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Abstract

Background

Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to
understand the heterogeneity of cell populations at the single-cell level. The analysis of

scRNA-seq data requires the utilization of numerous computational tools. However, non-
expert users usually experience installation issues, a lack of critical functionality or batch

analysis modes, and the steep learning curves of existing pipelines.

Results

We have developed cellsnake, a comprehensive, reproducible, and accessible single-cell
data analysis workflow, to overcome these problems. Cellsnake offers advanced features for
standard users and facilitates downstream analyses in both R and Python environments. It is
also designed for easy integration into existing workflows, allowing for rapid analyses of

multiple samples.

Conclusion

As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and
GitHub, making it a cost-effective and user-friendly option for researchers. By using
cellsnake, researchers can streamline the analysis of sScRNA-seq data and gain insights into

the complex biology of single cells.
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Background

Single-cell RNA sequencing (scRNA-seq) is a method used to study gene expression at the
single-cell level. This stands in contrast to bulk RNA sequencing, which provides information
only on the average transcript expression within a population of cells. With recent
technological advancements and decreasing sequencing costs, sScCRNA-seq has become
increasingly accessible, enabling researchers to identify novel cell types, cell states, and

cellular interactions [1-4].

A standard scRNA-seq bioinformatics workflow typically involves several steps, including
data filtering, normalization, scaling, dimensionality reduction, clustering, visualization,
differential expression analysis, functional analysis, and annotation [4,5]. Various analysis
workflows for different platforms (i.e. 10x Genomics, Drop-seq, inDrops, SMART-seq2, and
Fluidigm C1) have been developed to process, analyze and holistically visualize scRNA-seq
data [2,6—8]. Popular workflows like Seurat [9], SingleCellExperiment (of Bioconductor) [7],
and Scanpy [6] have extensive features for scRNA analysis. The analysis of scRNA-seq
data poses several challenges, including the high-dimensional data structure, technical
issues (e.g. dead cells, doublets, and low unique molecular identifier (UMI) counts), batch
effects, low expression levels, and the presence of complex cell subsets with multiple cell
states [5]. To address these, a variety of supplementary bioinformatics tools have been
developed. While some of these can be integrated into existing workflows, many require

substantial expertise and bioinformatics knowledge.

Another challenge is working with multiple scRNA-seq datasets. Comprehensive

documentation for the analysis of a single sample using recommended parameters is usually
provided. However, it is hard for a regular user to keep track of all the decisions taken during
analyses, especially if more than one sample is available. This also creates challenges if one

wants to see the effect of basic parameter changes and document the results for further
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hypothesis testing. It is also challenging to harness the power of high-performance
computing (HPC) systems when needed. There are some efforts to make batch analysis,
such as the cloud-based system SingleCAnalyzer [10], the R package scTyper [11], the web
application Cellenics (open-source software of Biomage), and Single-Cell Omics workbench
on Galaxy (singlecell.usegalaxy.eu). Cellranger from 10x genomics also provides dataset
clustering and basic differential expression analysis [12] for initial quality control (QC).
However, all these workflows have limited functionality or were designed for a specific need.
Online (or cluster-based) solutions might also not be suitable due to data privacy rules for
sensitive data or do not provide compatible files (e.g. R data files) for downstream analysis

on another platform.

Here, we introduce cellsnake, a platform-independent command-line application and pipeline
for scRNA-seq analysis. Cellsnake provides a reproducible, flexible, and accessible solution
for most scRNA-seq data analysis applications. One of the key features of cellsnake is its
ability to utilize different scRNA-seq algorithms to simplify tasks such as automatic
mitochondrial (MT) gene trimming, selection of optimal clustering resolution, doublet filtering,
visualization of marker genes, enrichment analysis, and pathway analysis. Cellsnake also
allows parallelization and readily utilizes high-performance computing (HPC) platforms. In
addition to that, cellsnake provides metagenome analysis if unmapped reads are available.
Another advantage of cellsnake is its ability to generate intermediate files (such as R data
files) that can be stored, extracted, shared, or used later for more advanced analyses or for
reproducibility purposes. With cellsnake, researchers can perform scRNA-seq data analysis

in a reproducible and efficient manner, without requiring extensive bioinformatics expertise.
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Methods

Cellsnake workflow and tools

The cellsnake wrapper was written in Python, while the main workflow was implemented in
Snakemake [13]. To find optimal cluster resolution, we utilized clustree [14]. Seurat analysis
pipeline [8] provides all the main functions required for processing scRNA data in cellsnake.
These functions are wrapped into different R scripts which can also be used as standalone
scripts by advanced users. Cellsnake facilitates automatic format conversion when required.
For instance, CellTypist [15] requires AnnData format, and the workflow converts the files
back to the required file format in R. By default, cellsnake stores files into two folders:
analyses and results. The analyses folder contains metadata and R data files, which can be
accessed by the user. Seurat is used for integration, and after integration, the workflow runs
on the integrated dataset automatically, and the output files are stored in separate folders

(i.e. analyses_integrated and results_integrated).

Parameter selection and autodetection

Cellsnake provides Seurat's default values for fundamental parameters like min.cells (i.e
features detected at least this many cells) or min.features (i.e. cells at least this many
features). In addition, non-default parameters can be provided using a YAML file, and a
YAML file template can be printed and edited. Cellsnake determines which principal
component exhibits cumulative percent greater than 90% and % variation associated with
the principal component as less than 5 (as described hbctraining.github.io/scRNA-
seg/lessons/elbow_plot_metric.html). To filter MT genes, cellsnake uses the miQC tool [16].
If that fails, it uses the median absolute deviation of the MT gene expression as an
alternative. MultiK algorithm [17] is used to determine optimal resolution detection and
doublet filtering is done using the DoubletFinder tool [18]. Autodetection of parameters is not
offered as a default option in cellsnake due to its computational expense and potential for

failure with large sample sizes. Cellsnake utilizes a special directory structure for MT
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percentage and resolution the results will be saved in different folders named after the
selected parameters. These results are not overwritten and can be reviewed later, or the

parameters can be modified for further investigation.

Cellsnake testing and benchmarks

To test cellsnake, we obtained four samples containing exclusively macrophages from gut
mucosal tissue [19], along with two fetal brain datasets [20] and six fetal liver datasets [21].
The fetal brain datasets were provided in matrix file format, while the other datasets were in
FASTQ format and were processed by Cellranger (v.7.0.0) with the default settings and the
default databases. For a comprehensive evaluation, we compared the features of Cellsnake
with two other holistic tools, Cellenics and Single Cell Omics workbench
(https://singlecell.usegalaxy.eu/). The Cellenics community instance

(https://scp.biomage.net/) is hosted by Biomage (https://biomage.net/).

Results

Cellsnake can be run either as a Snakemake workflow or as a standalone tool
Cellsnake utilizes a variety of tools and algorithms (Table 1) and consists of two primary
components: the main workflow and the wrapper. The cellsnake wrapper assists with the
main workflow and provides an easy-to-use option for users. The workflow (Fig. 1) is
primarily designed using the Seurat pipeline (v4.2) and the Snakemake workflow manager.
As needed, the workflow integrates various algorithms to enhance the basic functionality of
Seurat. For instance, when one droplet encapsulates more than one cell, it appears as a
single cell and can affect the downstream analysis. Addressing this issue in the workflow is
crucial [22]. A distinctive feature of cellsnake is its default doublet filtering option, a
functionality not included in the standard Seurat pipeline. Users can also adjust other
parameters by modifying the configuration files, which are formatted in YAML. This flexibility

empowers precise analysis of sScCRNA-seq data.
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Cellsnake covers most of the methods offered by Seurat, including integration. The workflow
is automatically repeated for an integrated dataset once the analyses have been concluded
for all individual samples available in the study (i.e QC, filtering etc.). Analysis outcomes
such as dimension reduction, clustering, differential expression analysis, functional
enrichment, and cell type annotations are reported for the integrated sample. Since the
datasets individually passed the initial QC and are trimmed for artifacts, these steps are
skipped by the workflow. Cellsnake can also generate publication-ready plots for both
individual and integrated samples. It also automatically produces plots for markers (i.e.
genes) which can be investigated to better understand the predicted clusters (i.e. cell
subsets). Additionally, cellsnake provides the option to produce supplementary plots,
featuring dimension reduction and expression images for selected genes or markers. This
functionality adds a valuable level of customization to the analysis, enabling the user to

explore targeted genes or markers of interest in greater detail.

The input of cellsnake can be either Cellranger output directories for batch analysis or single
expression matrix files (e.g. h5 files) for individual sample processing. Cellsnake
automatically detects the input format and runs accordingly with minimal user intervention
and with minimal lines of input commands (Table 2). The Cellsnake workflow offers three
primary modes with distinct options: minimal, standard, and advanced. The minimal mode is
suitable for fast analysis, parameter selection, and downstream integration. Fundamental
parameters, such as filtering thresholds and clustering resolution can be determined via a
minimal run at an early stage which will reduce computational cost. Standard and advanced

workflow modes contain additional features and algorithms (Table 2).
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Figure 1. Overview of the scRNA-seq pipeline in cellsnake. (1) Cellsnake can accept the
output files from Cellranger in addition to raw expression matrix files if provided in an
appropriate format. (2) QC is performed by filtering out MT-genes, doublets, and cells with a
low gene number as examples. Clustree is then used to find the optimal resolution for the

dimensionality reduction. (3) Afterward, the dataset is normalized and scaled before the PCA


https://doi.org/10.1101/2023.05.03.539204
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.03.539204; this version posted August 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

analysis and visualized by UMAP or tSNE. (4) To find the differences in gene expression
levels within the dataset differential gene expression analysis is performed with several
outputs such as heatmaps, dot plots, and marker plots. (5) To get an even better insight into
the dataset, the pipeline contains several functional analyses such as GO enrichment,
KEGG pathway, gene set enrichment, and CellChat. Metagenome analysis is also available
if the input file from step 1 is the direct output from Cellranger. This is done by using the

metagenomics tool Kraken2.

Table 1. An overview of the tools and algorithms used in the cellsnake workflow, as well as

an explanation of what they do and which versions are used.

Tool Version Reference Notes
Seurat 420 [8] Main analysis platform
SeuratDisk 0.9020 github.com/mojaveazure/ | Format converter

seurat-disk/

Clustree 0.5.0 [14] Clustering interrogation
MultiK 1.0 [17] Optimal cluster detection
miQC 1.6.0 [16] Auto MT gene trimming
DoubletFinder 2.0.3 [18] Doublet detection
SingleR 2.0.0 [23] Cell type annotation
CellTypist 1.2.0 [15] Cell type annotation
Kraken2 21.2 [24] Metagenomics

CellChat 1.6.1 [25] Ligand-receptor analysis

and miscellaneous

clusterProfiler 444 [26] KEGG, GO and module
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enrichment

Monocle3

1.0.0 [27]

Cell trajectory and

velocity

Table 2. Cellsnake commands and a summary of their outputs.

Mode

Outputs

How to run?

cellsnake minimal

Dimension reduction plots, QC metrics,
technical plots (MT, counts, gene,

feature), clustree plot

$ cellsnake minimal data
OR
$ snakemake -j 5 --config

option=minimal

cellsnake standard

All minimal outputs and CellTypist,
singleR annotations, enrichment analyses
tables, trajectory plots, summarized

marker plots

$ cellsnake standard data
OR
$ snakemake -j 5 --config

option=standard

cellsnake advanced

All standard outputs and CellChat results,

detailed top markers per cluster plots

$ cellsnake advanced data
OR
$ snakemake -j 5 --config

option=advanced

cellsnake integrate

A single integrated object for analysis.

$ cellsnake integrate data
OR
$ snakemake -j 5 --config

option=integrate

* data folder may contain multiple samples and this will trigger a batch analysis.

Reanalyses of publicly available datasets using cellsnake

We showcase some features of the pipeline using publicly available datasets. The first

dataset is from the fetal brain containing (only) count tables from two samples (Fig. 2 and

Fig. 3). We processed two samples using the default settings (e.g. MT filtering threshold 10
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percent and resolution parameter 0.8). Minimal mode only takes four minutes in a laptop for
two samples of the fetal brain dataset. Another five minutes is enough for both integration
and processing of the integrated sample with minimal mode. The user can decide on the
parameters early on (Fig. 2) and the standard mode will finish in 50 minutes without parallel
processing. Cellsnake utilizes different tools and provides outputs for all as figures

(supplementary figures 1-6) or as tables.
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Figure 2. Cellsnake quickly generates standard output plots that include technical
information. a) The user can investigate the fundamental statistics like MT gene
percentage, number of genes detected, and reads mapped per cell information. Here the
results shown are based on one of the fetal brain samples. b) Clustree analysis is not part of

the Seurat pipeline but cellsnake offers this by default. This plot can be used to find the
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optimal number of clusters. c) The selected resolution resulted in 23 clusters and 6298 cells
passed the filtering thresholds (after filtering doublets and low-quality cells). d) tSNE plot
shows the clusters. Cellsnake prints only the top clusters in the legend to prevent

overplotting. The user will get UMAP, PCA, and tSNE plots by default.
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Figure 3. Cellsnake processes integrated samples similar to the individual samples
and generates the same plots. a) The UMAP plots were generated for two samples from
the fetal brain dataset, seen in the first and second panels. b) The UMAP plot shows clusters
for the integrated samples. ¢) The UMAP plot shows cluster annotation based on the singleR
package “BlueprintEncodeData” model predictions. The results showed the cells were
mostly predicted as neurons which are consistent with the dataset but there are also some

mispredictions. The detailed annotations can be accessed as Excel tables and heatmaps.
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The second dataset is from the fetal liver containing three CD45+ and three CD45- FACS
sorted samples from three different donors (Fig. 4A). This time we selected automatic
filtering of MT gene abundant cells rather than a hard cut-off when pre-processing the
samples. In total, 29045 cells passed the filtering threshold. The standard workflow took 3
hours with only two CPU cores on a standard laptop, which is enough for most use cases.
The samples were later integrated and the optimal number of clusters was predicted
automatically. The separation of two groups (Fig. 4A and 4B) in the integrated dataset is
similar to what was reported in the original study [21], which indicates that cellsnake is
capable of reproducing key findings from published studies. The differential expression
analysis also reveals that the AHSP gene is highly expressed in CD45+ samples, which is in

line with the known function of this gene in erythroid cells.
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Figure 4. The fetal liver dataset consists of six FACS-sorted samples, integrated by
cellsnake. a) Cellsnake displays integrated UMAP plot, and labels, and b) annotates the
clusters. c) The user can provide the clinical information which shows differentially
expressed genes among two groups. d) It is also possible to visualize selected marker
genes. For example, the AHSP gene is upregulated in CD45+ samples compared to CD45-

samples.

Cellsnake can analyze metagenomics from single-cell data
Another unique feature of Cellsnake is its ability to perform metagenomics analysis using
Kraken2. If a database is provided, Cellsnake will automatically run Kraken2. After collapsing

read counts to a taxonomic level based on user input, such as genus or phylum, results are
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reported accordingly. Cellsnake provides metagenomic results in the form of dimension
reduction plots and barplots, and users can load metadata into R for personalized

downstream analysis.

This feature was tested on four samples from mucosal macrophages, with automatic
trimming of MT genes and selection of resolution (Fig. 5). Cellsnake reported results based
on the optimal number of clusters, and non-human material detected by Kraken2 is
visualized on integrated UMAP plots (Fig. 5a,b). Users can also obtain a detailed list of

results based on the selected taxonomic level in an Excel file.
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Figure 5. Cellsnake’s metagenomics feature was tested on mucosal macrophages. a)
Four samples were integrated. The clusters were predicted and annotated using the

CellTypist immune model. b) The cells annotated as “plasma cells” contain the highest
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number of bacterial reads. c) The foreign reads were mostly associated with Streptomyces.
d) Cellsnake reports the top 10 most prevalent taxonomic groups by default. The rest
collapsed and were reported as “others”. The user can select the desired taxonomic level (in
this case, it was genus). All results are also saved as tables which include reads detected

per cluster and annotation.

Discussion

In recent years, there has been an increasing interest in scRNA-seq as it is a powerful
technique for understanding the cellular heterogeneity of tissues and organs. However, the
scRNA-seq data analysis can be complex and time-consuming. Cellsnake was designed to
simplify this process, enabling researchers without extensive bioinformatics experience to
easily analyze their data. It includes a range of automated preprocessing and downstream
analysis tools and also provides advanced features for additional analysis. Its user-friendly
interface and reproducibility features make it a valuable tool for researchers seeking to

understand transcriptional heterogeneity in tissues at single-cell resolution.

Cellsnake has several critical functionalities for scRNA-seq data analysis. It includes
preprocessing steps such as QC, filtering, and parameter auto-selection, and also has
downstream analysis tools for identifying differentially expressed genes, performing
clustering, visualization, and exploring cell type-specific gene expression patterns. These
features are crucial for characterizing cell subpopulations and identifying specific genes and
pathways associated with them. Cellsnake also includes advanced features such as
supporting the integration of multiple scRNA-seq datasets to identify shared and unique cell
types across different tissues or conditions. Cellsnake also ensures reproducibility by
creating separate folders when required, restricting the versions of the tools in the

environment, saving config files with the cellsnake version, explicitly sharing different images
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for each version in the Docker repository, and storing results for downstream analysis by
default. In comparison to other tools (Table 3), cellsnake has several advantages, including
a comprehensive range of tool utilization, unique features, the ability to run locally or on HPC
platforms, and seamless integration with other workflows using Docker or Bioconda.

Additionally, cellsnake also provides RDS files to enhance data sharing and accessibility.

Table 3. Standard features of cellsnake compared to available holistic tools/workflows.

Cellsnake Cellenics Single Cell Omics
Workbench

Platform Snakemake/Python [ Web based Web based (Galaxy)
wrapper/Docker

Input file type Count tables (10X or | Count tables (10X) Count tables (10X),
others), R Data File FASTQ and others

Doublet filtering Yes Yes No

MT gene filtering Yes (auto) Yes (auto) Yes

Find clusters Yes (auto) Yes Yes

Clustree plot Yes No No

Differential Yes Yes Yes

expression analysis

Enrichment analysis | KEGG and GO No No

Celltype Annotation | Yes Yes No

Detailed gene Yes No No

expression plots

Metagenome Yes No No

analysis

Trajectory analysis Yes Yes Yes
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Integration Yes (Seurat only) Yes (various Yes
algorithms)
Output and Plot files, expression | Plots and expression | Miscellaneous

downstream analysis | tables, Seurat RDS
files and excel files tables
etc.

Recent studies have shown that the heterogeneity in microbiota and the present cell types
along with their functions are co-dependent [28]. Cell-associated microbial reads can be
identified in scRNA-seq data [29]. Cellsnake uses Kraken2 [24] to analyze this data and
cellsnake provides the ability to fine-tune parameters to increase sensitivity and/or specificity
and to use personal databases. This can help researchers identify potential microbial
associations with host cells and tissues. Some of these microbial hits can originate from
environmental contamination or can be false positives. These outcomes might not
necessarily reflect real biological associations; nevertheless, the results may provide

valuable insights for QC such as recognizing potential contamination sources.

There are some limitations of the workflow that need to be addressed. Firstly, cellsnake
requires disk space to keep track of the entire pipeline, including metadata files that are
required for advanced downstream analysis. Although the users can delete large files, they
may want to keep metadata files for reproducing the results at a later time. Secondly, the
fully-featured workflow relies on Cellranger outputs from 10x Genomics platform, which may
not always be available. Even though cellsnake was designed and tested utilizing this
platform, it can still use the count matrix files from other platforms, such as the fetal brain
dataset. Third, while cellsnake has moderate performance in terms of memory and speed on

standard workstations for an average number of cells, the auto-detection of parameters
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(e.g., resolution parameter) can be slow when processing samples with a large number of
cells. To improve performance, a parallel version of the MultiK tool was used, which is not
officially supported by the authors of MultiK (see materials and methods). Finally, the
underlying tools utilized by cellsnake may involve various parameters. The fundamental
parameters can be adjusted by the user and supplied through the configuration files, while
the rest are set to default values. This approach was preferred to make the workflow more

user-friendly.

In conclusion, cellsnake is a convenient and adaptable tool, empowering researchers to
analyze scRNA-seq data in a reproducible and customizable manner. With its advanced
features and streamlined workflow, cellsnake stands as a valuable bioinformatics asset for
investigating cellular heterogeneity and gene expression patterns at single-cell resolution

within tissues.

Future Directions

Accurate bioinformatics software requires long-term development and commitment to the
project [30]. It is also a major problem in the field that many projects are abandoned after
publication, becoming unusable and outdated. For instance, cerebroApp [31], a component
of cellsnake's development version, was dropped as it is no longer in active development.
Cellsnake is an open-source tool that is actively developed, allowing anyone to open pull
requests and report issues on its GitHub page. To keep the software bug-free and
streamlined, future developments of cellsnake will involve incorporating new tools, such as
the latest Seurat version, and removing obsolete tools from the main workflow. The users
can access the previous releases for reproducibility. Although cellsnake is mainly designed
for the 10X Genomics single-cell platform, we plan to expand its compatibility with other

platforms and offer additional support for various input formats. Our aim is for cellsnake to
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become an essential toolkit for fast, accurate, tunable, and comprehensive scRNA data

analysis.

Data availability

The publicly available datasets for the fetal brain and liver are available under accessions
PRJNA429950 and PRJEB34784, respectively. Macrophage-only samples from gut mucosal
tissue are deposited in the European Genome-Phenome Archive (EGA) under the following
accession numbers: EGAD00001007765 and EGAS00001005377. The EGA deposited files
are under controlled access, requiring the data access committee permission for retrieval.
The cellsnake analysis results on test samples are available at

https://doi.org/10.5281/zenodo.8282676. A copy of the fetal brain dataset can also be found

in our frozen Zenodo repository.

Availability and Requirements
e Project name: cellsnake

e Project homepage: https://github.com/sinanugur/cellsnake

e Documentation: https://cellsnake.readthedocs.io/en/latest/

e RRID: SCR_023666

e Operating system: Platform independent

e Programming language: Python, R

e Other requirements: Python 3.8 or higher, R 4.2.2
e License: MIT

e PyPi: https://pypi.org/project/cellsnake

e Bioconda: https://anaconda.org/bioconda/cellsnake

e Docker: https://hub.docker.com/r/sinanugur/cellsnake

e Snakemake workflow: https://github.com/sinanugur/scrna-workflow
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