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Abstract

Single-cell RNA sequencing datasets comprise true single cells, or singlets, in addition to cells
that coalesce during the protocol, or doublets. Identifying singlets with high fidelity in single-cell
RNA sequencing is necessary to avoid false negative and false positive discoveries. Although
several methodologies have been proposed to infer true singlets and doublets, they typically
rely on datasets being highly heterogeneous. Here we develop and apply singletCode, a
computational framework that leverages datasets with synthetically introduced DNA barcodes
for a hitherto unexplored application: to extract ground truth singlets. We demonstrate the
feasibility of singlets extracted via singletCode to evaluate the performance and robustness of
existing doublet detection methods. We find that existing doublet detection methods are not as
sensitive as expected when tested on doublets simulated from experimentally realistic ground
truth singlets. As DNA barcoded datasets are being increasingly reported, singletCode can
identify singlets and inform rational choice of doublet detecting algorithms and their associated
limitations.

Introduction

Rapid advances in single-cell RNA sequencing (scRNA-seq) technologies have enabled the
characterization of cellular gene expression at an unprecedented resolution and scale. Such
technologies have revealed extensive functional diversity of cell states across biological
contexts, including cancer, evolution, and development. Briefly, scRNA-seq technologies rely on
distributing individual cells from a suspension into individual reactions, each labeled with a
unique “ID”, usually in the form of a reaction-specific sequence barcode. Despite numerous
technological optimizations, multiple cells can occasionally be encapsulated in a single reaction,
resulting in doublets or multiplets where two or more cells are assigned the same reaction ID
(Figure 1A). The percentage of doublets in a given experiment depends on several factors,
including the features of the sample and throughput, and can be as high as 40-50% [1,2]. In
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turn, such artifacts affect the downstream analysis [3]. Indeed, a central challenge in the
burgeoning scRNA-seq field is to identify true single cells (“singlets” from here on) and therefore
accurate samples of individual cells’ transcriptomes in the resultant scRNA-seq datasets.

Several computational frameworks have been developed to identify singlets in scRNA-seq
datasets [1,2,4—10]. Although each framework deploys its own algorithm, such methods typically
rely on gene expression differences between individual cells to remove cells with a putative
mixture of different expression profiles. As such, the algorithms naturally necessitate datasets
consisting of vastly different cell types or species, where doublets are collectively referred to as
heterotypic doublets. Therefore, such methods do not work well with “transcriptionally similar”
cells [2], where doublets are referred to as homotypic doublets. Between these two extremes is
a scenario more representative of many experimental designs in which cells are not vastly
different, and in cases where continuums of cell states within a particular cell type can have
functional consequences. However, the performance of doublet detection methods has not been
systematically investigated on such realistic datasets. Furthermore, such algorithms take
inferred singlets as inputs and do not have “ground truth” singlets, posing further challenges in
identifying bona fide singlets. Although certain experimental techniques such as cell hashing
[11] or lipid tagging [9] can help increase the confidence in doublets identified, they do not
necessarily provide unique identifiers at single-cell resolution.

Recent developments in DNA barcoding methodologies have added another dimension to
scRNA-seq datasets, revealing unique transcriptional signatures and clonal dynamics [12—-26].
Here, we describe our framework, singletCode, which leverages DNA barcoding for a new
application: identifying “true” singlets in scRNA-seq datasets. We posited that since DNA
barcoding allows for individual cells to have a unique identifier prior to scRNA-seq protocols,
these barcodes could help identify “true” singlets. The singlet population can then be used to
simulate “ground truth” doublets and compare performance of the doublet-finding algorithms.
Our proof-of-concept analysis was implemented on 27 barcoded scRNA-seq datasets, covering
141,044 total cells across several cell types and experimental designs. We find that existing
state-of-the-art doublet detection methods show lower than reported sensitivity to doublets
simulated with ground truth singlets. Since the repertoire of such datasets is increasing rapidly
and DNA barcoding is becoming commonplace, our framework provides rational guidance for
identifying singlets and choosing appropriate doublet-finding algorithms.

Results

Since various studies use different heuristics and thresholds for barcode assignment [26-29],
we first developed a standardized pipeline that can reliably extract true singlets based on the
synthetically introduced FateMap lineage barcodes (see Methods). FateMap barcodes are 100
base pairs long and offer up to ~50-60 million library complexity [26], which ensures multiple
packaging copies of the same barcode are rarely present in an experimental design by chance.
In short, we label “singlets” as those cells that, as a result of multiplicity of infection, satisfy one
of the three conditions: (1) a single barcode identified per cell ID; (2) multiple barcodes per cell
but the same barcode combination is found in other cells in the same sample; and (3) multiple
barcodes per cell but the same barcode combination is found in other cells across samples
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within the same experimental design (common for barcoding studies [15,26—-28,30]) (Figure
1B). The recovery percentage of singlets with this standardized pipeline was 81.7% as
compared to those previously reported (50-60%) for the same datasets [26]. Summarily, our
pipeline identified barcoded singlets for 27 scRNA-seq datasets obtained from 9 experimental
designs and a total of 141,044 cells [26—28]. Note that previous studies have established that
the introduction of synthetic barcodes does not affect the ensemble of cell types in a population
[26,28]. These datasets cover various cell types (two patient-derived melanoma cell lines, one
triple negative breast cancer cell line, stem cells, a fibroblast-like cell line, an induced pluripotent
stem cell line, and primary melanocytes), biological processes (drug resistance, differentiation,
reprogramming), and technical sequencing specifications (Supplementary Table 1) [26-28].
We annotated singlets within each scRNA-seq dataset and simulated doublets by averaging the
transcriptome of two true singlets (see Methods). Our curated datasets are thus the closest
attempt to benchmark doublet detection methods with ground truth singlets and doublets.

We next asked whether barcoded singlets exhibited a preference for specific cell states, as a
bias would limit the scope of our approach’s usability. First, we calculated the average distance
of each singlet to its first five nearest neighbors in high dimensional principal component space
(Figure 1C). We then compared the singlet average neighbor distances to those obtained from
scRNA-seq dataset consisting of all cells (singlets and doublets) and those artificially
subsampled to mimic bias (see Methods). We reasoned that if the average neighbor distances
of singlets were indistinguishable from all cells, the singlets uniformly spanned the entire
scRNA-seq dataset. Indeed, singlet nearest neighbor distances were indistinguishable from the
entire scCRNA-seq dataset and significantly different from the biased control dataset (Figure 1D,
Supplementary Figure 1). Note that this analysis was independent of the cluster designation in
the Uniform Manifold Approximation and Projection (UMAP) space. Second, we used the Gini
coefficient, a metric used to measure inequality in populations (0 and 1 imply perfect equality
and inequality, respectively; 0.33 for simulated uniform distributions) (Figure 1E) [31]. We
calculated the Gini coefficient of the proportion of singlets in each UMAP cluster across all 27
scRNA-seq datasets. For a cluster resolution of 0.4, the mean Gini coefficient across datasets
was 0.159 (range of 0.02-0.46), which was between perfect equality (mean = 0) and uniform
distributions (mean = 0.305). Our results were robust across a wide range of shared nearest
neighbor resolutions (0.4—1.2), which cause different total numbers of clusters on the UMAP
(Figure 1F, Supplementary Figure 2). Collectively, our analyses do not suggest the presence
of systematic bias toward particular cell types or clusters when identifying singlets through
FateMap barcodes.

To evaluate doublet detection on these datasets, we selected four methods with varying
performance from a recent benchmarking study [8]. DoubletFinder and scDblFinder, formerly
known as doubletCells, were selected because they exhibited the highest and lowest accuracy,
respectively [8]. Hybrid and Scrublet were selected because they showed strong performance
despite using distinct underlying algorithms for predicting doublets [2, 5]. The benchmarking
study primarily used area under Precision-Recall curve (AUPRC) and area under the receiver
operating characteristic (AUROC) as their performance criteria. Note that AUROC is not
necessarily representative of a doublet detection model’s performance in real datasets as true
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doublets often only account for a small percentage of the entire dataset [32]. AUPRC is a more
robust metric for evaluating doublet detection methods given the inherent imbalance of singlet

and doublet labels. An AUPRC value of 1 means the method can consistently identify doublets
without mislabelling any singlets as doublets.

We evaluated the AUPRC and AUROC of the four methods on each of the barcoded datasets.
Although we tested AUPRC and AUROC for a range of doublet rates (Figure 2G-H and
Supplementary 3D-E), we present results for a reasonably practical true doublet rate of 8%
(10X Genomics protocol predicts ~8% doublet rate for maximum cell loading). The AUROC for
all methods except scDblFinder in all barcoded datasets were fairly high, ranging from 0.6 to
0.85 (Figure 2A). In contrast, the AUPRC score for all four methods was consistently low
(Figure 2B). The AUPRC values ranged from 0.5 to 0.8, with the overall average AUPRC being
around 0.4 for all methods except scDblFinder, whose average AUPRC was around 0.23
(Figure 2B).

To directly compare the performance of doublet detection methods on barcoded and
non-barcoded datasets, we selected three non-barcoded datasets [2,33,34] used in previous
doublet detection algorithms for benchmarking comparisons. These datasets have annotated
doublets and varying degrees of AUPRC and AUROC scores [8]. The AUROC values obtained
from barcoded and non-barcoded datasets were consistent using all methods except
scDblFinder (Figure 2C and [2]). However, the AUPRC values for the barcoded datasets were
significantly lower than for the non-barcoded datasets, with scDbIFinder having the greatest
discrepancy (Figure 2B,D).

What is the basis of the difference in AUROC and AUPRC scores between our barcoded
datasets and the non-barcoded datasets used in previous benchmarking studies? The datasets
used for benchmarking tend to contain highly heterotypic doublets, meaning the scRNA-seq
dataset is heterogeneous, often consisting of cells from different species or patients [8]. In
contrast, the barcoded scRNA-seq datasets contain cells from a single system (and therefore
often not as heterogeneous), a scenario more representative of many experimental designs. We
wondered whether the low AUROC (for scDbIFinder) and AUPRC scores are a result of
relatively less heterogeneity. To answer this question, we sampled cells from adjacent (more
similar), distal (less similar), or all (baseline) regions of the high-dimensional transcriptional
space for a subset of datasets. Then, we calculated the AUPRC and AUROC scores for the
strongest (DoubletFinder) and weakest (scDblFinder) performing methods (Supplementary
Figure 3A, see Methods). We found a consistent increase in AUROC scores for both methods
(especially scDblFinder) as cells become more transcriptionally heterogeneous (Figure 2E).
The AUPRC scores were not as sensitive to the increasing variety of cells. The cells sampled
from all regions did, however, have a slightly higher AUPRC score compared to adjacent or
distal regions (Figure 2F). Collectively, the degree of transcriptional similarity between cells
affects the AUROC scores, but not the AUPRC scores.

We questioned whether the AUPRC and AUROC scores for different methods were sensitive to
the doublet rate, which can vary depending on the cell type and input cell numbers. We found
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that all methods except scDblFinder achieve consistent AUROC values regardless of expected
or actual doublet rate (Figure 2G and Supplementary Figure 3D). In addition, we found that all
tools achieve consistently higher AUPRC scores with increasing percentages of ground truth
doublets, although the increase was modest for scDbIFinder (Figure 2H and Supplementary
Figure 3E). Furthermore, scDbIFinder AUROC and AUPRC scores depended on the number of
expected doublets, further undermining the robustness of scDblFinder in finding true singlets.

Discussion

Here we develop and implement singletCode, a framework that leverages synthetic DNA
barcoding prior to single-cell library prep reaction separation to extract “ground truth” singlets in
scRNA-seq datasets. We test the feasibility of singleCode on a range of scRNA-seq datasets
and evaluate the performance of doublet detection algorithms. We found comparatively low
AUPRC and AUROC scores from different methods, particularly scDblIFinder, for realistic
scRNA-seq datasets not consisting of different species or patient samples. The AUPRC and
AUROC scores were differentially sensitive to altering doublet fraction and degree of
heterogeneity in scRNA-seq datasets. Our work underscores the importance of incorporating
synthetic barcoding in experimental designs, especially when rare cell types are of particular
interest. One limitation of our study is that we focused on one type of barcode technology (static
and 100 base pairs). Future studies can extend singletCode to other types of synthetically
introduced DNA barcoding technologies [23,25] and native cellular identifiers (e.g.,
mitochondrial mutations [35] or TCR sequences [10]).

Given the rapid rise in reported lineage barcoding datasets, singletCode provides a framework
to identify ground truth singlets for downstream analysis. Alternatively, singletCode itself can be
leveraged to test the performance of different doublet detection methods and choose an
appropriate method given the data type. Particularly, we expect singletCode to be helpful for
datasets consisting of rare or continuums of cell types (e.g., partial reprogramming, cell state
transitions) and those which contain transcriptionally similar cells (e.g., clonally derived
populations). Another application of singletCode could be to detect spatially adjacent or
adhesive/sticky cells if the doublet barcoded cells tend to cluster within certain regions of the
high dimensional transcriptional space. In principle, rich lineage barcoded datasets from
different cell types and biological processes can be used to train deep learning models for
broader querying of doublets on similar non-barcoded annotated atlases [36], including potential
applications to spatial transcriptomics datasets. Together, singletCode illustrates the
shortcomings of doublet detection methods and provides a generalizable and formalizable
framework to identify true singlets.

Methods

Gini coefficient analysis for barcode uniformity and bias quantification

To perform the Gini analysis for the single cell data sets, we first simulated what the distribution
of Gini coefficients would be from a uniform, exponential, and power distribution. We selected
20 random numbers from a given distribution and then calculated the Gini coefficient for those
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numbers. This process was then repeated approximately 20 times each for each distribution we
simulated. For the power distribution, we used an alpha value of 1.5. Next, we preprocessed our
single cell data by removing cells with feature counts fewer than the 10th percentile for that
sample and cells with mitochondrial counts greater than the 60th percentile for that sample.
Variable features were identified using a variance stabilizing transform for the top 2000 most
variable genes. Neighbors were found using the top 50 dimensions, clusters were found using
three resolutions (0.4, 0.8, 1.2), and UMAP projection was calculated using the top 50
dimensions.

For each of the three resolutions for a given sample, we calculated the Gini coefficient of the
proportion of cells identified as singlets per cluster. We did this across multiple resolutions as
they have differing amounts of clusters and we wanted to make sure the clustering of the data
had no effect on the distribution of singlets.

Nearest neighbor analysis for barcode uniformity and bias quantification

For the nearest neighbor analysis of the single-cell datasets, we first performed quality control
steps, including thresholds for RNA counts, mitochondrial reads, and number of cells. Since the
datasets cover several different cell types, the threshold values varied depending on the
dataset, and we have provided them in Supplementary Table 2. To perform the nearest
neighbor analysis, we extracted the top five nearest cell neighbors and the associated distances
for each cell in the principal component space, and calculated the average neighbor distance.
We performed this analysis on datasets composed either exclusively of singlets identified from
the DNA lineage barcodes, or those that we randomly subsampled from the entire single-cell
dataset consisting of singlets and multiplets. We performed random sampling and nearest
neighbor calculation three times, ensuring the total subsampled cells to be the same number as
the singlets for appropriate comparisons. The singlets' average neighbor distance were
normalized by subtracting the average neighbor distance of the subsampled cells. A mean value
closer to zero indicates no preference for barcoding specific cells in high dimensional principal
component spaces. A nonzero mean value suggests a preference for specific cells in high
dimensional spaces or manifolds to be barcoded. Datasets displaying high standard deviations
were affected by reduced cell counts attributed to high percentages of mitochondrial reads and
a likely increase in cell death.

To account for what a “positive control” would look like for our nearest neighbor analysis, we
artificially biased a control dataset by subsampling regions of principal component space from
one of the samples (FM0O1_sample3, Figure 1D). We subsampled three restricted regions of the
PCA plot by thresholding based on the PC1 vs PC2 plot (n = 1586 cells) to mimic highly
clustered cells, and calculated the average nearest neighbor distance to compare them with the
real experimental datasets.

Generation of sScRNA-seq datasets, singlets, and doublets

In order to simulate true doublets to most effectively benchmark the detection method
performances, we identified true singlets by examining the mapping of the FateMap barcode to
cell ID. Because FateMap barcodes are added to cells before the oil droplet encapsulates the
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cell, any cell ID which has only one associated FateMap barcode is a true singlet. To account for
the scenario where multiple FateMap barcodes are added to each cell, we further characterized
all cell IDs that are associated with the same combination of FateMap barcodes as singlets.
Lastly, it is possible that some cells receive ambient FateMap barcodes. This should result in
one of such FateMap barcode having a significantly higher UMI count since all other barcodes
are ambient FateMap barcodes for a given cell. We therefore also consider these cells as
singlets. There are two cases where cells may be classified as such a singlet. First, the cell has
only one FateMap barcode with at least 10 associated UMI. Alternatively, it could have multiple
FateMap barcodes with at least 10 associated UMI, but one of these FateMap barcodes has at
least 50 more UMI than the median of all FateMap UMI count for that cell. We used these three
strategies to label true singlets in the dataset.

To simulate the doublets, we randomly selected the count data from two cells we identify as true
singlets. We then averaged the counts from these two cells to generate simulated doublets as
performed previously [1]. The final scRNA-seq datasets are generated by adding such
simulated doublets into the datasets at different percentages (5-25%).

Benchmark Environment and Parameter Settings

We ran each doublet detection method three times on each scRNA-seq dataset with expected
and actual doublet rate set to 0.05, 0.08, 0.1, 0.15, 0.2, and 0.25. This means each method is
run 125 times in total per dataset. The dataset is loaded with Seurat and converted to
SingleCellExperiment in R [37] if necessary. All algorithms were run with recommended settings
following their official tutorial.

DoubletCells (scDbIFinder): This method was executed in R following the instructions at
https://bioconductor.org/packages/release/bioc/vignettes/scDblFinder/inst/doc/scDblFinder.html

DoubletFinder: This method was executed in R following the instructions at
https://github.com/chris-mcginnis-ucsf/DoubletFinder

Scrublet: This method was executed in Python following the instructions at
https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet basics.ipynb

Hybrid: This method was executed in R following the instructions at
https://github.com/kostkalab/scds

To evaluate how DoubletFinder and scDblFinder performs on adjacent, baseline, and distal
data, we further selected FM02, FM03, FM04 and performed standard Seurat processing
pipeline on them to generate cluster assignment as well as the corresponding UMAP projection.
We defined three sets of datasets: baseline, which consists of 2,000 cells randomly subsampled
from each dataset; adjacent, which consists of cells from neighboring clusters; and distal, which
consists of cells from distal clusters. We then used the same settings to annotate doublets and
calculated AUROC and AUPRC with both tools.
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Figures

Figure 1.

A. FateMap lineage barcodes exist in cells prior to the implementation of the single-cell
sequencing protocol where droplets add a unique cell ID. A singlet is one droplet with a
single cell such that there is a 1:1 mapping of a FateMap barcode to a cell ID.
Alternatively, an example of a doublet is when one droplet has two or more cells with each
having a unique barcode.

B. The three definitions of singlets for the purposes of our analyses: (1) One droplet with one
FateMap barcode and one cell; (2) the same FateMap barcode combination found in
multiple cell IDs, suggesting the two cells are progeny of a single cell; (3) the same
FateMap barcode found in cells across multiple “twin” samples suggesting the two cells
are also progeny of a single cell.

C. Schematic of the pairwise distances of a cell’s five nearest neighbors in the 50
dimensional principal component space. The mean distance for each cell is used to
describe the degree of transcriptional similarity to other cells.
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D. Average nearest neighbor distances are plotted for three types of datasets: a biased
negative control where cells are artificially clustered, the barcoded singlets, and all
barcoded cells (singlets and multiplets). Each dot represents the average nearest
neighbor distance of a cell. The p-values were obtained using a one-sample Wilcoxon
rank sum test.

E. (top) A schematic to demonstrate how different sets of numbers (braces) influence the
values of Gini coefficient. A set of numbers with perfect equality results in a value of zero
while a set of numbers with perfect inequality will lead to a value of one. (bottom) The
distribution of simulated Gini coefficients (total ~20 simulations) from randomly sampling
three different distributions: uniform (mean 0.305), exponential (mean 0.529), and power
(mean 0.829). Insets: histogram of values of the distribution being used for Gini
calculations. Dotted lines: mean value.

F. Histogram of distribution of Gini coefficient of proportion of singlets across all clusters for
three different cluster resolutions. Resolution of 0.4 had a mean Gini coefficient across
samples of 0.159, with a range of 0.015-0.459; Resolution of 0.8 had a mean Gini
coefficient of 0.145 with a range of 0.014-0.371; Resolution of 1.2 had a mean Gini
coefficient of 0.148 with a range of 0.019-0.363. Dotted line: mean value. See also
Supplementary Figure 2.

Figure 2.

A. Color-coded boxplots of AUROC value for all four doublet detection methods. Each
boxplot is calculated from the AUPOC value after running the respective method on each
sample of the dataset three times with expected and actual doublet rate set to 0.05, 0.08,
0.1, 0.15, 0.2, and 0.25.

B. Color-coded boxplots of AUPRC value for all four doublet detection methods calculated
as panel A.

C. Color-coded boxplots of AUROC value for four doublet detection methods on barcoded
and non barcoded datasets. The boxplot for non-barcoded datasets was produced by
running each dataset three times. The boxplot for barcoded datasets uses data from all
barcoded datasets shown in panel A.

D. Color-coded boxplots of AUPRC value for four doublet detection methods on barcoded
and non barcoded datasets. The boxplot for non-barcoded datasets was produced by
running each dataset three times. The boxplot for barcoded datasets uses data from all
barcoded datasets shown in panel B.

E. Scatter plot of AUROC score for three sets of datasets using DoubletFinder (yellow) and
scDblFinder (pink). The line connects the mean of the datasets across the three
conditions: adjacent, baseline, and distant. Each shape represents subsampled data from
the particular experimental design (circle: FM02, triangle: FM03, and square: FM04). Cells
were sampled from each experimental design twice.

F. Scatter plot of AUPRC score for three sets of datasets using DoubletFinder (yellow) and
scDblFinder (pink). The line connects the mean of the datasets across the three
conditions: adjacent, baseline, and distant. Each shape represents subsampled data from
the particular experimental design (circle: FM02, triangle: FM03, and square: FM04).Cells
were sampled from each experimental design twice.
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G. Heatmap of AUROC average for all 27 tested FateMap barcoded datasets using
scDblFinder and doubletFinder. scDblFinder AUROC ranges from 0.48 to 0.69.
DoubletFinder AUROC ranges from 0.81 to 0.83. Tools are expected to have consistent
AUROC regardless of expected or actual doublet rate. Heatmap ROC

H. Heatmap of AUPRC average for all 27 tested FateMap barcoded datasets using
scDblFinder and doubletFinder. scDblFinder AUPRC ranges from 0.13 to 0.36.
DoubletFinder AUPRC ranges from 0.21 to 0.55. Tools are expected to have
approximately consistent AUPRC value with a set actual doublet rate. AUPRC values are
expected to increase as the actual doublet rate increase.Heatmap AUPRC

Supplementary Figure 1.

A. Example UMAP projection representation of one of the samples: FM0O1 sample 2. Singlets
are evenly distributed across UMAP space and are not overrepresented in any one
cluster.

B. The average of the 5 nearest neighbor distances for singlets in each sample, including an
artificially biased control based on subsampling FM01 sample 3. Samples for FM08 and
NJO1 are grouped due to low cell counts. Error bars represent standard deviation and the
dot represents a sample’s mean nearest neighbor distance normalized to the average
neighbor distance for the subsampled total cells (horizontal line represents a zero value).

Supplementary Figure 2.

A. (top) UMAP projection showing clustering across three cluster resolutions (0.4, 0.8, 1.2).
(bottom) Corresponding proportion of singlets per cluster across those clustering
resolutions.

B. Violin plots of distribution of QC metrics (number of features, number of counts, percent
mitochondrial counts) for cluster resolution of 0.4.

C. Violin plots of distribution of QC metrics (number of features, number of counts, percent
mitochondrial counts) for cluster resolution of 0.8.

D. Violin plots of distribution of QC metrics (humber of features, number of counts, percent
mitochondrial counts) for cluster resolution of 1.2.

Supplementary Figure 3.

A. UMARP projections highlighted by cells selected to form distal, adjacent, and baseline
datasets used for assessing the impact of cell similarity on doublet detection performance
for FMO02.

B. UMAP projections highlighted by cells selected to form distal, adjacent, and baseline
datasets used for assessing the impact of cell similarity on doublet detection performance
for FMO3.

C. UMAP projections highlighted by cells selected to form distal, adjacent, and baseline
datasets used for assessing the impact of cell similarity on doublet detection performance
for FMO04.

D. Heatmap of AUROC average for all 27 tested FateMap barcoded datasets using hybrid
and scrublet. Hybrid AUROC ranges from 0.79 to 0.83. Scrublet AUROC is consistently
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around 0.80. Tools are expected to have consistent AUROC regardless of expected or
actual doublet rate.

E. Heatmap of AUPRC average for all 27 tested FateMap barcoded datasets using hybrid
and scrublet. Hybrid AUPRC ranges from 0.24 to 0.54. Scrublet AUPRC ranges from 0.24
to 0.58. Tools are expected to have approximately consistent AUPRC value with a set
actual doublet rate. AUPRC values are expected to increase as the actual doublet rate
increases.

Supplementary Table 1. (link)
Specifications for barcoded and non-barcoded datasets used in this analysis including
origin, treatment, and cell/singlet counts.

Supplementary Table 2. (link)
Neighbor analysis quality control thresholds for all barcoded datasets. Quality control
parameters include minimum and maximum RNA count, and maximum percentage of
mitochondrial counts.
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