

1 Lassa virus NP DEDDh 3'-5' exoribonuclease activity is required for optimal viral RNA
2 replication and mutation control.

3

4 Cheng Huang^{1*}, Emily Mantlo^{1,2}, Slobodan Paessler¹

5

6 ¹Department of Pathology, Galveston National Laboratory and Institute for Human
7 Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA

8

9 ² Current address: Department of Microbiology & Immunology, Upstate Medical
10 University, Syracuse, NY, USA.

11

12 *Corresponding Author:

13 Email: chhuang@utmb.edu

14

15

16

17

18

19

20

21

22

23

24 Abstract

25 Lassa virus (LASV), a mammarenavirus from *Arenaviridae*, is the causative agent of
26 Lassa fever (LF) endemic in West Africa. Currently, there are no vaccines or antivirals
27 approved for LF. The RNA-dependent RNA polymerases (RdRp) of RNA viruses are
28 error-prone. As a negative-sense RNA virus, how LASV copes with errors in RNA
29 synthesis and ensures optimal RNA replication are not well elucidated. LASV
30 nucleoprotein (NP) contains a DEDDH 3'-to-5' exoribonuclease motif (ExoN), which is
31 known to be essential for LASV evasion of the interferon response via its ability to
32 degrade virus-derived double-stranded RNA. Herein, we present evidence that LASV
33 NP ExoN has an additional function important for viral RNA replication. We rescued an
34 ExoN-deficient LASV mutant (ExoN- rLASV) by using a reverse genetics system. Our
35 data indicated that abrogation of NP ExoN led to impaired LASV growth and RNA
36 replication in interferon-deficient cells as compared with wild-type rLASV. By utilizing
37 PacBio Single Molecule, Real-Time (SMRT) long-read sequencing technology, we
38 found that rLASV lacking ExoN activity was prone to producing aberrant viral genomic
39 RNA with structural variations. In addition, NP ExoN deficiency enhanced LASV
40 sensitivity to mutagenic nucleoside analogues in virus titration assay. Next-generation
41 deep sequencing analysis showed increased single nucleotide substitution in ExoN-
42 LASV RNA following mutagenic 5-fluorouracil treatment. In conclusion, our study
43 revealed that LASV NP ExoN is required for efficient viral RNA replication and mutation
44 control. Among negative-sense RNA viruses, LASV NP is the first example that a viral
45 protein, other than the RdRp, contributes to reduce errors in RNA replication and

46 maintain genomic RNA integrity. These new findings promote our understanding of the
47 basics of LASV infection and inform antiviral and vaccine development.

48 **Authors Summary**

49 Lassa fever (LF) is a severe and often fatal disease endemic in West Africa. There is no
50 vaccines or antivirals approved for LF. The disease is caused by Lassa virus (LASV), a
51 member of the arenavirus family. LASV nucleoprotein (NP) contains a DEDDh
52 exoribonuclease (ExoN) motif, through which NP degrades virus-derived,
53 immunostimulatory double-stranded RNA and inhibit host innate immune response.
54 Thus, it is well known that NP ExoN is important for LASV pathogenicity. Intriguingly,
55 the NP ExoN motif is highly conserved among arenaviruses, regardless of pathogenicity
56 and viral ability to evade innate immune response, suggesting arenavirus NP ExoN may
57 have additional function(s) in virus infection. In this study, we found that loss of ExoN
58 activity affected LASV multiplication and RNA replication in interferon-deficient Vero
59 cells. The ExoN-deficient rLASV exhibited reduced level of viral RNA, increased
60 frequency of structural variation in virus genomic RNA, and higher mutation rate
61 following mutagenic nucleoside analogue treatment. In conclusion, LASV NP ExoN
62 plays an important role in viral RNA replication and fitness. Our new findings may inform
63 antiviral and vaccine development and have broader implication on the function of NP
64 ExoN of other arenaviruses.

65

66 **Introduction**

67 The *Arenaviridae* family consists of four genera: *Mammarenavirus*, *Reptarenavirus*,
68 *Hartmanivirus*, and *Antennavirus* (1, 2). *Mammarenaviruses* (referred to as

69 arenaviruses hereafter) contain several pathogens of major clinical importance. Lassa
70 virus (LASV) causes Lassa fever (LF), which is endemic in West Africa (3-6). The New
71 World arenaviruses Junín virus (JUNV) and Machupo virus (MACV) cause Argentine
72 hemorrhagic fever (AHF) and Bolivian hemorrhagic fever (BHF), respectively, in South
73 America (7-10). These arenaviruses normally infect their rodent hosts, often persistently
74 without overt disease signs. Spillover to humans occurs through aerosol inhalation and
75 causes severe zoonotic diseases, of which vaccines and antivirals are limited (3, 8, 11-
76 13). Accordingly, LASV, JUNV and MACV are classified as Category A Priority
77 Pathogens in the USA. The World Health Organization has listed LF in the Blueprint list
78 of priority diseases for which there is an urgent need for accelerated research and
79 development (14).

80 Arenaviruses are negative-sense RNA viruses with a single-stranded, bi-segmented
81 RNA genome (15). The large (L) segment RNA and the small (S) segment RNA are
82 around 7.3 kb and 3.4 kb in length (Fig 1A). The L RNA encodes the RNA-dependent
83 RNA polymerase (RdRp) L protein and a small, zinc finger protein (Z), which drives the
84 assembly and budding of virus particles. The S RNA encodes the viral glycoprotein
85 (GP), which mediates virus entry into host cells, as well as the nucleoprotein (NP),
86 which is the major structural component of the nucleocapsid. On each genomic RNA,
87 there is a highly structured, GC-rich intergenic region (IGR) (Fig 1A), which is the
88 termination signal for viral mRNA transcription and is also required for packaging of viral
89 genomic RNA into progeny virus particles (16). After virus entry, NP mRNA and L
90 mRNA are transcribed from the 3'-end of S genomic RNA (S gRNA) or L genomic RNA
91 (L gRNA), respectively (Fig 1B). Later in infection, S anti-genomic RNA (S agRNA) and

92 L anti-genomic RNA (L agRNA) are synthesized from S gRNA and L gRNA, which are
93 the templates for GPC mRNA and Z mRNA transcription as well as S gRNA and L
94 gRNA synthesis (Fig 1B).

95 The RNA polymerase of RNA virus lacks proofreading activity. As negative sense
96 RNA viruses, how arenaviruses control errors in RNA replication are not well elucidated.
97 Both RdRp L protein and NP are required for viral RNA replication (17, 18), which
98 occurs in virus-induced, discrete cytosolic structures (19). Arenavirus NP contains two
99 structurally and functionally separated domains. The N-terminal half (aa 1-340 in LASV
100 NP) binds to viral genomic RNA to form vRNP (20). In the C-terminal half of LASV NP,
101 D389, E391, D466, D533 and H528 constitute a DEDDh 3'-5' exoribonuclease (ExoN)-
102 like motif. Structural and biochemical studies have established that the LASV NP
103 harbors exoribonuclease activity specific for double-stranded RNA (dsRNA). Mutation of
104 any of these DEDDh residues abolishes the ExoN activity (21-23). NP ExoN-mediated
105 dsRNA degradation is essential for LASV NP inhibition of the Sendai virus-induced
106 interferon response (21, 23), which is consistent with LASV suppression of the innate
107 immune response *in vitro* and *in vivo*. It is widely accepted that LASV NP ExoN is
108 critical for LASV immune evasion and pathogenicity (24, 25).

109 Interestingly, the NP DEDDh motif and its 3'-5' ExoN activity are highly conserved in
110 arenaviruses regardless of pathogenicity and virus ability to evade IFN response. For
111 instance, the ExoN motif is also found in the NP of the non-pathogenic Tacaribe virus
112 (TCRV), Pichinde virus (PICV) and Mopeia virus (MOPV) (22, 26-30). Notably, it has
113 been shown that abrogation of ExoN activity impaired the ability of NP to support LASV
114 minigenome replication (31, 32), suggesting a role of NP ExoN in arenavirus lifecycle

115 aside from immune evasion. Interestingly, the nsp14 protein of the positive-sense RNA
116 coronavirus also possesses the same DEDDh ExoN motif, which is essential for the
117 fidelity of coronavirus RNA replication (33-35). Thus, further studies are warranted to
118 investigate whether LASV NP ExoN plays a role in viral RNA replication in addition to
119 immune evasion.

120 In the present study, we rescued an ExoN-deficient mutant LASV (ExoN- rLASV)
121 and found that loss of ExoN activity resulted in impaired virus growth and viral RNA
122 replication in interferon-deficient cells. Our study also showed that abrogation of NP
123 ExoN led to increased production of aberrant LASV RNA and higher sensitivity to
124 mutagenic nucleoside analogues as compared with wild-type LASV. These data present
125 evidence that LASV NP ExoN has an important function in viral RNA replication in
126 addition to its role in immune evasion. Our new findings may enhance our
127 understanding of the basic virology of this important human pathogen and open new
128 directions for future studies.

129

130 **Results**

131 **Abrogation of NP ExoN activity impaired LASV multiplication in interferon-
132 deficient cells.**

133 In biochemical studies, mutation of any of the LASV NP D389, E391, D466, D533
134 and H528 residues to alanine diminished the ExoN activity. Accordingly, we attempted
135 to rescue recombinant LASV (rLASV, Josiah strain) harboring NP D389A and NP
136 D389AG392A mutations to investigate the role of LASV ExoN in infection. To minimize
137 the likelihood of reversion, two nucleotide substitutions were introduced to mutate the

138 NP D380 and NP G392 residues. Specifically, for the NP D380A mutant, nt GA₁₂₆₆C₁₂₆₇
139 in S RNA (in antigenomic sense) was mutated to GC₁₂₆₆T₁₂₆₇. For the NP D389AG392A
140 mutant, GA₁₂₆₆C₁₂₆₇ (D389) and GG₁₂₇₅A₁₂₇₆ (G392) in S RNA were mutated to
141 GC₁₂₆₆T₁₂₆₇ (D389A) and GC₁₂₇₅T₁₂₇₆ (G392A), respectively. We successfully rescued
142 the rLASV NP D389A mutant (ExoN- rLASV hereafter) by using the reverse genetics
143 systems established in our lab. Sequencing analysis confirmed that the mutation is
144 stable after 3 passages in Vero cells (Fig 2A). We could not rescue the rLASV NP
145 D389AG392A mutant despite repeated attempts, indicating rLASV with the NP
146 D389AG392A mutation is not viable.

147 We assessed the one-step and multiple-step growth kinetics of ExoN- rLASV in
148 interferon-deficient Vero cells. The multiplication of ExoN- rLASV was attenuated at
149 both conditions as compared with wild-type (wt) rLASV (Fig 2B). At 48 hours post-
150 infection (hpi), the titer of ExoN- rLASV was 835-fold lower than wt rLASV at MOI 1, and
151 51-fold lower at MOI 0.01. Consistently, ExoN- rLASV formed smaller plaques in Vero
152 cells as compared with wt rLASV (Fig 2C). These results indicated that abrogation of
153 ExoN activity impaired rLASV propagation in Vero cells.

154 **NP ExoN deficiency impaired LASV RNA replication in interferon-deficient cells.**

155 As Vero cells are IFN-deficient (36, 37), the attenuated growth of ExoN- rLASV in
156 Vero cells suggests that NP ExoN plays an important role in LASV replication other than
157 viral evasion of the IFN response. We reasoned that ExoN deficiency may affect LASV
158 RNA replication like its coronavirus nsp14 counterpart and further examined LASV RNA
159 replication in Vero cells at conditions representing one-step virus growth (MOI 1 for 24
160 hr) and multi-step growth (MOI 0.01 for 72 hr). As shown in Fig 3A, the titer of ExoN-

161 rLASV was 6671-fold lower than that of wt rLASV at MOI 1 and was 51.4-fold lower at
162 MOI 0.01. We purified total RNA from infected cells and performed reverse transcription
163 with random primers. Then, we conducted a qPCR assay to quantify the viral RNA level
164 at the NP locus, which measures the total RNA level of S gRNA, S agRNA and NP
165 mRNA (Fig 3B). Similarly, we also determined the RNA level of L gRNA, L agRNA and
166 L mRNA with a qPCR assay using primers specific for the L locus (Fig 3C). At a MOI of
167 1, which represents one-step virus growth, the RNA level of ExoN- rLASV RNA was
168 1637-fold lower than that of wt rLASV at the NP locus ($P<0.01$, student t test), and 122-
169 fold lower ($P<0.01$) at the L locus. At a MOI of 0.01, which represents multi-step virus
170 growth, the RNA level of ExoN- rLASV was 45.5-fold lower than that of wt rLASV at the
171 NP locus ($P<0.01$, student t test), and 25.2-fold lower at the L locus ($P=0.04$, student t
172 test).

173 We also examined the impact of ExoN deficiency on the level of S and L genomic
174 RNA by RT-qPCR assay. In this assay, reverse transcription was performed with
175 primers targeting the 3'-end of S genomic RNA and L genomic RNA using the high-
176 fidelity reverse transcriptase SuperScript IV (Invitrogen), followed by qPCR assays
177 targeting the NP locus on S gRNA and the L locus on L gRNA. At the one-step growth
178 condition (MOI of 1), the level of ExoN- rLASV S gRNA was 1181-fold lower ($P<0.01$, t
179 test) than that of wt rLASV; meanwhile the level of L gRNA was 387-fold lower ($P<0.02$)
180 (Fig 3D and 3E). At a MOI of 0.01, the level of ExoN- rLASV S gRNA was 62.3-fold
181 lower ($P<0.01$, t test) than that of wt rLASV; meanwhile the level of L gRNA was 16.7-
182 fold lower ($P<0.02$) than that of wt rLASV. These results clearly demonstrated that

183 abrogation of ExoN affected LASV RNA level in IFN-deficient Vero cells, to an extent
184 largely comparable with virus titer reduction.

185 **Abrogation of ExoN led to increased aberrant viral RNA formation in rLASV**
186 **infection.**

187 Next, we performed RT-PCR to examine S gRNA and L gRNA in ExoN- rLASV
188 infection. Vero cells were infected with wt rLASV and ExoN- rLASV at a MOI of 0.01 for
189 72 hours or at a MOI of 1 for 24 hours. Intracellular RNA samples were purified and
190 reverse transcribed to cDNA using primers targeting the 3'-ends of S gRNA or L gRNA.
191 Nearly full-length S gRNA (3391 nt) and L gRNA (7265 nt) was amplified with the high-
192 fidelity Platinum SuperFi DNA Polymerase (Invitrogen). In agarose electrophoresis, we
193 observed an aberrant S RNA product (indicated as S' in Fig 4A) migrating slightly faster
194 than the standard S gRNA product (3391 nt) in ExoN- rLASV samples at both a MOI of
195 0.01 and 1. The aberrant S' product was detected specifically in ExoN- rLASV infection
196 in repeated experiments. We also observed several aberrant L gRNA products (3.5 kb
197 to 6 kb) in ExoN- rLASV samples at both a MOI of 0.01 and 1 (Fig 4B). These results
198 demonstrated increased formation of aberrant S gRNA and L gRNA in ExoN- rLASV
199 infection.

200 **Abrogation of LASV NP ExoN activity affected the integrity of S gRNA.**

201 To determine the sequence of the aberrant S' RNA in ExoN- rLASV infection, we
202 performed agarose gel electrophoresis with ExoN- rLASV and wt rLASV S RNA PCR
203 samples (MOI of 1) and purified the amplicons around the full size of S segment.
204 Purified amplicons were cloned into a cloning vector (pSMART, Lucigen). Sanger
205 sequencing of ten colonies identified two types of aberrant S RNAs formed in ExoN-

206 rLASV infection. Three out of ten colonies had a 37-nt deletion (corresponding to
207 nt1824-1860 in S agRNA), shown as the region from site I to site I' in Fig 5A and 5B.
208 The 37-nt deletion in the 67-nt-long IGR could disrupt the stem-loop structure of the
209 IGR. In addition, five colonies contained a 231-nt deletion spanning the IGR and NP
210 coding region (nt1616-1846 in S agRNA, from site II to II' in Fig 5C). The 231-nt deletion
211 consists of 42 nt in the IGR and 189 nt at the 3' end of the NP gene (Fig 5C), which
212 could disrupt IGR structure and cause an open reading frame shift from NP residue 507.
213 In comparison, only two out of 10 colonies in the wt rLASV S samples had the 37-nt
214 deletion in IGR, while the remaining colonies had the correct sequence. These data
215 indicated that LASV lacking NP ExoN is more prone to forming structural deletion in S
216 RNA, particularly around the IGR.

217 **PacBio Single Molecule, Real-Time (SMRT) long-read sequencing to characterize
218 aberrant S gRNA formed in ExoN- rLASV infection.**

219 To systematically assess the spectrum of aberrant S gRNA formed in ExoN- rLASV
220 infection, we utilized PacBio Single Molecule, Real-Time (SMRT) long-read sequencing
221 technology (38) to characterize LASV SgRNA at the single-molecule level. In PacBio
222 SMRT long-read sequencing, a DNA polymerase continues to read a single circularized
223 cDNA template for multiple rounds and provides deep sequencing data for each
224 molecule. It can determine the circular consensus sequence (CCS) of full-length cDNA
225 up to 10kb long at the single-molecule level with up to 99.99% accuracy. PacBio SMRT
226 long-read sequencing is ideal for analyzing RNA quasi-species, long amplicons, and
227 structural variations. It has been successfully used in studies on defective-interfering

228 RNA in influenza virus infection and hepatitis C virus variants following drug treatment
229 (39, 40).

230 We gel purified the nearly full-length S RNA PCR amplicon from wt- and ExoN-
231 rLASV-samples (MOI of 1) and performed PacBio SMRT long-read sequencing (Sequel
232 II). A total of 402,410 CCS reads and 381,134 CCS reads were obtained for wt rLASV
233 and ExoN- rLASV samples, respectively (Fig 6A). The mean number of read passes for
234 each cDNA was 28 times for wt rLASV (average length of 2319 nt) and 26 times for
235 ExoN- rLASV (average length of 2610 nt) (Fig 6A). The mean read score of the assay
236 was >0.999. CCS reads with a size of 3100-3391 bp were selected using Filter FASTQ
237 and aligned with the LASV reference sequence using *minimap2* (41). Variants with
238 higher than 3% frequency were called using *iVar* (42). In the ExoN- rLASV sample, we
239 found that 88.9% and 4.9% of S RNA had the 231-nt and the 37-nt deletion,
240 respectively (Fig 6B and 6C). In comparison, 7.1% and 18.2% of the S RNA in the wt
241 rLASV sample had the 231-nt and the 37-nt deletion, respectively. The data also
242 confirmed that greater than 99.93% of ExoN- rLASV harbored the intended NP D389A
243 mutation. In addition, an A-to-G substitution at nt 393 (in antigenomic sense) was
244 identified in S RNA of ExoN- rLASV with a frequency of 36.7%. A C-to-U substitution at
245 nt 1518 in S RNA was found in wt rLASV sample with a frequency of 3.07%. Overall, a
246 systematic analysis with PacBio SMRT sequencing clearly showed that LASV lacking
247 ExoN had a higher frequency of structural variation in S gRNA.

248 **ExoN- rLASV was more sensitive to nucleoside analogue treatment.**

249 Coronavirus nsp14 DEDDh 3'-5' ExoN proofreads newly synthesized viral RNA by
250 removing mis-incorporated nucleotides. Abrogation of nsp14 ExoN activity renders

251 coronaviruses susceptible to lethal mutagenesis when treated with nucleoside
252 analogues such as 5-fluorouracil (5-FU) (43). 5-FU treatment also increases the
253 mutation rate of the prototype arenavirus lymphocytic choriomeningitis virus (LCMV)
254 and affects viral fitness (44). To investigate if loss of ExoN activity could increase LASV
255 sensitivity to mutagenic nucleoside analogues, we evaluated the sensitivity of wt rLASV
256 and ExoN- rLASV to 5-FU in Vero cells (MOI of 0.1). 5-FU treatment alone did not affect
257 cell viability at the concentrations administrated in this experiment (Fig. 7A, CellTiter-Glo
258 Viability Assay, Promega). Abrogation of NP ExoN increased LASV sensitivity to 5-FU
259 treatment starting from 100 μ M (Fig 7B). At 400 μ M, the virus titer of ExoN- rLASV
260 decreased by 1053-fold as compared with mock treatment, which was 13.5-times greater
261 than the 78-fold decrease for wt rLASV (Fig 7B).

262 EIDD-1931 (N4-hydroxycytidine or NHC) is a cytidine analogue that increases the
263 mutation frequency of a broad range of RNA viruses (45). We also assessed the
264 sensitivity of ExoN- rLASV and wt rLASV to EIDD-1931. EIDD-1931 treatment alone (5
265 μ M-100 μ M) did not substantially affect cell viability (Fig 7A, CellTiter-Glo Viability
266 Assay, Promega). The titer of ExoN- rLASV was decreased by 47.6-fold following 100
267 μ M EIDD-1931 treatment, greater than the 6-fold reduction of wt rLASV at the same
268 condition (Fig 7C). Collectively, these results indicated that abrogation of NP ExoN
269 activity rendered LASV more sensitive to mutagenic nucleoside analogues.

270 **Increased rate of single nucleotide variation in ExoN- rLASV RNA following 5'-FU
271 treatment.**

272 We further assessed the impact of the loss of ExoN on the mutation rate of LASV
273 RNA following 5-FU treatment. We infected Vero cells with rLASV (MOI 0.1) and treated

274 cells with a low level of 5-FU (100 μ M). Extracted viral RNAs were reverse transcribed
275 with primers specific to S genomic and L genomic RNA. We performed high-fidelity PCR
276 to generate two overlapping amplicons (1.8 kb and 1.9 kb) for the S segment and three
277 overlapping amplicons (2.5 kb, 2.6 kb and 3.2 kb) for the L segment. The amplicons
278 were purified from agarose gels and subjected to Illumina next generation sequencing.
279 The read depth was at least 1,000,000 reads at each site in the LASV genome (S1 Fig).
280 Alternate alleles with variation frequency above 0.1% at each position of the genomic
281 RNA were included for analysis.

282 We examined the distribution and the number of variants in viral genomic RNA from
283 mock- and 5-FU-treated samples (Fig 8 and Table). In mock samples, a total of 87 sites
284 in ExoN- LASV genomic RNA had alternate alleles with frequencies above 0.1%, higher
285 than the 28 sites with alternate alleles in wt rLASV genomic RNA (Table). Among the 87
286 sites identified in ExoN- LASV genomic RNA, 65 sites were in L gRNA (Table). The low
287 frequency of nucleotide substitution in 5-FU samples (0.1-1%) was correlated with the
288 low level of 5-FU treatment (100 μ M). At 100 μ M 5-FU, 323 sites in ExoN- LASV
289 genomic RNA had alternate alleles (Table), substantially higher than the 104 positions
290 identified in wt LASV RNA.

291 **Table: NGS data of the number of sites and the variation rate of LASV genomic
292 RNA following 5-FU treatment**

	Sites with variation			Variation Rate (x10 ⁻⁵)			Relative variation Rate		
	S RNA	L RNA	S & L	S RNA	L RNA	S & L	S RNA	L RNA	S & L
Wt FU 0 μM	11	17	28	1.16	2.15	1.84	1.00	1.00	1.00
Wt FU 100 μM	67	37	104	3.41	1.68	2.22	2.93	0.78	1.21
ExoN- FU 0 μM	22	65	87	1.51	4.92	3.84	1.29	2.29	2.09
ExoN- FU 100 μM	162	161	323	8.06	7.18	7.46	6.92	3.34	4.05

293 294 wt: wild rLASV; ExoN-: ExoN- rLASV, FU: 5-FU
295 We further compared the nucleotide variation rate of wt- and ExoN- rLASV genomic
296 RNA (Table). In the absence of 5-FU, the variation frequency of wt rLASV genomic RNA
297 was 1.84×10^{-5} per nucleotide read. Treatment with 100 μM of 5-FU increased the
298 variation rate of wt rLASV genomic RNA by 21% to 2.22×10^{-5} per nt read. For ExoN-
299 rLASV, the variation frequency of genomic RNA was 3.84×10^{-5} per nt read at 0 μM 5-
300 FU, 2.09-fold of that of wt rLASV. At 100 μM 5-FU, the variation frequency of ExoN-
301 rLASV genomic RNA was increased by 95% to 7.46×10^{-5} per nt read and was 3.34-
302 fold of the variation frequency of wt rLASV.

303 5-FU incorporation causes A:G and U:C transitions in viral RNA during LCMV and
304 SARS-CoV-1 infection (43, 44). In this study, we found A:G and U:C transitions at 78
305 sites (75.7%) and 278 sites (86.1%) in wt rLASV genomic RNA and ExoN- rLASV
306 genomic RNA, respectively in 5-FU samples (Fig 9). In the mock samples, A:G and U:C
307 transition was identified at 7 sites (25%) and 32 sites (36.8%) in wt rLASV and ExoN-
308 rLASV genomic RNA, respectively.

309 In summary, the NGS data indicated that lack of ExoN activity increased the
310 frequency of single nucleotide variation in LASV genomic RNA in both mock and
311 sublethal 5'-FU conditions.

312

313 **Discussion**

314 The LASV NP ExoN activity is known to be essential for LASV evasion of host innate
315 immune responses. Interestingly, the DEDDh motif and the ExoN activity is highly
316 conserved in the arenavirus family, regardless of viral pathogenicity, implying it has
317 additional function(s) in arenavirus lifecycle. In this study, we found that abrogation of
318 NP ExoN impaired LASV growth and RNA replication in IFN-deficient Vero cells. In
319 addition, ExoN- rLASV was more prone to producing aberrant viral RNAs and more
320 sensitive to mutagenic nucleoside analogues. Thus, LASV NP ExoN has a previously
321 unrecognized function in LASV RNA replication, which reduces rates of viral RNA
322 substitution and production of aberrant viral RNA. As the ExoN motif is highly conserved
323 in arenaviruses, future studies should seek to determine whether the NP ExoN of other
324 arenaviruses are also important in viral RNA replication.

325 In this study, we presented the evidence that abrogation of NP ExoN led to impaired
326 LASV growth and smaller plaque size in IFN-deficient Vero cells (Fig 2). We also found
327 that rLASV with NP D389AG392A mutation was not viable. These data demonstrated
328 that NP ExoN is important for LASV fitness in addition to its role in immune evasion.
329 Other groups have reported that deficiency in NP ExoN leads to attenuated growth for
330 rMOPV, rPICV and the AV strain of rLASV (26, 27, 31). In addition, PICV possessing
331 the NP D380A mutation (equivalent to the NP D389A mutation for LASV) forms smaller
332 plaques in Vero cells. PICV wt revertant, which forms large plaques, could be readily
333 identified after two passages of the NP D380A PICV mutant (27). Therefore, NP ExoN
334 could be important for arenavirus fitness in general.

335 The present study provides evidence that abrogation of NP ExoN activity affected
336 LASV RNA replication in IFN-deficient cells (Fig 3), which explains the impaired growth
337 of ExoN- rLASV. For RNA viruses, the RNA replication is error-prone as RdRp lacks
338 proofreading activity. When nucleotide mis-incorporation occurs, RdRp may pause or
339 stop RNA elongation, which consequently affects viral RNA synthesis. Interestingly,
340 MOPV NP and LCMV NP have been shown to excise mismatched nucleotides at the 3'-
341 end of the dsRNA substrate in biochemical studies (28). Accordingly, it is plausible that
342 LASV NP ExoN could also remove mis-incorporated nucleotides like MOPV NP and
343 LCMV NP and facilitate viral RNA synthesis. In this scenario, lack of NP ExoN may
344 affect the yield or the rate of arenaviral RNA synthesis, which may partly explain the
345 impaired viral RNA replication in ExoN- rLASV infection. Further studies are required to
346 investigate whether LASV NP ExoN can excise mismatched nucleotides, through which
347 ExoN helps to reduce nucleotide mis-incorporation and facilitate viral RNA synthesis.

348 We detected increased production of aberrant S gRNA and L gRNA in ExoN- rLASV
349 infected cells in repeated experiments (Fig 4). This data indicated that loss of LASV NP
350 ExoN affected the integrity of viral genomic RNA. Sanger sequencing analysis of nearly
351 full-length S gRNA amplicons identified two types of deletion mutants in ExoN- rLASV
352 samples. Three of ten colonies had a 37-nt deletion (nt1824-1860, S agRNA) located in
353 the 67-nt-long IGR (site I to site I' shown in Fig 5A and 5B). Five colonies contained a
354 231-nt deletion (nt1616-1846 in S agRNA, from II to II' shown in Fig 5C) in the IGR and
355 NP coding region. The 37-nt deletion could disrupt the stem-loop structure in IGR,
356 meanwhile the 231-nt deletion could disrupt the IGR structure and cause a shift in open
357 reading frame from NP residue 507. In comparison, only two out of ten colonies of wt

358 rLASV S samples had the 37-nt deletion in IGR. As the IGR is essential for transcription
359 termination of arenavirus mRNA and packaging of genomic RNA into progeny virus
360 particles, abrogation of NP ExoN may indirectly affect these two important steps in viral
361 RNA replication.

362 To better understand the spectrum of LASV SgRNA variants, we utilized PacBio
363 SMRT long-read sequencing to characterize LASV SgRNA amplicon at the single-
364 molecule level. Short-read Illumina NGS has low sensitivity and high false positive rates
365 in solving complex Structural Variations (SVs) with deletions and insertions at least 50
366 nt in size (46). PacBio SMRT long-read sequencing can determine the circular
367 consensus sequence of full-length cDNA up to 10kb long at the single-molecule level,
368 which is ideal for analyzing RNA quasi-species, long amplicons, and SVs. In addition,
369 SMRT long-read technology is suitable for sequencing through highly repetitive, GC-rich
370 sequences that are present in the IGRs of arenavirus RNA. In this study, raw reads with
371 a minimum number of 3 passes and higher than 99% accuracy were used to generate
372 the CCS reads to ensure read accuracy. The mean number of read passes for each
373 cDNA was 28 times for wt rLASV with an average read length of 2319 nt, and 26 times
374 for ExoN- rLASV with an average read length of 2610 nt (Fig 6A). The mean reading
375 score of the SMRT assay was >99.9%. Variants with >3% frequency was selected in
376 data analysis to ensure the reliability of the reads. The results demonstrated that 88.9%
377 and 4.9% of the S genomic RNA contained the 231-nt deletion and the 37-nt deletion in
378 ExoN- rLASV sample, respectively. In comparison, 7.1% and 18.2% of the S RNA in wt
379 rLASV sample has the 231-nt deletion and the 37-nt deletion, respectively. In addition,
380 higher than 99.93% of ExoN- rLASV S gRNA harbored the intended NP D389A

381 mutation, which confirmed that the NP D389A mutation was maintained in ExoN-
382 rLASV. Our data suggests that NP ExoN is important for viral control of structural
383 deletion in LASV genomic RNA.

384 The molecular basis for these structural deletions formed in ExoN- rLASV S RNA is
385 unclear. Sequence analysis revealed the presence of homologous sequences flanking
386 the 37-nt deletion and the 231-nt deletion in S RNA (Fig 10, boxed sequences, sites I/I'
387 for the 37-nt deletion, sites II/II' for the 231-nt deletion). Based on the homologous
388 sequences, we propose a stop-and-realign model for the mechanism of increased
389 structural deletions in S RNA in ExoN- rLASV infection (Fig 10). When RNA synthesis
390 error occurs, LASV NP ExoN may excise the mismatched nucleotide, like its MOPV and
391 LCMV counterparts (28), and allows the RdRp to resume RNA elongation. Lack of NP
392 ExoN activity may lead to the stop of viral RNA synthesis, as shown in Fig 10A for the
393 37nt-deletion and in Fig 10B for the 231nt-deletion (Step 1, mis-incorporation and stop).
394 Depending on the nucleotide mis-incorporated, LASV RdRp L protein may realign the
395 3'-end of nascent RNA (at site I in Fig 10A and site II in Fig 10B) with downstream
396 homologous sequences on the template RNA (sites I' and II' in Fig 10A and Fig 10B,
397 respectively) and resume RNA elongation (Step 2, realign and resume). As a result,
398 RdRp skips the regions between these homologous sequences, leading to the 37-nt
399 deletion (Fig 10A) and the 231-nt deletion (Fig 10B) in S RNA, respectively. Thus, LASV
400 NP ExoN may control structural deletions by reducing errors in LASV RNA synthesis. In
401 this regard, it is worth noting that RNA viruses with low-fidelity RdRp, such as Sindbis
402 virus or tombusvirus, exhibit an increased production of defective viral genomic RNA
403 correlated with an enhanced rate of viral RNA recombination (47-49). Further studies

404 are warranted to investigate the molecular basis of increased aberrant RNA formation
405 associated with LASV NP ExoN deficiency and the impact on virus infection.

406 Our data of nucleoside analogue study support that LASV NP ExoN contributes to
407 control the frequency of nucleotide substitution in viral RNA. In LCMV infection, 5-FU
408 could be incorporated into nascent viral RNA and cause mutations that affect virus
409 fitness. Consistently, abrogation of NP ExoN rendered LASV more sensitive to the
410 mutagenic nucleoside analogues 5-FU and EIDD-1931 in virus titration assay (Fig 7).

411 Our NGS data showed that ExoN deficiency is associated with increased nucleotide
412 substitution in rLASV RNA following 5-FU treatment. At 100 μ M 5-FU, the mutation rate
413 of ExoN- rLASV was increased by 94%, while that of wt rLASV was increased by 21%.

414 In the absence of 5-FU, the variation frequency of ExoN- rLASV genomic RNA was
415 2.09-fold of that of wt rLASV, suggesting LASV NP ExoN controls RNA substitution
416 under normal culture conditions. Of note, 5-FU-associated A:G and U:C transitions
417 accounted for 75.7% or 86.1% of the alternate alleles identified in wt or ExoN- rLASV
418 genomic RNA, respectively, following 5-FU treatment (Fig 9). This data confirmed that
419 the nucleotide substitution in 5-FU samples (Fig 7) was largely related to 5-FU
420 incorporation.

421 For RNA virus, the error-prone RNA replication could increase genetic diversity in
422 virus population and provide benefits for adaptation. However, the mutation rate has to
423 be controlled as even a moderate 1.1-2.8-fold increase in mutation rate could drastically
424 affect virus fitness (50). As negative-sense RNA viruses, how arenaviruses balance the
425 mutation rate while preserving fidelity is largely unknown. Our nucleotide analogue data
426 indicated that LASV NP ExoN contributes to control the rate of viral RNA substitution

427 and ensure the fidelity of viral RNA synthesis. To the best of our knowledge, this is the
428 first example among negative-sense RNA viruses that a non-RdRp viral protein plays a
429 key role in viral RNA fidelity.

430 In summary, the present study provided evidence that LASV NP ExoN is required for
431 optimal viral RNA replication and mutation control in addition to its role in immune
432 evasion. Loss of LASV NP ExoN activity has multiple impacts on viral RNA replication,
433 including decreased RNA level, increased occurrence of structural deletions in viral
434 RNA, and higher rate of nucleotide substitution. These defects may have more profound
435 impact on viral fitness and pathogenicity *in vivo*. Future studies are warranted to
436 investigate whether NP ExoN of other arenaviruses has similar functions in viral RNA
437 replication. Hemorrhagic fever-causing arenaviruses continue to pose a threat to public
438 health and have pandemic potential. Currently, mutagenic nucleotide analogue T705
439 (Favipiravir) shows promising activities in animal models of arenavirus infection (51, 52).
440 Our study suggests that targeting NP ExoN may enhance virus sensitivity to nucleotide
441 analogues. Therefore, developing NP ExoN inhibitors could be a valuable strategy to
442 enhance the efficacy of T705 in treatment of LF and other arenavirus-caused
443 hemorrhagic fever diseases.

444

445 **Materials and Methods**

446 **Cells and Viruses.**

447 Vero cells (CCL-81, ATCC) were maintained in Dulbecco's modified eagle medium
448 (Hyclone) supplemented with 10% FBS (Invitrogen) and 1% penicillin and streptomycin
449 solution (Hyclone). The LASV (Josiah strain) used in studies was recombinant virus that

450 were rescued using reverse genetic systems in BHK21 cells and passaged only once
451 (P1) in Vero cells as previously described (53). All plasmids used for LASV rescue were
452 confirmed by sequencing. Site-directed mutagenesis on the pmPol I-LASV Sag plasmid
453 was performed using QuikChange II kit (Agilent) according to the manufacturer's
454 instructions. To construct the rLASV NPD380A mutant, forward primer 5'-CCAAATGCT
455 AAGACCTGGATGGCTATTGAAGGAAGACCTGAAGATC-OH, and reverse primer 5'-
456 GATCTTCAG GTCTTCCTTCAATAGCCATCCAGGTCTAGCATTGG-OH were used.
457 To construct the rLASV NP D389AG392A mutant, forward primer 5'-AAATGCTAAGAC
458 CTGGATGGCTATTGAAGCTAGACCTGAAGATCCAGTGG-OH, and reverse primer 5'-
459 CCACTGGATCTTCAGGTCTAGCTTCAATA GCCATCCAGGTCTAGCATT-OH were
460 used. The sequence of mutant rLASV was confirmed by Sanger Sequencing after RT-
461 PCR amplification of viral RNA extracted from infected cells. All infection work with
462 pathogenic arenaviruses was performed at the BSL4 facilities in Galveston National
463 Laboratory in the University of Texas Medical Branch in accordance with institutional
464 health and safety guidelines and federal regulations.

465 **RNA Extraction, RT-PCR, and real-time RT-qPCR**

466 RNA lysates were prepared using the TRIzol reagent (Life Technology). RNA was
467 purified using the RNeasy Minikit (Qiagen) and treated with DNase I (Qiagen) as
468 previously reported (32, 54). An equal amount of total RNA (0.5 to 1 μ g) was reverse
469 transcribed to cDNA at 55 °C for 60 minutes using high-fidelity reverse transcriptase
470 SuperScript IV (Invitrogen) per manufacturer's instruction. The high-fidelity reverse
471 transcriptase SuperScript IV has low RNase H activity and is suitable for long cDNA
472 synthesis. Random hexamer primers and sequence specific primers were used in RT as

473 specified in each experiment. cDNA samples were treated with RNase H. In RT of S
474 gRNA, an S gRNA 3'UTR specific primer (5'-CGCACAGTGGATCCTAGGCTA-OH) was
475 used. In RT of L gRNA, an L gRNA 3'UTR specific primer (5'- CACCGAGGATCCTAGG
476 CATTAAGGCTATC-OH) was used in cDNA synthesis. PCR amplification of close to
477 full-length Sg cDNA (3391bp) was conducted with Platinum SuperFi DNA Polymerase
478 (Invitrogen) using forward primer 5'-ATCCTAGGCATTTGGTTGC-OH and reverse
479 primer 5'-CGCACAGTGGATCCTAGGCTA-OH. PCR amplification of close to full-length
480 Lg cDNA (7265 bp) was performed with Platinum SuperFi DNA Polymerase using
481 forward primer 5'-CACCGAGGATCCTAGG CATTAAGGCTATC-OH and reverse primer
482 5'-ATCCTAGGCAATTGGTTGTTCTTTTGAG-OH. Real-time quantitative PCR
483 (qPCR) was performed with SsoAdvanced Universal SYBR green Supermix (BioRad)
484 on a CFX96 real-time PCR detection system (BioRad) as described previously (32, 54).
485 To measure the viral RNA level at NP locus and L locus, cDNA synthesized with
486 random primers was used in a qPCR assay. LASV NP forward primer (5'-GAAGGGCCT
487 GGGAAAACACT-OH) and LASV NP reverse primer (5'-AGGTAAGCCCAGCGTAAA
488 C-OH) were used for the NP locus. LASV L forward primer (5'-CAGCAGGTCAGACGA
489 AGTGT-OH) and LASV L reverse primer (5'-GTTGTGCATAGGGGAGGCTT-OH) were
490 used for the L locus. The cDNA synthesized with SgRNA- and LgRNA-specific primers
491 as indicated above was used in a qPCR assay to measure the level of LASV Sg RNA
492 and Lg RNA. The qPCR data was analyzed with the CFX Manager software (BioRad).
493 The RNA level of each target gene was normalized to that of the housekeeping gene β -
494 actin with validated primers from BioRad. All experiments were performed separately in
495 triplicates.

496 **PacBio SMRT long-read sequencing of LASV SgRNA**

497 Vero cells was infected by ExoN- rLASV and wt rLASV at a MOI of 1. At 48 hpi, total
498 RNA was purified from infected cells. RT-PCR amplification of the close-to-full-length
499 SgRNA was performed as described above. PCR amplicons (approximately 3.4 kb)
500 were gel purified using Monarch DNA gel extraction kit (NEB). Library construction,
501 PacBio SMRT long-read sequencing and CCS determination was performed by Azenta
502 Life Sciences (USA). At least 1 μ g of amplicon was ligated to barcoded adapters
503 (Pacific Biosciences) for SMRTbell library construction and then sequenced on the
504 PacBio Sequel IIe platform with v3.0 chemistry. Raw reads with a minimum number of
505 passes greater than 3 were used to generate the CCS reads using PacBio SMRTLINK
506 v.10.1. HiFi reads (>=99% accuracy) were extracted. Data analysis was performed
507 utilizing *Galaxy*: an open source, web-based platform supported by NIH, NSF, and the
508 Texas Advanced Computing Center. CCS reads were filtered for those with size 3100-
509 3394bp and high-quality reads (Phred>20) using Filter FASTQ and mapped to the LASV
510 reference seq (MH358389) with *Minimap2* (PacBio HiFi reads vs reference mapping (-
511 k19 -w19 -U50,500 -g10k -A1 -B4 -O6,26 -E2,1 -s200)). Variants with cutoff >3%
512 frequency were called with *iVar* and visualized using the Integrated Genomics Viewer
513 (IGV). The raw sequencing data has been deposited in Sequence Read Archive (SRA)
514 databases hosted by the National Library of Medicine's National Center for
515 Biotechnology Information (NCBI), NIH.

516 **Mutagenic nucleotide analogue treatment**

517 5-fluorouracil (Cat# 03738, Sigma) and N4-hydroxycytidine (EIDD-1931) (Cat#9002958,
518 Cayman) were dissolved in DMSO (cell culture grade, Sigma) and further diluted in

519 DMEM media contain 2% FBS and 0.1% DMSO. Vero cells were mock-treated or
520 treated with 5-FU or EIDD-1931 at different concentrations as indicated in each
521 experiment for 4 hr and then infected with wt rLASV and ExoN- rLASV at a MOI of 0.1
522 for 1 hr. Virus inoculums were removed and replaced with fresh media (DMEM + 2%
523 FBS and 0.1% DMSO) containing 5-FU or EIDD-1931 of different concentrations as
524 indicated. At 48 hpi, the supernatants of infected cells were harvested and subjected to
525 plaque assay to determine virus titers. The viability of Vero cells treated with 5-FU and
526 EIDD-1931 alone were assessed using CellTiter-Glo Viability Assay (Promega).

527 **Illumina NGS analysis of LASV RNA amplicons following 5-FU treatment.**

528 Virus infection and 5-FU treatment of Vero cells were performed as described above.
529 The supernatants of virus infected cultures were harvested and clarified by
530 centrifugation at 3,000 rpm to remove cell debris. Virions were concentrated and
531 purified with Amicon Ultra-15 Centrifugal Filter Units (Millipore, MW cutoff 100 kD). RNA
532 extraction and reverse transcription with S gRNA and L gRNA-specific primers were
533 performed as described above. PCR were performed with high-fidelity Platinum SuperFi
534 DNA Polymerase. For S gRNA, two overlapping amplicons were amplified. For L gRNA,
535 three overlapping amplicons were amplified. The primers used in amplicon preparation
536 are listed in supplementary information (S2 Table). All amplicons were purified from
537 agarose gel after electrophoresis. Library construction, Illumina deep sequencing
538 (Hiseq, 2x150 bp, pair-end) and raw data process was performed by Azenta Life
539 Sciences (USA). The obtained reads had a mean read quality score over 37. More than
540 90% of the bases had a Phred quality score greater than 30 (i.e., sequencing accuracy
541 of 99.9%). Data processing and analysis was performed on *Galaxy*, a web-based

542 platform supported by NIH, NSF, and the Texas Advanced Computing Center. The raw
543 data (in FASTQ format) was trimmed with *Trimmomatic* (55) to remove adaptor
544 sequences, and then mapped to the LASV reference seq (MH358389) with minimap2
545 (41) (short reads without splicing (-k21 -w11 --sr -F800 -A2 -B8 -O12,32 -E2,1 -r50 -p.5
546 -N20 -f1000,5000 -n2 -m20 -s40 -g200 -2K50m --heap-sort=yes --secondary=no). Read
547 depth was assessed with Samtools (56). The read depth was higher than 1,000,000
548 reads at each site on LASV genomic RNA, except for some positions at IGR. Low
549 frequency variants were called with LoFreq (57) (minimal base calling quality>20 for
550 reference bases and alternate bases, minimum mapping quality 20) from one million
551 reads at each position. Single nucleotide variations with higher than 0.1% frequency
552 was included for analysis to minimize background noise due to sequencing error. To
553 ensure the confidence of data quality, reads with strand bias greater than 100 (SB>100)
554 were excluded. The data were imported to Excel for mutation analysis. Raw NGS data
555 have been deposited in SRA databases hosted by NCBI, NIH.

556

557 **Acknowledgments**

558 This work was supported in part by Public Health Service grants 1R21AI166985 (to CH)
559 R01AI093445 (to SP) and R01AI129198 (to SP). CH was also supported by Institute for
560 Human Infections & Immunity, UTMB Pilot Study Fund (P86035) and would like to
561 acknowledge Galveston National Laboratory (supported by the Public Health Service
562 award 5UC7AI094660) for support of research activity. Research work in Dr. Paessler's
563 lab was also supported by the John. S. Dunn Distinguished Chair in Biodefense

564 endowment. E.K.M was supported by National Institutes of Health T32 training grant

565 AI060549.

566

567

568 **Figure legends**

569 **Figure 1. (A).** Schematic diagram of arenavirus S and L genomic RNA. On each
570 genomic RNA, an Intergenic Region (IGR) separates two ORFs. The highly structured
571 IGRs are the termination signals of viral mRNA transcription and are required for
572 efficient packaging of viral genomic RNA into progeny virions. **(B).** Genomic RNA
573 replication and mRNA transcription of arenavirus S RNA. After virus entry, L protein and
574 NP transcribe NP mRNA from S gRNA. From S gRNA, S antigenomic RNA (S agRNA)
575 is also synthesized, which is the template for GPC mRNA and S gRNA synthesis later in
576 virus infection. Arenavirus mRNA lacks a poly-A tail and contains the structured IGR at
577 the 3'-end.

578

579 **Figure 2. Abrogation of NP ExoN activity impaired LASV multiplication in
580 interferon-deficient cells.**

581 A recombinant LASV (rLASV) with NP D389A mutation was rescued (ExoN- rLASV).
582 **(A).** The D389A mutation was maintained after 3 passages in Vero cells (Sanger
583 sequencing). **(B).** The growth curve of wild-type rLASV (wt) and the ExoN- rLASV (NP
584 ExoN-) in Vero cells at multiplicity of infection (MOI) 0.01 and MOI 1. Dashed lines
585 denote the detection limit of plaque assay. **(C)** The plaque morphology of wt rLASV (wt)
586 and ExoN- rLASV.

587

588 **Figure 3. Abrogation of NP ExoN activity affected LASV RNA replication.**

589 Vero cells were infected with wt rLASV and ExoN- rLASV (MOI=0.01 and 1.0). At 72 hpi
590 (MOI 0.01) or 24 hpi (MOI 1.0), virus titer was determined by plaque assay **(A).** RT-

591 qPCR assay for viral RNA level at the NP locus (**B**) and L locus (**C**). The viral RNA level
592 for S gRNA (**D**) and L gRNA (**E**) were also determined by qRT-PCR. The viral RNA level
593 was normalized to the level of host β -actin mRNA and are presented as the fold
594 changes relative to the level of ExoN- rLASV samples (set as 1.0). The data presents
595 the mean and SEM of three independent experiments. (*: $P<0.01$; **: $P<0.02$; ***:
596 $P<0.05$ with Student *t*-test).

597 **Figure 4. Aberrant viral RNA formation in ExoN- rLASV infection**

598 Vero cells were infected with wt rLASV (wt) and ExoN- rLASV (ExoN-) at MOI 0.01 for
599 72 hr and at MOI 1 for 24 hr. RNA samples were purified from infected cells and
600 transcribed to cDNA with primers targeting the 3'-end of S gRNA and L gRNA,
601 respectively. High-fidelity PCR was performed to amplify close-to-full-length S gRNA
602 (3391 nt) and L gRNA (7265 nt) followed by agarose gel electrophoresis. (**A**). RT-PCR
603 result of S gRNA (S). S' is a slightly fast-migrating aberrant S RNA product in ExoN-
604 rLASV samples. (**B**). RT- PCR result of L gRNA. Several aberrant L gRNA products in
605 ExoN- rLASV samples (3.5 kb to 6 kb) are observed. The aberrant RNA products are
606 indicated by asterisk (*). Plasmid: PCR product using a plasmid containing LASV L
607 segment as template.

608 **Figure 5. Sanger sequencing of aberrant S RNA formed in ExoN- rLASV infection.**

609 (**A**). Predicted RNA structure of IGR of S RNA by *mFold*. (**B**). In ExoN- rLASV, a 37-nt
610 deletion (nt1824-1860 in S agRNA) from site I to site I' disrupted IGR structure. (**C**) a
611 231-nt deletion (nt1616-1846 in S agRNA) from the C-terminus of NP at site II' to site II
612 in the IGR (refer to A) was identified in the S gRNA sample of ExoN- rLASV.

613 **Figure 6. PacBio SMRT long-read sequencing of S gRNA in rLASV samples.**

614 Vero cells were infected with wt rLASV and ExoN- rLASV (MOI 1.0). RT-PCR product of
615 the close-to-full-length SgRNA (3391 nt) were purified after agarose gel electrophoresis
616 and subjected to PacBio SMRT long-read sequencing (Sequel IIe) with v3.0 chemistry.
617 **(A)**. HiFi CCS reads were generated using PacBio SMRTLINK v.10.1. **(B)**. CCS reads
618 with size 3100-3391bp were selected with Filter FASTQ and mapped to LASV reference
619 seq (GenBank MH358389) with *minimap2*. Variants were called with *ivar* and visualized
620 using Integrated Genomics Viewer. **(C)**. The percentage of the 231-nt deletion and the
621 37-nt deletion in S RNA of wt rLASV and ExoN- rLASV sample.

622 **Figure 7. NP ExoN deficiency enhanced LASV sensitivity to mutagenic nucleotide
623 analogues.**

624 **(A)**. Vero cells were treated with 5'-FU and EIDD-1931 at indicated concentrations. At
625 48 hr post treatment, cell viability was measured using CellTiter-Glo Viability Assay
626 (Promega). Data shown are the average (n=4) and SEM. **(B) and (C)**. Vero cells were
627 treated with 5-FU and EIDD-1931 at different concentrations as indicated. Cells were
628 infected with wt rLASV (wt) and ExoN- rLASV (ExoN-) at MOI 0.1. At 48 hpi, virus titers
629 were determined by plaque assay. Log10 virus titer changes relative to the virus titer of
630 non-treated cells are shown. Data presented are the mean and the SEM of three
631 independent experiments.

632 **Figure 8. Distribution of alternate alleles in LASV genomic RNA following 5-FU
633 treatment**

634 Vero cells were mock-treated or treated with 5-FU and infected with wt rLASV and
635 ExoN- rLASV (MOI 0.1). The distribution of alternate alleles in LASV S segment RNA
636 **(A)** and L segment RNA **(B)** are shown. Y axis shows the frequency of variations on

637 each position of viral genomic RNA. X axis shows the genomic position of LASV
638 agRNA.

639 **Fig 9: The number of positions with base changes in viral genomic RNA.**

640 All values represent the number of positions with alternate alleles at frequency higher
641 than 0.1% in wt rLASV and ExoN- rLASV genomic RNA following 0 μ M and 100 μ M 5-
642 FU treatment. Base transitions (A:G, G:A, U:C and C:U) are shaded in grey. 5-FU
643 specific transitions (A:G and U:C) are marked with asterisk. Base transversions
644 between purines and pyrimidines are shown in white.

645 **Figure 10. A stop-and-realign model for the 37-nt deletion (A) and the 231-nt
646 deletion (B) in S RNA of ExoN- rLASV.**

647 Homologous sequences flanking the deletion sites are indicated as boxed sequences
648 (sites I/I' for the 37-nt deletion, sites II/II' for the 231-nt deletion). Sites I and II are
649 located in IGR stem-loop structure. In viral RNA synthesis, NP ExoN may remove mis-
650 incorporated nucleotide and helps LASV RdRp L protein to resume viral RNA
651 elongation. In the absence of NP ExoN, viral RNA elongation may terminate (Step 1).
652 Depending on the nucleotide mis-incorporated (i.e., an A instead of C as shown in A
653 and B), viral RdRp L protein may realign the 3'-end of nascent RNA (5'-CCGUGACA in
654 site I or 5'-GUGACA in site II) with downstream homologous sequences on the template
655 RNA (3'-GGGACUGU-5' in site I' and 3'-CACCGU-5' in site II') and resume RNA
656 elongation (Step 2). Thus, the 37-nt deletion and the 231-nt deletion in S RNA may
657 result from viral RdRp skipping the regions between the homologous sequences, an
658 error that could be controlled by functional NP ExoN.

659

660 **Supporting information**

661 S1 Fig: Read depth of viral genomic RNA in NGS analysis.

662 S2 Table: Primers used in PCR amplification of LASV amplicon for NGS analysis.

663

664 **References**

665

- 666 1. Maes P, Adkins S, Alkhovsky SV, Avsic-Zupanc T, Ballinger MJ, Bente DA, et al.
667 Taxonomy of the order Bunyavirales: second update 2018. *Arch Virol*.
668 2019;164(3):927-941.
- 669 2. Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, et al. The evolutionary history of
670 vertebrate RNA viruses. *Nature*. 2018;556(7700):197-202.
- 671 3. Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges.
672 *Nature medicine*. 2004;10(12 Suppl):S110-121.
- 673 4. Gunther S, Lenz O. Lassa virus. *Critical reviews in clinical laboratory sciences*.
674 2004;41(4):339-390.
- 675 5. McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES. A prospective study
676 of the epidemiology and ecology of Lassa fever. *J Infect Dis*. 1987;155(3):437-444.
- 677 6. Dan-Nwafor CC, Furuse Y, Ilori EA, Ipadeola O, Akabike KO, Ahumibe A, et al.
678 Measures to control protracted large Lassa fever outbreak in Nigeria, 1 January to
679 28 April 2019. *Euro Surveill*. 2019;24(20).
- 680 7. Gomez RM, Jaquenod de Giusti C, Sanchez Valduvi MM, Frik J, Ferrer MF,
681 Schattner M. Junin virus. A XXI century update. *Microbes and infection*.
682 2011;13(4):303-311.

683 8. Grant A, Seregin A, Huang C, Kolokoltsova O, Brasier A, Peters C, et al. Junin virus
684 pathogenesis and virus replication. *Viruses*. 2012;4(10):2317-2339.

685 9. Patterson M, Grant A, Paessler S. Epidemiology and pathogenesis of Bolivian
686 hemorrhagic fever. *Curr Opin Virol*. 2014;5:82-90.

687 10. Sarute N, Ross SR. New World Arenavirus Biology. *Annu Rev Virol*. 2017;4(1):141-
688 158.

689 11. Gunther S, Lenz O. Lassa Virus. Critical Reviews in Clinical Laboratory
690 Science2004. p. 339-390.

691 12. Lukashevich IS. Advanced vaccine candidates for Lassa fever. *Viruses*.
692 2012;4(11):2514-2557.

693 13. Sattler RA, Paessler S, Ly H, Huang C. Animal Models of Lassa Fever. *Pathogens*.
694 2020;9(3).

695 14. World Health Organization. 2018 Annual review of diseases prioritized under the
696 Research and Development Blueprint 2018 [Available from:
697 <http://www.who.int/blueprint/priority-diseases/en/>.

698 15. Buchmeier MJ, de la Torre JC, Peters CJ. Arenaviridae: the viruses and their
699 replication. 5th ed. Knipe DM, PM H, editors. Philadelphia, PA, USA: Wolter Kluwer
700 Lippincott Williams & Wilkins; 2007. 1791–1827 p.

701 16. Pinschewer DD, Perez M, de la Torre JC. Dual role of the lymphocytic
702 choriomeningitis virus intergenic region in transcription termination and virus
703 propagation. *J Virol*. 2005;79(7):4519-4526.

704 17. Pinschewer DD, Perez M, de la Torre JC. Role of the virus nucleoprotein in the
705 regulation of lymphocytic choriomeningitis virus transcription and RNA replication. *J
706 Virol.* 2003;77(6):3882-3887.

707 18. Pyle JD, Whelan SPJ. Isolation of Reconstructed Functional Ribonucleoprotein
708 Complexes of Machupo Virus. *J Virol.* 2021;95(22):e0105421.

709 19. Baird NL, York J, Nunberg JH. Arenavirus infection induces discrete cytosolic
710 structures for RNA replication. *J Virol.* 2012;86(20):11301-11310.

711 20. Hastie KM, Liu T, Li S, King LB, Ngo N, Zandonatti MA, et al. Crystal structure of
712 the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA
713 binding. *Proc Natl Acad Sci U S A.* 2011;108(48):19365-19370.

714 21. Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. Structure of the
715 Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity
716 essential for immune suppression. *Proc Natl Acad Sci U S A.* 2011;108(6):2396-
717 2401.

718 22. Jiang X, Huang Q, Wang W, Dong H, Ly H, Liang Y, et al. Structures of arenaviral
719 nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune
720 suppression. *J Biol Chem.* 2013;288(23):16949-16959.

721 23. Qi X, Lan S, Wang W, Schelde LM, Dong H, Wallat GD, et al. Cap binding and
722 immune evasion revealed by Lassa nucleoprotein structure. *Nature.*
723 2010;468(7325):779-783.

724 24. Mantlo E, Paessler S, Huang C. Differential Immune Responses to Hemorrhagic
725 Fever-Causing Arenaviruses. *Vaccines (Basel).* 2019;7(4).

726 25. Meyer B, Ly H. Inhibition of Innate Immune Responses Is Key to Pathogenesis by
727 Arenaviruses. *J Virol.* 2016;90(8):3810-3818.

728 26. Carnec X, Mateo M, Page A, Reynard S, Hortion J, Picard C, et al. A Vaccine
729 Platform against Arenaviruses Based on a Recombinant Hyperattenuated Mopeia
730 Virus Expressing Heterologous Glycoproteins. *J Virol.* 2018;92(12):J Virol
731 92:e0223017. <https://doi.org/0223010.0221128/JVI.0202230-0223017>.

732 27. Huang Q, Shao J, Lan S, Zhou Y, Xing J, Dong C, et al. In vitro and in vivo
733 characterizations of pichinde viral nucleoprotein exoribonuclease functions. *J Virol.*
734 2015;89(13):6595-6607.

735 28. Yekwa E, Aphibanthammakit C, Carnec X, Coutard B, Picard C, Canard B, et al.
736 Arenaviridae exoribonuclease presents genomic RNA edition capacity. *bioRxiv.*
737 2019:541698.

738 29. Groseth A, Hoenen T, Weber M, Wolff S, Herwig A, Kaufmann A, et al. Tacaribe
739 virus but not junin virus infection induces cytokine release from primary human
740 monocytes and macrophages. *PLoS Negl Trop Dis.* 2011;5(5):e1137.

741 30. Pannetier D, Faure C, Georges-Courbot MC, Deubel V, Baize S. Human
742 macrophages, but not dendritic cells, are activated and produce alpha/beta
743 interferons in response to Mopeia virus infection. *J Virol.* 2004;78(19):10516-10524.

744 31. Carnec X, Baize S, Reynard S, Diancourt L, Caro V, Tordo N, et al. Lassa virus
745 nucleoprotein mutants generated by reverse genetics induce a robust type I
746 interferon response in human dendritic cells and macrophages. *J Virol.*
747 2011;85(22):12093-12097.

748 32. Mateer EJ, Maruyama J, Card GE, Paessler S, Huang C. Lassa Virus, but Not
749 Highly Pathogenic New World Arenaviruses, Restricts Immunostimulatory Double-
750 Stranded RNA Accumulation during Infection. *J Virol.* 2020;94(9):e02006-02019.
751 <https://doi.org/02010.01128/JVI.02006-02019>.

752 33. Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an
753 RNA proofreading machine regulates replication fidelity and diversity. *RNA Biol.*
754 2011;8(2):270-279.

755 34. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, et
756 al. Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in
757 coronavirus RNA synthesis. *Proc Natl Acad Sci U S A.* 2006;103(13):5108-5113.

758 35. Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ. The
759 Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and
760 Replication Fidelity. *Front Microbiol.* 2019;10:1813.

761 36. Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, et al. The genome
762 landscape of the african green monkey kidney-derived vero cell line. *DNA Res.*
763 2014;21(6):673-683.

764 37. Desmyter J, Melnick JL, Rawls WE. Defectiveness of interferon production and of
765 rubella virus interference in a line of African green monkey kidney cells (Vero). *J*
766 *Virol.* 1968;2(10):955-961.

767 38. Rhoads A, Au KF. PacBio Sequencing and Its Applications. *Genomics Proteomics*
768 *Bioinformatics.* 2015;13(5):278-289.

769 39. Lui WY, Yuen CK, Li C, Wong WM, Lui PY, Lin CH, et al. SMRT sequencing
770 revealed the diversity and characteristics of defective interfering RNAs in influenza
771 A (H7N9) virus infection. *Emerg Microbes Infect.* 2019;8(1):662-674.

772 40. Yamashita T, Takeda H, Takai A, Arasawa S, Nakamura F, Mashimo Y, et al.
773 Single-molecular real-time deep sequencing reveals the dynamics of multi-drug
774 resistant haplotypes and structural variations in the hepatitis C virus genome.
775 *Scientific reports.* 2020;10(1):2651.

776 41. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics.*
777 2018;34(18):3094-3100.

778 42. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al.
779 An amplicon-based sequencing framework for accurately measuring intrahost virus
780 diversity using PrimalSeq and iVar. *Genome Biology.* 2019;20(1):8.

781 43. Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. Coronaviruses lacking
782 exoribonuclease activity are susceptible to lethal mutagenesis: evidence for
783 proofreading and potential therapeutics. *PLoS Pathog.* 2013;9(8):e1003565.

784 44. Ruiz-Jarabo CM, Ly C, Domingo E, de la Torre JC. Lethal mutagenesis of the
785 prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). *Virology.*
786 2003;308(1):37-47.

787 45. Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X, Andres EL, et al. Small-
788 Molecule Antiviral beta-d-N(4)-Hydroxycytidine Inhibits a Proofreading-Intact
789 Coronavirus with a High Genetic Barrier to Resistance. *J Virol.*
790 2019;93(24):e01348-01319. <https://doi.org/01310.01128/JVI.01348-01319>.

791 46. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et
792 al. Accurate detection of complex structural variations using single-molecule
793 sequencing. *Nat Methods*. 2018;15(6):461-468.

794 47. Panaviene Z, Nagy PD. Mutations in the RNA-binding domains of tombusvirus
795 replicase proteins affect RNA recombination in vivo. *Virology*. 2003;317(2):359-372.

796 48. Poirier EZ, Mounce BC, Rozen-Gagnon K, Hooikaas PJ, Stapleford KA, Moratorio
797 G, et al. Low-Fidelity Polymerases of Alphaviruses Recombine at Higher Rates To
798 Overproduce Defective Interfering Particles. *J Virol*. 2015;90(5):2446-2454.

799 49. Vignuzzi M, Lopez CB. Defective viral genomes are key drivers of the virus-host
800 interaction. *Nat Microbiol*. 2019;4(7):1075-1087.

801 50. Holland JJ, Domingo E, de la Torre JC, Steinhauer DA. Mutation frequencies at
802 defined single codon sites in vesicular stomatitis virus and poliovirus can be
803 increased only slightly by chemical mutagenesis. *J Virol*. 1990;64(8):3960-3962.

804 51. Safronetz D, Rosenke K, Westover JB, Martellaro C, Okumura A, Furuta Y, et al.
805 The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus
806 infection post-disease onset. *Scientific reports*. 2015;5:14775.

807 52. Mendenhall M, Russell A, Smee DF, Hall JO, Skirpstunas R, Furuta Y, et al.
808 Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in
809 a model of arenavirus hemorrhagic Fever. *PLoS Negl Trop Dis*. 2011;5(10):e1342.

810 53. Yun NE, Seregin AV, Walker DH, Popov VL, Walker AG, Smith JN, et al. Mice
811 lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus.
812 *J Virol*. 2013;87(19):10908-10911.

813 54. Huang C, Kolokoltsova OA, Mateer EJ, Koma T, Paessler S. Highly Pathogenic
814 New World Arenavirus Infection Activates the Pattern Recognition Receptor Protein
815 Kinase R without Attenuating Virus Replication in Human Cells. *J Virol.*
816 2017;91(20):e01090-01017. <https://doi.org/01010.01128/JVI.01090-01017>.

817 55. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
818 sequence data. *Bioinformatics*. 2014;30(15):2114-2120.

819 56. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve
820 years of SAMtools and BCFtools. *GigaScience*. 2021;10(2).

821 57. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, et al. LoFreq: a
822 sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population
823 heterogeneity from high-throughput sequencing datasets. *Nucleic Acids Research*.
824 2012;40(22):11189-11201.

825

Fig 1

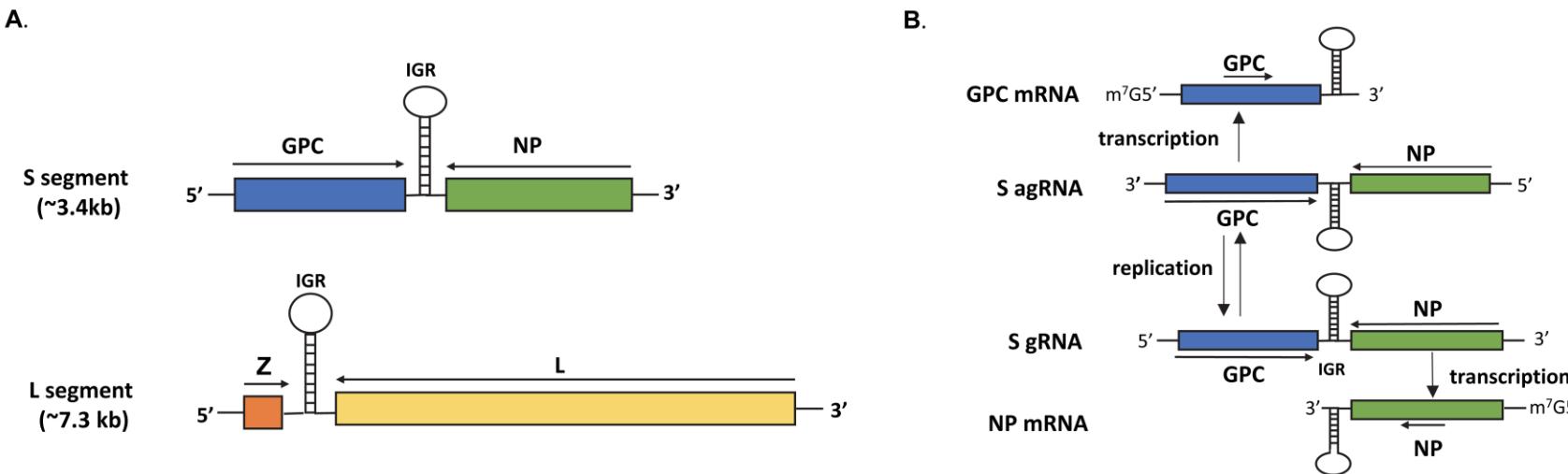
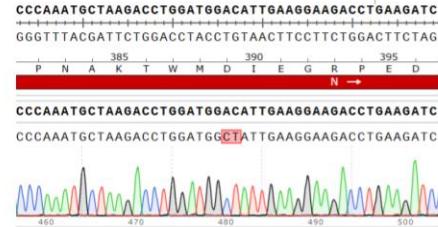
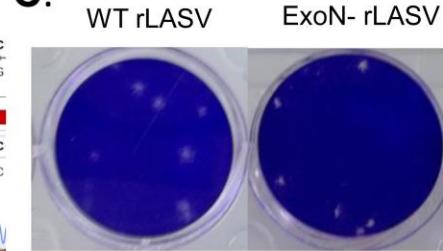




Fig 2

A.

C.

B.

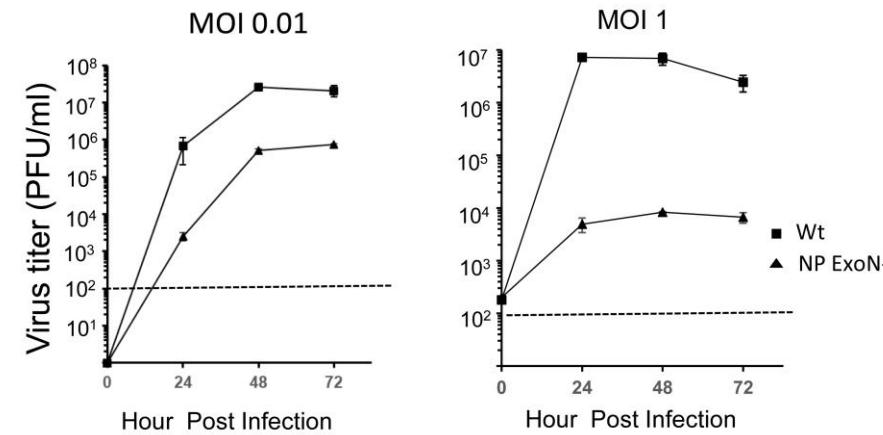


Fig 3

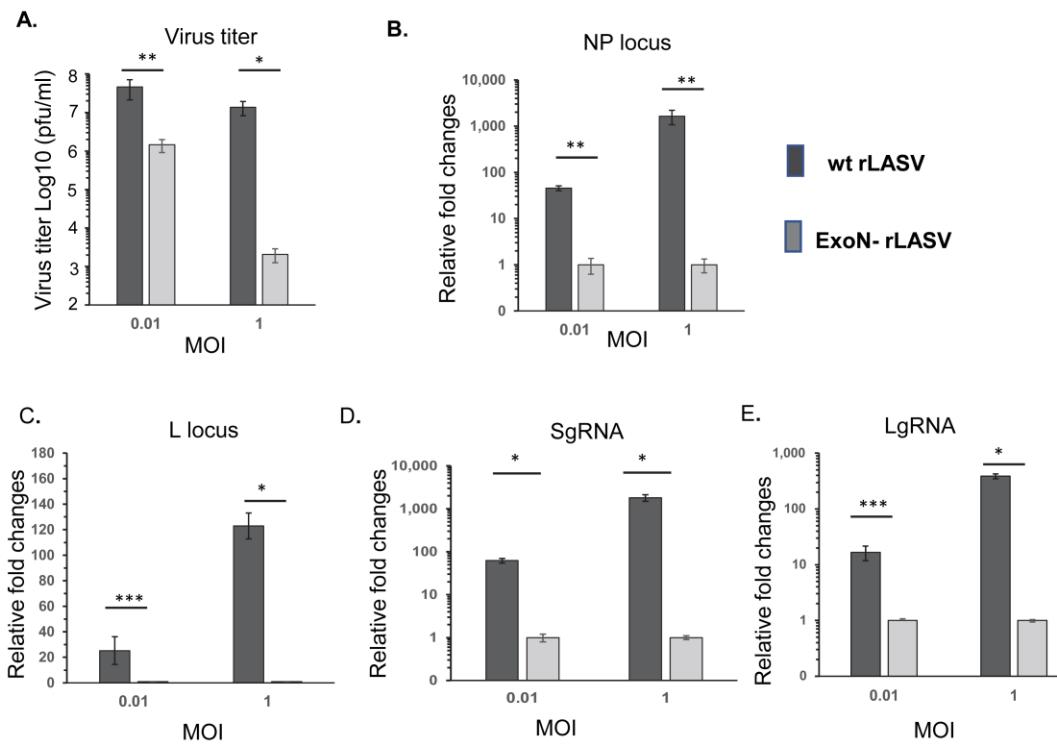


Fig 4

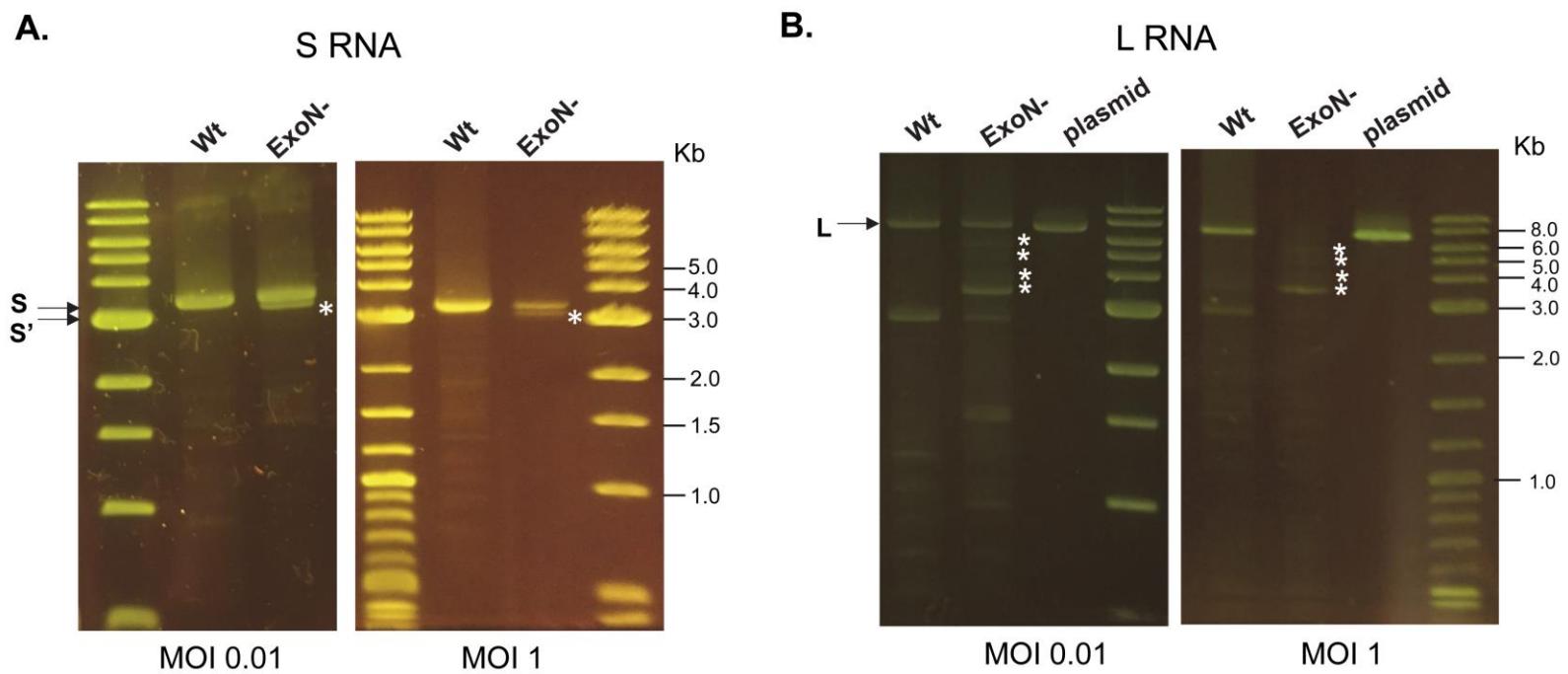


Fig 5

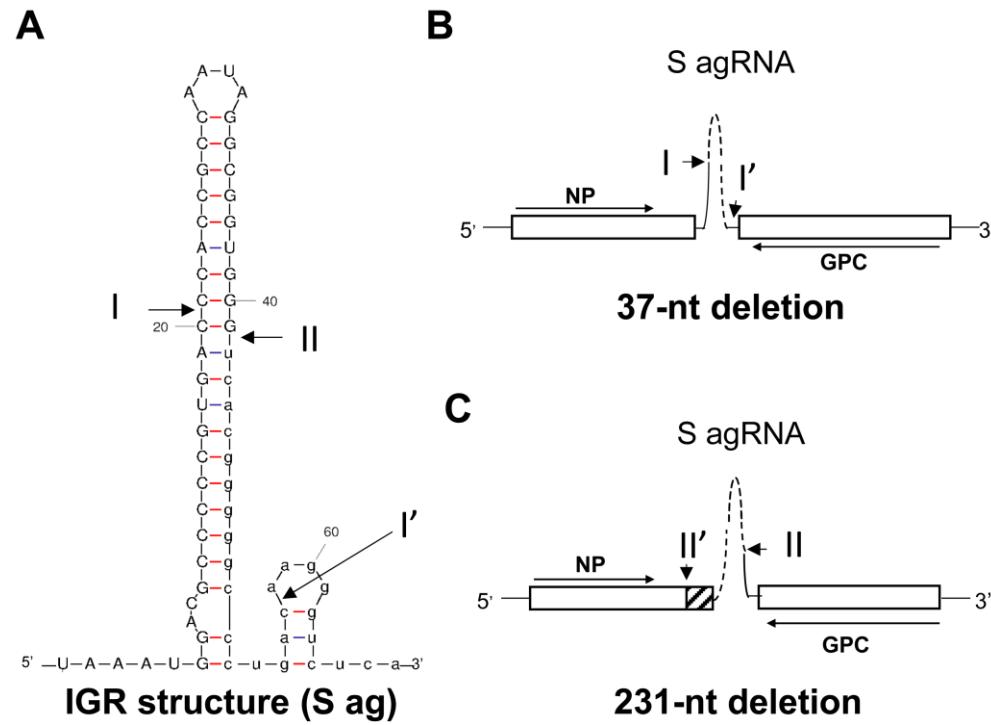


Fig 6

A.

Sample ID	CCS Reads	Number of CCS Bases	CCS Read Score (mean)	Number of Passes (mean)
Wt rLASV	402,410	933,554,242	0.999	28
ExoN- rLASV	381,134	994,863,239	0.999	26

C.

Sample	231-nt del	37-nt del
Wt rLASV	7.1%	18.2%
ExoN- rLASV	88.9%	4.9%

B.

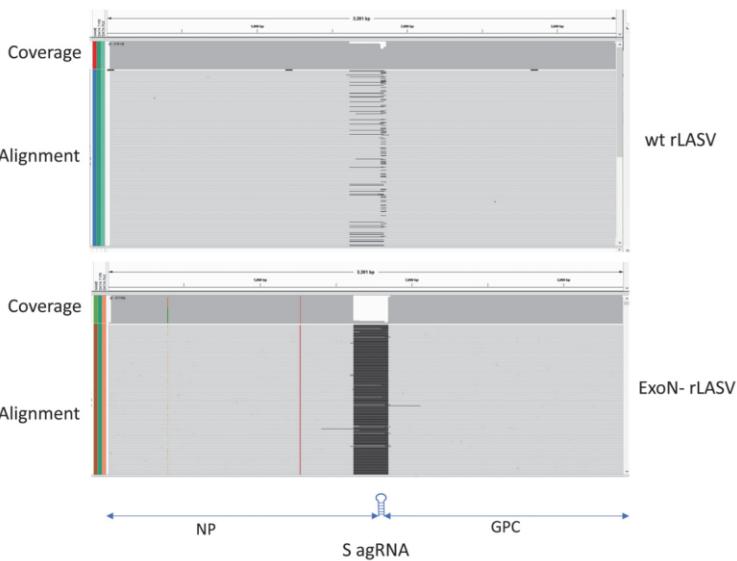
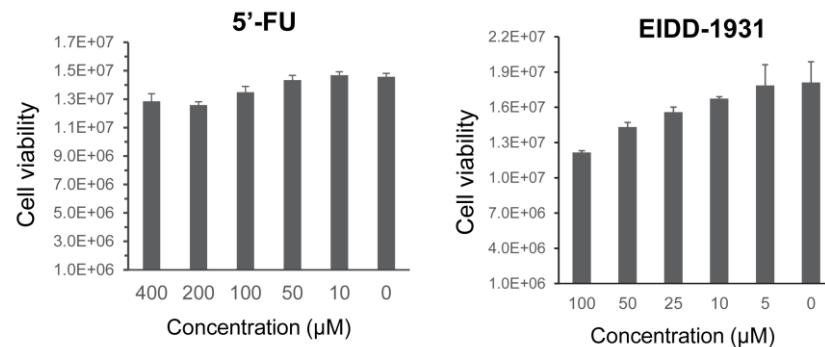
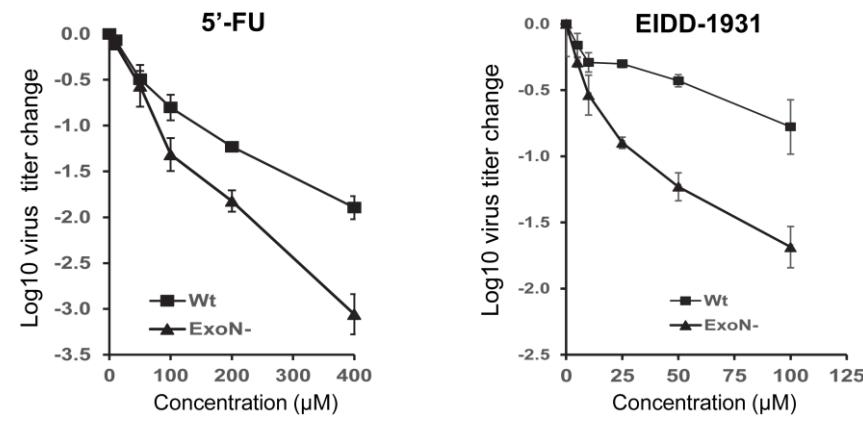
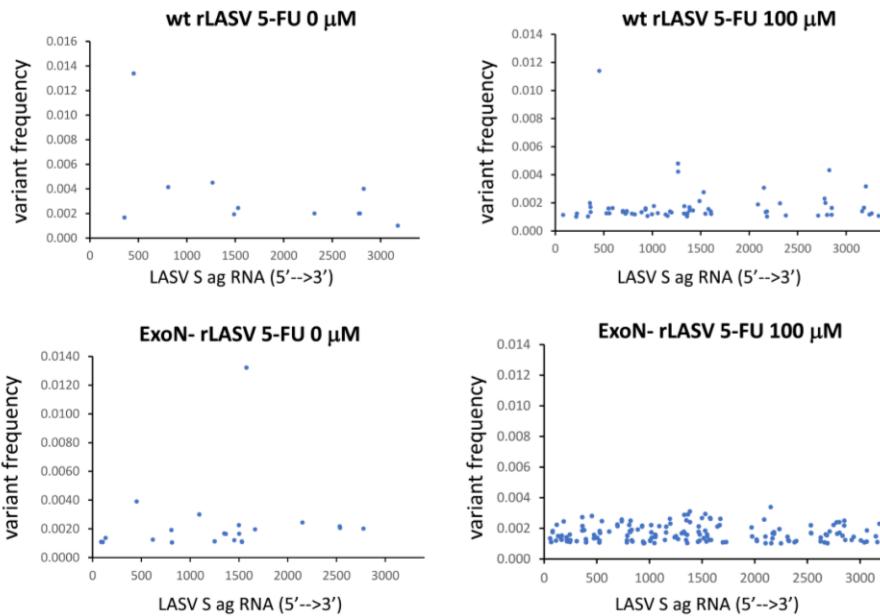




Fig 7

A.


B.

C.

Fig 8

A

B

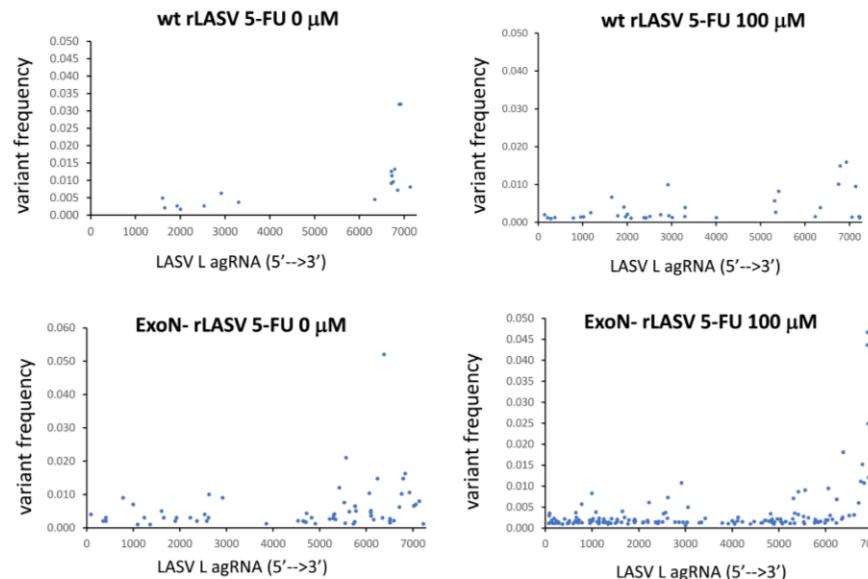
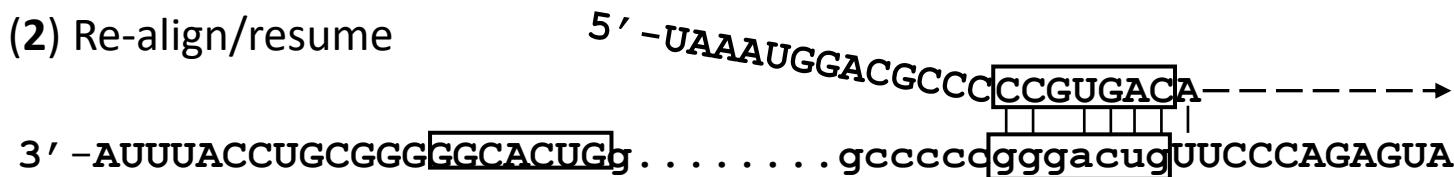


Fig 9

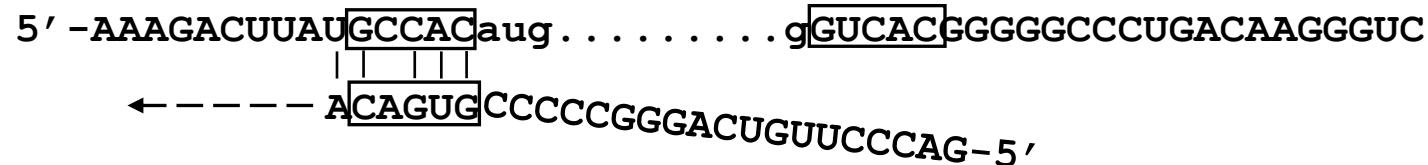
		FU 0 μ M				FU 100 μ M			
		A	U	C	G	A	U	C	G
Wt rLASV	A	1		5	6*	1	2	46*	
	U		1*		3	1	32*		2
	C		7			10			
	G	4	1	1		7	2	1	
		A	U	C	G	A	U	C	G
		4	6	21*		3	4	139*	
ExoN- rLASV		2		11*	2	2	139*	3	
		2	10		1	2	13		1
		19	9			14	3		


Fig 10

A. The 37-nt deletion in LASV NP ExoN-

(1) Mis-incorporation/stop

(2) Re-align/resume



B. The 231-nt deletion in LASV NP ExoN-

(1) Mis-incorporation/stop

(2) Re-align/resume

