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Abstract 

Background 

Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to 

understand the heterogeneity of cell populations at the single-cell level. The analysis of 

scRNA-seq data requires the utilization of numerous computational tools. However, non-

expert users usually experience installation issues, a lack of critical functionality or batch 

analysis modes, and the steep learning curves of existing pipelines.  

Results 

We have developed cellsnake, a comprehensive, reproducible, and accessible single-cell 

data analysis workflow, to overcome these problems. Cellsnake offers advanced features for 

standard users and facilitates downstream analyses in both R and Python environments. It is 

also designed for easy integration into existing workflows, allowing for rapid analyses of 

multiple samples.  

Conclusion 

As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and 

GitHub, making it a cost-effective and user-friendly option for researchers. By using 

cellsnake, researchers can streamline the analysis of scRNA-seq data and gain insights into 

the complex biology of single cells. 
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Background 

Single-cell RNA sequencing (scRNA-seq) is a method used to study gene expression at the 

single-cell level. This stands in contrast to bulk RNA sequencing, which provides information 

only on the average transcript expression within a population of cells. With recent 

technological advancements and decreasing sequencing costs, scRNA-seq has become 

increasingly accessible, enabling researchers to identify novel cell types, cell states, and 

cellular interactions [1–4].  

 

A standard scRNA-seq bioinformatics workflow typically involves several steps, including 

data filtering, normalization, scaling, dimensionality reduction, clustering, visualization, 

differential expression analysis, functional analysis, and annotation [4,5]. Various analysis 

workflows for different platforms (i.e. 10x Genomics, Drop-seq, inDrops, SMART-seq2, and 

Fluidigm C1) have been developed to process, analyze and holistically visualize scRNA-seq 

data [2,6–8]. Popular workflows like Seurat [9], SingleCellExperiment (of Bioconductor) [7], 

and Scanpy [6] have extensive features for scRNA analysis. The analysis of scRNA-seq 

data poses several challenges, including the high-dimensional data structure, technical 

issues (e.g. dead cells, doublets, and low unique molecular identifier (UMI) counts), batch 

effects, low expression levels, and the presence of complex cell subsets with multiple cell 

states  [5]. To address these, a variety of supplementary bioinformatics tools have been 

developed. While some of these can be integrated into existing workflows, many require 

substantial expertise and bioinformatics knowledge.  

 

Another challenge is working with multiple scRNA-seq datasets. Comprehensive 

documentation for the analysis of a single sample using recommended parameters is usually 

provided. However, it is hard for a regular user to keep track of all the decisions taken during 

analyses, especially if more than one sample is available. This also creates challenges if one 

wants to see the effect of basic parameter changes and document the results for further 
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hypothesis testing. It is also challenging to harness the power of high-performance 

computing (HPC) systems when needed. There are some efforts to make batch analysis, 

such as the cloud-based system SingleCAnalyzer [10], the R package scTyper [11], the web 

application Cellenics (open-source software of Biomage), and Single-Cell Omics workbench 

on Galaxy (singlecell.usegalaxy.eu). Cellranger from 10x genomics also provides dataset 

clustering and basic differential expression analysis [12] for initial quality control (QC). 

However, all these workflows have limited functionality or were designed for a specific need. 

Online (or cluster-based) solutions might also not be suitable due to data privacy rules for 

sensitive data or do not provide compatible files (e.g. R data files) for downstream analysis 

on another platform. 

 

Here, we introduce cellsnake, a platform-independent command-line application and pipeline 

for scRNA-seq analysis. Cellsnake provides a reproducible, flexible, and accessible solution 

for most scRNA-seq data analysis applications. One of the key features of cellsnake is its 

ability to utilize different scRNA-seq algorithms to simplify tasks such as automatic 

mitochondrial (MT) gene trimming, selection of optimal clustering resolution, doublet filtering, 

visualization of marker genes, enrichment analysis, and pathway analysis. Cellsnake also 

allows parallelization and readily utilizes high-performance computing (HPC) platforms. In 

addition to that, cellsnake provides metagenome analysis if unmapped reads are available. 

Another advantage of cellsnake is its ability to generate intermediate files (such as R data 

files) that can be stored, extracted, shared, or used later for more advanced analyses or for 

reproducibility purposes. With cellsnake, researchers can perform scRNA-seq data analysis 

in a reproducible and efficient manner, without requiring extensive bioinformatics expertise. 
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Methods 

Cellsnake workflow and tools 

The cellsnake wrapper was written in Python, while the main workflow was implemented in 

Snakemake [13]. To find optimal cluster resolution, we utilized clustree [14]. Seurat analysis 

pipeline [8] provides all the main functions required for processing scRNA data in cellsnake. 

These functions are wrapped into different R scripts which can also be used as standalone 

scripts by advanced users. Cellsnake facilitates automatic format conversion when required. 

For instance, CellTypist [15] requires AnnData format, and the workflow converts the files 

back to the required file format in R. By default, cellsnake stores files into two folders: 

analyses and results. The analyses folder contains metadata and R data files, which can be 

accessed by the user. Seurat is used for integration, and after integration, the workflow runs 

on the integrated dataset automatically, and the output files are stored in separate folders 

(i.e. analyses_integrated and results_integrated).  

 

Parameter selection and autodetection 

Cellsnake provides Seurat's default values for fundamental parameters like min.cells (i.e 

features detected at least this many cells) or min.features (i.e. cells at least this many 

features). In addition, non-default parameters can be provided using a YAML file, and a 

YAML file template can be printed and edited. Cellsnake determines which principal 

component exhibits cumulative percent greater than 90% and % variation associated with 

the principal component as less than 5 (as described hbctraining.github.io/scRNA-

seq/lessons/elbow_plot_metric.html). To filter MT genes, cellsnake uses the miQC tool [16]. 

If that fails, it uses the median absolute deviation of the MT gene expression as an 

alternative. MultiK algorithm [17] is used to determine optimal resolution detection and 

doublet filtering is done using the DoubletFinder tool [18]. Autodetection of parameters is not 

offered as a default option in cellsnake due to its computational expense and potential for 

failure with large sample sizes. Cellsnake utilizes a special directory structure for MT 
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percentage and resolution the results will be saved in different folders named after the 

selected parameters. These results are not overwritten and can be reviewed later, or the 

parameters can be modified for further investigation. 

 

Cellsnake testing and benchmarks 

To test cellsnake, we obtained four samples containing exclusively macrophages from gut 

mucosal tissue [19], along with two fetal brain datasets [20] and six fetal liver datasets [21]. 

The fetal brain datasets were provided in matrix file format, while the other datasets were in 

FASTQ format and were processed by Cellranger (v.7.0.0) with the default settings and the 

default databases. For a comprehensive evaluation, we compared the features of Cellsnake 

with two other holistic tools, Cellenics and Single Cell Omics workbench 

(https://singlecell.usegalaxy.eu/). The Cellenics community instance 

(https://scp.biomage.net/) is hosted by Biomage (https://biomage.net/).  

 

Results 

Cellsnake can be run either as a Snakemake workflow or as a standalone tool 

Cellsnake utilizes a variety of tools and algorithms (Table 1) and consists of two primary 

components: the main workflow and the wrapper. The cellsnake wrapper assists with the 

main workflow and provides an easy-to-use option for users. The workflow (Fig. 1) is 

primarily designed using the Seurat pipeline (v4.2) and the Snakemake workflow manager. 

As needed, the workflow integrates various algorithms to enhance the basic functionality of 

Seurat. For instance, when one droplet encapsulates more than one cell, it appears as a 

single cell and can affect the downstream analysis. Addressing this issue in the workflow is 

crucial [22]. A distinctive feature of cellsnake is its default doublet filtering option, a 

functionality not included in the standard Seurat pipeline. Users can also adjust other 

parameters by modifying the configuration files, which are formatted in YAML. This flexibility 

empowers precise analysis of scRNA-seq data.  
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Cellsnake covers most of the methods offered by Seurat, including integration. The workflow 

is automatically repeated for an integrated dataset once the analyses have been concluded 

for all individual samples available in the study (i.e QC, filtering etc.). Analysis outcomes 

such as dimension reduction, clustering, differential expression analysis, functional 

enrichment, and cell type annotations are reported for the integrated sample. Since the 

datasets individually passed the initial QC and are trimmed for artifacts, these steps are 

skipped by the workflow. Cellsnake can also generate publication-ready plots for both 

individual and integrated samples. It also automatically produces plots for markers (i.e. 

genes) which can be investigated to better understand the predicted clusters (i.e. cell 

subsets). Additionally, cellsnake provides the option to produce supplementary plots, 

featuring dimension reduction and expression images for selected genes or markers. This 

functionality adds a valuable level of customization to the analysis, enabling the user to 

explore targeted genes or markers of interest in greater detail. 

 

The input of cellsnake can be either Cellranger output directories for batch analysis or single 

expression matrix files (e.g. h5 files) for individual sample processing. Cellsnake 

automatically detects the input format and runs accordingly with minimal user intervention 

and with minimal lines of input commands (Table 2). The Cellsnake workflow offers three 

primary modes with distinct options: minimal, standard, and advanced. The minimal mode is 

suitable for fast analysis, parameter selection, and downstream integration. Fundamental 

parameters, such as filtering thresholds and clustering resolution can be determined via a 

minimal run at an early stage which will reduce computational cost. Standard and advanced 

workflow modes contain additional features and algorithms (Table 2). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.05.03.539204doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.03.539204
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1. Overview of the scRNA-seq pipeline in cellsnake. (1) Cellsnake can accept the 

output files from Cellranger in addition to raw expression matrix files if provided in an 

appropriate format. (2) QC is performed by filtering out MT-genes, doublets, and cells with a 

low gene number as examples. Clustree is then used to find the optimal resolution for the 

dimensionality reduction. (3) Afterward, the dataset is normalized and scaled before the PCA 
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analysis and visualized by UMAP or tSNE. (4) To find the differences in gene expression 

levels within the dataset differential gene expression analysis is performed with several 

outputs such as heatmaps, dot plots, and marker plots. (5) To get an even better insight into 

the dataset, the pipeline contains several functional analyses such as GO enrichment, 

KEGG pathway, gene set enrichment, and CellChat. Metagenome analysis is also available 

if the input file from step 1 is the direct output from Cellranger. This is done by using the 

metagenomics tool Kraken2. 

 

Table 1. An overview of the tools and algorithms used in the cellsnake workflow, as well as 

an explanation of what they do and which versions are used.  

Tool Version Reference Notes 

Seurat 4.2.0 [8] Main analysis platform 

SeuratDisk 0.9020 github.com/mojaveazure/

seurat-disk/ 

Format converter 

Clustree 0.5.0 [14] Clustering interrogation 

MultiK 1.0 [17] Optimal cluster detection 

miQC 1.6.0 [16] Auto MT gene trimming 

DoubletFinder 2.0.3 [18] Doublet detection 

SingleR 2.0.0 [23] Cell type annotation 

CellTypist 1.2.0 [15] Cell type annotation 

Kraken2 2.1.2 [24] Metagenomics 

CellChat 1.6.1 [25] Ligand-receptor analysis 

and miscellaneous 

clusterProfiler 4.4.4 [26] KEGG, GO and module 
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enrichment 

Monocle3 1.0.0 [27] Cell trajectory and 

velocity 

 

Table 2. Cellsnake commands and a summary of their outputs. 

Mode Outputs How to run? 

cellsnake minimal  Dimension reduction plots, QC metrics, 

technical plots (MT, counts, gene, 

feature), clustree plot 

$ cellsnake minimal data 

OR 

$ snakemake -j 5 --config 

option=minimal  

cellsnake standard All minimal outputs and CellTypist, 

singleR annotations, enrichment analyses 

tables, trajectory plots, summarized 

marker plots 

$ cellsnake standard data 

OR 

$ snakemake -j 5 --config 

option=standard  

cellsnake advanced All standard outputs and CellChat results, 

detailed top markers per cluster plots 

$ cellsnake advanced data 

OR 

$ snakemake -j 5 --config 

option=advanced  

cellsnake integrate A single integrated object for analysis. $ cellsnake integrate data 

OR 

$ snakemake -j 5 --config 

option=integrate  

* data folder may contain multiple samples and this will trigger a batch analysis. 

 

Reanalyses of publicly available datasets using cellsnake 

We showcase some features of the pipeline using publicly available datasets. The first 

dataset is from the fetal brain containing (only) count tables from two samples (Fig. 2 and 

Fig. 3). We processed two samples using the default settings (e.g. MT filtering threshold 10 
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percent and resolution parameter 0.8). Minimal mode only takes four minutes in a laptop for 

two samples of the fetal brain dataset. Another five minutes is enough for both integration 

and processing of the integrated sample with minimal mode. The user can decide on the 

parameters early on (Fig. 2) and the standard mode will finish in 50 minutes without parallel 

processing. Cellsnake utilizes different tools and provides outputs for all as figures 

(supplementary figures 1-6) or as tables. 
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Figure 2. Cellsnake quickly generates standard output plots that include technical 

information. a) The user can investigate the fundamental statistics like MT gene 

percentage, number of genes detected, and reads mapped per cell information. Here the 

results shown are based on one of the fetal brain samples. b) Clustree analysis is not part of 

the Seurat pipeline but cellsnake offers this by default. This plot can be used to find the 
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optimal number of clusters. c) The selected resolution resulted in 23 clusters and 6298 cells 

passed the filtering thresholds (after filtering doublets and low-quality cells). d) tSNE plot 

shows the clusters. Cellsnake prints only the top clusters in the legend to prevent 

overplotting. The user will get UMAP, PCA, and tSNE plots by default. 

 

 

Figure 3. Cellsnake processes integrated samples similar to the individual samples 

and generates the same plots. a) The UMAP plots were generated for two samples from 

the fetal brain dataset, seen in the first and second panels. b) The UMAP plot shows clusters 

for the integrated samples. c) The UMAP plot shows cluster annotation based on the singleR 

package “BlueprintEncodeData” model predictions. The results showed the cells were 

mostly predicted as neurons which are consistent with the dataset but there are also some 

mispredictions. The detailed annotations can be accessed as Excel tables and heatmaps. 
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The second dataset is from the fetal liver containing three CD45+ and three CD45- FACS 

sorted samples from three different donors (Fig. 4A). This time we selected automatic 

filtering of MT gene abundant cells rather than a hard cut-off when pre-processing the 

samples. In total, 29045 cells passed the filtering threshold. The standard workflow took 3 

hours with only two CPU cores on a standard laptop, which is enough for most use cases. 

The samples were later integrated and the optimal number of clusters was predicted 

automatically. The separation of two groups (Fig. 4A and 4B) in the integrated dataset is 

similar to what was reported in the original study [21], which indicates that cellsnake is 

capable of reproducing key findings from published studies. The differential expression 

analysis also reveals that the AHSP gene is highly expressed in CD45+ samples, which is in 

line with the known function of this gene in erythroid cells. 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.05.03.539204doi: bioRxiv preprint 

https://paperpile.com/c/2A7SLt/6A0F
https://doi.org/10.1101/2023.05.03.539204
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. The fetal liver dataset consists of six FACS-sorted samples, integrated by 

cellsnake. a) Cellsnake displays integrated UMAP plot, and labels, and b) annotates the 

clusters. c) The user can provide the clinical information which shows differentially 

expressed genes among two groups. d) It is also possible to visualize selected marker 

genes. For example, the AHSP gene is upregulated in CD45+ samples compared to CD45- 

samples. 

 

Cellsnake can analyze metagenomics from single-cell data 

Another unique feature of Cellsnake is its ability to perform metagenomics analysis using 

Kraken2. If a database is provided, Cellsnake will automatically run Kraken2. After collapsing 

read counts to a taxonomic level based on user input, such as genus or phylum, results are 
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reported accordingly. Cellsnake provides metagenomic results in the form of dimension 

reduction plots and barplots, and users can load metadata into R for personalized 

downstream analysis.  

 

This feature was tested on four samples from mucosal macrophages, with automatic 

trimming of MT genes and selection of resolution (Fig. 5). Cellsnake reported results based 

on the optimal number of clusters, and non-human material detected by Kraken2 is 

visualized on integrated UMAP plots (Fig. 5a,b). Users can also obtain a detailed list of 

results based on the selected taxonomic level in an Excel file. 

 

 

Figure 5. Cellsnake’s metagenomics feature was tested on mucosal macrophages. a) 

Four samples were integrated. The clusters were predicted and annotated using the 

CellTypist immune model. b) The cells annotated as “plasma cells” contain the highest 
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number of bacterial reads. c) The foreign reads were mostly associated with Streptomyces. 

d) Cellsnake reports the top 10 most prevalent taxonomic groups by default. The rest 

collapsed and were reported as “others”. The user can select the desired taxonomic level (in 

this case, it was genus). All results are also saved as tables which include reads detected 

per cluster and annotation. 

 

 

Discussion 

In recent years, there has been an increasing interest in scRNA-seq as it is a powerful 

technique for understanding the cellular heterogeneity of tissues and organs. However, the 

scRNA-seq data analysis can be complex and time-consuming. Cellsnake was designed to 

simplify this process, enabling researchers without extensive bioinformatics experience to 

easily analyze their data. It includes a range of automated preprocessing and downstream 

analysis tools and also provides advanced features for additional analysis. Its user-friendly 

interface and reproducibility features make it a valuable tool for researchers seeking to 

understand transcriptional heterogeneity in tissues at single-cell resolution. 

 

Cellsnake has several critical functionalities for scRNA-seq data analysis. It includes 

preprocessing steps such as QC, filtering, and parameter auto-selection, and also has 

downstream analysis tools for identifying differentially expressed genes, performing 

clustering, visualization, and exploring cell type-specific gene expression patterns. These 

features are crucial for characterizing cell subpopulations and identifying specific genes and 

pathways associated with them. Cellsnake also includes advanced features such as 

supporting the integration of multiple scRNA-seq datasets to identify shared and unique cell 

types across different tissues or conditions. Cellsnake also ensures reproducibility by 

creating separate folders when required, restricting the versions of the tools in the 

environment, saving config files with the cellsnake version, explicitly sharing different images 
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for each version in the Docker repository, and storing results for downstream analysis by 

default. In comparison to other tools (Table 3), cellsnake has several advantages, including 

a comprehensive range of tool utilization, unique features, the ability to run locally or on HPC 

platforms, and seamless integration with other workflows using Docker or Bioconda. 

Additionally, cellsnake also provides RDS files to enhance data sharing and accessibility.  

 

 

Table 3. Standard features of cellsnake compared to available holistic tools/workflows. 

 Cellsnake Cellenics Single Cell Omics 
Workbench 

Platform Snakemake/Python 
wrapper/Docker 

Web based Web based (Galaxy) 

Input file type Count tables (10X or 
others), R Data File 

Count tables (10X) Count tables (10X), 
FASTQ and others 

Doublet filtering Yes Yes No 

MT gene filtering Yes (auto) Yes (auto) Yes 

Find clusters Yes (auto) Yes Yes 

Clustree plot Yes No No 

Differential 
expression analysis 

Yes Yes Yes 

Enrichment analysis KEGG and GO No No 

Celltype Annotation Yes Yes No 

Detailed gene 
expression plots 

Yes No No 

Metagenome 
analysis 

Yes No No 

Trajectory analysis Yes Yes Yes 
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Integration Yes (Seurat only) Yes (various 

algorithms) 

Yes 

Output and 
downstream analysis 

Plot files, expression 
tables, Seurat RDS 
files and excel files 
etc. 

Plots and expression 

tables 

Miscellaneous 

 

 

 

 

Recent studies have shown that the heterogeneity in microbiota and the present cell types 

along with their functions are co-dependent [28]. Cell-associated microbial reads can be 

identified in scRNA-seq data [29]. Cellsnake uses Kraken2 [24] to analyze this data and 

cellsnake provides the ability to fine-tune parameters to increase sensitivity and/or specificity 

and to use personal databases. This can help researchers identify potential microbial 

associations with host cells and tissues. Some of these microbial hits can originate from 

environmental contamination or can be false positives. These outcomes might not 

necessarily reflect real biological associations; nevertheless, the results may provide 

valuable insights for QC such as recognizing potential contamination sources. 

 

There are some limitations of the workflow that need to be addressed. Firstly, cellsnake 

requires disk space to keep track of the entire pipeline, including metadata files that are 

required for advanced downstream analysis. Although the users can delete large files, they 

may want to keep metadata files for reproducing the results at a later time. Secondly, the 

fully-featured workflow relies on Cellranger outputs from 10x Genomics platform, which may 

not always be available. Even though cellsnake was designed and tested utilizing this 

platform, it can still use the count matrix files from other platforms, such as the fetal brain 

dataset. Third, while cellsnake has moderate performance in terms of memory and speed on 

standard workstations for an average number of cells, the auto-detection of parameters 
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(e.g., resolution parameter) can be slow when processing samples with a large number of 

cells. To improve performance, a parallel version of the MultiK tool was used, which is not 

officially supported by the authors of MultiK (see materials and methods). Finally, the 

underlying tools utilized by cellsnake may involve various parameters. The fundamental 

parameters can be adjusted by the user and supplied through the configuration files, while 

the rest are set to default values. This approach was preferred to make the workflow more 

user-friendly. 

 

 

In conclusion, cellsnake is a convenient and adaptable tool, empowering researchers to 

analyze scRNA-seq data in a reproducible and customizable manner. With its advanced 

features and streamlined workflow, cellsnake stands as a valuable bioinformatics asset for 

investigating cellular heterogeneity and gene expression patterns at single-cell resolution 

within tissues. 

 

Future Directions 

Accurate bioinformatics software requires long-term development and commitment to the 

project [30]. It is also a major problem in the field that many projects are abandoned after 

publication, becoming unusable and outdated. For instance, cerebroApp [31], a component 

of cellsnake's development version, was dropped as it is no longer in active development. 

Cellsnake is an open-source tool that is actively developed, allowing anyone to open pull 

requests and report issues on its GitHub page. To keep the software bug-free and 

streamlined, future developments of cellsnake will involve incorporating new tools, such as 

the latest Seurat version, and removing obsolete tools from the main workflow. The users 

can access the previous releases for reproducibility. Although cellsnake is mainly designed 

for the 10X Genomics single-cell platform, we plan to expand its compatibility with other 

platforms and offer additional support for various input formats. Our aim is for cellsnake to 
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become an essential toolkit for fast, accurate, tunable, and comprehensive scRNA data 

analysis. 

 

 

Data availability 

The publicly available datasets for the fetal brain and liver are available under accessions 

PRJNA429950 and PRJEB34784, respectively. Macrophage-only samples from gut mucosal 

tissue are deposited in the European Genome-Phenome Archive (EGA) under the following 

accession numbers: EGAD00001007765 and EGAS00001005377. The EGA deposited files 

are under controlled access, requiring the data access committee permission for retrieval. 

The cellsnake analysis results on test samples are available at 

https://doi.org/10.5281/zenodo.8282676. A copy of the fetal brain dataset can also be found 

in our frozen Zenodo repository. 

 

Availability and Requirements 

● Project name: cellsnake 

● Project homepage: https://github.com/sinanugur/cellsnake 

● Documentation: https://cellsnake.readthedocs.io/en/latest/ 

● RRID: SCR_023666 

● Operating system: Platform independent 

● Programming language: Python, R 

● Other requirements: Python 3.8 or higher, R 4.2.2 

● License: MIT 

● PyPi: https://pypi.org/project/cellsnake 

● Bioconda: https://anaconda.org/bioconda/cellsnake 

● Docker: https://hub.docker.com/r/sinanugur/cellsnake 

● Snakemake workflow: https://github.com/sinanugur/scrna-workflow 
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