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Abstract 
 
Measures of intrinsic brain function at rest show promise as predictors of cognitive 

decline in humans, including EEG metrics such as individual alpha peak frequency 

(IAPF) and the aperiodic exponent, reflecting the strongest frequency of alpha 

oscillations and the relative balance of excitatory:inhibitory neural activity, respectively. 

Both IAPF and the aperiodic exponent decrease with age and have been associated 

with worse executive function and working memory. However, few studies have jointly 

examined their associations with cognitive function, and none have examined their 

association with longitudinal cognitive decline rather than cross-sectional impairment. In 

a preregistered secondary analysis of data from the longitudinal Midlife in the United 

States (MIDUS) study, we tested whether IAPF and aperiodic exponent measured at 

rest predict cognitive function (N = 235; age at EEG recording M = 55.10, SD = 10.71) 

over 10 years. The IAPF and the aperiodic exponent interacted to predict decline in 

overall cognitive ability, even after controlling for age, sex, education, and lag between 

data collection timepoints. Post-hoc tests showed that “mismatched” IAPF and aperiodic 

exponents (e.g., higher exponent with lower IAPF) predicted greater cognitive decline 

compared to “matching” IAPF and aperiodic exponents (e.g., higher exponent with 

higher IAPF; lower IAPF with lower aperiodic exponent). These effects were largely 

driven by measures of executive function. Our findings provide the first evidence that 

IAPF and the aperiodic exponent are joint predictors of cognitive decline from midlife 

into old age and thus may offer a useful clinical tool for predicting cognitive risk in aging. 
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Significance Statement 

Measures of intrinsic brain function at rest assessed noninvasively from the scalp using 

electroencephalography (EEG) show promise as predictors of cognitive decline in 

humans. Using data from 235 participants from the Midlife in the United States (MIDUS) 

longitudinal study, we found two resting EEG markers (individual peak alpha frequency 

and aperiodic exponent) interacted to predict cognitive decline over a span of 10 years. 

Follow-up analyses revealed that “mismatched” markers (i.e., high in one and low in the 

other) predicted greater cognitive decline compared to “matching” markers. Because of 

the low cost and ease of collecting EEG data at rest, the current research provides 

evidence for possible scalable clinical applications for identifying individuals at risk for 

accelerated cognitive decline.  
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Introduction 
 

Measures of spontaneous (i.e., resting-state) neural activity yield important 

insights into the intrinsic functioning of the brain. For example, individual alpha peak 

frequency (IAPF), the frequency at which power in the alpha band (i.e., 7-13 Hz) is the 

strongest, is negatively correlated with age (Klimesch, 1997; Clark et al., 2004; Finley et 

al., 2022; Merkin et al., 2023), and may reflect neuroanatomical differences and age-

related changes in white matter (Babiloni et al., 2008; Valdés-Hernández et al., 2010; 

Kramberger et al., 2017). Across adulthood, higher IAPF is associated with better 

performance on multiple metrics of cognitive function, including working memory, 

reading comprehension, and a general intelligence factor (e.g., (Klimesch, 1997; 

Angelakis et al., 2004; Clark et al., 2004; Grandy et al., 2013a).  

In addition to the periodic (i.e., oscillatory) activity found in canonical EEG bands, 

aperiodic activity is present across all frequencies. Aperiodic activity follows a 1/f 

function and can be described by the slope of the function (referred to as the exponent), 

and where the function crosses the y-axis (referred to as the offset; Donoghue et al., 

2020). The aperiodic exponent is thought to correspond to the synchronized firing of 

neurons, such that flatter spectra are indicative of reduced synchronization, or greater 

neural noise (Voytek and Knight, 2015). Recent data suggest that the aperiodic 

exponent is related to the ratio of excitatory to inhibitory neural activity, such that flatter 

slopes (i.e., smaller exponents) relate to greater excitatory to inhibitory activity (Gao et 

al., 2017), while the offset is related to neural spiking rates, such that greater spiking 

activity is reflected in greater overall spectral power (Manning et al., 2009; Miller et al., 

2012). Although research on aperiodic activity is in its infancy, work has associated 
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aperiodic activity, particularly the aperiodic exponent, with age and cognitive 

functioning, such that flatter spectra are associated with older age (Voytek et al., 2015; 

Finley et al., 2022; Merkin et al., 2023), physiological markers of cognitive decline (Tran 

et al., 2020), reduced processing speed (Ouyang et al., 2020), and mediates cross-

sectional associations between age and cognitive function (Voytek et al., 2015). 

This study aims to answer two main research questions: 1. To what extent are 

individual differences in the slope of the aperiodic exponent and IAPF measured at 

fronto-central sites associated with cognitive function in adults, both cross-sectionally 

and longitudinally? 2. Is the slope of the aperiodic exponent or IAPF more strongly 

associated with cognitive function in adults both cross-sectionally and longitudinally?  

To answer these questions, we examined the relationship between aperiodic 

exponent and IAPF in preregistered analyses with longitudinally assessed cognitive 

function in the Midlife in the United States (MIDUS) dataset. Prior work with MIDUS 

EEG data has found IAPF and aperiodic exponent are both negatively correlated with 

age, such that older individuals have lower IAPF and flatter aperiodic component slopes 

(Finley et al., 2022). Prior analyses of the full MIDUS2 and MIDUS3 longitudinal sample 

with Cognitive Project data found cross-sectional negative relationships between 

cognitive performance and age (n = 4,268; Lachman et al., 2014) as well as longitudinal 

negative relationships (n = 2,518; Hughes et al., 2018), such that older adults showed a 

steeper longitudinal decline. Sex was related to initial performance, such that women 

performed better on the episodic memory factor and men performed better on the 

executive functioning factor, with no influence of sex on the rate of longitudinal change 

(Hughes et al., 2018). The relationship between cognitive function and age was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2023.07.17.549371doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549371
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

replicated in two subsamples (Hamm et al., 2020, n = 732; Knight et al., 2020, n = 843). 

No work to date has examined the MIDUS2 resting EEG data with any cognitive data. 

Materials and Methods 

Preregistration of the following methods, hypotheses, and analyses are publicly 

available on OSF at https://osf.io/wyuca. 

Code Accessibility  

All code used for all analyses and plots are publicly available on OSF at 

https://osf.io/sr4mb/. Additionally, all data are available at 

https://midus.wisc.edu/data/index.php. The demographic and cognitive task data are 

available through the MIDUS Portal or via the University of Michigan’s Inter-university 

Consortium of Political and Social Research (ICPSR). The EEG data are available upon 

request through the MIDUS Neuroimaging and Psychophysiology Repository. 

Participants 

This study uses data from the MIDUS longitudinal dataset, with variables 

collected during the MIDUS 2 Survey, Cognitive, and Neuroscience Projects and as well 

as MIDUS 3 Cognitive Project. See Figure 1 for a diagram of the study design and 

participant flow. Education, sex, and race demographics were collected during the 

MIDUS 2 Survey Project, which was a prerequisite for participation in additional MIDUS 

2 Projects. As depicted in Figure 1, MIDUS 2 and MIDUS 3 Cognitive Project are 

longitudinal and collected approximately 10 years apart (i.e., total lag; M = 9.71 years, 

SD = 0.92), while the MIDUS 2 Cognitive Project was completed before the MIDUS 2 

Neuroscience Project (M = 2.06 years, SD = 1.26).  Additional details about the study 

are available at http://midus.wisc.edu.  
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Figure 1. Participant flow and at which timepoint data was collected. 

 

Based on our preregistered exclusion criteria, participants were excluded if they 

had poor FOOOF algorithm fit (defined as more than 3 standard deviations below the 

mean in R2 model fit for the frontal composite (n = 4); see section “Spectral 

parametrization: Fitting Oscillations and 1/f (FOOOF)” for more information), or had 

missing data from more than 50% of the frontal composite for any one EEG measure 

(note that no participants were excluded for this reason). Additionally, participants 

needed to participate in at least one wave of the Cognitive Project and have sufficient 

task data to compute at least one cognitive function metric. Our final sample consisted 

of n = 235 participants. See Table 1 for demographic information. 

 

 

 

 

 

Lag in years
M = 2.06, SD = 1.26,   

0.25-4.92

MIDUS 2 Survey 
Project 

(2004-2005)

Education
Sex

Race

MIDUS 2 Cognitive 
Project 

(2004-2006)

BTACT Composite
Executive Function 

subfactor
Episodic Memory 

subfactor

MIDUS 2 
Neuroscience 

Project 
(2004-2006)

Age
EEG Metrics 

MIDUS 3 Cognitive 
Project 

(2013-2014)

BTACT Composite
Executive Function 

subfactor
Episodic Memory 

subfactor

Lag in years
M = 7.65, SD = 1.71,   

4.33-11.25

Total Lag in years
M = 9.71, SD = 0.92,   

8.25-12.50
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Table 1: Participant Demographics, n = 235 
Age in Years:  

MIDUS 2 Neuroscience Project Sex 

M(SD) = 55.10 (10.71) Male 
Female 

94 (40.0%) 
141 (60.0%) 

36-49 85 (36.2%) Race 
50-65 105 (44.7%) White 173 (73.6%) 
66-83 45 (19.1%) 

Total Black, 
Indigenous, and 
People of Color 

(BIPOC) 

62 (26.4%) 
Education 

High school or less 67 (29.3%) 
Some college 70 (30.6%) 

Bachelor’s or higher 92 (40.2%) 
 

Brief Test of Adult Cognition by Telephone (BTACT) 

During the MIDUS 2 and MIDUS 3 Cognitive Project, participants completed 

the Brief Test of Adult Cognition by Telephone (BTACT; Tun and Lachman, 2006; 

Lachman et al., 2014; Hughes et al., 2018), which includes 7 neuropsychological 

tasks that load onto an episodic memory factor (immediate word list recall, delayed 

word list recall) and executive functioning factor (backward digit span, category verbal 

fluency, number series, 30 seconds and counting task, stop and go switch task mixed 

trials), as well as an overall BTACT composite score. The BTACT has good construct 

validity and performs comparably to lab-based assessments (Lachman et al., 2014). 

Participants' performance on the BTACT (composite and separate episodic memory 

and the executive functioning factors) were standardized to the MIDUS 2 sample 

scores (i.e., individual task measures were z-scored within the retained sample) and 

averaged across relevant tasks. BTACT scores were not computed for factors or the 

overall composite if participants were missing data for one or more tasks. See 

(Lachman et al., 2014) for additional details on the BTACT procedure. 
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EEG Recording and Preprocessing 

Resting-state EEG data were recorded in one-minute periods (3 minutes eyes 

open, 3 minutes eyes closed) using a 128-channel geodesic net of Ag/AgCl 

electrodes encased in saline-dampened sponges with an online vertex (Cz) reference 

(Electrical Geodesics, Inc [EGI], Eugene, OR). Signals were amplified and sampled at 

500 Hz with an online bandpass filter (0.1 to 100 Hz, 16-bit precision). Offline EEG 

data were filtered with a 60 Hz notch filter, 0.5 Hz high-pass filter, bad channels 

identified and removed, and bad sections of data identified and removed. A 20-

component PCA/ICA was used to visually identify and remove obvious blink, eye 

movement, and other artifactual components. Bad channels were replaced using a 

spherical spline interpolation. Data from the eyes open and eyes closed conditions 

were collapsed for all analyses1 using a pre-registered fronto-central composite of 

F3/Fz/F4 analog channels2. See Finley et al., 2022 for additional details. 

Spectral parametrization: Fitting Oscillations and 1/f (FOOOF) 

EEG data were re-referenced to the average and Cz was imputed before the 

continuous resting data was epoched into 2 second segments with 50% overlap. Bad 

segments were rejected if there was a voltage deviation of +/- 100 µV in one or more 

channels. EEG spectral power was extracted using a 2 second Hamming window padded 

by a factor of 2 from 0 to 250 Hz in 0.25 Hz increments for all sensors, then analyzed 

using FOOOF 1.0.0 (Donoghue et al., 2020) to fit aperiodic and periodic components from 

                                                
1 Additional parallel analyses were conducted on eyes open and eyes closed data separately and are reported in the 
supplemental materials. Overall these analyses were consistent with the findings on the combined data. 
2 The fronto-central composite of F3/Fz/F4 was comprised of the EGI GSN200 electrode montage (Electrical 
Geodesics, Inc, 2007) sensors 12, 20, 21, 25, 29 (comprising the analog for F3), sensors 4, 5, 118, 119, 124 
(comprising the analog for F4), and sensor 11 (comprising the analog for Fz). Note this is an older montage than the 
EGI HydroCel nets. 
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2 to 40 Hz (estimated without a knee, peaks limited in width from 1-6 Hz, minimum peak 

height of 0.05, relative peak threshold of 1.5 standard deviations, and maximum of 6 

peaks). Aperiodic offset, exponent, and IAPF measures were extracted individually for 

the channels in the frontal F3/Fz/F4 ROI composite and then averaged. See Finley et al., 

2022 for additional details. 

Experimental Design and Statistical Analysis 
 

A summary of preregistered hypotheses and analyses are reported in Table 23. 

Additional details are available in our preregistration (https://osf.io/wyuca).  We used 

multilevel modeling implemented in R version 4.2.1 using the lmer() function within the 

lme4 package, which implements empirical Bayes slope estimation to handle missing 

data (Bates et al., 2015; R Core Team, 2022).  

As reported in our preregistration (https://osf.io/wyuca), we conducted a 

sensitivity analysis in G*Power 3.1. Based on the most conservative estimate of 

complete data from our preregistration of n = 207, we have 95% power to detect a 

Pearson’s correlation of r = |.24|. After our final sample size was known (n = 235), 

we conducted a simulation sensitivity analysis in R based on our most complex 

preregistered analysis in hypothesis 7 (i.e., hypothesis 7b and 7d, the interaction 

between MIDUS wave, age, and EEG metric), and determined we have 80% power 

                                                
3 As described in the Table 1 note, analyses reported in the manuscript deviate from the preregistered 
analyses, such that A) after careful examination for possible interactions with education and finding none, 
we decided to include education as a covariate instead of race, and B) the specific equations 
preregistered for analyses were overly conservative by including the interaction between the covariates 
with wave, as well as splitting up lag into separate terms instead of adding into a single term. These more 
conservative, complex analyses do not change the interpretations of our findings. Because the results do 
not change regardless of covariates or complexity of the analyses, we report the simplified analyses with 
education here, and report the preregistered analyses as well as simplified analyses with race instead of 
education as robustness checks in the supplemental materials. 
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to detect a small effect of B = 0.15. Simulation code is available at 

https://osf.io/sr4mb/. 
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Table 2: Summary of preregistered hypotheses and analyses 
Hypotheses Analytic Plan* Results 

H1: Cognitive function at time 1 
(indexed by the BTACT 
composite score) will be 
negatively associated 
with age. 

Multilevel linear model controlling for education, sex, 
and lag between waves in years as follows: 
 
Equation 1 
Level 1: 
!"#$%&'(#	*%+$&',+-. = 	01 + 0345(#-. + 6-.  
Level 2: 
01 = 711 + 71381:;#. + 71<8,&5=>5;. +

71?!@%$5&',+. + 71AB#" + C.  
03 = 731 + 73381:;#. 
 
H1: Negative coefficient for the main effect of age at 

time 1 (i.e., 713). 
 
H2: Negative coefficient for the interaction between  
Age and Wave (i.e., 733). 

H1: Supported for 
BTACT 
composite and 
both Executive 
Functioning and 
Episodic Memory 
subfactors. 

H2: Within-person changes in 
cognitive function 
(indexed by time 1 to time 
2 changes in BTACT 
composite score) will be 
moderated by age, such 
that older age will be 
associated with greater 
decline in cognitive 
function between time 1 
and 2. 

H2: Not supported. 

H3: Cognitive function at time 1 
(indexed by the BTACT 
composite score) will be 
positively associated with 
aperiodic exponent, such 
that flatter spectra will be 
associated with poorer 
cognitive function. 

Multilevel linear model controlling for education, sex, 
and lag between waves in years. The placeholder 
“EEG” is used to represent the different EEG metrics 
included separately in each of the models as per 
hypotheses. 
 
Equation 2 
Level 1: 
D,;+'&'(#	*%+$&',+-. = 	01 + 0345(#-. + 6-. 
Level 2: 
01 = 711 + 713!!E. + 71<8,&5=>5;. +

71?!@%$5&',+. + 71AB#" + C.   
03 = 731 + 733!!E.  
 
H3: Significant positive coefficient for the EEG metric 

(i.e., 713) when aperiodic exponent is included in 
the model. 

 
H4: Significant coefficient for the EEG by Wave 

interaction (i.e., 733) when aperiodic exponent is 
included in the model, such that flatter aperiodic 
spectra associated with faster decline in 
cognitive function. 

 
H5: Significant positive coefficient for the EEG metric 

(i.e., 713) when IAPF is included in the model. 
 
H6: Significant coefficient for the EEG by wave 

interaction (i.e., 733) when IAPF is included in 
the model, such that lower IAPF are associated 
with faster decline in cognitive function. 

H3: Supported for 
BTACT composite 
and Executive 
Functioning 
subfactor. 

H4: Within-person changes in 
cognitive function 
(indexed by time 1 to time 
2 changes in BTACT 
composite score) will be 
moderated by the 
aperiodic exponent, such 
that flatter spectra at time 
1 will be associated with 
greater decline in 
cognitive function 
between time 1 and 2. 

 
 
 

H4: Not supported. 

H5: Cognitive function at time 1 
(indexed by the BTACT 
composite score) will be 
positively associated with 
IAPF, such that lower 
IAPF will be associated 
with poorer cognitive 
function. 

H5: Not supported. 

H6: Within-person changes in 
cognitive function 
(indexed by time 1 to time 
2 changes in BTACT 

H6: Supported for 
BTACT composite. 
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composite score) will be 
moderated by IAPF, such 
that lower IAPF at time 1 
will be associated with 
greater decline in 
cognitive function 
between time 1 and 2. 

H7: The relationships between 
the aperiodic exponent, 
individual alpha peak 
frequency, and cognitive 
function outlined in H3-H6 
will be moderated by age, 
such that greater 
cognitive decline will be 
observed in older-aged 
participants with flatter 
aperiodic exponents and 
lower IAPF. This 
hypothesis can be broken 
down into 4 parts (a-d) as 
described in the “Analytic 
Plan”. 

Multilevel linear model controlling for education, sex, 
and lag between waves in years. The placeholder 
“EEG” is used to represent the different EEG metrics 
we aim to include in each of the models.  
 
Equation 3 
Level 1: 
D,;+'&'(#	*%+$&',+-. = 	01 + 0345(#-. + 6-. 
Level 2: 
01 = 711 + 713!!E. + 71<81:;#. + 71?!!E. ∗

81:;#. + 71A8,&5=>5;. + 71G!@%$5&',+. +
71HB#" + C.  

 
03 = 731 + 733!!E. + 73<81:;#. + 73?!!E. ∗

81:;#. + 73A8,&5=>5;. + 73GI5$#. + 73HB#"  
 
H7a: Significant coefficient for the interaction 

between the EEG by Age (i.e., 71?) when 
aperiodic exponent is included in the model, 
such that older individuals with flatter aperiodic 
spectra will show the poorest time 1 cognitive 
function. 

 
H7b: Significant coefficient for the interaction 

between the EEG by Age (i.e., 71?) when IAPF 
is included in the model, such that older 
individuals with lower IAPF will show the 
poorest time 1 cognitive function. 

 
H7c: Significant coefficient for the interaction 

between the EEG by Age by Wave (i.e., 73?) 
when aperiodic exponent is included in the 
model, such that older individuals with flatter 
aperiodic spectra will show the steepest 
decline in cognitive function. 

 
H7d: Significant coefficient for the interaction 

between the EEG by Age by Wave (i.e., 73?) 
IAPF is included in the model, such that older 
individuals with lower IAPF will show the 
steepest decline in cognitive function. 

H7a: Not supported. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H7b: Not supported. 

H7c: Not supported. 

H7d: Not supported. 

* The exact preregistered analyses were overly complicated and conservative by including lag as two separate 
variables (instead of a linear addition into a single variable), as well as the interaction between covariates and 
Wave. Additionally, after extensive testing for possible interactions with education and finding none, we decided 
to include education as a more appropriate covariate than race. We report the preregistered analyses in the 
supplemental materials, which do not change the interpretation of the findings. 
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We conducted all analyses on the full BTACT composite as well as separately for 

the episodic memory and executive functioning factors to explore if one or both of the 

BTACT factors are driving effects. Parallel exploratory analyses on the associations with 

the aperiodic offset are described in the supplemental materials. We also explored 

whether the aperiodic exponent or IAPF are independently and uniquely associated with 

cognitive functioning, as well as if there is an interaction between the aperiodic 

exponent and IAPF associated with cognitive functioning, as follows: 

Equation 4: 

Level 1: 
D,;+'&'(#	*%+$&',+-. = 	01 + 0345(#-. + 6-.  
Level 2: 
01 = 711 + 713!"J,+#+&. + 71<K:L*. + 71?81:;#. + 71A!"J,+#+&. ∗ K:L*. +

71GM2M38,&5=>5;. + 71H!@%$5&',+. + 71PB#" + C.  
 

03 = 731 + 733Exponent + 73<K:L*. + 73?81:;#. + 73A!"J,+#+&. ∗ K:L*.  
 
Results 

Descriptive statistics for all variables as well as zero-order correlations are 

presented in Table 3. Additional analyses are reported in the supplemental materials, 

including analyses without controlling for sex and education and analyses accounting 

for the presence of twins and siblings to control for genetic dependencies. None of 

these variations on the analyses change the interpretations of the following analyses.
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Table 3: Correlations and descriptive statistics. 
 Mean 

(SD) 
n 

2.  
Total Lag 

3. M2 
Episodic 
Memory 

4. M3 
Episodic 
Memory 

5. M2 
Executive 
Function 

6. M3 
Executive 
Function 

7. M2 
BTACT 

Composite 

8. M3 
BTACT 

Composite 

9. Aperiodic 
Exponent 

10. 
IAPF 

1. Age 
(MIDUS 2 
Neuro) 

55.10 
(10.71)   
n = 235 

-0.12 
[-0.25, 0.01] 
p = 0.076 
n = 235 

-0.18 
[-0.30,-0.05] 
p = 0.010 
n = 228 

-0.24 
[-0.36,-0.11] 
p = 0.001 
n = 223 

-0.35 
[-0.46,-0.23] 
p < 0.001 
n = 228 

-0.32 
[-0.43,-0.20] 
p < 0.001 
n = 230 

-0.36 
[-0.47,-0.24] 
p < 0.001 
n = 224 

-0.34 
[-0.45,-0.21] 
p < 0.001 
n = 219 

-0.29 
[-0.40,-0.17] 
p < 0.001 
n = 235 

-0.23 
[-0.34,-0.10] 
p = 0.001 
n = 235 

2. Total Lag 
(M2 to M3 
Cognitive 
Projects, yrs) 

9.71 
(0.92)     
n = 235 

- 

-0.06 
[-0.19, 0.07] 
p = 0.389 
n = 228 

-0.07 
[-0.20, 0.06] 
p = 0.362 
n = 223 

-0.17 
[-0.29,-0.04] 
p = 0.018 
n = 228 

-0.30 
[-0.41,-0.17] 
p < 0.001 
n = 230 

-0.16 
[-0.29,-0.03] 
p = 0.021 
n = 224 

-0.29 
[-0.41,-0.17] 
p < 0.001 
n = 219 

0.14 
[0.01, 0.26] 
p = 0.049 
n = 235 

-0.06 
[-0.18, 0.07] 
p = 0.416 
n = 235 

3. Episodic 
Memory 
MIDUS 2 

0.00 
(0.93)     
n = 228 

 - 

0.56 
[0.46, 0.64] 
p < 0.001 
n = 217 

0.36 
[0.24, 0.47] 
p < 0.001 
n = 224 

0.32 
[0.19, 0.43] 
p < 0.001 
n = 223 

0.56 
[0.47, 0.65] 
p < 0.001 
n = 224 

0.41 
[0.29, 0.52] 
p < 0.001 
n = 213 

0.03 
[-0.10, 0.16] 
p = 0.639 
n = 228 

0.16 
[0.03, 0.28] 
p = 0.023 
n = 228 

4. Episodic 
Memory 
MIDUS 3 

-0.11 
(1.10)     
n = 223 

  - 

0.26 
[0.13, 0.38] 
p < 0.001 
n = 217 

0.37 
[0.25, 0.48] 
p < 0.001 
n = 219 

0.39 
[0.27, 0.50] 
p < 0.001 
n = 213 

0.59 
[0.49, 0.67] 
p < 0.001 
n = 219 

0.01 
[-0.12, 0.14] 
p = 0.867 
n = 223 

0.19 
[0.06, 0.31] 
p = 0.007 
n = 223 

5. Executive 
Function 
MIDUS 2 

0.01 
(0.65)     
n = 228 

   - 

0.69 
[0.62, 0.76] 
p < 0.001 
n = 223 

0.97 
[0.96, 0.98] 
p < 0.001 
n = 224 

0.68 
[0.60, 0.74] 
p < 0.001 
n = 213 

0.13 
[0.00, 0.26] 
p = 0.054 
n = 228 

0.14 
[0.01, 0.27] 
p = 0.045 
n = 228 

6. Executive 
Function 
MIDUS 3 

-0.44 
(0.74)     
n = 230 

    - 

0.69 
[0.61, 0.75] 
p < 0.001 
n = 219 

0.97 
[0.96, 0.98] 
p < 0.001 
n = 219 

0.04 
[-0.09, 0.17] 
p = 0.566 
n = 230 

0.19 
[0.06, 0.31] 
p = 0.006 
n = 230 

7. BTACT 
Composite 
MIDUS 2 

0.01 
(0.62)     
n = 224 

     - 
0.70 

[0.63, 0.77] 
p < 0.001 
n = 209 

0.13 
[0.00, 0.26] 
p = 0.062 
n = 224 

0.16 
[0.03, 0.29] 
p = 0.020 
n = 224 

8. BTACT 
Composite 
MIDUS 3 

-0.37 
(0.71)     
n = 219 

      - 

0.04 
[-0.09, 0.17] 
p = 0.566 
n = 219 

0.21 
[0.08, 0.34] 
p = 0.003 
n = 219 

9. Aperiodic 
Exponent 1.20 

(0.28)     
n = 235 

       - 

-0.16 
[-0.28,-0.03] 
p = 0.020 
n = 235 

10. IAPF 9.60 
(0.98)     
n = 229 

        - 
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Time Effects: Hypotheses 1 and 2 

To test hypothesis 1 (cognitive function at time 1 will be negatively associated with 

age) and hypothesis 2 (within-person changes in cognitive function will be moderated by 

age), we conducted a multilevel model as described in Table 2. Results are reported in 

Table 4. Although age was significantly related to episodic memory, executive 

functioning, and overall BTACT composite scores (p’s < .010) in support of hypothesis 

1, the age-by-wave interaction was not significant for any analysis, (p’s > 0.096), not 

supporting hypothesis 2. Given our sample size with Neuroscience data (n = 235) is 

much smaller than the smallest MIDUS subsample that previously reported an age by 

wave interaction (e.g. n = 2,518; dEpisodic Memory = -0.010,  dExecutive Function = -0.012, 

(Hughes et al., 2018), we may have been underpowered to detect this small interaction 

effect. 
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Table 4: Multilevel models to test hypothesis 1 and 2 

  Episodic Memory Executive Functioning BTACT Composite  
Predictors Estimates CI p Estimates CI p Estimates CI p 
Intercept (M2) -0.43 -0.60 – -0.26 <0.001 -0.07 -0.19 – 0.05 0.256 -0.12 -0.23 – -0.01 0.028 

MIDUS Wave -0.13 -0.26 – -0.00 0.043 -0.43 -0.50 – -0.36 <0.001 -0.38 -0.45 – -0.31 <0.001 

Age -0.02 -0.03 – -0.01 0.001 -0.02 -0.03 – -0.02 <0.001 -0.02 -0.03 – -0.02 <0.001 

Sex 0.74 0.53 – 0.94 <0.001 0.11 -0.03 – 0.26 0.128 0.22 0.08 – 0.35 0.001 

Education 0.17 0.04 – 0.29 0.008 0.13 0.05 – 0.21 0.001 0.14 0.06 – 0.21 0.001 

Lag between 
Waves 

-0.10 -0.21 – 0.01 0.073 -0.21 -0.29 – -0.14 <0.001 -0.20 -0.27 – -0.13 <0.001 

MIDUS Wave X 
Age 

-0.01 -0.02 – 0.00 0.096 0.00 -0.01 – 0.01 0.994 -0.00 -0.01 – 0.01 0.707 

Random Effects    
σ2 0.46 0.16 0.14 
τ00 0.38 M2ID 0.22 M2ID 0.19 M2ID 
ICC 0.45 0.59 0.58 
N 234 M2ID 235 M2ID 234 M2ID 
Observations 451 458 443 
Marginal R2 / 
Conditional R2 

0.195 / 0.559 0.292 / 0.707 0.311 / 0.708 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 
= high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between 
Waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope 
estimation used (Bates et al., 2015). 
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Aperiodic Exponent Effects: Hypotheses 3 and 4 
 

To test hypothesis 3 (cognitive function at time 1 will be positively associated with 

aperiodic exponent) and hypothesis 4 (within-person changes in cognitive function will 

be moderated by aperiodic exponent), we conducted a multilevel model as described in 

Table 2. Results are reported in Table 5. We observed a positive association between 

the aperiodic exponent and the overall BTACT composite score (p = 0.018), such that 

larger aperiodic exponents were associated with better cognitive function, consistent 

with hypothesis 3. This association appeared to be primarily driven by the Executive 

Function factor (p = 0.012), while the effect for the Episodic Memory factor was in the 

same direction but not-significant (p = 0.254). However, flatter spectra at time 1 was not 

associated with greater declines in cognitive function, p’s > 0.120, not supporting 

hypothesis 4. 
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Table 5: Multilevel models to test hypothesis 3 and 4 

  Episodic Memory Executive Functioning BTACT Composite 
Predictors Estimates CI p Estimates CI p Estimates CI p 
Intercept (M2) -0.41 -0.59 – -0.23 <0.001 -0.05 -0.18 – 0.08 0.450 -0.11 -0.23 – 0.01 0.085 

MIDUS Wave -0.13 -0.26 – 0.00 0.051 -0.43 -0.51 – -0.36 <0.001 -0.38 -0.45 – -0.31 <0.001 

Exponent 0.26 -0.19 – 0.71 0.254 0.40 0.09 – 0.71 0.012 0.39 0.10 – 0.68 0.009 

Sex 0.71 0.49 – 0.93 <0.001 0.08 -0.08 – 0.24 0.306 0.19 0.04 – 0.34 0.012 

Education 0.17 0.04 – 0.30 0.008 0.13 0.04 – 0.21 0.003 0.13 0.05 – 0.21 0.002 

Lag between 
Waves 

-0.08 -0.19 – 0.04 0.187 -0.19 -0.28 – -0.11 <0.001 -0.18 -0.26 – -0.10 <0.001 

Wave x 
Exponent 

-0.02 -0.48 – 0.44 0.926 -0.21 -0.47 – 0.05 0.120 -0.16 -0.42 – 0.09 0.204 

Random Effects    
σ2 0.47 0.15 0.14 
τ00 0.44 M2ID 0.28 M2ID 0.25 M2ID 
ICC 0.48 0.65 0.65 
N 234 M2ID 235 M2ID 234 M2ID 
Observations 451 458 443 
Marginal R2 / 
Conditional R2 

0.136 / 0.551 0.179 / 0.710 0.182 / 0.710 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 
= high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between 
Waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope 
estimation used (Bates et al., 2015). 
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Individual Alpha Peak Frequency Effects: Hypotheses 5 and 6  

To test hypothesis 5 (cognitive function at time 1 will be positively associated with 

IAPF) and hypothesis 6 (within-person changes in cognitive function will be moderated 

by IAPF, such that lower IAPF at time 1 will be associated with greater decline in 

cognitive function), we conducted a multilevel model as described in Table 2. Results 

are reported in Table 6. Hypothesis 5 was not supported. The effect of IAPF on episodic 

memory scores, executive function, or the overall composite were not significant, p’s > 

0.055. However, the direction of the coefficients were in the predicted direction. 

Hypothesis 6 was supported and in the predicted direction (p = 0.047), such that lower 

IAPF at time 1 were associated with greater declines in cognitive function as depicted in 

Figure 2. 
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Table 6: Multilevel models to test hypothesis 5 and 6 

  Episodic Memory Executive Functioning BTACT Composite 
Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.40 -0.57 – -0.22 <0.001 -0.03 -0.16 – 0.09 0.596 -0.09 -0.21 – 0.03 0.146 

MIDUS Wave -0.13 -0.25 – 0.00 0.052 -0.43 -0.51 – -0.36 <0.001 -0.38 -0.45 – -0.31 <0.001 

IAPF 0.12 -0.00 – 0.25 0.055 0.07 -0.02 – 0.16 0.115 0.08 -0.00 – 0.16 0.058 

Sex 0.68 0.47 – 0.89 <0.001 0.06 -0.10 – 0.21 0.469 0.16 0.02 – 0.31 0.030 

Education 0.17 0.05 – 0.30 0.007 0.14 0.05 – 0.22 0.002 0.13 0.05 – 0.21 0.001 

Lag between 
Waves 

-0.06 -0.17 – 0.06 0.326 -0.17 -0.26 – -0.09 <0.001 -0.16 -0.24 – -0.08 <0.001 

Wave x IAPF 0.07 -0.06 – 0.20 0.281 0.07 -0.00 – 0.15 0.061 0.07 0.00 – 0.14 0.047 

Random Effects    
σ2 0.47 0.15 0.13 
τ00 0.42 M2ID 0.28 M2ID 0.25 M2ID 
ICC 0.47 0.64 0.65 
N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 
Marginal R2 / 
Conditional R2 

0.156 / 0.553 0.188 / 0.711 0.196 / 0.715 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = 
high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves 
(i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope 
estimation used (Bates et al., 2015). 
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Figure 2: Wave by Individual Peak Alpha Frequency Interaction Plot. Plot depicting the two-way interaction wave X 
individual peak alpha frequency reported in Table 6 with 95% confidence interval error bars. Time 1 cognition assessed at 
MIDUS2 Cognitive Project, and time 2 cognition was assessed at the MIDUS 3 Cognitive Project.
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Moderation of EEG Metrics by Age: Hypothesis 7 

To test hypothesis 7a (older individuals with lower aperiodic exponents will show 

the poorest time 1 cognitive function) and hypothesis 7c (older individuals with lower 

aperiodic exponents will show the steepest decline in cognitive function), we conducted 

a multilevel model as described in Table 2. Results are reported in Table 7. Hypothesis 

7a was not confirmed as the interaction between aperiodic exponent and age was non-

significant for all BTACT scores, p’s > 0.632. Hypothesis 7c was not supported as the 

wave by aperiodic exponent by age interaction was non-significant, p’s > 0.201. 

To test hypothesis 7b (older individuals with lower IAPF will show the poorest 

time 1 cognitive function) and hypothesis 7d (older individuals with lower IAPF will show 

the steepest decline in cognitive function), we conducted a multilevel model as 

described in Table 2. Results are reported in Table 8. Hypothesis 7b was not confirmed 

as the interaction between IAPF and age was non-significant for all BTACT scores, p’s 

> 0.374. Hypothesis 7c was not significant as the wave by IAPF by age interaction was 

non-significant, p’s > 0.301. 
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Table 7: Multilevel models to test hypothesis 7a and 7c 

  Episodic Memory Executive Functioning BTACT Composite 
Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.44 -0.62 – -0.26 <0.001 -0.06 -0.18 – 0.06 0.340 -0.12 -0.23 – -0.00 0.046 

MIDUS Wave -0.11 -0.24 – 0.03 0.122 -0.43 -0.50 – -0.35 <0.001 -0.38 -0.46 – -0.31 <0.001 

Exponent 0.07 -0.38 – 0.52 0.748 0.16 -0.14 – 0.46 0.304 0.15 -0.13 – 0.43 0.290 

Age -0.02 -0.03 – -0.01 0.002 -0.02 -0.03 – -0.01 <0.001 -0.02 -0.03 – -0.01 <0.001 

Sex 0.73 0.52 – 0.94 <0.001 0.11 -0.04 – 0.26 0.140 0.22 0.08 – 0.36 0.002 

Education 0.16 0.04 – 0.29 0.010 0.13 0.05 – 0.21 0.002 0.13 0.06 – 0.21 0.001 

Lag between Waves -0.10 -0.21 – 0.01 0.080 -0.22 -0.29 – -0.14 <0.001 -0.20 -0.27 – -0.13 <0.001 

Wave x Exponent -0.14 -0.62 – 0.33 0.557 -0.23 -0.50 – 0.05 0.104 -0.19 -0.45 – 0.08 0.166 

Wave X Age -0.01 -0.02 – 0.00 0.122 -0.00 -0.01 – 0.01 0.687 -0.00 -0.01 – 0.00 0.476 

Exponent X Age -0.01 -0.06 – 0.04 0.677 0.01 -0.02 – 0.04 0.632 0.01 -0.02 – 0.03 0.695 

Wave X Exponent X 
Age 

0.03 -0.02 – 0.08 0.201 0.00 -0.02 – 0.03 0.755 0.00 -0.02 – 0.03 0.858 

Random Effects    
σ2 0.46 0.16 0.14 
τ00 0.39 M2ID 0.22 M2ID 0.19 M2ID 
ICC 0.46 0.59 0.58 
N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 
Marginal R2 / 
Conditional R2 

0.195 / 0.563 0.294 / 0.710 0.311 / 0.710 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or 
less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and 
MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015). 

 
Table 8: Multilevel models to test hypothesis 7b and 7d 
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  Episodic Memory Executive Functioning BTACT 

Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.42 -0.59 – -0.24 <0.001 -0.06 -0.18 – 0.06 0.360 -0.11 -0.22 – 0.00 0.052 

MIDUS Wave -0.13 -0.26 – 0.00 0.057 -0.44 -0.52 – -0.36 <0.001 -0.39 -0.46 – -0.32 <0.001 

IAPF 0.08 -0.05 – 0.21 0.225 0.01 -0.07 – 0.10 0.797 0.02 -0.06 – 0.10 0.610 

Age -0.02 -0.03 – -0.01 0.005 -0.02 -0.03 – -0.02 <0.001 -0.02 -0.03 – -0.02 <0.001 

Sex 0.72 0.51 – 0.93 <0.001 0.11 -0.04 – 0.25 0.145 0.21 0.08 – 0.35 0.002 

Education 0.17 0.04 – 0.29 0.009 0.14 0.06 – 0.22 0.001 0.14 0.06 – 0.21 <0.001 

Lag between Waves -0.09 -0.20 – 0.02 0.116 -0.21 -0.29 – -0.13 <0.001 -0.19 -0.26 – -0.12 <0.001 

Wave x IAPF 0.05 -0.09 – 0.18 0.483 0.07 -0.01 – 0.15 0.071 0.07 -0.01 – 0.14 0.076 

Wave X Age -0.01 -0.02 – 0.00 0.165 0.00 -0.01 – 0.01 0.741 -0.00 -0.01 – 0.01 0.994 

IAPF X Age 0.00 -0.01 – 0.01 0.836 0.00 -0.00 – 0.01 0.350 0.00 -0.00 – 0.01 0.374 

Wave X IAPF X Age 0.00 -0.01 – 0.01 0.896 -0.00 -0.01 – 0.00 0.301 -0.00 -0.01 – 0.00 0.379 

Random Effects    
σ2 0.47 0.15 0.14 
τ00 0.38 M2ID 0.22 M2ID 0.19 M2ID 
ICC 0.45 0.59 0.58 
N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 
Marginal R2 / 
Conditional R2 

0.203 / 0.559 0.298 / 0.713 0.318 / 0.715 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or 
less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and 
MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015). 
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Combined Effects of Aperiodic Exponent and Individual Peak Alpha Frequency: 

Exploratory Analysis 

We also explored whether the aperiodic exponent or IAPF are independently and 

uniquely associated with cognitive functioning, as well as if there an interaction between 

the aperiodic exponent and IAPF associated with cognitive functioning. Results of these 

analyses are in Table 9. There was a significant Wave by Aperiodic Exponent by IAPF 

interaction on the overall BTACT composite (p = 0.010), which was driven primarily by 

the Executive Functioning Factor (p = 0.013). These interactions are plotted in Figure 3 

with 95% confidence bands.  

As shown in Table 10, we examined the 3-way interaction by calculating the 

slope of the change in cognitive function over waves by each EEG metric while holding 

the other EEG metric constant at a low or high level by centering each EEG metric 

separately at low (-1 SD below the mean) and high (+1 above the mean). This is 

computationally equivalent to simple slopes analyses in regression (Aiken and West, 

1991) at the second level of the multilevel model, and represents the slopes of the lines 

in Figure 2. More specifically, after centering one EEG metric at the low or high level, 

we examined the !"#  term from Equation 4. These analyses suggest that for individuals 

who have higher aperiodic exponents, having higher IAPF is associated with less 

decline in the BTACT overall composite (b = 0.15, p = 0.002) driven primarily by the 

executive function factor (b = 0.15, p = 0.004), whereas there was no significant 

relationship between IAPF and cognitive decline for individuals with low aperiodic 

exponents. For individuals with low IAPF, having a steeper aperiodic exponent is 

associated with faster cognitive decline for the overall BTACT composite (b = -0.36, p = 
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0.025) driven primarily by the executive function factor (b = -0.42, p = 0.013), whereas 

there was no significant relationship between aperiodic exponent and cognitive decline 

for individuals with high IAPF. Put another way, this suggests that individuals with 

“mismatched” IAPF and aperiodic exponents (e.g., higher exponent with lower IAPF) 

tend to experience faster rates of cognitive decline over a 10-year period compared to 

individuals with “matching” IAPF and aperiodic exponents (e.g., higher exponent with 

higher IAPF; lower IAPF with lower aperiodic exponent). As shown in Figure 3, the 

pattern of association is similar in direction for episodic memory, although the 

interaction fails to reach significance. This may be because there was substantially less 

decline in episodic memory performance (M = -0.11) than in executive function in 

performance (M = -0.44) in standardized units, limiting our power to detect an effect. 
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Table 9: Multilevel models examine the interaction between aperiodic exponent and individual peak alpha frequency 

  Episodic Memory Executive Functioning BTACT 
Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.43 -0.60 – -0.25 <0.001 -0.07 -0.19 – 0.05 0.228 -0.13 -0.24 – -0.02 0.024 

MIDUS Wave -0.12 -0.25 – 0.01 0.069 -0.41 -0.49 – -0.34 <0.001 -0.37 -0.44 – -0.30 <0.001 

Exponent 0.06 -0.41 – 0.53 0.802 0.13 -0.19 – 0.45 0.417 0.13 -0.17 – 0.42 0.393 

IAPF 0.07 -0.06 – 0.20 0.269 0.02 -0.07 – 0.11 0.634 0.03 -0.05 – 0.11 0.482 

Age -0.02 -0.03 – -0.01 <0.001 -0.02 -0.03 – -0.02 <0.001 -0.02 -0.03 – -0.02 <0.001 

Sex 0.73 0.52 – 0.94 <0.001 0.11 -0.03 – 0.26 0.135 0.22 0.08 – 0.35 0.002 

Education 0.17 0.05 – 0.30 0.007 0.14 0.06 – 0.22 0.001 0.14 0.07 – 0.22 <0.001 

Lag between Waves -0.09 -0.21 – 0.02 0.116 -0.21 -0.29 – -0.13 <0.001 -0.20 -0.27 – -0.12 <0.001 

Wave X Exponent 0.09 -0.39 – 0.58 0.714 -0.08 -0.36 – 0.19 0.546 -0.03 -0.29 – 0.23 0.826 

Wave X IAPF 0.07 -0.06 – 0.20 0.314 0.06 -0.02 – 0.13 0.146 0.06 -0.01 – 0.13 0.118 

Exponent X IAPF -0.07 -0.51 – 0.38 0.773 -0.15 -0.44 – 0.15 0.327 -0.14 -0.42 – 0.13 0.316 

Wave X Exponent X IAPF 0.20 -0.26 – 0.67 0.397 0.34 0.07 – 0.61 0.013 0.33 0.08 – 0.59 0.010 

Random Effects    
σ2 0.47 0.15 0.13 
τ00 0.38 M2ID 0.23 M2ID 0.19 M2ID 
ICC 0.44 0.60 0.59 
N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 
Marginal R2 / Conditional R2 0.202 / 0.557 0.302 / 0.722 0.323 / 0.724 
Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or 
less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and 
MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015). 
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Figure 3: Wave by Aperiodic Exponent by Individual Peak Alpha Frequency Interaction Plot. Plot depicting the three-way 
interaction wave X aperiodic exponent X individual peak alpha frequency reported in Table 9, with wave depicted as the 
estimated change in cognitive function between the M2 and M3 Cognitive Pprojects. 
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Table 10: Examining the Wave X Aperiodic Exponent X Individual Peak Alpha Frequency 
interaction through the slope of the change in cognitive function over waves for each 
BTACT measure at high and low levels of each EEG metric. 
Change in BTACT Episodic Memory Factor from M2 to M3 
 Slope of IAPF 95% CI p-value 
Low Exponent (-1 SD) 0.01 -0.18 – 0.20 0.903 
High Exponent (+1 SD) 0.12 -0.05 – 0.30 0.173 
 Slope of Exponent 95% CI p-value 
Low IAPF (-1 SD) -0.11 -0.67 –0.45 0.709 
High IAPF (+1 SD) 0.29 -0.47 – 1.05 0.457 
Change in BTACT Executive Functioning Factor from M2 to M3 
 Slope of IAPF 95% CI p-value 
Low Exponent (-1 SD) -0.04 -0.15 – 0.07 0.482 
High Exponent (+1 SD) 0.15 0.05 – 0.25 0.004 
 Slope of Exponent 95% CI p-value 
Low IAPF (-1 SD) -0.42 -0.75 – -0.09 0.013 
High IAPF (+1 SD) 0.25 -0.17 – 0.67 0.244 
Change in BTACT Overall Composite from M2 to M3 
 Slope of IAPF 95% CI p-value 
Low Exponent (-1 SD) -0.04 -0.14 – 0.07 0.502 
High Exponent (+1 SD) 0.15 0.05 – 0.25 0.002 
 Slope of Exponent 95% CI p-value 
Low IAPF (-1 SD) -0.36 -0.67 – -0.04 0.025 
High IAPF (+1 SD) 0.30 -0.11 – 0.70 0.149 

 
 
 
 
Discussion 
 

In the current study, we investigated the role of periodic and aperiodic neural 

activity at rest measured from fronto-central sites in predicting cognitive decline in 

midlife and old age community dwelling adults. Due to their strong associations with age 

and cognitive impairment, we focused on the individual peak alpha frequency, or the 

frequency at which alpha oscillations peak (i.e., IAPF), and the slope of 1/f-like non-

oscillatory (i.e. the aperiodic exponent) activity computed from a composite of frontal 

sites. Using a sample across the adult lifespan (age range 36-83 at time of EEG 

assessment), we showed that the fronto-central aperiodic exponent was related to 
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cognitive function, such that flatter aperiodic exponents were related to worse cognitive 

function overall (e.g., hypothesis 3, Table 5). Additionally, IAPF was predictive of 

cognitive decline over approximately 10 years, such that lower IAPF was associated 

with more cognitive decline (e.g., hypothesis 6, Table 6). However, our exploratory 

analyses demonstrated that the relationships between aperiodic exponent, IAPF, and 

cognitive decline was moderated by the interaction between the fronto-central IAPF and 

fronto-central aperiodic exponent: decline was more severe in participants with 

“mismatched” measures (e.g., higher exponent with lower IAPF) compared to 

participants with “matching” measures (e.g., higher exponent with higher IAPF; lower 

IAPF with lower aperiodic exponent). Importantly, our results provide support for recent 

work and theoretical models that have linked both IAPF and the aperiodic exponent to 

individual differences in cognitive function and provide the first evidence that these 

measures of intrinsic brain function interact to predict cognitive decline and not just 

impairment.  

The declines in cognitive function associated with the IAPF and aperiodic 

exponent were largely driven by the executive function component of the BTACT. This 

may be due to the relatively modest decline in the episodic memory component 

resulting in a floor effect due to relatively restricted range of episodic memory decline. 

Alternatively, it may be that our choice of fronto-central sites is uniquely sensitive to 

changes in executive functioning as they are closer to prefrontal cortex regions. 

Additional research in samples with larger declines in episodic memory are needed to 

begin to tease apart these possibilities.  
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In previous studies, age-related slowing of IAPF (e.g., (Grandy et al., 2013b; 

Scally et al., 2018), and slower IAPF in general, have been consistently associated with 

reduced processing speed, poorer working memory, and reduced cognitive capacity 

(Grandy et al., 2013a). The age-related slowing of alpha has been linked to alterations 

in inhibitory neural processes (e.g., the timing of neural inhibition), with the slowing 

observed in older adults attributed to an array of CNS pathology (e.g., vascular 

changes, white-matter lesions), as well as linked to mild and severe cognitive 

impairment (Babiloni et al., 2008; Kramberger et al., 2017). The frequency of alpha 

oscillations is also instrumental in the ‘gating’ of stimuli, with relatively slower IAPF 

being observed in individuals who struggle to rapidly adjust their attention to novel or 

task-relevant stimuli (Ramsay et al., 2021). However, previous work has almost 

exclusively focused on variations in the speed of oscillatory activity. While there was a 

significant IAPF by wave interaction, such that individuals with higher IAPF showed less 

cognitive decline, it was moderated by the higher-order aperiodic exponent by IAPF by 

wave interaction. This three-way interaction suggests that considering IAPF alone 

provides an incomplete understanding of neural activity and cognitive decline, and that 

consideration of non-oscillatory, aperiodic activity is also necessary.  

Current models of the aperiodic exponent propose that individual differences – 

and state differences – in the aperiodic exponent size reflect excitatory:inhibitory 

balance (Gao et al., 2017; Waschke et al., 2021). Within this framework, relatively flatter 

slopes (i.e., smaller exponents) are associated with poorer cognitive performance due 

to the propagation of relatively dysregulated excitatory activity, which manifests in 

‘noisier’, less efficient processing (Voytek et al., 2015; Dave et al., 2018; Pertermann et 
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al., 2019). Our findings are broadly consistent with this perspective, with flatter 

exponents predicting overall reduced executive function and BTACT scores, but 

highlight the need to consider periodic oscillatory activity in conjunction with aperiodic 

metrics.  

Simultaneous EEG/fMRI eyes-open resting recordings have found that the 

aperiodic exponent is related to increased BOLD signal in the auditory-salience-

cerebellar network (including components of the salience network), and decreased 

BOLD signal in prefrontal networks, suggesting that steeper aperiodic exponents may 

be associated with increased arousal and/or increased attention to external stimuli 

(Jacob et al., 2021). It may be the case that individuals with “mismatched” aperiodic 

exponent and IAPF reflect a suboptimal balance between arousal and attention to 

external stimuli (indexed by the aperiodic exponent) with the ability to flexibly gate 

external stimuli (indexed by the IAPF) to perform complex cognitive tasks. Future 

research should attend to this possibility and examine if there are differences in the 

neurobiological mechanisms underlying increased rates of decline between individuals 

with low aperiodic exponents plus high IAPF vs. individuals with high aperiodic 

exponents plus low IAPF, and if these differences may signal different underlying 

pathologies or vulnerabilities.  

While our work focused on periodic and aperiodic measures at rest, recent work 

suggests that the aperiodic exponent may change in response to a stimulus itself, 

consistent with an increase in inhibitory activity with an increase in attentional demand, 

independent from ERPs elicited by the stimulus. This suggests flexible shifts in the 

aperiodic exponent in response to task demands may be important for attention and 
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cognitive function (Gyurkovics et al., 2022).  Future work would benefit from exploration 

of whether flexible adjustments in aperiodic activity during tasks are integral to long term 

cognitive function and decline, and what if any role changes in IAPF during a task may 

play in moderating these effects. 

Given research into the aperiodic exponent is in its infancy, it is unclear exactly 

why a high exponent paired with a low IAPF would be associated with increased rates 

of cognitive decline.  It may be that the optimal excitatory:inhibitory balance reflected in 

the aperiodic exponent is not uniformly consistent across participants, but may vary with 

IAPF, such that higher aperiodic exponents may not always be better. Alternatively, 

excitatory:inhibitory balance can be shifted in complex ways between and across neural 

circuits, and the same endpoint may be achieved from reduction in excitatory activity or 

an increase in inhibitory activity, or some combination of both (Sohal and Rubenstein, 

2019). It is possible that age-related slowing of IAPF may be associated with specific 

patterns of changes in inhibitory and or excitatory activity, such that lower IAPF 

associated with higher aperiodic exponents may reflect a suboptimal shift in activity. 

Future research would benefit from examining IAPF and aperiodic exponent in normally 

and pathologically aging participants to begin to tease apart these potential 

explanations and to determine when – or if – these shifts reflect pathological aging. 

Future work should also focus on better understanding what is causing age-related 

shifts in IAPF and how this may impact excitatory:inhibitory balance. 

Overall, our findings challenge a simplistic view of the neurobehavioral and 

neuropsychological consequences of varied aperiodic and periodic activity. On one 

hand, gradual flattening is typically associated with poorer performance – potentially 
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reflecting an excess of excitatory to inhibitory activity, resulting in elevated noise. 

However, many diseases, such as Parkinson’s Disease, are characterized by an excess 

of inhibitory activity, and previous studies have emphasized that excessive inhibitory 

activity reduces behavioral flexibility (Song et al., 2021; Vinding et al., 2022; McKeown 

et al., 2023). These results hint at the importance of considering excitatory:inhibitory 

balance within an individual differences context, as what is optimal may differ based on 

a variety of neuroanatomical and physiological parameters. 

Our findings are particularly striking given the nearly 10-year span between data 

collection waves. This suggests that EEG resting measures of periodic and aperiodic 

neural activity may be a promising biomarker for predicting who is at risk for cognitive 

decline. Given the relative ease and low cost of collecting EEG data, these metrics 

could be easily scalable to provide important information to clinicians for early 

interventions in a rapidly aging population. However, our sample is relatively modest in 

size and is composed of community-dwelling aging individuals who are able and willing 

to travel to participate in a multi-component study. Future work is needed to replicate 

these results in additional samples as well as investigate these measures in a variety of 

clinical samples and samples varying in demographic characteristics (including but not 

limited to race, ethnicity, education, and socioeconomic status) to further investigate the 

utility of IAPF and aperiodic exponent as a risk factor for accelerated cognitive decline. 

Particularly important would be a longitudinal study with repeated EEG and cognitive 

assessments completed at smaller time lags to assess when in aging measures of IAPF 

and aperiodic exponent signal increase the risk of cognitive decline. 
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Our results are, however, limited by the lack of resting EEG measures at both 

time points. Although the MIDUS Neuroscience M3 project was recently completed, 

EEG data was not recorded. The lack of a second measurement point prevents us from 

partially out the variance associated with longitudinal change in aperiodic activity and 

IAPF and examining whether this predicts a change in cognitive function. Moreover, we 

are unable to examine how individual differences in EEG predict cognitive change 

independently from the intra-individual changes. Given the substantial age-related 

differences (Hill et al., 2022; Merkin et al., 2022) and changes (Chini et al., 2022) in 

aperiodic activity and IAPF, we anticipate that the inclusion of a second measurement 

point would increase the sensitivity of our model.  

In summary, our study highlights the importance of considering periodic and 

aperiodic measures in combination when examining resting-state EEG and measures of 

cognitive decline. In particular, a “mismatch” between low IAPF and high aperiodic 

exponent is associated with faster rates of cognitive decline over 10 years. Once 

considered meaningless, invariant noise, the features of the 1/f aperiodic neural activity 

are being recognized as an important feature of EEG signals, potentially reflecting 

global excitatory:inhibitory balance. Our work further emphasizes that aperiodic activity 

is a critical feature of EEG signals and needs to be systematically investigated in 

conjunction with more typical periodic features, to fully understand the links between 

neural activity and cognition across the lifespan. 
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