus canopy level) and to other growth phases236

(i.e., vegetative versus generative growth) appeared limited. Large confounding effects in the test237

sets are suspected. Physiological changes that are not directly related to plant organ growth, e.g.,238

tillering/branching in the vegetative phase or lodging in the generative phase, may dilute cultivar-239

specific response signals (i.e., growth rates) on the canopy level. Consequently, simpler models240

such as species-level thermal time generalize better in such situations.241

Not only the model choice, but also the covariate measurement level choice may enhance gen-242

eralization: For winter wheat, the shoot apical meristem is located below the soil surface for half243

of the lifetime. In contrast, the growing tissue in soybean is above-ground. Consequently, vegeta-244

tive growth for winter wheat was best predicted using soil temperature, confirming the findings of245

Jamieson et al. (1995). Surprisingly, for soybean, soil temperature could predict canopy growth246

more accurately than air temperature. We suspect that this is due to the fact that air temperature247

measured at a reference station is less representative of in-canopy temperature than soil tempera-248

ture. Soil temperature courses may also better match the diurnal growth patterns commonly found249

in soybean (Kronenberg et al. 2020b).250

Finally, changing cardinal temperatures with time (Porter and Gawith 1999) are an additional251

concern in temperature response modeling. Indeed, for the different growth periods, the choice252

of model and covariate level changed, and models performed inferior if not trained on the same253

growth period data. Nevertheless, for predictions, the division of the crop growth cycle into three254

consecutive growth phases—vegetative growth, generative growth, and maturity—was sufficient255

to accurately predict phenology as well as growth rates.256

In this work, two approaches to derive cultivar-specific responses were proposes, (1) plant or-257

gan tracker devices for the vegetative growth phase, and (2) high-throughput plant height mea-258

surements for the generative growth phase. Both methods have been proven to provide reliable259

estimations for their respective growth phases (Mielewczik et al. 2013; Nagelmüller et al. 2016;260

Roth, Piepho, and Hund 2022), and this work could confirm their readiness for application. For261

plant organ tracker approaches, measurements in a few weeks per cultivar are sufficient, while262

for height data, measuring in multiple years is inevitable (Roth et al. 2022b). Unfortunately, no263

such method is yet available for the maturity phase, indicating that further research is needed to264
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measure temperature responses in the late season.265

Stress response related crop modeling may significantly profit from temperature response models266

that result in lower observed G×E. In our data, a clear clustering of environment means became267

visible when using asymptotic and linear, cultivar-level models (Figure 6a). For the vegetative268

growth phase, the years 2017 and 2021 were separated from other years, and differences were269

best explained by frost and moist conditions. Indeed, such frost events, followed by measurable270

leaf area reductions, were observed in the field in 2018 and 2021 (Tschurr et al. 2023). In the271

generative growth phase, the detected relations between heading date and global radiation are in272

accordance with Benaouda et al. (2022) who found temperature to be the main driver and high273

global radiation to be the main delayer of heading. Finally, for maturity, Anderegg et al. (2020)274

reported a delayed senescence in the year 2016 due to the extraordinary wet year with severe275

Septoria tritici blotch (STB) disease pressure, which was confirmed in our data by the relation of276

residuals to precipitation and global radiation.277

The primary research question addressed in this study is whether to ignore or incorporate cultivar-278

specific per se temperature responses when modeling. Based on the growth rate predictions (Figure279

3b), it appears reasonable to agree with Parent, Millet, and Tardieu (2019) that the use of species-280

level thermal time has a sound theoretical basis. Neglecting cultivar-specific per se temperature281

responses seems justified. However, further testing the thermal time concept on phenology data282

significantly weakened the soundness of thermal time—ignoring cultivar-level per se responses in-283

flated the estimated G×E interactions (Figure 3c). Based on our results, we have to conclude284

that ignoring such cultivar differences creates bias in follow-up investigations of other G×E inter-285

actions, such as those induced by for example frost or drought stress (Figure 6). The tools for286

assessing cultivar-specific per se temperature responses in real-world field conditions are widely287

available now. With this study, we give implications on how and why those tools should be ap-288

plied. Consequently, the theoretical concept of thermal time can be taken to the next level, which289

is cultivar-specific.290

4. Material and Methods291

The increase of a trait y related to genotype i with time t in a steady-state growth phase can292

be modeled using a dose-response function r of covariates x⃗ and cultivar-specific crop growth293

parameters θ⃗i (Roth et al. 2021),294

yi t =

∫ t

t0

r(θ⃗i; x⃗ t ′) d t ′ . (1)

In this framework, complexity may be varied at four levels:295

• The trait y can be measured at different scales, e.g., at plant organ level, or plant stand296

(canopy) level.297
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• The dose-response function r can vary in complexity, e.g., using linear regressions, non-298

linear regressions, semi-parametric splines (Pérez-Valencia et al. 2022), or neural network299

regressions.300

• The covariates x⃗ can be measured at different scale, e.g., close to the growing meristem, at301

the experimental unit (plot) level, or at a reference station.302

• The crop growth parameters θ⃗i can be estimated at different scale, e.g., at variety/genotype303

level i, or at species-level.304

In the following, we pursue this structure, describing how traits were measured, complexity305

varied, and growth and phenology modeled.306

Note that in Equation 1, θ⃗i was defined as cultivar-specific parameter set. As such, the dose-307

response function r will both model response per se (e.g., the base temperature below growth308

stops) and intrinsic growth rate differences between cultivars (e.g., absolute growth at optimum309

temperature) (Figure 1f). When replacing θ⃗i with a species-level parameter set θ⃗ , r reduces to a310

function that models relative growth rates. Thermal time is one example of such a function. To311

scale these relative growth rates to cultivar-specific intrinsic growth rates, one has to scale r to yi t312

using a cultivar-specific factor gi (Figure 1c),313

yi t =

∫ t

t0

gi · r(θ⃗ ; x⃗ t ′) d t ′ . (2)

To allow a comparison of species-level and cultivar-level models, Equation 1 was used for cultivar-314

level models, and Equation 2 with the cultivar-level parameter gi for species-level models. For315

further details, please see Equation 8, 9, and 12.316

4.1. Material317

All experiments were performed at the ETH research station for plant sciences Lindau-Eschikon,318

Switzerland (‘Eschikon’; 47.449 °N, 8.682 °E, 520 m a.s.l.) on the field of the field phenotyping319

platform ‘FIP’ (Kirchgessner et al. 2017). The wheat experiment comprised a set of 12 varieties320

(CH Claro, CH Nara, Fastnet, Marksman, Ostka Strzelecka, Romanus, Runal, Rywalka, Semafor,321

Tamaro, Toronto, Winnetou), replicated 2 times per year, and cultivated in 2015–2021 as subset of322

a larger experiment with approximately 350 genotypes (Kronenberg et al. 2017; Kronenberg et al.323

2020a; Roth et al. 2020). For leaf elongation tracking, the 12 varieties were additionally grown in324

four small plots beside the main experiment in 2019. These plots (0.9 m x 1 m) contained three325

cultivars each, and were sown by hand in stripes of 0.3 m x 1 m.326

The soybean experiment comprised a set of 3 varieties (Castetis, Gallec, Opaline), replicated 3327

times per year, cultivated in 2017–2020 as subset of a larger experiment with 36 genotypes (Roth328

et al. 2022a). Leaf growth tracking was performed directly in the main experiment in 2017.329

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.08.29.555271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.555271
http://creativecommons.org/licenses/by/4.0/


4.2. Trait measurements330

4.2.1. Leaf length tracking in winter wheat331

Leaf elongation rates of 12 wheat cultivars were measured in the field from mid-February to be-332

ginning of April 2019 using the leaf length tracker (LLT) system described by Nagelmüller et al.333

(2016). The installation followed the principle of an auxanometer. Briefly, the youngest leaf was334

attached to a hairpin to which a thread was attached. The thread was guided over several rollers335

along the panel and held taut with a counter weight (20 g). At the other end, the thread was336

attached to a white bead that moved over the panel in accordance with the elongation of the leaf.337

A waterproof CCTV camera (Lupusnet HD - LE934, CMOS sensor, maximal resolution of 1920 ×338

1080 pixels, Lupus-Electronics® GmbH, Germany) took images of the panel every 2 minutes. A339

custom software (https://sourceforge.net/projects/leaf-length-tracker/) evaluated the position of340

the beads from the pictures, as they were used as indirect artificial landmarks to measure leaf341

elongation rate. Measurements were performed on in average 6 replications over 7 weeks (Figure342

2a).343

Measured growth rates were corrected for weight-temperature interaction effects based on a344

calibration performed in a climate chamber. In this calibration setup, the growth of undisturbed345

leaves was compared with the growth of leaves where a force-equivalent of 20 g was applied. The346

differences in measured growth rates suggested a cultivar-unspecific correction of 0.004 mm/h per347

°C.348

4.2.2. Leaf growth tracking in soybean349

Leaf growth rates of 3 soybean cultivars were measured in the field from the beginning of June350

to mid-July 2017 using the leaf growth tracker (MARTRACK) system described by Mielewczik et351

al. (2013). Briefly, beads connected to threads were glued to the emerging leaves and fixed in352

front of a camera using a wire frame. The same cameras as above were used to record images353

every 2 minutes. A custom software (https://sourceforge.net/projects/martrackleaf/) evaluated354

the position of the beads from the pictures. Leaf area was then calculated based on the convex355

hull of bead positions in the planar image space. Relative growth rates were calculated based on356

differences of logarithmic leaf areas of two successive time points, divided by the time difference.357

Measurements were performed on in average 3 replications over 4 weeks (Figure 2a).358

4.2.3. Canopy cover monitoring based on RGB imaging in winter wheat and soybean359

Canopy cover increase was monitored using the high-throughput field phenotyping platform ‘FIP’.360

The FIP platform is–among other sensors—equipped with an RGB camera (EOS 5D Mark II, 35361

mm lens, Canon Inc., Tokyo, Japan). Plots were monitored with this sensor from a distance of362

3 m to the ground. This setting results in a ground sampling distance of 0.3 mm/pixel. In the363

early canopy growth phase, in average 10 measurements per year (2017–2019, 2021) were taken364
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for winter wheat, and in average 5 measurements per year (2017–2018, 2020) for soybean. RGB365

images were segmented pixel-wise into a plant and a soil fraction using a deep convolutional neural366

network (Zenkl et al. 2022).367

To enable a pixel-precise extraction of plot canopy cover values, image time series were first368

aligned using planar homography. Then, plot-specific shapes were projected to image time points.369

As feature detection algorithm, SIFT (Lowe 1999) and ORB (Rublee et al. 2011) were used. Feature370

matching was performed using RANSAC (Fischler and Bolles 1981). Subsequently, the segmented371

and cutout image parts showing individual plots were further rectified by rotating them step-wise372

(-1.5° to 1.5° in steps of 0.2°) to maximize the distance between the minimum and maximum of373

plant pixels in image columns. For canopy cover extraction in winter wheat, only the inner 7 rows374

(of 9 rows per meter) were considered. For soybean with larger row spacing (3 rows per meter),375

only the inner row and half of both outer rows were used for further processing.376

Canopy cover was then calculated as plant pixel ratio per plot. For winter wheat, measurements377

between approximately the beginning of the year to mid-April were considered, for soybean, mea-378

surements between approximately mid-May and end of June. Only positive values, i.e., only canopy379

increase, was used for further processing. All processing was performed in Python using OpenCV380

and scipy (Virtanen et al. 2020).381

4.2.4. Plant height monitoring in winter wheat and soybean382

Plant height increase was monitored using the high-throughput field phenotyping platform ‘FIP’ as383

well as drones. The FIP platform is–among other sensors—equipped with an terrestrial laser scan-384

ning device. The first three years of plant height measurements in winter wheat were collected with385

this device (Friedli et al. 2016; Kronenberg et al. 2017; Kronenberg et al. 2020a). From the result-386

ing point clouds, the percentile best matching manual measurements (97th percentile, Kronenberg387

et al. 2017), was extracted per plot as plant height estimation per time point. For the subsequent388

years of winter wheat experiments and for all soybean experiments, drone-based Structure-from-389

Motion (SfM) was used (Roth and Streit 2018; Roth et al. 2022b). From the resulting point clouds,390

the percentile best matching manual measurements (90th percentile, Roth and Streit 2018) per391

plot was extracted as plant height estimation per time point.392

For wheat, measurements were performed on 2 replications on in average 11 time points per year393

(2015–2019, 2021) that fell into the stem elongation phase (Figure 2c). For soybean, measure-394

ments were performed on 3 replications on in average 8 time points per year (2017–2020) that fell395

into the stem elongation phase (Figure 2c). This included measurements between approximately396

mid-April and end of May for wheat and mid-June to mid-July for soybean.397

Plot time series were smoothed using P-splines with the R package scam (Pya 2019) before further398

processing to reduce prediction errors origin from autocorrelations of measurement errors.399
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4.2.5. Phenology measurements and estimations in winter wheat400

Heading and senescence measurements were performed manually by trained persons. Heading was401

defined as the time point when the inflorescence was fully emerged for ≥50% of all shoots (GS 59)402

(Meier 2018). Heading was measured for all years (2015–2019 and 2021) on 1–2 replications.403

Senescence was defined as the time point where the senescence of the central plot area has404

reached its midpoint (Anderegg et al. 2020). Senescence was assessed on two replicates in 2016,405

2017 and 2018.406

The start of the stem elongation was estimated for genotypes in two replications based on plant407

height data using the quarter-of-maximum-elongation rate method (QMER) described in Roth et al.408

(2021) and Roth et al. (2022b) for the years 2017–2019 and 2021. For 2015 and 2016, no detailed409

plant height data for the early season were available, wherefore the start was approximated for all410

genotypes alike (2015-04-28 and 2016-04-15).411

4.3. Covariate measurements412

Reference air temperature (T ref
air ) at the local weather station (in close proximity to the experimental413

field) was measured above a grass strip at 0.1 m above ground using Campbell CS215 sensors414

(Campbell Scientific Inc., U.S.A.). Air temperature inside the experiment (Tplot
air ) was measured415

in 2–4 wheat plots at 0.1 m above the ground, therefore above the plants before the start of the416

stem elongation, and inside the canopy for later growth stages, using Campbell CS215 sensors.417

Reference soil temperature (T ref
soil) was measured 0.05 m below ground at three reference positions418

below grass strips using Sentek/Hydrolina soil sensors (Sentek Sensor Technologies, Australia).419

Soil temperature inside the experiment (Tplot
soil ) was measured 0.05 m below ground in 2–4 wheat420

plots using using Sentek/Hydrolina soil sensors. Values of measurements performed at multiple421

locations (plots or reference positions) were averaged.422

4.4. Growth modeling423

4.4.1. Dose-response models424

As baseline model, thermal time based on hourly temperature recordings was used,425

rlinear(T ) =max((T − Tmin) · a, 0) , (3)

where Tmin is the base temperature of growth, a the slope, and max(, 0) prevents negative growth426

rate predictions by replacing values lower than zero with zero. This model was called ‘thermal427

time’ if a = 1 and Tmin was set to the literature based threshold temperature of 0 °C for winter428

wheat (Baker and Gallagher 1983) and 5 °C for soybean (Whigham and Minor 1978), and ‘linear429

model’ if Tmin and a were estimated based on own data.430
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To account for lower growth rates at temperatures close to zero that were observed in LLT data,431

the linear model was extended to a bi-linear model,432

rbi-linear(T ) =max(T/Tmin · rmin, rmin + (T − Tmin) · a, 0) , (4)

where rmin is a growth rate ≥ 0 at Tmin.433

Plant height growth rate modeling has shown that an asymptotic model can approximate a Wang-434

Engel model given that temperatures do not exceed to supra-optimal growth ranges (Roth, Piepho,435

and Hund 2022). The asymptotic models is defined as436

rasym =max(rmax · (1− exp (−exp (s) · (T − Tmin))) , 0) , (5)

where rmax is the maximum absolute growth rate (and therefore the asymptote of the curve), Tmin437

the base temperature where the growth rate is zero, and s characterizes the steepness of the re-438

sponse (natural logarithm of the rate constant, thus ‘lrc’) (Pinheiro and Bates 2000).439

Finally, the original Wang-Engel model (Wang et al. 2017) is defined as440

rWang-Engel(T ) = rmax ·
2(T − Tmin)α(Topt − Tmin)α − (T − Tmin)2α

(Topt − Tmin)2α

α=
ln(2)

ln
�

(Tmax − Tmin)/(Topt − Tmin)
� , (6)

where rmax is the maximum absolute growth rate at the temperature optimum Topt, Tmin the lower441

base temperature and Tmax the upper base temperature of growth.442

4.4.2. Model fitting to temporally resolved leaf growth tracking device data443

Before training models, the data were split in training and test sets using a ratio of 6.37:1 for444

wheat and 6.31:1 for soybean, taking care that time series of replications/leaves stayed together in445

either the training or test set. The linear and non-linear models defined above were then fitted to446

training data using maximum likelihood optimization. In contrast to previous attempts to process447

leaf growth tracking data (Mielewczik et al. 2013; Nagelmüller et al. 2016), the raw measurement448

data were not smoothed. Instead, the measurement error was estimated using nested models with449

residual autocorrelation of order 1–3. The best fitting model was selected based on the Bayesian450

Information Criterion (BIC). Models were fitted using the base R (R Core Team 2019) function mle.451

In addition to the parametric linear and non-linear models, two so called ‘semi-parametric’ mod-452

els were trained. The first one was based on a hierarchical spline approach for longitudinal data453

(Durbán et al. 2005) that models a general population trend, a genotype trend, and a replication454

trend (Pérez-Valencia et al. 2022, R-code herein provided). We modified this approach in the way455

that time t was replaced by temperature T as ‘longitudinal dimension’, thus fitting hierarchical456

splines that represent dose-response curves.457
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The second ‘semi-parametric’ model approach was based on a multi-output neural network: A458

small network with two hidden layers of size 5 and sigmoid activation functions was trained to459

regress temperature on growth rates. An additional layer was then added to the network that460

transformed the single-output in a multi-output of size 12 (one for each genotype). This layer was461

not activated, thus representing a linear transformation only. Training and validation sets were462

split with a 9:1 ratio, loss was calculated as mean squared error (MSE). L1 regularization was463

applied to the last layer. Optimization was done using the Adam optimizer in Pytorch Lightning464

with 1500 epochs in pre-training and 800 epochs for fine-tuning with early stopping if the MSE did465

not improve by more than 0.0001 for 40 epochs. Initial learning rate was 0.05 with exponential466

decay with gamma 0.996, precision was 16 bit (half-precision), batch size 2000. Early stopping467

was always reached.468

4.4.3. Model fitting to canopy cover and height data469

As for the leaf growth tracking data, canopy cover and height data were split in a training and test470

set. Here, the split was performed based on whole years, and repeated in a cross-validation (CV)471

scheme. For wheat, this resulted in a 5:1 split ratio for plan height data in a 6-fold CV. For soybean,472

this resulted in a 3:1 split ratio for plan height data in a 4-fold CV.473

The parametric models were then fit to the training set using a maximum likelihood approach that474

can fit high-resolution (hours) temperature courses and low-resolution (days) trait measurements475

(Roth, Piepho, and Hund 2022).476

An attempt to use canopy cover data to train models resulted in very poor estimates or failed477

convergence. As a consequence, canopy cover data were only used for model testing and not for478

fitting.479

4.5. Model testing for growth predictions480

Leaf growth tracking data originated from the same year. Consequently, the train/test split was481

used to calculate performance values by pooling all measurement values of the test set per cultivar.482

All other data were collected in differing years. Therefore, a random regression model was used for483

model testing. This approach was chosen based on the longitudinal character of plot-based time484

series, where one has to expect temporally and spatially correlated measurement errors (Roth et al.485

2021).486

For such measurements, a trait y is measured at repeated times t for genotypes i in the year j487

at the replication k. Time t is ‘linearized’ using the different dose-response models, ri t = r(θ⃗i; Tt).488

Consequently, the difference between two consecutive measurements can be expressed as489

∆yi jkt = yi jkt − yi jkt−1 = ri t × (µ+ gi + v j) + b j , (7)490

where µ is a fixed overall coefficient, gi and v j random coefficients related to genotypes and years,491
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and b j a year-specific offset. The random coefficient structure was estimated using a variance-492

covariance structure among genotype replications gi and years v j . The model was fitted in R using493

ASReml-R (Butler 2018).494

The reported coefficients of determination of the predictions (R2 score) and root-mean-squared495

errors (RMSE) were based on the fixed overall coefficient µ for cultivar-level models,496

ˆ∆yi jkt = ri ×µ , (8)497

and on the fixed overall coefficient µ and random genotype coefficient gi for species-level models498

and thermal time,499

ˆ∆yi jkt = ri × (µ+ gi) . (9)500

The R2 score was defined as501

R2 = 1−
SSres

SStot
(10)502

where SStot the total sum of squared and SSres is the residual sum of squares in relation to the 1:1503

line.504

4.6. Model testing for phenology predictions505

To test the prediction ability of phenology period duration, a linear mixed model was used. Such506

an approach can account for random sources of variation such as genotype effects and G×E inter-507

actions (Piepho, Büchse, and Emrich 2003). For phenology timing periods, two time points t1 and508

t2 are measured per genotype i in the year j at the replication k. Then, the time period in between509

is ‘linearized’ using the different dose-response models, resulting in a new trait y ,510

yi jk =

∫ t i jk,2

t i jk,1

r(θ⃗i; Tt) d t ′ , (11)511

where t i jk,1 is the start of the period and t i jk,2 the end of the period. Note that the new trait yi jk512

is on a genotype-specific scale. To allow comparison and variance decomposition, yi jk values were513

scaled to one per genotype. After this time period transformation, overall best linear unbiased514

predictions (BLUPs) were estimated using the model515

yi jk = µ+ v j + gi + (vg)i j + ei jk , (12)516

where µ is a global intercept, v j a fixed year-effect, gi a random genotype effect, and (vg)i j random517

genotype-environment effects modeled using a diagonal variance structure, allowing for differing518

genotypic variances for years. The residual variance structure ei jk was set to account for random519
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row and range effects and random interactions of row and range effects, thus accounting for dif-520

fering spatial gradients for years. The model was fitted in R using ASReml-R (Butler 2018).521

4.6.1. Residual analysis based on environmental indices522

Environmental indices were calculated based on daily mean, minimum, and maximum tempera-523

ture, precipitation sum and global radiation (Supplementary materials, Table B.1). Precipitation524

values were further transformed into the Standardised Precipitation Index (SPI) (McKee, Doesken,525

and Kleist 1993) and the Standardised Precipitation and Evapotranspiration Index (SPEI) (Vicente-526

Serrano, Beguería, and López-Moreno 2010) using the Thornthwaite transformation (Thronthwaite527

1948) to estimate evapotranspiration. SPI and SPEI were calculated using the R package SPEI (Be-528

guería et al. 2014). Both indices were calculated with a 30-day smoothing to account for effects529

within each phenological period rather than long-term effects. For each index, the minimum, max-530

imum and cumulative values per phenological period were calculated. Furthermore, a cold stress531

index considering the temperature sum of minimum daily temperatures below 0 °C was added.532

Drought and moisture extreme indices were calculated using the sum of SPI and SPEI values above533

and below a threshold of 1 and 1.75, respectively -1 and -1.75. Negative values represent very534

moist periods and can therefore define wet seasons. Positive values indicate dry periods and can535

therefore correlate with periods of drought stress. In addition to the environmental indices, the536

mean growth period duration in days per cultivar was added to the list of features. A lasso re-537

gression was then applied to the residuals of the phenology prediction models, using a lasso and538

elastic-net regularized generalized linear model from the R package glmnet (Friedman et al. 2022).539

The model was fitted using the R package caret (Kuhn 2008) with a search grid for λ = 10−8 to 5540

and α= 1 in a repeated CV with 10 repeats and 5 folds. Features were centered and scaled before541

fitting.542

A. Appendix543
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Figure A.1: Performance of growth rate predictions for winter wheat. Models were trained on leaf
length data (Leaf->) and plant height data (Height->). Predictions were tested on un-
seen leaf length data (->Leaf), canopy cover data (->Canopy cover), and plant height
data (->Height). The covariate temperature was measured in air (Tair) and soil (Tsoil)
at plot level (Tplot) and at a reference station (Tref). Indicated are the coefficients of
determination (R2 score) of predictions based on the corresponding temperature re-
sponse model. At the species-level, predictions were based on an overall coefficient
and genotype coefficients (Equation 9). For cultivar-level models, the genotype speci-
ficity is already incorporated in the response model, and predictions therefore based
on an overall coefficient only (Equation 8). Coefficients were fitted using a random
regression model with random coefficients for years and plots and the mentioned fixed
overall coefficient and genotype coefficients (Equation 7).
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Figure A.2: Performance of growth rate predictions for soybean. Models were trained on leaf area
data (Leaf->) and plant height data (Height->). Predictions were tested on unseen
leaf area data (->Leaf), canopy cover data (->Canopy cover), and plant height data
(->Height). The covariate temperature was measured in air (Tair) and soil (Tsoil) at a
reference station (Tref). Indicated are the coefficients of determination (R2 score) of
predictions based on the corresponding temperature response model. At the species-
level, predictions were based on an overall coefficient and genotype coefficients (Equa-
tion 9). For cultivar-level models, the genotype specificity is already incorporated in the
response model, and predictions therefore based on an overall coefficient only (Equa-
tion 8). Coefficients were fitted using a random regression model with random coef-
ficients for years and plots and the mentioned fixed overall coefficient and genotype
coefficients (Equation 7).

25

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.08.29.555271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.555271
http://creativecommons.org/licenses/by/4.0/


R2 score: 0.06
RMSE: 7.7 d

Rank r: 0.73−0.9

R2 score: 0.09
RMSE: 8 d

Rank r: 0.73−0.92

R2 score: 0.08
RMSE: 8 d

Rank r: 0.65−0.94

R2 score: 0.08
RMSE: 8 d

Rank r: 0.74−0.92

R2 score: 0.1
RMSE: 8.1 d

Rank r: 0.64−0.94

R2 score: 0.43
RMSE: 8 d

Rank r: 0.83−0.97

R2 score: 0.45
RMSE: 8 d

Rank r: 0.9−0.92

R2 score: 0.4
RMSE: 8 d

Rank r: 0.81−0.92

R2 score: 0.43
RMSE: 8.1 d

Rank r: 0.87−0.93

R2 score: 0.09
RMSE: 4.9 d

Rank r: 0.57−0.99

R2 score: 0.02
RMSE: 8.2 d

Rank r: 0.29−0.94

R2 score: 0.06
RMSE: 5.8 d

Rank r: 0.41−0.99

R2 score: 0.05
RMSE: 6.6 d

Rank r: 0.43−0.98

R2 score: 0.06
RMSE: 6.4 d

Rank r: 0.44−0.97

R2 score: 0.18
RMSE: 8.1 d

Rank r: 0.69−1

R2 score: 0.29
RMSE: 6.6 d

Rank r: 0.41−0.97

R2 score: 0.35
RMSE: 6.3 d

Rank r: 0.57−1

R2 score: 0.36
RMSE: 7 d

Rank r: 0.38−0.97

R2 score: 0.32
RMSE: 1.8 d

Rank r: 0.81−0.94

R2 score: 0.19
RMSE: 2.4 d

Rank r: 0.76−0.83

R2 score: 0.23
RMSE: 2.1 d

Rank r: 0.77−0.87

R2 score: 0.16
RMSE: 2.7 d

Rank r: 0.66−0.9

R2 score: 0.06
RMSE: 5.6 d

Rank r: 0.66−0.84

R2 score: 0.35
RMSE: 2.3 d

Rank r: 0.81−0.97

R2 score: 0.28
RMSE: 3.2 d

Rank r: 0.88−0.98

R2 score: 0.3
RMSE: 2.7 d

Rank r: 0.87−0.95

R2 score: 0.16
RMSE: 5.8 d

Rank r: 0.42−0.96

Fixed

Thermal time Linear Bi−linear Asym Wang−Engel Linear Bi−linear Asym Wang−Engel V
egetative grow

th to Jointing
Jointing to H

eading
H

eading to S
enescence

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

−1

0

1

2

−2

0

2

4

−1

0

1

2

3

Estimated at species level Estimated at cultivar level

Growth period duration (Overall BLUPs, normalized)

G
ro

w
th

 p
er

io
d 

du
ra

tio
n 

(B
LU

P
s 

pe
r 

ye
ar

, n
or

m
al

iz
ed

)

2015

2016

2017

2018

2019

2021

Figure A.3: Performance of phenology period duration predictions for winter wheat. Predictions
were based on cultivar-level best linear unbiased estimations (overall BLUPs) of a linear
mixed model that included effects for cultivars, years, and year-cultivar interactions
(Equation 12). The linear mixed model itself was fitted to thermal time, cultivar-level
temperature response model, and species-level temperature response model outputs
from growth rate fits.
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