

1 **Running title:** The epitranscriptomics of uterine fibroids.

2

3 **Article title:** Characterization of m⁶A modifiers and RNA modifications in uterine fibroids

4

5 Jitu W. George^{1,2*}, Rosa A. Cancino¹, Jennifer L. Griffin Miller¹, Fang Qiu⁴, Qishan Lin⁵,
6 M Jordan Rowley³, Varghese M. Chennathukuzhi⁶, John S. Davis^{1,2}

7

8 ¹ Olson Center for Women's Health, Department of Obstetrics and Gynecology,
9 University of Nebraska Medical Center, Omaha, NE 68198, USA

10 ² Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave,
11 Omaha, NE 68105, USA

12 ³ Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical
13 Center, Omaha, Nebraska

14 ⁴ Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA.

15 ⁵ RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry,
16 University at Albany, Albany, NY, United States

17 ⁶ Department of Molecular and Integrative Physiology, University of Kansas Medical
18 Center, Kansas City, KS 66160, USA

19

20 **Corresponding Author:**

21

22 * Jitu W. George, Ph.D., University of Nebraska Medical Center, 983255 Nebraska
23 Medical Center, Omaha, NE 68198-3255, Email: jitu.george@unmc.edu

24

25 Acknowledgments:

26

27 The authors have no conflict to declare.

28

29

30 Funding: This work was supported by SRI and Bayer Discovery/Innovation Grant
31 (JWG), Olson Center for Women's Health (JWG). MJR was supported by NIH National
32 Institute of General Medical Sciences (NIGMS) Pathway to Independence award R00-
33 GM12767 and NIH/NIGMS R35GM147467 MIRA. V.M.C was supported by grants from
34 National Institutes of Health NIH: P20 RR016475, R01 HD094373, R01HD076450. JSD
35 was supported by NIFA Grant 2017-67015-26450, NIH grants R01 HD087402 and R01
36 HD092263, Department of Veterans Affairs I01 BX004272. JSD is the recipient of VA
37 Senior Research Career Scientist Award (IK6BX005797).

38 **Abstract:**
39 Uterine leiomyoma or fibroids are the most common prevalent noncancerous tumors of
40 the uterine muscle layer. Common symptoms associated with fibroids include pelvic
41 pain, heavy menstrual bleeding, anemia, and pelvic pressure. These tumors are a
42 leading cause of gynecological care but lack long-term therapy as the origin and
43 development of fibroids are not well understood. Several next-generation sequencing
44 technologies have been performed to identify the underlying genetic and epigenetic
45 basis of fibroids. However, there remains a systemic gap in our understanding of
46 molecular and biological process that define uterine fibroids. Recent epitranscriptomics
47 studies have unraveled RNA modifications that are associated with all forms of RNA
48 and are thought to influence both normal physiological functions and the progression of
49 diseases. We quantified RNA expression profiles by analyzing publicly available RNA-
50 seq data for 15 known epigenetic mediators to identify their expression profile in uterine
51 fibroids compared to myometrium. To validate our findings, we performed RT-qPCR on
52 a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq
53 data. We then examined protein profiles of key m⁶A modifiers in fibroids and their
54 matched myometrium. In concordance with our RNA expression profiles, no significant
55 differences were observed in these proteins in uterine fibroids compared to
56 myometrium. To determine abundance of RNA modifications, mRNA and small RNA
57 from fibroids and matched myometrium were analyzed by UHPLC MS/MS. In addition to
58 the prevalent N6-methyladenosine (m⁶A), we identified 11 other known modifiers but did
59 not identify any aberrant expression in fibroids. We then mined a previously published
60 dataset and identified differential expression of m⁶A modifiers that were specific to
61 fibroid genetic sub-type. Our analysis also identified m⁶A consensus motifs on genes

62 previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art
63 mass spectrometry, RNA expression and protein profiles, we characterized and
64 identified differentially expressed m⁶A modifiers in relation to driver mutations. Despite
65 the use of several different approaches, we identified limited differential expression of
66 RNA modifiers and associated modifications in uterine fibroids. However, considering
67 the highly heterogenous genomic and cellular nature of fibroids, and the possible
68 contribution of single molecule m⁶A modifications to fibroid pathology, there is a need
69 for greater in-depth characterization of m⁶A marks and modifiers in a larger and varied
70 patient cohort.

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 **Introduction:**

87 Uterine fibroids are steroid hormone-responsive, benign neoplasms of the uterus
88 composed of smooth muscles, fibroblasts, and an abundance of extracellular matrix (1,
89 2). These benign tumors are estimated to occur in around 70% of women and clinically
90 manifest in 30% of women by the age of 50 (3). Common clinical symptoms associated
91 with fibroids are heavy bleeding, pain, infertility, and recurrent pregnancy loss (4, 5).
92 Nonsteroidal anti-inflammatory drugs (NSAIDs), gonadotropin-releasing hormone
93 agonists, elective estrogen receptor modulators, aromatase inhibitors, anti-progestins,
94 and progesterone receptor modulators provide some relief but are only recommended
95 for short-term use due to variable side effects and disease recurrence. (2). Accordingly,
96 the lack of long-term therapeutic options and clinical morbidity associated with fibroids,
97 hysterectomy remains the only option for many women (6). The cost of fibroid treatment
98 and related health complications cost to the U.S. health care system is annually
99 estimated to cost \$5.9 to \$34.4 billion (4, 7). Fibroids remain a significant burden on
100 both health care costs and quality of life.

101 Several factors, including age, parity, ethnicity, and family history, are thought to
102 act as drivers, but direct evidence identifying etiology of the disease has been difficult
103 (4). Genome wide exome sequencing identified that 30-90% of fibroids, depending on
104 patient ethnicity and fibroid number, contained mutations in the second exon of the
105 mediator complex subunit 12 (*MED12*) gene (8). Additionally, chromosomal
106 rearrangement at 12q15 and 6q21, leading to overexpression of the High Mobility Group
107 A1/2 (*HMGA1/2*) gene, has been observed in 8-35% of fibroids (9, 10). Biallelic

108 inactivation of *FH* (Fumarate Hydratase), deletion of the collagen genes *COL4A5* and
109 *COL4A6*, and mutations of the SNF2-Related CBP Activator Protein (SRCAP) complex
110 subunits are among the rarer subtypes that have been reported in uterine fibroids (11,
111 12). These chromosomal events trigger sub-type specific gene expression patterns that
112 are either shared or unique to the genetic event (12, 13).

113 Since its discovery in 1974, methylation of adenosine on RNA (m^6A or N^6 -
114 methyladenosine) has emerged a major post-transcriptional RNA modification (14). The
115 past decade has seen a resurgence in examining the role of m^6A RNA modifications in
116 regulating RNA processing, splicing, export, stability, and translation (15).
117 Transcriptome-wide profiling of m^6A modification identified the modification as wide-
118 spread, highly selective, and dynamic in nature, with levels varying in development and
119 cellular stress (16, 17). Addition of m^6A sites is catalyzed by the “writer” proteins,
120 specifically by the catalytic activity of Methyltransferase-like protein 3, METTL3, and
121 target RNA binding activity of methyltransferase-like protein 14 (METTL14) (18). In
122 addition to METTL3, other regulatory proteins involved in the process include
123 methyltransferase-like protein 16 (METTL16), Wilms tumor 1-associated protein
124 (WTAP), RNA-binding motif 15 (RBM15), Cbl proto-oncogene-like protein 1 (CBLL1),
125 zinc-finger CCCH-type-containing 13 (ZC3H13), and Vir-like m^6A methyltransferase-
126 associated (VIRMA) (or also known as KIAA1429) (18, 19). Following addition of m^6A
127 modification, biological consequence is regulated by specific RNA-binding proteins, or
128 “readers”. These readers recognize and bind to the DRACH (D=A, G or U, R= G or A,
129 and H= A, C, or U) consensus sequence of modified RNA transcripts leading to
130 regulation of gene expression and modulation of diverse processes including splicing,

131 mRNA stabilization, and translation efficiency. Reader proteins include YTHD domain
132 protein family (YTHDC1, YTHDC2, YTHDF1, YTHD2, and YTHDF3) (20). In addition,
133 heterogenous nuclear ribonucleoprotein (HNRNP) protein, HNRNPA2B1, has been
134 shown to regulate m⁶A-modified transcript including a subset of primary miRNA (21).
135 Two proteins, fat mass and obesity-associated protein (FTO) and alkB homologue 5
136 (ALKBH5) have been identified as m⁶A demethylases or “erasers” due to their ability to
137 remove m⁶A marks (20). Altered expression of these eraser proteins can contribute to
138 atypical cellular functions and physiological activity thereby promoting tumorigenesis
139 (18, 20).

140 To date multiple studies carried out by us, and others have identified differential
141 DNA methylation patterns, histone modifications, altered miRNA and long noncoding
142 RNA expression as they relate to uterine fibroidogenesis (11-13, 22-24). However, an
143 in-depth characterization of m⁶A modifiers and RNA modifications in uterine fibroids is
144 lacking. The goal of this study was to investigate expression patterns of the vast array of
145 m⁶A modifier proteins and RNA modifications in both mRNA and small RNA as they
146 relate to uterine fibroids compared to myometrium.

147 **Material and methods:**

148 ***Human Tissue collection and Sample Preparation***

149 Matched samples of human myometrium and fibroid samples were collected from
150 pre-menopausal women undergoing hysterectomy for symptomatic uterine fibroids. Use
151 of human tissue was approved by the University of Nebraska Medical Center (IRB#
152 112-21-EP) and University of Kansas Medical Center (IRB#: 5929), and all patients
153 signed a written informed consent form to donate tissue for this study. Human samples

154 were processed as previously described (13). Upon arrival, samples were minced and
155 sub-divided for a) RNA extraction and b) protein isolation for western blots and then
156 immediately flash frozen and stored at -140 °C.

157 ***RNA extraction***

158 Total RNA was extracted from freshly frozen samples as previously described
159 (13). Following total RNA extraction by Trizol, mRNA from fibroids and matched
160 myometrium (n=6) was isolated by two rounds of purification using oolido-dT Dynabeads
161 mRNA DIRECT Micro kit (Dynabeads) according to manufacturer's protocol. Depending
162 on patient sample, 8-50 µg total RNA was used per purification column. Integrity and
163 purity of isolated mRNA was evaluated using Fragment Analyzer Automated CE System
164 (Advanced Analytical Technologies, Inc). RNA Integrity Numbers (RINs) were used to
165 evaluate integrity and samples with RIN >7.0 were considered intact and used for
166 further downstream LC-MS/MS analysis.

167 Small RNA (<200 bp) was isolated from fibroids and matched myometrium (n= 5)
168 using mirVana miRNA isolation kit (Thermo Fisher Scientific) according to
169 manufacturer's protocol. Following isolation, small RNA purity was confirmed using
170 Fragment Analyzer Automated CE System (Advanced Analytical Technologies, Inc).

171 ***Quantitative real-time PCR (RT-qPCR)***

172 cDNA was synthesized from 1µg total RNA using qScript cDNA synthesis kit
173 (Quantbio, Beverly, MA). Quantitative Real rime PCR (RT-qPCR) analysis was
174 performed on genes of interest (**Supplementary Table 1**) using SYBRGreen (BioRad).
175 Sso Fast EvaGreen Supermix was performed to analyze gene expression on a BioRad
176 CFX96 Real-Time System (BioRad, Hercules, CA). Relative quantification of gene of

177 interest was established using RPL17 as reference and calculated using the
178 comparative Ct method.

179 **LC-MS/MS Analysis of RNA Chemical Modifications**

180 Measurement of the levels of RNA chemical modifications was performed using
181 ultra-performance liquid chromatography coupled with tandem mass spectrometry
182 (UHPLC-MS/MS) by a method similar as described (25-27). Briefly, Total amount of 100
183 ng of small RNA or mRNA was digested with a Nucleoside Digestion Mix (New England
184 BioLabs) according to the manufacturer's instruction. The digested samples were then
185 lyophilized and reconstituted in 100 μ l of RNase-free water, 0.01% formic acid prior to
186 UHPLC-MS/MS analysis. The UHPLC-MS/MS analysis was accomplished on a Waters
187 XEVO TQ-STM (Waters Corporation, USA) triple quadruple tandem mass spectrometer
188 equipped with an electrospray source (ESI) source maintained at 150 °C and a capillary
189 voltage of 1 kV. Nitrogen was used as the nebulizer gas, which was maintained at 7
190 bars pressure, flow rate of 1000 l/h and at temperature of 500°C. UHPLC-MS/MS
191 analysis was performed in ESI positive-ion mode using multiple-reaction monitoring
192 (MRM) from ion transitions previously individually determined for these RNA chemical
193 modifications (28). A Waters ACQUITY UPLCTM HSS T3 guard column, 2.1x 5 mm, 1.8
194 μ m, attached to a HSS T3 column, 2.1 x50 mm, 1.7 μ m was used for the separation.
195 Mobile phases included RNase-free water ($18 \text{ M}\Omega\text{cm}^{-1}$) containing 0.01% formic acid
196 (Buffer A) and 50% acetonitrile (v/v) in Buffer A (Buffer B). The digested nucleotides
197 were eluted at a flow rate of 0.2 ml/min with a gradient as follows: 0-1 min, 0 %B; ramp
198 to 0.2% B in 1.4 min; then to 0.8% in 1.4 min, 3.8-5.2 min, 0.8-1.8% B; 5.2-6.6 min,

199 1.8-3.2%B; 6.6-10 min, 3.2-5.0% B;10-13.5 min, 5-8%B; 13.5-18 min, 8-30%B; in 0.5
200 min to 100% B and kept for 1.5 min. The total run time was 25 min. The column oven
201 temperature was kept at 25 °C and the sample injection volume was 10 μ l. Three
202 injections were performed for each sample. Data acquisition and analysis were
203 performed with MassLynx V4.1 and TargetLynx. Calibration curves were plotted using
204 linear regression with a weight factor of 1/x.

205 ***Western Blot***

206 Protein was isolated from fibroids and matched myometrium by homogenization
207 in Radioimmunoprecipitation assay (RIPA) buffer supplemented with protease and
208 phosphatase inhibitors. Following isolation, lysate protein concentration was quantified
209 using the Pierce BCA Protein assay kit and 10 μ g of protein were separated on a 10%
210 SDS-PAGE and transferred onto nitrocellulose membranes (Amersham). Membranes
211 were blocked in 5% BSA in Tris-buffered saline with 0.1% Tween-20 (TBST) at room
212 temperature for 1 h and probed with METTL3 (1:1000; 15073-1-AP; Proteintech),
213 METTL14 (1:1000; 26158-1-AP; Proteintech), RBM15 (1:1000; VIRMA (1:1000; 25712-
214 1-AP; Proteintech), WTAP (1:1000; 10200-1-AP; Proteintech), CBLL1 (1:1000; 21179-
215 1-AP; Proteintech), FTO (1:1000; 27226-1-AP; Proteintech), ALKBH5 (11:1000; 6837-1-
216 AP; Proteintech), and β -actin (1:5000; A5441; Sigma) antibodies at 4 °C overnight.
217 Following washes in TBST, membranes were blocked in secondary HRP-conjugated
218 antibodies (1:10,000) in 5% BSA in TBST for 1 h, washed, and imaged using iBright
219 system (ThermoFisher). Densitometry analysis was performed using Image J. All
220 protein levels were normalized to respective ACTB which served as loading control.

221 ***Statistics***

222 RNA-seq data (13) were filtered, normalized, and converted to log2-counts per
223 million (CPM) value per sample. The study included two factors: within-subject factor
224 tissue (Fibroid or Normal) and the between-subject factor race (B or W). For each gene,
225 linear mixed models were used to assess the race effect and tissue effect on the mean
226 normalized gene expression levels ($\log_2\text{CPM}$), accounting for correlations between
227 observations from the same patient. We are interested in the following hypothesis
228 testing: whether the race effect on the normalized gene expression level was significant
229 in fibroids and normal tissues respectively, whether the tissue effect on the normalized
230 gene expression level is significant in black and white patients respectively, and
231 whether the tissue effect alters in black patients compared to white patients per gene.
232 The associated p-values for each comparison on each gene were adjusted by the false
233 discovery rate (FDR) method of Benjamini and Hochberg method (1) due to multiple
234 hypotheses testing. Differentially expressed genes were identified as those having an
235 FDR below 0.05.

236 Statistical analyses were performed using GraphPad Prism 9.0. The Student's t-
237 test was used to compare fibroid samples to myometrium and significance level was set
238 at $P < 0.05$. Sample numbers are indicated in all figure legends. Data presented in
239 graphs are expressed as mean \pm SEM.

240 **Results:**

241 **Transcriptomic expression of m⁶A regulators in uterine fibroids**

242 To assess a possible role for m⁶A modifications in uterine fibroids, we first tested
243 whether m⁶A regulators are differentially expressed in fibroids versus normal
244 myometrium. Paired analysis of published RNA-seq (13) data revealed little to no

245 difference in the transcriptomic expression levels of writers (*METTL3*, *METTL14*,
246 *METTL4*, *CBLL1*, *VIRMA*, *WTAP*, *RBM15*, *ZC3H13*), readers (*HNRNPA2*, *YTHDF1*,
247 *YTHDF2*, *YTHDC1*, *YTHDC2*), and erasers (*FTO* and *ALKBH5*) in normal myometrium
248 and fibroids [(13)] (**Figure 1a**). Analysis of a separate published microarray dataset (29)
249 confirmed the overall lack of difference (**Figure 1b**). While most genes tested displayed
250 little or no overall differences (**Suppl. Figure 1**), we did note one candidate (*RBM15*)
251 that displayed a slight, but statistically significant difference when comparing the
252 transcript levels across the samples (**Figure 1c**). To confirm our finding, we performed
253 RT-qPCR on a separate set of fibroids and matched myometrium patient samples,
254 however, for most m⁶A modifiers (*METTL3*, *YTHDC1*, *FTO*) we did not see correlation
255 with RNA-seq data probably due to the extreme modest changes observed between
256 fibroids and myometrium (**Suppl. Figure 2**). RT-qPCR confirmed *RBM15* expression
257 was slightly, but significantly different when comparing fibroids with matched
258 myometrium (**Figure 1d**).

259 Previous studies identified differential expression of mRNA and miRNA between
260 fibroids isolated from Black and White women indicating these candidate factors could
261 drive racial disparity of the disease (30, 31). We therefore examined published RNA-seq
262 data for racial differences in the expression of m⁶A modifiers (13, 32, 33). Overall, we
263 detected higher variation among datapoints (**Suppl. Figure 3**) and did not detect race
264 specific molecular disparity within normal myometrium or fibroids, within Black and
265 White women (**Suppl. Figure 4**). However, while *RBM15* was statistically significantly
266 upregulated in fibroids compared to normal myometria in White women (**Figure 2a**,

267 p=0.035), it showed similar trends but was not statistically significant in Black women
268 (**Figure 2b**, p=0.06).

269

270 **Protein expression of m⁶A modifiers in uterine fibroids**

271 To identify differences in protein levels, we performed western blot analysis on
272 key m⁶A modifier proteins (**Figure 3**). We found that, while some individuals displayed
273 differences (**Figure 3a**), the overall levels of these m⁶A modifiers were not significantly
274 different between normal myometrium (n= 19) and fibroids (n= 26) (**Figure 3b**). Indeed,
275 even though our expression analysis revealed subtle differences in RBM15 transcript
276 levels (**Figure 1c-d**), there was no significant difference in RBM15 protein expression
277 within fibroids (n=23) and matched myometrium (n=19) (**Figure 3a-b**). Altogether, these
278 data indicate an overall lack of protein expression differences of m⁶A modifiers between
279 fibroids and myometrium.

280 **Abundance of mRNA and small RNA modifications in uterine fibroids**

281 In light of the overall lack of changes in m⁶A modifier expression, we next
282 considered the possibility of differential methylase and demethylase activity between
283 fibroids and myometrium. To measure m⁶A, mRNA was isolated, and concentration of
284 modified RNA nucleosides was measured by UHPLC-MS/MS. No differential signal
285 abundance of m⁶A was observed between fibroids and matched myometrium (**Figure**
286 **4a**). We extended our analysis to other well characterized mRNA modifications that
287 have been identified in eukaryotes and known to impact various cellular functions (34)
288 to determine if these were dysregulated in uterine fibroids. We did not identify any

289 additional modifications (m^5C , m^7G , ac^4c , m^1A , f^5C , dA , ho^5u) to have altered
290 abundance in our fibroid samples versus myometrium samples (**Figure 4b-h**).

291 In addition to mRNA, small RNAs (<200 bps) are known to harbor diverse RNA
292 modifications that can modulate complex biological processes (35). Small RNAs have
293 been identified to be differentially expressed in fibroids and thought to regulate multiple
294 processes that influence uterine fibroid development and progression (31). Following
295 isolation of small RNA from normal myometrium and matched fibroids, we measured
296 post translational RNA modifications. We were unable to detect differential expression
297 of m^6A levels in our fibroid samples and myometrium samples (**Suppl. Fig 5a**). We
298 simultaneously measured other modified nucleoside abundance including, m^1A , i^6A ,
299 ac^4c , m^5C , m^3C , f^5C , m^1G , m^7G , mo^5U , ho^5U , m^5U that have been implicated to regulate
300 translational machinery and influence physiological processes (35). Our analysis did not
301 identify these modifications to be differentially expressed (**Suppl. Fig 5b-I**), indicating
302 an absence of preferential small RNA modifications in fibroids.

303 **Characterization of m6A modifiers with respect to genetic sub-type.**

304 Uterine fibroids are driven by multiple driver mutations, including *MED12*,
305 *HMGA1*, *HMGA2*, *FH* and the more recently characterized mutation in the SRCAP
306 complex subunits (11-13). Multiple studies both from our lab and others have shown
307 that normal myometrium and these driver mutations form separate transcription clusters
308 indicating altered pathways are activated in these genetic subtypes (11-13). To define a
309 broader clinical perspective, we mined gene expression profiles of 162 normal
310 myometrium and 190 fibroid samples that were recently published by Berta et al (11).
311 These fibroid samples were divided into *MED12* (n=38), *HMGA2* (n=44), *HMGA1*

312 (n=62), *FH* (n=15), *YEATS* (n=16) and *OM* (n=15) allowing capture of majority of fibroid
313 subtypes as described (11). We mapped each genetic sub-type against fold change to
314 determine if these modifiers were preferentially expressed (**Figure 5**). We identified
315 statistical, though modest changes in majority of epigenetic regulators based on
316 mutation status. Among the readers, *METTL3* was found to be significantly upregulated
317 in *HMGA2* (log2- fold 0.11) and *YEATS* (log 2-fold 0.15) sub-type fibroids (**Figure 5a**).
318 *METTL14* on the other hand was significantly downregulated in *MED12* (log 2-fold -
319 0.16) and *HMGA2* (log 2-fold -0.08) fibroids, while upregulated in *YEATS* (log 2-fold
320 0.12) fibroids but was not statistically significant (**Figure 5b**). In congruence with our
321 RNA-seq analysis (**Figure 1, Suppl. Figure 1**), *RBM15* was upregulated in almost all
322 fibroid sub-types (**Figure 5g**). Among writer proteins, *YTHDF1* was upregulated in
323 majority of fibroid sub-types (**Figure 5k**), while *YTHDC2* was significantly
324 downregulated in *HMGA1* (log 2-fold -0.09), *FH* (log 2-fold -0.16), *YEATS* (log 2-fold -
325 0.13) fibroid subtype (**Figure 5n**). There was elevated expression of m⁶A demethylase
326 *ALKBH5* in majority of fibroid sub-types (**Figure 5o**), while mRNA expression of *FTO*
327 was significantly decreased in all sub-types (**Figure 5p**).

328 We next harnessed mammalian m⁶A predictor, SRAMP (sequence-based RNA
329 adenosine methylation site predictor)(36) to predict if key fibroid genes identified by us
330 and others (11-13), had m⁶A sites in their mRNA (**Supplementary Table 2**). We
331 identified a collection of putative m⁶A sites with varying levels of confidence in steroid
332 hormone receptor genes, (Progesterone Receptor (*PGR*), Estrogen Receptor (*ESR1*)),
333 transcription factors (Pleomorphic adenoma gene 1 (*PLAG1*), Pappalysin 2, (*PAPPA2*),
334 Chromobox 2 (*CBX2*), Chromobox 4 (*CBX4*), Chromobox 8 (*CBX8*), SATB homeobox 2

335 (SATB2)), DNA repair protein (RAD51 Paralog B (*RAD51B*)), steroidogenic genes
336 (Hydroxysteroid 17-beta dehydrogenase 6 (*HSD17B6*), steroid 5 alpha-reductase 2
337 (*SRD5A2*), tryptophan 2,3-dioxygenase (*TDO2*)), collagen associated genes (ADAM
338 metallopeptidase domain 12 (*ADAM12*), Collagen type I alpha 1 chain (*COL1A1*),
339 collagen type 3 alpha 1 chain (*COL3A1*), Periostin (*POSTN*) and growth factors Cyclin
340 D1 (*CCND1*), vascular endothelial growth factor A (*VEGFA*)). These in silico analysis
341 suggests that key fibroid genes are possibly susceptible to RNA modification and
342 subsequent transcriptional regulation. However, in-depth analysis will be required to
343 define transcriptome-wide m⁶A location and efficacy of these marks in fibroid etiology.

344 **Discussion:**

345 Over 170 RNA modifications have been identified of which m⁶A accounts for the
346 most abundant and widespread mRNA internal modification (20, 37). The diverse
347 distribution patterns, its dynamic nature, and ability to regulate multiple physiological
348 processes has added another layer to post-transcriptional regulation. Multiple studies
349 have now identified that regulation of m⁶A is driven by methyltransferases,
350 demethylases, or reader proteins and dysregulation of which is closely associated with
351 human cancers (38). In reproductive cancers, m⁶A modifiers were identified to regulate
352 ovarian, endometrial, and cervical cancer (39, 40). However, characterization of m⁶A
353 modification proteins have not been defined in uterine fibroids. Here, for the first time,
354 we provide an in-depth characterization of major modifiers of m⁶A modification as it
355 relates to uterine fibroids.

356 The m⁶A methyltransferase complex is comprised of a METTL3/METTL14
357 heterodimer core that adds m⁶A in a highly specific manner (41). Due to the enzymatic

358 ability of METTL3 which allows addition of m⁶A to nuclear RNA, we paid special
359 attention to both its transcriptomic and protein abundance in fibroids. Our analysis did
360 not identify differential expression in either RNA or protein of METTL3 in uterine fibroids
361 in absence of mutation status. Lack of differential m⁶A RNA modification was also
362 observed in our LC-MS/MS data from both purified fractions of mRNA and small RNA
363 (**Figure 3A**; Supplementary **Figure 3A**). However, increased expression of METTL3
364 has been reported and could be attributed to patient and fibroid heterogeneity (42, 43).
365 When broken down by fibroid sub-type, we see mild increased expression of METTL3
366 mRNA in *HMGA2* and *YEATS* fibroid (**Figure 4A**). METTL3 and METTL14 form a 1:1
367 heterodimer and recognize the DRACH motif leading to induction of m⁶A modification
368 on mRNA (44, 45). Inactivation or deletion of METTL14 results in depletion of m⁶A in
369 mRNA, identifying it as a core regulator of m⁶A addition (46). While no significant
370 changes were observed in transcriptomic and protein levels of METTL14 in global
371 fibroid samples, we identified changes when pared down by fibroid genetic sub-types. In
372 addition to METTL3 and METTL14, other core components are known to mediate m⁶A
373 addition. Among these include WTAP which interacts and anchors METTL3 and
374 METTL14 to nuclear speckles regulating gene expression and alternative splicing (34).
375 WTAP interacts with another well-known m⁶A mediator, VIRMA (46, 47). Apart from
376 VIRMA, ZC3H13 is another WTAP interactor and shown to be required for nuclear
377 localization of the writer complex (20, 37). CBLL1 has also been shown to couple with
378 WTAP (20, 37) and loss of CBLL1 led to reduction of global m⁶A levels, identifying it as
379 another writer protein. WTAP expression was found to be increased in *YEATS* fibroid
380 and decreased in *MED12* mutants. While VIRMA and ZC3H13 were increased in

381 YEATS fibroid and CBLL1 was increased only in *HMGA2* fibroids. Among writer
382 proteins, we saw increased transcriptomic expression of RBM15 in both global (**Figure**
383 **1G**), by race (**Suppl Figure 2 a**) in multiple fibroid genetic sub-type (**Figure 4G**).
384 However, protein levels were not significantly changed in fibroids (**Figure 2a, 2b**).
385 RBM15 has been identified as part of m⁶A writer complex and shown to bind the long
386 non-coding RNA, *XIST*. Knocking down RBM15 decreased m⁶A methylation on *XIST*
387 RNA, leading to reduced *XIST* mediated gene silencing (48). *XIST* has been identified
388 to regulate fibroid pathology by sponging miR-29c and miR-200c leading to increased
389 expression of COL1A1, COL3A1, and FN1, key regulators of extracellular accumulation
390 (49). As an RNA binding protein, in addition to its role as a m⁶A modulator, RBM15
391 regulates splicing of key differentiation genes involved in hematopoietic stem cells
392 quiescence (50). A hypothesis put forward to define uterine fibroid etiology is
393 reprogramming of myometrial stem cells leading to fibroid development (51). Whether
394 RBM15 plays a role in regulating cell fate decision of myometrial cells and if so, does it
395 mediate its action through m⁶A or alternative splicing, and its contribution to uterine
396 fibroid pathogenesis remains to be explored.

397 There are five YTH domain-containing proteins (YTHDC1-2 and YTHDF1-3) that
398 have been structurally identified to recognize m⁶A through a conserved aromatic cage.
399 YTHDF 1-3 is cytoplasmic, YTHDC1 is predominantly nuclear, while YTHDC2 can be
400 both nuclear and cytoplasmic. YTHDF1 has been linked to enhanced translation of m⁶A
401 mRNA, while YTHDF2 binding leads to RNA degradation brought about by recruitment
402 of CCR4-NOT deadenylation complex. Finally, YTHDF3 cooperatively binds to YTHDF1
403 and YTHDF2 regulating translation and degradation thereby impacting gene expression

404 profile of m⁶A- containing mRNA (20, 52). Among YTHDF1-3, statistical significance
405 was identified only in YTHDF1 (**Figure 4K-O**). In addition to regulating m⁶A mRNA,
406 YTHDC1 also appears to mediate function of long noncoding RNA, in particularly *XIST*
407 and regulating transcriptional silencing of the X-chromosome (48, 53). Transcript levels
408 of both YTHDC1 and YTHDC2 were found to decreased in some variation in all fibroid
409 genetic subtypes.

410 Two m⁶A demethylases, FTO and ALKBH5, have been identified that are able to
411 convert m⁶A to A and regulate global m⁶A levels. FTO and ALKBH5 have been reported
412 to be dysregulated in diverse diseases leading to m⁶A demethylation, modulation of
413 gene expression downstream and influencing biological consequence (54, 55). With
414 relation to fibroid genetic subtype, we saw an inverse correlation with regards to
415 transcript profiles between ALKBH5 and FTO, indicating that these demethylases are
416 nonredundant and exhibit distinct epigenetic regulation.

417 There is a strong racial disparity in the disease, with Black women presenting
418 with an earlier onset of the disease and greater severity (56). We postulated that
419 fibroids from Black women could exhibit differential expression of m⁶A modifiers when
420 compared to White women. Transcriptomic analysis of m⁶A modifiers identified
421 increased transcript expression of RBM15 in fibroids from White women (**Suppl Figure**
422 **2**), but not Black (**Suppl Figure 2b**) indicating that there might be differential m⁶A levels
423 between fibroids obtained from White and Black women but will need confirmation in a
424 much larger cohort of patient samples.

425 Altered levels of modifiers based on genetic sub-type, led us to explore if genes
426 known to be associated with fibroids had specific m⁶A methylation patterns. As uterine

427 fibroids rely on estrogen and progesterone to grow, increased levels of *ESR1* and *PGR*
428 may affect underlying molecular pathways driving fibroid growth and progression.
429 Traditionally anti-progestins are prescribed to reduce uterine bleeding and decrease
430 fibroid volume (57-62). In silico analysis identified multiples sites on *ESR1* and *PGR* that
431 could harbor m⁶A modification with moderate and high confidence, indicating that
432 transcript abundance of these key steroidogenic receptor molecules may be regulated
433 post-transcriptionally. SRAMP analysis also predicted m⁶A modification sites on several
434 transcription factors that were implicated to regulate uterine fibroids, namely, *PLAG1*,
435 *PAPPA2*, *CBX2*, *CBX4*, *CBX8*, *SATB2*. Transcript levels of *PLAG1* and *PAPPA2* were
436 identified to have elevated expression in HMGA1/2 uterine fibroids (13). While *CBX2*,
437 *CBX4*, *CBX8*, *SATB2*, have been previously implicated in uterine fibroidogenesis(11,
438 13, 63). DNA repair protein, RAD51B is upregulated in *MED12*, *HMGA1*, and *HMGA2*
439 fibroids suggesting a cell response to genomic instability and a possible “second-hit”
440 pushing normal myometrial cells to tumorigeneses (64). In addition, in silico analysis
441 identified m⁶A marks on *TDO2* mRNA, a key enzyme catalyzing the conversion of
442 tryptophan to kynurenine which was recently identified to be upregulated in *MED12*
443 mutant fibroids and dependent on race (65-67). *TDO2* inhibitor, 680C91, reduced
444 expression of *COL1A1* and *COL3A1*, genes involved in collagen production and
445 extracellular matrix (ECM) accumulation, in primary uterine fibroid culture (65). More
446 recently, primary myometrial cells treated with mono(2-ethyl-5-hydroxyhexyl) phthalate
447 (MEHHP), increased expression of *TDO2*, promoting tryptophan metabolism. Depletion
448 of *TDO2* reduced proliferative action of MEHHP on primary fibroid cells identifying it as
449 pro-survival factor. Our in-silico analysis also identified m⁶A marks on *COL1A1*,

450 *COL3A1*, and *POSTN*, known structural constituents of ECM organization. Notably, in
451 triple negative breast cancer cells, increased expression of METTL3 was negatively
452 correlated with *COL3A1* expression (68). We and others identified increased expression
453 of *POSTN* and characterized its role as potential regulator of fibroidogenesis (69, 70).
454 *POSTN* has also been identified to be regulated by through m⁶A modification during
455 cardiac remodeling (71). *CCND1* and *VEGFA*, other known regulators of uterine
456 fibroids (13, 72, 73) were similarly ordained with m⁶A modifications in their RNA.
457 *CCND1* has been identified to be regulated through its m⁶A modification and influence
458 hematopoietic stem/progenitor cells differentiation (74).

459 In summary, while global transcriptomics and protein levels were unchanged, we
460 identified modest genetic sub-type expression of m⁶A modifiers. Our analysis did
461 identify transcript levels of *RBM15* to be consistently increased but differential
462 expression in protein levels were not detected. While modest (1-1.4-fold), we identified
463 statistically significant differential expression, indicating that driver mutations could
464 regulate m⁶A deposition in a fibroid specific subtype manner. Characterization of key
465 fibroid genes identified multiple m⁶A marks indicating the possibility of interplay between
466 methylation and mRNA expression and downstream deregulation of biological
467 processes. However, in-depth sequencing and characterization of m⁶A sites will be
468 needed to be performed to further define the possibility of m⁶A in fibroid pathology.
469 Since protein abundance can be post-transcriptionally regulated and protein levels are
470 not always correlated with mRNA levels (75), the discovery of m⁶A marks and modifiers
471 in uterine fibroids opens the field to additional effector molecules that were previously
472 unappreciated in tumor formation. While our studies did not identify difference in protein

473 expression or RNA modifications in uterine fibroids, an in-depth approach with larger
474 patient cohorts with regards to genetic sub-types and race will be needed to define
475 expression profiles and validate possible influence of RNA modifications on fibroid
476 pathogenesis and progression.

477

478 **Reference:**

479

- 480 1. M. M. McWilliams, V. M. Chennathukuzhi, Recent Advances in Uterine Fibroid
481 Etiology. *Semin Reprod Med* **35**, 181-189 (2017).
- 482 2. A. E. Commandeur, A. K. Styer, J. M. Teixeira, Epidemiological and genetic
483 clues for molecular mechanisms involved in uterine leiomyoma development and
484 growth. *Hum Reprod Update* **21**, 593-615 (2015).
- 485 3. S. F. Cramer, A. Patel, The frequency of uterine leiomyomas. *Am J Clin Pathol*
486 **94**, 435-438 (1990).
- 487 4. S. E. Bulun, Uterine fibroids. *N Engl J Med* **369**, 1344-1355 (2013).
- 488 5. H. Cook, M. Ezzati, J. H. Segars, K. McCarthy, The impact of uterine leiomyomas
489 on reproductive outcomes. *Minerva Ginecol* **62**, 225-236 (2010).
- 490 6. E. A. Stewart, L. T. Shuster, W. A. Rocca, Reassessing hysterectomy. *Minn Med*
491 **95**, 36-39 (2012).
- 492 7. E. R. Cardozo *et al.*, The estimated annual cost of uterine leiomyomata in the
493 United States. *Am J Obstet Gynecol* **206**, 211 e211-219 (2012).
- 494 8. N. Makinen *et al.*, MED12, the mediator complex subunit 12 gene, is mutated at
495 high frequency in uterine leiomyomas. *Science* **334**, 252-255 (2011).
- 496 9. A. A. Sandberg, Updates on the cytogenetics and molecular genetics of bone
497 and soft tissue tumors: leiomyoma. *Cancer Genet Cytogenet* **158**, 1-26 (2005).
- 498 10. M. Nilbert *et al.*, Characteristic chromosome abnormalities, including
499 rearrangements of 6p, del(7q), +12, and t(12;14), in 44 uterine leiomyomas. *Hum
500 Genet* **85**, 605-611 (1990).
- 501 11. D. G. Berta *et al.*, Deficient H2A.Z deposition is associated with genesis of
502 uterine leiomyoma. *Nature* **596**, 398-403 (2021).
- 503 12. M. Mehine *et al.*, Integrated data analysis reveals uterine leiomyoma subtypes
504 with distinct driver pathways and biomarkers. *Proc Natl Acad Sci U S A* **113**,
505 1315-1320 (2016).
- 506 13. J. W. George *et al.*, Integrated Epigenome, Exome, and Transcriptome Analyses
507 Reveal Molecular Subtypes and Homeotic Transformation in Uterine Fibroids.
508 *Cell Rep* **29**, 4069-4085 e4066 (2019).
- 509 14. R. Desrosiers, K. Friderici, F. Rottman, Identification of methylated nucleosides in
510 messenger RNA from Novikoff hepatoma cells. *Proceedings of the National
511 Academy of Sciences* **71**, 3971-3975 (1974).

512 15. B. S. Zhao, I. A. Roundtree, C. He, Post-transcriptional gene regulation by mRNA
513 modifications. *Nature reviews Molecular cell biology* **18**, 31-42 (2017).

514 16. K. D. Meyer *et al.*, Comprehensive analysis of mRNA methylation reveals
515 enrichment in 3' UTRs and near stop codons. *Cell* **149**, 1635-1646 (2012).

516 17. D. Dominissini *et al.*, Topology of the human and mouse m6A RNA methylomes
517 revealed by m6A-seq. *Nature* **485**, 201-206 (2012).

518 18. I. Barbieri, T. Kouzarides, Role of RNA modifications in cancer. *Nat Rev Cancer*
519 **20**, 303-322 (2020).

520 19. Y. Lee, J. Choe, O. H. Park, Y. K. Kim, Molecular Mechanisms Driving mRNA
521 Degradation by m(6)A Modification. *Trends Genet* **36**, 177-188 (2020).

522 20. K. D. Meyer, S. R. Jaffrey, Rethinking m(6)A Readers, Writers, and Erasers.
523 *Annu Rev Cell Dev Biol* **33**, 319-342 (2017).

524 21. C. R. Alarcón *et al.*, HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA
525 processing events. *Cell* **162**, 1299-1308 (2015).

526 22. M. Mehine, N. Makinen, H. R. Heinonen, L. A. Aaltonen, P. Vahteristo, Genomics
527 of uterine leiomyomas: insights from high-throughput sequencing. *Fertil Steril*
528 **102**, 621-629 (2014).

529 23. T. D. Chuang, D. Quintanilla, D. Boos, O. Khorram, Differential Expression of
530 Super-Enhancer-Associated Long Non-coding RNAs in Uterine Leiomyomas.
531 *Reprod Sci* **29**, 2960-2976 (2022).

532 24. A. R. Zota *et al.*, Phthalate exposures and microRNA expression in uterine
533 fibroids: The FORGE Study. *Epigenetics insights* **13**, 2516865720904057 (2020).

534 25. Y. Wu *et al.*, RNA Phosphorothioate Modification in Prokaryotes and Eukaryotes.
535 *ACS Chem Biol* **15**, 1301-1305 (2020).

536 26. M. Tardu, J. D. Jones, R. T. Kennedy, Q. Lin, K. S. Koutmou, Identification and
537 Quantification of Modified Nucleosides in *Saccharomyces cerevisiae* mRNAs.
538 *ACS Chem Biol* **14**, 1403-1409 (2019).

539 27. J. Lorent *et al.*, Translational offsetting as a mode of estrogen receptor alpha-
540 dependent regulation of gene expression. *EMBO J* **38**, e101323 (2019).

541 28. M. Basanta-Sanchez, S. Temple, S. A. Ansari, A. D'Amico, P. F. Agris, Attomole
542 quantification and global profile of RNA modifications: Epitranscriptome of human
543 neural stem cells. *Nucleic Acids Res* **44**, e26 (2016).

544 29. P. J. Hoffman, D. B. Milliken, L. C. Gregg, R. R. Davis, J. P. Gregg, Molecular
545 characterization of uterine fibroids and its implication for underlying mechanisms
546 of pathogenesis. *Fertil Steril* **82**, 639-649 (2004).

547 30. S. D. Peddada *et al.*, Growth of uterine leiomyomata among premenopausal
548 black and white women. *Proc Natl Acad Sci U S A* **105**, 19887-19892 (2008).

549 31. T.-D. Chuang, H. Panda, X. Luo, N. Chegini, miR-200c is aberrantly expressed in
550 leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2,
551 and FBLN5. *Endocrine-related cancer* **19**, 541 (2012).

552 32. Y. Li, R. P. McNally, Y. Feng, J. J. Kim, J. J. Wei, Racial differences in
553 transcriptomics and reactive oxygen species burden in myometrium and
554 leiomyoma. *Hum Reprod* **38**, 609-620 (2023).

555 33. E. N. Paul *et al.*, Transcriptome and DNA methylome analyses reveal underlying
556 mechanisms for the racial disparity in uterine fibroids. *JCI insight* (2022).

557 34. S. H. Boo, Y. K. Kim, The emerging role of RNA modifications in the regulation of
558 mRNA stability. *Experimental & Molecular Medicine* **52**, 400-408 (2020).

559 35. X. Zhang, A. E. Cozen, Y. Liu, Q. Chen, T. M. Lowe, Small RNA Modifications:
560 Integral to Function and Disease. *Trends Mol Med* **22**, 1025-1034 (2016).

561 36. Y. Zhou, P. Zeng, Y. H. Li, Z. Zhang, Q. Cui, SRAMP: prediction of mammalian
562 N6-methyladenosine (m6A) sites based on sequence-derived features. *Nucleic
563 Acids Res* **44**, e91 (2016).

564 37. S. Murakami, S. R. Jaffrey, Hidden codes in mRNA: Control of gene expression
565 by m6A. *Molecular Cell* **82**, 2236-2251 (2022).

566 38. X. Y. Chen, J. Zhang, J. S. Zhu, The role of m(6)A RNA methylation in human
567 cancer. *Mol Cancer* **18**, 103 (2019).

568 39. W. Huang, F. Kong, R. Li, X. Chen, K. Wang, Emerging Roles of m6A RNA
569 Methylation Regulators in Gynecological Cancer. *Frontiers in Oncology* **12**
570 (2022).

571 40. J. Chen *et al.*, Roles of N6-methyladenosine (m6A) modifications in gynecologic
572 cancers: mechanisms and therapeutic targeting. *Experimental Hematology &
573 Oncology* **11**, 98 (2022).

574 41. J. Liu *et al.*, A METTL3-METTL14 complex mediates mammalian nuclear RNA
575 N6-adenosine methylation. *Nat Chem Biol* **10**, 93-95 (2014).

576 42. B. M. Yang Q, He C, Boyer T, Al-Hendy A (2021) Aberrant expression of N6-
577 Methyladenosine regulators in uterine fibroids from the Eker rat model (Abstract
578 P-314). in *American Society for Reproductive Medicine, Baltimore, MD*.

579 43. S. K. Yang Q, He C, Al-Hendy A, Boyer T (2021) Pathological reprogramming of
580 epitranscriptomics via METTL3 in uterine fibroids (Abstract W-046). in *Society for
581 Reproductive Investigation's 68th Annual Scientific Meeting* (Boston, MA).

582 44. B. Linder *et al.*, Single-nucleotide-resolution mapping of m6A and m6Am
583 throughout the transcriptome. *Nature Methods* **12**, 767-772 (2015).

584 45. Kate D. Meyer *et al.*, Comprehensive Analysis of mRNA Methylation Reveals
585 Enrichment in 3' UTRs and near Stop Codons. *Cell* **149**, 1635-1646 (2012).

586 46. J. Liu *et al.*, A METTL3–METTL14 complex mediates mammalian nuclear RNA
587 N6-adenosine methylation. *Nature chemical biology* **10**, 93-95 (2014).

588 47. X.-L. Ping *et al.*, Mammalian WTAP is a regulatory subunit of the RNA N6-
589 methyladenosine methyltransferase. *Cell research* **24**, 177-189 (2014).

590 48. D. P. Patil *et al.*, m(6)A RNA methylation promotes XIST-mediated transcriptional
591 repression. *Nature* **537**, 369-373 (2016).

592 49. T. D. Chuang, A. Rehan, O. Khorram, Functional role of the long noncoding RNA
593 X-inactive specific transcript in leiomyoma pathogenesis. *Fertil Steril* **115**, 238-
594 247 (2021).

595 50. L. Zhang *et al.*, Cross-talk between PRMT1-mediated methylation and
596 ubiquitylation on RBM15 controls RNA splicing. *Elife* **4** (2015).

597 51. M. Ono *et al.*, Role of stem cells in human uterine leiomyoma growth. *PLoS One*
598 **7**, e36935 (2012).

599 52. R. Shi *et al.*, Linking the YTH domain to cancer: the importance of YTH family
600 proteins in epigenetics. *Cell Death & Disease* **12**, 346 (2021).

601 53. W. Xiao *et al.*, Nuclear m6A reader YTHDC1 regulates mRNA splicing. *Molecular
602 cell* **61**, 507-519 (2016).

603 54. J. Qu *et al.*, RNA demethylase ALKBH5 in cancer: from mechanisms to
604 therapeutic potential. *J Hematol Oncol* **15**, 8 (2022).

605 55. R. Gao *et al.*, m6A Modification: A Double-Edged Sword in Tumor Development.
606 *Frontiers in Oncology* **11** (2021).

607 56. D. D. Baird, D. B. Dunson, M. C. Hill, D. Cousins, J. M. Schectman, High
608 cumulative incidence of uterine leiomyoma in black and white women: ultrasound
609 evidence. *Am J Obstet Gynecol* **188**, 100-107 (2003).

610 57. C. Benassayag *et al.*, Estrogen receptors (ER α /ER β) in normal and pathological
611 growth of the human myometrium: Pregnancy and leiomyoma. *American Journal
612 of Physiology - Endocrinology and Metabolism* **276**, E1112-E1118 (1999).

613 58. K. A. Kovács, A. Oszter, P. M. Göcze, J. L. Környei, I. Szabó, Comparative
614 analysis of cyclin D1 and oestrogen receptor (α and β) levels in human
615 leiomyoma and adjacent myometrium. *Molecular Human Reproduction* **7**, 1085-
616 1091 (2001).

617 59. H. Otsuka, M. Shinohara, M. Kashimura, K. Yoshida, Y. Okamura, A comparative
618 study of the estrogen receptor ratio in myometrium and uterine leiomyomas.
619 *International Journal of Gynecology & Obstetrics* **29**, 189-194 (1989).

620 60. M. A. Borahay *et al.*, Estrogen Receptors and Signaling in Fibroids: Role in
621 Pathobiology and Therapeutic Implications. *Reprod Sci* **24**, 1235-1244 (2017).

622 61. H. Ishikawa *et al.*, Progesterone is essential for maintenance and growth of
623 uterine leiomyoma. *Endocrinology* **151**, 2433-2442 (2010).

624 62. A. S. Cloud *et al.*, Loss of the repressor REST affects progesterone receptor
625 function and promotes uterine leiomyoma pathogenesis. *Proceedings of the
626 National Academy of Sciences* **119**, e2205524119 (2022).

627 63. M. Mehine *et al.*, Integrated data analysis reveals uterine leiomyoma subtypes
628 with distinct driver pathways and biomarkers. *Proceedings of the National
629 Academy of Sciences* **113**, 1315-1320 (2016).

630 64. M. Mehine *et al.*, Characterization of Uterine Leiomyomas by Whole-Genome
631 Sequencing. *New England Journal of Medicine* **369**, 43-53 (2013).

632 65. T. D. Chuang, D. Quintanilla, D. Boos, O. Khorram, Tryptophan catabolism is
633 dysregulated in leiomyomas. *Fertil Steril* **116**, 1160-1171 (2021).

634 66. T.-D. Chuang, D. Quintanilla, D. Boos, O. Khorram, Further characterization of
635 tryptophan metabolism and its dysregulation in fibroids. *F&S Science* **3**, 392-400
636 (2022).

637 67. A. P. Hutchinson *et al.*, Tryptophan 2, 3-dioxygenase-2 in uterine leiomyoma:
638 Dysregulation by MED12 mutation status. *Reproductive Sciences* **29**, 743-749
639 (2022).

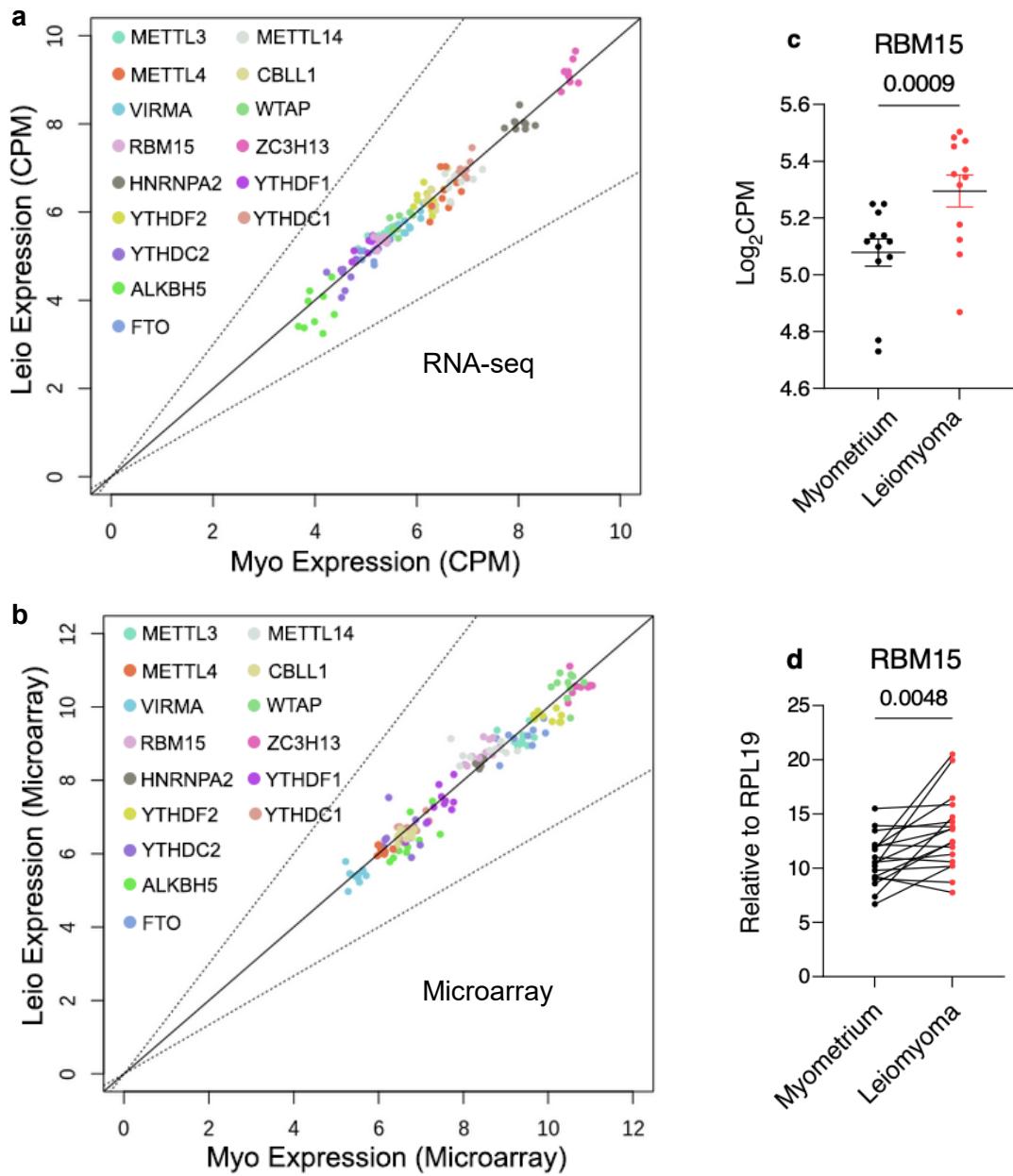
640 68. Y. Shi *et al.*, Reduced Expression of METTL3 Promotes Metastasis of Triple-
641 Negative Breast Cancer by m6A Methylation-Mediated COL3A1 Up-Regulation.
642 *Frontiers in Oncology* **10** (2020).

643 69. Y. Y. Lenis *et al.*, The Effects of Periostin Expression on Fibroid-Like Transition
644 of Myometrial Cells. *Reprod Sci* 10.1007/s43032-022-01128-1 (2022).

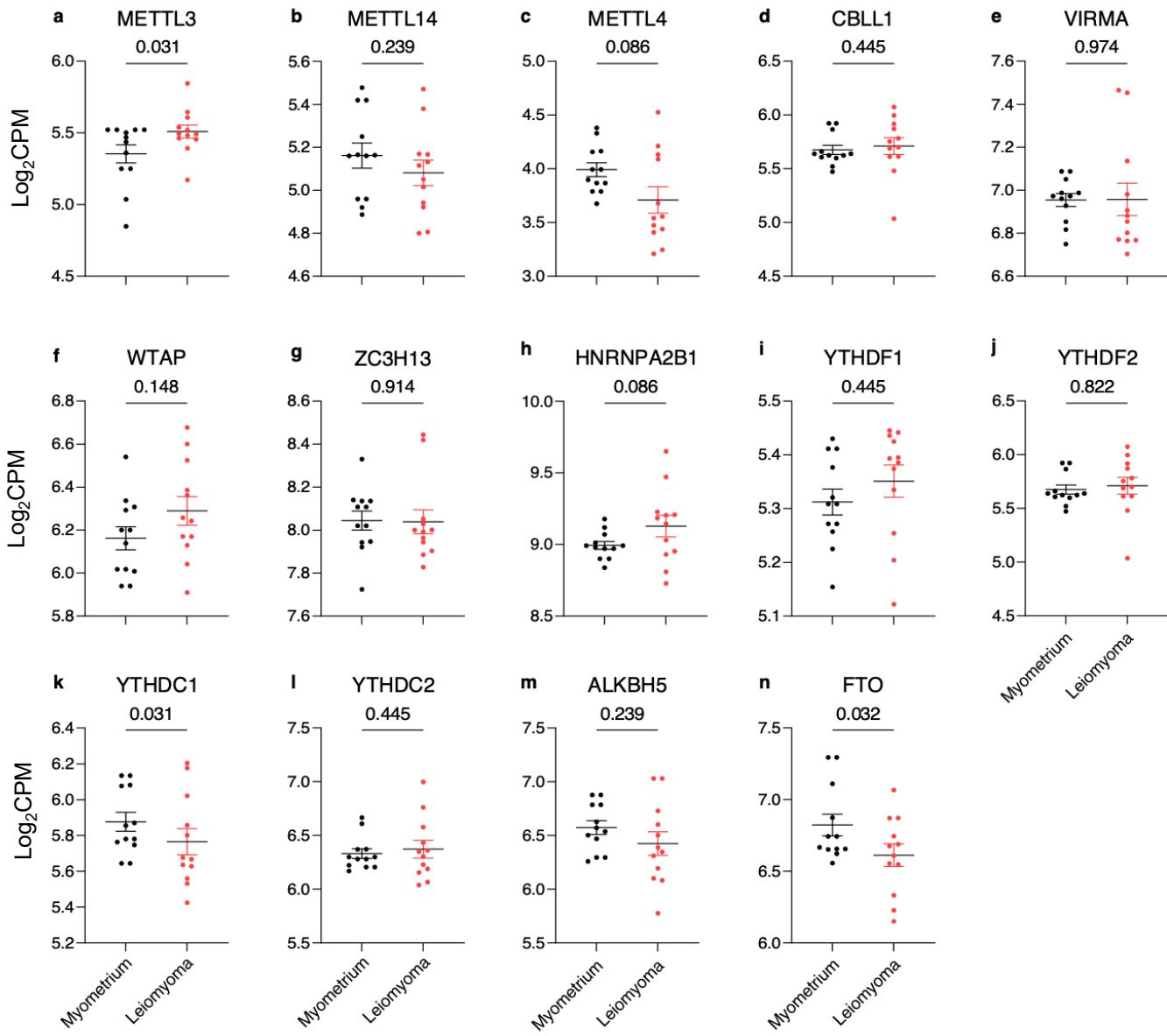
645 70. M. F. B. Jamaluddin *et al.*, Proteomic Profiling of Human Uterine Fibroids
646 Reveals Upregulation of the Extracellular Matrix Protein Periostin. *Endocrinology*
647 **159**, 1106-1118 (2017).

648 71. Y. Han *et al.*, Loss of m6A Methyltransferase METTL5 Promotes Cardiac
649 Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression. *Frontiers*
650 *in Cardiovascular Medicine* **9** (2022).

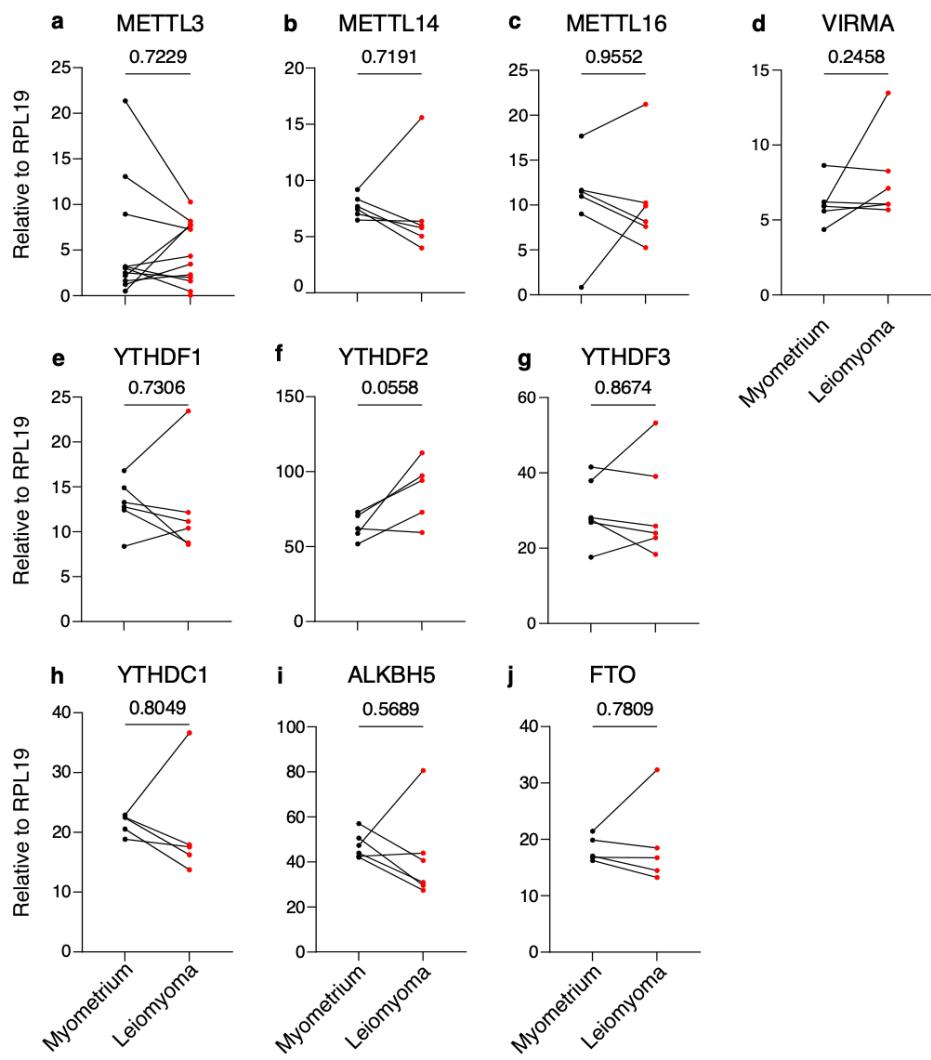
651 72. E. N. Paul *et al.*, Transcriptome Analyses of Myometrium from Fibroid Patients
652 Reveals Phenotypic Differences Compared to Non-Diseased Myometrium. *Int J*
653 *Mol Sci* **22** (2021).

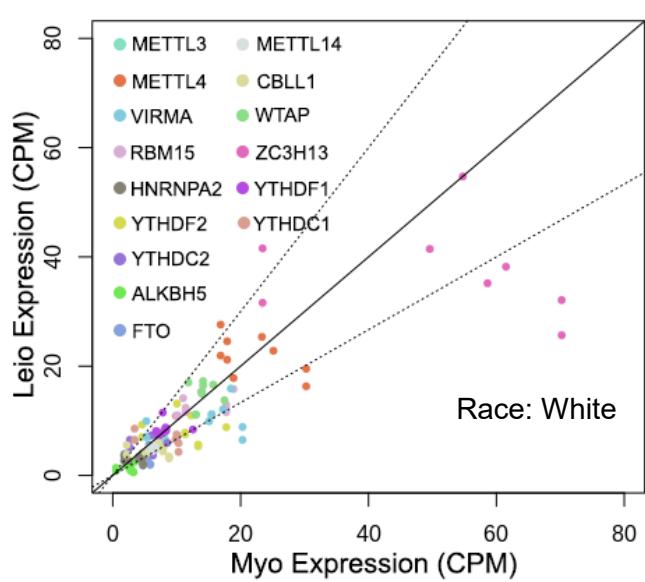
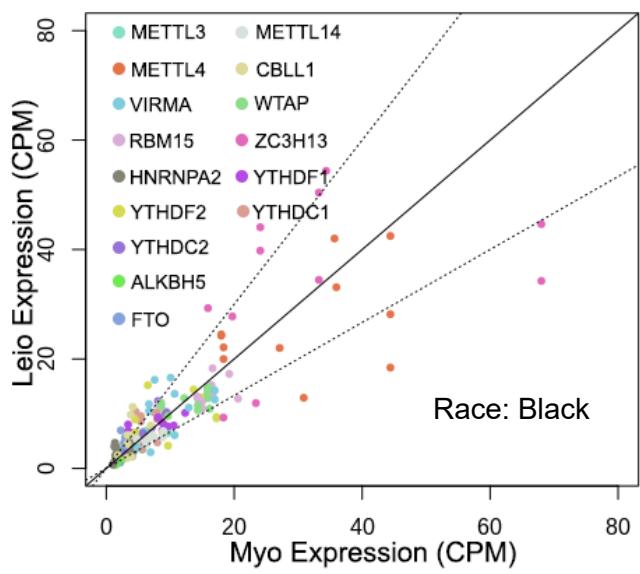

654 73. Y. Li *et al.*, HMGA2-mediated tumorigenesis through angiogenesis in leiomyoma.
655 *Fertility and Sterility* **114**, 1085-1096 (2020).

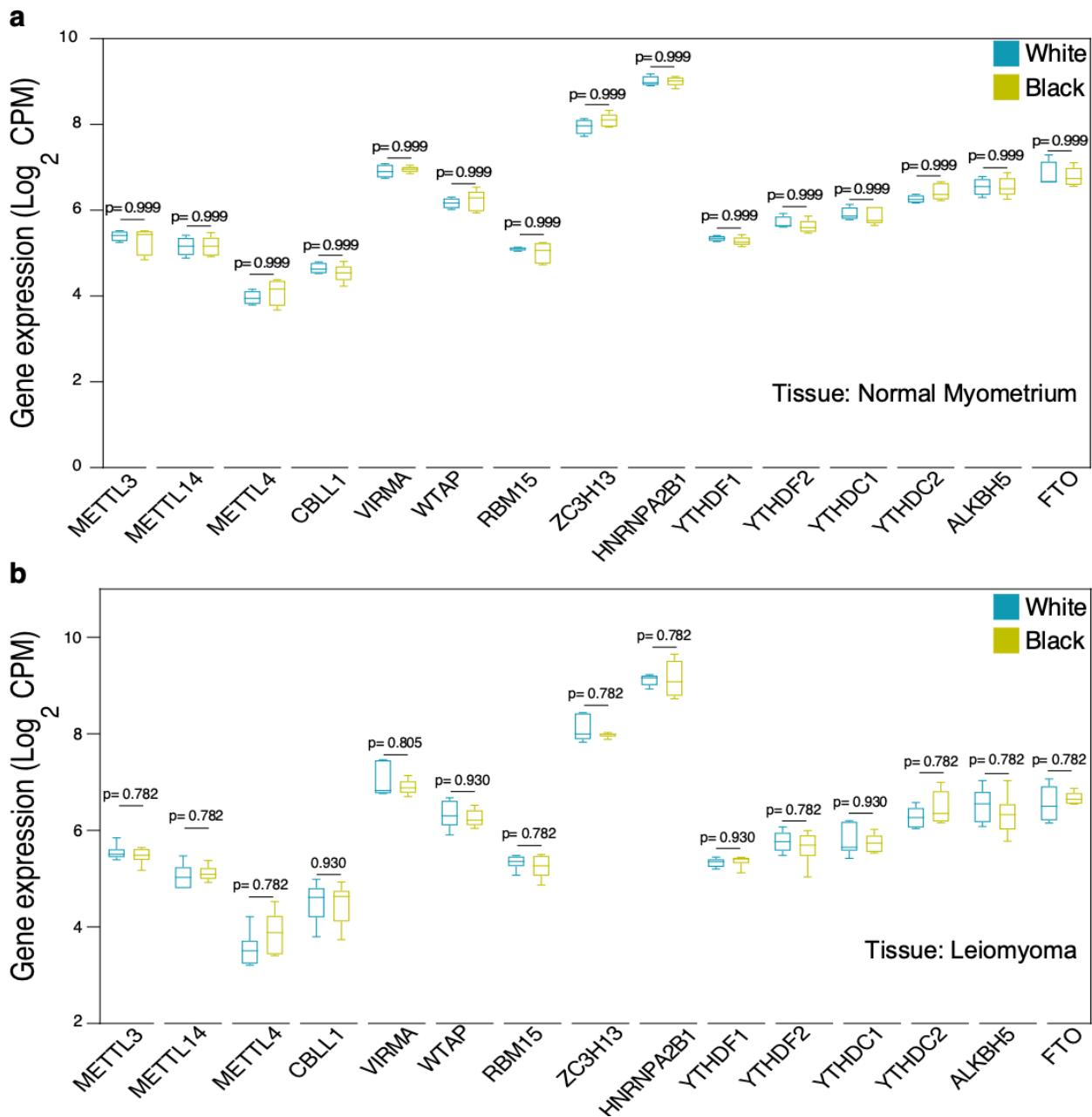
656 74. X. Zhang *et al.*, YTHDF3 modulates hematopoietic stem cells by recognizing
657 RNA m6A modification on Ccnd1. *Haematologica* (2020).

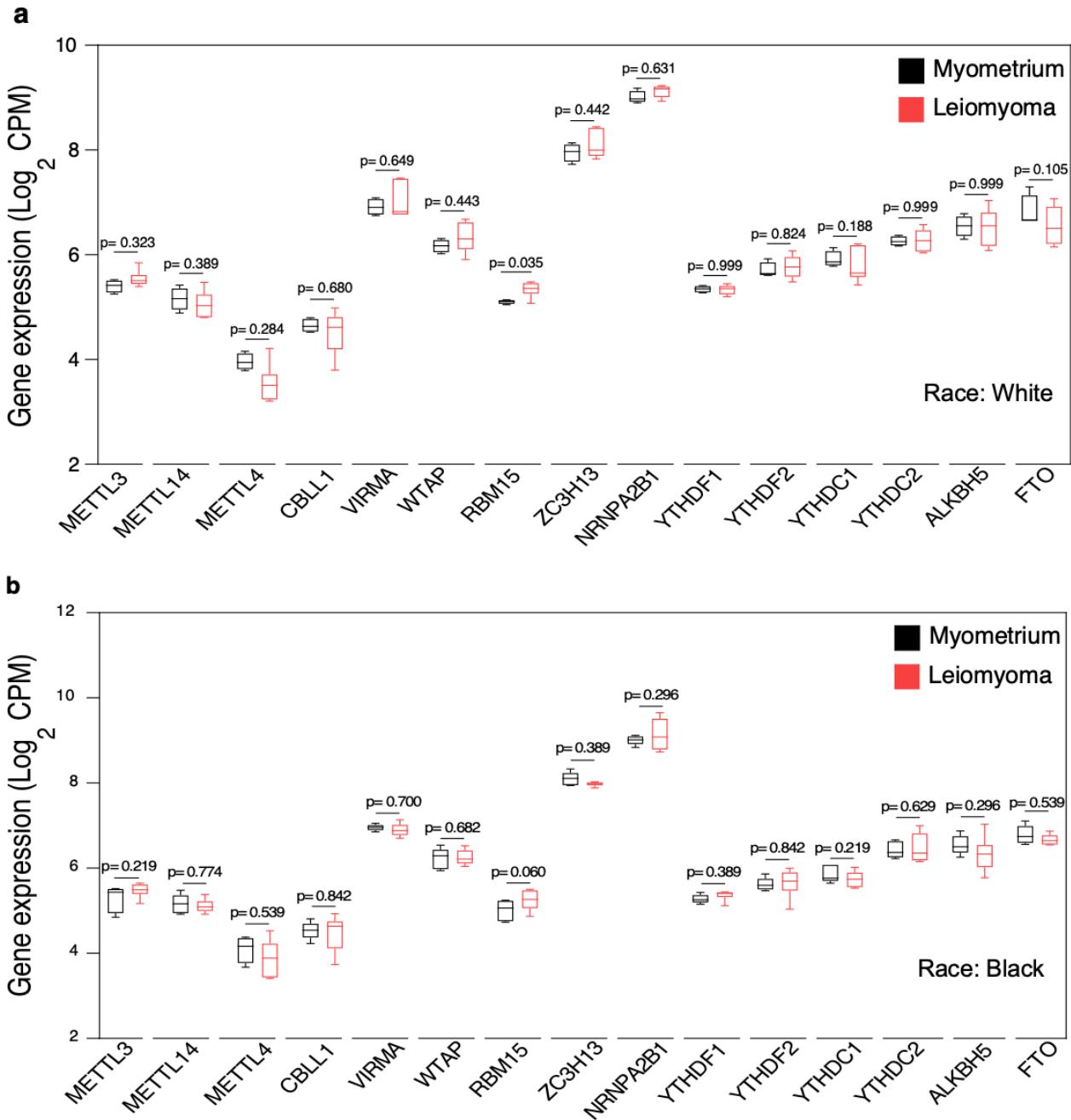

658 75. Z. Khan *et al.*, Primate transcript and protein expression levels evolve under
659 compensatory selection pressures. *Science* **342**, 1100-1104 (2013).

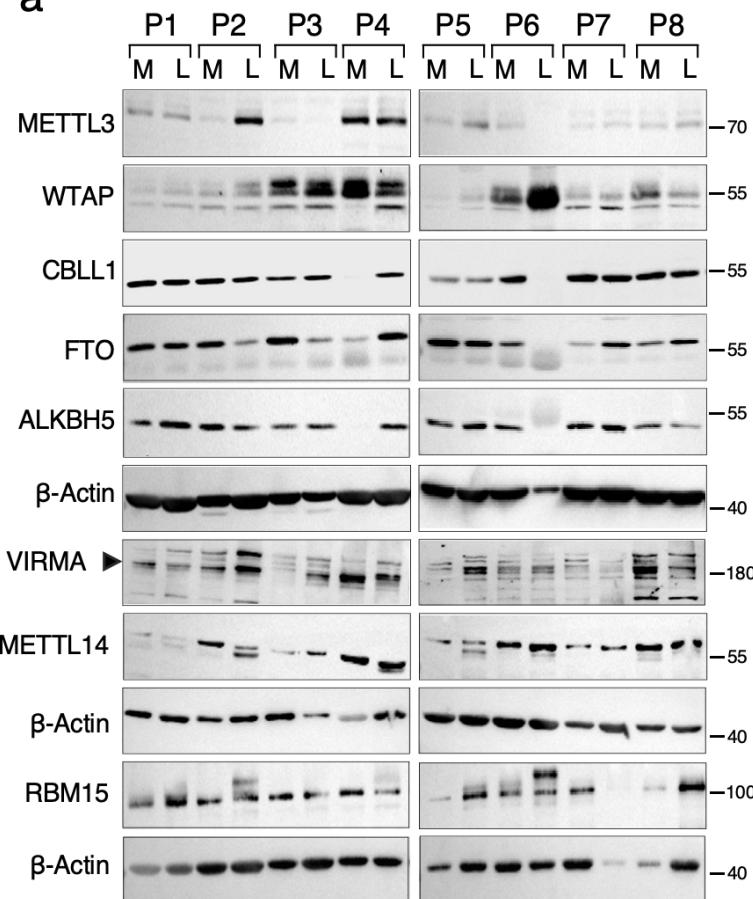
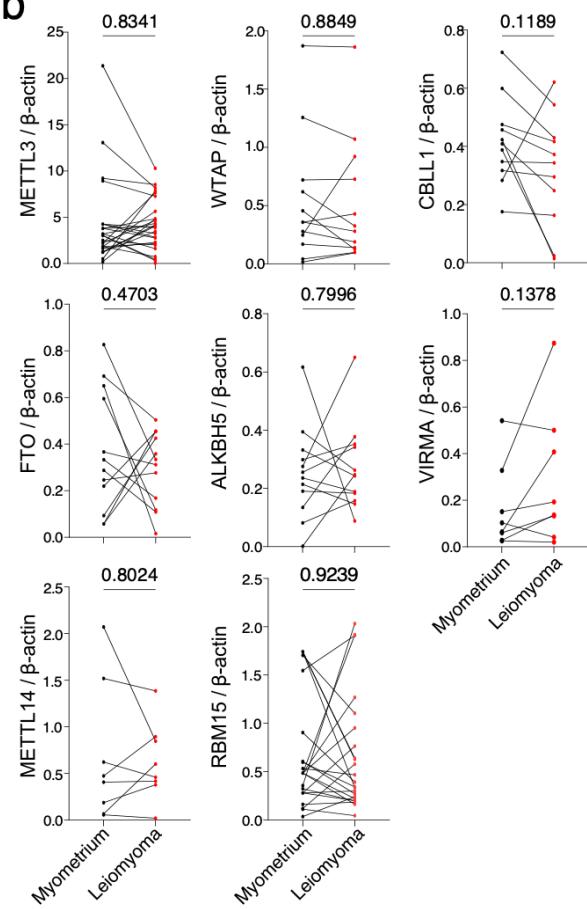
660

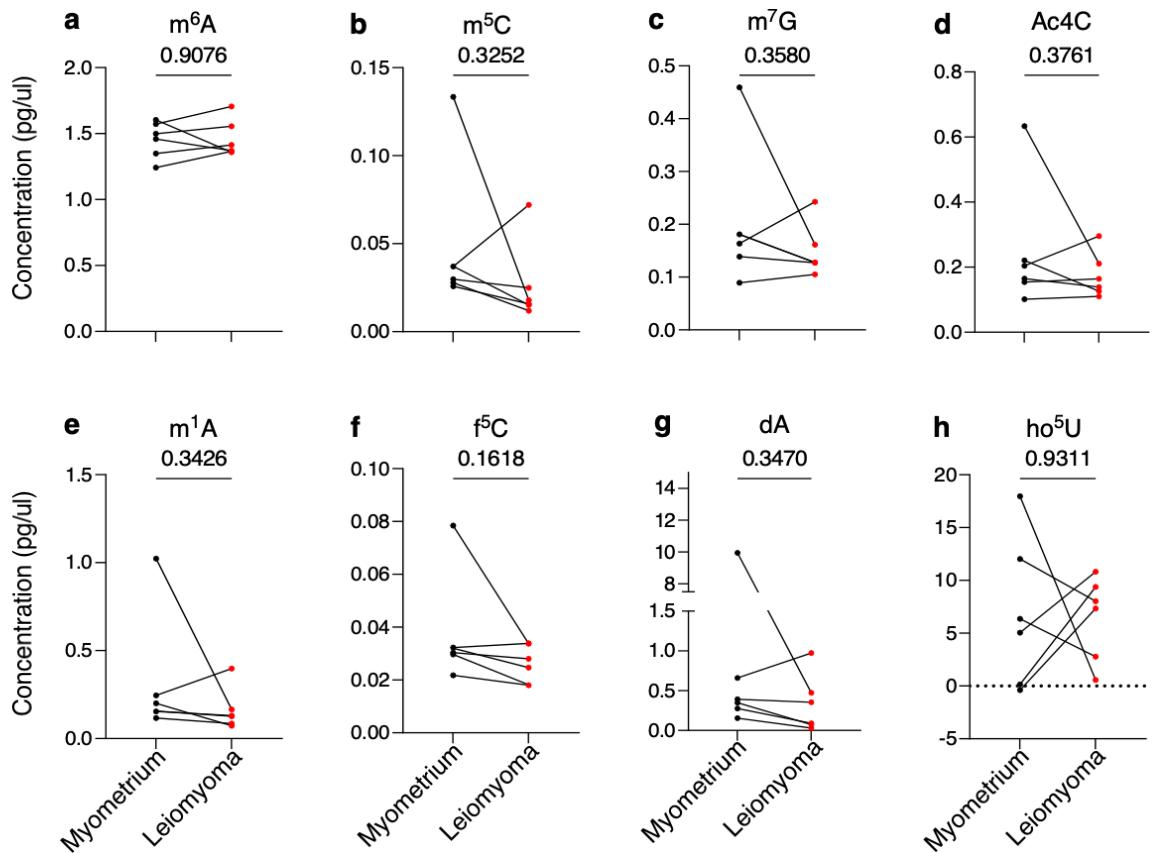

661

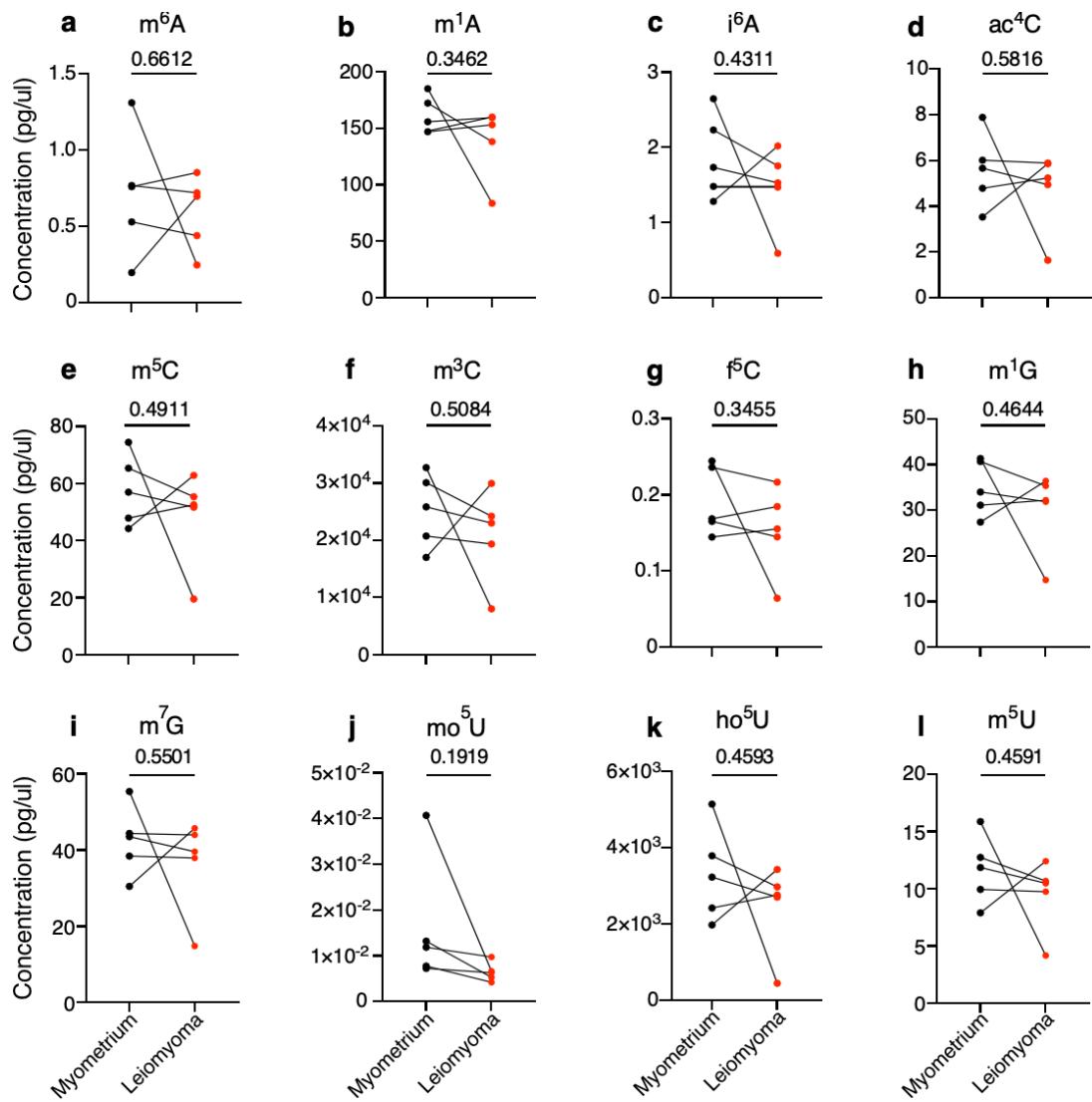


Figure 1: Transcriptomic analysis of m⁶A modifiers in uterine fibroids. **a-b.** RNA-seq (a) and microarray (b) analysis of leiomyoma and matched myometrium. Transcript abundance quantified as counts per million (CPM) from myometrium (Myo, x-axis) and leiomyomas (Leio, y-axis). Diagonal represents no differences, while the dashed lines represent 1.5 fold changes. **c.** The log₂ counts per million (log₂ CPM) from myometrium (n=9) and fibroids (n=12) of RBM15. Data are represented as means \pm SEM. Statistically significant differences between groups were calculated with paired student's t-test. P-values for each comparison is reported. **d.** Relative expression of RBM15 in myometrium and matched fibroid samples measured by RT-qPCR (n=18). Results are presented relative to RPL17. Statistically significant differences between groups were calculated with paired student's t-test. P-values for each comparison is reported.


Supplementary Figure 1: Transcriptomic analysis of m^6A modifiers in uterine fibroids. RNA-seq analysis of normalized expression of leiomyoma and matched myometrium (SRP166862). The y-axis is signal abundance quantified as $\log_2 \text{CPM}$ from myometrium ($n=9$) and fibroids ($n=12$). **a-f.** mRNA expression of m^6A writers (*METTL3*, *METTL14*, *METTL4*, *CBLL1*, *VIRMA*, *WTAP*). **g-l.** Readers (*ZC3H13*, *HNRNPA2B1*, *YTHDF1*, *YTHDF2*, *YTHDC1*, *YTHDC2*), and erasers (**m**, **n**), (*ALKBH5*, *FTO*). Data are represented as means \pm SEM. Statistically significant differences between groups were calculated with paired student's t-test. *FDR* values for each comparison is reported.


Supplementary Figure 2: RT-qPCR analysis of m^6 A modifiers in uterine fibroids and matched myometrium. RNA levels of (a) *METTL3* (n=12), (b) *METTL14* (n=6), (c) *METTL16* (n=6), (d) *VIRMA* (n=6), (e) *YTHDF1* (n=6), (f) *YTHDF2* (n=6), (g) *YTHDF3* (n=6), (h) *YTHDC1* (n=6), (i) *ALKBH5* (n=6), (j) *FTO* (n=6). Results are presented relative to *RPL17*. Statistically significant differences between groups were calculated with paired student's t-test. P-values for each comparison is reported.



Supplementary Figure 3: Analysis of leiomyoma and matched myometrium (PRJNA859428, GSE207209). Transcript abundance quantified as counts per million (CPM) from myometrium (Myo, x-axis) and leiomyomas (Leio, y-axis). Diagonal represents no differences, while the dashed lines represent 1.5 fold changes.


Supplementary Figure 4: Transcriptomic analysis of m⁶A modifiers in normal myometrium and leiomyoma in White and Black women. RNA-seq analysis (SRP166862) of normalized expression of leiomyoma and matched myometrium (GSE120854). The y-axis is signal abundance quantified as log2 counts per million (log2 CPM). **a.** mRNA expression in normal myometrium from White (n=4) and Black (n=5) women. **b.** mRNA expression in leiomyoma from White (n=6) and Black (n=6). Data are represented as means \pm SEM. FDR for each comparison is reported.


Figure 2: Transcriptomic analysis of m^6A modifiers in leiomyoma and matched myometrium in White and Black women. RNA-seq analysis (SRP166862) of normalized expression of leiomyoma and matched myometrium (GSE120854). The y-axis is signal abundance quantified as \log_2 counts per million (\log_2 CPM). **a.** mRNA expression in normal myometrium ($n=4$) and leiomyoma ($n=6$) from white women. **b.** mRNA expression in normal myometrium ($n=5$) and leiomyoma ($n=6$) from black women. Data are represented as means \pm SEM. FDR for each comparison is reported.

a**b**

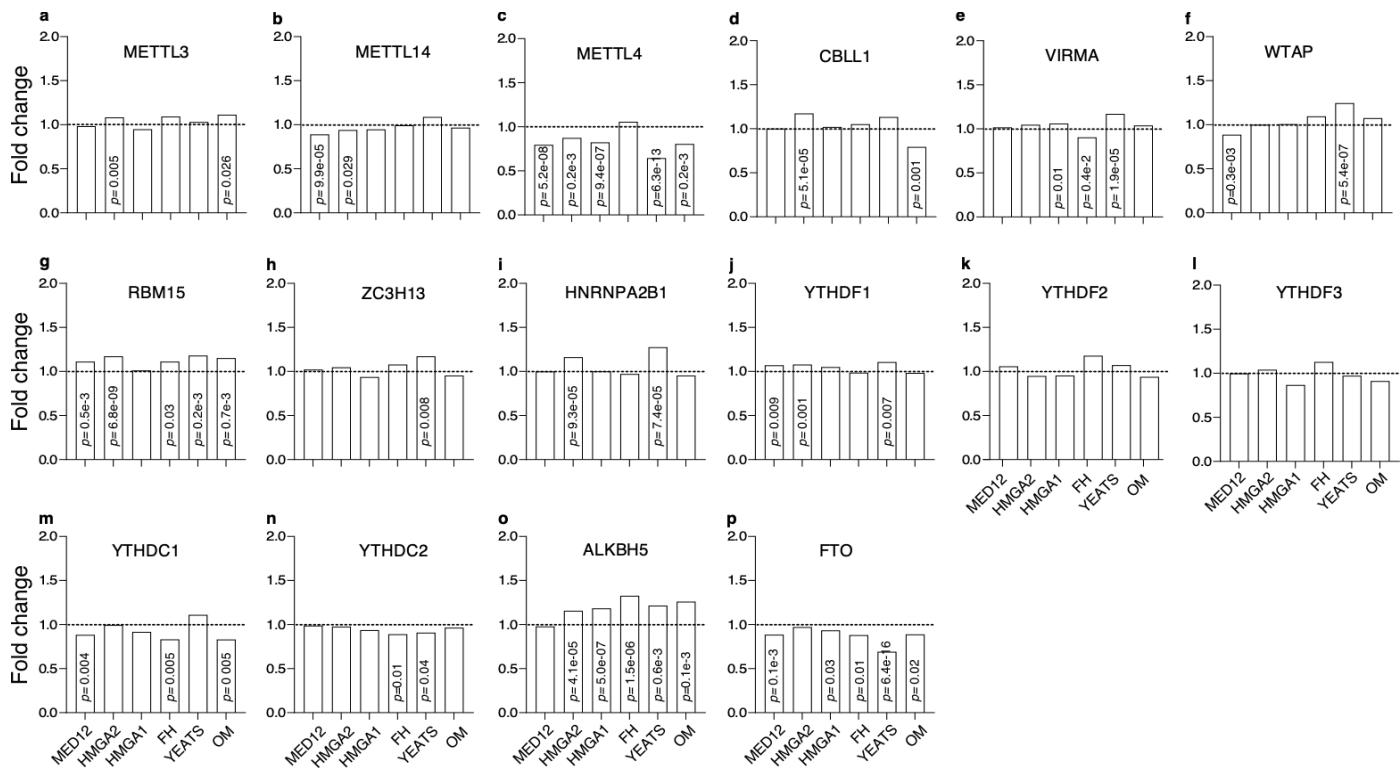

Figure 3: Western blot analysis of m^6A modifiers in leiomyoma. Proteins were isolated from uterine leiomyoma and matched myometrium and probed for m^6A modifier proteins. **(A)** Representative western blots of METTL3, WTAP, CBLL1, VIRMA, METTL14, RBM15, FTO, and ALKBH5. ACTB was used as loading control. M=Myometrium; L=Leiomyoma. P denotes individual patient samples. **(B)** Data was quantified for METTL3 (myometrium (n=19) and leiomyoma (n=26), RBM15 (myometrium (n=15) and leiomyoma (n=23), WTAP, CBLL1, VIRMA, METTL14, FTO, and ALKBH5, were quantified from 12 paired fibroids and matched myometrium patient samples. Statistically significant differences between groups were calculated with paired student's t-test. P-values for each comparison is reported.

Figure 4: mRNA modifications from normal myometrium and matched fibroids. The y-axis is signal abundance quantified as pg/μl myometrium (n=6) and matched fibroids (n=6). Changes in (a) N⁶-methyladenosine (m⁶A), (b) 5-methylcytosine (m⁵C), (c) N⁷-methylguanosine (m⁷G), (d) N⁴-acetylcytidine (ac⁴C), (e) N¹-methyladenosine (m¹A), (f) 5-Formylcytidine (f⁵C), (g) 2'-deoxyadenosine (dA), (h) 5-hydroxyuridine (ho⁵U) were measured. Statistically significant differences between groups were calculated with paired student's t-test. P-values for each comparison is reported.

Supplementary Figure 5: small RNA modifications from normal myometrium and matched fibroids. The y-axis is signal abundance quantified as pg/μl myometrium (n=5) and matched fibroids (n=5). Changes in (a) N⁶-methyladenosine (m⁶A), (b) N¹-methyladenosine (m¹A), (c) N⁶-isopentenyladenosine (i⁶A), (d) N⁴-acetylcytidine (ac⁴C), (e) 5-methylcytosine (m⁵C), (f) N³-methylcytidine (m³C), (g) 5-Formylcytidine (f⁵C), (h) N¹ methylguanosine (m¹G), (i) N⁷-methylguanosine (m⁷G), (j) 5-methoxyuridine (mo⁵U) (k) 5-hydroxyuridine (ho⁵U), (l) 5-methyluridine (m⁵U) were measured. Statistically significant differences between groups were calculated with paired student's t-test. P-values for each comparison is reported.

Figure 5: Expression profile of m⁶A modifiers in relation to fibroid genetic sub-types. Gene expression of m⁶A modifiers mapped in relation to fibroid genetic sub-types as defined by Berta et al (11). Y-axis denotes fold-change, and each genetic subtype is denoted in the X-axis. MED12 (Mediator complex subunit 12), HMGA1/2 (High Mobility group A1/2), FH (Fumarate Hydratase), YEATS (YEATS domain containing 4), OM (Other Mutations as defined by alteration of other members of the SRCAP complex subunits). MED12 (n=38), HMGA2 (n=44), HMGA1 (n=62), FH (n=15), YEATS (n=16) and OM (n=15). Reader proteins (a-h), Writers (i-n), and Erasers (o, p). Statistical significance was set at FDR <0.05 and value for each comparison is reported.