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Abstract

Measures of intrinsic brain function at rest show promise as predictors of cognitive
decline in humans, including EEG metrics such as individual alpha peak frequency
(IAPF) and the aperiodic exponent, reflecting the strongest frequency of alpha
oscillations and the relative balance of excitatory:inhibitory neural activity, respectively.
Both IAPF and the aperiodic exponent decrease with age and have been associated
with worse executive function and working memory. However, few studies have jointly
examined their associations with cognitive function, and none have examined their
association with longitudinal cognitive decline rather than cross-sectional impairment. In
a preregistered secondary analysis of data from the longitudinal Midlife in the United
States (MIDUS) study, we tested whether IAPF and aperiodic exponent measured at
rest predict cognitive function (N = 235; age at EEG recording M = 55.10, SD = 10.71)
over 10 years. The IAPF and the aperiodic exponent interacted to predict decline in
overall cognitive ability, even after controlling for age, sex, education, and lag between
data collection timepoints. Post-hoc tests showed that “mismatched” IAPF and aperiodic
exponents (e.g., higher exponent with lower IAPF) predicted greater cognitive decline
compared to “matching” IAPF and aperiodic exponents (e.g., higher exponent with
higher IAPF; lower IAPF with lower aperiodic exponent). These effects were largely
driven by measures of executive function. Our findings provide the first evidence that
IAPF and the aperiodic exponent are joint predictors of cognitive decline from midlife

into old age and thus may offer a useful clinical tool for predicting cognitive risk in aging.
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Significance Statement
Measures of intrinsic brain function at rest assessed noninvasively from the scalp using
electroencephalography (EEG) show promise as predictors of cognitive decline in
humans. Using data from 235 participants from the Midlife in the United States (MIDUS)
longitudinal study, we found two resting EEG markers (individual peak alpha frequency
and aperiodic exponent) interacted to predict cognitive decline over a span of 10 years.
Follow-up analyses revealed that “mismatched” markers (i.e., high in one and low in the
other) predicted greater cognitive decline compared to “matching” markers. Because of
the low cost and ease of collecting EEG data at rest, the current research provides
evidence for possible scalable clinical applications for identifying individuals at risk for

accelerated cognitive decline.
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Introduction

Measures of spontaneous (i.e., resting-state) neural activity yield important
insights into the intrinsic functioning of the brain. For example, individual alpha peak
frequency (IAPF), the frequency at which power in the alpha band (i.e., 7-13 Hz) is the
strongest, is negatively correlated with age (Klimesch, 1997; Clark et al., 2004; Finley et
al., 2022; Merkin et al., 2023), and may reflect neuroanatomical differences and age-
related changes in white matter (Babiloni et al., 2008; Valdés-Hernandez et al., 2010;
Kramberger et al., 2017). Across adulthood, higher IAPF is associated with better
performance on multiple metrics of cognitive function, including working memory,
reading comprehension, and a general intelligence factor (e.g., (Klimesch, 1997;
Angelakis et al., 2004; Clark et al., 2004; Grandy et al., 2013a).

In addition to the periodic (i.e., oscillatory) activity found in canonical EEG bands,
aperiodic activity is present across all frequencies. Aperiodic activity follows a 1/f
function and can be described by the slope of the function (referred to as the exponent),
and where the function crosses the y-axis (referred to as the offset; Donoghue et al.,
2020). The aperiodic exponent is thought to correspond to the synchronized firing of
neurons, such that flatter spectra are indicative of reduced synchronization, or greater
neural noise (Voytek and Knight, 2015). Recent data suggest that the aperiodic
exponent is related to the ratio of excitatory to inhibitory neural activity, such that flatter
slopes (i.e., smaller exponents) relate to greater excitatory to inhibitory activity (Gao et
al., 2017), while the offset is related to neural spiking rates, such that greater spiking
activity is reflected in greater overall spectral power (Manning et al., 2009; Miller et al.,

2012). Although research on aperiodic activity is in its infancy, work has associated
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aperiodic activity, particularly the aperiodic exponent, with age and cognitive
functioning, such that flatter spectra are associated with older age (Voytek et al., 2015;
Finley et al., 2022; Merkin et al., 2023), physiological markers of cognitive decline (Tran
et al., 2020), reduced processing speed (Ouyang et al., 2020), and mediates cross-
sectional associations between age and cognitive function (Voytek et al., 2015).

This study aims to answer two main research questions: 1. To what extent are
individual differences in the slope of the aperiodic exponent and IAPF measured at
fronto-central sites associated with cognitive function in adults, both cross-sectionally
and longitudinally? 2. Is the slope of the aperiodic exponent or IAPF more strongly
associated with cognitive function in adults both cross-sectionally and longitudinally?

To answer these questions, we examined the relationship between aperiodic
exponent and IAPF in preregistered analyses with longitudinally assessed cognitive
function in the Midlife in the United States (MIDUS) dataset. Prior work with MIDUS
EEG data has found IAPF and aperiodic exponent are both negatively correlated with
age, such that older individuals have lower IAPF and flatter aperiodic component slopes
(Finley et al., 2022). Prior analyses of the full MIDUS2 and MIDUSS longitudinal sample
with Cognitive Project data found cross-sectional negative relationships between
cognitive performance and age (n = 4,268; Lachman et al., 2014) as well as longitudinal
negative relationships (n = 2,518; Hughes et al., 2018), such that older adults showed a
steeper longitudinal decline. Sex was related to initial performance, such that women
performed better on the episodic memory factor and men performed better on the
executive functioning factor, with no influence of sex on the rate of longitudinal change

(Hughes et al., 2018). The relationship between cognitive function and age was
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replicated in two subsamples (Hamm et al., 2020, n = 732; Knight et al., 2020, n = 843).
No work to date has examined the MIDUS2 resting EEG data with any cognitive data.
Materials and Methods

Preregistration of the following methods, hypotheses, and analyses are publicly
available on OSF at https://osf.io/wyuca.
Code Accessibility

All code used for all analyses and plots are publicly available on OSF at
https://osf.io/srdmb/. Additionally, all data are available at

https://midus.wisc.edu/data/index.php. The demographic and cognitive task data are

available through the MIDUS Portal or via the University of Michigan’s Inter-university
Consortium of Political and Social Research (ICPSR). The EEG data are available upon
request through the MIDUS Neuroimaging and Psychophysiology Repository.
Participants

This study uses data from the MIDUS longitudinal dataset, with variables
collected during the MIDUS 2 Survey, Cognitive, and Neuroscience Projects and as well
as MIDUS 3 Cognitive Project. See Figure 1 for a diagram of the study design and
participant flow. Education, sex, and race demographics were collected during the
MIDUS 2 Survey Project, which was a prerequisite for participation in additional MIDUS
2 Projects. As depicted in Figure 1, MIDUS 2 and MIDUS 3 Cognitive Project are
longitudinal and collected approximately 10 years apart (i.e., total lag; M = 9.71 years,
SD = 0.92), while the MIDUS 2 Cognitive Project was completed before the MIDUS 2
Neuroscience Project (M = 2.06 years, SD = 1.26). Additional details about the study

are available at http://midus.wisc.edu.
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MIDUS 2 Cognitive MIDUS 3 Cognitive
MIDUS 2 Survey Project MIDUS 2 Project
Project (2004-2006) Neuroscience (2013-2014)
(2004-2005) Project
BTACT Composite | (2004-2006) m=p-| BTACT Composite
Education Executive Function Executive Function
Sex subfactor Age subfactor
Race Episodic Memory EEG Metrics Episodic Memory
subfactor subfactor
Lagin years Lag in years
M =2.06, SD = 1.26, }\ M =7.65,5D = 1.71,
0.25-4.92 4.33-11.25

Total Lag in years
M =9.71,SD=0.92,
8.25-12.50

Figure 1. Participant flow and at which timepoint data was collected.

Based on our preregistered exclusion criteria, participants were excluded if they
had poor FOOOF algorithm fit (defined as more than 3 standard deviations below the
mean in R? model fit for the frontal composite (n = 4); see section “Spectral
parametrization: Fitting Oscillations and 1/f (FOOOF)” for more information), or had
missing data from more than 50% of the frontal composite for any one EEG measure
(note that no participants were excluded for this reason). Additionally, participants
needed to participate in at least one wave of the Cognitive Project and have sufficient
task data to compute at least one cognitive function metric. Our final sample consisted

of n = 235 participants. See Table 1 for demographic information.
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Table 1: Participant Demographics, n = 235
Age in Years: Sex
MIDUS 2 Neuroscience Project
Male 94 (40.0%
M(SD) =55.10 (10.71) Female 141((60.002))
36-49 85 (36.2%) Race
50-65 105 (44.7%) White 173 (73.6%)
66-83 45 (19.1%)
Education Total Black,
: o Indigenous, and o
High school or less 67 (29.3%) People of Color 62 (26.4%)
Some college 70 (30.6%) (BIPOC)
Bachelor’s or higher 92 (40.2%)

Brief Test of Adult Cognition by Telephone (BTACT)

During the MIDUS 2 and MIDUS 3 Cognitive Project, participants completed
the Brief Test of Adult Cognition by Telephone (BTACT; Tun and Lachman, 2006;
Lachman et al., 2014; Hughes et al., 2018), which includes 7 neuropsychological
tasks that load onto an episodic memory factor (immediate word list recall, delayed
word list recall) and executive functioning factor (backward digit span, category verbal
fluency, number series, 30 seconds and counting task, stop and go switch task mixed
trials), as well as an overall BTACT composite score. The BTACT has good construct
validity and performs comparably to lab-based assessments (Lachman et al., 2014).
Participants' performance on the BTACT (composite and separate episodic memory
and the executive functioning factors) were standardized to the MIDUS 2 sample
scores (i.e., individual task measures were z-scored within the retained sample) and
averaged across relevant tasks. BTACT scores were not computed for factors or the
overall composite if participants were missing data for one or more tasks. See

(Lachman et al., 2014) for additional details on the BTACT procedure.
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EEG Recording and Preprocessing

Resting-state EEG data were recorded in one-minute periods (3 minutes eyes
open, 3 minutes eyes closed) using a 128-channel geodesic net of Ag/AgCI
electrodes encased in saline-dampened sponges with an online vertex (Cz) reference
(Electrical Geodesics, Inc [EGI], Eugene, OR). Signals were amplified and sampled at
500 Hz with an online bandpass filter (0.1 to 100 Hz, 16-bit precision). Offline EEG
data were filtered with a 60 Hz notch filter, 0.5 Hz high-pass filter, bad channels
identified and removed, and bad sections of data identified and removed. A 20-
component PCA/ICA was used to visually identify and remove obvious blink, eye
movement, and other artifactual components. Bad channels were replaced using a
spherical spline interpolation. Data from the eyes open and eyes closed conditions
were collapsed for all analyses' using a pre-registered fronto-central composite of
F3/Fz/F4 analog channels?. See Finley et al., 2022 for additional details.

Spectral parametrization: Fitting Oscillations and 1/f (FOOOF)

EEG data were re-referenced to the average and Cz was imputed before the
continuous resting data was epoched into 2 second segments with 50% overlap. Bad
segments were rejected if there was a voltage deviation of +/- 100 uV in one or more
channels. EEG spectral power was extracted using a 2 second Hamming window padded
by a factor of 2 from 0 to 250 Hz in 0.25 Hz increments for all sensors, then analyzed

using FOOOF 1.0.0 (Donoghue et al., 2020) to fit aperiodic and periodic components from

! Additional parallel analyses were conducted on eyes open and eyes closed data separately and are reported in the
supplemental materials. Overall these analyses were consistent with the findings on the combined data.

2 The fronto-central composite of F3/Fz/F4 was comprised of the EGI GSN200 electrode montage (Electrical
Geodesics, Inc, 2007) sensors 12, 20, 21, 25, 29 (comprising the analog for F3), sensors 4, 5, 118, 119, 124
(comprising the analog for F4), and sensor 11 (comprising the analog for Fz). Note this is an older montage than the
EGI HydroCel nets.
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2 to 40 Hz (estimated without a knee, peaks limited in width from 1-6 Hz, minimum peak
height of 0.05, relative peak threshold of 1.5 standard deviations, and maximum of 6
peaks). Aperiodic offset, exponent, and IAPF measures were extracted individually for
the channels in the frontal F3/Fz/F4 ROl composite and then averaged. See Finley et al.,
2022 for additional details.
Experimental Design and Statistical Analysis

A summary of preregistered hypotheses and analyses are reported in Table 23.
Additional details are available in our preregistration (https://osf.io/wyuca). We used
multilevel modeling implemented in R version 4.2.1 using the Imer() function within the
Ime4 package, which implements empirical Bayes slope estimation to handle missing
data (Bates et al., 2015; R Core Team, 2022).

As reported in our preregistration (https://osf.io/wyuca), we conducted a
sensitivity analysis in G*Power 3.1. Based on the most conservative estimate of
complete data from our preregistration of n = 207, we have 95% power to detect a
Pearson’s correlation of r = |.24|. After our final sample size was known (n = 235),
we conducted a simulation sensitivity analysis in R based on our most complex
preregistered analysis in hypothesis 7 (i.e., hypothesis 7b and 7d, the interaction

between MIDUS wave, age, and EEG metric), and determined we have 80% power

3 As described in the Table 1 note, analyses reported in the manuscript deviate from the preregistered
analyses, such that A) after careful examination for possible interactions with education and finding none,
we decided to include education as a covariate instead of race, and B) the specific equations
preregistered for analyses were overly conservative by including the interaction between the covariates
with wave, as well as splitting up lag into separate terms instead of adding into a single term. These more
conservative, complex analyses do not change the interpretations of our findings. Because the results do
not change regardless of covariates or complexity of the analyses, we report the simplified analyses with
education here, and report the preregistered analyses as well as simplified analyses with race instead of
education as robustness checks in the supplemental materials.
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to detect a small effect of B = 0.15. Simulation code is available at

https://osf.io/srdmb/.
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(indexed by the BTACT
composite score) will be
negatively associated
with age.

H2: Within-person changes in
cognitive function
(indexed by time 1 to time
2 changes in BTACT
composite score) will be
moderated by age, such
that older age will be
associated with greater
decline in cognitive
function between time 1
and 2.

and lag between waves in years as follows:

Equation 1
Level 1:

Executive Function;; = B, + BiWave;; + 1;;

Level 2:

Bo = Yoo + Yo1T1Age; + yozTotalLagj +
YosEducation; + yyuSex + ¢

Bi =Yoot y11T1Age;

H1: Negative coefficient for the main effect of age at
time 1 (i.e., yo1)-

H2: Negative coefficient for the interaction between
Age and Wave (i.e., y41)-

12
Table 2: Summary of preregistered hypotheses and analyses
Hypotheses Analytic Plan* Results
H1: Cognitive function at time 1 | Multilevel linear model controlling for education, sex, | H1: Supported for

BTACT
composite and
both Executive
Functioning and
Episodic Memory
subfactors.

H2: Not supported.

H3: Cognitive function at time 1
(indexed by the BTACT
composite score) will be
positively associated with
aperiodic exponent, such
that flatter spectra will be
associated with poorer
cognitive function.

H4: Within-person changes in
cognitive function
(indexed by time 1 to time
2 changes in BTACT
composite score) will be
moderated by the
aperiodic exponent, such
that flatter spectra at time
1 will be associated with
greater decline in
cognitive function
between time 1 and 2.

H5: Cognitive function at time 1
(indexed by the BTACT
composite score) will be
positively associated with
IAPF, such that lower
IAPF will be associated
with poorer cognitive
function.

H6: Within-person changes in
cognitive function
(indexed by time 1 to time
2 changes in BTACT

Multilevel linear model controlling for education, sex,
and lag between waves in years. The placeholder
“‘EEG” is used to represent the different EEG metrics
included separately in each of the models as per
hypotheses.

Equation 2
Level 1:

Cognitive Function;; = B, + piWave;; + y;;

Level 2:

Bo =Yoo + yOIEEG]- + yozTotalLagj +
yogEducationj + YosSex + ¢

Bi =Yoot Y11 EEG;

H3: Significant positive coefficient for the EEG metric
(i.e., Yo1) When aperiodic exponent is included in
the model.

H4: Significant coefficient for the EEG by Wave
interaction (i.e., y,,) when aperiodic exponent is
included in the model, such that flatter aperiodic
spectra associated with faster decline in
cognitive function.

H5: Significant positive coefficient for the EEG metric
(i.e., ¥o1) when IAPF is included in the model.

H6: Significant coefficient for the EEG by wave
interaction (i.e., y;;) when IAPF is included in
the model, such that lower |APF are associated
with faster decline in cognitive function.

H3: Supported for
BTACT composite
and Executive
Functioning
subfactor.

H4: Not supported.

H5: Not supported.

H6: Supported for
BTACT composite.
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composite score) will be
moderated by IAPF, such
that lower IAPF at time 1
will be associated with
greater decline in
cognitive function
between time 1 and 2.

H7: The relationships between
the aperiodic exponent,
individual alpha peak
frequency, and cognitive
function outlined in H3-H6
will be moderated by age,
such that greater
cognitive decline will be
observed in older-aged
participants with flatter
aperiodic exponents and
lower IAPF. This
hypothesis can be broken
down into 4 parts (a-d) as
described in the “Analytic
Plan”.

Multilevel linear model controlling for education, sex,
and lag between waves in years. The placeholder
“‘EEG” is used to represent the different EEG metrics
we aim to include in each of the models.

Equation 3
Level 1:

Cognitive Function;; = B, + piWave;; + y;;

Level 2:

Bo =Yoo + Yor EEG; + v, T1Age; + vo3 EEG; *
T1Agej + yosTotalLag; + yosEducation; +
YosSex + &

Bi =Yoot YiEEG; +v,T1Age; + y3EEG; *
T1Age; + y.4TotalLag; + vy sRace; + yi6Sex

H7a: Significant coefficient for the interaction
between the EEG by Age (i.e., y,3) when
aperiodic exponent is included in the model,
such that older individuals with flatter aperiodic
spectra will show the poorest time 1 cognitive
function.

H7b: Significant coefficient for the interaction
between the EEG by Age (i.e., y,3) when IAPF
is included in the model, such that older
individuals with lower IAPF will show the
poorest time 1 cognitive function.

H7c: Significant coefficient for the interaction
between the EEG by Age by Wave (i.e., y;3)
when aperiodic exponent is included in the
model, such that older individuals with flatter
aperiodic spectra will show the steepest
decline in cognitive function.

H7d: Significant coefficient for the interaction
between the EEG by Age by Wave (i.e., y;3)
IAPF is included in the model, such that older
individuals with lower IAPF will show the
steepest decline in cognitive function.

H7a: Not supported.

H7b: Not supported.

H7c: Not supported.

H7d: Not supported.

* The exact preregistered analyses were overly complicated and conservative by including lag as two separate
variables (instead of a linear addition into a single variable), as well as the interaction between covariates and
Wave. Additionally, after extensive testing for possible interactions with education and finding none, we decided
to include education as a more appropriate covariate than race. We report the preregistered analyses in the
supplemental materials, which do not change the interpretation of the findings.
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We conducted all analyses on the full BTACT composite as well as separately for
the episodic memory and executive functioning factors to explore if one or both of the
BTACT factors are driving effects. Parallel exploratory analyses on the associations with
the aperiodic offset are described in the supplemental materials. We also explored
whether the aperiodic exponent or IAPF are independently and uniquely associated with
cognitive functioning, as well as if there is an interaction between the aperiodic

exponent and |IAPF associated with cognitive functioning, as follows:

Equation 4:
Level 1:

Cognitive Function;; = B, + p1Wave;; + w;;

Level 2:

Bo = Yoo + Yo1Exponent; + yo,IAPF; + yo3T1Age; + yosExponent; x IAPF; +
YosM2M3Totallag; + yosEducation; + yo;Sex + ¢;

B1 = Y10 + Y1i1Exponent + y1,IAPF; + y13T1Age; + yi4Exponent; « IAPF;
Results

Descriptive statistics for all variables as well as zero-order correlations are
presented in Table 3. Additional analyses are reported in the supplemental materials,
including analyses without controlling for sex and education and analyses accounting
for the presence of twins and siblings to control for genetic dependencies. None of

these variations on the analyses change the interpretations of the following analyses.
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Table 3: Correlations and descriptive statistics.

Mean 2. 3. M2 4. M3 5. M2 6. M3 7. M2 8. M3 9. Aperiodic 10.
(SD) Total Lag Episodic Episodic Executive Executive BTACT BTACT Exponent IAPF
n Memory Memory Function Function Composite Composite
1. Age 55.10 -0.12 -0.18 -0.24 -0.35 -0.32 -0.36 -0.34 -0.29 -0.23
(MIDUS 2 (10'71) [-0.25, 0.01] | [-0.30,-0.05] | [-0.36,-0.11] | [-0.46,-0.23] | [-0.43,-0.20] | [-0.47,-0.24] | [-0.45,-0.21] | [-0.40,-0.17] | [-0.34,-0.10]
Neuro) n= '235 p =0.076 p=0.010 p =0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.001
n =235 n =228 n=223 n =228 n=230 n=224 n=219 n =235 n =235
2. Total Lag 971 -0.06 -0.07 -0.17 -0.30 -0.16 -0.29 0.14 -0.06
(M2 to M3 (0'92) ) [-0.19, 0.07] | [-0.20, 0.06] | [-0.29,-0.04] | [-0.41,-0.17] | [-0.29,-0.03] | [-0.41,-0.17] | [0.01, 0.26] | [-0.18, 0.07]
Cognitive n _ 235 p =0.389 p =0.362 p=0.018 p < 0.001 p=0.021 p < 0.001 p = 0.049 p=0.416
Projects, yrs) n =228 n =223 n =228 n =230 n=224 n=219 n =235 n =235
3. Episodic 0.00 0.56 0.36 0.32 0.56 0.41 0.03 0.16
Memory (0'93) ) [0.46, 0.64] | [0.24, 0.47] | [0.19, 0.43] | [0.47,0.65] | [0.29, 0.52] | [-0.10, 0.16] | [0.03, 0.28]
MIDUS 2 n= 208 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p =0.639 p=0.023
n=217 n=224 n=223 n=224 n=213 n =228 n =228
4. Episodic -0.11 0.26 0.37 0.39 0.59 0.01 0.19
Memory (1 '10) ) [0.13,0.38] | [0.25,0.48] | [0.27,0.50] | [0.49, 0.67] | [-0.12, 0.14] | [0.06, 0.31]
MIDUS 3 n _ 293 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.867 p = 0.007
n=217 n=219 n=213 n=219 n=223 n=223
5. Executive 0.01 0.69 0.97 0.68 0.13 0.14
Function (0.65) ) [0.62, 0.76] | [0.96, 0.98] | [0.60, 0.74] | [0.00, 0.26] | [0.01, 0.27]
MIDUS 2 n _ 298 p < 0.001 p < 0.001 p < 0.001 p = 0.054 p = 0.045
n=223 n=224 n=213 n =228 n =228
6. Executive 044 0.69 0.97 0.04 0.19
Function (© '74) ) [0.61, 0.75] | [0.96, 0.98] | [-0.09, 0.17] | [0.06, 0.31]
MIDUS 3 n _ 230 p < 0.001 p < 0.001 p = 0.566 p = 0.006
n=219 n=219 n=230 n =230
7. BTACT 0.01 0.70 0.13 0.16
Composite (0.62) ) [0.63, 0.77] | [0.00, 0.26] | [0.03, 0.29]
MIDUS 2 _ 294 p < 0.001 p = 0.062 p =0.020
n n = 209 n=224 n =224
8. BTACT 0.37 0.04 0.21
Composite (© '71) ) [-0.09, 0.17] | [0.08, 0.34]
MIDUS 3 n=219 pn—zoét';ﬁsif pn—=0é2%3
9. Aperiodic 1.20 -0.16
Exponent (0.28) ) [-0.38,-0.03]
n=235 p =0.020
n =235
10. IAPF 9.60
(0.98) -

n=229
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Time Effects: Hypotheses 1 and 2

To test hypothesis 1 (cognitive function at time 1 will be negatively associated with
age) and hypothesis 2 (within-person changes in cognitive function will be moderated by
age), we conducted a multilevel model as described in Table 2. Results are reported in
Table 4. Although age was significantly related to episodic memory, executive
functioning, and overall BTACT composite scores (p’s < .010) in support of hypothesis
1, the age-by-wave interaction was not significant for any analysis, (p’s > 0.096), not
supporting hypothesis 2. Given our sample size with Neuroscience data (n = 235) is
much smaller than the smallest MIDUS subsample that previously reported an age by
wave interaction (e.g. n = 2,518; Sepisodic Memory = -0.010, Oexecutive Function = -0.012,
(Hughes et al., 2018), we may have been underpowered to detect this small interaction

effect.
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Table 4: Multilevel models to test hypothesis 1 and 2

Episodic Memory

Executive Functioning

BTACT Composite

Predictors Estimates Cl p Estimates Cl p Estimates Cl p
Intercept (M2) -0.43 -0.60 --0.26  <0.001 -0.07 -0.19-0.05 0.256 -0.12 -0.23 --0.01 0.028
MIDUS Wave -0.13 -0.26 - -0.00 0.043 -0.43 -0.50 --0.36 <0.001 -0.38 -0.45--0.31 <0.001
Age -0.02 -0.03 - -0.01 0.001 -0.02 -0.03 --0.02 <0.001 -0.02 -0.03 --0.02 <0.001
Sex 0.74 0.53 -0.94 <0.001 0.11 -0.03 -0.26 0.128 0.22 0.08 - 0.35 0.001
Education 0.17 0.04 - 0.29 0.008 0.13 0.05 - 0.21 0.001 0.14 0.06 - 0.21 0.001
Lag between -0.10 -0.21 - 0.01 0.073 -0.21 -0.29 - -0.14 <0.001 -0.20 -0.27 --0.13 <0.001
Waves
MIDUS Wave X -0.01 -0.02 - 0.00 0.096 0.00 -0.01 - 0.01 0.994 -0.00 -0.01 - 0.01 0.707
Age

Random Effects
o2 0.46 0.16 0.14
Too 0.38 ma2p 0.22 m2ip 0.19 m2p
ICC 0.45 0.59 0.58
N 234 ma2ip 235 ma2ip 234 ma2ip
Observations 451 458 443
Marginal R? / 0.195/0.559 0.292 / 0.707 0.311/0.708

Conditional R?

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1
= high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between

Waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope
estimation used (Bates et al., 2015).
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Aperiodic Exponent Effects: Hypotheses 3 and 4

To test hypothesis 3 (cognitive function at time 1 will be positively associated with
aperiodic exponent) and hypothesis 4 (within-person changes in cognitive function will
be moderated by aperiodic exponent), we conducted a multilevel model as described in
Table 2. Results are reported in Table 5. We observed a positive association between
the aperiodic exponent and the overall BTACT composite score (p = 0.018), such that
larger aperiodic exponents were associated with better cognitive function, consistent
with hypothesis 3. This association appeared to be primarily driven by the Executive
Function factor (p = 0.012), while the effect for the Episodic Memory factor was in the
same direction but not-significant (p = 0.254). However, flatter spectra at time 1 was not
associated with greater declines in cognitive function, p’s > 0.120, not supporting

hypothesis 4.
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Table 5: Multilevel models to test hypothesis 3 and 4

Episodic Memory

Executive Functioning

BTACT Composite

Predictors Estimates Cl p Estimates Cl p Estimates Cl p
Intercept (M2) -0.41 -0.59 --0.23 <0.001 -0.05 -0.18 - 0.08 0.450 -0.11 -0.23 - 0.01 0.085
MIDUS Wave -0.13 -0.26 - 0.00 0.051 -0.43 -0.51 --0.36 <0.001 -0.38 -0.45--0.31 <0.001
Exponent 0.26 -0.19-0.71 0.254 0.40 0.09 - 0.71 0.012 0.39 0.10 - 0.68 0.009
Sex 0.71 0.49 - 0.93 <0.001 0.08 -0.08 -0.24 0.306 0.19 0.04 - 0.34 0.012
Education 0.17 0.04 - 0.30 0.008 0.13 0.04 - 0.21 0.003 0.13 0.05 - 0.21 0.002
Lag between -0.08 -0.19-0.04 0.187 -0.19 -0.28 - -0.11  <0.001 -0.18 -0.26 - -0.10 <0.001
Waves
Wave x -0.02 -0.48-0.44 0.926 -0.21 -0.47 - 0.05 0.120 -0.16 -0.42 - 0.09 0.204
Exponent

Random Effects
o2 0.47 0.15 0.14
Too 0.44 maip 0.28 ma2p 0.25 maip
ICC 0.48 0.65 0.65
N 234 ma2ip 235 ma2ip 234 ma2ip
Observations 451 458 443
Marginal R? / 0.136 / 0.551 0.179/0.710 0.182/0.710

Conditional R?

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1
= high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between

Waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope
estimation used (Bates et al., 2015).
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Individual Alpha Peak Frequency Effects: Hypotheses 5 and 6

To test hypothesis 5 (cognitive function at time 1 will be positively associated with
IAPF) and hypothesis 6 (within-person changes in cognitive function will be moderated
by IAPF, such that lower |IAPF at time 1 will be associated with greater decline in
cognitive function), we conducted a multilevel model as described in Table 2. Results
are reported in Table 6. Hypothesis 5 was not supported. The effect of IAPF on episodic
memory scores, executive function, or the overall composite were not significant, p’s >
0.055. However, the direction of the coefficients were in the predicted direction.
Hypothesis 6 was supported and in the predicted direction (p = 0.047), such that lower
IAPF at time 1 were associated with greater declines in cognitive function as depicted in

Figure 2.
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Table 6: Multilevel models to test hypothesis 5 and 6

Episodic Memory

Executive Functioning

BTACT Composite

Predictors Estimates Cl p Estimates Cl p Estimates Cl p
Intercept (M2) -0.40 -0.57 --0.22 <0.001 -0.03 -0.16 - 0.09 0.596 -0.09 -0.21 -0.03 0.146
MIDUS Wave -0.13 -0.25-0.00 0.052 -0.43 -0.51 --0.36 <0.001 -0.38 -0.45--0.31 <0.001
IAPF 0.12 -0.00 - 0.25 0.055 0.07 -0.02 -0.16 0.115 0.08 -0.00-0.16 0.058
Sex 0.68 0.47 - 0.89 <0.001 0.06 -0.10-0.21 0.469 0.16 0.02 - 0.31 0.030
Education 0.17 0.05 - 0.30 0.007 0.14 0.05 -0.22 0.002 0.13 0.05 - 0.21 0.001
Lag between -0.06 -0.17 - 0.06 0.326 -0.17 -0.26 - -0.09 <0.001 -0.16 -0.24 - -0.08 <0.001
Waves
Wave x IAPF 0.07 -0.06 - 0.20 0.281 0.07 -0.00-0.15 0.061 0.07 0.00 - 0.14 0.047

Random Effects
o2 0.47 0.15 0.13
Too 0.42 maip 0.28 maip 0.25 maip
ICC 0.47 0.64 0.65
N 234 ma2ip 235 ma2ip 234 ma2ip
Observations 451 458 443
Marginal R? / 0.156 / 0.553 0.188/0.711 0.196 / 0.715

Conditional R?

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 =
high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves
(i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope
estimation used (Bates et al., 2015).
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Figure 2: Wave by Individual Peak Alpha Frequency Interaction Plot. Plot depicting the two-way interaction wave X
individual peak alpha frequency reported in Table 6 with 95% confidence interval error bars. Time 1 cognition assessed at
MIDUS2 Cognitive Project, and time 2 cognition was assessed at the MIDUS 3 Cognitive Project.
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Moderation of EEG Metrics by Age: Hypothesis 7

To test hypothesis 7a (older individuals with lower aperiodic exponents will show
the poorest time 1 cognitive function) and hypothesis 7c (older individuals with lower
aperiodic exponents will show the steepest decline in cognitive function), we conducted
a multilevel model as described in Table 2. Results are reported in Table 7. Hypothesis
7a was not confirmed as the interaction between aperiodic exponent and age was non-
significant for all BTACT scores, p’s > 0.632. Hypothesis 7c was not supported as the
wave by aperiodic exponent by age interaction was non-significant, p’s > 0.201.

To test hypothesis 7b (older individuals with lower IAPF will show the poorest
time 1 cognitive function) and hypothesis 7d (older individuals with lower IAPF will show
the steepest decline in cognitive function), we conducted a multilevel model as
described in Table 2. Results are reported in Table 8. Hypothesis 7b was not confirmed
as the interaction between |IAPF and age was non-significant for all BTACT scores, p’s
> 0.374. Hypothesis 7c was not significant as the wave by IAPF by age interaction was

non-significant, p’s > 0.301.
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Table 7: Multilevel models to test hypothesis 7a and 7c

Episodic Memory

Executive Functioning

BTACT Composite

Predictors Estimates Cl p Estimates Cl p Estimates Cl p
Intercept (M2) -0.44 -0.62 - -0.26 <0.001 -0.06 -0.18 -0.06 0.340 -0.12 -0.23 - -0.00 0.046
MIDUS Wave -0.11 -0.24 - 0.03 0.122 -0.43 -0.50 - -0.35 <0.001 -0.38 -0.46 - -0.31 <0.001
Exponent 0.07 -0.38 - 0.52 0.748 0.16 -0.14 -0.46 0.304 0.15 -0.13-0.43 0.290
Age -0.02 -0.03 - -0.01 0.002 -0.02 -0.03 - -0.01 <0.001 -0.02 -0.03 - -0.01 <0.001
Sex 0.73 0.52 - 0.94 <0.001 0.11 -0.04 -0.26 0.140 0.22 0.08 - 0.36 0.002
Education 0.16 0.04 - 0.29 0.010 0.13 0.05-0.21 0.002 0.13 0.06 - 0.21 0.001
Lag between Waves -0.10 -0.21 -0.01 0.080 -0.22 -0.29 - -0.14 <0.001 -0.20 -0.27 --0.13  <0.001
Wave x Exponent -0.14 -0.62 — 0.33 0.557 -0.23 -0.50 - 0.05 0.104 -0.19 -0.45-0.08 0.166
Wave X Age -0.01 -0.02 - 0.00 0.122 -0.00 -0.01 - 0.01 0.687 -0.00 -0.01 - 0.00 0.476
Exponent X Age -0.01 -0.06 - 0.04 0.677 0.01 -0.02 - 0.04 0.632 0.01 -0.02 - 0.03 0.695
Wave X Exponent X 0.03 -0.02 - 0.08 0.201 0.00 -0.02 - 0.03 0.755 0.00 -0.02 - 0.03 0.858
Age

Random Effects
o? 0.46 0.16 0.14
Too 039 M2ID 022 M2ID 019 M2ID
ICC 0.46 0.59 0.58
N 234 M2ID 235 M2ID 234 M2ID
Observations 451 458 443
Marginal R? / 0.195/0.563 0.294/0.710 0.311/0.710

Conditional R?

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or
less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and
MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).

Table 8: Multilevel models to test hypothesis 7b and 7d
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Episodic Memory Executive Functioning BTACT
Predictors Estimates Cl p Estimates Cl p Estimates Cl p
Intercept (M2) -0.42 -0.59 - -0.24 <0.001 -0.06 -0.18-0.06 0.360 -0.11 -0.22 - 0.00 0.052
MIDUS Wave -0.13 -0.26 - 0.00 0.057 -0.44 -0.52 - -0.36 <0.001 -0.39 -0.46 - -0.32 <0.001
IAPF 0.08 -0.05-0.21 0.225 0.01 -0.07 -0.10 0.797 0.02 -0.06 - 0.10 0.610
Age -0.02 -0.03 - -0.01 0.005 -0.02 -0.03 - -0.02 <0.001 -0.02 -0.03 --0.02 <0.001
Sex 0.72 0.51 -0.93 <0.001 0.11 -0.04 -0.25 0.145 0.21 0.08 - 0.35 0.002
Education 0.17 0.04 - 0.29 0.009 0.14 0.06 - 0.22 0.001 0.14 0.06 - 0.21 <0.001
Lag between Waves -0.09 -0.20 - 0.02 0.116 -0.21 -0.29 - -0.13 <0.001 -0.19 -0.26 - -0.12 <0.001
Wave x IAPF 0.05 -0.09-0.18 0.483 0.07 -0.01-0.15 0.071 0.07 -0.01-0.14 0.076
Wave X Age -0.01 -0.02 - 0.00 0.165 0.00 -0.01 - 0.01 0.741 -0.00 -0.01 - 0.01 0.994
IAPF X Age 0.00 -0.01 - 0.01 0.836 0.00 -0.00 - 0.01 0.350 0.00 -0.00 - 0.01 0.374
Wave X IAPF X Age 0.00 -0.01 - 0.01 0.896 -0.00 -0.01 - 0.00 0.301 -0.00 -0.01 - 0.00 0.379
Random Effects
o? 0.47 0.15 0.14
Too 038 M2ID 022 M2ID 019 M2ID
ICC 0.45 0.59 0.58
N 234 M2ID 235 M2ID 234 M2ID
Observations 451 458 443
Marginal R? / 0.203/0.559 0.298/0.713 0.318/0.715
Conditional R?

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or
less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and
MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
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Combined Effects of Aperiodic Exponent and Individual Peak Alpha Frequency:
Exploratory Analysis

We also explored whether the aperiodic exponent or IAPF are independently and
uniquely associated with cognitive functioning, as well as if there an interaction between
the aperiodic exponent and IAPF associated with cognitive functioning. Results of these
analyses are in Table 9. There was a significant Wave by Aperiodic Exponent by IAPF
interaction on the overall BTACT composite (p = 0.010), which was driven primarily by
the Executive Functioning Factor (p = 0.013). These interactions are plotted in Figure 3
with 95% confidence bands.

As shown in Table 10, we examined the 3-way interaction by calculating the
slope of the change in cognitive function over waves by each EEG metric while holding
the other EEG metric constant at a low or high level by centering each EEG metric
separately at low (-1 SD below the mean) and high (+1 above the mean). This is
computationally equivalent to simple slopes analyses in regression (Aiken and West,
1991) at the second level of the multilevel model, and represents the slopes of the lines
in Figure 2. More specifically, after centering one EEG metric at the low or high level,
we examined the y,, term from Equation 4. These analyses suggest that for individuals
who have higher aperiodic exponents, having higher IAPF is associated with less
decline in the BTACT overall composite (b = 0.15, p = 0.002) driven primarily by the
executive function factor (b = 0.15, p = 0.004), whereas there was no significant
relationship between IAPF and cognitive decline for individuals with low aperiodic
exponents. For individuals with low IAPF, having a steeper aperiodic exponent is

associated with faster cognitive decline for the overall BTACT composite (b =-0.36, p =
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0.025) driven primarily by the executive function factor (b =-0.42, p = 0.013), whereas
there was no significant relationship between aperiodic exponent and cognitive decline
for individuals with high IAPF. Put another way, this suggests that individuals with
“mismatched” IAPF and aperiodic exponents (e.g., higher exponent with lower |APF)
tend to experience faster rates of cognitive decline over a 10-year period compared to
individuals with “matching” IAPF and aperiodic exponents (e.g., higher exponent with
higher IAPF; lower IAPF with lower aperiodic exponent). As shown in Figure 3, the
pattern of association is similar in direction for episodic memory, although the
interaction fails to reach significance. This may be because there was substantially less
decline in episodic memory performance (M =-0.11) than in executive function in

performance (M = -0.44) in standardized units, limiting our power to detect an effect.
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Table 9: Multilevel models examine the interaction between aperiodic exponent and individual peak alpha frequency

Episodic Memory Executive Functioning BTACT
Predictors Estimates Cl p Estimates Cl p Estimates Cl p
Intercept (M2) -0.43 -0.60 - -0.25 <0.001 -0.07 -0.19-0.05 0.228 -0.13 -0.24 - -0.02 0.024
MIDUS Wave -0.12 -0.25-0.01 0.069 -0.41 -0.49 - -0.34 <0.001 -0.37 -0.44 - -0.30 <0.001
Exponent 0.06 -0.41-0.53 0.802 0.13 -0.19-0.45 0.417 0.13 -0.17-0.42 0.393
IAPF 0.07 -0.06 -0.20 0.269 0.02 -0.07 - 0.11 0.634 0.03 -0.05-0.11 0.482
Age -0.02 -0.03 - -0.01 <0.001 -0.02 -0.03 - -0.02 <0.001 -0.02 -0.03 --0.02 <0.001
Sex 0.73 0.52 - 0.94 <0.001 0.11 -0.03-0.26 0.135 0.22 0.08 - 0.35 0.002
Education 0.17 0.05-0.30 0.007 0.14 0.06 - 0.22 0.001 0.14 0.07 - 0.22 <0.001
Lag between Waves -0.09 -0.21 -0.02 0.116 -0.21 -0.29 - -0.13 <0.001 -0.20 -0.27 --0.12 <0.001
Wave X Exponent 0.09 -0.39-0.58 0.714 -0.08 -0.36 - 0.19 0.546 -0.03 -0.29-0.23 0.826
Wave X |IAPF 0.07 -0.06 - 0.20 0.314 0.06 -0.02 -0.13 0.146 0.06 -0.01-0.13 0.118
Exponent X IAPF -0.07 -0.51-0.38 0.773 -0.15 -0.44-0.15 0.327 -0.14 -0.42-0.13 0.316
Wave X Exponent X IAPF 0.20 -0.26 - 0.67 0.397 0.34 0.07 - 0.61 0.013 0.33 0.08 - 0.59 0.010
Random Effects
o? 0.47 0.15 0.13
Too 038 M2ID 023 M2ID 019 M2ID
ICC 0.44 0.60 0.59
N 234 M2ID 235 M2ID 234 M2ID
Observations 451 458 443
Marginal R? / Conditional R*> | 0.202 / 0.557 0.302/0.722 0.323/0.724

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female.

Education coded as -1 = high school or

less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and
MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
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Figure 3: Wave by Aperiodic Exponent by Individual Peak Alpha Frequency Interaction Plot. Plot depicting the three-way

interaction wave X aperiodic exponent X individual peak alpha frequency reported in Table 9, with wave depicted as the

estimated change in cognitive function between the M2 and M3 Cognitive Pprojects.
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Table 10: Examining the Wave X Aperiodic Exponent X Individual Peak Alpha Frequency
interaction through the slope of the change in cognitive function over waves for each
BTACT measure at high and low levels of each EEG metric.

Change in BTACT Episodic Memory Factor from M2 to M3

Slope of IAPF 95% CI p-value
Low Exponent (-1 SD) 0.01 -0.18 - 0.20 0.903
High Exponent (+1 SD) 0.12 -0.05 -0.30 0.173

Slope of Exponent 95% ClI p-value
Low IAPF (-1 SD) -0.11 -0.67 —0.45 0.709
High IAPF (+1 SD) 0.29 -0.47 —-1.05 0.457
Change in BTACT Executive Functioning Factor from M2 to M3
Slope of IAPF 95% CI p-value

Low Exponent (-1 SD) -0.04 -0.15-0.07 0.482
High Exponent (+1 SD) 0.15 0.05-0.25 0.004

Slope of Exponent 95% ClI p-value
Low IAPF (-1 SD) -0.42 -0.75 - -0.09 0.013
High IAPF (+1 SD) 0.25 -0.17 - 0.67 0.244
Change in BTACT Overall Composite from M2 to M3

Slope of IAPF 95% CI p-value

Low Exponent (-1 SD) -0.04 -0.14 - 0.07 0.502
High Exponent (+1 SD) 0.15 0.05-0.25 0.002

Slope of Exponent 95% ClI p-value
Low IAPF (-1 SD) -0.36 -0.67 —-0.04 0.025
High IAPF (+1 SD) 0.30 -0.11-0.70 0.149

Discussion

In the current study, we investigated the role of periodic and aperiodic neural
activity at rest measured from fronto-central sites in predicting cognitive decline in
midlife and old age community dwelling adults. Due to their strong associations with age
and cognitive impairment, we focused on the individual peak alpha frequency, or the
frequency at which alpha oscillations peak (i.e., IAPF), and the slope of 1/f-like non-
oscillatory (i.e. the aperiodic exponent) activity computed from a composite of frontal
sites. Using a sample across the adult lifespan (age range 36-83 at time of EEG

assessment), we showed that the fronto-central aperiodic exponent was related to
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cognitive function, such that flatter aperiodic exponents were related to worse cognitive
function overall (e.g., hypothesis 3, Table 5). Additionally, IAPF was predictive of
cognitive decline over approximately 10 years, such that lower IAPF was associated
with more cognitive decline (e.g., hypothesis 6, Table 6). However, our exploratory
analyses demonstrated that the relationships between aperiodic exponent, IAPF, and
cognitive decline was moderated by the interaction between the fronto-central IAPF and
fronto-central aperiodic exponent: decline was more severe in participants with
“‘mismatched” measures (e.g., higher exponent with lower IAPF) compared to
participants with “matching” measures (e.g., higher exponent with higher IAPF; lower
IAPF with lower aperiodic exponent). Importantly, our results provide support for recent
work and theoretical models that have linked both IAPF and the aperiodic exponent to
individual differences in cognitive function and provide the first evidence that these
measures of intrinsic brain function interact to predict cognitive decline and not just
impairment.

The declines in cognitive function associated with the IAPF and aperiodic
exponent were largely driven by the executive function component of the BTACT. This
may be due to the relatively modest decline in the episodic memory component
resulting in a floor effect due to relatively restricted range of episodic memory decline.
Alternatively, it may be that our choice of fronto-central sites is uniquely sensitive to
changes in executive functioning as they are closer to prefrontal cortex regions.
Additional research in samples with larger declines in episodic memory are needed to

begin to tease apart these possibilities.
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In previous studies, age-related slowing of IAPF (e.g., (Grandy et al., 2013b;
Scally et al., 2018), and slower IAPF in general, have been consistently associated with
reduced processing speed, poorer working memory, and reduced cognitive capacity
(Grandy et al., 2013a). The age-related slowing of alpha has been linked to alterations
in inhibitory neural processes (e.g., the timing of neural inhibition), with the slowing
observed in older adults attributed to an array of CNS pathology (e.g., vascular
changes, white-matter lesions), as well as linked to mild and severe cognitive
impairment (Babiloni et al., 2008; Kramberger et al., 2017). The frequency of alpha
oscillations is also instrumental in the ‘gating’ of stimuli, with relatively slower IAPF
being observed in individuals who struggle to rapidly adjust their attention to novel or
task-relevant stimuli (Ramsay et al., 2021). However, previous work has almost
exclusively focused on variations in the speed of oscillatory activity. While there was a
significant IAPF by wave interaction, such that individuals with higher IAPF showed less
cognitive decline, it was moderated by the higher-order aperiodic exponent by IAPF by
wave interaction. This three-way interaction suggests that considering IAPF alone
provides an incomplete understanding of neural activity and cognitive decline, and that
consideration of non-oscillatory, aperiodic activity is also necessary.

Current models of the aperiodic exponent propose that individual differences —
and state differences — in the aperiodic exponent size reflect excitatory:inhibitory
balance (Gao et al., 2017; Waschke et al., 2021). Within this framework, relatively flatter
slopes (i.e., smaller exponents) are associated with poorer cognitive performance due
to the propagation of relatively dysregulated excitatory activity, which manifests in

‘noisier’, less efficient processing (Voytek et al., 2015; Dave et al., 2018; Pertermann et
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al., 2019). Our findings are broadly consistent with this perspective, with flatter
exponents predicting overall reduced executive function and BTACT scores, but
highlight the need to consider periodic oscillatory activity in conjunction with aperiodic
metrics.

Simultaneous EEG/fMRI eyes-open resting recordings have found that the
aperiodic exponent is related to increased BOLD signal in the auditory-salience-
cerebellar network (including components of the salience network), and decreased
BOLD signal in prefrontal networks, suggesting that steeper aperiodic exponents may
be associated with increased arousal and/or increased attention to external stimuli
(Jacob et al., 2021). It may be the case that individuals with “mismatched” aperiodic
exponent and IAPF reflect a suboptimal balance between arousal and attention to
external stimuli (indexed by the aperiodic exponent) with the ability to flexibly gate
external stimuli (indexed by the IAPF) to perform complex cognitive tasks. Future
research should attend to this possibility and examine if there are differences in the
neurobiological mechanisms underlying increased rates of decline between individuals
with low aperiodic exponents plus high IAPF vs. individuals with high aperiodic
exponents plus low |IAPF, and if these differences may signal different underlying
pathologies or vulnerabilities.

While our work focused on periodic and aperiodic measures at rest, recent work
suggests that the aperiodic exponent may change in response to a stimulus itself,
consistent with an increase in inhibitory activity with an increase in attentional demand,
independent from ERPs elicited by the stimulus. This suggests flexible shifts in the

aperiodic exponent in response to task demands may be important for attention and
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cognitive function (Gyurkovics et al., 2022). Future work would benefit from exploration
of whether flexible adjustments in aperiodic activity during tasks are integral to long term
cognitive function and decline, and what if any role changes in IAPF during a task may
play in moderating these effects.

Given research into the aperiodic exponent is in its infancyi, it is unclear exactly
why a high exponent paired with a low IAPF would be associated with increased rates
of cognitive decline. It may be that the optimal excitatory:inhibitory balance reflected in
the aperiodic exponent is not uniformly consistent across participants, but may vary with
IAPF, such that higher aperiodic exponents may not always be better. Alternatively,
excitatory:inhibitory balance can be shifted in complex ways between and across neural
circuits, and the same endpoint may be achieved from reduction in excitatory activity or
an increase in inhibitory activity, or some combination of both (Sohal and Rubenstein,
2019). It is possible that age-related slowing of IAPF may be associated with specific
patterns of changes in inhibitory and or excitatory activity, such that lower |APF
associated with higher aperiodic exponents may reflect a suboptimal shift in activity.
Future research would benefit from examining IAPF and aperiodic exponent in normally
and pathologically aging participants to begin to tease apart these potential
explanations and to determine when — or if — these shifts reflect pathological aging.
Future work should also focus on better understanding what is causing age-related
shifts in IAPF and how this may impact excitatory:inhibitory balance.

Overall, our findings challenge a simplistic view of the neurobehavioral and
neuropsychological consequences of varied aperiodic and periodic activity. On one

hand, gradual flattening is typically associated with poorer performance — potentially
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reflecting an excess of excitatory to inhibitory activity, resulting in elevated noise.
However, many diseases, such as Parkinson’s Disease, are characterized by an excess
of inhibitory activity, and previous studies have emphasized that excessive inhibitory
activity reduces behavioral flexibility (Song et al., 2021; Vinding et al., 2022; McKeown
et al., 2023). These results hint at the importance of considering excitatory:inhibitory
balance within an individual differences context, as what is optimal may differ based on
a variety of neuroanatomical and physiological parameters.

Our findings are particularly striking given the nearly 10-year span between data
collection waves. This suggests that EEG resting measures of periodic and aperiodic
neural activity may be a promising biomarker for predicting who is at risk for cognitive
decline. Given the relative ease and low cost of collecting EEG data, these metrics
could be easily scalable to provide important information to clinicians for early
interventions in a rapidly aging population. However, our sample is relatively modest in
size and is composed of community-dwelling aging individuals who are able and willing
to travel to participate in a multi-component study. Future work is needed to replicate
these results in additional samples as well as investigate these measures in a variety of
clinical samples and samples varying in demographic characteristics (including but not
limited to race, ethnicity, education, and socioeconomic status) to further investigate the
utility of IAPF and aperiodic exponent as a risk factor for accelerated cognitive decline.
Particularly important would be a longitudinal study with repeated EEG and cognitive
assessments completed at smaller time lags to assess when in aging measures of IAPF

and aperiodic exponent signal increase the risk of cognitive decline.
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Our results are, however, limited by the lack of resting EEG measures at both
time points. Although the MIDUS Neuroscience M3 project was recently completed,
EEG data was not recorded. The lack of a second measurement point prevents us from
partially out the variance associated with longitudinal change in aperiodic activity and
IAPF and examining whether this predicts a change in cognitive function. Moreover, we
are unable to examine how individual differences in EEG predict cognitive change
independently from the intra-individual changes. Given the substantial age-related
differences (Hill et al., 2022; Merkin et al., 2022) and changes (Chini et al., 2022) in
aperiodic activity and IAPF, we anticipate that the inclusion of a second measurement
point would increase the sensitivity of our model.

In summary, our study highlights the importance of considering periodic and
aperiodic measures in combination when examining resting-state EEG and measures of
cognitive decline. In particular, a “mismatch” between low IAPF and high aperiodic
exponent is associated with faster rates of cognitive decline over 10 years. Once
considered meaningless, invariant noise, the features of the 1/f aperiodic neural activity
are being recognized as an important feature of EEG signals, potentially reflecting
global excitatory:inhibitory balance. Our work further emphasizes that aperiodic activity
is a critical feature of EEG signals and needs to be systematically investigated in
conjunction with more typical periodic features, to fully understand the links between

neural activity and cognition across the lifespan.
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