

1 **Multiple dynamic interactions from basal ganglia direct and indirect**
2 **pathways mediate action selection**

3 Hao Li¹, and Xin Jin^{1,2,3,4*}

4 ¹ Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North
5 Torrey Pines Road, La Jolla, CA 92037, USA

6 ² Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East
7 China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China

8 ³ NYU–ECNU Institute of Brain and Cognitive Science, New York University Shanghai, 3663
9 North Zhongshan Road, Shanghai 200062, China

10 ⁴ Lead Contact

11 *Correspondence to: xjin@bio.ecnu.edu.cn

12

13 **Summary**

14 **The basal ganglia are known to be essential for action selection. However, the**
15 **functional role of basal ganglia direct and indirect pathways in action selection remains**
16 **unresolved. Here by employing cell-type-specific neuronal recording and manipulation in**
17 **mice trained in a choice task, we demonstrate that multiple dynamic interactions from the**
18 **direct and indirect pathways control the action selection. While the direct pathway**
19 **regulates the behavioral choice in a linear manner, the indirect pathway exerts a nonlinear**
20 **inverted-U-shaped control over action selection, depending on the inputs and the network**
21 **state. We propose a new center (direct) - surround (indirect) - context (indirect) “Triple-**
22 **control” functional model of basal ganglia, which can replicate the physiological and**
23 **behavioral experimental observations that cannot be simply explained by either the**
24 **traditional “Go/No-go” or more recent “Co-activation” model. These findings have**
25 **important implications on understanding the basal ganglia circuitry and action selection in**
26 **health and disease.**

27

28 **In Brief**

29 Using behavior analysis, in vivo electrophysiology, optogenetics and computational modeling in
30 mice, Li and Jin unveiled the neuronal dynamics of basal ganglia direct and indirect pathways
31 underlying action selection, and proposed a new “Triple-control” functional model of basal
32 ganglia.

33

34

35 **Introduction**

36 Selecting the proper actions is essential for organism's survival and reproduction in the
37 ever-changing environment (Gallistel, 1980). Numerous studies have implicated that the basal
38 ganglia, a series of interconnected subcortical nuclei including the striatum and substantia nigra,
39 play a primary role in action selection (Graybiel, 1998; Hikosaka et al., 1998; Jin and Costa,
40 2015; Mink, 2003; Redgrave et al., 1999). Indeed, a wide range of neurological and psychiatric
41 disorders associated with the dysfunctional basal ganglia circuitry, including Parkinson's disease
42 (Benecke et al., 1987), Huntington's disease (Phillips et al., 1995), Obsessive-compulsive
43 disorder (OCD) (Graybiel and Rauch, 2000), are characterized by major deficits in action
44 selection and movement control. Anatomically, commands for motor control are processed by
45 basal ganglia through two major pathways, termed direct and indirect pathway, originating from
46 striatal D1- and D2-expressing spiny projection neurons (D1-/D2-SPNs), respectively (Albin et
47 al., 1989; DeLong, 1990). These two pathways collectively modulate substantia nigra pars
48 reticulata (SNr) activity and the basal ganglia output, thus influence behavioral decisions. There
49 are currently two major types of thinking on how the basal ganglia pathways work. An early
50 classic theory has suggested that the basal ganglia direct and indirect pathways oppose each other
51 to facilitate and inhibit action, respectively (the "Go/No-go" model) (Albin et al., 1989; DeLong,
52 1990; Kravitz et al., 2010). In contrast, a recent theory has proposed that direct pathway selects
53 the desired action, while the indirect pathway inhibits other competing actions in order to
54 highlight the targeted choice (the "Co-activation" model) (Cui et al., 2013; Hikosaka et al., 2000;
55 Mink, 1996).

56 The two theories have essentially agreed upon the function of direct pathway being the
57 positive driving force for initiating or facilitating the desired actions. Yet, the ideas about the
58 indirect pathway function are largely controversial as either impeding the desired action in the
59 “Go/No-go” model or inhibiting the competing actions in the “Co-activation” model. While the
60 precise neuroanatomy on how the D2-SPNs control SNr through indirect pathway has yet to be
61 mapped out at single-cell level to differentiate the two hypotheses, either theory has found its
62 supports from behavioral and physiological observations. For instance, it has been found that
63 stimulation of striatal direct and indirect pathways can bidirectionally regulate locomotion
64 (Durieux et al., 2012; Kravitz et al., 2010), consistent with the traditional ‘Go/No-go’ model. On
65 the other hand, in vivo electrophysiological and imaging experiments revealed that the striatal
66 direct and indirect pathways are both activated during action initiation (Barbera et al., 2016; Cui
67 et al., 2013; Geddes et al., 2018; Isomura et al., 2013; Jin et al., 2014; Klaus and Plenz, 2016;
68 Markowitz et al., 2018; Nonomura et al., 2018), as the ‘Co-activation’ model predicted.
69 Furthermore, physiological and optogenetic studies concerning complex behavior such as
70 learned action sequences have further complicated the issue, and unveiled various neuronal
71 subpopulations in both pathways are activated during the initiation, termination and switching of
72 actions (Geddes et al., 2018; Jin and Costa, 2015; Jin et al., 2014; Tecuapetla et al., 2016). So far,
73 how exactly the basal ganglia direct and indirect pathways work together to control action
74 selection has been controversial and inconclusive, and the underlying circuit mechanism remains
75 largely unclear (Calabresi et al., 2014).

76 Here we trained mice to perform an operant action selection task where they were
77 required to select one out of two actions to achieve reward, based on self-monitored time
78 intervals (Howard et al., 2017). By employing in vivo neuronal recording, we found that the net

79 output of two opponent SNr neuron populations is predictive of the behavioral choices. Through
80 identifying striatal pathway-specific neuronal activity with optogenetic tagging, we found that
81 there are neuronal populations in either the direct or indirect pathway that are activated during
82 selecting one action and suppressed during another. Optogenetic inhibition, as well as selective
83 ablation of direct pathway impairs action selection, and optogenetic excitation of direct pathway
84 enhances current choice, confirming a role of direct pathway in facilitating desired actions.
85 Furthermore, optogenetic inhibition of indirect pathway improves action selection and excitation
86 of indirect pathway impairs behavioral choices, as predicted by the ‘Go/No-go’ model. However,
87 selective ablation of indirect pathway impairs action selection, opposite from the behavioral
88 effect of optogenetic inhibition and at odds with the ‘Go/No-go’ model, but consistent with the
89 prediction from the ‘Co-activation’ model. To resolve these contradictions, we propose a new
90 center (direct) - surround (indirect) - context (indirect) “Triple-control” functional model of basal
91 ganglia pathways, in which there are two interacting indirect pathway subcircuits exerting
92 opposite controls over the basal ganglia output. The new model can reproduce the neuronal and
93 behavioral experimental results that cannot be simply explained by either the “Go/No-go” or the
94 “Co-activation” model. Further systematic analyses from this new model suggested that the
95 direct and indirect pathways modulate behavioral outputs in a linear and nonlinear manner,
96 respectively. Notably, in the new ‘Triple-control’ model, the direct and indirect pathways can
97 work together to dynamically control action selection and operate in a manner similar to ‘Go/No-
98 go’ or ‘Co-activation’ model, depending on the activity level and the network state. These results
99 revise our current understanding on how the basal ganglia control actions, and have important
100 implications for a wide range of movement and psychiatric diseases where the dynamic balance

101 between the two pathways is compromised (Albin et al., 1989; Benecke et al., 1987; Calabresi et
102 al., 2014; DeLong, 1990; Graybiel and Rauch, 2000; Mink, 1996; Phillips et al., 1995).

103

104 **Results**

105 **Opponent SNr activities underlie action selection**

106 To address the role of basal ganglia in action selection, we trained mice in a recently
107 developed 2-8 s task in which they are required to choose the left versus right action based on
108 self-monitored time intervals (Howard et al., 2017). Specifically, mice were put into an operant
109 chamber with both left and right levers extended (Figure 1A, see Methods). For a given trial,
110 both levers retract at trial initiation, and after either 2 s or 8 s (50% for each, randomly
111 interleaved), both levers extend. The mouse has to judge the interval between lever retraction and
112 extension as 2 s vs. 8 s and make a corresponding action choice by pressing the left vs. right
113 lever, respectively (Figure 1A). The first lever press after lever extension was registered as the
114 mouse's choice. The correct choice leads to sucrose delivery (10 μ l) as reward, and any lever
115 presses beyond the first press after lever extension yield no outcome. The animal only has one
116 chance to select the correct choice and gets rewarded in a given trial. If the animal's very first
117 press after levers extension is the wrong choice, then there's no reward, and the chance to get
118 rewarded in this particular trial vanishes, or the trial is functionally "terminated" although both
119 levers still available to press. The animal has no second chance to correct its wrong choice by
120 pressing the correct lever after the wrong choice. During the 2s vs. 8s waiting period with lever
121 retraction, the levers are not physically accessible to the animal. Even the animal is trying to
122 approach to the lever during lever retraction, but no lever press will be generated (see
123 Supplemental Video 1). A new trial starts at lever retraction again after a random inter-trial-

124 interval (ITI, 30 s on average; Figure 1A). Across 14 consecutive days of training, mice (n = 10)
125 significantly increased the correct rate of choice from chance level to more than 90% (Figure
126 1B). In addition, the animals gradually shortened the choice latency and demonstrated a strong
127 preference toward the left lever due to its association with the shorter waiting time (Figure S1A,
128 B). As a result, during the longer-waiting 8 s trials the mouse initially moved toward the left
129 lever, then crossing the midpoint between left and right levers at around 4 s, and stayed around
130 the right lever afterwards (Howard et al., 2017) (Figure 1C; Supplemental Video 1). Note that,
131 the mouse showed no stereotyped movement trajectories during the incorrect trials (Figure 1C).
132 This emerged stereotyped movement trajectory in the 8-s trials thus provided us a unique
133 opportunity for investigating the neural mechanisms underlying the internally-driven, dynamic
134 action selection process.

135 The substantia nigra pars reticulata (SNr) is one of the major output nuclei of basal
136 ganglia (Albin et al., 1989; DeLong, 1990; Hikosaka et al., 2000; Mink, 1996). To investigate
137 how the basal ganglia contribute to the dynamic process of action selection, we began by
138 recording the SNr neuronal activity in mice trained in the 2-8 s task (Figure 1D, Figure S1C, see
139 Methods). It was found that a large proportion (211/261, 80.8%; recorded from n = 9 mice) of
140 SNr neurons changed firing rate significantly during the correct 8-s trials as mice dynamically
141 shifted the internal action selection from the left to the right (Figure 1E). The Z-score of the task-
142 related neuronal firing rate, reflecting the firing activity changes related to baseline, was defined
143 as Firing Rate Index (FRI, see Methods). We focus on the data analyses in the 8-s trials since the
144 first 2-s of 8-s trials consists of the identical behavioral and neuronal profiles of the 2-s trials due
145 to the task design (Figure 1C, Figure S1D-F). The task-related SNr neurons were categorized
146 into four subtypes based on the dynamics of FRI in the correct 8-s trials: Type 1 - monotonic

147 decrease (Figure 1E, F, 102/211, 48.3%), Type 2 - monotonic increase (Figure 1E, G, 56/211,
148 26.5%), Type 3 - transient phasic increase (Figure 1E, H, 25/211, 11.9%) and Type 4 - transient
149 phasic decrease (Figure 1E, I, 28/211, 13.3%). These four types of neuronal dynamics in SNr
150 only appeared in the correct but not the incorrect trials (Figure 1F-I), nor on the day 1 of task
151 training (Figure S1G-K), suggesting a tight correlation between the SNr neuronal dynamics and
152 the behavioral performance. Here we show trial-by-trial firing activities of SNr example neurons
153 in correct 8s trials from well-trained animals as follows. Although the time of initial approach to
154 the left side varies across trials, trial-by-trial analysis showed that the firing activities are
155 consistent across trials and the averaged activities faithfully reflect the dynamics of each trial,
156 evident for all four types of neurons (Figure S2A-D). Specifically, the Type 1 and Type 2, but
157 not the Type 3 and Type 4 neurons, exhibit firing changes co-varying with the action selection
158 and these two types together consist in around 80% of all task-related SNr neuron population
159 (Figure 1J, Figure S2A-D). There is no dramatic difference in dynamic subtypes and proportion
160 between SNr neurons recorded in left and right hemispheres (Figure S3). Notably, for Type 1
161 neurons, the firing activities is much higher as animals selected left side at the correct 8s trials
162 than the firing activities when animals selected left side at the incorrect 8s trials (Figure 1F,
163 green squares). The same for Type 2 neurons, their firing activities are dramatically different
164 when animals selected left side in the correct and incorrect trials (Figure 1G, green squares).
165 Therefore, Type 1 and Type 2 dynamics cannot be simply explained by sensory or position-
166 related neural activity. Furthermore, we compare the SNr neuron responses at rewarded and non-
167 rewarded lever presses. The SNr neuron activities are aligned to lever press at 0 as shown below.
168 For Type 1 SNr neurons, the firing activity at the rewarded left lever presses (defined as the left
169 lever press in correct 2s trials) is much higher than the firing activity at the non-rewarded left

170 lever presses (defined as left lever presses in incorrect 8s trials and random left lever press during
171 the inter-trial-interval). The firing activity difference can also be observed between the rewarded
172 and non-rewarded right lever presses in Type 1 SNr neuron (Figure S1L). For Type 2 SNr
173 neurons, although there's no difference between the rewarded and non-rewarded left lever
174 presses, the firing activity at the rewarded right lever presses is higher than the firing activity at
175 the non-rewarded right lever presses (Figure S1L). Again, given the same sensory inputs and
176 spatial location for both rewarded and non-rewarded left presses, the difference between
177 rewarded and non-rewarded lever presses indicates that the neural dynamics are action selection
178 dependent, and not simply related to sensory or position information.

179 It has been suggested that SNr suppresses movements through the inhibition of
180 downstream motor nuclei and releases action via disinhibition (Hikosaka et al., 2000; Mink,
181 1996). We thus ask whether the opponent neuronal dynamics in Type 1 and Type 2 SNr
182 subpopulations mediate the dynamic shift of choice, by suppressing the competing selection of
183 right vs. left action, respectively. Indeed, the SNr net output by subtracting Type 2 and Type 1
184 SNr neuronal dynamics (Figure 1K) is highly reminiscent of the animal's stereotyped movement
185 trajectory during choice (Figure 1C). To further determine the relationship between the SNr net
186 output and action selection, we tested the behavioral choice of the 2-8 s trained mice in a series
187 of non-rewarded probe trials with novel intervals of 2.5, 3.2, 4, 5 and 6.3 s (see Methods).
188 Consistent with what reported before (Howard et al., 2017), the probability of mice selecting the
189 action associated with the long duration (8 s) gradually increases along with the time intervals of
190 probe trials (Figure 1L). The resulting psychometric curve thus represents the animal's real-time
191 action selection process during the 8-s trials. Further comparison between the psychometric
192 curve and the SNr net output revealed a strong linear correlation (Figure 1M), indicating that the

193 SNr net output faithfully predicts momentary behavioral choice. Together, these results suggest
194 that mice can learn to dynamically shift their choice based on internally-monitored time, and the
195 opponent neuronal activities in SNr correlate with the action selection.

196

197 **SNr neuronal dynamics reflect action selection but not simply time or value**

198 In the 2-8 s task, the passage of time and expectation of reward both change
199 simultaneously with the animal's internal choice. One may argue that the Type 1 and Type 2
200 neuronal dynamics observed in SNr during the 8-s trials might reflect the passage of time or
201 value of expected reward rather than action selection. To differentiate these possibilities and
202 specify the functional role of SNr activity, we presented mice previously trained in the 2-8 s task
203 with random probe trials of 16-s interval (Figure 2A). In these 16-s probe trials which they have
204 never experienced before during training, the animals sometimes wait on the right side and press
205 the right lever, or shift back to the left side and press the left lever when the levers are extended
206 at 16 s (Figure 2B, C). This arbitrary choice situation in the 16-s probe trials thus provides a
207 special window to determine the functional relationship between SNr activity and behavioral
208 choice. If the Type 1 and Type 2 SNr subpopulations encode information about time passage or
209 expectation value, their neuronal activities would continue changing monotonically between 8
210 and 16 s. In contrast, if the Type 1 and Type 2 SNr subpopulations encode action selection, their
211 neuronal activities would predict the behavioral choice and differentiate between the right vs. left
212 action selection. Indeed, it was found that when the firing activity of Type 1 SNr neurons
213 maintained below baseline from 8 to 16 s, the mice tended to select the right lever later (Figure
214 2D). However, when the firing activity reversed the decreasing tendency to increase, the mice
215 chose the left lever instead (Figure 2D). A similar relationship between the neuronal activity and

216 behavior choice was also evident in Type 2 SNr neurons, albeit with opposite dynamics (Figure
217 2E). This is especially evident in the subtraction of Type 2 and Type 1 SNr neuronal dynamics,
218 in which the SNr net output is strongly correlated with and predictive of behavioral choice
219 (Figure 2F). These results thus suggested that the neuronal activities in SNr likely encode the
220 ongoing action selection but not simply reflect time passage or reward value.

221 To further confirm this point, we recorded the firing activity from the same SNr neurons
222 during both the 2-8 s control task (Figure 2G, 2s-left and 8s-right) and a modified version of 2-8
223 s task in which the contingency between action and interval is reversed (Figure 2J, 2s-right and
224 8s-left) on the same day (see Methods). It was found that the mice performed at around 80%
225 correct in both tasks on the same day (Figure 2H, K, Figure S4A). Accordingly, the movement
226 trajectories of the same mice in 8-s trials were reversed from left-then-right in the control task
227 (Figure 2I) to right-then-left in the reversed task (Figure 2L). The left-lever preference during the
228 ITI in the control task was also switched to right-lever preference in the reversed 2-8 s task
229 (Figure S4B). Notably, the passage of time and expected value as well as other environmental
230 factors are all identical in both versions of task, except that the animal's choice is now reversed
231 from right to left for the 8-s trials (Figure 2H, I vs. Figure 2K, L). If Type 1 or Type 2 SNr
232 neurons encode time or value, either neuronal population will exhibit the same neuronal
233 dynamics in 8-s trials for both versions of task. On the other hand, if Type 1 and Type 2 SNr
234 neurons encode action selection, their neuronal dynamics will reverse in the reversed version of
235 2-8 s task compared to the standard version. In fact, the Type 1 SNr neurons which showed
236 monotonic decreasing dynamics in the control 2-8 s task (Figure 2M) reversed their neuronal
237 dynamics to a monotonic increase in the reversed 2-8 s task (Figure 2P), consistent with the
238 behavioral choice. The same reversal of neuronal dynamics was also observed in Type 2 SNr

239 neurons in the reversed version of standard task (Figure 2N, Q). The SNr net output by
240 subtracting Type 2 and Type 1 SNr neuronal dynamics, which was tightly correlated with the
241 action selection in the standard 2-8 s task (Figure 2O), is reversed and now predictive of the new
242 behavioral choice in the reversed 2-8 s task (Figure 2R). Notably, Type 3 and Type 4 SNr
243 neurons exhibiting transient change when mice switching between choices maintained the same
244 neuronal dynamics in both tasks (Figure S4C-F). Together, these results therefore demonstrate
245 that the output of basal ganglia reflects the dynamic action selection rather than simply time or
246 value.

247

248 **Distinct striatal direct vs. indirect pathway activity during action selection**

249 The basal ganglia output is largely controlled by two major neural pathways, called
250 ‘direct’ and ‘indirect’ pathway, originating from D1- vs. D2-expressing spiny projection neurons
251 (D1- vs. D2-SPNs) in the striatum, respectively (Albin et al., 1989; DeLong, 1990; Hikosaka et
252 al., 2000; Mink, 1996). We then decided to determine the neuronal dynamics in the striatum,
253 specifically the neuronal activity in the direct and indirect pathways during action selection. We
254 employed *in vivo* extracellular electrophysiology to record the neuronal activity in the dorsal
255 striatum when mice perform the 2-8 s task, and classified putative SPNs based on the spike
256 waveforms and firing properties (Geddes et al., 2018; Jin and Costa, 2010; Jin et al., 2014).
257 Among all the SPNs recorded from the trained mice ($n = 19$), 341 out of 409 SPNs (83.4%) were
258 defined as task-related neurons for showing significant firing changes during the 2-s and 8-s
259 lever retraction period (Figure 3A, Figure S2E-H, Figure S5A). Similar to the various types of
260 neuronal dynamics observed in SNr, task-related SPNs showed Type 1 (Figure 3B, monotonic
261 decrease, 159/341, 46.6%), Type 2 (Figure 3C, monotonic increase, 103/341, 30.2%), Type 3

262 (Figure 3D, transient phasic increase, 49/341, 14.4%) and Type 4 (Figure 3E, transient phasic
263 decrease, 30/341, 8.8%) activity profiles during the correct 8-s trials (Figure 3A, Figure S2E-H,
264 Figure S5A). These neural dynamics were largely absent in SPNs on day 1 of training (Figure
265 S5B-F). Also, SPNs recorded from left and right hemispheres showed similar proportions
266 (Figure S6). These results indicate that the striatum, as one of the major input nuclei of basal
267 ganglia, demonstrates the four types of neuronal dynamics similar with SNr during the dynamic
268 process of action selection.

269 To further determine the neuronal activity in the direct and indirect pathways during
270 action selection, we utilized an optogenetics-aided photo-tagging method (Geddes et al., 2018;
271 Howard et al., 2017; Jin and Costa, 2010; Jin et al., 2014; Lima et al., 2009) to record and
272 identify striatal D1- vs. D2-SPNs in freely behaving mice. Channelrhodopsin-2 (ChR2) was
273 selectively expressed in D1- or D2-SPNs by injecting AAV-FLEX-ChR2 in the dorsal striatum
274 of D1- and A2a-Cre mice, respectively (Geddes et al., 2018; Jin et al., 2014). In the end of each
275 behavioral session with recording, optogenetic stimulation via an optic fiber attached to the
276 electrode array was delivered to identify D1- vs. D2-SPNs through photo-tagging (Figure 3F,
277 Figure S5G-J) (Geddes et al., 2018; Jin et al., 2014). Only those neurons exhibiting a very short
278 latency (≤ 6 ms) to light stimulation (Figure 3G-I) and showing identical spike waveforms ($R \geq$
279 0.95, Pearson correlation coefficient) between behavior and light-evoked response (Figure 3J, K)
280 were identified as Cre-positive thus D1- or D2-SPNs (Geddes et al., 2018; Jin et al., 2014).
281 Within all positively identified D1-SPNs ($n = 92$ from 6 mice) and D2-SPNs ($n = 95$ from 6
282 mice), 74 out of 92 (80.4%) D1-SPNs and 79 out of 95 (83.1%) D2-SPNs showed a significant
283 change in firing rate during the correct 8-s trials. In addition, all four types of neuronal dynamics
284 during action selection were found in both D1-SPNs (Figure 3L, M) and D2-SPNs (Figure 3N,

285 O), as observed in SNr. The Type 1 and Type 2 neuronal dynamics showing monotonic firing
286 change (Figure 3M, O) were the predominant task-related subpopulations within either D1-
287 (Figure 3L) or D2-SPNs (Figure 3N). Notably, the striatal D1-SPNs consist of significantly more
288 Type 1 than Type 2 neurons (Figure 3L), while D2-SPNs show a similar proportion between the
289 two Types (Figure 3N). These data thus suggest while neurons in both the striatal direct and
290 indirect pathways encode information related to behavioral choice, the two pathways might
291 reflect and contribute to distinct aspects of action selection.

292

293 **Ablation of striatal direct vs. indirect pathway differently impaired action selection**

294 Given the action-selection-related neuronal dynamics observed in striatum, we next asked
295 whether the neural activity in striatum is necessary for learning and execution of action selection,
296 and furthermore, what is the functional difference between the direct and indirect pathways. It
297 has been reported that the NMDA receptors on striatal SPNs are critical for sequence learning
298 (Geddes et al., 2018; Jin and Costa, 2010) and action selection (Howard et al., 2017). To further
299 identify the functional role of NMDA receptors on D1- vs. D2-SPNs for action selection, we
300 employed a genetic strategy to specifically delete NMDA receptors from D1- vs. D2-SPNs by
301 crossing mice carrying a floxed NMDAR1 (NR1) allele with a dorsal striatum-dominant D1-cre
302 line (Gong et al., 2007) and A2a-cre line (Geddes et al., 2018; Jin et al., 2014), respectively
303 (referred to as D1-NR1 KO and D2-NR1 KO mice, respectively; see Methods). Both the D1-
304 NR1 KO and D2-NR1 KO mice are significantly impaired in learning the 2-8 s task compared to
305 their littermate controls (Figure 4A, B), suggesting that NMDA receptors on either D1- or D2-
306 SPNs are critical for learning of proper action selection. In the end of two-week training, when
307 given the probe trials with various intervals across 2 to 8 s, it was found that D1-NR1 KO mice

308 showed a systematic bias toward the lever associated with short interval and made deficient
309 behavioral choice only in long interval trials (Figure 4C). In contrast, D2-NR1 KO mice showed
310 impaired action selection across various probe trials of both short and long intervals (Figure 4D).
311 These data suggest that while NMDA receptors on both D1- and D2-SPNs are required for action
312 learning, the deletion of NMDA receptors in direct and indirect pathways impairs action
313 selection in a different manner.

314 We then asked whether that neural activity in dorsal striatum is necessary for the proper
315 execution of action selection after learning. We first conduct striatal inactivation in trained
316 wildtype mice by bilateral intra-striatal infusion of muscimol (Figure 4E, see Methods). Striatal
317 muscimol infusion significantly reduced the animal's overall performance in comparison with
318 the pre- and post-saline injection controls (Figure 4F). When tested with probe trials, the
319 psychometric curve indicated that the inactivation of striatum impairs action selection for the
320 long trials (Figure 4G). These data thus suggested that the striatal neural activity is critical for
321 appropriate execution of learned action selection.

322 To further elucidate the functional role of specific striatal pathways in action selection,
323 we next employed a viral approach to bilaterally express diphtheria toxin receptors (AAV-
324 FLEX-DTR-eGFP) in the dorsal striatum of trained D1- and A2a-Cre mice, followed by
325 diphtheria toxin (DT) injections to selectively ablate D1- or D2-SPNs (Geddes et al., 2018)
326 (Figure 4H, I, N; see Methods). Ablation of either D1- or D2-SPNs significantly impaired action
327 selection and reduced the correct rate of choice (Figure 4J, O). Notably, the psychometric curve
328 revealed that D1-SPNs ablation mice showed a selective impairment of choice in long interval
329 trials (Figure 4K). In contrast, mice with D2-SPNs ablation exhibited choice deficits in both long

330 and short trials (Figure 4P). Consistent with the D1- and A2a-NR1 KO data, these results suggest
331 that the direct and indirect pathways are both needed yet play distinct roles in action selection.

332 The classic ‘Go/No-go’ model of basal ganglia suggests the direct and indirect pathways
333 work antagonistically to release and inhibit action, respectively (Albin et al., 1989; DeLong,
334 1990; Kravitz et al., 2010). On the other hand, more recent ‘Co-activation’ model of basal
335 ganglia proposes that direct pathway initiates the selected action and at the same time, the
336 indirect pathway inhibits the competing actions (Cui et al., 2013; Hikosaka et al., 2000; Mink,
337 1996). For visualization purpose, we diagram ‘Go/No-go’ and ‘Co-activation’ models as center-
338 surround receptive field with D1-SPNs as the center and D2-SPNs as the surround (Figure 4S;

339 Figure S7A, D). The “center-surround” layout is derived from the receptive field of neurons in
340 the early visual system, as an intuitive analogy in describing the functional interaction among
341 striatal pathways (Mink, 2003). The area of each region does not represent the amount of cells
342 but mainly qualitative functional role (Figure 4S). While the direct pathway plays the similar role
343 in both models (Figure S7B, E), the function of indirect pathway differs dramatically (Figure 4S).
344 Lesion of the indirect pathway thus leads to contrast predictions on action selection from the two
345 models (Figure S7C, F). Specifically, ablation of D2-SPNs would facilitate the action being
346 selected through removing inhibition according to the Go/No-go model (Figure S7C) (Albin et
347 al., 1989; DeLong, 1990; Kravitz et al., 2010), while blockage of indirect pathway would impair
348 the action selection due to disinhibition of competing actions according to the Co-activation
349 model (Figure S7F) (Cui et al., 2013; Hikosaka et al., 2000; Mink, 1996). Although our D1-
350 SPNs ablation experiment indicates that direct pathway is required for action selection as
351 suggested in both models (Figure 4J, K), the D2-SPNs ablation result favorably supports the Co-
352 activation model over the Go/No-go model (Figure 4O, P, Figure S7F). In fact, close inspection

353 of the movement trajectories of D1-SPNs lesioned mice in the 8-s trials showed that compared to
354 control mice (Figure 4L), they tend to stick on the left side more often with impaired right choice
355 when lever extension at 8s (Figure 4M). In contrast, D2-SPNs lesioned mice demonstrated
356 overall rather random movement trajectories, and the stereotyped left-then-right movement
357 sequences were largely disrupted in comparison with the controls (Figure 4Q, R). These
358 observations are mostly consistent with the idea of indirect pathway inhibiting competing actions
359 in the Co-activation model (Figure 4S) and lesion of indirect pathway disrupts action selection
360 for both the short and long trials (Figure 4P-R). Together, these data suggest that ablation of
361 direct and indirect pathways both impair choice behavior but in a distinct manner due to their
362 different roles in action selection.

363

364 **Optogenetic manipulation of D1- vs. D2-SPNs distinctly regulates action selection**

365 To further determine the specific function of direct vs. indirect pathway in action
366 selection, we employed optogenetics to alter the D1- and D2-SPNs activity in vivo with high
367 temporal precision and investigated its effects on the ongoing action selection process. Both the
368 classic ‘Go/No-go’ (Albin et al., 1989; DeLong, 1990; Kravitz et al., 2010) and more recent ‘Co-
369 activation’ (Cui et al., 2013; Hikosaka et al., 2000; Mink, 1996) models predict that activation of
370 the direct pathway enhances the action selection (Figure S8A, E, I, K, O, Q), while inhibition of
371 direct pathway reduces the correct choice (Figure S8B, F, L, R). To experimentally validate the
372 models’ predictions, AAV-FLEX-ChR2 was injected into the dorsal striatum of D1- or A2a-Cre
373 mice and optic fibers were implanted bilaterally for in vivo optogenetic stimulation (Figure 5A,
374 Figure S5K, L; see Methods) (Geddes et al., 2018; Jin et al., 2014). After mice learned the 2-8s
375 task, 1-s pulse of constant light (wave length 473 nm) was delivered right before lever extension

376 in randomly chosen 50% of 2-s and 50% of 8-s trials (Figure 5B, C, see Methods). The correct
377 rate of optogenetic stimulation trials is compared with the non-stimulation trials of the same
378 animal as a within-subject design. We observed no significant change on the correct rate in 2-s
379 trials, whereas the correct rate was significantly increased by optogenetic stimulation in 8-s trials
380 (Figure 5D), indicating a facilitation effect on action selection by stimulating the D1-SPNs. We
381 then sought to determine the effect of suppressing D1-SPN activity on action selection by viral
382 expression of Halorhodopsin (AAV5-EF1a-DIO-eNpHR3.0-eYFP) in the dorsal striatum of D1-
383 cre mice (Gradinaru et al., 2010). As expected, inhibiting D1-SPNs right before lever extension
384 in trained mice reduced the correct rates in 8-s but not 2-s trials (Figure 5C, E), opposite to D1-
385 SPN stimulation effects. These experimental data with bidirectional optogenetic manipulation
386 suggest that the D1-SPN activity is positively correlated with the choice performance, consistent
387 with the hypothesis of direct pathway facilitating the action selected in both the Go/No-go and
388 Co-activation models (Figure S8K, L, Q, R).

389 Nevertheless, the two models have distinct views on the function of indirect pathway.
390 While the classic ‘Go/No-go’ model suggests that the indirect pathway inhibits the selected
391 action (Albin et al., 1989; DeLong, 1990; Kravitz et al., 2010), the ‘Co-activation’ model
392 hypothesizes that the indirect pathway inhibits the competing actions instead (Cui et al., 2013;
393 Hikosaka et al., 2000; Mink, 1996). These models thus provide contrasting predictions about the
394 effect of activation of the indirect pathway on action selection, being decreased correct rate
395 based on the Go/No-go model (Figure S8M) and increased correct rate from the Co-activation
396 model (Figure S8S), respectively. We thus decided to test the distinct predictions from the two
397 models by optogenetic manipulation of indirect pathway during action selection in the 2-8s task.
398 ChR2 or Halorhodopsin (eNpHR3.0) was expressed in the dorsal striatum of A2a-cre mice for

399 bilaterally optogenetic activation or inhibition during behavior (Figure 5A, Figure S5L; see
400 Methods). Notably, optogenetic excitation of D2-SPNs for 1s right before lever extension
401 decreased the correct rate in both 2-s and 8-s trials (Figure 5F). In contrast, transient optogenetic
402 inhibition of D2-SPNs before behavioral choice increased correct rates for both 2-s and 8-s trials
403 (Figure 5G). These data suggest that opposite to the D1-SPN manipulation, optogenetic
404 stimulation of D2-SPNs impairs action selection, while inhibition of D2-SPNs facilitates
405 behavioral choice. These optogenetic results further unveil the distinct roles of direct vs. indirect
406 pathway in action selection, and are in line with the predictions from the Go/No-go (Figure 5H,
407 Figure S8M, N) but not the Co-activation model (Figure S8S, T).

408

409 **A ‘Triple-control’ model of basal ganglia circuit for action selection**

410 Our DT lesion experiments found that ablation of indirect pathway impairs action
411 selection (Figure 4O, P), as predicted from the Co-activation but not Go/No-go model (Figure
412 4S), while the optogenetic results suggested that inhibition of D2-SPNs enhances behavioral
413 choice (Figure 5G), a result in favor of the Go/No-go rather than Co-activation model (Figure
414 5H). We wonder whether these seemly discrepant effects are attributed to a more complex circuit
415 mechanism involving in the indirect pathway different from either the Go/No-go or Co-
416 activation model. To systematically investigate the cell type- and pathway-specific mechanisms
417 underlying action selection, we firstly add Go/No-go and Co-activation models together to
418 examine the whether the resulted combination model could explain the experimental
419 observations (Figure S7G). The lesion of D1-SPNs in the combination model indeed selectively
420 impaired choice in long interval trials (Figure S7H). However, the effect of D2-SPNs ablation in
421 the combination model was neutralized due to the opposing contributions from Go/No-go and

422 Co-activation models respectively (Figure S7I). Based on these simulation results, none of the
423 Go/No-go, Co-activation and combination models was able to fully capture the underlying
424 mechanism of basal ganglia in action selection. Inspired by the data in current experiments, we
425 decided to build a new computational model of the cortico-basal ganglia circuitry based on the
426 realistic neuroanatomy (Aoki et al., 2019; Mailly et al., 2003a; Schmidt and Berke, 2017;
427 Taverna et al., 2008) and empirical neuronal physiology during action selection (Figures 1-3).

428 Different from the dual control of action by direct vs. indirect pathway in either the
429 Go/No-go or Co-activation model (Figure S7), our new model adds an additional layer of control
430 derived from the indirect pathway, thus called ‘Triple-control’ model for action selection. The
431 combination of Go/No-go or Co-activation models clearly failed to explain all the experimental
432 results (Figure S7G-I), therefore in our model, the new layer of control is not a simple add-on but
433 equipped with interaction with other layers. Specifically, the new model consists of one direct
434 pathway and two indirect pathways defined as D2-SPN #1 and D2-SPN #2 two subpopulations,
435 corresponding to the Co-activation and Go/No-go functional modules, respectively (Figure 6A,
436 B). In addition, the indirect pathway D2-SPNs in the Co-activation module inhibits the indirect
437 pathway D2-SPNs in the Go/No-go module through the well-known D2-SPN collaterals with the
438 properties of short-term depression in the striatum (Gustafson et al., 2006; Schmidt and Berke,
439 2017; Taverna et al., 2008; Tecuapetla et al., 2007) (Figure 6A; see Methods), providing
440 asymmetric modulation to D2-SPN subgroups and promoting Co-activation module as the
441 dominant functional module at rest. In this ‘Triple-control’ basal ganglia model, striatal D1- and
442 D2-SPNs associated with left and right actions receive excitatory inputs from corresponding
443 cortical inputs (Figure 6A) to generate Type 1 and Type 2 neuronal dynamics (Figure S9A-D)
444 (Lo and Wang, 2006). The D1- and D2-SPNs then regulate the SNr neuronal dynamics through

445 the direct and indirect pathways, respectively (Figure S9) (Albin et al., 1989; DeLong, 1990;
446 Hikosaka et al., 2000; Mink, 1996). The net SNr output (Figure S9F, I), which controls the
447 downstream brainstem and thalamic circuits necessary for action selection (Hikosaka, 2007; Lo
448 and Wang, 2006; Redgrave et al., 1999), will determine the final behavioral choice (Figure S9G,
449 J). The choice preference towards left lever over right lever was reflected in the direct pathway
450 by the unevenly weighted connection strength from cortex to D1-SPN Left/Right, as well as the
451 connection strength from D1-SPN Left/Right to SNr Left/Right neurons (see Methods). Our
452 computational simulations showed that this ‘Triple-control’ network model could faithfully
453 recapitulate the neuronal activity across the basal ganglia circuitry and predict the behavioral
454 choice (Figure S9).

455 To dissect the functional role of direct vs. indirect pathway in action selection, we
456 simulate the cell ablation experiments and examine the behavioral output in the ‘Triple-control’
457 basal ganglia model. Ablation of D1-SPNs in the network model (Figure S9E) modulates both
458 Type 1 and Type 2 SNr dynamics but in different magnitude due to the biased striatal input to
459 SNr left output and mutual inhibition between SNr left vs. right outputs (Figure S9F; see
460 Methods). As a result, the lesion causes a downward shift in the net SNr output, especially
461 evident at the late section of 8 s (Figure S9G). This change in net SNr output predicts a
462 behavioral bias towards left choice as seen in the psychometric curve (Figure 6C), consistent
463 with experimental results in mice with D1-SPNs ablation (Figure 4K). In contrast, ablation of
464 D2-SPNs in the network model (Figure S9H), by removing the indirect pathways of both the
465 Go/No-go and Co-activation modules, alters Type 1 and Type 2 SNr dynamics (Figure S9I) and
466 change the net SNr output dramatically around 2s as well as 8s (Figure S9J). The model thus
467 predicts behavioral choice deficits for both short and long trials during D2-SPNs ablation (Figure

468 6D), consistent with experimental observations (Figure 4P). Together, these data suggest that our
469 new ‘Triple-control’ basal ganglia model, based on realistic neuroanatomy and empirical
470 neuronal physiology, can perform action selection similar to the behavior of mice, and
471 successfully replicate the pathway-specific lesion effects on choice.

472 We further simulate the neuronal and behavioral effects of optogenetic manipulation of
473 D1- and D2-SPNs in the cortico-basal ganglia model. Consistent with the experimental results
474 (Figure 5D, F), optogenetic stimulation of D1-SPNs facilitates the ongoing choice (Figure 6E),
475 while optogenetic inhibition of D1-SPNs suppresses ongoing choice in the model (Figure 6G). In
476 addition, optogenetic stimulation of D2-SPNs impairs the ongoing choice and causes switching
477 (Figure 6F), while optogenetic inhibition of D2-SPNs facilitates ongoing choice, due to the now
478 dominant Go/No-go module mediated by the short-term depression of D2 collaterals in the
479 model (Figure 6H). Consistent with the experimental observations, the optogenetic inhibition
480 effect is opposite from the D2-SPNs cell ablation in the model (Figure 6D).

481 We next investigate how the striatum influence SNr outputs. Since the collateral
482 projection with STD in D2-SPNs is the key in our ‘Triple-control’ model to switch between
483 Go/No-go and Co-activation modules, we first built a motif of indirect pathway with two D2-
484 SPNs subgroups defined as D2-SPN #1 and D2-SPN #2 (Figure S10A). We tested this indirect
485 pathway motif with monotonic neural dynamics observed in experiments meanwhile simulating
486 the optogenetic activation at 1s and 7s (Figure S10D-I). The SNr therefore received more
487 activation at 1s than at 7s (Figure S10J, K), suggesting that the D2-SPNs with short-term
488 depression in collateral inhibition modulates SNr activities in a firing rate-dependent manner.

489 We next sought to test the model’s predictions and experimentally investigate the
490 distinctions in modulating SNr activities between the direct and indirect pathways during action

491 selection. In order to manipulate D1- or D2-SPNs and monitor SNr responses at the same time,
492 we simultaneously implanted optogenetic fibers and recording array into striatum and SNr
493 respectively on a single mouse (Figure S10L). While the mice performing the 2-8s task,
494 optogenetic stimulation was delivered to activate either D1- or D2-SPNs. It was found that
495 optogenetic activation of D1- or D2-SPNs caused both inhibition and excitation in Type 1 and
496 Type 2 SNr neurons (Figure S10M-O). To further compare SNr activities responding to striatal
497 activation at different time points during the lever retraction period, for a given trial, we
498 activated D1-SPNs (or D2-SPNs) either at 1s or 7s after the lever retraction (Figure S10P-R). For
499 direct pathway, the change of FRI in SNr activities caused by activation of D1-SPNs showed no
500 significant difference between 1s and 7s (Figure S10P, S). For indirect pathway, activating D2-
501 SPNs at 1s caused smaller activation of FRI than at 7s in Type 1 SNr neurons (Figure S10Q),
502 whereas for Type 2 SNr neurons, activating D2-SPNs at 1s induced bigger FRI increase at 1s
503 than at 7s (Figure S10R). Overall, activating D2-SPNs tended to bias the firing rate downward at
504 1s but upward at 7s in Type 1 SNr neurons, which was counteractive to the decreasing tendency
505 of Type 1 SNr neuron (Figure S10T). In contrast, Type 2 SNr neurons showed higher FRI
506 increase and smaller decrease in response to activating D2-SPNs at 1s than at 7s, which was
507 opposing to the increasing dynamics of Type 2 SNr neurons (Figure S10T). This firing rate-
508 dependent modulation on SNr activities through indirect pathway is consistent with the
509 computational simulation (Figure S10J, K; Figure S11). Therefore, the underlying D2-SPNs
510 collaterals might indeed be a key mechanism contributing to the modulation of SNr activity and
511 action selection *in vivo*, as simulated in the ‘Triple-control’ model.

512 Taken together, our new ‘Triple-control’ basal ganglia model, based on realistic
513 neuroanatomy and empirical neurophysiology, successfully reproduces both the lesion and

514 optogenetic data we collected during the animal experiments. It could thus potentially provide
515 essential insights into the circuit mechanism of basal ganglia underlying action selection.

516

517 **Linear and nonlinear control of action selection by direct vs. indirect pathway**

518 To gain an overall picture of how basal ganglia control action selection, we run through
519 the model with a wide continuous range of manipulation to mimic the effects from lesion to
520 optogenetic inhibition and optogenetic activation (Figure 7A, B, E, F). The simulations of cell
521 ablation and bidirectional optogenetic manipulations of D1-SPNs activity in the model reveal no
522 significant effects at 2-s trials (Figure 7C), but a linear relationship between the neuronal activity
523 in direct pathway and the behavioral performance of choice in 8 s trials (Figure 7D), as observed
524 in animal experiments. It thus further confirms that direct pathway selects action and facilitates
525 ongoing choice, consistent with the predictions from both the classic Go/No-go and recent Co-
526 activation models (Figure 7I, Figure S12A-D) (Albin et al., 1989; DeLong, 1990; Hikosaka et al.,
527 2000; Mink, 1996).

528 In contrast, manipulations of D2-SPNs activity from cell ablation to optogenetic
529 inhibition and then optogenetic stimulation in the model demonstrate an inverted-U-shaped
530 nonlinear relationship between the neuronal activity in indirect pathway and action selection, for
531 both 2-s and 8-s trials (Figure 7G, H). Detailed analyses reveal that D2-SPNs ablation removes
532 both the Co-activation and Go/No-go module in the indirect pathway and leaves SNr activity
533 dictated by D1-SPN inputs. However, due to the inhibition from Co-activation to Go/No-go
534 module in the indirect pathway via D2-SPN collaterals and short-term plasticity of these
535 synapses (Figure S10A-C; see Methods), optogenetic manipulation of D2-SPNs differentially
536 affects the D2-SPN subpopulations groups and promotes Go/No-go module to dominate the

537 basal ganglia network (Figure S10C-S). This dynamic switch of dominance between Co-
538 activation and Go/No-go modules on the basal ganglia network gives rise to a nonlinear
539 relationship between D2-SPNs manipulation and the behavioral outcome (Figure 7J).

540 Note that when the same inputs were applied to the Go/No-go or Co-activation model
541 alone, the behavioral performance in either model exhibits linear negative (Figure S12E) or
542 positive correlation (Figure S12F) with D2-SPNs activity, respectively. Both our experimental
543 and modeling results thus indicate that different from either the Go/No-go or Co-activation
544 model, the indirect pathway regulates action selection in a nonlinear manner, depending on the
545 state of the network and D2-SPNs activity level. Besides collaterals within D2-SPNs, other
546 collateral connections, for example connections between D1-SPNs or connections between D1-
547 and D2-SPNs, could also contribute to the regulation of action selection (Taverna et al., 2008).
548 We tested our ‘Triple-control’ model with adding additional collateral connections as D1→D1
549 (Figure S13A-C), D1→D2 (Figure S13D-F) and D2→D1 (Figure S13G-I), respectively. It was
550 found while these additional collaterals further quantitatively regulate action selection, the
551 general principle of linear vs. nonlinear modulation of action selection by direct and indirect
552 pathways still qualitatively hold (Figure S13). Interestingly, our current ‘Triple-control’ model
553 can also replicate the behavioral effects of optogenetic manipulation of nigrostriatal dopamine on
554 behavioral choice (Howard et al., 2017), and further unveils an inverted-U-shaped relationship
555 between striatal dopamine concentration change and action selection (Figure S14). Together,
556 these results suggest that there are multiple levels of interactions from D1- and D2-SPNs to
557 dynamically control SNr output, and the basal ganglia direct and indirect pathways distinctly
558 control action selection in a linear and nonlinear manner, respectively.

559

560 **Discussion**

561 Here, by using an internally-driven 2-8s action selection task in mice, we investigated the
562 function of basal ganglia direct and indirect pathways in mediating dynamic action selection. We
563 found that the neuronal activities in SNr, the major output of basal ganglia, directly reflect animals'
564 internal action selection process, other than simply time or value. It was also observed that the
565 striatum, the main input of basal ganglia, shares the similar action selection-related neuronal
566 dynamics with SNr and is needed for both learning and execution of proper action selection.
567 Furthermore, the striatal direct and indirect pathways exhibit distinct neuronal activity and during
568 manipulation, they have different functional effects on controlling action selection. Notably, the
569 experimental observations on the physiology and function of direct and indirect pathways cannot be
570 simply explained by either the traditional 'Go/No-go' model or the more recent 'Co-activation'
571 model. We proposed a new 'Triple-control' functional model of basal ganglia, suggesting a critical
572 role of dynamic interactions between different neuronal subpopulations within the indirect pathway
573 for controlling basal ganglia output and behavior. In the model, a 'center (direct pathway) – surround
574 (indirect pathway) – context (indirect pathway)' three layers of structure exerts dynamic control of
575 action selection, depending on the input level and network state. This new model respects the realistic
576 neuroanatomy, and can recapitulate and explain the essential in vivo electrophysiological and
577 behavioral findings. It also provides a new perspective on understanding many behavioral phenomena
578 involving in dopamine and basal ganglia circuitry in health and disease.

579 Our current 2-8s action selection task offers a unique opportunity to observe the animal's
580 internal switch from one choice to another and monitor the underlying neuronal dynamics
581 correspondingly. We observed two major types of monotonically-changing SNr neuronal
582 dynamics during the internal choice switching, presumably one type associated with selecting

583 one action and another with selecting the competing action, respectively. The classic view on
584 SNr activity is that it tonically inhibits the downstream motor nuclei and releases action via
585 disinhibition (Albin et al., 1989; DeLong, 1990; Hikosaka and Wurtz, 1983; Wurtz and Hikosaka,
586 1986). The increased response in SNr, however, could potentially inhibit the competing actions
587 or the movements toward the opposing direction through projections to the contralateral brain
588 regions like superior colliculus (Jiang et al., 2003). Here, we found that two subpopulations in
589 SNr showed opposite monotonic firing change during the left-then-right choice, and notably,
590 their neuronal dynamics switched when the animals performed the reversed version of task
591 which requires a right-then-left choice. It thus suggests that these SNr neurons are indeed
592 associated with different action options during choice behavior, and actively adjust their firing
593 rates to facilitate respective action selection. Given the opposite neuronal dynamics and
594 functionally antagonistic nature of Type 1 and Type 2 SNr neurons, we defined the net output of
595 basal ganglia by the subtracting the neuronal activity between the two SNr subpopulations and
596 correlated it with the behavioral choice. The subtraction between Type 1 and Type 2 SNr
597 neurons is the net output of two competing choices and indicates animals' choice in real time.
598 Also, signals corresponding to left and right choices through direct/indirect pathways eventually
599 converge to SNr (Albin et al., 1989; DeLong, 1990). The collateral inhibition within SNr (Brown
600 et al., 2014; Mailly et al., 2003b) gives rise to the direct competition between different SNr
601 functional subgroups. Therefore, the subtraction between Type 1 and Type 2 SNr neurons
602 represents the outcome of competition between choices. Indeed, we found that the basal ganglia
603 net output exhibited a tight correlation with the psychometric curve of behavioral choice, and
604 faithfully represented a neural basis for the dynamic action selection process.

605 As one of the major input nuclei of basal ganglia, striatum influences SNr activity
606 through direct/indirect pathways and undisputedly, plays an essential role in action selection
607 (Ding and Gold, 2012; Geddes et al., 2018; Jin et al., 2014; Lauwereyns et al., 2002; Tai et al.,
608 2012). By genetic manipulation and pharmacological inactivation, we showed that striatum is
609 indispensable for both learning action selection and the proper performance of learned behavioral
610 choice. The recording of neuronal activity in dorsal-central striatum during action selection
611 further revealed that striatal spiny projection neurons share the similar types of neuronal
612 dynamics as SNr. Through optogenetic-tagging in freely behaving mice, we further found that
613 dorsal-central striatal SPNs in the direct and indirect pathways show distinct activity profile, with
614 D1-SPNs representing a strong bias towards the preferred choice, while D2-SPNs encoding two
615 choices equally.

616 Two prevailing models have been proposed to explain the functional distinction between
617 D1- and D2-SPNs. The canonical model of the basal ganglia suggests that the D1- and D2-SPNs
618 play antagonistic roles in controlling action as mediating “Go” and “No-go” signals, respectively
619 (Albin et al., 1989; DeLong, 1990; Kravitz et al., 2010). A more recent model, however, implies
620 that as D1-SPNs initiate an action, D2-SPNs co-activate with D1-SPNs to inhibit other
621 competing actions (Cui et al., 2013; Hikosaka et al., 2000; Isomura et al., 2013; Jin et al., 2014;
622 Mink, 1996). Essentially, these two models agree upon the functional role of D1-SPNs in
623 releasing or facilitating the desired action, but contradict on the function of D2-SPNs on which
624 targeted action of inhibiting. Here, our *in vivo* recording data indicate that both D1- and D2-
625 SPNs share similar neuronal dynamics during action selection, and the neural activity alone is
626 not sufficient to separate and determine whether “Go/No-go” or “Co-activation” model is
627 supported (Cui et al., 2013; Isomura et al., 2013; Jin et al., 2014). To resolve the functional

628 distinction of the direct vs. indirect pathway, we applied a series of cell-type-specific
629 manipulations on striatal D1- and D2-SPNs during action selection behavior. First, we generated
630 mutant mice in which NMDA receptors are deleted from either striatal D1- or D2-SPNs (Geddes
631 et al., 2018; Jin et al., 2014). Both the D1-NR1 KO and D2-NR1 KO mice showed learning
632 deficits and behavioral choice impairments when tested with probe trials, suggesting that both
633 D1- and D2-SPNs are necessary for learning and performing action selection. Notably, while the
634 D1-NR1 KO mice are mostly impaired in the choice associated with 8s, a less-preferred option
635 compared to 2s, the D2-NR1 KO mice are compromised in both 2s and 8s choice. Additional
636 experiments with cell-type specific ablation further confirmed these results, consistent the
637 distinct neuronal activity profile in these two pathways revealed during in vivo neuronal
638 recording. While both the “Go/No-go” and “Co-activation” models predict the suppression of
639 D1-SPNs activity leads to impaired action selection, supported by current KO and cell-ablation
640 data, the manipulation experiments on D2-SPNs favor the “Co-activation” but not the “Go/No-
641 go” model which the latter suggests D2-SPNs ablation would improve rather than impair action
642 selection.

643 Next, we directly introduced transient bidirectional manipulations to D1- and D2-SPNs
644 activity by optogenetics while mice performing the task. Our findings revealed that activation or
645 inhibition of D1-SPNs increased and decreased the correct rate of choice respectively, suggesting
646 a facilitating role of direct pathway in action selection, which again fits well with the “Go/No-go”
647 as well as the “Co-activation” model. In contrast, optogenetic activation of D2-SPNs decreased
648 the correct rate of choice, while inhibition of D2-SPNs promoted the correct choice. When
649 stimulating D2-SPNs, animals are still able to press the lever and make a selection shortly after
650 lever extension, therefore, the behavioral effect triggered by D2 stimulation is not simply due to

651 a general effect of decreased locomotion, but the altered action selection process. These results
652 were supportive to the “Go/No-go” model but contradicted to the prediction of “Co-activation”
653 theory, which the latter predicts that activation of D2-SPNs inhibits competing actions to
654 facilitate desired choice, whereas inhibition of D2-SPNs releases competing actions and
655 compromises the ongoing choice.

656 In summary, neither “Go/No-go” nor “Co-activation” models could fully explain the
657 experimental results we found, particularly for experiments on D2-SPNs in the indirect pathway.
658 Through computer simulation, we further demonstrated that a simple additive combination of
659 “Go/No-go” nor “Co-activation” models by linear addition cannot reproduce all the experimental
660 observations. To resolve these theoretical difficulties, we proposed a new center-surround-
661 context “Triple-control” model of basal ganglia pathways for action selection. Specifically, two
662 subpopulations of D2-SPNs in the indirect pathway function as “Co-activation” and “Go/No-go”
663 modules respectively, and an activity-dependent inhibition from “Co-activation” to “Go/No-go”
664 module mediates the dynamic switch between the dominant module depending on the inputs and
665 network state. Due to the dominant “Co-activation” module in the default state, excessive
666 inhibition of D2-SPNs or ablating the entire indirect pathway eliminates the promotive
667 contribution and impairs action selection in the “Triple-control” model, consistent with the
668 experimental observations. In contrast, transient increase of D2-SPNs firing activity during
669 optogenetic stimulation introduces shift toward the “Go/No-go” dominance from the “Co-
670 activation” module via firing-rate-dependent short-term depression of the inhibitory synapses
671 between them, which amplifies the “No-go” signal and compromises action selection as
672 experimentally found. In contrast, transient decrease of D2-SPNs firing activity during
673 optogenetic inhibition results in disinhibition of “Go/No-go” module from inhibitory control of

674 “Co-activation” module, with an attenuated “No-go” signal which leads to better performance in
675 choice. These results from our new “Triple-control” model thus suggest that the basal ganglia
676 circuitry could be much more dynamic than previously thought, and it could employ a complex
677 mechanism of functional module reconfiguration for context- or state-dependent flexible control.
678 More importantly, our model further proposed that while direct pathway regulates action
679 selection in a linear manner, the indirect pathway modulates action selection in a nonlinear
680 inverted-U-shaped way depending on the inputs and the network state (Figure 7). Indeed, the
681 amplitude of activities of D2 pathway is pivotal to the behavioral outcome (Meng et al., 2018).
682 In other words, in certain conditions, activation of D2 pathway will facilitate the action as
683 “start&go”; while too much activation of D2-SPNs will switch D2 pathway to “start&stop”
684 mode (Meng et al., 2018), which is consistent with our proposed “nonlinear” control of D2
685 pathway over action selection. These results of various functional assemblies defied previous
686 basal ganglia models in which either direct or indirect pathway has been treated as one uniform
687 population and assigned with a single function in controlling action.

688 In the “Triple-control” model, we posited the collateral connections among striatal D2-
689 SPNs and its short-term plasticity could serve as an operational mechanism for the dominant
690 module switching. However, besides these well-known striatal local connections as one of the
691 simplest possible mechanisms, other anatomical circuits within basal ganglia circuitry could
692 potentially fulfill this functional role alone or additionally as well. For example, striatal D2-SPNs
693 project to external globus pallidus (GPe) through striatopallidal pathway, and meanwhile they
694 receive arckypallidal projections from GPe to both the striatal SPNs and interneurons (Abdi et al.,
695 2015; Fujiyama et al., 2016; Mallet et al., 2016). It is thus also possible that the dynamic
696 interaction between “Co-activation” and “Go/No-go” modules is mediated through di-synaptic or

697 tri-synaptic modulation with GPe and/or striatal interneurons involved. Furthermore, in theory
698 this dynamic interaction between “Co-activation” and “Go/No-go” modules can also occur
699 outside striatum in the downstream nuclei including GPe and SNr, given their specific neuronal
700 subpopulations receiving inputs from corresponding striatal D2-SPNs subgroups and proper
701 collateral connections within the nuclei (Atherton et al., 2013; Cazorla et al., 2014; Fujiyama et
702 al., 2011; Lee et al., 2020; Wu et al., 2000). Considering the crucial role of dopamine in basal
703 ganglia circuitry, the new “Triple-control” model can also reproduce our previous experiments
704 results on the effect of nigrostriatal dopamine on action selection (Howard et al., 2017).
705 Importantly, it unveils that there is an inverted-U-shaped relationship between dopamine
706 concentration change and action selection (Cools and D'Esposito, 2011). The model simulation
707 suggests while moderate dopamine increase improves decision making, too much dopamine
708 changes, either increase or decrease, dramatically impairs the choice behavior. These results
709 might be able to explain some of behavioral observations involving in obscure decision making
710 under the influence of addictive substances.

711 Our findings also have important implications in many neurological and psychiatric
712 diseases. It was known that the loss of dopamine leads to hyperactivity of D2-SPNs and
713 disruption of local D2-SPNs collaterals in Parkinson's disease (Taverna et al., 2008; Wei and
714 Wang, 2016). These alterations will not only break the balance of direct vs. indirect pathway, but
715 also disrupt the multiple dynamic controls from the indirect pathway. The action selection will
716 thus be largely problematic, even with L-DOPA treatment, which might restore the dopamine
717 partially but not necessarily the altered basal ganglia circuitry and its circuit dynamics (Bastide et
718 al., 2015). The current “Triple-control” model also provides some mechanistic insights into the
719 inhibitory control deficits observed Schizophrenia (Taverna et al., 2008; Wei and Wang, 2016).

720 For instance, an increase in the density and occupancy of the striatal D2 receptors (D2R) has
721 been frequently reported in schizophrenia patients (Abi-Dargham et al., 2000; Howes and Kapur,
722 2009; Laruelle et al., 1997; Wong et al., 1986). Many antipsychotic medications primarily aim to
723 block the D2R (la Fougere et al., 2005; Lally and MacCabe, 2015; Yokoi et al., 2002), but the
724 drug dose is the key to the treatment and severer adverse effects are associated with overdose of
725 D2R antagonism (Levine and Ruha, 2012). In addition, prolonged exposure to antipsychotics
726 often causes extrapyramidal symptoms, including Parkinsonian symptoms and tardive dyskinesia
727 (Jarskog et al., 2007; Seeman, 2002). The dose-dependent effects when modulating D2R were
728 also found in cognitive functions such as serial discrimination, in which relatively low and high
729 dose of D2R agonist in striatum impair the performance in the discrimination task, while the
730 intermediate dose of D2R agonist produces significant improvement (Cools and D'Esposito,
731 2011; Goldman-Rakic et al., 2000; Horst et al., 2019; Mattay et al., 2003). These observations
732 thus further underscore the dynamic interplays and complexity of basal ganglia pathways in
733 action control, as demonstrated in current study and the new triple-control functional model.

734

735 **Acknowledgments:** The authors would like to thank Tom Jessell and members of Jin lab for
736 discussion and comments on the manuscript. This research was supported by grants from the
737 NIH (R01NS083815), the Dystonia Medical Research Foundation and the McKnight Memory
738 and Cognitive Disorders Award to X.J.

739

740 **Author Contributions:** X.J. conceived the project. X.J. and H.L. designed the experiments. H.L.
741 performed the experiments and analyzed the data. X.J. supervises all aspects of the work. H.L.
742 and X.J. wrote the manuscript.

743

744 **Conflicts of Interest:** None of the authors declare any conflict of interest, financial or otherwise.

745

746 **Figure Legends:**

747

748 **Figure 1. The neuronal dynamics in SNr during the 2-8 s action selection task. (A)**

749 Schematic diagram for the design of 2-8 s task. (B) Correct rate for wild type mice across 14

750 days training (n = 10 mice, one-way repeated-measures ANOVA, significant effect of training

751 days, $F_{13,117} = 32.54$, $p < 0.0001$). (C) Movement trajectory of an example mouse in correct (left

752 panel) and incorrect (right panel) 8-s trials (gray line: trajectory of each trials; red/black line: the

753 average trajectory). (D) Diagram of electrode array implanted into substantia nigra pars reticulata

754 (SNr). (E) Firing Rate Index (FRI) of neuronal activity for all task-related SNr neurons in correct

755 8-s trials. The magnitude of FRI is color coded and the SNr neurons are classified as four

756 different types based on the activity dynamics. (F-I) Averaged FRI for Type 1 (F, green squares

757 indicating activities related to left choice), Type 2 (G, green squares indicating activities related

758 to left choice), Type 3 (H), Type 4 (I) of SNr neurons in correct (red) and incorrect 8-s trials

759 (gray). (J) The proportion of four types of SNr neurons. Type 1 and Type 2 are major types and

760 significantly more than Type 3 and Type 4 (Z-test, $p < 0.05$). (K) Integrated SNr output defined

761 as the subtraction of averaged FRI between Type 1 and Type 2 SNr neurons. (L) Averaged

762 psychometric curve (n = 10 mice) of choice behavior. (M) The correlation between the Type 1

763 and Type 2 FRI subtraction and the behavioral choice ($R = 0.98$, $p < 0.0005$). Error bars denote

764 s.e.m., same for below unless stated otherwise.

765

766 **Figure 2. SNr neuronal dynamics reflect action selection but not interval time or reward**

767 **value.** (A) Task diagram of 2-8 s control task with 10% 16-s probe trials. (B) Percentage of

768 behavioral choice in 2-s, 8-s and 16-s trials (blue: left choice; red: right choice) (n = 9 mice,

769 paired t-test, $p < 0.05$). (C) Movement trajectory of an example mouse in 16-s trials (blue: left

770 choice; red: right choice). (D) Averaged SNr Type 1 FRI in 16-s trials (red: left choice; black:
771 right choice). Firing rates from 8s to 16s (highlighted area) are compared between left and right
772 choice ($n = 26$ neurons, two-way repeated-measures ANOVA, significant difference between left
773 and right choices, $F_{1,25} = 6.646$, $p = 0.016$). (E) Averaged SNr Type 2 FRI in 16-s trials (red:
774 left choice; black: right choice). Firing rates from 8s to 16s are compared between left and right
775 choice ($n = 16$ neurons, two-way repeated-measures ANOVA, significant difference between left
776 and right choices, $F_{1,15} = 5.785$, $p = 0.029$). (F) Subtraction of FRI for SNr Type 1 and Type 2
777 neurons in 16-s probe trials (red: left choice; black: right choice). (G) Task design of 2-8 s
778 standard task. (H) Percentage of behavioral choice in 2-s and 8-s trials (blue: left choice; red:
779 right choice) ($n = 6$ mice, paired t-test, $p < 0.05$). (I) Movement trajectory of an example mouse
780 in 8-s trials (blue: left choice; red: right choice). (J) Task design of reversed 2-8 s task. (K)
781 Percentage of behavioral choice in 2-s and 8-s trials in the reversed 2-8 s task (blue: left choice;
782 red: right choice) ($n = 6$ mice, paired t-test, $p < 0.05$). (L) Movement trajectory of the same
783 mouse as (I) in 8-s trials in the reversed 2-8 s task (blue: left choice; red: right choice). (M)
784 Averaged FRI of the SNr Type 1 neurons in correct 8-s trials ($n = 14$ neurons). (N) Averaged
785 FRI of the SNr Type 2 neurons in correct 8-s trials ($n = 11$ neurons). (O) Integrated SNr output
786 as the subtraction of FRI for SNr Type 1 (M) and Type 2 neurons (N) in the standard 2-8 s task.
787 (P) Averaged FRI of the same neurons as (M) in correct 8-s trials of the reversed 2-8 s task. (Q)
788 Averaged FRI of the same neurons as (N) in correct 8-s trials of the reversed 2-8 s task. (R)
789 Integrated SNr output as the subtraction of FRI for SNr Type 1 (P) and Type 2 neurons (Q) in the
790 reversed 2-8 s task.
791

792 **Figure 3. Neuronal activity of striatal D1- and D2-SPNs during action selection.** (A) FRI of
793 neuronal activity for all task-related SPNs in correct 8-s trials. SPNs were classified as Type 1 - 4.
794 (B-E) Averaged FRI for Type 1 (B), Type 2 (C), Type 3 (D), Type 4 (E) of SPNs in correct (red)
795 and incorrect 8-s trials (gray). (F) Diagram of simultaneous neuronal recording and optogenetic
796 identification of D1- vs. D2-SPNs in dorsal striatum. (G) Top panel: Raster plot for a
797 representative D1-SPN response to 100 ms optogenetic stimulation. Each row represents one
798 trial and each black dot represents a spike. Bottom panel: Peristimulus time histogram (PETH)
799 aligned to light onset at time zero. (H) PETH for the same neuron as shown in (G) with a finer
800 time scale. (I) Distribution of light response latencies for D1- and D2-SPNs. (J) Action potential
801 waveforms of the same neuron in (G) for spontaneous (black) and light-evoked (orange) spikes
802 ($R = 0.998$, $P < 0.0001$, Pearson's correlation). (K) Principal component analysis (PCA) of
803 action potential waveforms showing the overlapped clusters of spontaneous (black) and light-
804 evoked (orange) spikes. (L) Proportion of D1-SPN subtypes. Type 1 neurons are significantly
805 more than other three types of neurons in D1-SPNs (Z-test, $p < 0.05$). (M) Averaged FRI for
806 Type 1 (blue) and Type 2 (red) D1-SPNs in correct 8-s trials. (N) Proportion of D2-SPN
807 subtypes. (O) Averaged FRI for Type 1 (blue) and Type 2 (red) D2-SPNs in correct 8-s trials.
808

809 **Figure 4. Selective genetic knockout and ablation of D1- or D2-SPNs distinctly alters action**
810 **selection.** (A) Correct rate of control ($n = 11$ mice) and D1-NR1 KO mice ($n = 16$) in 2-8 s task
811 during 14 days training (two-way repeated-measures ANOVA, significant difference between
812 control and KO mice, $F_{1,25} = 10.8$, $p = 0.003$). (B) Correct rate of control ($n = 17$) and D2-NR1
813 KO mice ($n = 10$) in 2-8 s task during 14 days training (two-way repeated-measures ANOVA,
814 significant difference between control and KO mice, $F_{1,25} = 8.728$, $p = 0.007$). (C) The

815 psychometric curve for control (n = 11) and D1-NR1 KO mice (n = 16) (two-way repeated-
816 measures ANOVA, significant difference between control and KO mice, $F_{1,25} = 12.27$, $p =$
817 0.002). (D) The psychometric curve for control (n = 17) and D2-NR1 KO mice (n = 10) (two-
818 way repeated-measures ANOVA, significant difference between control and KO mice, $F_{1,25} =$
819 9.64, $p = 0.005$). (E) Schematic of muscimol infusion into the dorsal striatum in trained mice. (F)
820 Correct rate for control (black: pre-muscimol, gray: post-muscimol) and mice with muscimol
821 infusion (magenta) in dorsal striatum (n = 9 mice, paired t-test, $p < 0.01$). (G) The psychometric
822 curve for control (n = 9 mice, black: pre-muscimol, gray: post-muscimol control) and mice with
823 muscimol infusion (n = 9 mice, magenta) in dorsal striatum (two-way repeated-measures
824 ANOVA, significant difference between control and muscimol infusion, $F_{2,16} = 11.74$, $p =$
825 0.0007). (H) Timeline for selective diphtheria toxin (DT) ablation experiments. (I) Schematic of
826 diphtheria toxin receptor (DTR) virus (AAV-FLEX-DTR-GFP) injection in dorsal striatum of
827 D1-Cre mice. (J) Correct rate for control (n = 9 mice) and mice with dorsal striatum D1-SPNs
828 ablation (D1-DTR, n = 8 mice) (two-sample t-test, $p = 0.0016$). (K) The psychometric curve for
829 control (n = 9 mice) and D1-SPNs ablation mice (n = 8 mice) (two-way repeated-measures
830 ANOVA, main effect of ablation, $F_{1,15} = 1.84$, $p = 0.195$; interaction between trial intervals and
831 ablation, $F_{6,90} = 4.14$, $p = 0.001$). (L) Movement trajectory of a control mouse in 8-s trials. (M)
832 Movement trajectory of a D1-DTR mouse in 8-s trials. (N) Schematic of diphtheria toxin
833 receptor (DTR) virus (AAV-FLEX-DTR-GFP) injection in dorsal striatum of A2a-Cre mice. (O)
834 Correct rate for control (n = 8 mice) and mice with dorsal striatum D2-SPNs ablation (D2-DTR,
835 n = 8 mice) (two-sample t-test, $p = 0.005$). (P) The psychometric curve for control (n = 9 mice)
836 and D2-SPNs ablation mice (n = 8 mice) (two-way repeated-measures ANOVA, main effect of
837 ablation, $F_{1,15} = 0.477$, $p = 0.5$; interaction between trial intervals and ablation, $F_{6,90} = 12.6$, p

838 < 0.001). (Q) Movement trajectory of a control mouse in 8-s trials. (R) Movement trajectory of a
839 D2-DTR mouse in 8-s trials. (S) Schematic of center-surround receptive field diagram for
840 Go/No-Go (left) and Co-activation (right) models. ‘+’ indicates facilitating effect to selection. ‘-’
841 indicates inhibitory effect to selection.

842

843 **Figure 5. Optogenetic manipulation of D1- vs. D2-SPNs differently regulates action**
844 **selection.** (A) Schematic of optic fiber implantation for experimentally optogenetic excitation or
845 inhibition of D1- or D2-SPNs in the dorsal striatum. (B, C) Schematic for optogenetic excitation
846 (B) and inhibition (C) of D1-/D2-SPNs for 1 s right before lever extension in 2-8 s task. (D)
847 Change of correct rate for optogenetic excitation of D1-SPNs in 2-s and 8-s trials (n = 11 mice,
848 one-sample t-test, 2-s trials: p = 0.248; 8-s trials: p < 0.05). (E) Change of correct rate for
849 optogenetic inhibition of D1-SPNs in 2-s and 8-s trials (n = 6 mice, one-sample t-test, 2-s trials:
850 p = 0.557; 8-s trials: p < 0.05). (F) Change of correct rate for optogenetic excitation of D2-SPNs
851 in 2-s and 8-s trials (n = 8 mice, one-sample t-test, 2-s trials: p < 0.05; 8-s trials: p < 0.05). (G)
852 Change of correct rate for optogenetic inhibition of D2-SPNs in 2-s and 8-s trials (n = 5 mice,
853 one-sample t-test, 2-s trials: p < 0.05; 8-s trials: p < 0.05). (H) Schematic of center-surround
854 receptive field diagram for Go/No-Go (left) and Co-activation (right) models. ‘+’ indicates
855 facilitating effect to selection. ‘-’ indicates inhibitory effect to selection.

856

857 **Figure 6. A triple-control computational model of basal ganglia direct and indirect**
858 **pathways for action selection.** (A) Network structure of the cortico-basal ganglia model based
859 on realistic anatomy and synaptic connectivity. (B) Schematic of center-surround-context
860 receptive field diagram for ‘Triple-control’ model. ‘+’ indicates facilitating effect to selection. ‘-’

861 indicates inhibitory effect to selection. (C) The psychometric curves of behavioral output in
862 control (black) and D1-SPNs ablation condition (blue) in ‘Triple-control’ model ($n = 10$, two-
863 way repeated-measures ANOVA, main effect of ablation, $F_{1,18} = 98.72$, $p < 0.0001$; interaction
864 between trial intervals and ablation, $F_{6,108} = 7.799$, $p < 0.0001$). (D) The psychometric curves
865 of behavioral output in control (black) and D2-SPNs ablation condition (red) in ‘Triple-control’
866 model ($n = 10$, two-way repeated-measures ANOVA, main effect of ablation, $F_{1,18} = 99.54$, $p <$
867 0.0001 ; interaction between trial intervals and ablation, $F_{6,108} = 177.6$, $p < 0.0001$). (E) Change
868 of correct rate for optogenetic excitation of D1-SPNs in 2-s and 8-s trials ($n = 10$, one-sample t-
869 test, 2-s trials: $p = 0.407$; 8-s trials: $p < 0.05$). (F) Change of correct rate for optogenetic
870 excitation of D2-SPNs in 2-s and 8-s trials ($n = 10$, one-sample t-test, 2-s trials: $p < 0.05$; 8-s
871 trials: $p < 0.05$). (G) Change of correct rate for optogenetic inhibition of D1-SPNs in 2-s and 8-s
872 trials ($n = 10$, one-sample t-test, 2-s trials: $p = 0.28$; 8-s trials: $p < 0.05$). (H) Change of correct
873 rate for optogenetic inhibition of D2-SPNs in 2-s and 8-s trials ($n = 10$, one-sample t-test, 2-s
874 trials: $p < 0.05$; 8-s trials: $p < 0.05$).

875

876 **Figure 7. Computational modeling reveals direct and indirect pathways regulating action**
877 **selection in a distinct manner.** (A) Schematic for manipulation of D1-SPNs in ‘Triple-control’
878 model. (B) Schematic of manipulation of D1-SPNs in the center-surround-context receptive field
879 diagram for ‘Triple-control’ model. ‘+’ indicates facilitating effect to selection. ‘-’ indicates
880 inhibitory effect to selection. (C) Correct rate change in 2s trials when manipulating D1-SPNs
881 with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of
882 manipulation strength, $F_{36,324} = 1.171$, $p = 0.238$). (D) Correct rate change in 8s trials when
883 manipulating D1-SPNs with different manipulation strengths ($n = 10$, one-way repeated-

884 measures ANOVA, effect of manipulation strength, $F_{36,324} = 13.71$, $p < 0.0001$). (E) Schematic
885 for optogenetic manipulation of D2-SPNs in ‘Triple-control’ model. (F) Schematic of
886 manipulation of D2-SPNs in the center-surround-context receptive field diagram for ‘Triple-
887 control’ model. ‘+’ indicates facilitating effect to selection. ‘-’ indicates inhibitory effect to
888 selection. (G) Correct rate change in 2s trials when manipulating D2-SPNs with different
889 manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation
890 strength, $F_{36,324} = 59.13$, $p < 0.0001$). (H) Correct rate change in 8s trials when manipulating
891 D2-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA,
892 effect of manipulation strength, $F_{36,324} = 40.75$, $p < 0.0001$). (I) Diagram of linear modulation
893 of direct pathway. (J) Diagram of nonlinear modulation of indirect pathway.

894

895

896 **METHODS**

897 **Animals**

898 All experiments were approved by the Salk Institute Animal Care, and done in
899 accordance with NIH guidelines for the Care and Use of Laboratory Animals. Experiments were
900 performed on both male and female mice, at least two months old, housed on a 12-hour
901 light/dark cycle. C57BL/6J mice were purchased from the Jackson Laboratory at 8 weeks of age
902 and used as wildtype mice. BAC transgenic mice expressing cre recombinase under the control
903 of the dopamine D1 receptor (referred as D1-cre, GENSAT: EY217; minimal labeling in cortex;
904 mostly dorsal labeling in striatum) or the A2a receptor (referred as A2a-cre, GENSAT: KG139)
905 promoter were obtained from MMRRC, and either crossed to C57BL/6 or Ai32 (012569) mice
906 obtained from Jackson Laboratory (Cui et al., 2013; Geddes et al., 2018; Jin et al., 2014;
907 Madisen et al., 2012; Tecuapetla et al., 2016). Striatal neuron-type-specific NMDAR1-knockout
908 (referred as NR1-KO) and littermate controls were generated by crossing D1-cre and A2a-cre
909 mice with NMDAR1-loxP (also denoted as Grin1 flox/flox in the Jackson Laboratory database)
910 mice. The behavioral experiments using NR1-KO mice were performed on 8 to 12 weeks old
911 D1/A2a-cre + / NMDAR1-loxP homozygous mice and their littermate controls, including
912 D1/A2a-cre +, D1/A2a-cre + / NMDAR1-loxP heterozygous and NMDAR1-loxP homozygous
913 mice. There was no difference between the three control groups, so the data were combined.
914

915 **Behavior task**

916 Mice were trained on a temporal bisection task in the operant chamber (21.6 cm L × 17.8
917 cm W × 12.7 cm H), which was isolated within a sound attenuating box (Med-Associates, St.
918 Albans, VT). The food magazine was located in the middle of one wall, and two retractable

919 levers were located to the left and right side of the magazine. A house light was (3 W, 24 V)
920 mounted on the opposite wall of the magazine. Sucrose solution (10 %) was delivered into a
921 metal bowl in the magazine through a syringe pump. When a training session started, the house
922 light was turned on and two levers were extended. After a random time interval (30 s on average),
923 left and right levers were retracted and extended simultaneously. Mice were able to make a
924 choice by pressing either left or right lever. Only the very first lever press after levers extension
925 was registered as animals' choice. If the interval between the levers retraction and extension was
926 2s, then only the left lever press was active to trigger the sucrose reward; if the interval between
927 the lever retraction and extension was 8s, then only the right lever press was active to trigger the
928 sucrose reward (Howard et al., 2017). There was no punishment when mice made an unrewarded
929 choice. 2s-trial and 8s-trial were randomized and interleaved by random inter-trial intervals (30 s
930 on average). The mice were also trained in the reversed 2-8s task. In the reversed 2-8s task, if the
931 interval between the levers retraction and extension was 2s, then only the right lever press was
932 active to trigger the sucrose reward; if the interval between the lever retraction and extension was
933 8s, then only the left lever press was active to trigger the sucrose reward. Representative
934 behavioral tracks were captured by EthoVision (Noldus).

935

936 **Behavior training**

937 Mice were placed on food restriction throughout the training, and fed daily after the
938 training sessions with ~2.5 g of regular food to allow them to maintain a body weight of around
939 85 % of their baseline weight. Training started with continuous reinforcement (CRF), in which
940 animals obtained a reinforcer after each lever press. The session began with the illumination of
941 the house light and extension of either left or right lever, and ended with the retraction of the

942 lever and the offset of the house light. On the first day of CRF, mice received 5 reinforcers on
943 left and right lever. On the second day of CRF, mice received 10 reinforcers on left and right
944 lever. On the third day of CRF, mice received 15 reinforcers on left and right lever. The order of
945 left lever CRF and right lever CRF on each day was randomized across all the CRF training days.
946 After the training of CRF, animals started on the temporal bisection task (day 1). Mice were
947 trained in the temporal bisection task for 14 consecutive days. On each day, there were 240 trials
948 with 2s-trial and 8s-trial randomly intermixed at 50:50. After 14 days training, mice received an
949 interval discrimination test, in which 20% of 2s/8s trials were replaced by probe trials. In probe
950 trials, the levers retraction intervals were randomly selected from 2.3s, 3.2s, 4s, 5s and 6.3s.
951 Neither choice in the probe trials was rewarded. Mice received 4 days of test, interleaved by
952 training days without probes. The animals were trained daily without interruption and every day
953 the training started approximately at same time (Howard et al., 2017). All timestamps of lever
954 presses, magazine entries and licks for each animal were recorded with 10 ms resolution. The
955 training chambers and procedures for NR1-KO mice and their littermate controls were exactly
956 the same for C57BL/6J mice.

957 For the reversed task training, mice were trained in both the 2-8 s control task and
958 reversed version of 2-8s task on the same day for at least 14 days. During each day, mice were
959 trained in the 2-8s task first, and then mice were put back in the home cage for a 3-4 hours rest.
960 After the rest period, the same mice were trained in the reversed 2-8s task. The order of these
961 two tasks is fixed throughout the 14 days training.

962 **Surgery**

963 For in vivo electrophysiological data recording, each mouse was chronically implanted
964 with an electrode array which consists of an array of 2 rows \times 8 columns Platinum-coated

965 tungsten microwire electrodes (35 μm diameter) with 150 μm spacing between microwires in a
966 row, and 250 μm spacing between 2 rows. The craniotomies were made at the following
967 coordinates: 0.5 mm rostral to bregma and 1.5 mm laterally for dorsal striatum; 3.4 mm caudal to
968 bregma and 1.0 mm laterally for SNr (Jin and Costa, 2010; Jin et al., 2014). During surgeries, the
969 electrode arrays were gently lowered \sim 2.2 mm from the surface of the brain for dorsal striatum
970 and \sim 4.3 mm for SNr, while simultaneously monitoring neural activity. Final placement of the
971 electrodes was monitored online during the surgery based on the neural activity, and then
972 confirmed histologically at the end of the experiment after perfusion with 10 % formalin, brain
973 fixation in a solution of 30 % sucrose and 10 % formalin, followed by cryostat sectioning
974 (coronal slices of 40 - 60 μm). For striatum recording, we implanted 11 mice in the left
975 hemisphere and 8 mice in the right hemisphere. For the SNr recording, we implanted 5 mice in
976 the left hemisphere and 4 mice in the right hemisphere.

977 For the cell type identification in striatum, the cre-inducible adeno-associated virus (AAV)
978 vector carrying the gene encoding the light-activated cation channel channelrhodopsin-2 (ChR2)
979 and a fluorescent reporter (DIO-ChR2-YFP/DIO-ChR2-mCherry) was stereotactic injected into
980 the dorsal striatum of D1-Cre or A2a-Cre mice, enabling cell-type-specific expression of ChR2
981 in striatal D1-expressing or D2-expressing projection neurons (at exactly the same coordinates of
982 electrode array implantation in striatum stated above). DIO-ChR2-YFP/DIO-ChR2-mCherry
983 virus (1 μl , one site, 10^{12} titer) was injected through a micro-injection Hamilton syringe, with the
984 whole injection taking \sim 10 min in total. The syringe needle was left in the position for 5–10 min
985 after the injection and then slowly moved out. Following viral injections or for mice genetically
986 expressing ChR2 under cre control (D1-Ai32, A2a-Ai32), electrode was implanted as previously
987 described (Geddes et al., 2018; Jin et al., 2014). The electrode array was the same as used for

988 dorsal striatum recording, but with a guiding cannula attached (Innovative Neurophysiology)
989 terminating ~300 μ m above the electrode tips, and was implanted into the same site after virus
990 injection, allowing for simultaneous electrophysiological recording and light stimulation.
991 Following the implantation, a medal needle was inserted in the cannula and mice were placed in
992 the home cage for 2 weeks, allowing both viral expression and surgery recovery, before further
993 training and recording experiments.

994 For the optogenetic manipulation in striatum, we injected the AAV virus carrying the
995 gene for coding ChR2 (DIO-ChR2-YFP/DIO-ChR2-mCherry) or Halorhodopsin (DIO-
996 eNpHR3.0-eYFP). Virus was injected bilaterally at 0.5 mm rostral to bregma, 2 mm laterally and
997 ~ 2.2 mm from the surface of the brain with 1 μ l per site. 10 min after the virus injection, we
998 bilaterally implanted optical fiber units in dorsal striatum to the same site as virus injection. An
999 optical fiber unit was made by threading a 200- μ m diameter, 0.37 NA optical fiber (Thor Labs)
1000 with epoxy resin into a plastic ferrule (Geddes et al., 2018; Howard et al., 2017). Optical fiber
1001 units were then cut and polished before the implantation.

1002 For muscimol infusion in striatum, we bilaterally implanted cannulas (Plastics One, VA)
1003 in wildtype mice to the site at 0.5 mm rostral to bregma, 2 mm laterally and ~ 2.2 mm from the
1004 surface of the brain. After the implantation, cannulas were covered by dummy cannulas. Mice
1005 were placed in the home cage for 2 weeks, allowing surgery recovery, before further training and
1006 muscimol experiments.

1007 For striatal neuron-type-specific ablation experiments, D1-cre and A2a-cre mice were
1008 stereotactically injected with a cre-inducible adeno-associated virus carrying the diphtheria toxin
1009 receptor (Azim et al., 2014; Geddes et al., 2018) (AAV9-FLEX-DTR-GFP; Salk GT3 Core, CA).
1010 Virus was injected in eight different sites. We used two sets of AP/ML coordinates for each

1011 hemisphere followed by two DV depths at each AP/ML site. The coordinates were +0.9 mm AP,
1012 ± 1.6 mm ML, -2.2 and -3.0 mm DV and 0.0 mm AP, ± 2.1 mm ML, -2.2 and -3.0 mm DV. A
1013 Hamilton syringe was used to inject 1 uL at the four -3.0 mm DV sites and another 0.5 uL at the
1014 four -2.2 mm DV sites for a total of 3 uL injected per hemisphere. Following each injection, the
1015 needle was left in place for ~5 minutes and then raised over ~5 minutes. This same protocol was
1016 used for each injection site.

1017

1018 **Muscimol infusion**

1019 We daily trained wildtype mice with guide cannulas (Plastics One, VA) implanted until
1020 they achieved at least 80% correct rate for 3 consecutive days, we started muscimol infusion
1021 experiments. Muscimol was dissolved in saline before infusion (Sigma-Aldrich; 0.05 ug/uL). For
1022 the infusions, mice were briefly anesthetized with isoflurane and injection cannulas (Plastics One,
1023 VA) were bilaterally inserted into the guide cannulas, with the injection cannulas projecting 0.1
1024 mm beyond the implanted guide cannulas. Each injection cannula was attached to an infusion
1025 pump (BASi, IN) via polyethylene tubing. Animals were bilaterally infused with 200 nL of
1026 liquid (saline or muscimol) followed by a five-minute waiting period before removal of the
1027 infusion cannulas. Mice were returned to their home cage and started in the behavioral task 30
1028 minutes after infusion (Geddes et al., 2018). To estimate the effects of muscimol on choice, we
1029 repeated saline controls and muscimol infusions at least 3 times on a single mouse to gain
1030 enough probe trials for psychometric curve fitting.

1031

1032 **DTR-mediated cell ablation**

1033 For striatal neuron-type-specific ablation experiments, D1-cre and A2a-cre were injected
1034 with AAV9-FLEX-DTR-GFP in striatum using the same coordinates described above. After
1035 three-week recovery, mice were food-restricted and, following completion of CRF, underwent
1036 training in the 2-8s task for two weeks. Immediately after day 14 of 2-8s task training, mice were
1037 randomly divided into control and treatment groups. Treatment mice were administered mice 1
1038 ug of diphtheria toxin (DT) dissolved in 300 uL of phosphate buffered saline (PBS) via
1039 intraperitoneal (IP) injection on two consecutive days (Azim et al., 2014; Geddes et al., 2018),
1040 whereas control mice received IP injections of PBS. To allow for neuronal ablation, animals
1041 were stopped in behavioral training and placed back on food. Animals resumed 2-8s task training
1042 with probe trials 14 days after the first DT or PBS injection.

1043

1044 **Neural recordings during the task**

1045 The mice with electrode array implanted were trained with exactly the same procedure as
1046 described above. When mice performed the 2-8s task with 80% correct rate for 3 consecutive
1047 days, we connected the array with recording cable and continued training until mice adapted to
1048 the mechanics of the recording cable and were able to maintain the correct rate greater than 80%
1049 (Howard et al., 2017).

1050 Neural activity was recorded using the MAP system (Plexon Inc., TX). The spike
1051 activities were initially online sorted using a sorting algorithm (Plexon Inc., TX). Only spikes
1052 with a clearly identified waveforms and relatively high signal-to-noise ratio were used for further
1053 analysis. After the recording session, the spike activities were further sorted to isolate single
1054 units by offline sorting software (Plexon Inc., TX). Single units displayed a clear refractory
1055 period in the inter-spike interval histogram, with no spikes during the refractory period (larger

1056 than 1.3 ms) (Geddes et al., 2018; Howard et al., 2017; Jin and Costa, 2010; Jin et al., 2014). All
1057 the timestamps of animal's behavioral events were recorded as TTL pulses which were generated
1058 by a Med-Associates interface board and sent to the MAP recording system through an A/D
1059 board (Texas Instrument Inc., TX). The animal's behavioral timestamps during the training
1060 session were synchronized and recorded together with the neural activity.

1061

1062 **Neural dynamic analysis**

1063 The animal's behavior taking place during the lever retraction time period was critical to
1064 the choice to be made, so we focused on the analysis of the neural activity from levers retraction
1065 to levers extension. Neuronal firings aligned to lever retraction were averaged across trials in 20-
1066 ms bins, and smoothed by a Gaussian filter (Gaussian filter window size = 10, standard deviation
1067 = 5) to construct the peri-event histogram (PETH). The neurons showing significant firing
1068 changes during the lever retraction period were defined as task-related neurons (ANOVA); those
1069 showing no significant changes were defined as non-task-related neurons, which were not
1070 included in the further dynamic analysis.

1071 During 2s trials, mice behaved exactly the same as they did during the 0s - 2s period in
1072 the rewarded 8s trials, so we mainly analyzed firing activities in 8s trials. To avoid confounding
1073 effect by the sensory responses triggered by the lever retraction, only neural activity from 1s to
1074 8s following lever retraction were included (Howard et al., 2017). Then we calculated firing rate
1075 index (FRI) based on the PETH from 1s to 8s for each individual neuron as follows:

$$\text{FRI} = \frac{\text{PETH} - \text{mean}(\text{PETH})}{\text{std}(\text{PETH})}$$

1076 We then used principal component analysis (PCA) and classification algorithm, a build-in
1077 toolbox in Matlab, to classify the task-related neurons based on types of dynamics. For striatum

1078 and SNr, we used the same algorithm to classify neurons, and we found the same types of
1079 dynamics in striatum and SNr: Type 1, monotonic decreasing; Type 2, monotonic increasing;
1080 Type 3, peak at around 4s; Type 4, trough at around 4s.

1081

1082 **Cell type classification**

1083 In dorsal striatum, we classified neurons as putative striatal projection neurons (SPNs) if
1084 they showed waveform trough half-width between 100 μ s and 250 μ s and the baseline firing rate
1085 less than 10 Hz. In substantia nigra pars reticulata (SNr), neurons with firing rate higher than 15
1086 Hz were classified as putative SNr GABA neurons, which are most likely the SNr projection
1087 neurons, because the percentage of GABAergic interneurons in the SNr is rather small (Deniau
1088 JM, 2007; Jin and Costa, 2010).

1089 To further identify the D1 and D2 SPNs in striatum, we utilized cre-loxp technique to
1090 exclusively express ChR2 on D1-SPNs or D2-SPNs by injecting the AAV-DIO-ChR2-YFP/
1091 AAV-DIO-ChR2-mCherry virus into dorsal striatum or genetically express ChR2 by D1-Ai32
1092 and A2a-Ai32. Optical stimulation on ChR2-expressed cells is able to directly evoke spiking
1093 activity with short latency (Geddes et al., 2018; Jin and Costa, 2010; Jin et al., 2014). Before the
1094 training session, we connected the recording cable to the electrode array for neuronal recording
1095 and inserted an optic fiber through the cannula attached to the array to conduct light into striatum
1096 for light stimulation. For better monitoring of the same cells stably during behavioral training
1097 and the later optogenetic identification, the optic fiber was well fixed to the array. After each
1098 training session, we delivered blue light stimulation through the optic fiber from a 473-nm laser
1099 (Laserglow Technologies) via a fiber-optic patch cord, and simultaneously recorded the neuronal
1100 responses, to testify the molecular identity of cells previously recorded during the behavioral

1101 training. The stimulation pattern was 100-ms pulse width with 4s interval. The stimulation
1102 pattern was repeatedly delivered for 100 trials. We very carefully regulated the laser power to a
1103 relatively low level for each individual recording session which was strong enough to evoke
1104 reliable spikes in a small population of neurons recorded from certain electrodes, since high laser
1105 powers usually induced an electrical signal much larger and very different from the spike
1106 waveforms previously recorded in the same electrode, presumably resulting from synchronized
1107 activation of a large population of cells surrounding the electrode. For neuron identification in
1108 different sessions in the same mouse, substantial effort was made to optimize the position of
1109 optic fiber to identify those units recorded from different electrodes and that were not being able
1110 to be identified in the previous session. The final laser power used for reliable identification of
1111 D1/D2-SPNs was between 1.0 and 1.5 mW measured at the tip of the optical fiber (slightly
1112 varying for different mice and different sessions). Only those units showing very short (\leq 6 ms)
1113 response latency to light stimulation and exhibiting exactly the same spike waveforms ($R \geq 0.95$,
1114 Pearson's correlation coefficient) during the behavioral performance and light response were
1115 considered as direct light-activated and cre recombinase positive neurons thus D1-SPNs or D2-
1116 SPNs (Geddes et al., 2018; Howard et al., 2017; Jin and Costa, 2010). Strict criteria were
1117 employed to minimize the possibility of false positives (with the risk of increasing false
1118 negatives, and hence having to perform more recordings/mice to achieve the same number of
1119 neurons).

1120

1121 **Optical stimulation during the task**

1122 For optogenetic manipulation experiments, mice were injected with AAV virus carrying
1123 were pre-trained in 2-8s task for two weeks and bilaterally implanted with optic fibers. After
1124 achieving a correct rate of 80%, stimulation trials began. D1-SPNs and D2-SPNs neurons were
1125 stimulated or inhibited bilaterally in 50% of trials using a single pulse of light (Laserglow, 473
1126 nm, 5 mW, 1 s constant for ChR2 experiments; Laserglow, 532 nm 10 mW, 1 s constant for
1127 Halorhodopsin experiments). Rewards were delivered only at correct responses during 2 and 8 s
1128 trials. Within 50% of any type of trials, mice were optogenetically stimulated (or inhibited) for 1
1129 s before lever extension (Howard et al., 2017). Mice only received stimulation (or inhibition)
1130 once per trial. Sessions with correct rate below 75% for control trials were excluded from further
1131 analysis.

1132

1133 **Computational model**

1134 We constructed a neuronal network model, including cortico-basal ganglia circuitry, to
1135 simulate the behavioral effects of ablation and optogenetic manipulation on SPNs. Specifically,
1136 cortical information corresponding to left or right choice is sent to D1- and D2-SPNs associated
1137 with these two action options (Lo and Wang, 2006; Wang, 2002). One-way collateral inhibition
1138 is added between D2 SPNs subgroups. Signals from D1- and D2-SPNs eventually converge to
1139 two separate SNr populations through distinct pathways (Hikosaka et al., 2000; Jin et al., 2014;
1140 Mink, 2003), and exert opposing effects on SNr activity (Smith et al., 1998). Behavioral output is
1141 then determined by the dominant activity between the mutually inhibiting left and right SNr
1142 populations (Mailly et al., 2003a), which could control the final motor output either through
1143 brainstem circuits or motor cortices (Aoki et al., 2019; Hikosaka, 2007; Lo and Wang, 2006;

1144 Redgrave et al., 1999). Here for simplicity, other basal ganglia nuclei such as globus pallidus and
1145 subthalamic nucleus are not included in the model.

1146 Cortical neurons firing activities are defined as:

$$f_{left}^{cortex}(t) = k_{left}^{cortex} e^{-t_m \cdot t} + I_{noise}^{left}(t)$$

$$f_{right}^{cortex}(t) = k_{right}^{cortex} e^{-t_m \cdot t} + I_{noise}^{right}(t)$$

1147 where $k_{left}^{cortex} = 2$, $k_{right}^{cortex} = -2$, $t_m = 0.4$ and $I_{noise}(t)$ is defined as Gaussian white noise
1148 ($\text{mean}(I_{noise}^{left}) = 1$, $\text{mean}(I_{noise}^{right}) = 2$, $\text{SD} = 0.01$).

1149 Dopamine neuron firing activities is defined as:

$$f_{DA}(t) = k_{DA} e^{-t_{DA} \cdot t} + I_{noise}^{DA}(t)$$

1150 where $k_{DA} = 3$, $t_{DA} = 0.4$ and $I_{noise}^{DA}(t)$ is defined as Gaussian white noise ($\text{mean}(I_{noise}^{DA}) = 1$,
1151 $\text{SD} = 0.01$).

1152 Neuronal activities of D1-SPNs are defined as:

$$\tau \frac{df_{left}^{D1}(t)}{dt} = w_0(E - f_{left}^{D1}(t)) + \tilde{w}_{D1_left} f_{left}^{cortex}(t) + w_{D1} f_{DA}(t) + I_{noise}(t)$$

$$\tau \frac{df_{right}^{D1}(t)}{dt} = w_0(E - f_{right}^{D1}(t)) + \tilde{w}_{D1_right} f_{right}^{cortex}(t) + w_{D1} f_{DA}(t) + I_{noise}(t)$$

1153 where $w_0 = 1$, $E = 20$, $\tilde{w}_{D1_left} = 3$, $\tilde{w}_{D1_right} = 6$, $w_{D1} = 2$, $\tau = 0.1$, $I_{noise}(t)$ is defined as
1154 Gaussian white noise ($\text{mean}(I_{noise}(t)) = 0$, $\text{SD} = 0.5$).

1155 Neuronal activities of D2-SPNs in “Co-activation” module (labelled as D2-SPN 1) are
1156 defined as:

$$\tau \frac{df_{left1}^{D2}(t)}{dt} = w_0(E - f_{left1}^{D2}(t)) + \tilde{w}_{D2_left} f_{left}^{cortex}(t) + w_{D2} f_{DA}(t) + I_{noise}(t)$$

$$\tau \frac{df_{right1}^{D2}(t)}{dt} = w_0(E - f_{right1}^{D2}(t)) + \tilde{w}_{D2_right} f_{right}^{cortex}(t) + w_{D2} f_{DA}(t) + I_{noise}(t)$$

1157 where $w_0 = 1$, $E = 21$, $\tilde{w}_{D2_left} = 5$, $\tilde{w}_{D2_right} = 5$, $w_{D2} = -0.3$, $\tau = 0.1$, $I_{noise}(t)$ is defined
1158 as Gaussian white noise (mean $(I_{noise}(t)) = 0$, SD = 0.5).

1159 Neuronal activities of D2-SPNs in “Go/No-go” module (labelled as D2-SPN 2) are
1160 defined as:

$$1161 \tau \frac{df_{left2}^{D2}(t)}{dt} = w_0(E - f_{left2}^{D2}(t)) + \tilde{w}_{D2_left} f_{left}^{cortex}(t) + w_{D2_left} S_{left}(t) f_{right1}^{D2}(t) +$$

$$1162 w_{D2} f_{DA}(t) + I_{noise}(t)$$

$$1163 \tau \frac{df_{right2}(t)}{dt} = w_0(E - f_{right2}(t)) + \tilde{w}_{D2_right} f_{right}^{cortex}(t) + w_{D2_right} S_{right}(t) f_{left1}^{D2}(t) +$$

$$1164 w_{D2} f_{DA}(t) + I_{noise}(t)$$

1165 where $w_0 = 1$, $E = 21$, $\tilde{w}_{D2_left} = 5$, $\tilde{w}_{D2_right} = 5$, $w_{D2_left} = -0.7$, $w_{D2_right} = -0.5$,
1166 $w_{D2} = -0.3$, $\tau = 0.1$, $I_{noise}(t)$ is defined as Gaussian white noise (mean $(I_{noise}(t)) = 0$, SD =
1167 0.5). $S_{left}(t)$ and $S_{right}(t)$ are short-term depression functions:

$$S_{left}(t) = 3/(1 + e^{0.3(f_{right1}^{D2}(t) - 15)})$$

$$S_{right}(t) = 3/(1 + e^{0.3(f_{left1}^{D2}(t) - 15)})$$

1168 SNr neurons receive striatal inputs as well as the local inhibitory inputs from other SNr
1169 neurons. The SNr activities are defined as:

$$1170 \tau_{SNr} \frac{df_{left}^{SNr}(t)}{dt} = w_0(E - f_{left}^{SNr}(t)) + \tilde{w}_1 f_{left}^{D1}(t) + \tilde{w}_2 f_{right1}^{D2}(t) + \tilde{w}_3 f_{left2}^{D2}(t) +$$
$$1171 w_{left}^{SNr} f_{right}^{SNr}(t) + I_{noise}^s(t)$$

$$1172 \tau_{SNr} \frac{df_{right}^{SNr}(t)}{dt} =$$

$$1173 w_0(E - f_{right}^{SNr}(t)) + \tilde{w}_1 f_{right}^{D1}(t) + \tilde{w}_2 f_{left1}^{D2}(t) + \tilde{w}_3 f_{right2}^{D2}(t) +$$

$$1174 w_{right}^{SNr} f_{left}^{SNr}(t) + I_{noise}^s(t)$$

1175 where $w_0 = 1$, $E = 40$, $\widetilde{w1}_{SNr_left} = -0.1$, $\widetilde{w1}_{SNr_right} = -0.105$, $\widetilde{w2}_{SNr} = 0.15$, $\widetilde{w3}_{SNr} =$

1176 $w_{left}^{SNr} = -0.027$, $w_{right}^{SNr} = -0.01$, $\tau_{SNr} = 0.2$. $I_{noise}^s(t)$ is defined as Gaussian white

1177 noise (mean $(I_{noise}^s) = 0$, SD = 0.3).

1178 The time-dependent choice $C(t)$ is then determined by SNr outputs $f_{left}^{SNr}(t)$ and $f_{right}^{SNr}(t)$ as

1179 follows:

1180
$$C(t) = \begin{cases} \text{left choice (short-duration choice), } f_{left}^{SNr}(t) - f_{right}^{SNr}(t) < 0 \\ \text{right choice (long-duration choice), } f_{left}^{SNr}(t) - f_{right}^{SNr}(t) \geq 0 \end{cases}$$

1181 For optogenetic manipulation of striatal neurons, the stimulation pattern is defined as:

$$F_{activation}(t) = \begin{cases} amp, & t_s \leq t \leq t_s + 1 \\ 0, & t < t_s \text{ or } t > t_s + 1 \end{cases}$$

1182 and for inhibition, the pattern is defined as:

$$F_{inhibition}(t) = \begin{cases} -amp, & t_s \leq t \leq t_s + 1 \\ 0, & t < t_s \text{ or } t > t_s + 1 \end{cases}$$

1183 where t_s is the onset of stimulation/inhibition, which lasts for 1 s. amp is defined as the strength

1184 of the optogenetic manipulation within the range of [1, 25].

1185 To add D1-D1 collateral connections to the 'Triple-control' model, the neuronal activities

1186 of D1-SPNs are defined as:

$$\begin{aligned} \tau \frac{df_{left}^{D1}(t)}{dt} &= w_0(E - f_{left}^{D1}(t)) + \widetilde{w}_{D1_left} f_{left}^{cortex}(t) + w_{D1_right} f_{right}^{D1}(t) + w_{D1} f_{DA}(t) \\ &\quad + I_{noise}(t) \end{aligned}$$

$$\begin{aligned} \tau \frac{df_{right}^{D1}(t)}{dt} &= w_0(E - f_{right}^{D1}(t)) + \widetilde{w}_{D1_right} f_{right}^{cortex}(t) + w_{D1_left} f_{left}^{D1}(t) + w_{D1} f_{DA}(t) \\ &\quad + I_{noise}(t) \end{aligned}$$

1187 where $w_{D1_left} = -0.3$, $w_{D1_right} = -0.3$.

1188 To add D1-D2 collateral connections to the ‘Triple-control’ model, the neuronal activities
1189 of D2-SPNs in “Go/No-go” module (labelled as D2-SPN 2) are defined as:

1190
$$\tau \frac{df_{left2}^{D2}(t)}{dt} = w_0(E - f_{left2}^{D2}(t)) + \tilde{w}_{D2_left} f_{left}^{cortex}(t) + w_{D2_left} S_{left}(t) f_{right1}^{D2}(t) +$$

1191
$$w_{D1_left} f_{left}^{D1}(t) + w_{D2} f_{DA}(t) + I_{noise}(t)$$

1192
$$\tau \frac{df_{right2}^{D2}(t)}{dt} = w_0(E - f_{right2}^{D2}(t)) + \tilde{w}_{D2_right} f_{right}^{cortex}(t) + w_{D2_right} S_{right}(t) f_{left1}^{D2}(t) +$$

1193
$$w_{D1_right} f_{right}^{D1}(t) + w_{D2} f_{DA}(t) + I_{noise}(t)$$

1194 where $w_{D1_left} = -0.3$, $w_{D1_right} = -0.3$.

1195 To add D2-D1 collateral connections to the ‘Triple-control’ model, the neuronal activities
1196 of D1-SPNs are defined as:

$$\tau \frac{df_{left}^{D1}(t)}{dt} = w_0(E - f_{left}^{D1}(t)) + \tilde{w}_{D1_left} f_{left}^{cortex}(t) + w_{D2_left} f_{left2}^{D2}(t) + w_{D1} f_{DA}(t) + I_{noise}(t)$$

$$\tau \frac{df_{right}^{D1}(t)}{dt} = w_0(E - f_{right}^{D1}(t)) + \tilde{w}_{D1_right} f_{right}^{cortex}(t) + w_{D2_right} f_{right2}^{D2}(t) + w_{D1} f_{DA}(t) + I_{noise}(t)$$

1197 where $w_{D2_left} = -0.3$, $w_{D2_right} = -0.3$.

1198 All the modeling programs were coded in Matlab.

1199

1200 **Psychometric curve fitting**

1201 Psychometric curves for behavioral data and for theoretical curves were fit using the
1202 following equation (Brunton et al., 2013; Howard et al., 2017):

$$y = a + \frac{b}{1 + e^{\frac{c-x}{d}}}$$

1203 where a is the percentage of long-lever selection during short duration trials, b is the difference
1204 between a and the percentage of long-lever selection during long duration trials, c is the x-
1205 intercept where long-duration selection equals 0.5, and d is the rate of increase or decrease in the
1206 curve (slope). These can be interpreted as change in overall choice, long-duration choice, time,
1207 and sensitivity, respectively (Brunton et al., 2013).

1208

1209 **Statistical procedures**

1210 Statistics for the wild-type and KO mice learning data were performed on the basis of
1211 values for each mouse per day. One-way and two-way repeated measures ANOVA were used to
1212 investigate general main effects; and paired or unpaired t-test were used in all planned and post-
1213 hoc comparisons. Z-test was used for the comparison of neuron proportions (Sheskin, 2003).
1214 Statistics for the optogenetic data were performed on the basis of control and stimulated values
1215 for each mouse per stimulation condition. Statistical analyses were conducted in Matlab using
1216 the statistics toolbox (The MathWorks Inc., MA) and GraphPad Prism 7 (GraphPad Software
1217 Inc., CA). Results are presented as mean \pm SEM for behavior readouts and the neuronal
1218 recording data. $p < 0.05$ was considered significant. All statistical details are located within the
1219 figure legends. The number of animals used in each experiment and the number of neurons are
1220 specified in the text and figure legend.

1221

1222

1223 **References:**

1224 Abdi, A., Mallet, N., Mohamed, F.Y., Sharott, A., Dodson, P.D., Nakamura, K.C., Suri, S.,
1225 Avery, S.V., Larvin, J.T., Garas, F.N., *et al.* (2015). Prototypic and arkypallidal neurons in the
1226 dopamine-intact external globus pallidus. *The Journal of neuroscience : the official journal of the*
1227 *Society for Neuroscience* 35, 6667-6688.

1228 Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L.S., Weiss, R.,
1229 Cooper, T.B., Mann, J.J., Van Heertum, R.L., *et al.* (2000). Increased baseline occupancy of D2
1230 receptors by dopamine in schizophrenia. *Proceedings of the National Academy of Sciences of*
1231 *the United States of America* 97, 8104-8109.

1232 Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia
1233 disorders. *Trends in neurosciences* 12, 366-375.

1234 Aoki, S., Smith, J.B., Li, H., Yan, X., Igarashi, M., Coulon, P., Wickens, J.R., Ruigrok, T.J., and
1235 Jin, X. (2019). An open cortico-basal ganglia loop allows limbic control over motor output via
1236 the nigrothalamic pathway. *eLife* 8.

1237 Atherton, J.F., Menard, A., Urbain, N., and Bevan, M.D. (2013). Short-term depression of
1238 external globus pallidus-subthalamic nucleus synaptic transmission and implications for
1239 patterning subthalamic activity. *The Journal of neuroscience : the official journal of the Society*
1240 *for Neuroscience* 33, 7130-7144.

1241 Azim, E., Jiang, J., Alstermark, B., and Jessell, T.M. (2014). Skilled reaching relies on a V2a
1242 propriospinal internal copy circuit. *Nature* 508, 357-363.

1243 Barbera, G., Liang, B., Zhang, L., Gerfen, C.R., Culurciello, E., Chen, R., Li, Y., and Lin, D.T.
1244 (2016). Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant
1245 Information. *Neuron* 92, 202-213.

1246 Bastide, M.F., Meissner, W.G., Picconi, B., Fasano, S., Fernagut, P.O., Feyder, M., Francardo,
1247 V., Alcacer, C., Ding, Y., Brambilla, R., *et al.* (2015). Pathophysiology of L-dopa-induced motor
1248 and non-motor complications in Parkinson's disease. *Progress in neurobiology* 132, 96-168.

1249 Benecke, R., Rothwell, J.C., Dick, J.P., Day, B.L., and Marsden, C.D. (1987). Disturbance of
1250 sequential movements in patients with Parkinson's disease. *Brain : a journal of neurology* 110
1251 (*Pt 2*), 361-379.

1252 Brown, J., Pan, W.X., and Dudman, J.T. (2014). The inhibitory microcircuit of the substantia
1253 nigra provides feedback gain control of the basal ganglia output. *eLife* 3, e02397.

1254 Brunton, B.W., Botvinick, M.M., and Brody, C.D. (2013). Rats and humans can optimally
1255 accumulate evidence for decision-making. *Science* *340*, 95-98.

1256 Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., and Di Filippo, M. (2014). Direct and indirect
1257 pathways of basal ganglia: a critical reappraisal. *Nature neuroscience* *17*, 1022-1030.

1258 Cazorla, M., de Carvalho, F.D., Chohan, M.O., Shegda, M., Chuhma, N., Rayport, S., Ahmari,
1259 S.E., Moore, H., and Kellendonk, C. (2014). Dopamine D2 receptors regulate the anatomical and
1260 functional balance of basal ganglia circuitry. *Neuron* *81*, 153-164.

1261 Cools, R., and D'Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working
1262 memory and cognitive control. *Biological psychiatry* *69*, e113-125.

1263 Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. (2013).
1264 Concurrent activation of striatal direct and indirect pathways during action initiation. *Nature* *494*,
1265 238-242.

1266 DeLong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. *Trends in
1267 neurosciences* *13*, 281-285.

1268 Deniau JM, M.P., Maurice N, Charpier S. (2007). Gaba and the basal ganglia - from molecules
1269 to systems, Vol 160 (Elsevier).

1270 Ding, L., and Gold, J.I. (2012). Separate, causal roles of the caudate in saccadic choice and
1271 execution in a perceptual decision task. *Neuron* *75*, 865-874.

1272 Durieux, P.F., Schiffmann, S.N., and de Kerchove d'Exaerde, A. (2012). Differential regulation
1273 of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal
1274 striatum subregions. *The EMBO journal* *31*, 640-653.

1275 Fujiyama, F., Nakano, T., Matsuda, W., Furuta, T., Udagawa, J., and Kaneko, T. (2016). A
1276 single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats. *Brain structure
1277 & function* *221*, 4733-4740.

1278 Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K.C., Matsuda, W., and Kaneko, T.
1279 (2011). Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a
1280 single neuron-tracing study using a viral vector. *Eur J Neurosci* *33*, 668-677.

1281 Gallistel, C.R. (1980). The Organization of Action: A New Synthesis.

1282 Geddes, C.E., Li, H., and Jin, X. (2018). Optogenetic Editing Reveals the Hierarchical
1283 Organization of Learned Action Sequences. *Cell* *174*, 32-43 e15.

1284 Goldman-Rakic, P.S., Muly III, E.C., and Williams, G.V. (2000). D \square receptors in prefrontal
1285 cells and circuits. *Brain Research Reviews*.

1286 Gong, S., Doughty, M., Harbaugh, C.R., Cummins, A., Hatten, M.E., Heintz, N., and Gerfen,
1287 C.R. (2007). Targeting Cre recombinase to specific neuron populations with bacterial artificial
1288 chromosome constructs. *The Journal of neuroscience : the official journal of the Society for
1289 Neuroscience* 27, 9817-9823.

1290 Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I.,
1291 Thompson, K.R., and Deisseroth, K. (2010). Molecular and cellular approaches for diversifying
1292 and extending optogenetics. *Cell* 141, 154-165.

1293 Graybiel, A.M. (1998). The basal ganglia and chunking of action repertoires. *Neurobiology of
1294 learning and memory* 70, 119-136.

1295 Graybiel, A.M., and Rauch, S.L. (2000). Toward a neurobiology of obsessive-compulsive
1296 disorder. *Neuron* 28, 343-347.

1297 Gustafson, N., Gireesh-Dharmaraj, E., Czubayko, U., Blackwell, K.T., and Plenz, D. (2006). A
1298 comparative voltage and current-clamp analysis of feedback and feedforward synaptic
1299 transmission in the striatal microcircuit in vitro. *Journal of neurophysiology* 95, 737-752.

1300 Hikosaka, O. (2007). GABAergic output of the basal ganglia. *Progress in brain research* 160,
1301 209-226.

1302 Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K., and Lu, X. (1998). Differential roles of the
1303 frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. *Neurobiology of
1304 learning and memory* 70, 137-149.

1305 Hikosaka, O., Takikawa, Y., and Kawagoe, R. (2000). Role of the basal ganglia in the control of
1306 purposive saccadic eye movements. *Physiol Rev* 80, 953-978.

1307 Hikosaka, O., and Wurtz, R.H. (1983). Visual and oculomotor functions of monkey substantia
1308 nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. *Journal of
1309 neurophysiology* 49, 1285-1301.

1310 Horst, N.K., Jupp, B., Roberts, A.C., and Robbins, T.W. (2019). D2 receptors and cognitive
1311 flexibility in marmosets: tri-phasic dose-response effects of intra-striatal quinpirole on serial
1312 reversal performance. *Neuropsychopharmacology : official publication of the American College
1313 of Neuropsychopharmacology* 44, 564-571.

1314 Howard, C.D., Li, H., Geddes, C.E., and Jin, X. (2017). Dynamic Nigrostriatal Dopamine Biases
1315 Action Selection. *Neuron* 93, 1436-1450 e1438.

1316 Howes, O.D., and Kapur, S. (2009). The Dopamine Hypothesis of Schizophrenia: Version III—
1317 The Final Common Pathway. *Schizophrenia Bulletin* *35*, 549-562.

1318 Isomura, Y., Takekawa, T., Harukuni, R., Handa, T., Aizawa, H., Takada, M., and Fukai, T.
1319 (2013). Reward-modulated motor information in identified striatum neurons. *The Journal of*
1320 *neuroscience : the official journal of the Society for Neuroscience* *33*, 10209-10220.

1321 Jarskog, L.F., Miyamoto, S., and Lieberman, J.A. (2007). Schizophrenia: new pathological
1322 insights and therapies. *Annual review of medicine* *58*, 49-61.

1323 Jiang, H., Stein, B.E., and McHaffie, J.G. (2003). Opposing basal ganglia processes shape
1324 midbrain visuomotor activity bilaterally. *Nature* *423*, 982-986.

1325 Jin, X., and Costa, R.M. (2010). Start/stop signals emerge in nigrostriatal circuits during
1326 sequence learning. *Nature* *466*, 457-462.

1327 Jin, X., and Costa, R.M. (2015). Shaping action sequences in basal ganglia circuits. *Current*
1328 *opinion in neurobiology* *33*, 188-196.

1329 Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode
1330 the parsing and concatenation of action sequences. *Nature neuroscience* *17*, 423-430.

1331 Klaus, A., and Plenz, D. (2016). A Low-Correlation Resting State of the Striatum during Cortical
1332 Avalanches and Its Role in Movement Suppression. *PLoS biology* *14*, e1002582.

1333 Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer,
1334 A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal
1335 ganglia circuitry. *Nature* *466*, 622-626.

1336 la Fougere, C., Meisenzahl, E., Schmitt, G., Stauss, J., Frodl, T., Tatsch, K., Hahn, K., Moller,
1337 H.J., and Dresel, S. (2005). D2 receptor occupancy during high- and low-dose therapy with the
1338 atypical antipsychotic amisulpiride: a ¹²³I-iodobenzamide SPECT study. *Journal of nuclear*
1339 *medicine : official publication, Society of Nuclear Medicine* *46*, 1028-1033.

1340 Lally, J., and MacCabe, J.H. (2015). Antipsychotic medication in schizophrenia: a review.
1341 *British medical bulletin* *114*, 169-179.

1342 Laruelle, M., D'Souza, C.D., Baldwin, R.M., Abi-Dargham, A., Kanes, S.J., Fingado, C.L.,
1343 Seibyl, J.P., Zoghbi, S.S., Bowers, M.B., Jatlow, P., *et al.* (1997). Imaging D2 receptor
1344 occupancy by endogenous dopamine in humans. *Neuropsychopharmacology : official*
1345 *publication of the American College of Neuropsychopharmacology* *17*, 162-174.

1346 Lauwereyns, J., Watanabe, K., Coe, B., and Hikosaka, O. (2002). A neural correlate of response
1347 bias in monkey caudate nucleus. *Nature* *418*, 413-417.

1348 Lee, Y., Han, N.E., Kim, W., Kim, J.G., Lee, I.B., Choi, S.J., Chun, H., Seo, M., Lee, C.J., Koh,
1349 H.Y., *et al.* (2020). Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry
1350 Control Stress-Related Behaviors in Mice. *Molecules and cells* *43*, 360-372.

1351 Levine, M., and Ruha, A.M. (2012). Overdose of atypical antipsychotics: clinical presentation,
1352 mechanisms of toxicity and management. *CNS drugs* *26*, 601-611.

1353 Lima, S.Q., Hromadka, T., Znamenskiy, P., and Zador, A.M. (2009). PINP: a new method of
1354 tagging neuronal populations for identification during in vivo electrophysiological recording.
1355 *PloS one* *4*, e6099.

1356 Lo, C.C., and Wang, X.J. (2006). Cortico-basal ganglia circuit mechanism for a decision
1357 threshold in reaction time tasks. *Nature neuroscience* *9*, 956-963.

1358 Madisen, L., Mao, T., Koch, H., Zhuo, J.-m., Berenyi, A., Fujisawa, S., Hsu, Y.-W.A., Garcia,
1359 A.J., Gu, X., and Zanella, S. (2012). A toolbox of Cre-dependent optogenetic transgenic mice for
1360 light-induced activation and silencing. *Nature neuroscience* *15*, 793-802.

1361 Mailly, P., Charpier, S., Menetrey, A., and Deniau, J.-M. (2003a). Three-dimensional
1362 organization of the recurrent axon collateral network of the substantia nigra pars reticulata
1363 neurons in the rat. *Journal of Neuroscience* *23*, 5247-5257.

1364 Mailly, P., Charpier, S., Menetrey, A., and Deniau, J.M. (2003b). Three-dimensional
1365 organization of the recurrent axon collateral network of the substantia nigra pars reticulata
1366 neurons in the rat. *The Journal of neuroscience : the official journal of the Society for
1367 Neuroscience* *23*, 5247-5257.

1368 Mallet, N., Schmidt, R., Leventhal, D., Chen, F., Amer, N., Boraud, T., and Berke, J.D. (2016).
1369 Arkypallidal Cells Send a Stop Signal to Striatum. *Neuron* *89*, 308-316.

1370 Markowitz, J.E., Gillis, W.F., Beron, C.C., Neufeld, S.Q., Robertson, K., Bhagat, N.D., Peterson,
1371 R.E., Peterson, E., Hyun, M., Linderman, S.W., *et al.* (2018). The Striatum Organizes 3D
1372 Behavior via Moment-to-Moment Action Selection. *Cell* *174*, 44-58 e17.

1373 Mattay, V.S., Goldberg, T.E., Fera, F., Hariri, A.R., Tessitore, A., Egan, M.F., Kolachana, B.,
1374 Callicott, J.H., and Weinberger, D.R. (2003). Catechol O-methyltransferase val158-met genotype
1375 and individual variation in the brain response to amphetamine. *Proceedings of the National
1376 Academy of Sciences of the United States of America* *100*, 6186-6191.

1377 Meng, C., Zhou, J., Papaneri, A., Peddada, T., Xu, K., and Cui, G. (2018). Spectrally Resolved
1378 Fiber Photometry for Multi-component Analysis of Brain Circuits. *Neuron* 98, 707-717 e704.

1379 Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor
1380 programs. *Progress in neurobiology* 50, 381-425.

1381 Mink, J.W. (2003). The Basal Ganglia and involuntary movements: impaired inhibition of
1382 competing motor patterns. *Archives of neurology* 60, 1365-1368.

1383 Nonomura, S., Nishizawa, K., Sakai, Y., Kawaguchi, Y., Kato, S., Uchigashima, M., Watanabe,
1384 M., Yamanaka, K., Enomoto, K., Chiken, S., *et al.* (2018). Monitoring and Updating of Action
1385 Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways. *Neuron*
1386 99, 1302-1314 e1305.

1387 Phillips, J.G., Chiu, E., Bradshaw, J.L., and Iansek, R. (1995). Impaired movement sequencing in
1388 patients with Huntington's disease: a kinematic analysis. *Neuropsychologia* 33, 365-369.

1389 Redgrave, P., Prescott, T.J., and Gurney, K. (1999). The basal ganglia: a vertebrate solution to
1390 the selection problem? *Neuroscience* 89, 1009-1023.

1391 Schmidt, R., and Berke, J.D. (2017). A Pause-then-Cancel model of stopping: evidence from
1392 basal ganglia neurophysiology. *Philosophical transactions of the Royal Society of London Series*
1393 *B, Biological sciences* 372.

1394 Seeman, P. (2002). Atypical antipsychotics: mechanism of action. *Canadian journal of*
1395 *psychiatry Revue canadienne de psychiatrie* 47, 27-38.

1396 Sheskin, D.J. (2003). *Handbook of parametric and nonparametric statistical procedures*
1397 (Chapman and Hall/CRC).

1398 Smith, Y., Bevan, M., Shink, E., and Bolam, J.P. (1998). Microcircuitry of the direct and indirect
1399 pathways of the basal ganglia. *Neuroscience* 86, 353-387.

1400 Tai, L.H., Lee, A.M., Benavidez, N., Bonci, A., and Wilbrecht, L. (2012). Transient stimulation
1401 of distinct subpopulations of striatal neurons mimics changes in action value. *Nature*
1402 *neuroscience* 15, 1281-1289.

1403 Taverna, S., Ilijic, E., and Surmeier, D.J. (2008). Recurrent collateral connections of striatal
1404 medium spiny neurons are disrupted in models of Parkinson's disease. *The Journal of*
1405 *neuroscience : the official journal of the Society for Neuroscience* 28, 5504-5512.

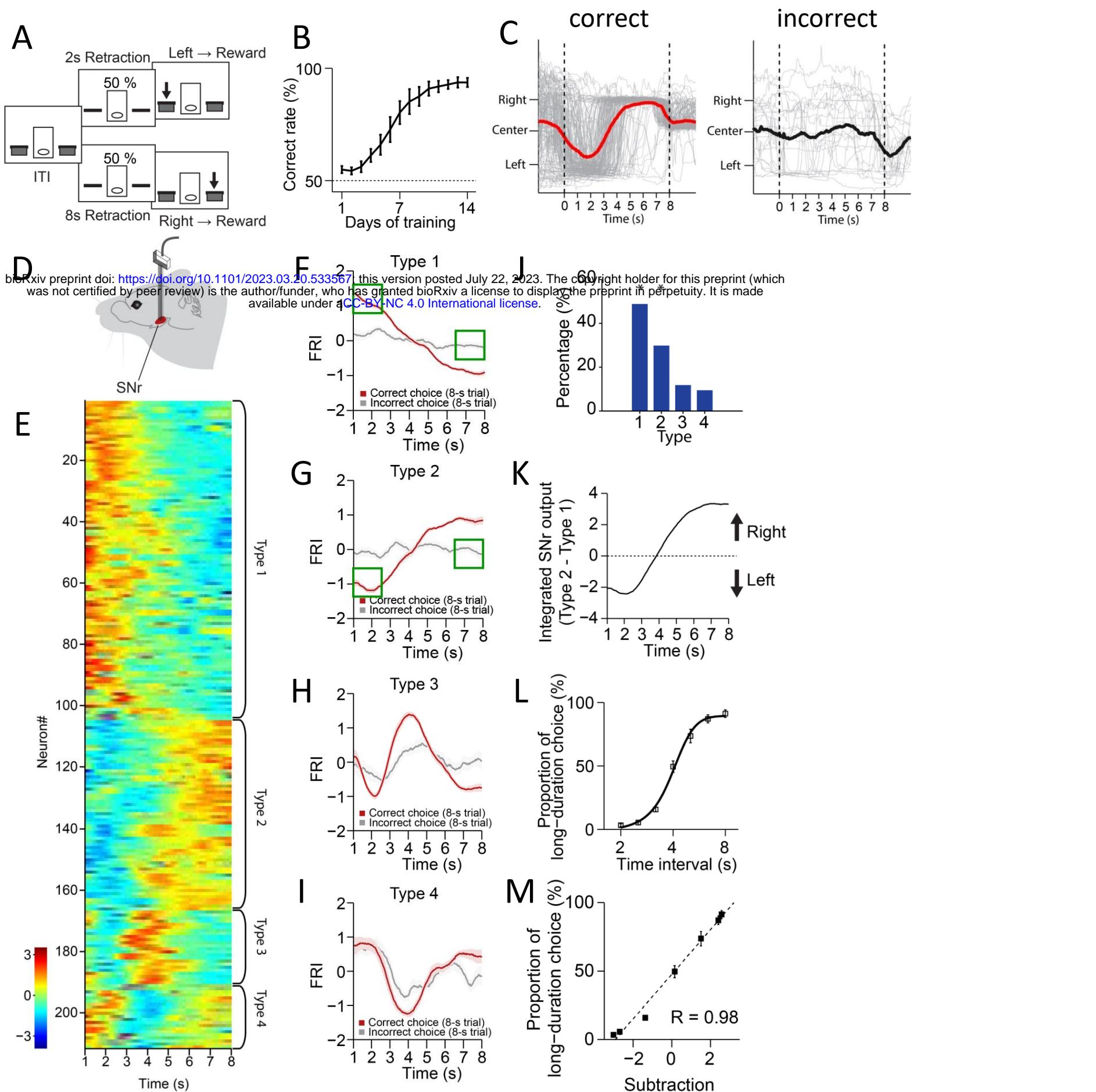
1406 Tecuapetla, F., Carrillo-Reid, L., Bargas, J., and Galarraga, E. (2007). Dopaminergic modulation
1407 of short-term synaptic plasticity at striatal inhibitory synapses. *Proceedings of the National
1408 Academy of Sciences* *104*, 10258-10263.

1409 Tecuapetla, F., Jin, X., Lima, S.Q., and Costa, R.M. (2016). Complementary Contributions of
1410 Striatal Projection Pathways to Action Initiation and Execution. *Cell* *166*, 703-715.

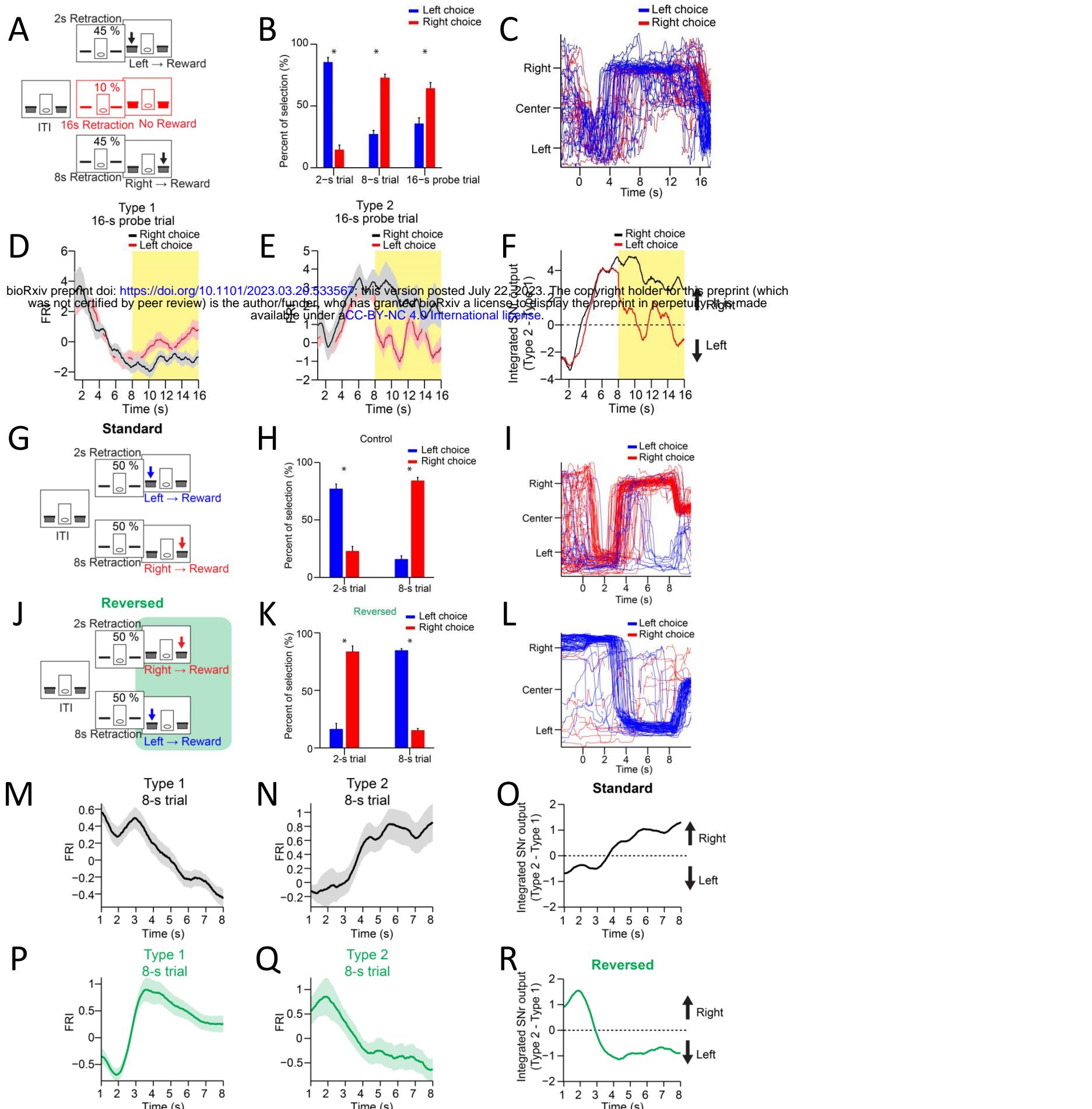
1411 Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits.
1412 *Neuron* *36*, 955-968.

1413 Wei, W., and Wang, X.J. (2016). Inhibitory Control in the Cortico-Basal Ganglia-
1414 Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes.
1415 *Neuron* *92*, 1093-1105.

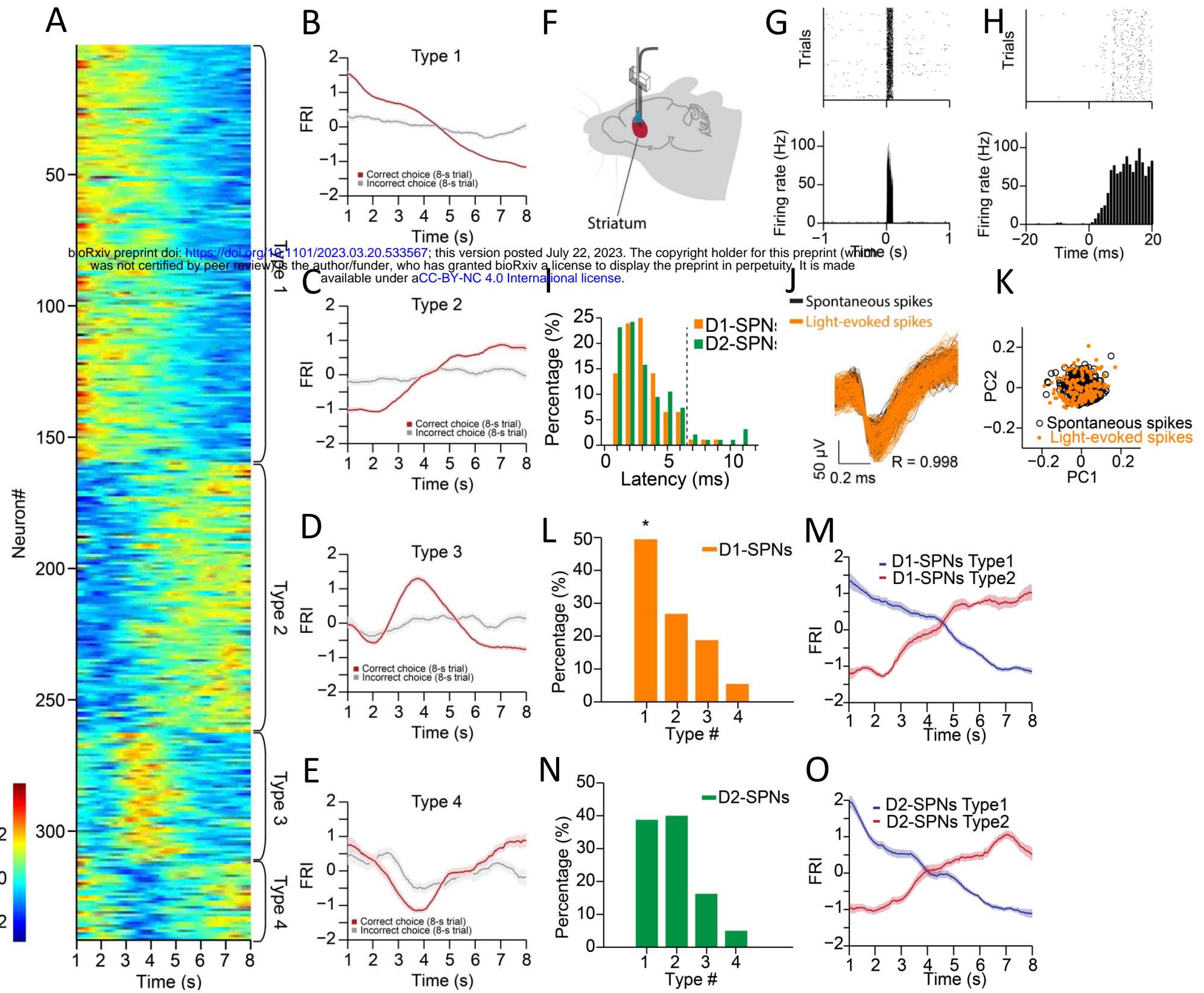
1416 Wong, D.F., Wagner, H.N., Jr., Tune, L.E., Dannals, R.F., Pearson, G.D., Links, J.M.,
1417 Tamminga, C.A., Broussolle, E.P., Ravert, H.T., Wilson, A.A., *et al.* (1986). Positron emission
1418 tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. *Science* *234*,
1419 1558-1563.

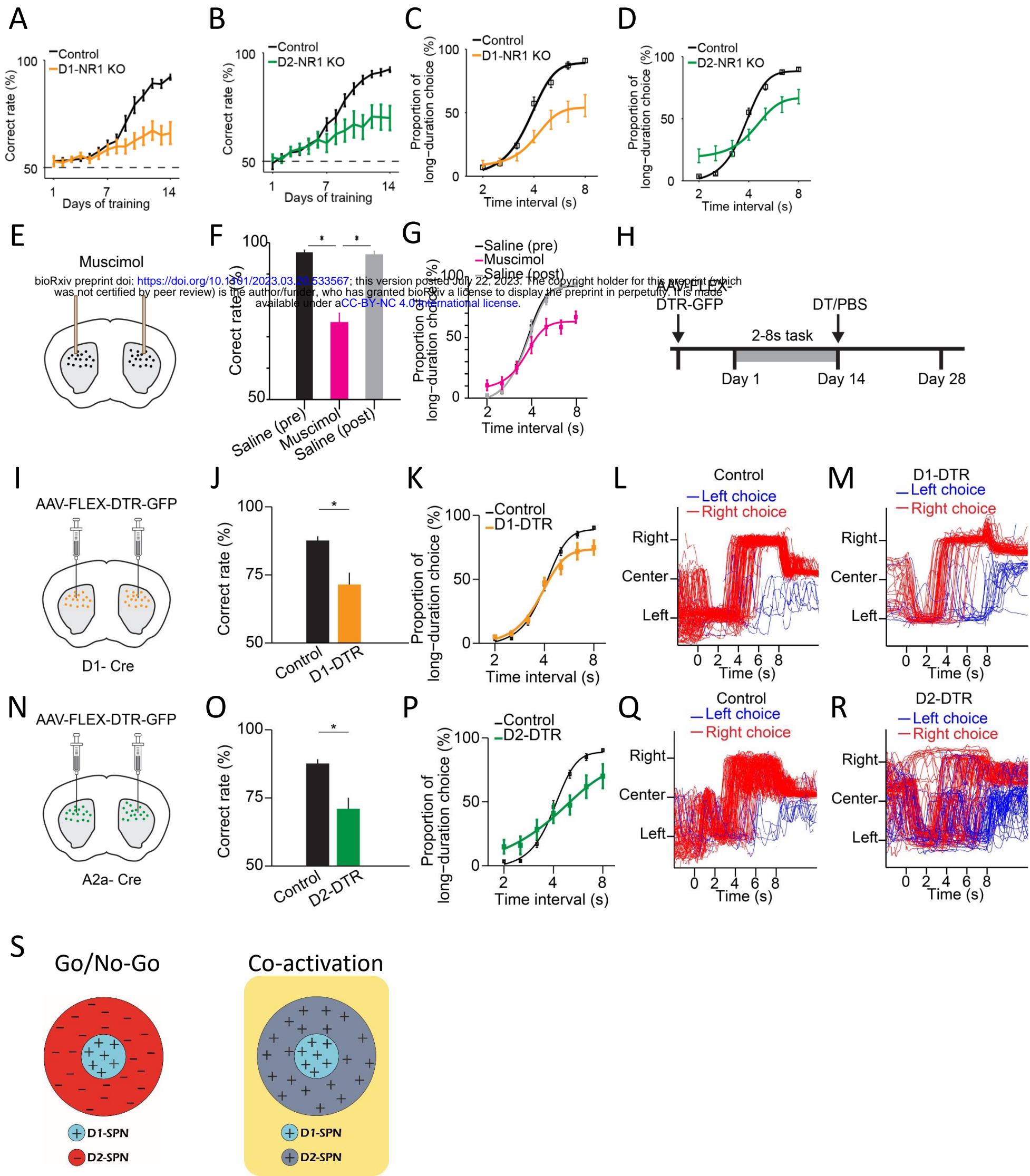

1420 Wu, Y., Richard, S., and Parent, A. (2000). The organization of the striatal output system: a
1421 single-cell juxtacellular labeling study in the rat. *Neurosci Res* *38*, 49-62.

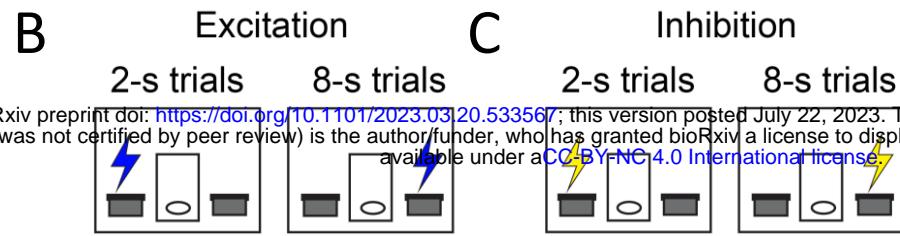
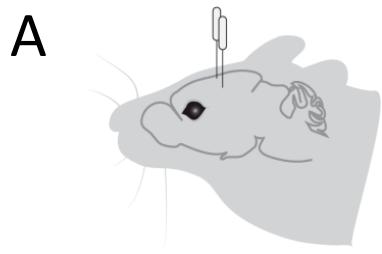
1422 Wurtz, R.H., and Hikosaka, O. (1986). Role of the basal ganglia in the initiation of saccadic eye
1423 movements. *Progress in brain research* *64*, 175-190.

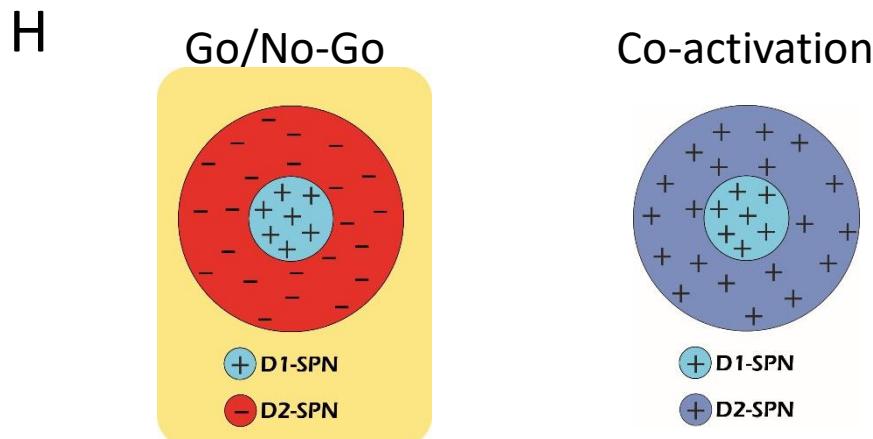
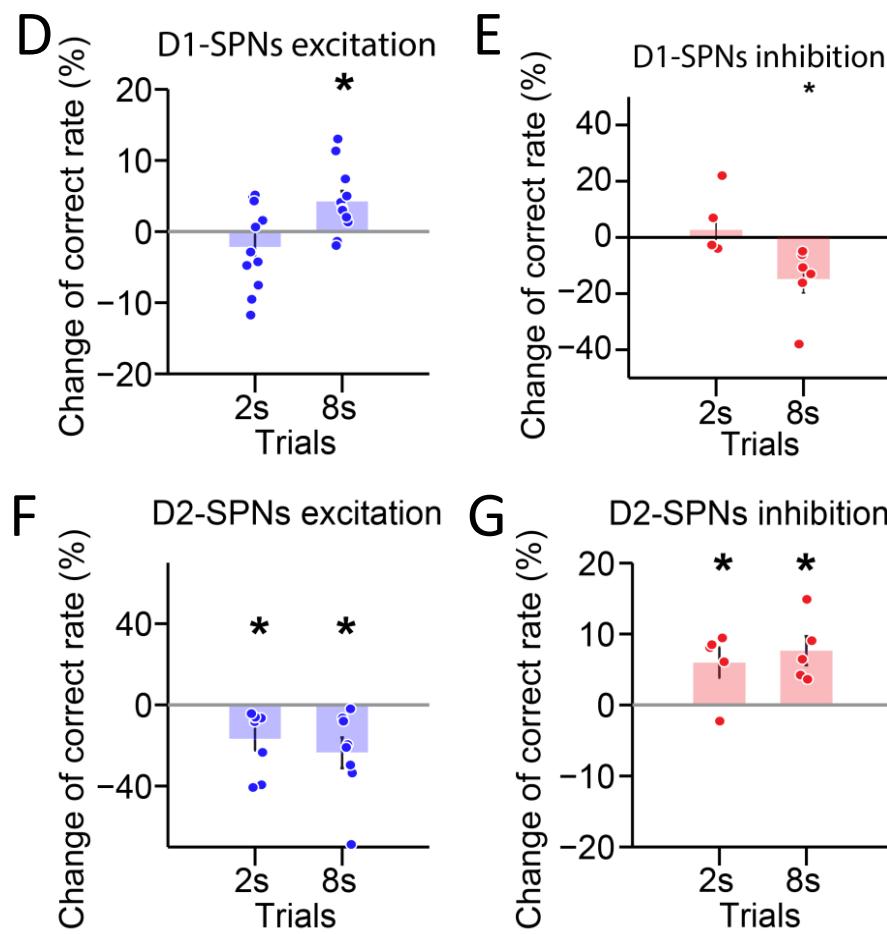

1424 Yokoi, F., Gründer, G., Biziere, K., Stephane, M., Dogan, A.S., Dannals, R.F., Ravert, H., Suri,
1425 A., Bramer, S., and Wong, D.F. (2002). Dopamine D 2 and D 3 receptor occupancy in normal
1426 humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron
1427 emission tomography and [11 C] raclopride. *Neuropsychopharmacology* : official publication of
1428 the American College of Neuropsychopharmacology *27*, 248-259.

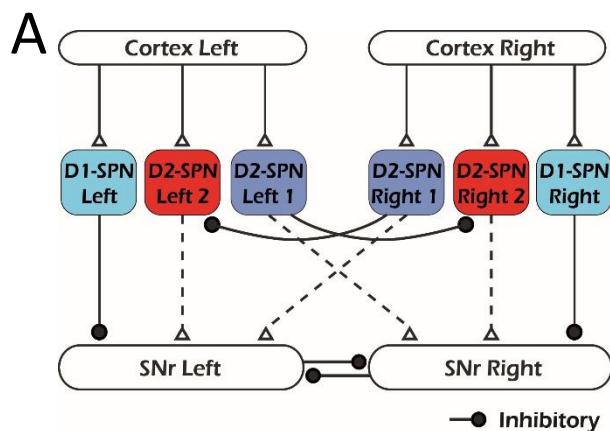
1429

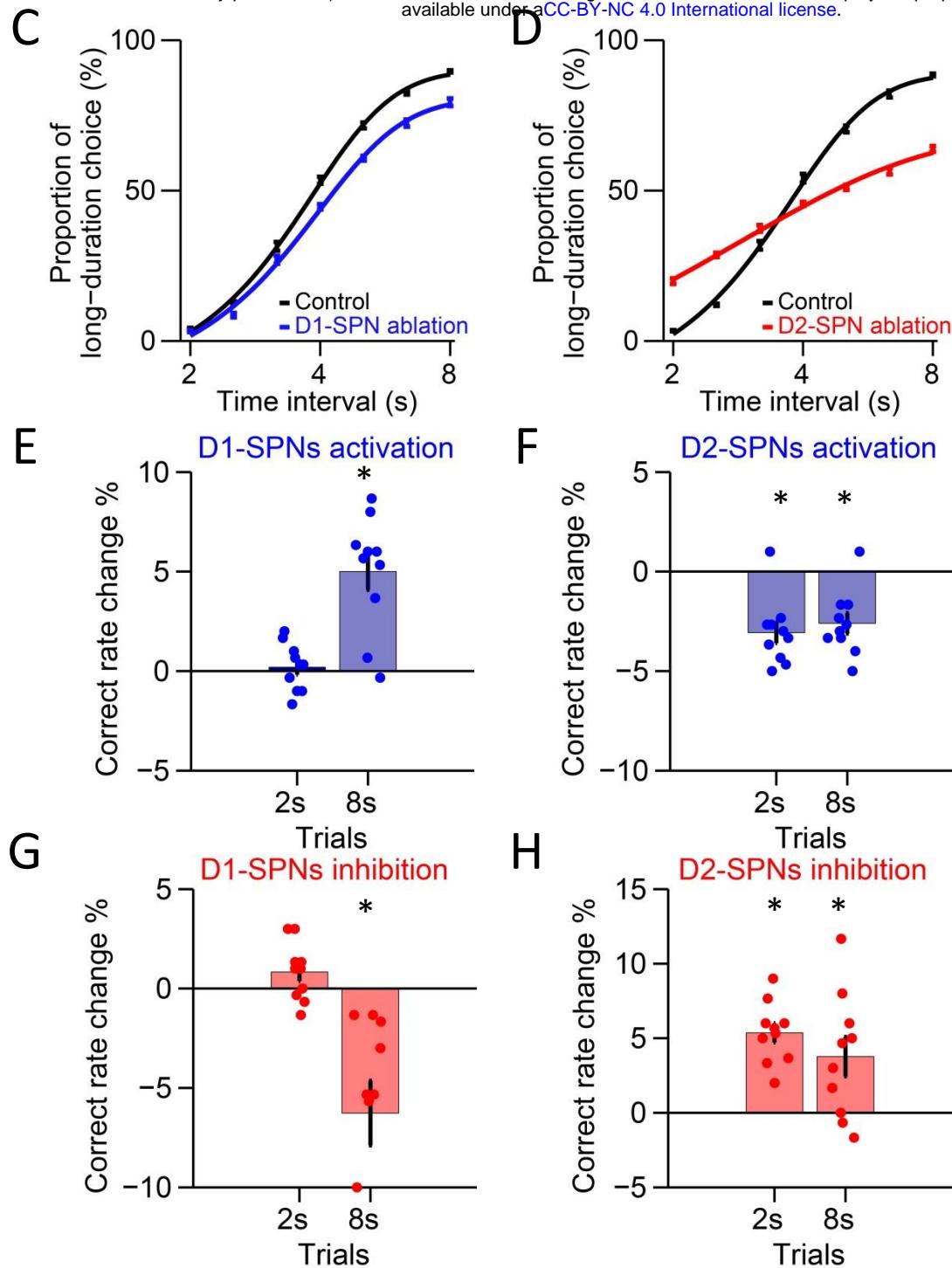
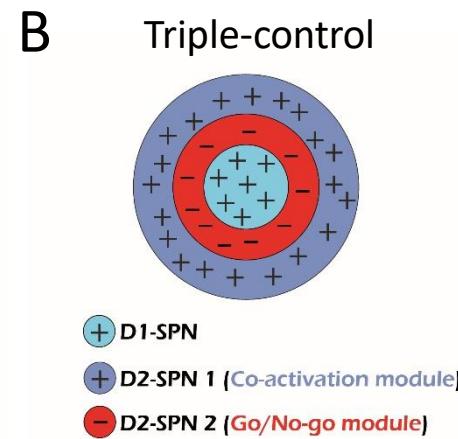

1430

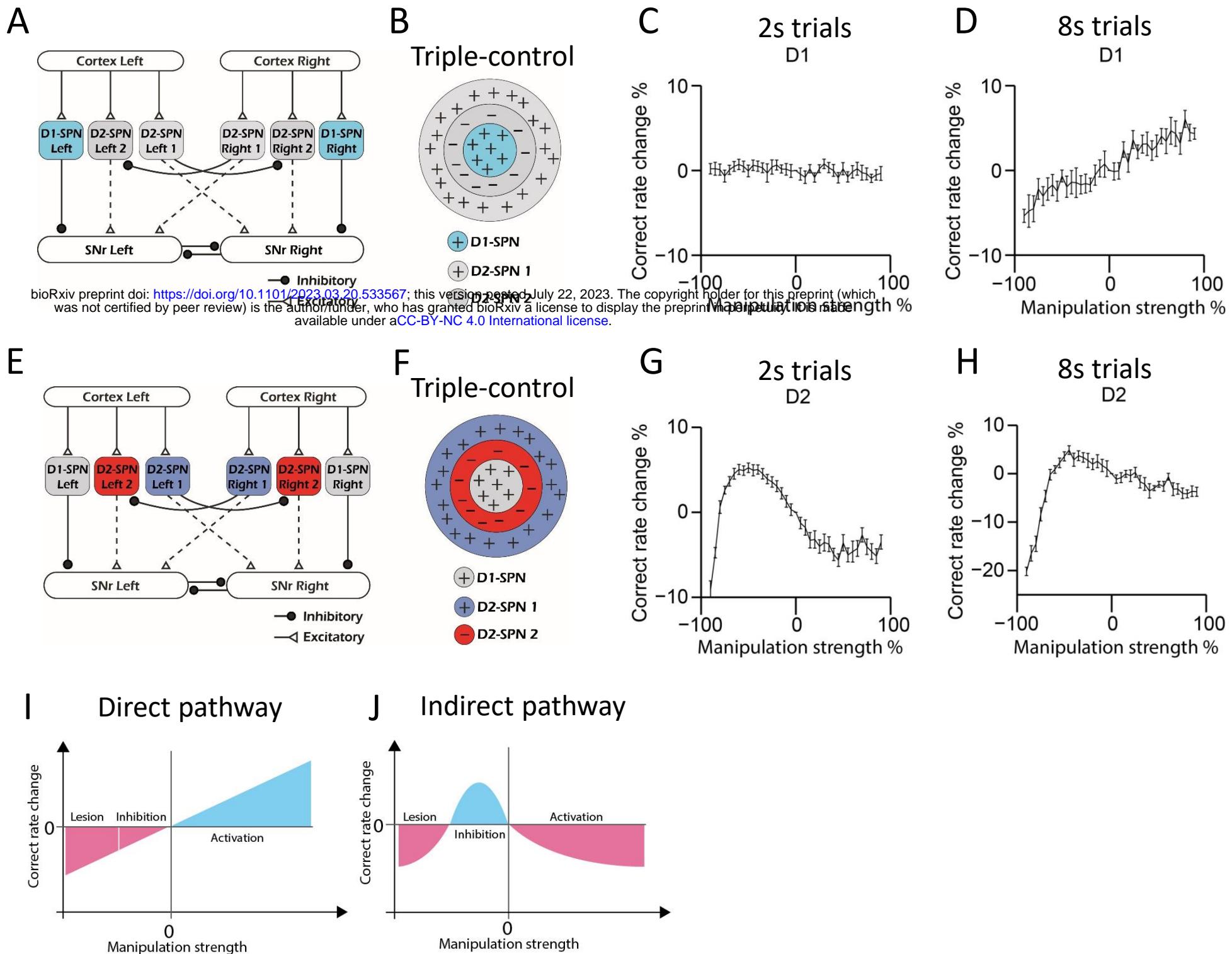

Figure 1. The neuronal dynamics in SNr during the 2-8 s action selection task. (A) Schematic diagram for the design of 2-8 s task. (B) Correct rate for wild type mice across 14 days training ($n = 10$ mice, one-way repeated-measures ANOVA, significant effect of training days, $F_{13,117} = 32.54$, $p < 0.0001$). (C) Movement trajectory of an example mouse in correct (left panel) and incorrect (right panel) 8-s trials (gray line: trajectory of each trials; red/black line: the average trajectory). (D) Diagram of electrode array implanted into substantia nigra pars reticulata (SNr). (E) Firing Rate Index (FRI) of neuronal activity for all task-related SNr neurons in correct 8-s trials. The magnitude of FRI is color coded and the SNr neurons are classified as four different types based on the activity dynamics. (F-I) Averaged FRI for Type 1 (F, green squares indicating activities related to left choice), Type 2 (G, green squares indicating activities related to left choice), Type 3 (H), Type 4 (I) of SNr neurons in correct (red) and incorrect 8-s trials (gray). (J) The proportion of four types of SNr neurons. Type 1 and Type 2 are major types and significantly more than Type 3 and Type 4 (Z -test, $p < 0.05$). (K) Integrated SNr output defined as the subtraction of averaged FRI between Type 1 and Type 2 SNr neurons. (L) Averaged psychometric curve ($n = 10$ mice) of choice behavior. (M) The correlation between the Type 1 and Type 2 FRI subtraction and the behavioral choice ($R = 0.98$, $p < 0.0005$). Error bars denote s.e.m., same for below unless stated otherwise.

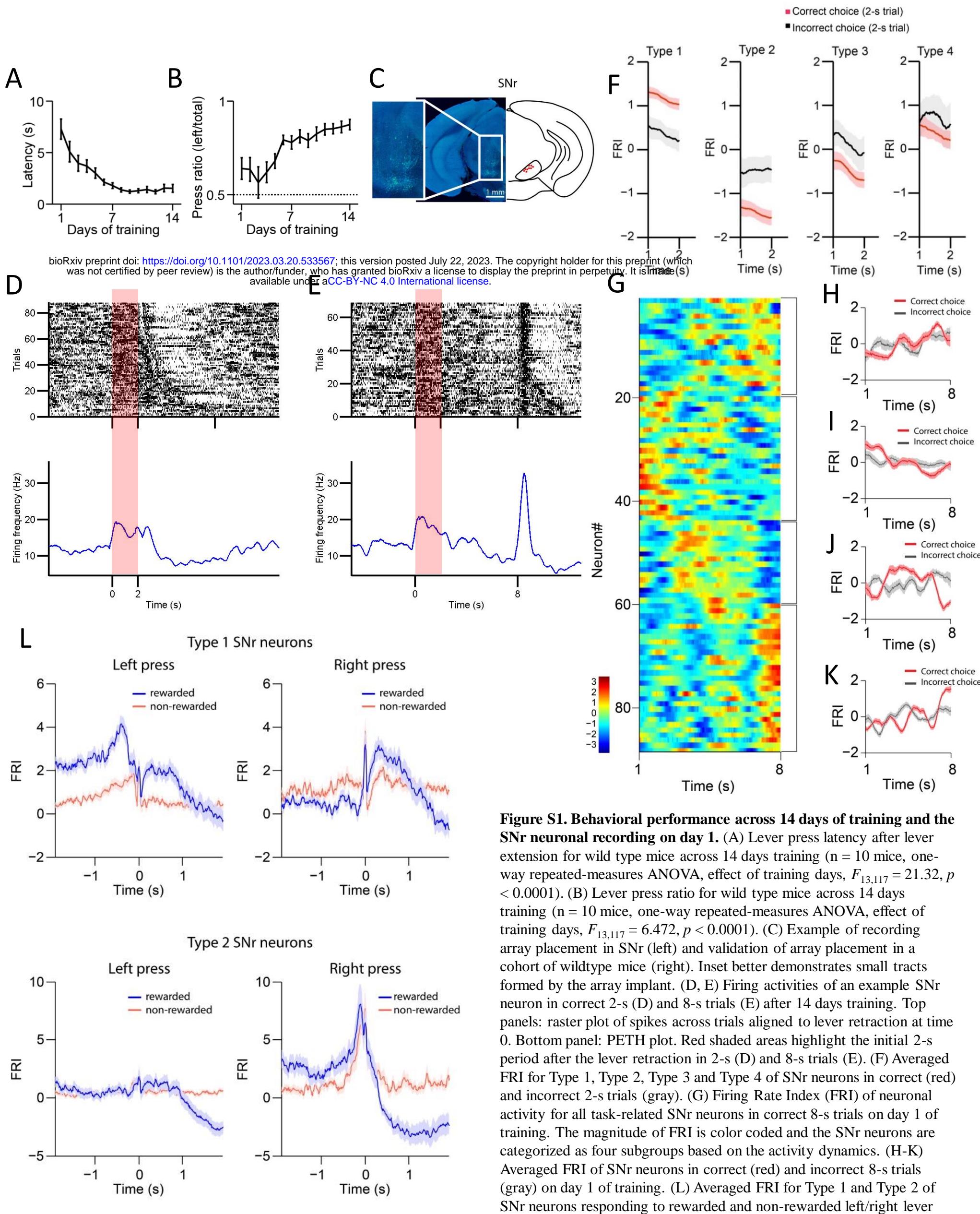


Figure 2. SNr neuronal dynamics reflect action selection but not interval time or reward value. (A) Task diagram of 2-8 s control task with 10% 16-s probe trials. (B) Percentage of behavioral choice in 2-s, 8-s and 16-s trials (blue: left choice; red: right choice) ($n = 9$ mice, paired t-test, $p < 0.05$). (C) Movement trajectory of an example mouse in 16-s trials (blue: left choice; red: right choice). (D) Averaged SNr Type 1 FRI in 16-s trials (red: left choice; black: right choice). Firing rates from 8s to 16s (highlighted area) are compared between left and right choice ($n = 26$ neurons, two-way repeated-measures ANOVA, significant difference between left and right choices, $F_{1,25} = 6.646$, $p = 0.016$). (E) Averaged SNr Type 2 FRI in 16-s trials (red: left choice; black: right choice). Firing rates from 8s to 16s are compared between left and right choice ($n = 16$ neurons, two-way repeated-measures ANOVA, significant difference between left and right choices, $F_{1,15} = 5.785$, $p = 0.029$). (F) Subtraction of FRI for SNr Type 1 and Type 2 neurons in 16-s probe trials (red: left choice; black: right choice). (G) Task design of 2-8 s standard task. (H) Percentage of behavioral choice in 2-s and 8-s trials (blue: left choice; red: right choice) ($n = 6$ mice, paired t-test, $p < 0.05$). (I) Movement trajectory of an example mouse in 8-s trials (blue: left choice; red: right choice). (J) Task design of reversed 2-8 s task. (K) Percentage of behavioral choice in 2-s and 8-s trials in the reversed 2-8 s task (blue: left choice; red: right choice) ($n = 6$ mice, paired t-test, $p < 0.05$). (L) Movement trajectory of the same mouse as (I) in 8-s trials in the reversed 2-8 s task (blue: left choice; red: right choice). (M) Averaged FRI of the SNr Type 1 neurons in correct 8-s trials ($n = 14$ neurons). (N) Averaged FRI of the SNr Type 2 neurons in correct 8-s trials ($n = 11$ neurons). (O) Integrated SNr output as the subtraction of FRI for SNr Type 1 (M) and Type 2 neurons (N) in the standard 2-8 s task. (P) Averaged FRI of the same neurons as (M) in correct 8-s trials of the reversed 2-8 s task. (Q) Averaged FRI of the same neurons as (N) in correct 8-s trials of the reversed 2-8 s task. (R) Integrated SNr output as the subtraction of FRI for SNr Type 1 (P) and Type 2 neurons (Q) in the reversed 2-8 s task.



Figure 3. Neuronal activity of striatal D1- and D2-SPNs during action selection. (A) FRI of neuronal activity for all task-related SPNs in correct 8-s trials. SPNs were classified as Type 1 - 4. (B-E) Averaged FRI for Type 1 (B), Type 2 (C), Type 3 (D), Type 4 (E) of SPNs in correct (red) and incorrect 8-s trials (gray). (F) Diagram of simultaneous neuronal recording and optogenetic identification of D1- vs. D2-SPNs in dorsal striatum. (G) Top panel: Raster plot for a representative D1-SPN response to 100 ms optogenetic stimulation. Each row represents one trial and each black dot represents a spike. Bottom panel: Peristimulus time histogram (PETH) aligned to light onset at time zero. (H) PETH for the same neuron as shown in (G) with a finer time scale. (I) Distribution of light response latencies for D1- and D2-SPNs. (J) Action potential waveforms of the same neuron in (G) for spontaneous (black) and light-evoked (orange) spikes ($R = 0.998$, $P < 0.0001$, Pearson's correlation). (K) Principal component analysis (PCA) of action potential waveforms showing the overlapped clusters of spontaneous (black) and light-evoked (orange) spikes. (L) Proportion of D1-SPN subtypes. Type 1 neurons are significantly more than other three types of neurons in D1-SPNs (Z -test, $p < 0.05$). (M) Averaged FRI for Type 1 (blue) and Type 2 (red) D1-SPNs in correct 8-s trials. (N) Proportion of D2-SPN subtypes. (O) Averaged FRI for Type 1 (blue) and Type 2 (red) D2-SPNs in correct 8-s trials.


Figure 4. Selective genetic knockout and ablation of D1- or D2-SPNs distinctly alters action selection. (A) Correct rate of control (n = 11 mice) and D1-NR1 KO mice (n = 16) in 2-8 s task during 14 days training (two-way repeated-measures ANOVA, significant difference between control and KO mice, $F_{1,25} = 10.8$, $p = 0.003$). (B) Correct rate of control (n = 17) and D2-NR1 KO mice (n = 10) in 2-8 s task during 14 days training (two-way repeated-measures ANOVA, significant difference between control and KO mice, $F_{1,25} = 8.728$, $p = 0.007$). (C) The psychometric curve for control (n = 11) and D1-NR1 KO mice (n = 16) (two-way repeated-measures ANOVA, significant difference between control and KO mice, $F_{1,25} = 12.27$, $p = 0.002$). (D) The psychometric curve for control (n = 17) and D2-NR1 KO mice (n = 10) (two-way repeated-measures ANOVA, significant difference between control and KO mice, $F_{1,25} = 9.64$, $p = 0.005$). (E) Schematic of muscimol infusion into the dorsal striatum in trained mice. (F) Correct rate for control (black: pre-muscimol, gray: post-muscimol) and mice with muscimol infusion (magenta) in dorsal striatum (n = 9 mice, paired t-test, $p < 0.01$). (G) The psychometric curve for control (n = 9 mice, black: pre-muscimol, gray: post-muscimol control) and mice with muscimol infusion (n = 9 mice, magenta) in dorsal striatum (two-way repeated-measures ANOVA, significant difference between control and muscimol infusion, $F_{2,16} = 11.74$, $p = 0.0001$). (H) Schematic of diphtheria toxin receptor (DTR) virus (AAV-FLEX-DTR-GFP) injection in dorsal striatum of D1-Cre mice. (I) The psychometric curve for control (n = 9 mice) and mice with dorsal striatum D1-SPNs ablation (D1-DTR, n = 8 mice) (two-sample t-test, $p = 0.0016$). (K) The psychometric curve for control (n = 9 mice) and D1-SPNs ablation mice (n = 8 mice) (two-way repeated-measures ANOVA, main effect of ablation, $F_{1,15} = 1.84$, $p = 0.195$; interaction between trial intervals and ablation, $F_{6,90} = 4.14$, $p = 0.001$). (L) Movement trajectory of a control mouse in 8-s trials. (M) Movement trajectory of a D1-DTR mouse in 8-s trials. (N) Schematic of diphtheria toxin receptor (DTR) virus (AAV-FLEX-DTR-GFP) injection in dorsal striatum of A2a-Cre mice. (O) Correct rate for control (n = 8 mice) and mice with dorsal striatum D2-SPNs ablation (D2-DTR, n = 8 mice) (two-sample t-test, $p = 0.005$). (P) The psychometric curve for control (n = 9 mice) and D2-SPNs ablation mice (n = 8 mice) (two-way repeated-measures ANOVA, main effect of ablation, $F_{1,15} = 0.477$, $p = 0.5$; interaction between trial intervals and ablation, $F_{6,90} = 12.6$, $p < 0.001$). (Q) Movement trajectory of a control mouse in 8-s trials. (R) Movement trajectory of a D2-DTR mouse in 8-s trials. (S) Schematic of center-surround receptive field diagram for Go/No-Go (left) and Co-activation (right) models. '+' indicates facilitating effect to selection. '-' indicates inhibitory effect to selection.



bioRxiv preprint doi: <https://doi.org/10.1101/2023.03.20.533567>; this version posted July 22, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.


Figure 5. Optogenetic manipulation of D1- vs. D2-SPNs differently regulates action selection. (A) Schematic of optic fiber implantation for experimentally optogenetic excitation or inhibition of D1- or D2-SPNs in the dorsal striatum. (B, C) Schematic for optogenetic excitation (B) and inhibition (C) of D1-/D2-SPNs for 1 s right before lever extension in 2-8 s task. (D) Change of correct rate for optogenetic excitation of D1-SPNs in 2-s and 8-s trials ($n = 11$ mice, one-sample t-test, 2-s trials: $p = 0.248$; 8-s trials: $p < 0.05$). (E) Change of correct rate for optogenetic inhibition of D1-SPNs in 2-s and 8-s trials ($n = 6$ mice, one-sample t-test, 2-s trials: $p = 0.557$; 8-s trials: $p < 0.05$). (F) Change of correct rate for optogenetic excitation of D2-SPNs in 2-s and 8-s trials ($n = 8$ mice, one-sample t-test, 2-s trials: $p < 0.05$; 8-s trials: $p < 0.05$). (G) Change of correct rate for optogenetic inhibition of D2-SPNs in 2-s and 8-s trials ($n = 5$ mice, one-sample t-test, 2-s trials: $p < 0.05$; 8-s trials: $p < 0.05$). (H) Schematic of center-surround receptive field diagram for Go/No-Go (left) and Co-activation (right) models. '+' indicates facilitating effect to selection. '-' indicates inhibitory effect to selection.


bioRxiv preprint doi: <https://doi.org/10.1101/2023.03.20.532567>; this version posted July 22, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

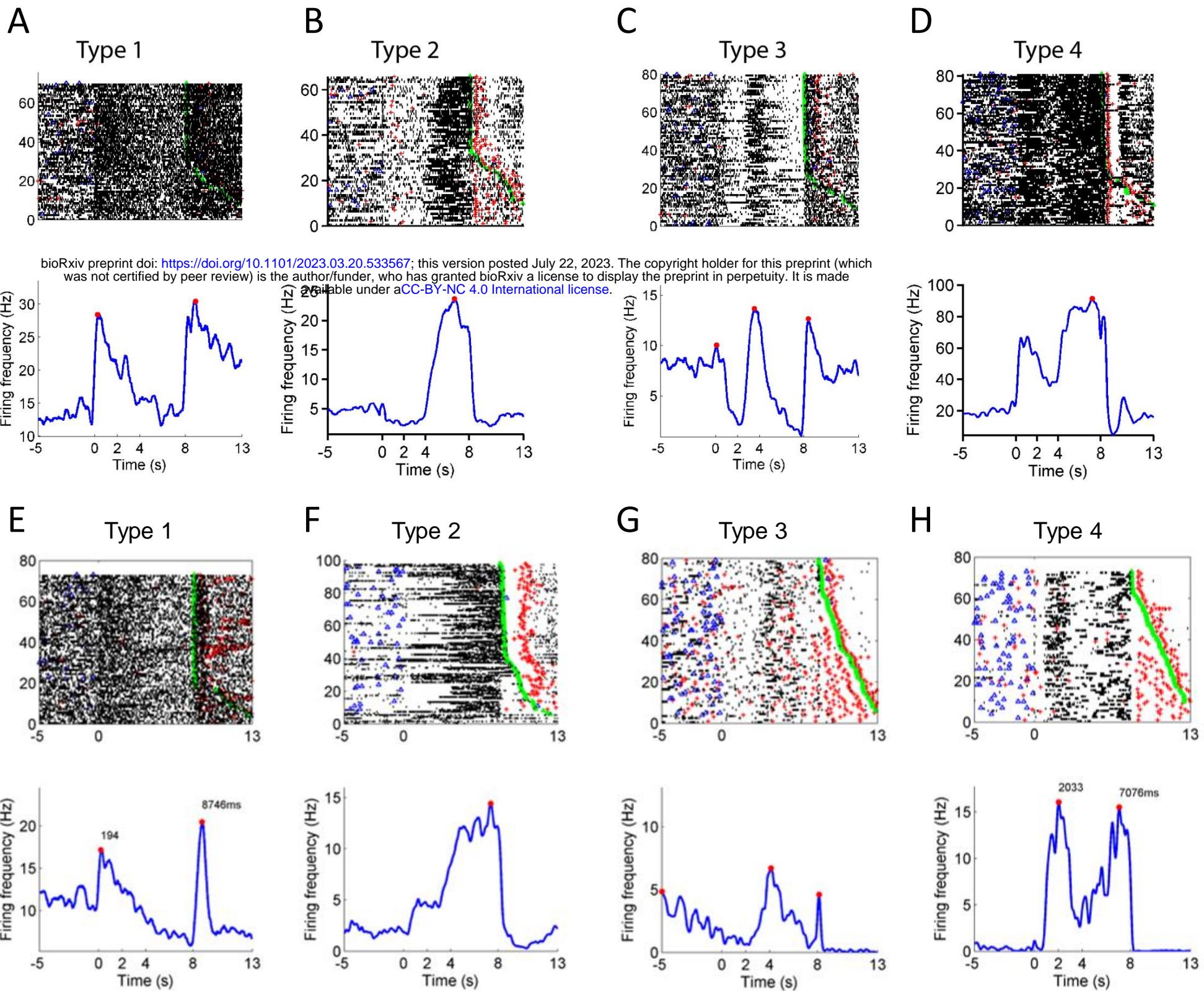

Figure 6. A triple-control computational model of basal ganglia direct and indirect pathways for action selection. (A) Network structure of the cortico-basal ganglia model based on realistic anatomy and synaptic connectivity. (B) Schematic of center-surround-context receptive field diagram for 'Triple-control' model. '+' indicates facilitating effect to selection. '-' indicates inhibitory effect to selection. (C) The psychometric curves of behavioral output in control (black) and D1-SPNs ablation condition (blue) in 'Triple-control' model ($n = 10$, two-way repeated-measures ANOVA, main effect of ablation, $F_{1,18} = 98.72$, $p < 0.0001$; interaction between trial intervals and ablation, $F_{6,108} = 7.799$, $p < 0.0001$). (D) The psychometric curves of behavioral output in control (black) and D2-SPNs ablation condition (red) in 'Triple-control' model ($n = 10$, two-way repeated-measures ANOVA, main effect of ablation, $F_{1,18} = 99.54$, $p < 0.0001$; interaction between trial intervals and ablation, $F_{6,108} = 177.6$, $p < 0.0001$). (E) Change of correct rate for optogenetic excitation of D1-SPNs in 2-s and 8-s trials ($n = 10$, one-sample t-test, 2-s trials: $p = 0.407$; 8-s trials: $p < 0.05$). (F) Change of correct rate for optogenetic excitation of D2-SPNs in 2-s and 8-s trials ($n = 10$, one-sample t-test, 2-s trials: $p < 0.05$; 8-s trials: $p < 0.05$). (G) Change of correct rate for optogenetic inhibition of D1-SPNs in 2-s and 8-s trials ($n = 10$, one-sample t-test, 2-s trials: $p = 0.28$; 8-s trials: $p < 0.05$). (H) Change of correct rate for optogenetic inhibition of D2-SPNs in 2-s and 8-s trials ($n = 10$, one-sample t-test, 2-s trials: $p < 0.05$; 8-s trials: $p < 0.05$).

Figure 7. Computational modeling reveals direct and indirect pathways regulating action selection in a distinct manner. (A) Schematic for manipulation of D1-SPNs in 'Triple-control' model. (B) Schematic of manipulation of D1-SPNs in the center-surround-context receptive field diagram for 'Triple-control' model. '+' indicates facilitating effect to selection. '-' indicates inhibitory effect to selection. (C) Correct rate change in 2s trials when manipulating D1-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, $F_{36,324} = 1.171$, $p = 0.238$). (D) Correct rate change in 8s trials when manipulating D1-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, $F_{36,324} = 13.71$, $p < 0.0001$). (E) Schematic for optogenetic manipulation of D2-SPNs in 'Triple-control' model. (F) Schematic of manipulation of D2-SPNs in the center-surround-context receptive field diagram for 'Triple-control' model. '+' indicates facilitating effect to selection. '-' indicates inhibitory effect to selection. (G) Correct rate change in 2s trials when manipulating D2-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, $F_{36,324} = 59.13$, $p < 0.0001$). (H) Correct rate change in 8s trials when manipulating D2-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, $F_{36,324} = 40.75$, $p < 0.0001$). (I) Diagram of linear relationship between the modulation of direct pathway and correct rate of action selection. (J) Diagram of nonlinear relationship between the modulation of indirect pathway and correct rate of action selection.

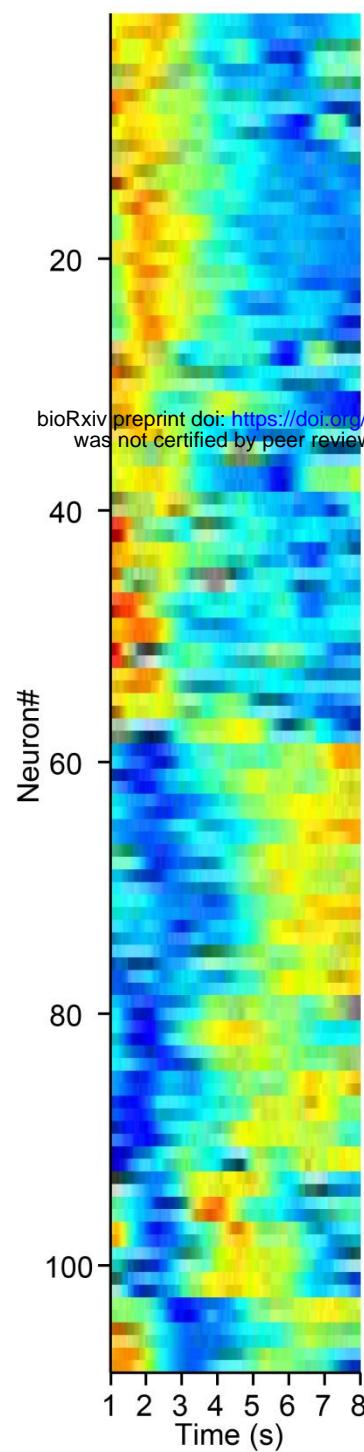


Figure S1. Behavioral performance across 14 days of training and the SNr neuronal recording on day 1. (A) Lever press latency after lever extension for wild type mice across 14 days training ($n = 10$ mice, one-way repeated-measures ANOVA, effect of training days, $F_{13,117} = 21.32, p < 0.0001$). (B) Lever press ratio for wild type mice across 14 days training ($n = 10$ mice, one-way repeated-measures ANOVA, effect of training days, $F_{13,117} = 6.472, p < 0.0001$). (C) Example of recording array placement in SNr (left) and validation of array placement in a cohort of wildtype mice (right). Inset better demonstrates small tracts formed by the array implant. (D, E) Firing activities of an example SNr neuron in correct 2-s (D) and 8-s trials (E) after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0. Bottom panel: PETH plot. Red shaded areas highlight the initial 2-s period after the lever retraction in 2-s (D) and 8-s trials (E). (F) Averaged FRI for Type 1, Type 2, Type 3 and Type 4 of SNr neurons in correct (red) and incorrect 2-s trials (gray). (G) Firing Rate Index (FRI) of neuronal activity for all task-related SNr neurons in correct 8-s trials on day 1 of training. The magnitude of FRI is color coded and the SNr neurons are categorized as four subgroups based on the activity dynamics. (H-K) Averaged FRI of SNr neurons in correct (red) and incorrect 8-s trials (gray) on day 1 of training. (L) Averaged FRI for Type 1 and Type 2 of SNr neurons responding to rewarded and non-rewarded left/right lever presses.

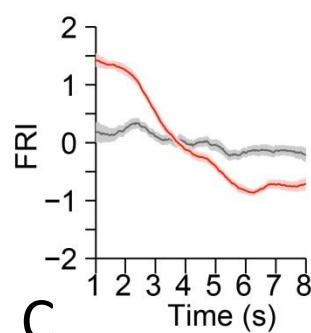
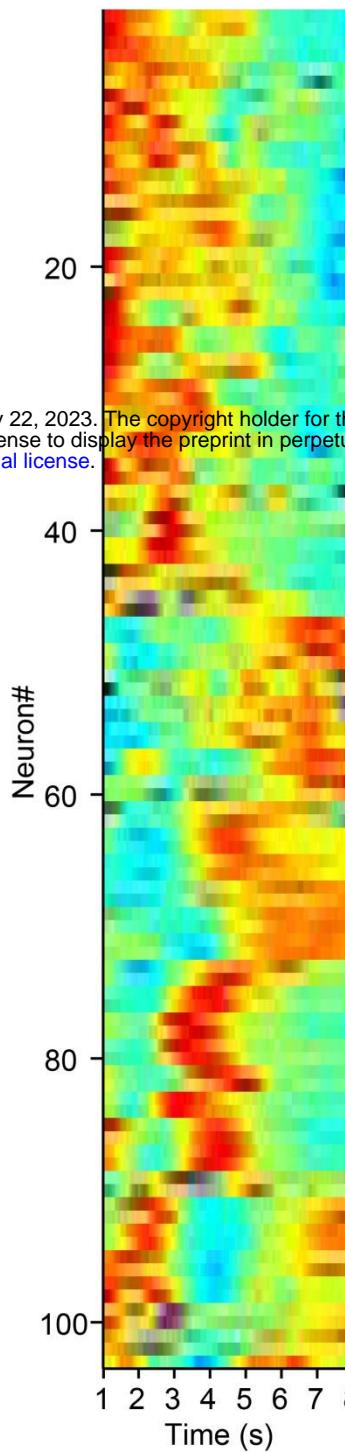
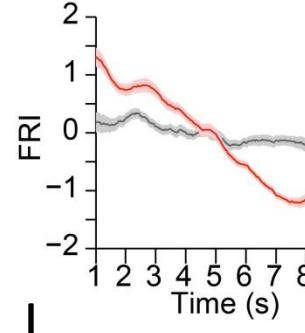
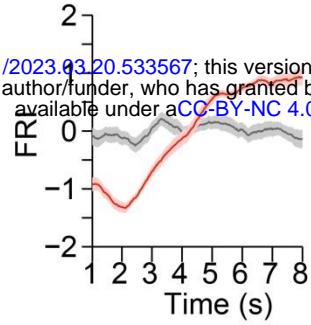
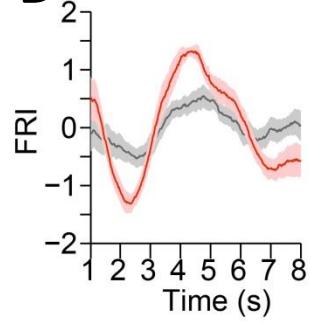


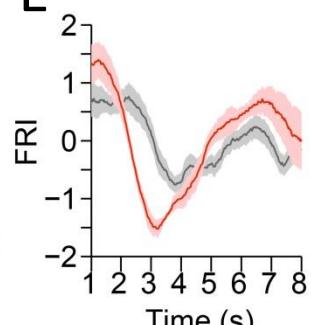
Figure S2. Examples of SNr neuron and SPN subtypes. (A) Firing activities of an example Type 1 SNr neuron in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0 (blue triangle: lever press; green triangle: reward; red cross: head entry). Bottom panel: PETH plot. (B) Firing activities of an example Type 2 SNr neuron in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0. Bottom panel: PETH plot. (C) Firing activities of an example Type 3 SNr neuron in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0. Bottom panel: PETH plot. (D) Firing activities of an example Type 4 SNr neuron in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0. Bottom panel: PETH plot. (E) Firing activities of an example Type 1 SPN in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0 (blue triangle: lever press; green triangle: reward; red cross: head entry). Bottom panel: PETH plot. (F) Firing activities of an example Type 2 SPN in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0. Bottom panel: PETH plot. (G) Firing activities of an example Type 3 SPN in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0. Bottom panel: PETH plot. (H) Firing activities of an example Type 4 SPN in correct 8-s trials after 14 days training. Top panels: raster plot of spikes across trials aligned to lever retraction at time 0. Bottom panel: PETH plot.

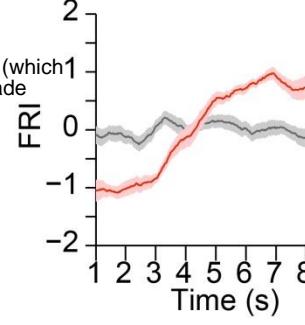

A

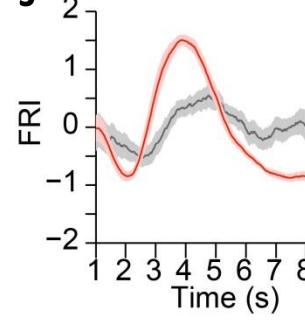

B

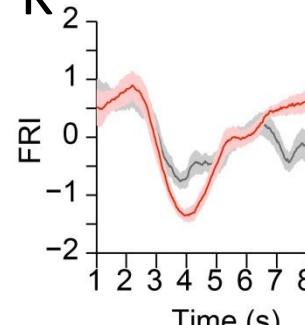

G

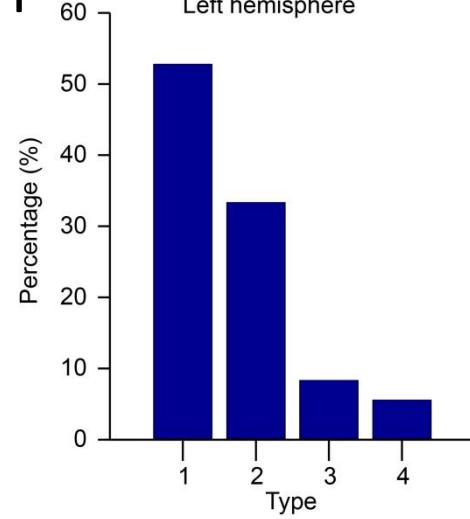

H

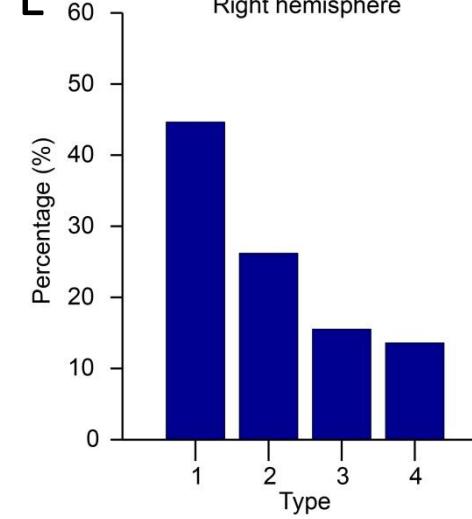

C

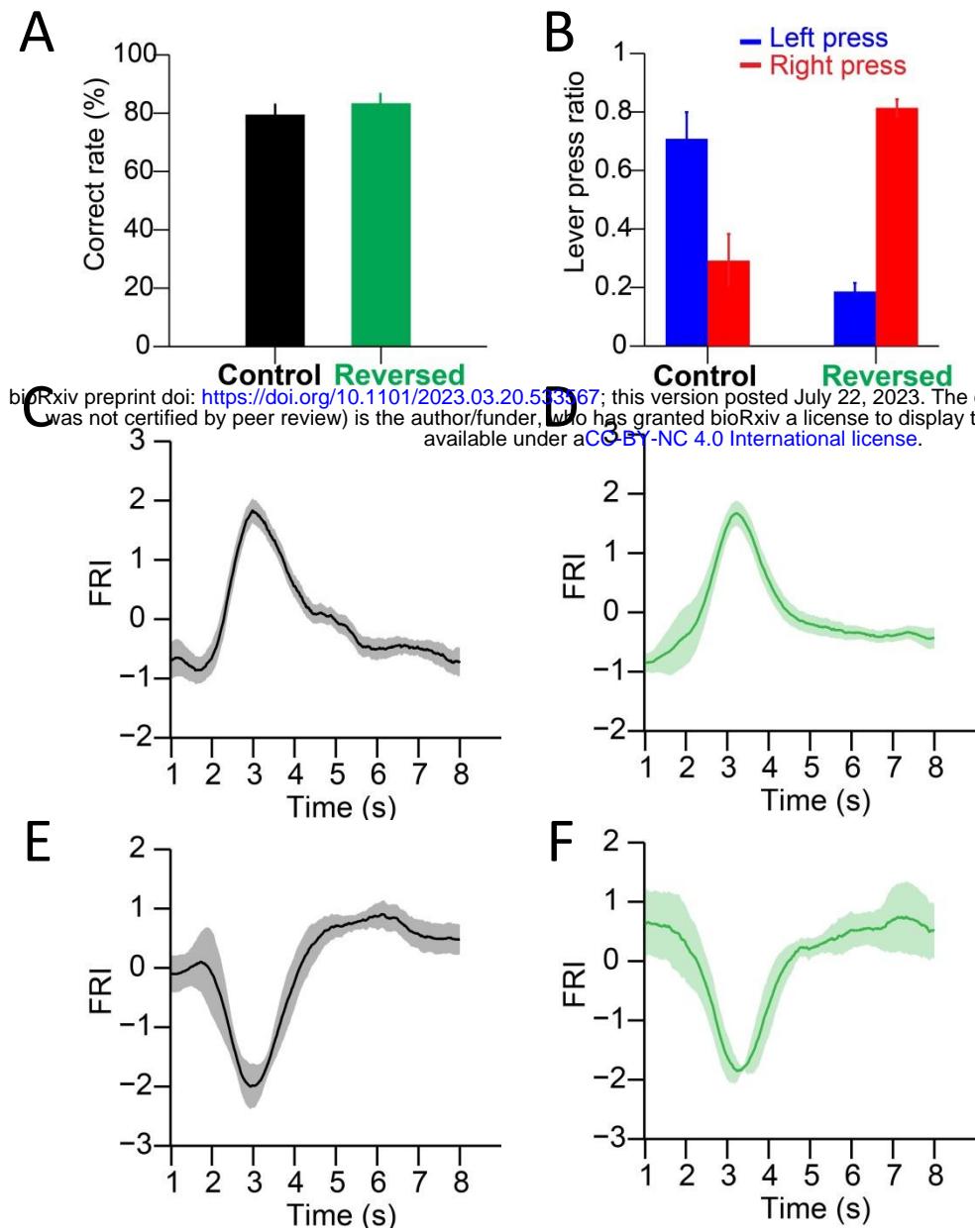

D


E


I

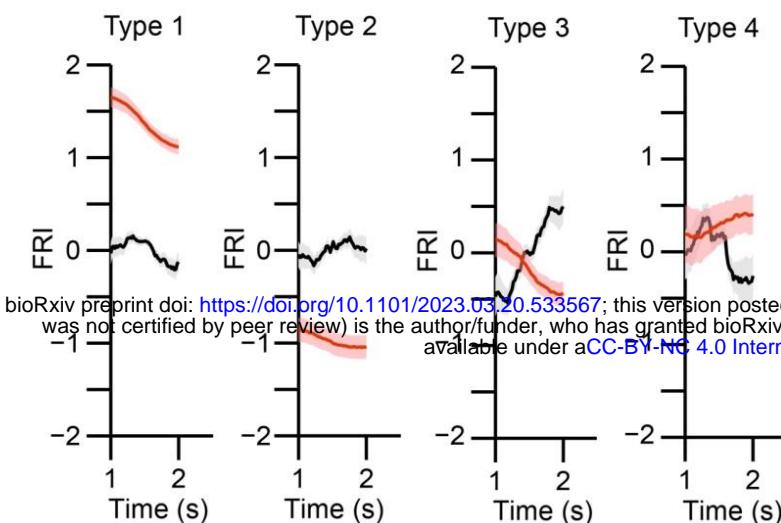

J

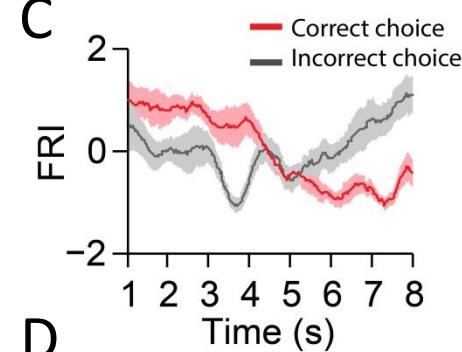
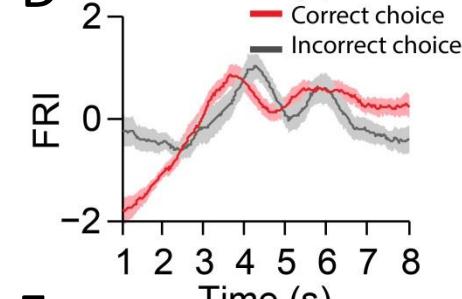
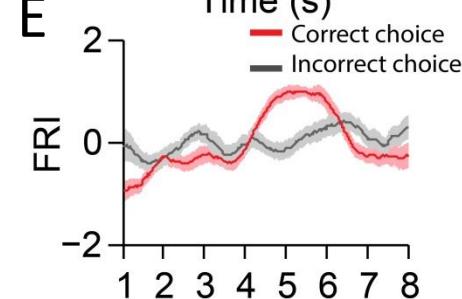
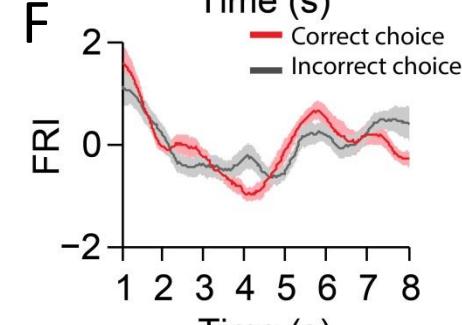
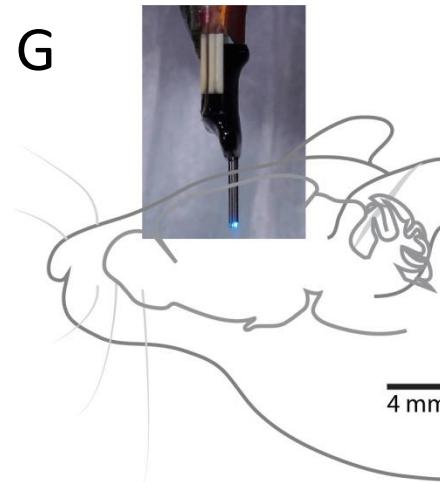
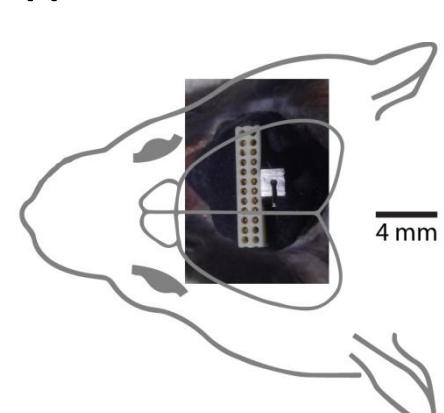

K


F

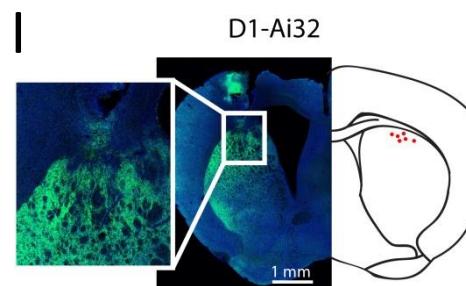
L

Figure S3. SNr neuron activities in left and right hemisphere. (A) Firing Rate Index (FRI) of neuronal activity for all task-related SNr neurons in correct 8-s trials recorded in the left hemisphere. The magnitude of FRI is color coded and the SNr neurons are classified as four different types based on the activity dynamics. (B-E) Averaged FRI for Type 1 (B), Type 2 (C), Type 3 (D), Type 4 (E) of SNr neurons in correct (red) and incorrect 8-s trials (gray). (F) The proportion of four types of SNr neurons. Type 1 (57/108, 52.8%), Type 2 (36/108, 33.3%), Type 3 (9/108, 8.3%), Type 4 (6/108, 5.6%). (G) Firing Rate Index (FRI) of neuronal activity for all task-related SNr neurons in correct 8-s trials recorded in the right hemisphere. The magnitude of FRI is color coded and the SNr neurons are classified as four different types based on the activity dynamics. (H-K) Averaged FRI for Type 1 (H), Type 2 (I), Type 3 (J), Type 4 (K) of SNr neurons in correct (red) and incorrect 8-s trials (gray). (L) The proportion of four types of SNr neurons. Type 1 (46/103, 44.7%), Type 2 (27/103, 26.2%), Type 3 (16/103, 15.5%), Type 4 (14/103, 13.6%).

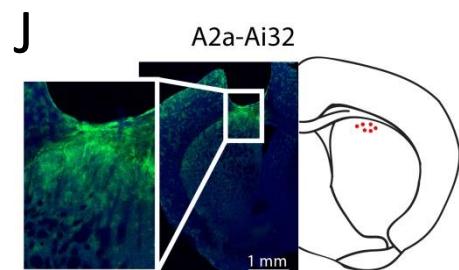
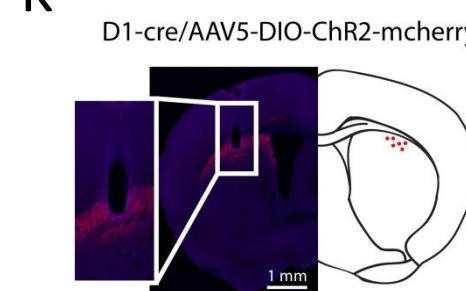
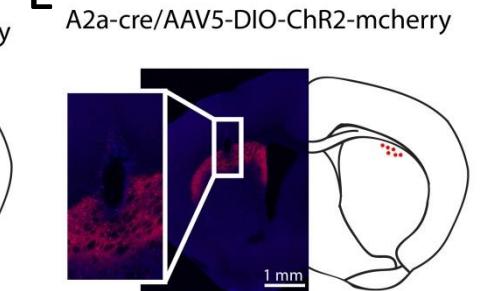


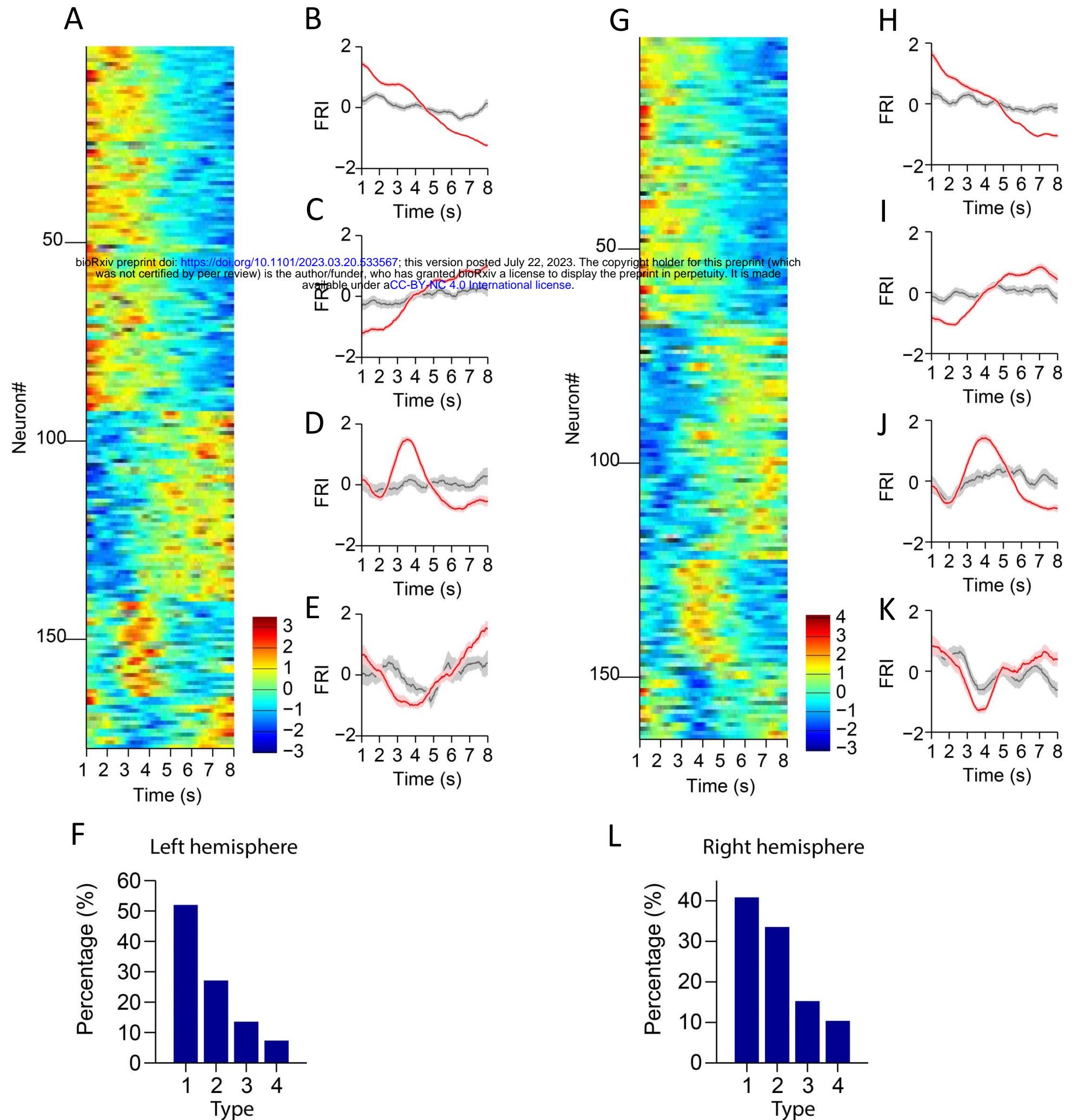
bioRxiv preprint doi: <https://doi.org/10.1101/2023.03.20.533367>; this version posted July 22, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

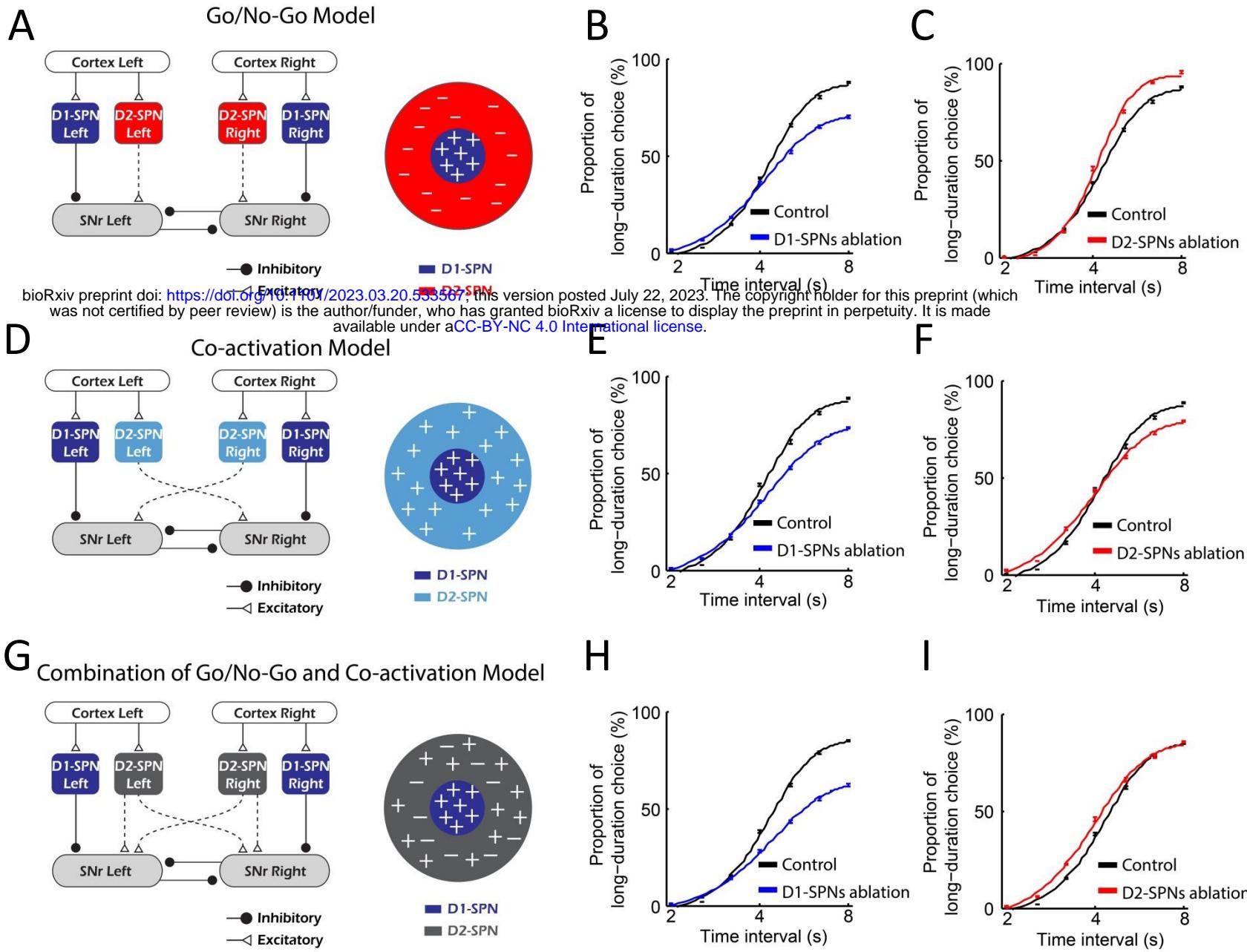

Figure S4. Behavioral statistics and neuronal dynamics of SNr neurons in the standard and reversed 2-8s tasks . (A) Correct rates of the same group of mice both in the standard and reversed 2-8s tasks ($n = 6$ mice, paired t-test, $p = 0.33$). (B) Lever press ratios of the same group of mice both in the standard and reversed 2-8s tasks ($n = 6$ mice, paired t-test, $p < 0.05$). (C) Averaged FRI of the SNr Type 3 neurons in correct 8-s trials of the standard 2-8s task. (D) Averaged FRI of the SNr Type 3 neurons in correct 8-s trials of the reversed 2-8s task. (E) Averaged FRI of the SNr Type 4 neurons in correct 8-s trials of the standard 2-8s task. (F) Averaged FRI of the SNr Type 4 neurons in correct 8-s trials of the reversed 2-8s task.

A

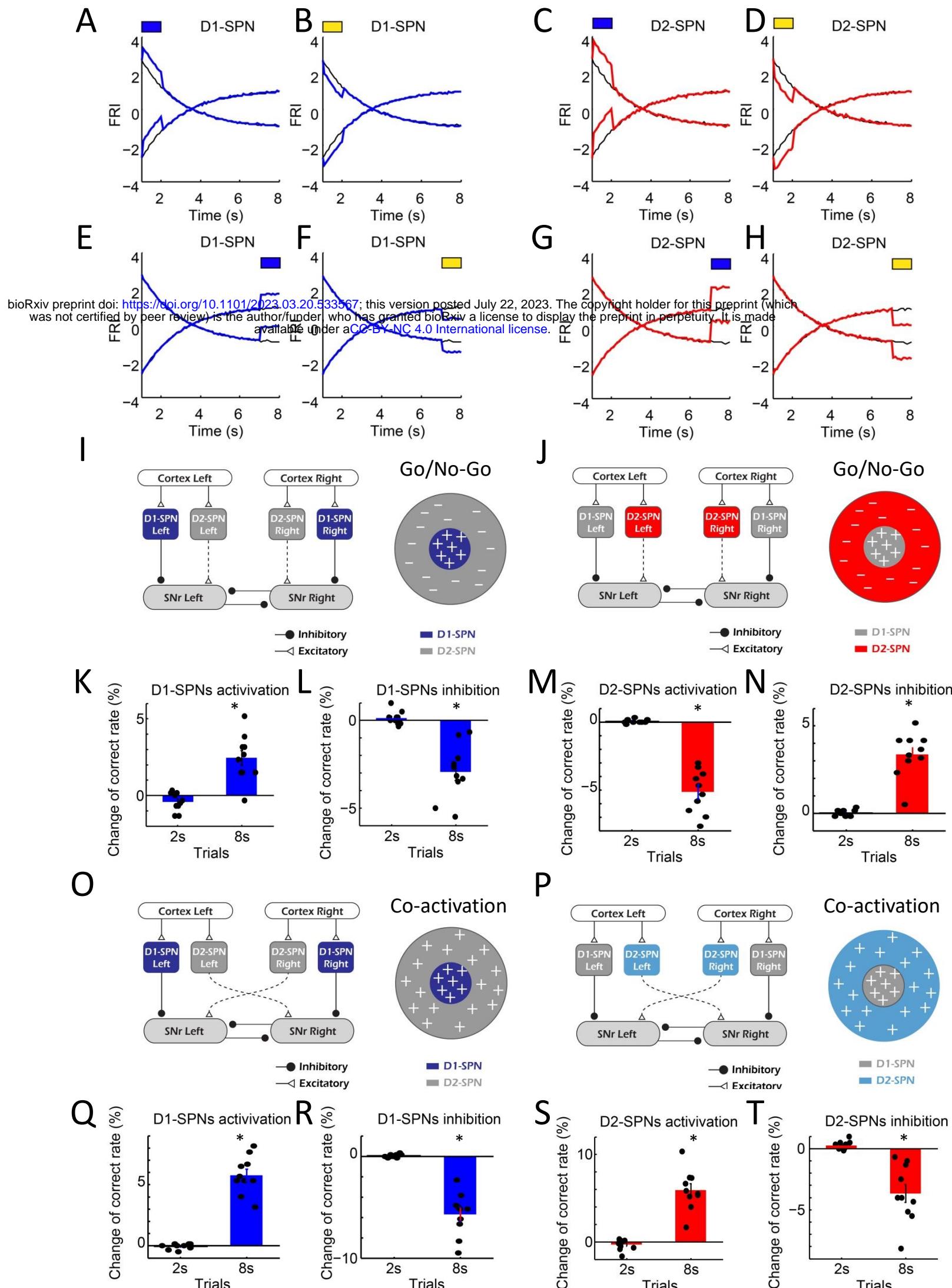



- Correct choice (2-s trial)
- Incorrect choice (2-s trial)

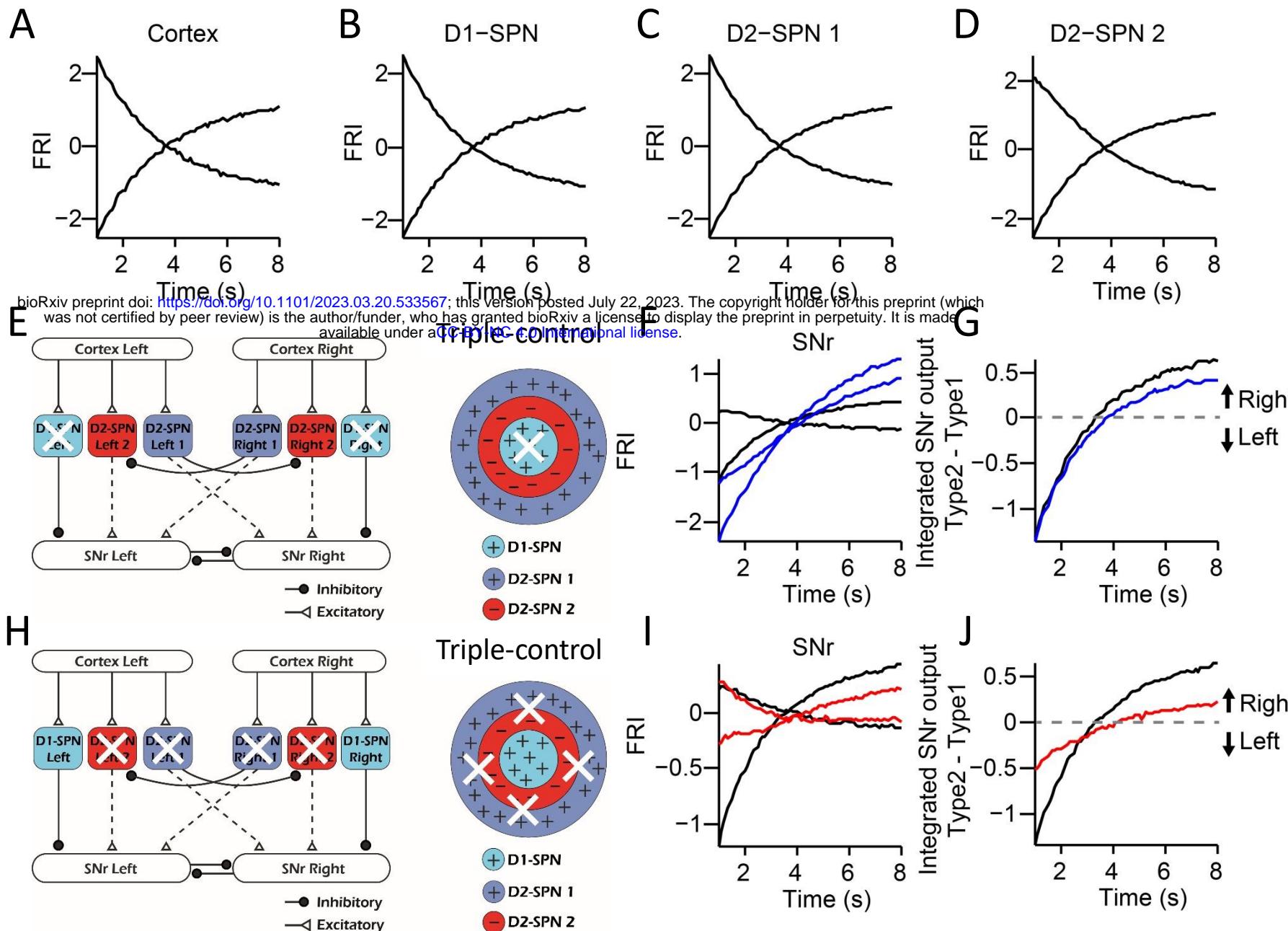
B**C****D****E****F****G****H**

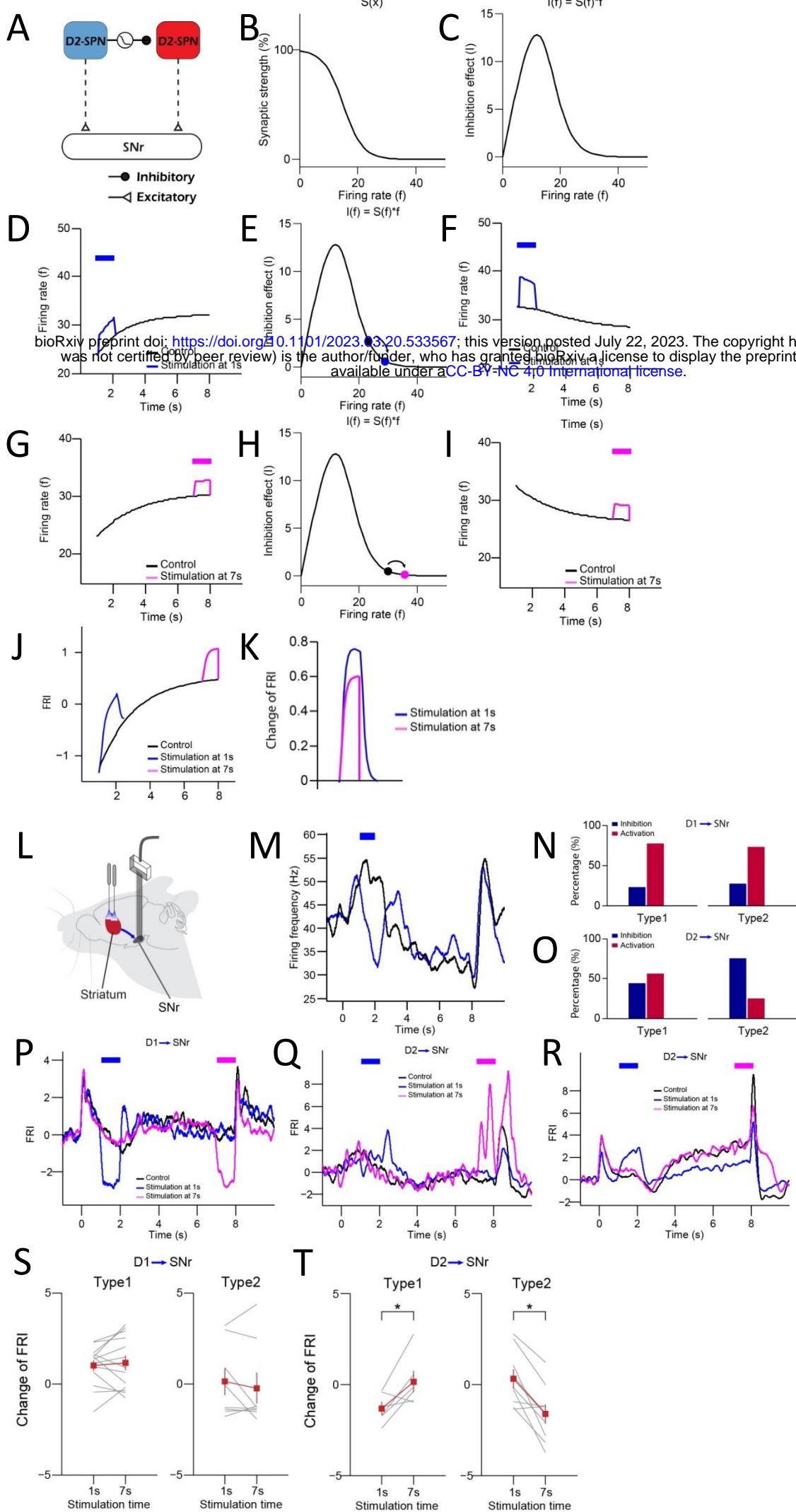

D1-Ai32

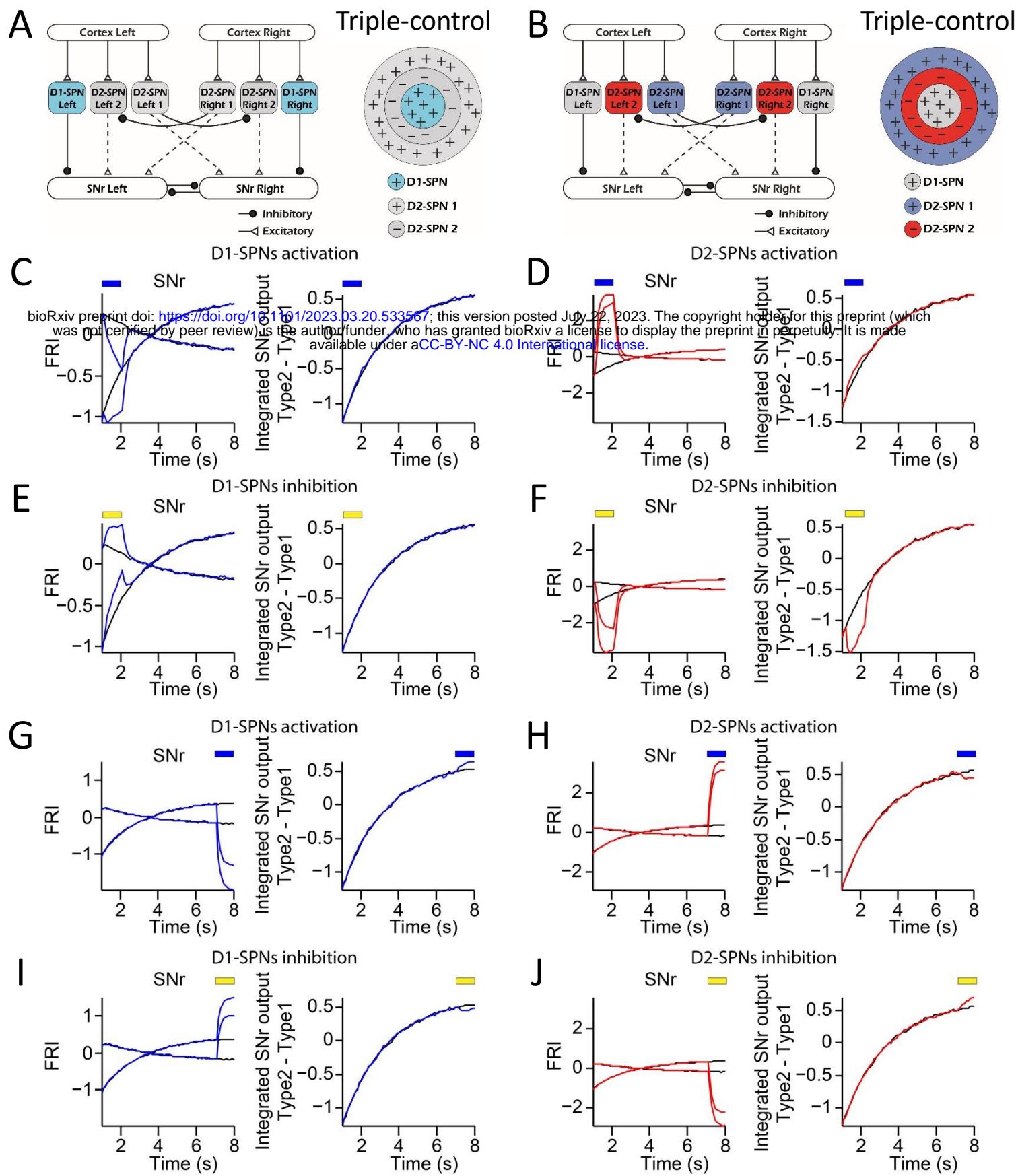

A2a-Ai32

K**L**


Figure S5. Striatum neuronal recording on day 1 of training, recording array and optic fiber placement validation. (A) Averaged FRI for Type 1, Type 2, Type 3 and Type 4 of SPNs in correct (red) and incorrect 2-s trials (gray). (B) Firing Rate Index (FRI) of neuronal activity for all task-related SPNs in correct 8-s trials on day 1 of training. The magnitude of FRI is color coded and the SPNs are categorized as four subgroups based on the activity dynamics. (C-F) Averaged FRI of SPNs in correct (red) and incorrect 8-s trials (gray). (G) Recording array affixed with a cannula implanted in D1-Ai32 or A2a-Ai32 mice. Light emitted by optic fiber placed through the attached cannula is in close proximity to the tips of the recording array. (H) Top-down view of the array implantation. (I) Example of array placement in dorsal striatum of a D1-Ai32 mouse (left) and validation of fiber placement in a cohort of D1-Ai32 mice (right). Inset better demonstrates the tract formed by the array implant. (J) Example of array placement in dorsal striatum of an A2a-Ai32 mouse (left) and validation of fiber placement in a cohort of A2a-Ai32 mice (right). Inset better demonstrates the tract formed by the array implant. (K) Example of fiber placement in dorsal striatum of a D1-cre mouse with AAV5-DIO-ChR2-mcherry injected (left) and validation of fiber placement in a cohort of D1-cre mice (right). Inset better demonstrates the tract formed by the fiber implant. (L) Example of fiber placement in dorsal striatum of an A2a-cre mouse with AAV5-DIO-ChR2-mcherry injected (left) and validation of fiber placement in a cohort of A2a-cre mice (right). Inset better demonstrates the tract formed by the fiber implant.


Figure S6. Striatal projection neuron activities in left and right hemisphere. (A) Firing Rate Index (FRI) of neuronal activity for all task-related SPNs in correct 8-s trials recorded in the left hemisphere. The magnitude of FRI is color coded and the SPNs are classified as four different types based on the activity dynamics. (B-E) Averaged FRI for Type 1 (B), Type 2 (C), Type 3 (D), Type 4 (E) of SPNs in correct (red) and incorrect 8-s trials (gray). (F) The proportion of four types of SPNs. Type 1 (92/177, 52.0%), Type 2 (48/177, 27.1%), Type 3 (24/177, 13.6%), Type 4 (13/177, 7.3%). (G) Firing Rate Index (FRI) of neuronal activity for all task-related SPNs in correct 8-s trials recorded in the right hemisphere. The magnitude of FRI is color coded and the SPNs are classified as four different types based on the activity dynamics. (H-K) Averaged FRI for Type 1 (H), Type 2 (I), Type 3 (J), Type 4 (K) of SPNs in correct (red) and incorrect 8-s trials (gray). (L) The proportion of four types of SPNs. Type 1 (67/164, 40.9%), Type 2 (55/164, 33.5%), Type 3 (25/164, 15.2%), Type 4 (17/164, 10.4%).


Figure S7. Simulation of lesion experiments in Go/No-Go, Co-activation and combination models. (A) Diagram of Go/No-Go model. (B) The psychometric curves of behavior outputs simulated by Go/No-Go model in control (black) and D1-SPNs ablation condition (blue). (C) The psychometric curves of behavior outputs simulated by Go/No-Go model in control (black) and D2-SPNs ablation condition (red). (D) Diagram of Co-activation model. (E) The psychometric curves of behavior outputs simulated by Co-activation model in control (black) and D1-SPNs ablation condition (blue). (F) The psychometric curves of behavior outputs simulated by Co-activation model in control (black) and D2-SPNs ablation condition (red). (G) Diagram of combination of Go/No-Go and Co-activation model. (H) The psychometric curves of behavior outputs simulated by combined model in control (black) and D1-SPNs ablation condition (blue). (I) The psychometric curves of behavior outputs simulated by combined model in control (black) and D2-SPNs ablation condition (red).


Figure S8. Simulation of optogenetic manipulation in Go/No-Go and Co-activation models. (A, B) Simulating optogenetic activation (A) and inhibition (B) of D1-SPNs at 2s. Blue bar above indicates optogenetic activation. Yellow bar above indicates optogenetic inhibition. (C, D) Simulating optogenetic activation (C) and inhibition (D) of D2-SPNs at 2s. (E, F) Simulating optogenetic activation (E) and inhibition (F) of D1-SPNs at 8s. (G, H) Simulating optogenetic activation (G) and inhibition (H) of D2-SPNs at 8s. (I, J) Diagram of D1-SPN (I) and D2-SPN (J) manipulation in Go/No-Go model. (K, L) Change of correct rate in 2-s and 8-s trials when activating (K) and inhibiting (L) D1-SPNs in Go/No-Go model. (M, N) Change of correct rate in 2-s and 8-s trials when activating (M) and inhibiting (N) D2-SPNs in Go/No-Go model. (O, P) Diagram of D1-SPN (O) and D2-SPN (P) manipulation in Co-activation model. (Q, R) Change of correct rate in 2-s and 8-s trials when activating (Q) and inhibiting (R) D1-SPNs in Co-activation model. (S, T) Change of correct rate in 2-s and 8-s trials when activating (S) and inhibiting (T) D2-SPNs in Co-activation model. One-sample test for all the change of correct rate. *p < 0.05.

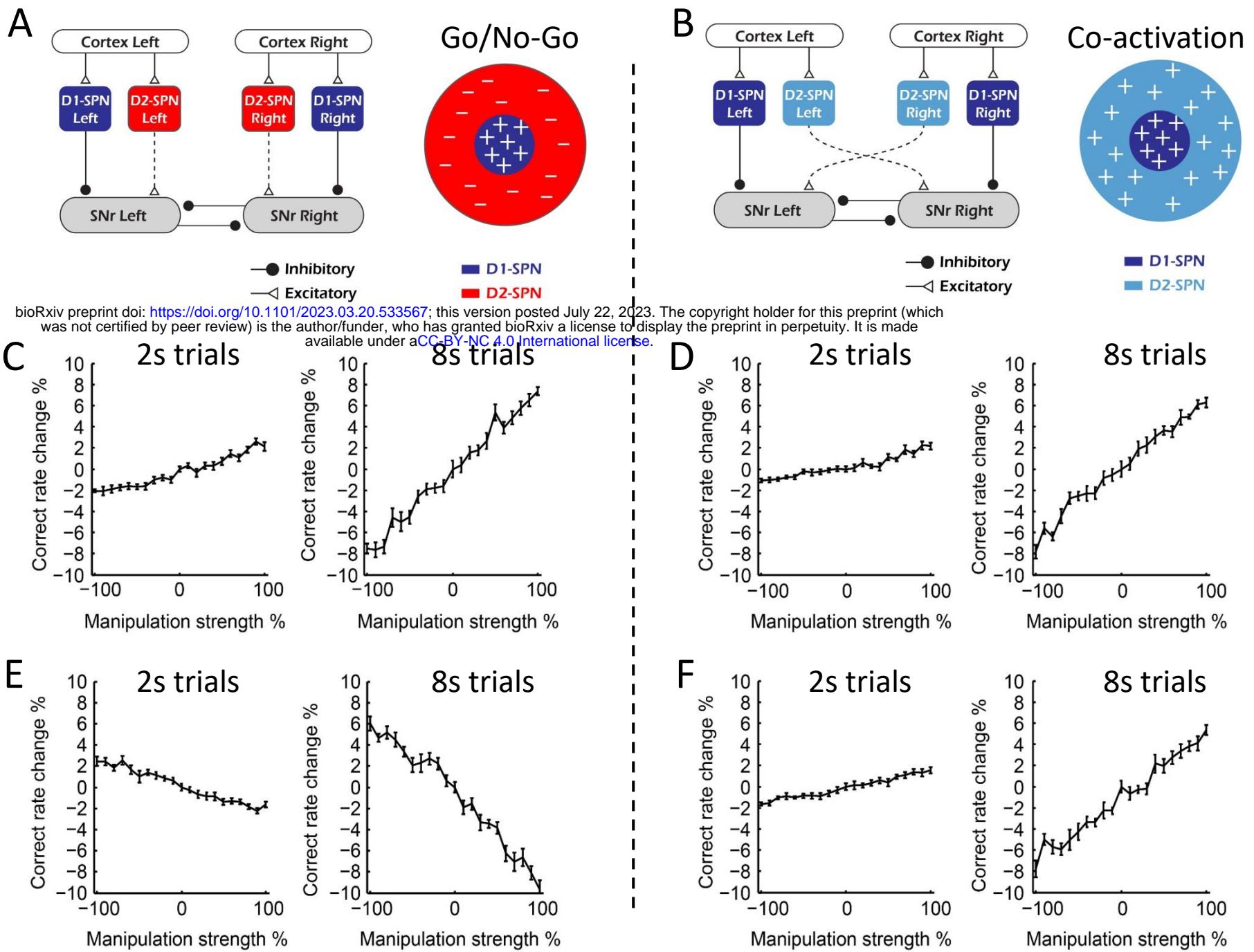

Figure S9 The neuronal activities in the “Triple-control” model and simulation of lesion experiments. (A) The simulated neuronal dynamics quantified as FRI for the cortical neurons in 8s trials. (B) The simulated neuronal dynamics quantified as FRI for the D1-SPN in 8s trials. (C) The simulated neuronal dynamics quantified as FRI for the D2-SPN 1 in 8s trials. (D) The simulated neuronal dynamics quantified as FRI for the D2-SPN 2 in 8s trials. (E) Schematic of selective ablation of D1-SPNs in the “Triple-control” model. (F) The model’s Type 1 and Type 2 SNr FRI in control condition (black) and under D1-SPNs ablation (blue). (G) The subtraction of FRI between Type 1 and Type 2 SNr neurons in control (black) and D1-SPNs ablation condition (blue). (H) Schematic of selective ablation of D2-SPNs in the “Triple-control” model. (I) The model’s Type 1 and Type 2 SNr FRI in control condition (black) and under D2-SPNs ablation (red). (J) The subtraction of FRI between Type 1 and Type 2 SNr neurons in control (black) and D2-SPNs ablation condition (red).

Figure S10. Optogenetic activation of D1- vs. D2-SPNs differently regulates SNr activities in model and experiments. (A) A computational motif of indirect pathway with collateral inhibitory synapse D2-SPN 1 → D2-SPN 2. The collateral synapse between D2-SPNs exhibits short-term depression. (B) Relationship between synaptic strength of D2-SPN 1 → D2-SPN 2 and the firing rate of D2-SPN 1. (C) The inhibition effect of the collateral synapse between D2-SPNs. (D) Activation of presynaptic D2-SPN 1 at 1s. (E) Synaptic inhibition effect D2-SPN 1 → D2-SPN 2 synapse when activating D2-SPN 1 at 1s. (F) Activation of D2-SPN 2 at 1s. (G) Activation of presynaptic D2-SPN 1 at 7s. (H) Synaptic inhibition effect D2-SPN 1 → D2-SPN 2 synapse when activating D2-SPN 1 at 7s. (I) Activation of D2-SPN 2 at 7s. (J) SNr neuron activities responding to activation of D2-SPNs at 1s (blue) and 7s (purple). (K) Comparison of FRI changes in SNr caused by activation of D2-SPNs at 1s and 7s. (L) Schematic of simultaneous optogenetic excitation of D1- or D2-SPNs in the dorsal striatum and recording in SNr during action selection. (M) Averaged neuronal activities of an example SNr Type 1 neuron responding to optogenetic activation of D1-SPNs at 1s during 8-s trials. (N) The percentage of SNr Type 1 (left) and Type 2 (right) neurons showing excitation (blue) and inhibition (red) when stimulating D1-SPNs. (O) The percentage of SNr Type 1 (left) and Type 2 (right) neurons showing excitation (blue) and inhibition (red) when stimulating D2-SPNs. (P) Averaged neuronal activities of an example SNr Type 2 neuron responding to optogenetic activation of D1-SPNs at 1s (blue) and 8s (purple) during 8-s trials. (Q, R) Averaged neuronal activities of SNr Type 1 (Q) and Type 2 (R) neuron responding to optogenetic activation of D2-SPNs at 1s (blue) and 7s (purple) during 8-s trials. (S) Comparison of FRI changes in SNr Type 1 (left) and Type 2 (right) neurons caused by optogenetic activation of D1-SPNs at 1s and 7s. (T) Comparison of FRI changes in SNr Type 1 (left) and Type 2 (right) neurons caused by optogenetic activation of D2-SPNs at 1s and 7s (paired t-test, $p < 0.05$).

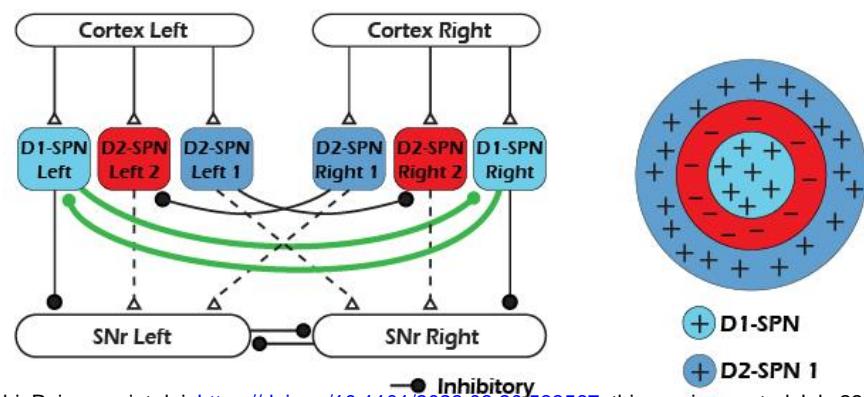
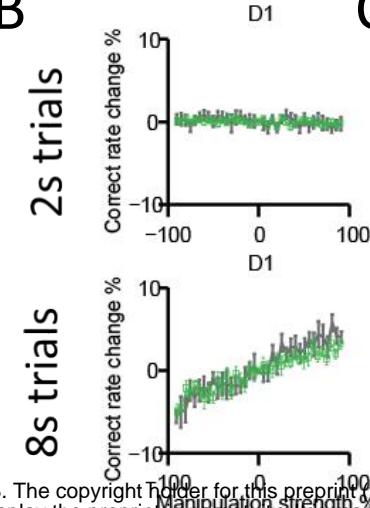
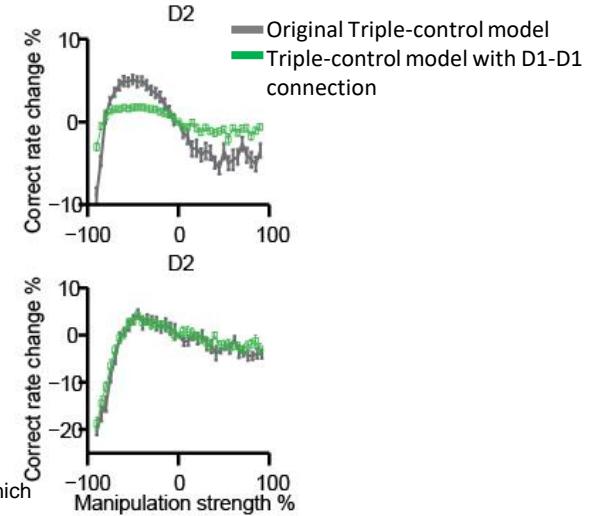


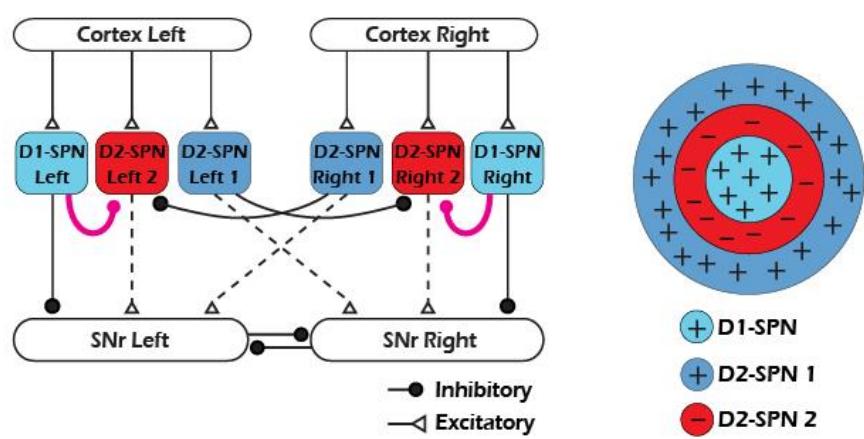
Figure S11. Computational modeling of optogenetic manipulation reveals that D1- vs. D2-SPNs differently regulates SNr outputs in the “Triple-control” model. (A, B) Schematic for optogenetic manipulation of D1-SPNs (A) and D2-SPNs (B) in the ‘Triple-control’ model. (C) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and activation (blue) of D1-SPNs at 2s. (D) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and activation (red) of D2-SPNs at 2s. (E) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and inhibition (blue) of D1-SPNs at 2s. (F) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and inhibition (red) of D2-SPNs at 2s. (G) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and activation (blue) of D1-SPNs at 8s. (H) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and activation (red) of D2-SPNs at 8s. (I) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and inhibition (blue) of D1-SPNs at 8s. (J) Modeling of neuronal dynamics of SNr Type 1/Type 2 (left panel) and integrated output (right panel) under control (black) and inhibition (red) of D2-SPNs at 8s.

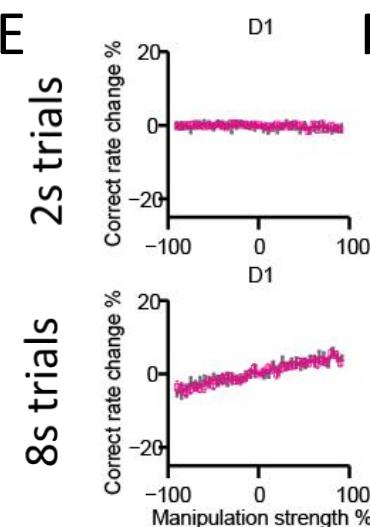

Figure S12. Computational modeling of manipulation reveals that Go/No-Go and Co-activation model differently predicts the behavioral outcomes. (A) Diagram of Go/No-Go model. (B) Diagram of Co-activation model. (C) Correct rate change in 2s (left panel) and 8s trials (right panel) when manipulating D1-SPNs in Go/No-Go model with different manipulation strengths. (D) Correct rate change in 2s (left panel) and 8s trials (right panel) trials when manipulating D1-SPNs in Co-activation model with different manipulation strengths. (E) Correct rate change in 2s (left panel) and 8s trials (right panel) when manipulating D2-SPNs in Go/No-Go model with different manipulation strengths. (F) Correct rate change in 2s (left panel) and 8s trials (right panel) trials when manipulating D2-SPNs in Co-activation model with different manipulation strengths.

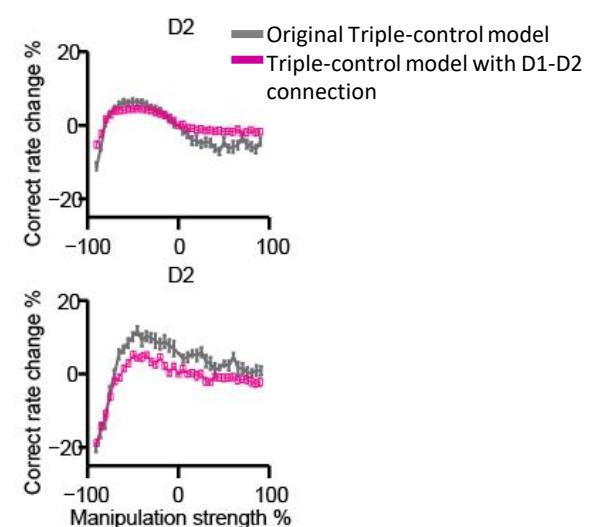
A

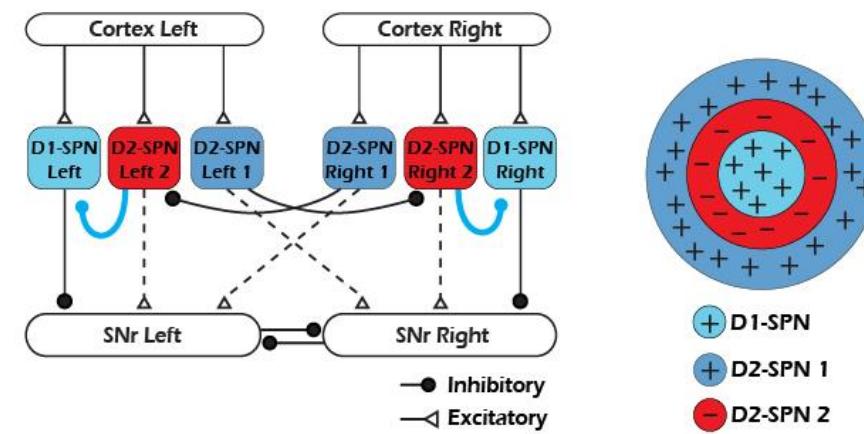


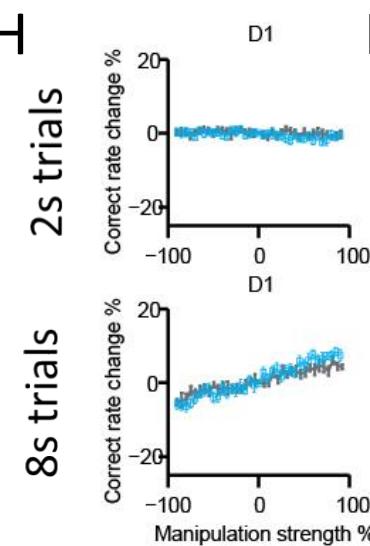
bioRxiv preprint doi: <https://doi.org/10.1101/2023.03.20.533567>; this version posted July 22, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

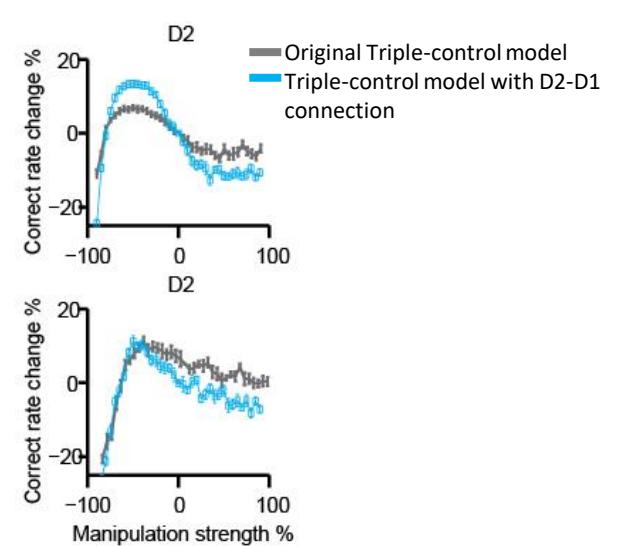

B

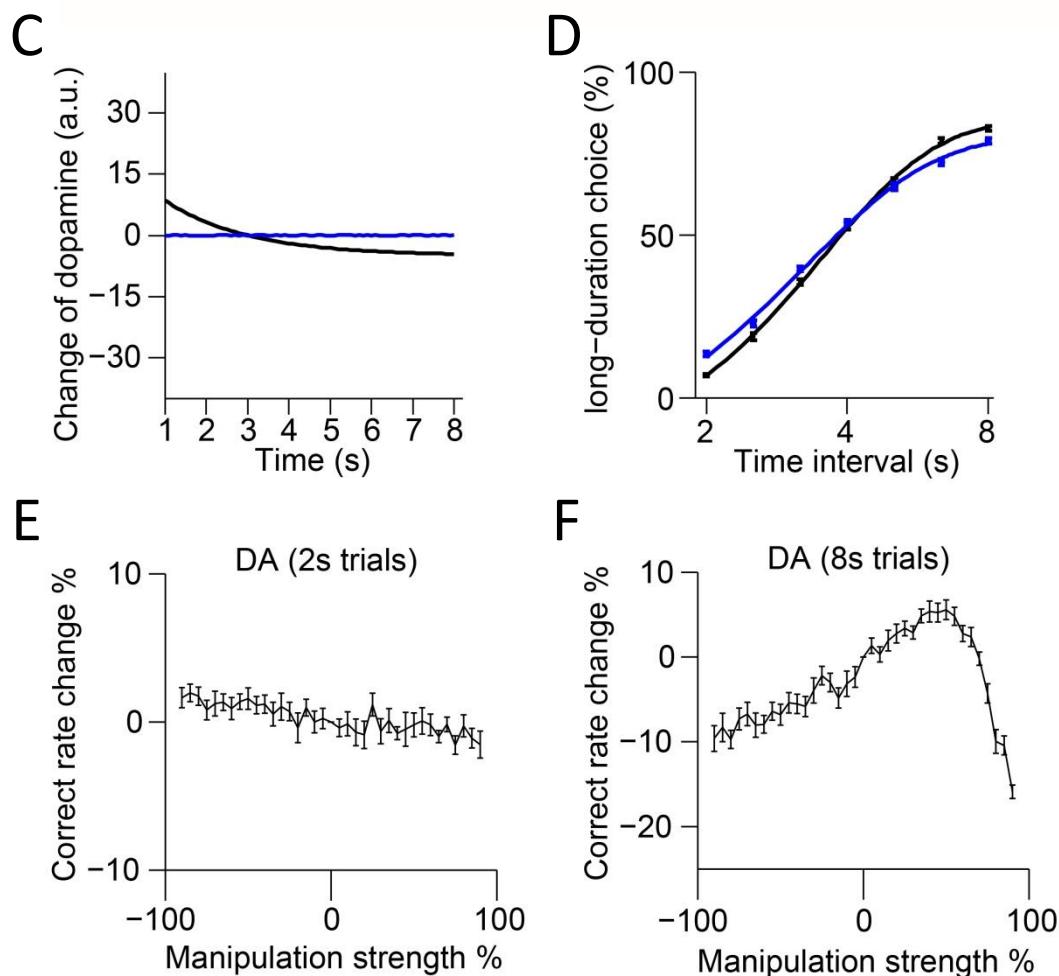
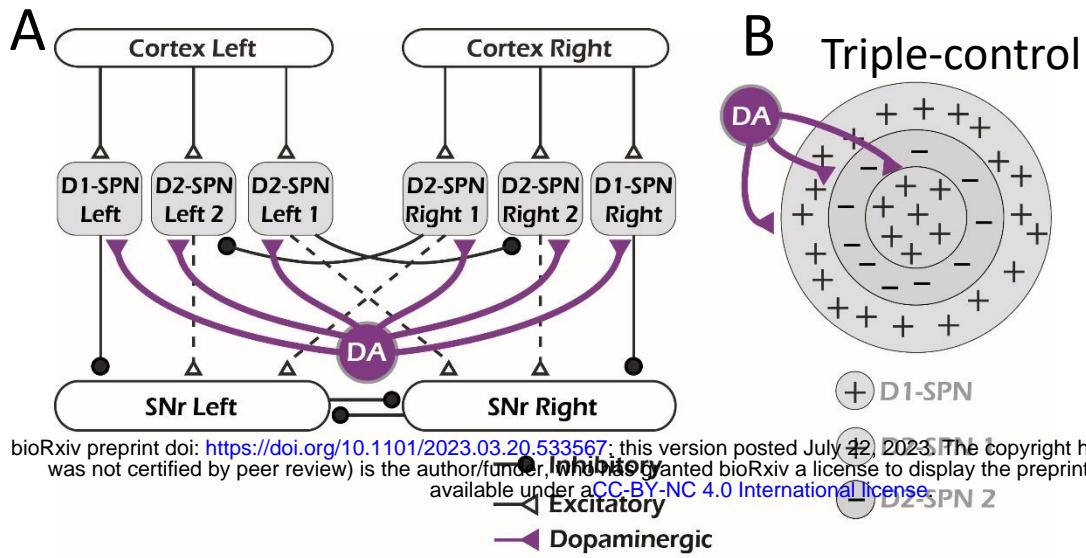

C


D


E


F


G



H

I

Figure S13. Computational modeling reveals that the linear and nonlinear modulation of action selection by direct versus indirect pathway qualitatively hold with additional striatal collateral connections. (A) Schematic for 'Triple-control' model with D1-D1 collateral connections. (B) Correct rate change in 2s trials (upper panel) and 8s trials (bottom panel) when manipulating D1-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, 2s trials: $F_{40,369} = 1.328$, $p = 0.0945$; 8s trials: $F_{40,369} = 7.595$, $p < 0.0001$). Green lines: 'Triple-control' model with D1-D1 collateral connections. Gray lines: the same simulation results as shown in Figure 7(C, G). (C) Correct rate change in 2s trials (upper panel) and 8s trials (bottom panel) when manipulating D2-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, 2s trials: $F_{40,369} = 38.22$, $p < 0.0001$; 8s trials: $F_{40,369} = 34.29$, $p < 0.0001$). Green lines: 'Triple-control' model with D1-D1 collateral connections. Gray lines: the same simulation results as shown in Figure 7(D, H). (D) Schematic for 'Triple-control' model with D1-D2 collateral connections. (E) Correct rate change in 2s trials (upper panel) and 8s trials (bottom panel) when manipulating D1-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, 2s trials: $F_{40,369} = 0.9335$, $p = 0.5893$; 8s trials: $F_{40,369} = 8.778$, $p < 0.0001$). Purple lines: 'Triple-control' model with D1-D2 collateral connections. Gray lines: the same simulation results as shown in Figure 7(C, G). (F) Correct rate change in 2s trials (upper panel) and 8s trials (bottom panel) when manipulating D2-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, 2s trials: $F_{40,369} = 40.94$, $p < 0.0001$; 8s trials: $F_{40,369} = 26.61$, $p < 0.0001$). Purple lines: 'Triple-control' model with D1-D2 collateral connections. Gray lines: the same simulation results as shown in Figure 7(D, H). (G) Schematic for 'Triple-control' model with D2-D1 collateral connections. (H) Correct rate change in 2s trials (upper panel) and 8s trials (bottom panel) when manipulating D1-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, 2s trials: $F_{40,369} = 0.6827$, $p = 0.9299$; 8s trials: $F_{40,369} = 10.06$, $p < 0.0001$). Blue lines: 'Triple-control' model with D2-D1 collateral connections. Gray lines: the same simulation results as shown in Figure 7(C, G). (I) Correct rate change in 2s trials (upper panel) and 8s trials (bottom panel) when manipulating D2-SPNs with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, 2s trials: $F_{40,369} = 153.3$, $p < 0.0001$; 8s trials: $F_{40,369} = 38.38$, $p < 0.0001$). Blue lines: 'Triple-control' model with D2-D1 collateral connections. Gray lines: the same simulation results as shown in Figure 7(D, H).

Figure S14. Computational modeling of dopaminergic modulation in the “Triple-control” model. (A) Diagram of Triple-control model with dopaminergic modulation on SPNs. (B) Schematic of center-surround-context receptive field diagram with dopaminergic modulation added for ‘Triple-control’ model. ‘+’ indicates facilitating effect to selection. ‘-’ indicates inhibitory effect to selection. (C) Simulation of two types of dopamine dynamics (black: decreasing dopamine; blue: constant dopamine with no change) in 8s trials. (D) Psychometric curves corresponding to each dopamine dynamics ($n = 10$, two-way repeated-measures ANOVA, main effect of ablation, $F_{1,18} = 0.8743, p = 0.362$; interaction between trial intervals and ablation, $F_{6,108} = 8.261, p < 0.0001$). (E, F) Correct rate change in 2s (E) and 8s trials (F) trials when manipulating dopamine in ‘Triple-control’ model with different manipulation strengths ($n = 10$, one-way repeated-measures ANOVA, effect of manipulation strength, 2-s trials: $F_{36,324} = 3.868, p < 0.0001$; 8-s trials: $F_{36,324} = 39.98, p < 0.0001$).