

From neglecting to including cultivar-specific *per se* temperature responses: Extending the concept of thermal time for plant development modeling

Short title: The importance of cultivar temperature response

7 Lukas Roth¹, Martina Binder¹, Norbert Kirchgessner¹, Flavian Tschurr¹,
Steven Yates¹, Andreas Hund¹, Lukas Kronenberg^{1a}, Achim Walter¹

November 8, 2023

⁹ ¹ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092
¹⁰ Zurich, Switzerland

¹¹ ^aCurrent address: John Innes Centre, Crop Genetics, Norwich NR4 7UH,
¹² United Kingdom

13 Abstract

14 Predicting plant development, a longstanding goal in plant physiology, involves two interwoven
15 components: continuous growth and the progression of growth stages (phenology). Current mod-
16 els, like thermal time, assume species-level growth responses to temperature. We challenge this
17 assumption, suggesting that cultivar-specific temperature responses significantly affect phenology.
18 To investigate, we collected field-based growth and phenology data in winter wheat and soybean
19 over multiple years. We used diverse models, from linear to neural networks, to assess growth re-
20 sponds to temperature at various trait and covariate levels. Cultivar-specific non-linear models best
21 explained phenology-related cultivar-environment interactions. With cultivar-specific models, ad-
22 ditional relations to other stressors than temperature were found. The availability of the presented
23 field phenotyping tools allows incorporating cultivar-specific temperature response functions in fu-
24 ture plant physiology studies, which will deepen our understanding of key factors that influence
25 plant development. Consequently, this work has implications for crop breeding and cultivation
26 under adverse climatic conditions.

27 **Keywords:** temperature response, genotype-by-environment interaction, thermal time, crop
28 model, climate change, machine learning, wheat, soybean

29 1. Introduction

30 To mitigate the effects of global environmental change on crop production, a profound understand-
31 ing of its influence on plant growth is required (Ramirez-Villegas, Watson, and Challinor 2015).
32 Crop models promise to be a versatile tool in analyzing and predicting plant growth (Pauli et al.
33 2016), in particular for future climate scenarios (White et al. 2011; Tardieu et al. 2020). Yet, the
34 model choice represents a challenging trade-off between biological realism and the principle of
35 parsimony (Hammer et al. 2019).

36 From a temporal (i.e., growth process based) perspective, plant growth appears non-linear (Fig-
37 ure 1a). Rapid short-term changes in environmental conditions result in related short-term growth
38 patterns (Nagelmüller et al. 2016). These patterns are superimposed on seasonal changes of en-
39 vironmental conditions. On top of these relations, stress conditions may result in yet another
40 superimposed (and potentially negative) growth pattern (Tschorr et al. 2023).

41 Finally, temporal patterns are also caused by advancing plant development, known as phenol-
42 ogy. Fundamental influencing factors in cultivar-specific phenology include photoperiod sensitivity
43 (Steinberg and Garner 1936), and, in the case of winter cereals, vernalization requirements (Slafer
44 1996). If modeling phenology on a rather small scale in environments with neglectable differences
45 in photoperiod and vernalization, temperature remains as a dominant driver of phenology (Bogard
46 et al. 2014; Ochagavía et al. 2019).

47 Consequently, a common modeling approach is to temperature-compensate time, thus ‘linearize’
48 growth (Figure 1e) and phenology (Figure 1b) using a species-specific *per se* temperature growth

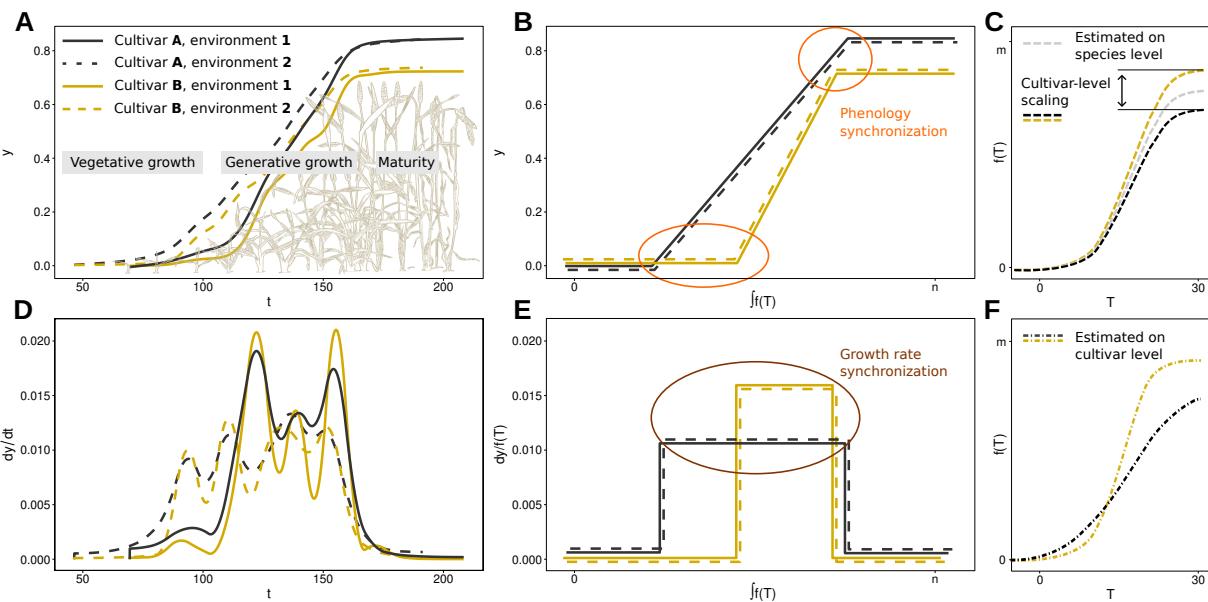


Figure 1: Schematic visualization of strategies in crop modeling to compensate for fluctuating temperatures on the example of generative growth in winter wheat. Plant growth over time appears non-linear (a) and reveals irregular, potentially cultivar and environment specific growth rate patterns (d). By replacing time t with the area under the curve of a temperature-compensation function, $\int f(T_t)$, phenology stages (b) and growth rates (e) may be synchronized in respect to the independent variable. Temperature-compensation functions can be based on species-level dose-response curves scaled to cultivar-level intrinsic growth rates (c), or on cultivar-specific dose-response curves (f).

49 response (Figure 1c) (Bonhomme 2000). Differences in growth rates and phenology between cul-
50 tivars are then modeled using cultivar-specific factors that scale the predicted growth rate to mea-
51 sured (i.e., cultivar ‘intrinsic’) growth rates (Parent and Tardieu 2012). While it was shown that
52 extending linear temperature responses (i.e., thermal time) to non-linear functions can further
53 improve predictions (Wang et al. 2017), Parent and Tardieu (2012) provided evidence that mod-
54 eling a *per se* temperature response at species-level is sufficient. They speculated that evolutionary
55 processes may have fixed the response for lower plant systematic levels. Hence, using linear and
56 non-linear temperature compensation functions with fixed, literature-based parameters seems jus-
57 tified.

58 Nevertheless, there is evidence that phenology is related to cultivar-specific temperature re-
59 sponses (Kronenberg et al. 2020a). Consequently, one may assume that selecting for phenology
60 traits in breeding—such as earlier flowering in winter wheat—co-selected for temperature response
61 (Roth et al. 2022b). Indeed, we have repeatedly observed cultivar-specific temperature responses
62 in our outdoor, high-throughput phenotyping site at ETH Zurich. We found cultivar-specific dif-
63 ferences in the temperature response in the early canopy development of winter wheat (Grieder,
64 Hund, and Walter 2015; Nagelmüller et al. 2016), as well as in the stem elongation phase of winter
65 wheat (Kronenberg et al. 2020a; Roth, Piepho, and Hund 2022) and soybean (Friedli et al. 2016).
66 Furthermore, we found that the differences in the stem elongation phase of winter wheat were
67 related to the breeding origin of cultivars (Roth et al. 2022b) and allow a ‘phenomic prediction/s-
68 election’ for yield (Roth et al. 2023).

69 Similar observations have been made in crop modeling for other crops than wheat and soybean.
70 Wallach et al. (2018) could demonstrate that it is feasible to include a cultivar-specific temperature
71 response parameter (T_{opt}) for flowering time predictions in common bean. Viswanathan et al.
72 (2022) were able to optimize two temperature response parameters (T_{min} and T_{opt}) for two growth
73 stages in maize.

74 Given these evidences, it is striking how rarely temperature response parameters are included
75 in the optimization process in crop growth and phenology models. Reasons may be found in the
76 state-of-the-art use of so-called multi-environmental trials (MET) where the phenology of cultivars
77 is measured in different environments. The heterogeneity of the environments often requires in-
78 cluding other factors such as photoperiod sensitivity and vernalization requirements (White et al.
79 2008). The additional inclusion of temperature response parameters will bring the number of pa-
80 rameters that require optimization close to the degrees of freedom of the data. One suggestion
81 to overcome this limitation is to incorporate the genetic relatedness of cultivars, e.g., using QTLs
82 (Wallach et al. 2018) or whole genome predictions (Messina et al. 2018).

83 Another way to address the problem is to massively increase the number of data points per
84 cultivar and environment. As phenology consists of single events, this can only be achieved by
85 measuring continuous growth instead. Field-based plant organ tracking devices (Mielewczik et al.
86 2013; Nagelmüller et al. 2016) and field-phenotyping platforms (Kirchgessner et al. 2017) can

87 provide such dense time series with tens to thousands of growth rate / temperature value pairs.
88 Simulation data (Roth, Piepho, and Hund 2022) and real-world data analysis (Millet et al. 2019;
89 Roth et al. 2022b) have shown that, provided the temporal density of the time series is high enough,
90 a few environments are sufficient to reliably determine cultivar-specific responses.

91 The question arises, whether transferring such pre-calibrated cultivar-specific temperature responses—
92 determined on dense time series in few environments—to crop models may improve phenology
93 predictions. Studies reporting phenology stages in species-specific thermal time often found severe
94 genotype-by-environment (G×E) interactions in their data (Sadras et al. 2009; Salazar-Gutierrez
95 et al. 2013; Slafer et al. 2015). We suspect that large portions of the reported G×E interactions
96 in phenology are artifacts of over-generalizing the *per se* temperature response on species-level.
97 In other words, when explaining the observed performance of plants in different environments,
98 thermal time is reified— its abstract concept is by mistake treated as being a real, interpretable
99 object.

100 If our assumption holds, using cultivar-specific linear or non-linear temperature responses will
101 improve the estimation of growth rates (Figure 1e) and of phenology stages (Figure 1b). To test
102 this hypothesis, we evaluated a unique, temporally very dense multi-environment (i.e., one site,
103 multiple years) outdoor winter wheat and soybean data set. The setup corresponds to the spe-
104 cific situation where the prediction is to be improved for a clearly defined environment (in our
105 case, Switzerland). Measurements and predictions are made under near-constant photoperiod and
106 vernalization conditions, allowing to focus on temperature response only.

107 The data were collected with temporally-resolved leaf growth tracking devices as well as high-
108 throughput field phenotyping devices (Figure 2). We evaluated the response of traits to temper-
109 ature using models of increasing complexity (ranging from linear models to hierarchical splines
110 and neural networks). Additionally, the trait level (leaf growth, canopy development, stem elon-
111 gation), the covariate level (soil temperature, air temperature) and the covariate measurement
112 level (below/inside canopies, at a reference weather station) were varied. Finally, phenology pe-
113 riod estimations for the three main growth phases of wheat (vegetative growth, generative growth,
114 maturity) were performed using the pre-parameterized temperature response models.

115 2. Results

116 2.1. Growth rate prediction

117 A first aim of the study was to identify suitable temperature response models to predict continuous
118 growth, and to test for the transfer ability of these trained models from one growth stage to oth-
119 ers. This step will provide insight into the importance of model choice, explaining covariates, and
120 variety versus species-level.

121 Parametric models (Equation 3–6), hierarchical splines, and a neural network model were trained
122 on leaf and plant height growth data sets (Figure 2a and 2c). For all models, cultivar-specific

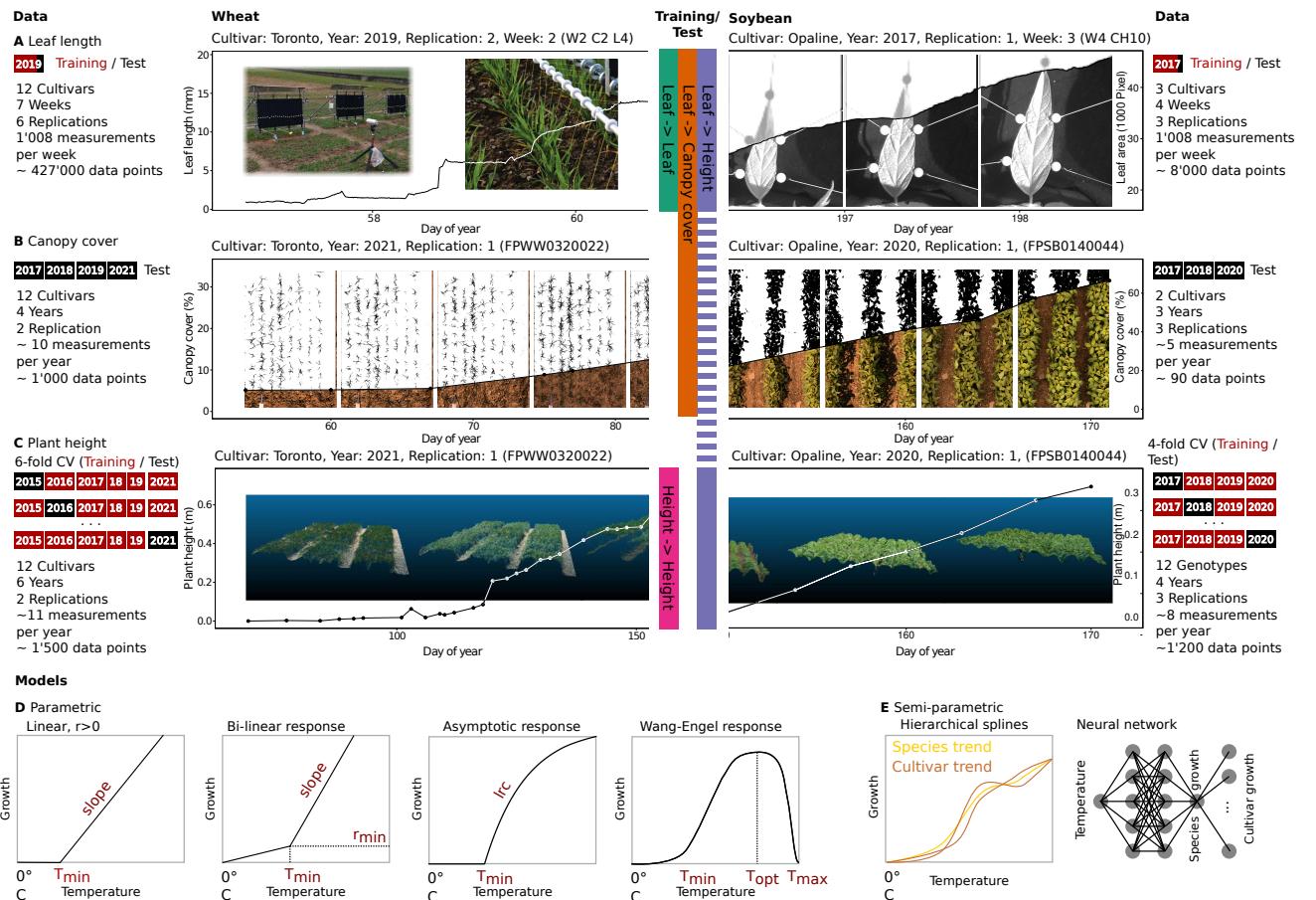


Figure 2: Evaluated data set for winter wheat and soybean. Leaf elongation and growth was measured using a leaf length tracker device for wheat and a leaf growth tracker device for soybean (a). Canopy cover observations were taken using a field phenotyping platform to collect RGB images, followed by segmenting them in pixels showing plants and soil (b). Plant height measurements were performed using a phenotyping platform based terrestrial laser scanner and drone-based Structure-from-Motion (SfM) techniques (c). Four parametric dose-response models (d) and two semi-parametric dose-response models (e) were evaluated. Model testing was performed on unseen data in test-train splits (a, b) and cross-validations (CV) (c).

123 (Equation 1) and species-level (Equation 2) variations were considered. Trained models were
124 tested on unseen leaf, canopy, and plant height growth data sets (Figure 2a–c). Tests were based on
125 measured and predicted differences between consecutive measurements using random regressions
126 (Equation 7) that account for year effects (Equation 8) and, in case species-level models were fitted,
127 for cultivar-specific scaling (Equation 9).

128 In summary, cultivar-level models and species-level models were equally well suited to model
129 growth (Figure 3). Scaling species-level models such as thermal time to cultivar-specific intrin-
130 sic growth rates successfully predicted growth for unseen test sets (Figure 3b). However, fitted
131 cultivar-level models showed clear *per se* temperature response characteristics, as indicated for ex-
132 ample by cross-overs between cultivar-level response curves for the bi-linear model (Figure 3a).
133 Using such cultivar-specific models to predict unseen growth data test sets resulted in similar per-
134 formance as for species-level models (Figure 3b). More important than the model choice was the
135 choice of covariate (soil or air temperature) in relation to the growth phases. In the following,
136 detailed results will be reported for wheat and soybean.

137 2.1.1. Wheat growth rate predictions

138 Cultivar-specific response models outperformed species-level models if training and test sets were
139 closely related (Figure 4, first row). If training and test sets originated from the leaf elongation
140 measurements, the highest growth prediction accuracy was reached by three cultivar-specific mod-
141 els: The bi-linear model, the hierarchical splines, and the neural network ($R^2 = 0.22$, root-mean-
142 squared error (RMSE)=0.39 mm/h). Relying on plot-based temperature measurements outper-
143 formed reference station measurements ($\Delta R^2 = 0.08$). Using plot-based soil temperatures slightly
144 outperformed using plot-based air temperatures ($\Delta R^2 = 0.01$).

145 If training and test sets differed, species-level response models generalized better (Figure 4,
146 second and third row). When applying models trained on leaf elongation measurements to whole-
147 canopy measurements made in the same growth phase, the species-level Wang-Engel model ($R^2 =$
148 0.68, RMSE = 0.44%/day) outperformed the cultivar-level Wang-Engel and neural network models
149 ($\Delta R^2 = -0.12$) and thermal time ($\Delta R^2 = -0.14$). Again, using soil temperature at the plot level
150 resulted in a higher accuracy than using soil temperature or air temperature measured at a reference
151 station ($\Delta R^2 \geq 0.06$).

152 When further reducing the relatedness of training and test sets by predicting plant height growth
153 with leaf elongation models, thermal time ($R^2 = 0.71$, RMSE = 0.18 mm/day) performed slightly
154 better than the asymptotic species-level model ($\Delta R^2 = -0.01$) and the corresponding cultivar-level
155 model ($\Delta R^2 = -0.13$).

156 The advantage of cultivar-level models could be restored by training models directly on plant
157 height data, thus using closely related training and test sets (Figure 4, last row). Two cultivar-level
158 models were suggested, the asymptotic and bi-linear dose-response curves ($R^2 = 0.72$, RSME: 0.16
159 mm/day). To predict plant height data, air temperature measured at the reference weather station

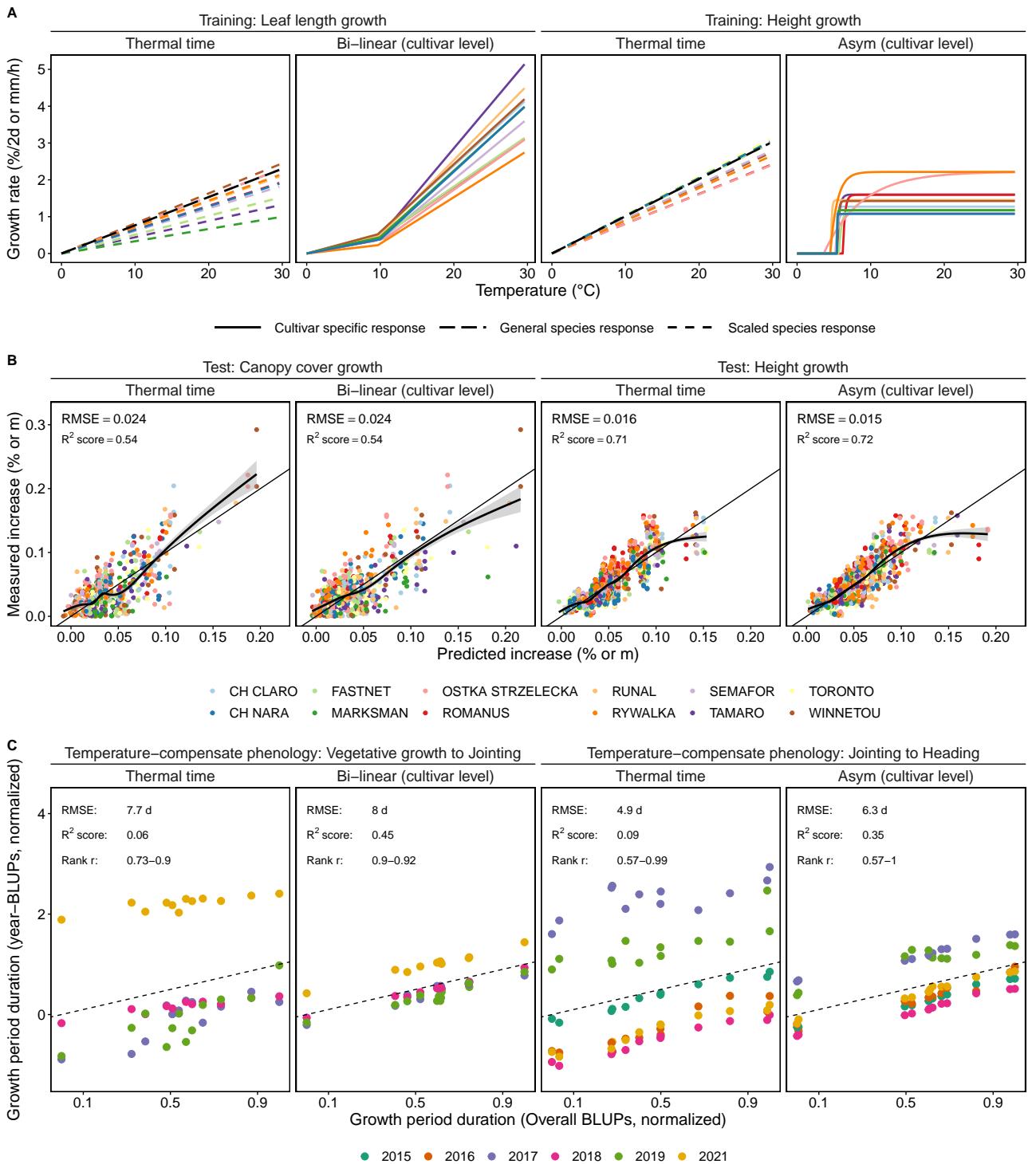


Figure 3: Overview of performance of the best species-level and cultivar-level models for winter wheat. While species-specific thermal time models (Equation 2) where scaled to cultivar-specific intrinsic growth rates (Equation 3), cultivar-level bi-linear (Equation 4) and asymptotic models (Equation 5) were fitted for each cultivar separately (Equation 1) (a). Models were tested on unseen growth data sets (b) and unseen phenology data sets (c) to indicate their potential to predict growth and to reduce estimated G×E in phenology. For a full comparison of model performance for both wheat and soybean, see Figure 4 for growth predictions and Figure 5 for phenology.

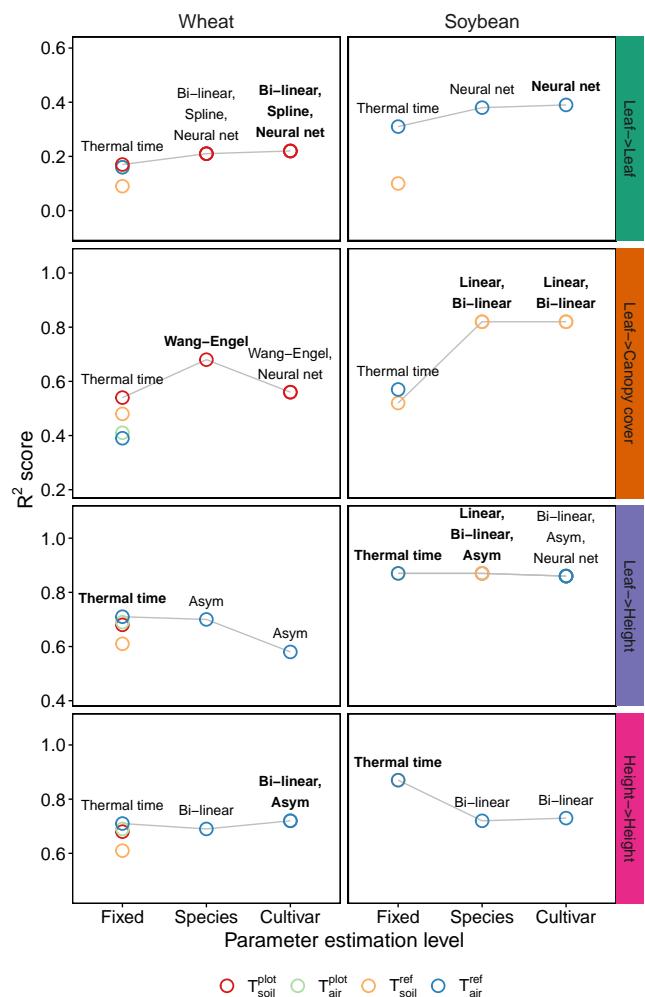


Figure 4: Performance of linear (Equation 3) and non-linear (Equation 4–6) models for growth rate predictions (Equation 7) in winter wheat and soybean. Models were trained on leaf length data (Leaf->) and plant height data (Height->). Predictions were tested on unseen leaf length data (->Leaf), canopy cover data (->Canopy cover), and plant height data (->Height). The covariate temperature was measured in air (T_{air}) and soil (T_{soil}) at plot level (T^{plot}) and at a reference station (T^{ref}). Model parameters were either estimated on species (Equation 9) or cultivar-level (Equation 8) or based on literature and therefore fixed. Indicated are the coefficients of determination (R^2 score) of predictions of the best performing temperature response model per training/test combination and parameter estimation level. Overall best performing models per training/test combination are indicated in **bold**.

160 was better suited than plot-based measurements ($\Delta R^2 \geq 0.02$).

161 2.1.2. Soybean growth rate predictions

162 As for the wheat data set, the model performance in soybean was dependent on the relatedness of
163 training and test sets. If the training and test set both originated from the leaf growth measurements
164 (Figure 4, first row), the cultivar-level neural network performed best ($R^2 = 0.39$, RMSE = 0.46h).
165 Using air temperature clearly outperformed soil temperature ($\Delta R^2 = 0.21$).

166 If training and test sets differed, species-level response models performed as good as cultivar-
167 level response models (Figure 4, second and third row). For canopy cover growth predictions,
168 simple cultivar or species-specific models (linear and bi-linear) performed best ($R^2 = 0.82$, RMSE
169 = 1.0%/day). Strikingly, while air temperature performed better than soil temperature for thermal
170 time ($\Delta R^2 = 0.05$), for species and cultivar-specific models, growth was best predicted by soil
171 temperature ($\Delta R^2 = 0.30$).

172 If further reducing the relatedness of training and test sets by predicting plant height with leaf
173 growth models, species-level models were more accurate than cultivar-level models. Literature
174 based, linear thermal time performed equally well as the three best species-level models; i.e., the
175 linear, bi-linear, and asymptotic model ($R^2 = 0.87$, RMSE = 3.8–4.4 mm/day). Nevertheless,
176 differences to the best cultivar-level model were very small ($\Delta R^2 = 0.01$).

177 In contrast to winter wheat, training models directly on soybean plant height data could not
178 restore the advantage of cultivar-level models (Figure 4, last row). While the bi-linear model
179 performed best on the species and cultivar-level ($R^2 = 0.73$, RMSE = 5.1 mm/day), its performance
180 was still worse than that of the thermal time model ($R^2 = 0.87$).

181 2.2. Phenology prediction

182 A second aim of the study was to test the hypothesis whether phenology is driven by the previously
183 extracted cultivar-specific temperature responses or not. Time periods between successive growth
184 stages (e.g., jointing to heading) per cultivar and year were either expressed in thermal time, using
185 species-level non-linear temperature response models, or using cultivar-level models (Equation 11).
186 Then, G×E interactions were estimated using a linear mixed model (Equation 12).

187 Cultivar-level models showed a clear advantage over species-level models (Figure 3c). While the
188 prediction error between models was comparable, using cultivar-level models resulted in higher cul-
189 tivar rank correlations between environments, and better correspondences between overall BLUPs
190 and year-BLUPs. The findings indicated that temperature-compensating with cultivar-level models
191 decreases the estimate G×E effects for phenology, while using thermal time inflates these effects.
192 In the following, detailed results and consequences for G×E analysis are provided.

193 2.2.1. Severity of the estimated G×E interaction for different models

194 Using thermal time as temperature response model resulted in large estimated variances of G×E
195 interactions (Figure 5 and Appendix Figure A.3). Depending on the growth stage, up to 73–82% of
196 the total genotypic variance was related to G×E. Consequently, variety rank changes across years
197 were frequent, and rank correlations between years and overall means varied widely ($r = 0.57–$
198 0.99). RMSEs of predictions in calendar days were larger for earlier growth stages than for later
199 growth stages (7.7 days for vegetative growth versus 1.8 days for maturity) (Figure 6).

200 Using species-level dose-response curve models further increased estimated G×E variances (81–
201 95%) (Figure 5). Correspondingly, rank correlations between years and overall means did not
202 improve ($r = 0.29–0.97$).

203 In contrast, cultivar-level temperature response models resulted in the lowest G×E estimations
204 for two of three phenology periods (vegetative growth, generative growth) (Figure 5a). Highest
205 rank correlations and lowest G×E were found for the bi-linear model in the vegetative phase (34%,
206 $r = 0.90–0.92$) and the asymptotic model in the generative phase (38%, $r = 0.57–1.00$). Differences
207 in RMSEs to thermal time were small (≤ 1.4 days) (Figure 6).

208 2.2.2. Explainability of G×E interactions with other environmental factors

209 To investigate the sources of the estimated G×E interactions after temperature-compensating time,
210 the residuals of the phenology predictions based on genotype effects and the mean of year ef-
211 fects (Equation 12) were further decomposed in components related to environmental indices. For
212 cultivar-level models, moist conditions and frost best explained differences in vegetative growth
213 period duration values and delayed jointing (Figure 6). Extended generative growth and hence
214 delayed heading was mainly related to high global radiation values. For maturity, wet conditions
215 and/or extremes in global radiation best explained delayed senescence.

216 Using thermal time as temperature response model instead of cultivar-level models resulted in
217 weaker relations of residuals to environmental indices. Although predictions were temperature-
218 compensated, remaining relations to temperature indices were indicated. For the last growth pe-
219 riod, only temperature related indices were found to be relevant. Links to drought and limited
220 global radiation—as indicated by the cultivar-level models—were entirely missing.

221 3. Discussion

222 For both soybean and winter wheat, the results indicated an advantage of cultivar-specific non-
223 linear temperature response models if training and test sets were closely related. Using these
224 cultivar-level models for wheat phenology predictions could reduce the observed G×E significantly.

225 The non-linearity of growth responses to temperature has long been suspected and investigated
226 (Shaykewich 1995). Conclusively, the herein found best performing response models for winter

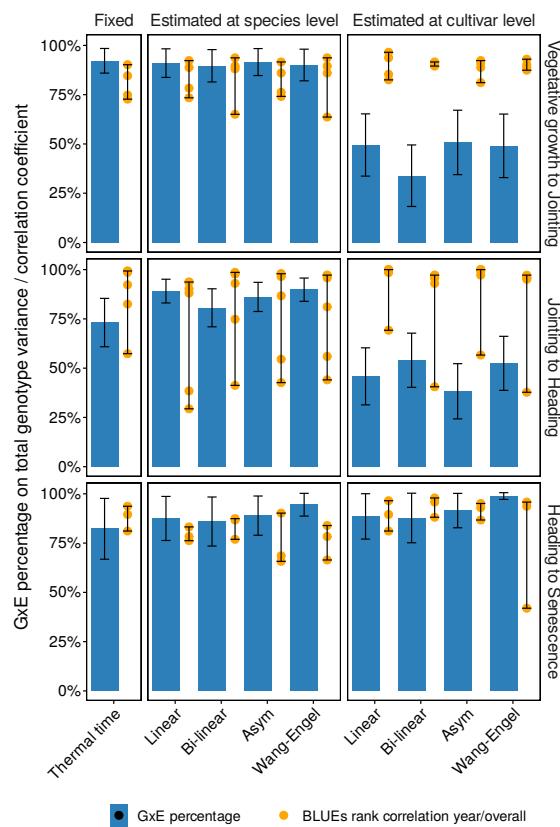


Figure 5: Performance of linear and non-linear models for temperature compensated phenology period duration predictions (Equation 11) in winter wheat. Predictions were based on cultivar-level best linear unbiased estimations (overall BLUPs) of a linear mixed model (Equation 12) that included effects for cultivars (g_i), years (v_j), and year-cultivar interactions ($(vg)_{ij}$). Indicated are the percentage of estimated G×E variance ($\sigma_{(vg)}^2$) on the total genotypic variance ($\sigma_{(vg)}^2 + \sigma_g^2$), and Spearman's rank correlations of year-specific ($v_j + g_i + (vg)_{ij}$) versus overall (g_i) phenology duration predictions (Equation 12).

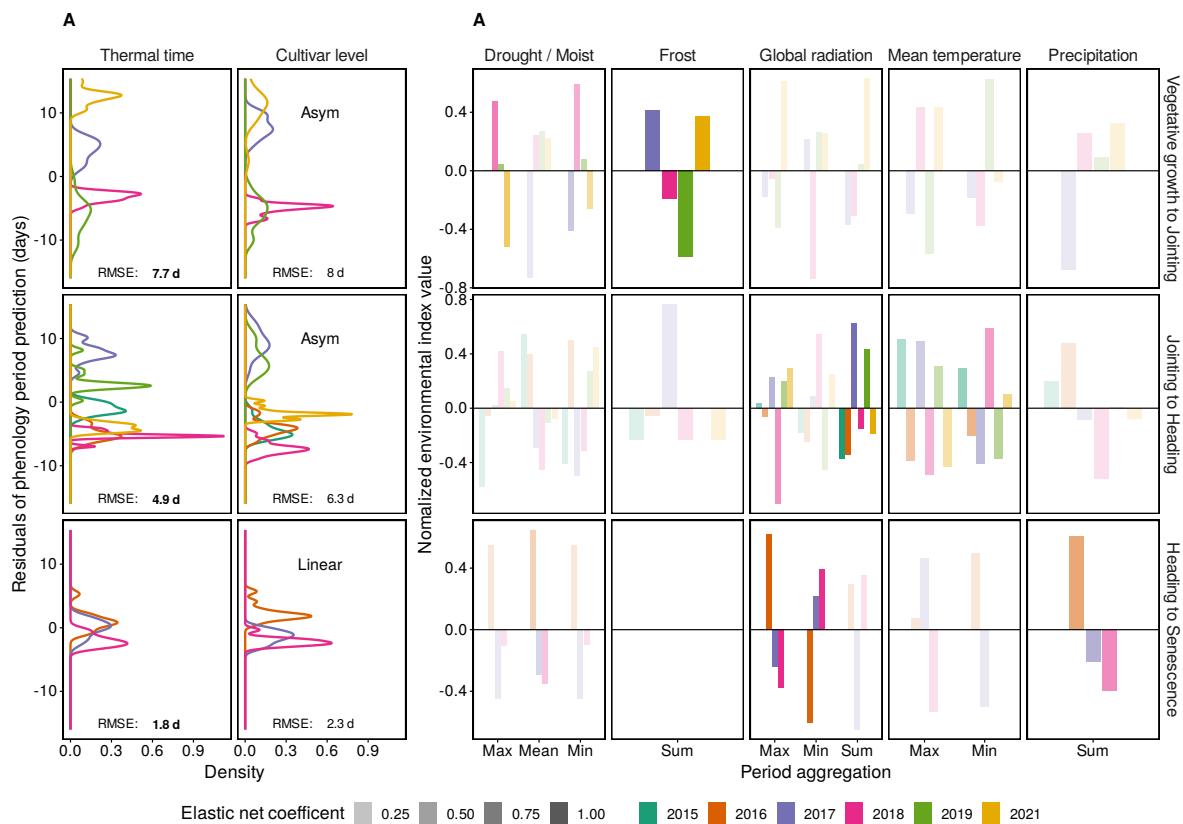


Figure 6: Temperature compensated phenology period duration predictions (Equation 11) for winter wheat, and corresponding environmental indices. Period predictions are based on genotype effects plus the mean of year effects ($g_i + 1/j \sum v_j$) estimated using a linear mixed model (Equation 12). Indicated are (a) residuals of predictions for the thermal time model and the best performing cultivar-level model (asymptotic and linear) and related root-mean-squared error (RMSE), and (b) environmental index values per year for indices that were suggested by an elastic net regression to best explain residuals of cultivar-level models. Residuals (a) and indices (b) with the same sign indicate a positive correlation (high index \rightarrow extended period), differing signs indicate a negative correlation (high index \rightarrow shortened period).

227 wheat are well-known: The Wang-Engel model (Wang and Engel 1998) that performed best in
228 predicting canopy growth is known for its ability to accurately model winter wheat growth (Wang
229 et al. 2017). The asymptotic model that performed best in predicting plant height growth can be
230 seen as simplified Wang-Engel model, given that temperatures do not exceed supra-optimal ranges
231 (Roth, Piepho, and Hund 2022). In contrast, for soybean leaf growth, a neural network model
232 performed best, indicating high degrees of freedom required to accurately predict responses. For
233 measurements at the coarser canopy level, simpler linear and bi-linear models were more accurate.

234 Nevertheless, as other authors noted before (e.g., Parent, Millet, and Tardieu 2019), the su-
235 periority of cultivar-level and non-linear models was not given in all situations. In particular the
236 transferability to other trait levels (i.e., plant organ versus canopy level) and to other growth phases
237 (i.e., vegetative versus generative growth) appeared limited. Large confounding effects in the test
238 sets are suspected. Physiological changes that are not directly related to plant organ growth, e.g.,
239 tillering/branching in the vegetative phase or lodging in the generative phase, may dilute cultivar-
240 specific response signals (i.e., growth rates) on the canopy level. Consequently, simpler models
241 such as species-level thermal time generalize better in such situations.

242 Not only the model choice, but also the covariate measurement level choice may enhance gen-
243 eralization: For winter wheat, the shoot apical meristem is located below the soil surface for half
244 of the lifetime. In contrast, the growing tissue in soybean is above-ground. Consequently, vegeta-
245 tive growth for winter wheat was best predicted using soil temperature, confirming the findings of
246 Jamieson et al. (1995). Surprisingly, for soybean, soil temperature could predict canopy growth
247 more accurately than air temperature. We suspect that this is due to the fact that air temperature
248 measured at a reference station is less representative of in-canopy temperature than soil tempera-
249 ture. Soil temperature courses may also better match the diurnal growth patterns commonly found
250 in soybean (Kronenberg et al. 2020b).

251 Finally, changing cardinal temperatures with time (Porter and Gawith 1999) are an additional
252 concern in temperature response modeling. Indeed, for the different growth periods, the choice
253 of model and covariate level changed, and models performed inferior if not trained on the same
254 growth period data. Nevertheless, for predictions, the division of the crop growth cycle into three
255 consecutive growth phases—vegetative growth, generative growth, and maturity—was sufficient
256 to accurately predict phenology as well as growth rates.

257 In this work, two approaches to derive cultivar-specific responses were proposed, (1) plant or-
258 gan tracker devices for the vegetative growth phase, and (2) high-throughput plant height mea-
259 surements for the generative growth phase. Both methods have been proven to provide reliable
260 estimations for their respective growth phases (Mielewczik et al. 2013; Nagelmüller et al. 2016;
261 Roth, Piepho, and Hund 2022), and this work could confirm their readiness for application. For
262 plant organ tracker approaches, measurements in a few weeks per cultivar are sufficient, while
263 for height data, measuring in multiple years is inevitable (Roth et al. 2022b). Unfortunately, no
264 such method is yet available for the maturity phase, indicating that further research is needed to

265 measure temperature responses in the late season.

266 Stress response related crop modeling may significantly profit from temperature response models
267 that result in lower observed G×E. In our data, a clear clustering of environment means became
268 visible when using asymptotic and linear, cultivar-level models (Figure 6a). For the vegetative
269 growth phase, the years 2017 and 2021 were separated from other years, and differences were
270 best explained by frost and moist conditions. Indeed, such frost events, followed by measurable
271 leaf area reductions, were observed in the field in 2018 and 2021 (Tschurr et al. 2023). In the
272 generative growth phase, the detected relations between heading date and global radiation are in
273 accordance with Benaouda et al. (2022) who found temperature to be the main driver and high
274 global radiation to be the main delay of heading. Finally, for maturity, Anderegg et al. (2020)
275 reported a delayed senescence in the year 2016 due to the extraordinary wet year with severe
276 Septoria tritici blotch (STB) disease pressure, which was confirmed in our data by the relation of
277 residuals to precipitation and global radiation.

278 The primary research question addressed in this study is whether to ignore or incorporate cultivar-
279 specific *per se* temperature responses when modeling. Based on the growth rate predictions (Figure
280 3b), it appears reasonable to agree with Parent, Millet, and Tardieu (2019) that the use of species-
281 level thermal time has a sound theoretical basis. Neglecting cultivar-specific *per se* temperature
282 responses seems justified. However, further testing the thermal time concept on phenology data
283 significantly weakened the soundness of thermal time—ignoring cultivar-level *per se* responses in-
284 flated the estimated G×E interactions (Figure 3c). Based on our results, we have to conclude
285 that ignoring such cultivar differences creates bias in follow-up investigations of other G×E inter-
286 actions, such as those induced by for example frost or drought stress (Figure 6). The tools for
287 assessing cultivar-specific *per se* temperature responses in real-world field conditions are widely
288 available now. With this study, we give implications on how and why those tools should be ap-
289 plied. Consequently, the theoretical concept of thermal time can be taken to the next level, which
290 is cultivar-specific.

291 4. Material and Methods

292 The increase of a trait y related to genotype i with time t in a steady-state growth phase can
293 be modeled using a dose-response function r of covariates \vec{x} and cultivar-specific crop growth
294 parameters $\vec{\theta}_i$ (Roth et al. 2021),

$$295 y_{it} = \int_{t_0}^t r(\vec{\theta}_i; \vec{x}_{t'}) dt'. \quad (1)$$

296 In this framework, complexity may be varied at four levels:

297

- The trait y can be measured at different scales, e.g., at plant organ level, or plant stand
(canopy) level.

- 298 • The dose-response function r can vary in complexity, e.g., using linear regressions, non-
299 linear regressions, semi-parametric splines (Pérez-Valencia et al. 2022), or neural network
300 regressions.
- 301 • The covariates \vec{x} can be measured at different scale, e.g., close to the growing meristem, at
302 the experimental unit (plot) level, or at a reference station.
- 303 • The crop growth parameters $\vec{\theta}_i$ can be estimated at different scale, e.g., at variety/genotype
304 level i , or at species-level.

305 In the following, we pursue this structure, describing how traits were measured, complexity
306 varied, and growth and phenology modeled.

307 Note that in Equation 1, $\vec{\theta}_i$ was defined as cultivar-specific parameter set. As such, the dose-
308 response function r will both model response *per se* (e.g., the base temperature below growth
309 stops) and intrinsic growth rate differences between cultivars (e.g., absolute growth at optimum
310 temperature) (Figure 1f). When replacing $\vec{\theta}_i$ with a species-level parameter set $\vec{\theta}$, r reduces to a
311 function that models relative growth rates. Thermal time is one example of such a function. To
312 scale these relative growth rates to cultivar-specific intrinsic growth rates, one has to scale r to y_{it}
313 using a cultivar-specific factor g_i (Figure 1c),

$$314 y_{it} = \int_{t_0}^t g_i \cdot r(\vec{\theta}; \vec{x}_{t'}) dt'. \quad (2)$$

314 To allow a comparison of species-level and cultivar-level models, Equation 1 was used for cultivar-
315 level models, and Equation 2 with the cultivar-level parameter g_i for species-level models. For
316 further details, please see Equation 8, 9, and 12.

317 4.1. Material

318 All experiments were performed at the ETH research station for plant sciences Lindau-Eschikon,
319 Switzerland ('Eschikon'; 47.449 °N, 8.682 °E, 520 m a.s.l.) on the field of the field phenotyping
320 platform 'FIP' (Kirchgessner et al. 2017). The wheat experiment comprised a set of 12 varieties
321 (CH Claro, CH Nara, Fastnet, Marksman, Ostka Strzelecka, Romanus, Runal, Rywalka, Semafor,
322 Tamaro, Toronto, Winnetou), replicated 2 times per year, and cultivated in 2015–2021 as subset of
323 a larger experiment with approximately 350 genotypes (Kronenberg et al. 2017; Kronenberg et al.
324 2020a; Roth et al. 2020). For leaf elongation tracking, the 12 varieties were additionally grown in
325 four small plots beside the main experiment in 2019. These plots (0.9 m x 1 m) contained three
326 cultivars each, and were sown by hand in stripes of 0.3 m x 1 m.

327 The soybean experiment comprised a set of 3 varieties (Castetis, Gallec, Opaline), replicated 3
328 times per year, cultivated in 2017–2020 as subset of a larger experiment with 36 genotypes (Roth
329 et al. 2022a). Leaf growth tracking was performed directly in the main experiment in 2017.

330 **4.2. Trait measurements**

331 **4.2.1. Leaf length tracking in winter wheat**

332 Leaf elongation rates of 12 wheat cultivars were measured in the field from mid-February to be-
333 ginning of April 2019 using the leaf length tracker (LLT) system described by Nagelmüller et al.
334 (2016). The installation followed the principle of an auxanometer. Briefly, the youngest leaf was
335 attached to a hairpin to which a thread was attached. The thread was guided over several rollers
336 along the panel and held taut with a counter weight (20 g). At the other end, the thread was
337 attached to a white bead that moved over the panel in accordance with the elongation of the leaf.
338 A waterproof CCTV camera (Lupusnet HD - LE934, CMOS sensor, maximal resolution of 1920 ×
339 1080 pixels, Lupus-Electronics® GmbH, Germany) took images of the panel every 2 minutes. A
340 custom software (<https://sourceforge.net/projects/leaf-length-tracker/>) evaluated the position of
341 the beads from the pictures, as they were used as indirect artificial landmarks to measure leaf
342 elongation rate. Measurements were performed on in average 6 replications over 7 weeks (Figure
343 2a).

344 Measured growth rates were corrected for weight-temperature interaction effects based on a
345 calibration performed in a climate chamber. In this calibration setup, the growth of undisturbed
346 leaves was compared with the growth of leaves where a force-equivalent of 20 g was applied. The
347 differences in measured growth rates suggested a cultivar-unspecific correction of 0.004 mm/h per
348 °C.

349 **4.2.2. Leaf growth tracking in soybean**

350 Leaf growth rates of 3 soybean cultivars were measured in the field from the beginning of June
351 to mid-July 2017 using the leaf growth tracker (MARTRACK) system described by Mielewczik et
352 al. (2013). Briefly, beads connected to threads were glued to the emerging leaves and fixed in
353 front of a camera using a wire frame. The same cameras as above were used to record images
354 every 2 minutes. A custom software (<https://sourceforge.net/projects/martrackleaf/>) evaluated
355 the position of the beads from the pictures. Leaf area was then calculated based on the convex
356 hull of bead positions in the planar image space. Relative growth rates were calculated based on
357 differences of logarithmic leaf areas of two successive time points, divided by the time difference.
358 Measurements were performed on in average 3 replications over 4 weeks (Figure 2a).

359 **4.2.3. Canopy cover monitoring based on RGB imaging in winter wheat and soybean**

360 Canopy cover increase was monitored using the high-throughput field phenotyping platform 'FIP'.
361 The FIP platform is—among other sensors—equipped with an RGB camera (EOS 5D Mark II, 35
362 mm lens, Canon Inc., Tokyo, Japan). Plots were monitored with this sensor from a distance of
363 3 m to the ground. This setting results in a ground sampling distance of 0.3 mm/pixel. In the
364 early canopy growth phase, in average 10 measurements per year (2017–2019, 2021) were taken

365 for winter wheat, and in average 5 measurements per year (2017–2018, 2020) for soybean. RGB
366 images were segmented pixel-wise into a plant and a soil fraction using a deep convolutional neural
367 network (Zenkl et al. 2022).

368 To enable a pixel-precise extraction of plot canopy cover values, image time series were first
369 aligned using planar homography. Then, plot-specific shapes were projected to image time points.
370 As feature detection algorithm, SIFT (Lowe 1999) and ORB (Rublee et al. 2011) were used. Feature
371 matching was performed using RANSAC (Fischler and Bolles 1981). Subsequently, the segmented
372 and cutout image parts showing individual plots were further rectified by rotating them step-wise
373 (-1.5° to 1.5° in steps of 0.2°) to maximize the distance between the minimum and maximum of
374 plant pixels in image columns. For canopy cover extraction in winter wheat, only the inner 7 rows
375 (of 9 rows per meter) were considered. For soybean with larger row spacing (3 rows per meter),
376 only the inner row and half of both outer rows were used for further processing.

377 Canopy cover was then calculated as plant pixel ratio per plot. For winter wheat, measurements
378 between approximately the beginning of the year to mid-April were considered, for soybean, mea-
379 surements between approximately mid-May and end of June. Only positive values, i.e., only canopy
380 increase, was used for further processing. All processing was performed in Python using OpenCV
381 and scipy (Virtanen et al. 2020).

382 4.2.4. Plant height monitoring in winter wheat and soybean

383 Plant height increase was monitored using the high-throughput field phenotyping platform 'FIP' as
384 well as drones. The FIP platform is—among other sensors—equipped with an terrestrial laser scan-
385 ning device. The first three years of plant height measurements in winter wheat were collected with
386 this device (Friedli et al. 2016; Kronenberg et al. 2017; Kronenberg et al. 2020a). From the result-
387 ing point clouds, the percentile best matching manual measurements (97th percentile, Kronenberg
388 et al. 2017), was extracted per plot as plant height estimation per time point. For the subsequent
389 years of winter wheat experiments and for all soybean experiments, drone-based Structure-from-
390 Motion (SfM) was used (Roth and Streit 2018; Roth et al. 2022b). From the resulting point clouds,
391 the percentile best matching manual measurements (90th percentile, Roth and Streit 2018) per
392 plot was extracted as plant height estimation per time point.

393 For wheat, measurements were performed on 2 replications on in average 11 time points per year
394 (2015–2019, 2021) that fell into the stem elongation phase (Figure 2c). For soybean, measure-
395 ments were performed on 3 replications on in average 8 time points per year (2017–2020) that fell
396 into the stem elongation phase (Figure 2c). This included measurements between approximately
397 mid-April and end of May for wheat and mid-June to mid-July for soybean.

398 Plot time series were smoothed using P-splines with the R package *scam* (Pya 2019) before further
399 processing to reduce prediction errors origin from autocorrelations of measurement errors.

400 4.2.5. Phenology measurements and estimations in winter wheat

401 Heading and senescence measurements were performed manually by trained persons. Heading was
402 defined as the time point when the inflorescence was fully emerged for $\geq 50\%$ of all shoots (GS 59)
403 (Meier 2018). Heading was measured for all years (2015–2019 and 2021) on 1–2 replications.

404 Senescence was defined as the time point where the senescence of the central plot area has
405 reached its midpoint (Anderegg et al. 2020). Senescence was assessed on two replicates in 2016,
406 2017 and 2018.

407 The start of the stem elongation was estimated for genotypes in two replications based on plant
408 height data using the quarter-of-maximum-elongation rate method (QMER) described in Roth et al.
409 (2021) and Roth et al. (2022b) for the years 2017–2019 and 2021. For 2015 and 2016, no detailed
410 plant height data for the early season were available, wherefore the start was approximated for all
411 genotypes alike (2015-04-28 and 2016-04-15).

412 4.3. Covariate measurements

413 Reference air temperature ($T_{\text{air}}^{\text{ref}}$) at the local weather station (in close proximity to the experimental
414 field) was measured above a grass strip at 0.1 m above ground using Campbell CS215 sensors
415 (Campbell Scientific Inc., U.S.A.). Air temperature inside the experiment ($T_{\text{air}}^{\text{plot}}$) was measured
416 in 2–4 wheat plots at 0.1 m above the ground, therefore above the plants before the start of the
417 stem elongation, and inside the canopy for later growth stages, using Campbell CS215 sensors.
418 Reference soil temperature ($T_{\text{soil}}^{\text{ref}}$) was measured 0.05 m below ground at three reference positions
419 below grass strips using Sentek/Hydrolina soil sensors (Sentek Sensor Technologies, Australia).
420 Soil temperature inside the experiment ($T_{\text{soil}}^{\text{plot}}$) was measured 0.05 m below ground in 2–4 wheat
421 plots using using Sentek/Hydrolina soil sensors. Values of measurements performed at multiple
422 locations (plots or reference positions) were averaged.

423 4.4. Growth modeling

424 4.4.1. Dose-response models

425 As baseline model, thermal time based on hourly temperature recordings was used,

$$r_{\text{linear}}(T) = \max((T - T_{\text{min}}) \cdot a, 0), \quad (3)$$

426 where T_{min} is the base temperature of growth, a the slope, and $\max(0, 0)$ prevents negative growth
427 rate predictions by replacing values lower than zero with zero. This model was called ‘thermal
428 time’ if $a = 1$ and T_{min} was set to the literature based threshold temperature of 0 °C for winter
429 wheat (Baker and Gallagher 1983) and 5 °C for soybean (Whigham and Minor 1978), and ‘linear
430 model’ if T_{min} and a were estimated based on own data.

431 To account for lower growth rates at temperatures close to zero that were observed in LLT data,
432 the linear model was extended to a bi-linear model,

$$r_{\text{bi-linear}}(T) = \max\left(\frac{T}{T_{\min}} \cdot r_{\min}, r_{\min} + (T - T_{\min}) \cdot a, 0\right), \quad (4)$$

433 where r_{\min} is a growth rate ≥ 0 at T_{\min} .

434 Plant height growth rate modeling has shown that an asymptotic model can approximate a Wang-
435 Engel model given that temperatures do not exceed to supra-optimal growth ranges (Roth, Piepho,
436 and Hund 2022). The asymptotic models is defined as

$$r_{\text{asym}} = \max(r_{\max} \cdot (1 - \exp(-\exp(s) \cdot (T - T_{\min}))), 0), \quad (5)$$

437 where r_{\max} is the maximum absolute growth rate (and therefore the asymptote of the curve), T_{\min}
438 the base temperature where the growth rate is zero, and s characterizes the steepness of the re-
439 sponse (natural logarithm of the rate constant, thus 'lrc') (Pinheiro and Bates 2000).

440 Finally, the original Wang-Engel model (Wang et al. 2017) is defined as

$$r_{\text{Wang-Engel}}(T) = r_{\max} \cdot \frac{2(T - T_{\min})^{\alpha} (T_{\text{opt}} - T_{\min})^{\alpha} - (T - T_{\min})^{2\alpha}}{(T_{\text{opt}} - T_{\min})^{2\alpha}} \\ \alpha = \frac{\ln(2)}{\ln\left((T_{\max} - T_{\min})/(T_{\text{opt}} - T_{\min})\right)}, \quad (6)$$

441 where r_{\max} is the maximum absolute growth rate at the temperature optimum T_{opt} , T_{\min} the lower
442 base temperature and T_{\max} the upper base temperature of growth.

443 4.4.2. Model fitting to temporally resolved leaf growth tracking device data

444 Before training models, the data were split in training and test sets using a ratio of 6.37:1 for
445 wheat and 6.31:1 for soybean, taking care that time series of replications/leaves stayed together in
446 either the training or test set. The linear and non-linear models defined above were then fitted to
447 training data using maximum likelihood optimization. In contrast to previous attempts to process
448 leaf growth tracking data (Mielewczik et al. 2013; Nagelmüller et al. 2016), the raw measurement
449 data were not smoothed. Instead, the measurement error was estimated using nested models with
450 residual autocorrelation of order 1–3. The best fitting model was selected based on the Bayesian
451 Information Criterion (BIC). Models were fitted using the base R (R Core Team 2019) function *mle*.

452 In addition to the parametric linear and non-linear models, two so called 'semi-parametric' mod-
453 els were trained. The first one was based on a hierarchical spline approach for longitudinal data
454 (Durbán et al. 2005) that models a general population trend, a genotype trend, and a replication
455 trend (Pérez-Valencia et al. 2022, R-code herein provided). We modified this approach in the way
456 that time t was replaced by temperature T as 'longitudinal dimension', thus fitting hierarchical
457 splines that represent dose-response curves.

458 The second ‘semi-parametric’ model approach was based on a multi-output neural network: A
459 small network with two hidden layers of size 5 and sigmoid activation functions was trained to
460 regress temperature on growth rates. An additional layer was then added to the network that
461 transformed the single-output in a multi-output of size 12 (one for each genotype). This layer was
462 not activated, thus representing a linear transformation only. Training and validation sets were
463 split with a 9:1 ratio, loss was calculated as mean squared error (MSE). L1 regularization was
464 applied to the last layer. Optimization was done using the Adam optimizer in Pytorch Lightning
465 with 1500 epochs in pre-training and 800 epochs for fine-tuning with early stopping if the MSE did
466 not improve by more than 0.0001 for 40 epochs. Initial learning rate was 0.05 with exponential
467 decay with gamma 0.996, precision was 16 bit (half-precision), batch size 2000. Early stopping
468 was always reached.

469 4.4.3. Model fitting to canopy cover and height data

470 As for the leaf growth tracking data, canopy cover and height data were split in a training and test
471 set. Here, the split was performed based on whole years, and repeated in a cross-validation (CV)
472 scheme. For wheat, this resulted in a 5:1 split ratio for plan height data in a 6-fold CV. For soybean,
473 this resulted in a 3:1 split ratio for plan height data in a 4-fold CV.

474 The parametric models were then fit to the training set using a maximum likelihood approach that
475 can fit high-resolution (hours) temperature courses and low-resolution (days) trait measurements
476 (Roth, Piepho, and Hund 2022).

477 An attempt to use canopy cover data to train models resulted in very poor estimates or failed
478 convergence. As a consequence, canopy cover data were only used for model testing and not for
479 fitting.

480 4.5. Model testing for growth predictions

481 Leaf growth tracking data originated from the same year. Consequently, the train/test split was
482 used to calculate performance values by pooling all measurement values of the test set per cultivar.
483 All other data were collected in differing years. Therefore, a random regression model was used for
484 model testing. This approach was chosen based on the longitudinal character of plot-based time
485 series, where one has to expect temporally and spatially correlated measurement errors (Roth et al.
486 2021).

487 For such measurements, a trait y is measured at repeated times t for genotypes i in the year j
488 at the replication k . Time t is ‘linearized’ using the different dose-response models, $r_{it} = r(\vec{\theta}_i; T_t)$.
489 Consequently, the difference between two consecutive measurements can be expressed as

$$490 \quad \Delta y_{ijk} = y_{ijk} - y_{ijk-1} = r_{it} \times (\mu + g_i + v_j) + b_j, \quad (7)$$

491 where μ is a fixed overall coefficient, g_i and v_j random coefficients related to genotypes and years,

492 and b_j a year-specific offset. The random coefficient structure was estimated using a variance-
493 covariance structure among genotype replications g_i and years v_j . The model was fitted in R using
494 ASReml-R (Butler 2018).

495 The reported coefficients of determination of the predictions (R^2 score) and root-mean-squared
496 errors (RMSE) were based on the fixed overall coefficient μ for cultivar-level models,

497
$$\Delta \hat{y}_{ijk} = r_i \times \mu, \quad (8)$$

498 and on the fixed overall coefficient μ and random genotype coefficient g_i for species-level models
499 and thermal time,

500
$$\Delta \hat{y}_{ijk} = r_i \times (\mu + g_i). \quad (9)$$

501 The R^2 score was defined as

502
$$R^2 = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}} \quad (10)$$

503 where SS_{tot} the total sum of squared and SS_{res} is the residual sum of squares in relation to the 1:1
504 line.

505 4.6. Model testing for phenology predictions

506 To test the prediction ability of phenology period duration, a linear mixed model was used. Such
507 an approach can account for random sources of variation such as genotype effects and G×E inter-
508 actions (Piepho, Büchse, and Emrich 2003). For phenology timing periods, two time points t_1 and
509 t_2 are measured per genotype i in the year j at the replication k . Then, the time period in between
510 is ‘linearized’ using the different dose-response models, resulting in a new trait y ,

511
$$y_{ijk} = \int_{t_{ijk,1}}^{t_{ijk,2}} r(\vec{\theta}_i; T_t) dt', \quad (11)$$

512 where $t_{ijk,1}$ is the start of the period and $t_{ijk,2}$ the end of the period. Note that the new trait y_{ijk}
513 is on a genotype-specific scale. To allow comparison and variance decomposition, y_{ijk} values were
514 scaled to one per genotype. After this time period transformation, overall best linear unbiased
515 predictions (BLUPs) were estimated using the model

516
$$y_{ijk} = \mu + v_j + g_i + (vg)_{ij} + e_{ijk}, \quad (12)$$

517 where μ is a global intercept, v_j a fixed year-effect, g_i a random genotype effect, and $(vg)_{ij}$ random
518 genotype-environment effects modeled using a diagonal variance structure, allowing for differing
519 genotypic variances for years. The residual variance structure e_{ijk} was set to account for random

520 row and range effects and random interactions of row and range effects, thus accounting for dif-
521 fering spatial gradients for years. The model was fitted in R using *ASReml-R* (Butler 2018).

522 **4.6.1. Residual analysis based on environmental indices**

523 Environmental indices were calculated based on daily mean, minimum, and maximum tempera-
524 ture, precipitation sum and global radiation (Supplementary materials, Table B.1). Precipitation
525 values were further transformed into the Standardised Precipitation Index (SPI) (McKee, Doesken,
526 and Kleist 1993) and the Standardised Precipitation and Evapotranspiration Index (SPEI) (Vicente-
527 Serrano, Beguería, and López-Moreno 2010) using the Thornthwaite transformation (Thornthwaite
528 1948) to estimate evapotranspiration. SPI and SPEI were calculated using the R package *SPEI* (Be-
529 guería et al. 2014). Both indices were calculated with a 30-day smoothing to account for effects
530 within each phenological period rather than long-term effects. For each index, the minimum, max-
531 imum and cumulative values per phenological period were calculated. Furthermore, a cold stress
532 index considering the temperature sum of minimum daily temperatures below 0 °C was added.
533 Drought and moisture extreme indices were calculated using the sum of SPI and SPEI values above
534 and below a threshold of 1 and 1.75, respectively -1 and -1.75. Negative values represent very
535 moist periods and can therefore define wet seasons. Positive values indicate dry periods and can
536 therefore correlate with periods of drought stress. In addition to the environmental indices, the
537 mean growth period duration in days per cultivar was added to the list of features. A lasso re-
538 gression was then applied to the residuals of the phenology prediction models, using a lasso and
539 elastic-net regularized generalized linear model from the R package *glmnet* (Friedman et al. 2022).
540 The model was fitted using the R package *caret* (Kuhn 2008) with a search grid for $\lambda = 10^{-8}$ to 5
541 and $\alpha = 1$ in a repeated CV with 10 repeats and 5 folds. Features were centered and scaled before
542 fitting.

543 **A. Appendix**

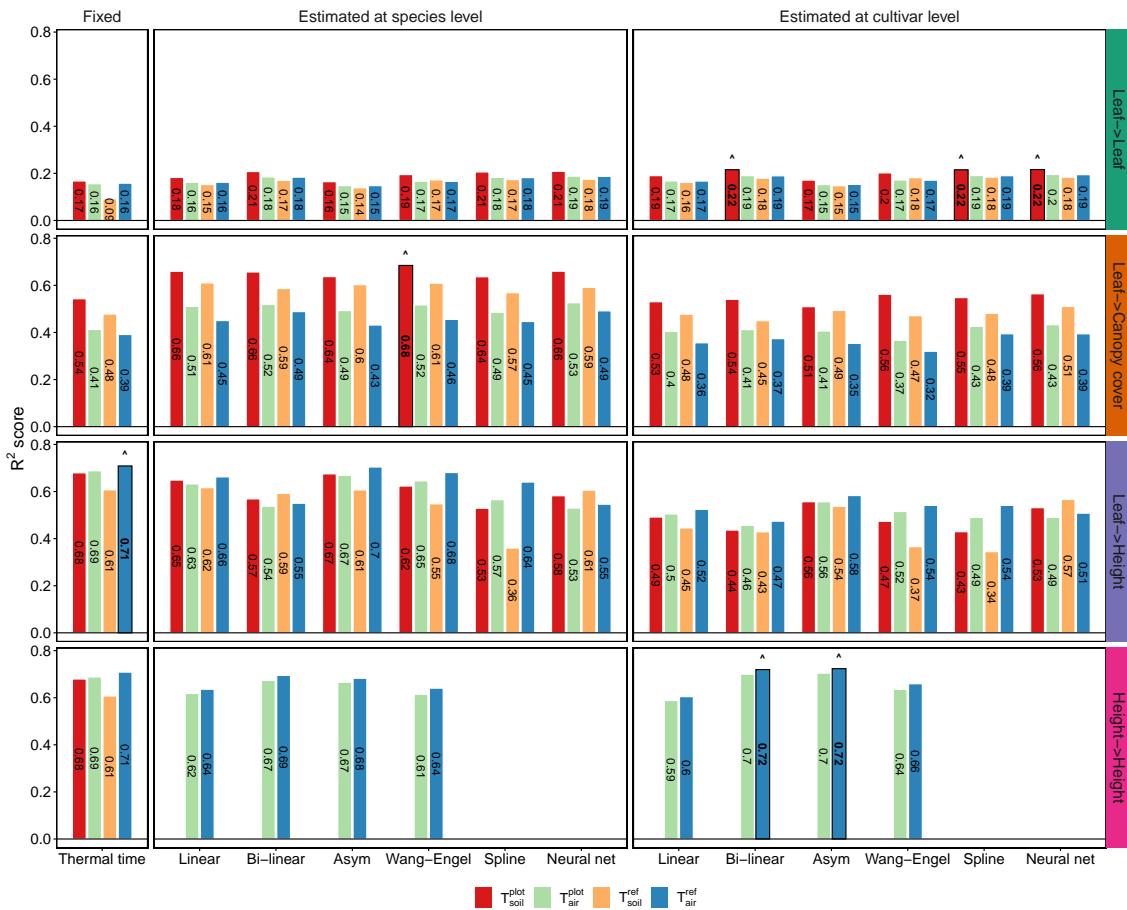


Figure A.1: Performance of growth rate predictions for winter wheat. Models were trained on leaf length data (Leaf->) and plant height data (Height->). Predictions were tested on unseen leaf length data (->Leaf), canopy cover data (->Canopy cover), and plant height data (->Height). The covariate temperature was measured in air (T_{air}) and soil (T_{soil}) at plot level (T^{plot}) and at a reference station (T^{ref}). Indicated are the coefficients of determination (R^2 score) of predictions based on the corresponding temperature response model. At the species-level, predictions were based on an overall coefficient and genotype coefficients (Equation 9). For cultivar-level models, the genotype specificity is already incorporated in the response model, and predictions therefore based on an overall coefficient only (Equation 8). Coefficients were fitted using a random regression model with random coefficients for years and plots and the mentioned fixed overall coefficient and genotype coefficients (Equation 7).

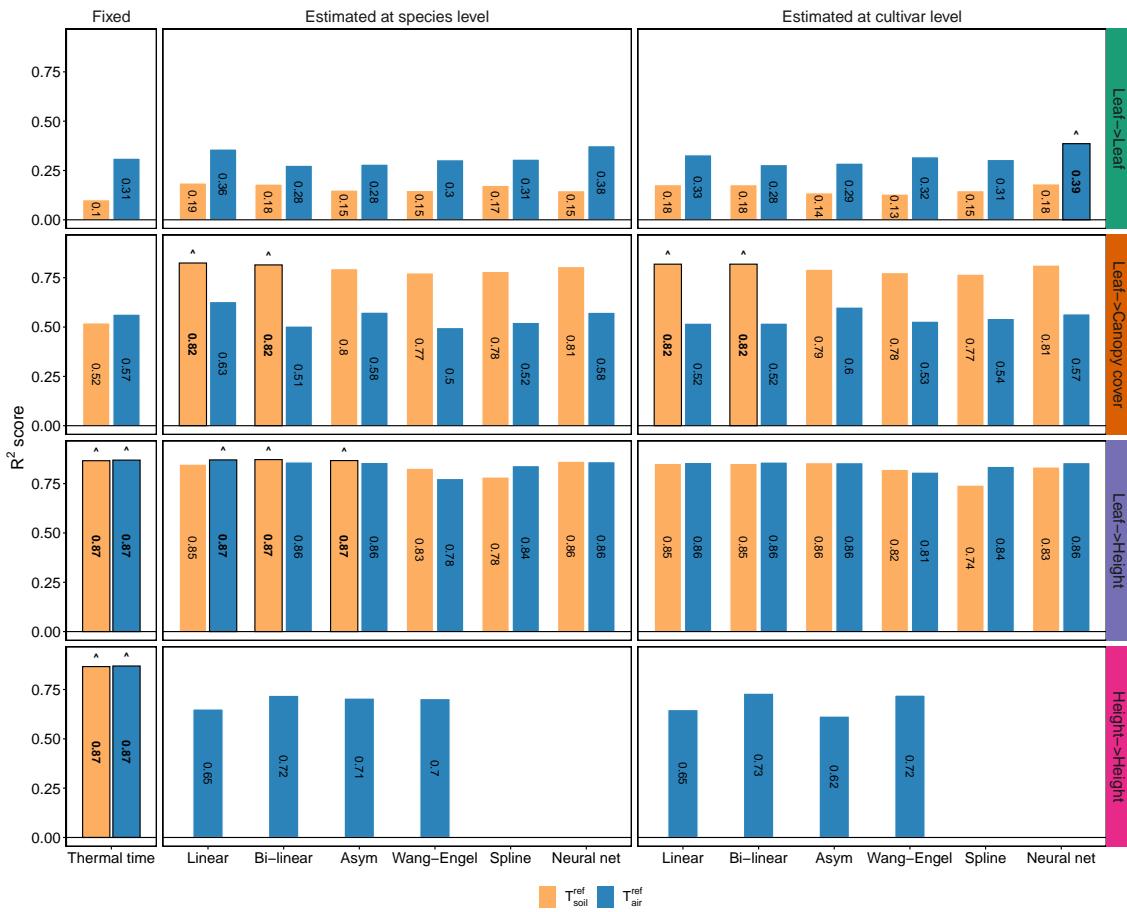


Figure A.2: Performance of growth rate predictions for soybean. Models were trained on leaf area data (Leaf->) and plant height data (Height->). Predictions were tested on unseen leaf area data (->Leaf), canopy cover data (->Canopy cover), and plant height data (->Height). The covariate temperature was measured in air (T_{air}) and soil (T_{soil}) at a reference station (T^{ref}). Indicated are the coefficients of determination (R^2 score) of predictions based on the corresponding temperature response model. At the species-level, predictions were based on an overall coefficient and genotype coefficients (Equation 9). For cultivar-level models, the genotype specificity is already incorporated in the response model, and predictions therefore based on an overall coefficient only (Equation 8). Coefficients were fitted using a random regression model with random coefficients for years and plots and the mentioned fixed overall coefficient and genotype coefficients (Equation 7).

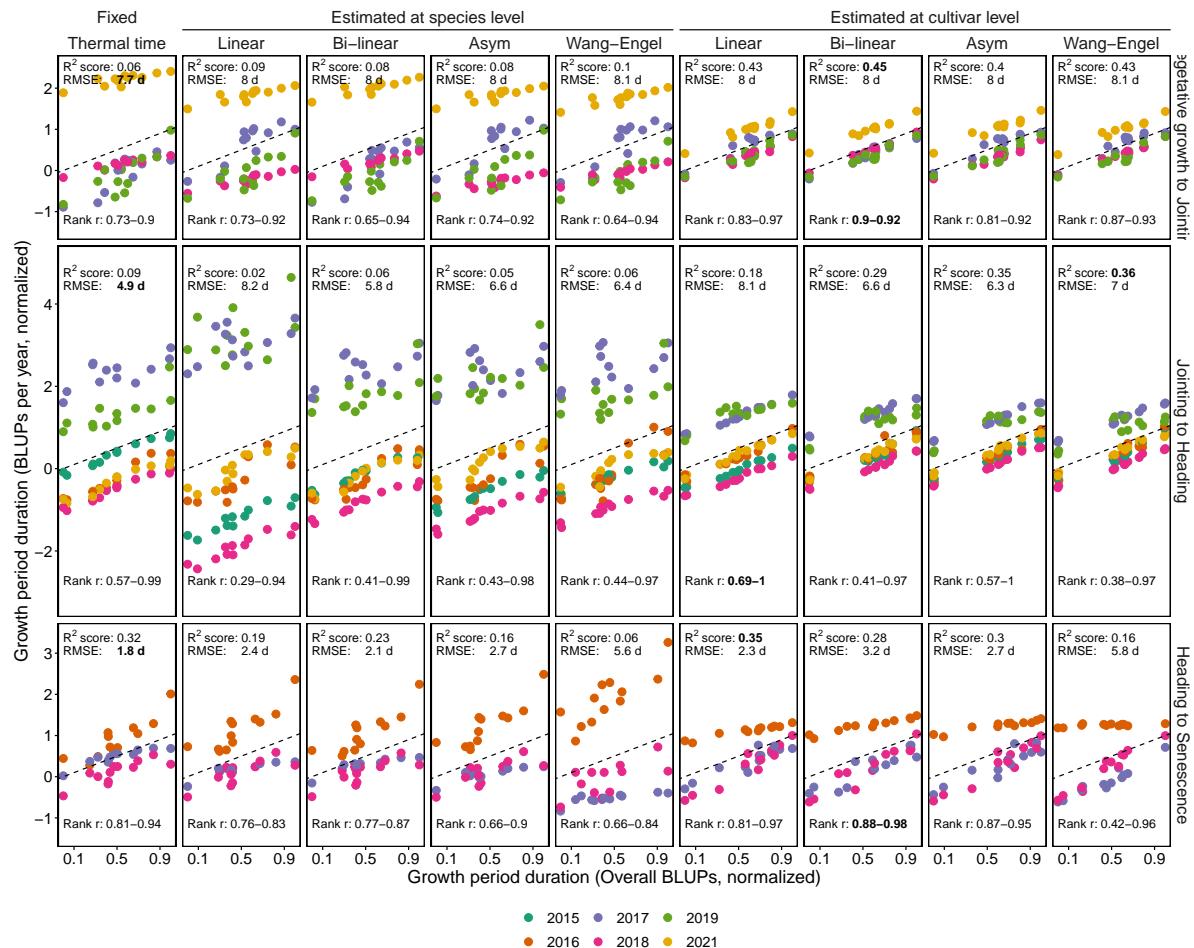


Figure A.3: Performance of phenology period duration predictions for winter wheat. Predictions were based on cultivar-level best linear unbiased estimations (overall BLUPs) of a linear mixed model that included effects for cultivars, years, and year-cultivar interactions (Equation 12). The linear mixed model itself was fitted to thermal time, cultivar-level temperature response model, and species-level temperature response model outputs from growth rate fits.

544 References

545 Anderegg, Jonas, Kang Yu, Helge Aasen, Achim Walter, Frank Liebisch, and Andreas Hund (2020).
546 “Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm”. In:
547 *Frontiers in Plant Science* 10.1749. doi: 10.3389/fpls.2019.01749.

548 Baker, C. K. and J. N. Gallagher (1983). “The Development of Winter Wheat in the Field 1. Rela-
549 tion between Apical Development and Plant Morphology within and between Seasons”. In: *The*
550 *Journal of Agricultural Science* 101, pp. 327–335. doi: 10.1017/S0021859600037631.

551 Beguería, Santiago, Sergio M. Vicente-Serrano, Fergus Reig, and Borja Latorre (2014). “Standard-
552 ized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspira-
553 tion models, tools, datasets and drought monitoring”. In: *International Journal of Climatology*
554 34.10, pp. 3001–3023. doi: 10.1002/joc.3887.

555 Benaouda, Salma, Said Dadshani, Patrice Koua, Jens Léon, and Agim Ballvora (Aug. 1, 2022).
556 “Identification of QTLs for Wheat Heading Time across Multiple-Environments”. In: *Theoretical*
557 *and Applied Genetics* 135.8, pp. 2833–2848. doi: 10.1007/s00122-022-04152-6.

558 Bogard, Matthieu, Catherine Ravel, Etienne Paux, Jacques Bordes, François Balfourier, Scott C.
559 Chapman, Jacques Le Gouis, and Vincent Allard (Nov. 1, 2014). “Predictions of Heading Date in
560 Bread Wheat (Triticum Aestivum L.) Using QTL-based Parameters of an Ecophysiological Model”.
561 In: *Journal of Experimental Botany* 65.20, pp. 5849–5865. doi: 10.1093/jxb/eru328.

562 Bonhomme, Raymond (2000). “Bases and Limits to Using ‘degree.Day’ Units”. In: *European Journal*
563 *of Agronomy* 13, pp. 1–10. doi: 10.1016/S1161-0301(00)00058-7.

564 Butler, David (2018). *asreml: Fits the Linear Mixed Model*. R package version 4.1.0.93.

565 Durbán, M., J. Harezlak, M. P. Wand, and R. J. Carroll (2005). “Simple Fitting of Subject-Specific
566 Curves for Longitudinal Data”. In: *Statistics in Medicine* 24.8, pp. 1153–1167. doi: 10.1002/
567 sim.1991.

568 Fischler, Martin A and Robert C Bolles (1981). “Random Sample Consensus: A Paradigm for Model
569 Fitting with Applications to Image Analysis and Automated Cartography”. In: *Graphics and Image*
570 *Processing* 24.6, pp. 381–395.

571 Friedli, Michael, Norbert Kirchgessner, Christoph Grieder, Frank Liebisch, Michael Mannale, and
572 Achim Walter (2016). “Terrestrial 3D Laser Scanning to Track the Increase in Canopy Height
573 of Both Monocot and Dicot Crop Species under Field Conditions”. In: *Plant Methods* 12.9. doi:
574 10.1186/s13007-016-0109-7.

575 Friedman, Jerome, Trevor Hastie, Rob Tibshirani, and Balasubramanian Narasimhan (2022). “Pack-
576 age ‘glmnet’ Type Package Title Lasso and Elastic-Net Regularized Generalized Linear Models”.
577 In: doi: 10.18637/jss.v033.i01.

578 Grieder, Christoph, Andreas Hund, and Achim Walter (2015). “Image Based Phenotyping during
579 Winter: A Powerful Tool to Assess Wheat Genetic Variation in Growth Response to Temperature”.
580 In: *Functional Plant Biology* 42, pp. 387–396. doi: 10.1071/fp14226.

581 Hammer, Graeme, Charlie Messina, Alex Wu, and Mark Cooper (Jan. 1, 2019). “Biological Reality
582 and Parsimony in Crop Models—Why We Need Both in Crop Improvement!” In: *in silico Plants*
583 1.1, diz010. doi: 10.1093/insilicoplants/diz010.

584 Jamieson, P. D., I. R. Brooking, J. R. Porter, and D. R. Wilson (1995). “Prediction of Leaf Appearance
585 in Wheat: A Question of Temperature”. In: *Field Crops Research* 41.1, pp. 35–44. doi: 10.1016/
586 0378-4290(94)00102-I.

587 Kirchgessner, Norbert, Frank Liebisch, Kang Yu, Johannes Pfeifer, Michael Friedli, Andreas Hund,
588 and Achim Walter (2017). “The ETH Field Phenotyping Platform FIP: A Cable-Suspended Multi-
589 Sensor System”. In: *Functional Plant Biology* 44, pp. 154–168. doi: 10.1071/FP16165.

590 Kronenberg, Lukas, Steven Yates, Martin P Boer, Norbert Kirchgessner, Achim Walter, and Andreas
591 Hund (2020a). “Temperature Response of Wheat Affects Final Height and the Timing of Stem
592 Elongation under Field Conditions”. In: *Journal of Experimental Botany*. doi: 10.1093/jxb/eraa471.

593 Kronenberg, Lukas, Steven Yates, Shiva Ghiasi, Lukas Roth, Michael Friedli, Michael E. Ruckle,
594 Roland A. Werner, Flavian Tschurr, Melanie Binggeli, Nina Buchmann, Bruno Studer, and Achim
595 Walter (2020b). “Rethinking Temperature Effects on Leaf Growth, Gene Expression and Metabolism:
596 Diel Variation Matters”. In: *Plant, Cell and Environment*, pp. 1–15. doi: 10.1111/pce.13958.

597 Kronenberg, Lukas, Kang Yu, Achim Walter, and Andreas Hund (2017). “Monitoring the Dynamics
598 of Wheat Stem Elongation: Genotypes Differ at Critical Stages”. In: *Euphytica* 213.157. doi:
599 10.1007/s10681-017-1940-2.

600 Kuhn, Max (2008). “Building Predictive Models in R Using the caret Package”. In: *Journal of Sta-
601 tistical Software, Articles* 28.5, pp. 1–26. doi: 10.18637/jss.v028.i05.

602 Lowe, David G. (1999). “Object Recognition from Local Scale-Invariant Features”. In: *Proceedings
603 of the IEEE International Conference on Computer Vision* 2, pp. 1150–1157. doi: 10.1109/iccv.
604 1999.790410.

605 McKee, Thomas B., Nolan J. Doesken, and John Kleist (1993). “The Relationship of Drought Fre-
606 quency and Duration to Time Scales”. In: *Proceedings of the VIII Conference on Applied Climatology*.
607 Anaheim, California, pp. 179–184.

608 Meier, U. (2018). *Growth Stages of Mono-and Dicotyledonous Plants: BBCH-Monograph*. Open Agrar
609 Reppositorium. doi: 10.5073/20180906-074619.

610 Messina, C. D., F. Technow, T. Tang, R. Totir, C. Gho, and M. Cooper (2018). “Leveraging Biological
611 Insight and Environmental Variation to Improve Phenotypic Prediction: Integrating Crop Growth
612 Models (CGM) with Whole Genome Prediction (WGP)”. In: *European Journal of Agronomy* 100
613 (December 2016), pp. 151–162. doi: 10.1016/j.eja.2018.01.007.

614 Mielewczik, Michael, Michael Friedli, Norbert Kirchgessner, and Achim Walter (2013). “Diel Leaf
615 Growth of Soybean: A Novel Method to Analyze Two-Dimensional Leaf Expansion in High Tem-
616 poral Resolution Based on a Marker Tracking Approach (Martrack Leaf)”. In: *Plant Methods* 9.30.
617 doi: 10.1186/1746-4811-9-30. pmid: 23883317.

619 Millet, Emilie J., Willem Kruijer, Aude Coupel-Ledru, Santiago Alvarez Prado, Llorenç Cabrera-
620 Bosquet, Sébastien Lacube, Alain Charcosset, Claude Welcker, Fred van Eeuwijk, and François
621 Tardieu (2019). “Genomic Prediction of Maize Yield across European Environmental Conditions”.
622 In: *Nature Genetics* 51.6, pp. 952–956. DOI: 10.1038/s41588-019-0414-y.

623 Nagelmüller, Sebastian, Norbert Kirchgessner, Steven Yates, Maya Hiltbold, and Achim Walter (2016).
624 “Leaf Length Tracker: A Novel Approach to Analyse Leaf Elongation Close to the Thermal Limit
625 of Growth in the Field”. In: *Journal of Experimental Botany* 67.6, pp. 1897–1906. DOI: 10.1093/
626 jxb/erw003.

627 Ochagavía, Helga, Paula Prieto, Meluleki Zikhali, Simon Griffiths, and Gustavo A. Slafer (Feb. 22,
628 2019). “Earliness Per Se by Temperature Interaction on Wheat Development”. In: *Scientific Re-*
629 *ports* 9.1 (1), p. 2584. DOI: 10.1038/s41598-019-39201-6.

630 Parent, Boris, Emilie J. Millet, and François Tardieu (2019). “The Use of Thermal Time in Plant Stud-
631 ies Has a Sound Theoretical Basis Provided That Confounding Effects Are Avoided”. In: *Journal*
632 *of Experimental Botany* 70.9, pp. 2359–2370. DOI: 10.1093/jxb/ery402. pmid: 31091318.

633 Parent, Boris and François Tardieu (2012). “Temperature Responses of Developmental Processes
634 Have Not Been Affected by Breeding in Different Ecological Areas for 17 Crop Species”. In: *New*
635 *Phytologist* 194, pp. 760–774. DOI: 10.1111/j.1469-8137.2012.04086.x.

636 Pauli, Duke, Scott C. Chapman, Rebecca Bart, Christopher N. Topp, Carolyn J. Lawrence-Dill, Jesse
637 Poland, and Michael A. Gore (2016). “The Quest for Understanding Phenotypic Variation via
638 Integrated Approaches in the Field Environment”. In: *Plant Physiology* 172, pp. 662–634. DOI:
639 10.1104/pp.16.00592. pmid: 27482076.

640 Pérez-Valencia, Diana M, María Xosé Rodríguez-Álvarez, Martin P Boer, Lukas Kronenberg, Andreas
641 Hund, Llorenç Cabrera Bosquet, Emilie J Millet, and Fred A van Eeuwijk (2022). “A Two-stage
642 Approach for the Spatio-temporal Analysis of High-throughput Phenotyping Data”. In: *Scientific*
643 *Reports* 12.3177. DOI: 10.1038/s41598-022-06935-9.

644 Piepho, H P, A Büchse, and K Emrich (2003). “A Hitchhiker’s Guide to Mixed Models for Random-
645 ized Experiments”. In: *J. Agronomy & Crop Science* 189, pp. 310–322. DOI: 10.1046/j.1439-
646 037X.2003.00049.x.

647 Pinheiro, José C. and Douglas M. Bates (2000). *Mixed-Effects Models in S and S-PLUS*. New York:
648 Springer-Verlag New York.

649 Porter, John R. and Megan Gawith (1999). “Temperatures and the Growth and Development of
650 Wheat a Review”. In: *European Journal of Agronomy* 10, pp. 23–36. DOI: 10.1016/S1161-
651 0301(98)00047-1.

652 Pya, Natalya (2019). *scam: Shape Constrained Additive Models*. R package version 1.2-5.

653 R Core Team (2019). *R: A Language and Environment for Statistical Computing*. R Foundation for
654 Statistical Computing. Vienna, Austria.

655 Ramirez-Villegas, Julian, James Watson, and Andrew J. Challinor (2015). “Identifying Traits for
656 Genotypic Adaptation Using Crop Models”. In: *Journal of Experimental Botany* 66.12, pp. 3451–
657 3462. DOI: 10.1093/jxb/erv014. pmid: 25750429.

658 Roth, Lukas, Christoph Barendregt, Claude-Alain Bétrix, Andreas Hund, and Achim Walter (2022a).
659 “High-Throughput Field Phenotyping of Soybean: Spotting an Ideotype”. In: *Remote Sensing of*
660 *Environment* 269.112797. DOI: 10.1016/J.RSE.2021.112797.

661 Roth, Lukas, Moritz Camenzind, Helge Aasen, Lukas Kronenberg, Christoph Barendregt, Karl-Heinz
662 Camp, Achim Walter, Norbert Kirchgessner, and Andreas Hund (2020). “Repeated Multiview
663 Imaging for Estimating Seedling Tiller Counts of Wheat Genotypes Using Drones”. In: *Plant Phe-*
664 *nomics* 2020.3729715. DOI: 10.34133/2020/3729715.

665 Roth, Lukas, Dario Fossati, Patrick Krähenbühl, Achim Walter, and Andreas Hund (June 27, 2023).
666 “Image-based Phenomic Prediction Can Provide Valuable Decision Support in Wheat Breeding”.
667 In: *Theoretical and Applied Genetics* 136.7, p. 162. DOI: 10.1007/s00122-023-04395-x.

668 Roth, Lukas, Lukas Kronenberg, Achim Walter, Helge Aasen, Jens Hartung, Fred van Eeuwijk, Hans-
669 Peter Piepho, and Andreas Hund (2022b). “High-throughput field phenotyping reveals that se-
670 lection in breeding has affected the phenology and temperature response of wheat in the stem
671 elongation phase”. In: *bioRxiv*. DOI: 10.1101/2022.09.05.506627. eprint: <https://www.biorxiv.org/content/10.1101/2022.09.05.506627>.

672 Roth, Lukas, Hans-Peter Piepho, and Andreas Hund (2022). “Phenomics Data Processing: Extract-
673 ing Dose-Response Curve Parameters from High-Resolution Temperature Courses and Repeated
674 Field-Based Wheat Height Measurements”. In: *in silico Plants* 4.1. DOI: 10.1093/insilicoplants/
675 diac007.

676 Roth, Lukas, María Xosé Rodríguez-Álvarez, Fred van Eeuwijk, Hans-Peter Piepho, and Andreas
677 Hund (2021). “Phenomics Data Processing: A Plot-Level Model for Repeated Measurements to
678 Extract the Timing of Key Stages and Quantities at Defined Time Points”. In: *Field Crops Research*
679 274.108314. DOI: 10.1016/j.fcr.2021.108314.

680 Roth, Lukas and Bernhard Streit (2018). “Predicting Cover Crop Biomass by Lightweight UAS-based
681 RGB and NIR Photography: An Applied Photogrammetric Approach”. In: *Precision Agriculture* 19,
682 pp. 93–114. DOI: 10.1007/s11119-017-9501-1.

683 Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary Bradski (2011). “ORB: An Efficient Alter-
684 native to SIFT or SURF”. In: *Proceedings of the IEEE International Conference on Computer Vision*,
685 pp. 2564–2571. DOI: 10.1109/ICCV.2011.6126544.

686 Sadras, V. O., M. P. Reynolds, A. J. de la Vega, P. R. Petrie, and R. Robinson (2009). “Phenotypic
687 Plasticity of Yield and Phenology in Wheat, Sunflower and Grapevine”. In: *Field Crops Research*
688 110, pp. 242–250. DOI: 10.1016/j.fcr.2008.09.004.

689 Saiyed, I. M., P. R. Bullock, H. D. Sapirstein, G. J. Finlay, and C. K. Jarvis (May 2009). “Thermal
690 Time Models for Estimating Wheat Phenological Development and Weather-Based Relationships

691

692 to Wheat Quality". In: *Canadian Journal of Plant Science* 89.3, pp. 429–439. DOI: 10.4141/693 CJPS07114.

694 Salazar-Gutierrez, M. R., J. Johnson, B. Chaves-Cordoba, and G. Hoogenboom (2013). "Relation-695 ship of Base Temperature to Development of Winter Wheat". In: *International Journal of Plant*
696 *Production* 7.4, pp. 741–762.

697 Shaykewich, C. F. (Apr. 1995). "An Appraisal of Cereal Crop Phenology Modelling". In: *Canadian*
698 *Journal of Plant Science* 75.2, pp. 329–341. DOI: 10.4141/cjps95-057.

699 Slafer, G. A. (June 1996). "Differences in Phasic Development Rate amongst Wheat Cultivars In-700 dependent of Responses to Photoperiod and Vernalization. A Viewpoint of the Intrinsic Earli-701 ness Hypothesis". In: *The Journal of Agricultural Science* 126.4, pp. 403–419. DOI: 10.1017/702 S0021859600075493.

703 Slafer, Gustavo A., Adriana G. Kantolic, Maria L. Appendino, Gabriela Tranquilli, Daniel J. Miralles,
704 and Roxana Savin (2015). "Genetic and Environmental Effects on Crop Development Determin-705 ing Adaptation and Yield". In: *Crop Physiology. Applications for Genetic Improvement and Agron-706 omy*. Ed. by Victor O. Sadras and Daniel F. Calderini. London, United Kingdom: Elsevier. DOI:
707 10.1016/B978-0-12-417104-6.00012-1.

708 Steinberg, Robert A and W.W. Garner (1936). "Response of Certain Plants to Length of Day and
709 Temperature under Controlled Conditions". In: *Journal of Agricultural Research* 52.12, pp. 943–
710 960.

711 Tardieu, F, I S C Granato, E J Van Oosterom, B Parent, and G L Hammer (2020). "Are Crop and De-712 tailed Physiological Models Equally 'Mechanistic' for Predicting the Genetic Variability of Whole-713 Plant Behaviour? The Nexus between Mechanisms and Adaptive Strategies". In: *in silico Plants*
714 2.1. DOI: 10.1093/insilicoplants/diaa011.

715 Thronthwaite, C W (1948). "An Approach Toward a Rational Classification of Climate". In: *Soil*
716 *Science* 66.1. DOI: 10.2307/2107309.

717 Tschur, Flavian, Norbert Kirchgessner, Andreas Hund, Lukas Kronenberg, Jonas Anderegg, Achim
718 Walter, and Lukas Roth (Sept. 25, 2023). "Frost Damage Index: The Antipode of Growing Degree
719 Days". In: *Plant Phenomics* 0 (ja). DOI: 10.34133/plantphenomics.0104.

720 Vicente-Serrano, Sergio M., Santiago Beguería, and Juan I. López-Moreno (2010). "A multiscalar
721 drought index sensitive to global warming: The standardized precipitation evapotranspiration
722 index". In: *Journal of Climate* 23.7, pp. 1696–1718. DOI: 10.1175/2009JCLI2909.1.

723 Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
724 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
725 Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
726 Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
727 Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
728 Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

729 Contributors (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.
730 In: *Nature Methods* 17, pp. 261–272. doi: 10.1038/s41592-019-0686-2.

731 Viswanathan, Michelle, Andreas Scheidegger, Thilo Streck, Sebastian Gayler, and Tobias K. D.
732 Weber (Dec. 1, 2022). “Bayesian Multi-Level Calibration of a Process-Based Maize Phenology
733 Model”. In: *Ecological Modelling* 474, p. 110154. doi: 10.1016/j.ecolmodel.2022.110154.

734 Wallach, Daniel, Christopher Hwang, Melanie J. Correll, James W. Jones, Ken Boote, Gerrit Hoogen-
735 boom, Salvador Gezan, Mehul Bhakta, and C. Eduardo Vallejos (Nov. 1, 2018). “A Dynamic Model
736 with QTL Covariates for Predicting Flowering Time of Common Bean (*Phaseolus Vulgaris*) Geno-
737 types”. In: *European Journal of Agronomy* 101, pp. 200–209. doi: 10.1016/j.eja.2018.10.
738 003.

739 Wang, Enli and Thomas Engel (1998). “Simulation of Phenological Development of Wheat Crops”.
740 In: *Agricultural Systems* 58.1, pp. 1–24. doi: 10.1016/S0308-521X(98)00028-6.

741 Wang, Enli, Pierre Martre, Zhigan Zhao, Frank Ewert, Andrea Maiorano, Reimund P. Rötter, Bruce
742 A. Kimball, Michael J. Ottman, Gerard W. Wall, Jeffrey W. White, Matthew P. Reynolds, Phillip
743 D. Alderman, Pramod K. Aggarwal, Jakarat Anothai, Bruno Basso, Christian Biernath, Davide
744 Cammarano, Andrew J. Challinor, Giacomo De Sanctis, Jordi Doltra, Elias Fereres, Margarita
745 Garcia-Vila, Sebastian Gayler, Gerrit Hoogenboom, Leslie A. Hunt, Roberto C. Izaurralde, Mo-
746 hamed Jabloun, Curtis D. Jones, Kurt C. Kersebaum, Ann Kristin Koehler, Leilei Liu, Christoph
747 Müller, Soora Naresh Kumar, Claas Nendel, Garry O’Leary, Jørgen E. Olesen, Taru Palosuo, Eckart
748 Priesack, Ehsan Eyshi Rezaei, Dominique Ripoche, Alex C. Ruane, Mikhail A. Semenov, Iurii
749 Shcherbak, Claudio Stöckle, Pierre Stratonovitch, Thilo Streck, Iwan Supit, Fulu Tao, Peter Thor-
750 burn, Katharina Waha, Daniel Wallach, Zhimin Wang, Joost Wolf, Yan Zhu, and Senthil As-
751 seng (2017). “The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature
752 Response Functions”. In: *Nature Plants* 3.17102. doi: 10.1038/nplants.2017.102. pmid:
753 28714956.

754 Wang, Jen Yu (1960). “A Critique of the Heat Unit Approach to Plant Response Studies”. In: *Ecology*
755 41.4, pp. 785–790.

756 Whigham, D Keith and Harry C Minor (1978). “Agronomic Characteristics and Environmental
757 Stress”. In: *Soybean Physiology, Agronomy, and Utilization*. New York, San Francisco, London:
758 Academic Press.

759 White, Jeffrey W., Markus Herndl, L. A. Hunt, Thomas S. Payne, and Gerrit Hoogenboom (2008).
760 “Simulation-Based Analysis of Effects of Vrn and Ppd Loci on Flowering in Wheat”. In: *Crop
761 Science* 48.2, pp. 678–687. doi: 10.2135/cropsci2007.06.0318.

762 White, Jeffrey W., Gerrit Hoogenboom, Bruce A. Kimball, and Gerard W. Wall (Dec. 20, 2011).
763 “Methodologies for Simulating Impacts of Climate Change on Crop Production”. In: *Field Crops
764 Research* 124.3, pp. 357–368. doi: 10.1016/j.fcr.2011.07.001.

765 Zenkl, Radek, Radu Timofte, Norbert Kirchgessner, Lukas Roth, Andreas Hund, Luc Van Gool,
766 Achim Walter, and Helge Aasen (2022). “Outdoor Plant Segmentation With Deep Learning for

767 High-Throughput Field Phenotyping on a Diverse Wheat Dataset". In: *Frontiers in Plant Science*
768 12.774068. DOI: 10.3389/fpls.2021.774068.

769 Acknowledgments

770 We acknowledge Hansueli Zellweger and Simon Corrado for field management at the FIP site.
771 Furthermore, we acknowledge the support in data collection of Jonas Anderegg, Phillip Braun and
772 Moritz Affentranger (ETH Zurich).

773 A.W. discloses support for the research of this work from Swiss National Science Foundation
774 [grant number 169542] and Swiss National Science Foundation [grant number 200756].

775 All authors were involved in designing the research. LR, MB, NK, FT, and LK performed the
776 research. LR performed the analysis and wrote the first manuscript draft. All authors contributed
777 to the final manuscript.

778 The authors declare that they have no competing interests. All data needed to evaluate the
779 conclusions in the paper are present in the paper, the Supplementary Materials, and on https://gitlab.ethz.ch/crop_phenotyping/phenoflow_early_growth.