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Abstract 
Recessive diseases arise when both the maternal and the paternal copies of a gene are 

impacted by a damaging genetic variant in the affected individual. When a patient carries two 

different potentially causal variants in a gene for a given disorder, accurate diagnosis requires 

determining that these two variants occur on different copies of the chromosome (i.e., are in 

trans) rather than on the same copy (i.e. in cis). However, current approaches for determining 

phase, beyond parental testing, are limited in clinical settings. We developed a strategy for 

inferring phase for rare variant pairs within genes, leveraging genotypes observed in exome 

sequencing data from the Genome Aggregation Database (gnomAD v2, n=125,748). When 

applied to trio data where phase can be determined by transmission, our approach estimates 

phase with 95.7% accuracy and remains accurate even for very rare variants (allele frequency < 

1x10-4). We also correctly phase 95.9% of variant pairs in a set of 293 patients with Mendelian 

conditions carrying presumed causal compound heterozygous variants. We provide a public 

resource of phasing estimates from gnomAD, including phasing estimates for coding variants 

across the genome and counts per gene of rare variants in trans, that can aid interpretation of 

rare co-occurring variants in the context of recessive disease. 
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 Determination of phase has important implications in clinical genetics, particularly in the 

diagnosis of recessive diseases that result from disruption of both copies of a gene. The 

disrupting bi-allelic variants can be either homozygous, where the same variant is present on 

both copies, or compound heterozygous, where two different variants are present on the two 

copies of the gene. Compound heterozygous variants present a challenge in genetic diagnosis 

because two variants observed within a gene in an individual can occur in trans or in cis, and 

only the former scenario results in compound heterozygosity. However, parental data are often 

not readily available for phasing or parents may not be available for follow-up testing, and short-

read next generation sequencing largely cannot directly distinguish whether variant pairs are in 

trans or in cis. Thus, there is an important need for other approaches to accurately, easily, and 

cheaply determine phase of variant pairs. 

The genetic relationship between a pair of variants on a haplotype can be disrupted by 

one of two processes: meiotic recombination and recurrent mutations. Meiotic recombination 

occurs more frequently in “hotspot” regions, and the probability of a recombination event 

occurring increases with distance between two variants1. A recurrent germline mutation event 

affecting a variant on a haplotype can also disrupt the genetic relationship of the variants on the 

haplotype. Rates of recurrent mutations are dependent on mutation type (e.g., transition versus 

transversion) and epigenetic marks (particularly CpG methylation), among other factors2–6. 

Thus, the rates of both meiotic recombination and mutation have important implications in 

determining the phase of variants. 

There are several approaches for directly inferring phase for variant pairs observed in an 

individual. Phase may be determined directly using data from sequencing reads. However, for 

data from typical short-read sequencing technologies such as Illumina, read-based phasing 

methods are generally only possible for variants in close proximity to each other7, although 

some variant pairs at longer distances can be phased with more sophisticated algorithms8–10. 

Long-read sequencing technologies allow for direct determination of phase for variant pairs at 

longer distances, but these technologies are more expensive and have not yet been widely 

applied in clinical settings11,12. There are also laboratory-based molecular methods for 

determining phase of variant pairs, but these methods are low-throughput and technically 

challenging13. While phase can be determined based on transmission of variants from parents 

to offspring, this approach increases cost and may pose other logistical and ethical challenges, 

and is not always an option if parents are deceased, unavailable (e.g., living far away or 

incarcerated), unknown in the case of adoption, or unwilling to participate. These direct phasing 
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approaches all thus present critical limitations for determining phase of variant pairs within an 

individual in a clinical setting. 

Alternative, indirect approaches for phasing rely on statistical methods applied to 

population data (reviewed in Tewhey et al.14 and Browning and Browning15). Many of these 

approaches build off of the Li-Stephens model16 and leverage genetic data from large numbers 

of unrelated or distantly related individuals to identify shared haplotypes among individuals in a 

population17–19. However, these methods require a large number of reference samples (typically 

n ~105-106 individuals) and are computationally intensive to perform. These approaches perform 

less well for rare variants. Furthermore, these approaches cannot be readily applied to exome 

sequencing data which does not provide enough density of surrounding variants to allow for 

accurate phasing. Despite these limitations, these population-based approaches are attractive 

because they do not require sequencing of additional family members or application of 

expensive sequencing approaches. 

In this work, we sought to address existing challenges of phasing in clinical settings, 

particularly with regard to rare variants observed in exome sequencing data. We implement an 

approach that leverages the principles of population-based phasing by estimating haplotype 

patterns from a large reference population and using these patterns to infer variant phase in an 

individual. We cataloged the haplotype patterns of rare coding and flanking intronic/UTR 

variants within genes using the Genome Aggregation Database (gnomAD), which performed 

aggregation and joint genotyping of exome sequencing data from 125,748 individuals20. We 

then demonstrate that we can leverage these data to generate a resource for phasing rare 

coding variants observed in an individual, and identify factors that influence the accuracy of our 

approach. Additionally, we provide statistics for how often different types of variants are 

observed in trans within gnomAD, stratified by AF and mutational consequence, to provide a 

background rate contextualization when observing biallelic rare variants in rare disease cases. 

Finally, we disseminate these resources in a user-friendly fashion via the gnomAD browser for 

community use. 

 

Results 
Inference of phase in gnomAD 
 We sought to address the challenges of phasing variants observed in individual samples 

in clinical settings by applying the principles of population-based phasing. Specifically, to infer 

the phase of variants in an individual, we leveraged the fact that haplotypes are usually shared 

across individuals in a population (Fig. 1a). If two variants are in cis in many individuals in a 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.03.19.533370doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533370
http://creativecommons.org/licenses/by/4.0/


 4 

population, then they are likely to be cis in any given individual’s genome. Similarly, if two 

variants are in trans in other individuals in a population, then they are likely to be trans in any 

given individual’s genome. This latter scenario also provides information that the variant 

combination may be tolerated in trans since it has been found in an individual in gnomAD. We 

reasoned that by generating phasing estimates from a large reference population, we could infer 

the phase of variants observed in an individual. 

Predicting the phase of a given pair of variants in an individual first requires that we 

estimate the haplotype frequencies in the population for a given pair of variants. To estimate 

haplotype frequencies, we used exome sequencing samples from gnomAD v2, a large 

sequencing aggregation database20. In total, there were 125,748 exome sequencing samples 

after rigorous sample and variant quality control (Online Methods). There are several key 

advantages of using gnomAD as a reference dataset for calculating haplotype frequencies. 

First, samples in gnomAD undergo uniform processing and variant-calling, mitigating the impact 

of technical artifacts. Second, with over 125,000 individuals in gnomAD, the database provides 

sufficient sample sizes to estimate haplotype frequencies below 1x10-5. Lastly, gnomAD offers 

significant genetic ancestral diversity, allowing results of our study to be applied beyond 

samples with European ancestry. 

 We focus in this study on pairs of rare exonic variants occurring in the same gene, which 

are of the greatest interest in the context of Mendelian conditions. We required both variants to 

have a global minor allele frequency (AF) in gnomAD exomes <5% and required variants to be 

coding, flanking intronic (from position -1 to -3 in acceptor sites, and +1 to +8 in donor sites) or 

in the 5’/3’ UTRs. This encompassed 5,320,037,963 unique variant pair combinations across 

19,877 genes. Of these variant pairs, 11,786,014 are carried by the same individual at least 

once in gnomAD, of which only 105,322 are both singleton variants and seen in the same 

individual, where we are unable to make a phase prediction. We performed estimates based on 

all exome sequencing samples in gnomAD v2, as well as separate estimates within each 

genetic ancestry group (African/African American [AFR]: n=8128; Admixed American [AMR]: 

17296; Ashkenazi Jewish [ASJ]: 5040; East Asian [EAS]: 9179; Finnish [FIN]: 10824; non-

Finnish European [NFE]: 56885; Remaining: 3070; South Asian [SAS]: 15308).  

 For each pair of variants, we first generated pairwise genotype counts in gnomAD, with 

nine possible pairwise genotypes for each pair of variants (Fig. 1a). We then applied the 

Expectation-Maximization (EM) algorithm to each pair of variants to generate haplotype 

frequency estimates based on the observed pairwise genotype counts21. For a given pair of 
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variants observed in an individual, the probability of two variants being in trans (Ptrans) is the 

probability of inheriting each of the haplotypes that contain only one of the two variant alleles. 

 

Validation of phasing estimates using trio data 
 To measure the accuracy of our approach, we analyzed variants in a set of 4,992 trios 

that underwent exome sequencing and joint processing with gnomAD. In this trio structure, we 

could accurately measure phase using parental transmission as a gold standard and could 

compare with phase as predicted using the EM algorithm in gnomAD samples. We first 

estimated the genetic ancestry of each individual in the trios by projecting on the principal 

components of ancestry in the gnomAD v2 samples (Supplementary Fig. 1). Of the 4,992 

children from the trios, 4,775 were assigned to one of seven genetic ancestry groups (AFR: 73; 

AMR: 358; ASJ: 62; EAS: 1252; FIN: 149; NFE: 2815; SAS: 46). For validating and measuring 

accuracy of our approach, we removed from gnomAD any samples in our trio dataset that did 

not fall into one of the seven aforementioned genetic ancestry groups. We used our method 

leveraging gnomAD data to estimate phase for every pair of rare (global AF < 5% and 

population AF < 5%) coding and flanking intronic/UTR variants within genes observed in either 

of the parents. Across the 4,775 trio samples, we identified 339,857 unique variant pairs and 

1,115,347 total variant pairs (mean 241.7 variant pairs per trio sample) (Supplementary Fig. 
2a). On average, each trio sample had 64.4 variant pairs where both variants were missense, 

inframe insertions/deletions (indels) or predicted loss-of-function (pLoF), and 0.35 pLoF/pLoF 

variant pairs (Supplementary Fig. 2b-c). Nearly all of the variants identified in the trios were 

single nucleotide variants, with only 2.7% being short indels. A breakdown of functional 

consequences for these variants is depicted in Supplementary Fig. 3a. 

The vast majority (91.1%) of unique variant pairs seen in the trio samples were observed 

in gnomAD at least once and thus amenable to our phasing approach (Fig. 1d). By contrast, 

only 2.1% of variant pairs in these samples were within 10 bp of each other, the range in which 

we previously found read-back phasing of the physical read data to be most effective7 

(Supplementary Fig. 3b). Additionally, we find that 8.2% of variant pairs were within 150 bp, 

the typical length of an Illumina exome sequencing read 19.2% of variant pairs were within the 

same exon. Thus, our approach has a much higher ability to phase variants than physical read-

back phasing data. 

For each variant pair, we calculated the probability of being in trans (Ptrans) based on the 

haplotype frequency estimates in gnomAD as described above. We found a bimodal distribution 

of Ptrans scores; that is, the majority of probabilities were either very high (> 0.99; suggesting a 
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high likelihood of being in trans), or they were very low (< 0.01; suggesting a high likelihood of 

being in cis) (Fig. 1b, Supplementary Fig. 4a-g). Using the trio phasing-by-transmission data 

as a gold standard, we generated receiver-operator curves for distinguishing whether a variant 

pair is likely in trans and found that our approach achieved high sensitivity and specificity (area 

under curve [AUC] ranging from 0.892 to 0.997 across the component genetic ancestry groups) 

(Supplementary Fig. 5a) and high precision and recall (Supplementary Fig. 5b). 

 We next defined Ptrans thresholds for classifying variants as being in cis versus trans (see 

Methods for additional details). To set these thresholds, we first binned variant pairs observed in 

the trio data based on their Ptrans scores calculated from gnomAD samples from the same 

genetic ancestry group. We used only variants on odd chromosomes (i.e., chromosomes 1, 3, 5, 

etc) to determine Ptrans thresholds. For each Ptrans bin, we calculated the proportion of trio variant 

pairs that were in cis or trans based on trio phasing-by-transmission. The Ptrans threshold for 

variant pairs in trans was defined as the minimum Ptrans such that ≥ 90% of variant pairs in that 

bin were in trans based on trio phasing-by-transmission. Similarly, the Ptrans threshold for 

variants in cis was defined as the maximum Ptrans such that ≥ 90% of variant pairs in that bin 

were in cis based on trio phasing by transmission. This resulted in Ptrans thresholds of ≤ 0.02 and 

≥ 0.55 as the threshold for variants in cis and trans, respectively (Fig. 1c). 

We next assessed how well our Ptrans thresholds performed by measuring phasing 

accuracy using the EM algorithm against trio phasing-by-transmission as a gold standard. For 

measuring accuracy, we utilized only variant pairs observed on even chromosomes (i.e., 

chromosomes 2, 4, 6, etc). Overall, 91.1% of unique variant pairs had both variants present in 

the corresponding population in gnomAD and therefore were amenable to phasing (Fig. 1d), 

with only a minority (8.6%) of unique variant pairs having an intermediate Ptrans score (i.e., 0.02 < 

Ptrans < 0.55) and thus an indeterminate phase. We calculated accuracy as the percentage of 

phaseable variant pairs (i.e., both variants present in gnomAD, and Ptrans score ≤ 0.02 or ≥ 0.55) 

that were correctly phased. Based on these Ptrans thresholds, the overall phasing accuracy was 

95.8%. The accuracy for unique variant pairs that are in cis based on trio data was 91.7%, and 

the accuracy for variant pairs in trans was 99.7%.  

We also calculated the overall percentage of variants correctly phased in a given 

individual (i.e., variants are counted more than once if seen multiple times in the trio data). 

96.9% variant pairs in a given individual had both variants present in gnomAD and therefore 

were amenable to phasing, and 92.3% of variant pairs observed in a given individual were 

correctly phased using our approach. Accuracy is lower, but still high, for rare variants; notably, 

among variant pairs with AF < 0.1%, 80.1% of variant pairs in a given individual were correctly 
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phased. Together, these results suggest that our approach can generate highly accurate 

phasing estimates. 

 

 
Fig. 1: Overview of phasing approach using Expectation-Maximization method in 
gnomAD. a, Schematic of phasing approach. b, Histogram of  Ptrans  scores for variant pairs in 

cis (top, blue) and in trans (bottom, red). c, Proportion of variant pairs in each Ptrans bin that are 

in trans. Each point represents variant pairs with Ptrans bin size of 0.01. Blue dashed line at 10% 

indicates the Ptrans threshold at which ≥ 90% of variant pairs in bin are on the same haplotype 

(Ptrans ≤ 0.02). Red dashed line at 90% indicates the Ptrans threshold at which ≥ 90% of variant 

pairs in bin are on opposite haplotypes (Ptrans ≥ 0.55). Calculations are performed using variant 

pairs with population AF ≥ 1x10-4. d, Performance of Ptrans  for distinguishing variant pairs in cis 

and trans. Accuracy is calculated as the proportion of variant pairs correctly phased (green 
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bars) divided by the proportion of variant pairs phased using Ptrans (orange plus green bars). b-d, 
Ptrans scores are population-specific. 

 

Accuracy of phasing across allele frequencies 
 Since the variants that are most likely to be of interest in clinical genetics are rare, we 

assessed the accuracy of phasing at different AF bins. We found high accuracy (i.e., proportion 

correct classifications) ranging from 0.779 to 0.988 across pairs of AF bins (Fig. 2). In general, 

accuracy remained high across allele frequencies for variant pairs in trans based on trio phasing 

data. For variant pairs in cis based on trio phasing data, accuracy was high when the allele 

frequencies of both variants in the pair were high (AF ≥ 0.001). However, accuracy was much 

lower for rare variants in cis (AF < 1x10-4), and in particular when one variant in the pair is rare 

and the other is more common (Fig. 2c). Variant pairs where both variants are singletons (i.e., 

observed once in gnomAD) were phased well for variants in trans based on the trio phasing 

data (accuracy of 0.993). Given the lack of information, we do not report the phasing estimates 

for singleton/singleton variant pairs in cis (see Discussion). 

 

 
Fig. 2: Phasing accuracy as a function of variant allele frequency (AF). Phasing accuracy 

at different AF bins for all variant pairs (a), variant pairs in trans (b), and variant pairs in cis (c). 
Shading of squares and numbers in each square represent the phasing accuracy.  Y-axis labels 

refer to the more frequent variant in each variant pair and X-axis labels refer to the rarer variant 

in each variant pair. Accuracy is the proportion of correct classifications (i.e., correct 

classifications / all classifications) and is calculated for all unique variant pairs seen in the trio 

data across all populations using population-specific Ptrans calculations. 
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Accuracy of phasing across genetic ancestry groups 
 In the above analyses, we used Ptrans estimates calculated from samples in gnomAD with 

the same genetic ancestry group (“population”) in which the variant pair was seen in the trio 

data. We next asked if using all samples in gnomAD to calculate Ptrans (“cosmopolitan”) would 

improve accuracy given larger sample sizes from which to calculate Ptrans (Supplementary Fig. 
6), with the caveat that using the full set of gnomAD samples would result in some genetic 

ancestry mismatching. Across populations, we found that accuracy was generally similar when 

using population-specific ancestry estimates as compared to cosmopolitan estimates (Fig. 3a-
b). However, for certain genetic ancestry groups such as AFR and EAS, accuracy was slightly 

lower when using cosmopolitan estimates as compared to population-specific estimates 

specifically for variants in trans in these populations. For example, the phasing accuracy for 

variants in trans in the AFR ancestry group was 0.995 when using AFR-specific Ptrans estimates, 

but drops to 0.952 when cosmopolitan Ptrans estimates are used. These results suggest that 

cosmopolitan estimates allow a greater proportion of variants to be phased with generally 

similar accuracy as population-specific estimates, though we do identify certain scenarios where 

more caution is required. 

 

 
Fig. 3: Phasing accuracy using population-specific versus cosmopolitan Ptrans estimates. 
Population-specific Ptrans estimates are shown in light blue and cosmopolitan Ptrans estimates are 

shown in medium blue. Accuracies are shown separately for variants in trans (a, left) and 

variants in cis (b, right) 

 

Effect of variant distance and mutation rates on phasing accuracy 
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 One factor that is predicted to affect the accuracy of our phasing estimates is the 

frequency of meiotic recombination between pairs of variants, as recombination events would 

disrupt the haplotype configuration of the variant pairs. To further explore the impact of 

recombination, we plotted the accuracy of our phasing estimates as a function of physical 

distance between variant pairs. We found that for variants in trans, the accuracy of phasing was 

maintained across physical distances. However, for variant pairs in cis, the accuracy rapidly 

decreased with longer physical distances (Fig. 4a). Since physical distance is only a proxy for 

recombination frequency, we also performed this analysis using interpolated genetic distances 

(Fig. 4b). We found again that variants in trans had preserved phasing accuracy across genetic 

distances, while variants in cis had phasing estimates that decreased substantially with genetic 

distance, particularly at distances greater than 0.1 centiMorgan. 

 We also tested the effect of recombination by examining a set of 20,319 multinucleotide 

variants (MNVs), which are pairs of genetic variants in cis that are very close together in 

physical distance (≤ 2 bp) and thus have minimal opportunity for recombination between them. 

These variants have previously been accurately phased using physical read data22,23. When 

examining this set of MNVs, we found that the phasing accuracy using our approach was 

96.0%, with only 3.5% of MNVs phased incorrectly (the remaining 0.46% had indeterminate 

phasing estimates). We found that the vast majority of MNVs that were phased incorrectly using 

Ptrans had disparate AFs between the two variants, similar to what we had observed above (data 

not shown). 

 

 
Fig. 4: Phasing accuracy as a function of distance between variant pairs. a, Phasing 

accuracy (y-axis) as a function of physical distance (in base pairs on log10 scale) between 
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variants (x-axis). Blue represents variants on the same haplotype (in cis), and red represents 

variants on opposite haplotypes (in trans). b, Same as a, except the x-axis shows genetic 

distance (in centiMorgans). Accuracies for a and b are based on unique variant pairs observed 

across all genetic ancestry groups and are calculated using population-specific Ptrans estimates. 

 

 Another potential driver of inaccurate phasing is recurrent germline mutations, and the 

rate at which recurrent germline mutations occur can be highly variable. Transitions have higher 

mutation rates than transversions2,24. Furthermore, CpG transitions have the highest mutation 

rates among single nucleotide changes, with mutation rates increasing with higher methylation 

rates at the CpG sites20. To better understand the impact of mutation rates on phasing 

accuracy, we classified each single nucleotide variant (SNV) in the trio data as a transversion, 

non-CpG transition, or CpG transition. For CpG transitions, we further classified the SNV as 

having low, medium, or high DNA methylation as before20. We then calculated phasing accuracy 

as a function of combinations of mutation types using the trio data (Supplementary Fig. 7a-c). 

We found similar accuracy for transversions and transitions (~0.97) (Supplementary Fig. 7a). 
However, we found that the mutation rates had a strong impact on variant pairs in cis but not 

those in trans (Supplementary Fig. 7b-c). For variants in cis, the phasing accuracies were 

lower at medium and high methylation CpG sites (0.82-0.89) than they were for low methylation 

sites (0.96). These results are consistent with recurrent mutations contributing to inaccurate 

phasing estimates, particularly for variant pairs in cis. 

 
Evaluation of limitations of phasing approach 
 We next sought to address several limitations we observed in our current phasing data. 

First, 4.7% of variant pairs in the 4,775 trios were not present in gnomAD and thus not 

amenable to phasing even using cosmopolitan Ptrans estimates. To understand how the 

proportion of variants amenable to phasing changes as a function of gnomAD reference sample 

size, we performed a subsampling analysis of gnomAD from 121,912 (all of gnomAD v2 after 

removing overlapping trio samples) down to 1,000, 10,000, or 100,000 samples 

(Supplementary Fig. 8a). We found that subsampling greatly reduces the proportion of variants 

amenable to phasing, but that accuracy is generally preserved. For example, when subsampling 

down to 10,000 samples, just 76.4% of variant pairs observed in the trios were amenable to 

phasing, but phasing accuracy remained high (91.9%) when using cosmopolitan Ptrans estimates 

(compared to 93.6% accuracy when using the full gnomAD cohort).  
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We next assessed variant pairs with intermediate EM scores (0.02 < Ptrans < 0.55) where 

our approach gives an indeterminate phase estimate. We found that nearly all (99.8%) of the 

variant pairs with intermediate Ptrans scores included more common variants (AF ≥ 0.001) 

(Supplementary Fig. 8b). For variant pairs where the more common variant had AF ≥ 0.001, 

9.5% of variant pairs had an intermediate Ptrans score. In contrast, variant pairs where the more 

common variant with AF < 0.001, just 0.19% of variant pairs had an intermediate Ptrans score. 

Intermediate Ptrans scores can only occur when all four haplotypes are observed. For rare 

variants, typically not all four haplotype combinations due to sampling and because rare variants 

are younger and have less opportunity for recombination/recurrent mutation to generate all 

haplotype combinations. 

Finally, we investigated the seemingly counterintuitive observation that phasing accuracy 

was lowest for NFE, where we had the highest number of gnomAD reference samples. We 

postulated that this apparent lower phasing accuracy in NFEs might be due to the larger number 

of trios we tested (for example, we tested 2815 NFE trio samples compared to 73 AFR 

samples), rather than an issue with phasing of NFE samples in the gnomAD reference dataset 

itself. To test this, we randomly subsampled the NFE trio samples from 2815 trios down to 282 

(10%), 563 (20%) or 1408 (50%) trios. Upon subsampling, we found that a smaller proportion of 

unique variant pairs were in lower AF bins (< 1x10-4) where phasing is most challenging 

(Supplementary Fig. 8c), with a corresponding improvement in accuracy upon subsampling of 

the trio samples (Supplementary Fig. 8d). These results suggest that the observation of a 

lower phasing accuracy in NFE is an artifact of ascertaining and testing a larger number of NFE 

trio samples. Intuitively, this artifact results from our approach of measuring accuracy using 

unique variant pairs within a population. With increasing numbers of trios tested in our trio 

validation set, more common variant pairs where phasing accuracy is higher are observed 

multiple times yet counted only once. In contrast, with larger numbers of trios tested, we 

observe a larger number of unique rare variant pairs where accuracy is lower. 

 

Demonstration of accuracy in a cohort of patients with Mendelian disorders 
 To demonstrate our approach in a clinically relevant situation, we turned to a set of 627 

patients from the Broad Institute Center for Mendelian Genetics (CMG)25. All patients had a 

confident or strong candidate genetic diagnosis of a Mendelian condition based on carrying two 

rare variants in a recessive disease gene consistent with the patient’s phenotype. Across the 

627 diagnoses, we were able to estimate phase for the 293 patients for which both variants 

were present in gnomAD (Supplementary Table 1). For the analysis of these 293 variant pairs, 
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we used the population-specific Ptrans estimate when available (n=215), and when not, we used 

the cosmopolitan Ptrans estimates (n=78). Our phasing approach indicated 281 (95.9%) variant 

pairs to be in trans, seven variant pairs (2.4%) to be in cis, and five (1.7%) as indeterminate 

(0.02 < Ptrans < 0.55 or singleton-singleton variant in the same individual). Had only the 

cosmopolitan Ptrans estimates been used, one of the 281 in trans predictions would have been 

predicted in cis and one indeterminate. Of the seven variant pairs indicated to be in cis, six 

originated from patients with proband-only sequencing. For these patients, the responsible 

clinician was contacted to ensure phenotype overlap with the disease gene and to pursue 

parental Sanger sequencing for confirmatory phasing by transmission or long read sequencing, 

where possible. The remaining variant pair predicted to be in cis originated from a patient with 

trio-sequencing, which confirmed the variants to be in trans, and our inferred phase to be 

incorrect. Further details on the incorrect prediction are provided in Supplementary Table 1. 

Despite one error and several indeterminate predictions, overall, the results suggest that our 

phasing approach is highly accurate in clinical scenarios in patients with suspected Mendelian 

conditions and can be informative for a large fraction (just under 50% in our cohort) of candidate 

diagnoses, dependant on presence of both variants in gnomAD. 

 

Bi-allelic predicted damaging variants 
 Next, we tabulated for each gene the number of individuals in gnomAD who carry two 

rare heterozygous variants, stratified by the predicted phase using Ptrans cutoffs (i.e., in trans, 

unphased [intermediate Ptrans], and in cis), AF, and the predicted functional consequence of the 

least damaging variant in the pair. For comparison, we tabulated individuals with homozygous 

variants in the same manner. We classified predicted functional consequences as pLoF, 

missense with deleteriousness scored by REVEL26 in line with recent ClinGen 

recommendations27, and synonymous. These data are available for gnomAD v2 as a 

downloadable table with the counts of individuals by phase for each gene across a total of 26 

consequences and five AF thresholds. 

Overall, the number of individuals with rare, compound heterozygous (in trans), 

predicted damaging variants was low (median 0 individuals per gene with compound 

heterozygous loss-of-function variants at ≤ 1% AF, range 0-9) and only occurred in a small 

number of genes (Fig. 5 and Supplementary Fig. 9). Twenty eight genes carried compound 

heterozygous pLoF variants (in 56 individuals) and an additional four genes carried compound 

heterozygous variants with at least a strong REVEL missense predicted consequence (in six 

individuals) at ≤ 1% AF cutoff. The vast majority of these genes have not, to date, been 
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associated with disease (Fig. 5b). Manual curation of the pLoF variants resulted in seven high 

confidence “human knock-out” genes (ARHGEF37, CCDC66, FAM81B, FYB2, GNLY, RBKS, 

and SDSL). These genes are not associated with Mendelian disease nor are they known to be 

essential (see Methods for additional details). In the remaining 21 of the 28 genes with 

compound heterozygous pLoF variants, true loss-of-function was found to be uncertain or 

unlikely following manual curation, due, for example, to the variant falling in the last exon of the 

gene, in a weakly conserved exon, or in the minority of transcripts (Supplemental Table 2). We 

previously manually curated all homozygous pLoF variants in gnomAD20. The absence of rare 

compound heterozygous “human knock-out” events in essential genes was expected given that 

gnomAD is largely depleted of individuals with severe, early-onset conditions. 

 

 
Fig. 5: Counts of genes with variants in trans in gnomAD. a, Proportion of genes with one or 

more individuals in gnomAD carrying predicted compound heterozygous (in trans) variants or a 

homozygous variant at ≤ 1% and ≤ 5% AF stratified by predicted functional consequence. b, 
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Number of genes with ≥ 1 individual in gnomAD carrying compound heterozygous (in trans) or 

homozygous predicted damaging variants at ≤ 1% AF, stratified by predicted functional 

consequence and Mendelian disease-association in the Online Mendelian Inheritance in Man 

database (OMIM). In total, 28 genes (25 non-disease, 2 AD, and 1 AR) carried predicted 

compound heterozygous loss-of-function variants at ≤ 1% AF, only seven of which were high 

confidence “human knock-out” events following manual curation. For predicted compound 

heterozygous variants, both variants in the variant pair must be annotated with a consequence 

at least as severe as the consequence listed (i.e., a compound heterozygous loss-of-function 

variant would be counted under the pLoF category but also included with a less deleterious 

variant under the other categories). All homozygous pLoF variants previously underwent manual 

curation as part of Karczewski et al20. AF, allele frequency; comp het, compound heterozygous; 

hom, homozygous; AD, autosomal dominant; AR, autosomal recessive. 
 

Generation of public resource 
 To make our resource widely usable to both clinicians and researchers, we have 

calculated and released pairwise genotype counts and phasing estimates for each pair of rare 

coding variants occurring in the same gene for gnomAD. These genotype counts are phasing 

estimates shown for all pairs of variants within a gene where both variants have global minor AF 

(or population-specific frequency) in gnomAD exomes < 5%, and are either coding, flanking 

intronic (from position -1 to -3 in acceptor sites, and +1 to +8 in donor sites) or in the 5’/3’ UTRs. 

We have integrated these data into the gnomAD browser so that clinicians and researchers can 

easily look up a pair of variants to obtain the genotype counts, haplotype frequency estimates, 

Ptrans estimates, and likely co-occurrence pattern (Fig. 6a). These results are shown for each 

individual genetic ancestry group and across all genetic ancestries in gnomAD v2. In addition, 

the data are available as a downloadable table for all variant pairs that were seen in at least one 

individual. 
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Fig. 6: Publicly-available browser for sharing of phasing data. a, Sample gnomAD browser 

output for two variants (1-55505647-G-T and 1-55523855-G-A) in the gene PCSK9. On the top, 

a table subdivided by genetic ancestry group displays how many individuals in gnomAD from 

that genetic ancestry are consistent with the two variants occurring on different haplotypes 

(trans), and how many individuals are consistent with their occurring on the same haplotype 

(cis). Below that, there is a 3x3 table that contains the 9 possible combinations of genotypes for 

the two variants of interest. The number of individuals in gnomAD that fall in each of these 

combinations are shown and are colored by whether they are consistent with variants falling on 

different haplotypes (red) or the same haplotype (blue), or whether they are indeterminate 

(purple). The estimated haplotype counts for the four possible haplotypes for the two variants as 

calculated by the EM algorithm is displayed on the bottom right. The probability of being in trans 

for this particular pair of variants is > 99%. b, Variant co-occurrence tables on the gene landing 

page. For each gene (GBA1 shown), the top table lists the number of individuals carrying pairs 

of rare heterozygous variants by inferred phase, AF, and predicted functional consequence. The 

number of individuals with homozygous variants are tabulated in the same manner and 

presented as a comparison below. AF thresholds of ≤ 5%, ≤ 1%, and ≤ 0.5% are displayed 

across six predicted functional consequences (combinations of pLoF, various evidence 

strengths of predicted pathogenicity for missense variants, and synonymous variants). Both 

variants in the variant pair must be annotated with a consequence at least as severe as the 

consequence listed (i.e., pLoF + strong missense also includes pLoF + pLoF). 

  

Furthermore, on the landing page of each gene in the gnomAD v2 browser, we have 

incorporated counts tables detailing the number of individuals carrying two rare variants 

stratified by AF, and functional consequence. The first table counts individuals carrying two rare 

heterozygous variants by predicted phase (in trans, unphased, and in cis) and the second table 

counts individuals carrying homozygous variants (Fig. 6b). We envision that these data will aid 

the medical genetics community in interpreting the clinical significance of co-occurring variants 

in the context of recessive conditions. The data for all genes are also available as a 

downloadable table within gnomAD v2. 

 
Discussion 
 In this work, we have leveraged a large exome sequencing cohort to estimate haplotype 

frequencies for pairs of rare variants within genes, and demonstrate that these haplotype 

frequency estimates can be utilized to predict phase of pairs of variants. Overall, we achieve 
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high accuracy across a range of allele frequencies and across genetic ancestries, and 

demonstrate that our approach is able to distinguish variants that are likely compound 

heterozygous in a clinical setting. Finally, we freely disseminate our results in an easy-to-use 

browser for the community. 

Our work addresses an important challenge of phasing rare variants using short-read 

exome sequencing data. While this scenario is very common in medical genetics, other phasing 

approaches such as phasing-by-transmission or population-based phasing are challenging to 

apply. We leveraged gnomAD to estimate haplotype frequencies to predict phase of variant 

pairs seen within genes. We found that our approach was able to address these challenges of 

phasing in medical genetics and was generally accurate across a range of AFs (even for 

singleton variants) and across genetic ancestries. Most notably, 96.9% of rare (AF < 5%) variant 

pairs in a given individual had both variants present in gnomAD and therefore were amenable to 

phasing using our approach, which is much higher than the proportion amenable to phasing 

using physical read data. Overall, 92.3% of variant pairs observed in a given individual were 

correctly phased using our approach. Thus, our approach can be applied to the vast majority of 

rare variant pairs and can generate accurate phasing estimates for variants of medical 

importance in rare recessive genetic diseases.  

However, we found that our approach was less accurate for rare variants in cis. This 

lower accuracy for variants in cis is intuitive, as for rare variants, a recombination event or 

germline mutation event is much more likely to disrupt a haplotype comprised of two variants 

than to bring two rare variants onto the same haplotype. Consistent with this intuition, we found 

that for variants in cis, phasing accuracy diminished linearly with genetic distance as a measure 

of recombination rates, but that phasing accuracy was maintained across genetic and physical 

distances between pairs of variants in trans. Similarly, the phasing accuracy for variant pairs in 

cis was lower at more mutable sites such as CpG sites that are frequently methylated. Thus, 

users should exercise caution for rare variants at highly mutable sites where our approach 

predicts the variants to be trans since the variants may actually be in cis. We note that in the 

context of recessive disorders in medical genetics, the incorrect phasing of cis variants as trans 

is the more desirable error mode to enable follow-up of a variant pair that may be causal.  

We also compared population-specific estimates with phasing estimates derived from 

samples across all genetic ancestry groups in gnomAD v2 (“cosmopolitan”). While population-

specific phasing estimates are more likely to match the haplotypes seen in a given individual, 

they utilize information from fewer samples in gnomAD. We found that, in general, population-

specific estimates were similar in accuracy to using cosmopolitan estimates. For individuals of 
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AFR genetic ancestry, however, we found that use of cosmopolitan estimates resulted in slightly 

lower phasing accuracy than the use of AFR-specific estimates for variants in trans (Fig. 3a). 
This is consistent with the observation that there are more unique haplotypes seen in individuals 

of AFR genetic ancestry and/or older haplotypes in individuals of AFR genetic ancestry for 

which recombination is more likely to have occurred28. Moreover, there are other genetic 

ancestry groups not currently represented in gnomAD for which we expect this phasing 

approach to have lower accuracy than in the well-represented genetic ancestry groups. 

Additionally, we recognize that many individuals are not well represented by a discrete genetic 

ancestry group, but instead represent admixtures of two or more populations. Future work on 

phasing will likely benefit from considering ancestry as a continuous variable29. For the analysis 

of rare disease patients with candidate compound heterozygous variants, our data suggests that 

population-specific estimates, when available, should be used first-line followed by the 

cosmopolitan estimate. 

Pairs of singleton variants pose a unique challenge. When a pair of singleton variants is 

observed in different individuals in a population, this provides evidence that the variants are on 

different haplotypes. However, if a pair of singleton variants is observed in the same individual 

in the population, we cannot readily distinguish whether the variants are on the same haplotype 

or different haplotypes as we lack information from other individuals in the population for 

singleton variants. For this reason, we have chosen to not report phasing estimates for singleton 

variant pairs that are observed in the same individuals in gnomAD. Nonetheless, using our trio 

data, 93% of these singleton variant pairs observed in the same individual in gnomAD were in 

cis based on our trio validation data. 

Our work focuses on the challenging, yet common, scenario of determining phase for 

rare variants identified in exome sequencing of rare disease patients in the absence of parental 

data. We utilized the EM algorithm to phase pairs of variants instead of more sophisticated 

population-based phasing approaches for several reasons16–19. First, exome and targeted gene 

panel sequencing data pose a unique challenge for population-based phasing given the sparsity 

of variants, precluding the use of common non-coding variants as a “scaffold” for phasing. 

Recent work performed population-based phasing of rare variants from exome sequencing data 

by combining the exome data with SNP genotyping arrays19,30. However, SNP genotyping data 

are not usually generated in conjunction with a clinical sequencing test and were not readily 

available for much of gnomAD. Second, rare variants, which are of the greatest interest in 

Mendelian diseases, are challenging to phase using population-based approaches given the 

small numbers of shared haplotypes from which to derive phasing estimates in the population. 
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Recent methods have shown accurate phasing of rare variants using genome sequencing 

data17,19,31, but relies on a large genome reference panel. In our work, there were limited 

numbers of genome sequences available for use in a population-based phasing approach. 

However, as the numbers of genome sequencing samples increases in future releases of 

gnomAD, this may represent a tractable and more accurate approach for phasing of rare 

variants. Even with the falling cost of genome sequencing, exome sequencing and targeted 

gene sequencing remain commonly used in clinical settings. Thus, we anticipate that our 

approach and the resources we have generated will remain useful. Third, we found that 

application of the EM algorithm to pairs of variants was more intuitive to illustrate how phasing 

estimates were derived from genotype data, allowing users to more easily assess the reliability 

of phasing estimates we provide for any given pair of variants. Together, the EM algorithm 

provided us with the unique ability to phase pairs of rare variants in exome data in an intuitive 

fashion. 

Utilizing phase estimates to tabulate the number of individuals in gnomAD with two rare 

predicted in trans variants by gene, we found that there are only a small number of “human 

knock-out” genes affected by predicted compound heterozygous (in trans) loss-of-function 

variants, and that this number is substantially lower than is observed for homozygous loss-of-

function variants. These compound heterozygous “human knock-out” events occurred in genes 

that are not known to be essential, an expected finding given that gnomAD is largely depleted of 

individuals with severe and early-onset conditions. When analyzing the 23,667 individuals that 

carry two pLoF variants with AF ≤ 1%, we predict that in 20,706 (88%) of those individuals, the 

variant pair is in cis and only a small fraction (~0.2%) are confidently predicted to be in trans. 

This may be counter-intuitive, so warrants emphasis: when a pair of rare pLoF variants is 

observed in the same gene in an individual from a general population sample, it is vastly more 

likely that these variants are carried on the same haplotype than that the individual is a genuine 

“knock-out” due to compound heterozygosity. 

To aid the medical genetics community in interpreting the clinical significance of rare co-

occurring variants in the context of recessive disease, we have released these counts across a 

spectrum of variant consequences (pLoF, missense, and synonymous) and allele frequencies 

by gene in the gnomAD browser. These provide background frequencies–to the best of our 

ability–of compound heterozygous rare damaging variants. These background frequencies can 

be used to assess the probability that a given variant pair identified in a patient may have 

occurred by chance. We note, however, that our ability to identify rare variant pairs in trans in 

gnomAD v2 individuals is limited by the fact the same dataset was used for training. Indeed, in 
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these individuals, our ability to detect variant pairs in trans extends largely to variant pairs with 

AF > 0.5%, as nearly all rarer variant combinations were dominated by indeterminate phase and 

very few predictions for variant pairs in trans. The per-gene variant co-occurrence resource 

developed and released here is therefore to be considered a first step in this space. We plan to 

use the predictions from this dataset (gnomAD v2) on newer versions of gnomAD with additional 

samples, where we can more confidently predict rare variant pairs that are in trans. 

 Beyond our current restriction to predicting within the gnomAD dataset, there are several 

other important limitations to our work. First, we have only reported phasing estimates for rare 

coding and flanking intronic/UTR variant pairs within genes in order to limit the computational 

burden. We believe that these are the variant pairs of most interest to the medical genetics 

community, but acknowledge that phase with deeper intronic variation will become important as 

more genome sequencing is performed. Second, while there was a broad range of genetic 

ancestral diversity represented in our samples, future studies would benefit from even larger 

sample sizes, especially for genetic ancestry groups not well represented in our present study. 

Finally, we have only tested our phasing accuracy in a clinical setting in a retrospective manner 

and future prospective studies will be needed to confirm the clinical utility of our approach. 

 

 
Online Methods  
gnomAD characteristics and data processing 

In this work, we used exome sequencing data from the gnomAD v2.1 dataset (n = 

125,748 individuals). These data were uniformly processed, underwent joint variant calling, and 

rigorous quality control, as described in Karczewski et al.20. Briefly, we aggregated ~200k 

exome sequences and ~20k genome sequences, primarily from case-control studies of 

common adult-onset conditions, and applied a BWA-Picard-GATK pipeline32. Using Hail 

(https://github.com/hail-is/hail), we then removed samples that (1) failed population- and 

platform-specific quality control, (2) had second-degree or closer relations in the dataset, (3) did 

not have appropriate consent for release, and (4) had known severe, early-onset conditions. For 

variant quality control, we trained a random forest on site-level and genotype-level metrics (e.g., 

the quality by depth, QD), and demonstrated that it achieved both high precision and recall for 

both common and rare variants. 

We subsetted the final cleaned gnomAD dataset for variants with global AF in gnomAD 

exomes < 5% that were either coding, flanking intronic (from position -1 to -3 in acceptor sites, 

and +1 to +8 in donor sites) or in the 5’/3’ UTRs. In total, this encompasses 5,320,037,963 
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unique variant pairs across 19,877 genes when removing singleton-singleton variant pairs seen 

in the same individual. We specifically extracted 20,921,100 pairs of variants, most of which 

were seen at least once in the same individual to create a more manageable downloadable file. 

Analysis in this manuscript was performed using Hail version 0.2.10533, and analysis 

code is available at https://github.com/broadinstitute/gnomad_chets. 

  
Haplotype estimates 

Consider two variants, A and B. A and B represent the major alleles, and a and b 

represent the respective minor alleles. There are thus 9 pairwise genotypes for A and B: AABB, 

AaBB, aaBB, AABb, AaBb, aaBb, AAbb, Aabb, and aabb. Of these pairwise genotypes, only the 

phase for the double heterozygote (AaBb) is unknown. From these 9 possible genotypes, there 

are four possible haplotype configurations: AB, Ab, aB, and ab. 

For each pair of variants, we applied the expectation-maximization (EM) algorithm21 to 

estimate haplotype frequencies from genotype counts. The initial conditions of the EM algorithm 

were set by partitioning the doubly heterozygous (AaBb) genotype counts equally between the 

AB|ab and Ab|aB haplotype configurations. The EM algorithm was run until convergence or until 

the absolute value of the difference between consecutive maximum likelihood function values 

was less than 1x10-7. We calculated haplotype frequencies based on genotypes present within 

the same genetic ancestry group (“population-specific”) or using all samples from gnomAD 

(“cosmopolitan”). Haplotype frequency estimates were performed using Hail. 

  We then calculate Ptrans as the likelihood that any given pair of doubly heterozygous 

variants (AaBb) in a patient is compound heterozygous (Ab|aB). Ptrans can be calculated simply 

from the haplotype frequency estimates (AB, Ab, aB, and ab): 

Ptrans =((Ab×aB))/(AB×ab+Ab×aB) 

Thus, Ptrans simply represents the probability that the patient is compound heterozygous by 

inheriting both the Ab and aB haplotypes. 

 

Determination of Ptrans cutoffs 

 To determine Ptrans cutoffs for classifying variants as occurring in cis or trans, we binned 

variant pairs on odd chromosomes (chromosome 1, 3, 5, etc) in increments of 0.01 of Ptrans. For 

each bin, we calculated the proportion of variant pairs in that bin that are compound 

heterozygous based on phasing by trio data. The Ptrans for variants in trans was determined as 

the minimum Ptrans such that 90% of variants in the bin are compound heterozygous based on 

trio data. The Ptrans for variants in cis was determined as the maximum Ptrans such that 90% of 
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variants in the bin are in cis based on trio data. For these calculations, we used only variants 

where both variants had a population AF ≥ 1x10-4. We used trio samples across all genetic 

ancestry groups and population-specific Ptrans values for determination of the cutoffs. 

 

Trio validation data 

We made use of 4,992 parent-child trios that were jointly processed and variant-called 

with gnomAD. Having access to parental genotypes allows us to perform phase-by-transmission 

and accurately determine whether two co-occurring variants in the same gene are in cis or in 

trans.  

First, we estimated genetic ancestry of each individual in the trios by using ancestry 

inference estimates from the full gnomAD dataset, as previously described20. Briefly, we 

selected bi-allelic variants that passed all hard filters, had allele frequencies in a joint exome 

and genome callset > 0.001, and high joint call rates (> 0.99). The variants were then LD-

pruned (r2 = 0.1) and used in a principal component analysis (PCA). We previously used 

samples with known genetic ancestry to train a random forest on the first 20 principal 

components (PCs), and assigned samples to a genetic ancestry group based on having a 

random forest probability > 0.9. For the trios in this cohort, we projected their PCs for genetic 

ancestry onto the same gnomAD v2 samples to infer the genetic ancestry used here (Figure 
S1). Of these 4922 trios, 4,775 of the children from the trios were assigned to one of the seven 

genetic ancestry groups in this study based on PCA and were used in this study.  

We then phased the trio data using the Hail phase_by_transmission 

(https://hail.is/docs/0.2/experimental/index.html#hail.experimental.phase_by_transmission) 

function, which uses Mendelian transmission of alleles to infer haplotypes in trios for all sites 

that are not heterozygous in all members of the trio. Assigning haplotypes in trios based on 

parental genotype has traditionally been the gold standard, has switch error rates below 0.1%, 

and importantly errors aren't dependent on the allele frequency of the variants phased34. To 

maximize our confidence in the genotypes and phasing, we filtered genotypes to include only 

those with genotype quality (GQ) > 20, depth > 10 and allele balance > 0.2 for heterozygous 

genotypes prior to phasing. Sex chromosomes were excluded. In total, there were 339,857 

unique variant pairs and 1,115,347 total variant pairs. 

We compared trio phasing-by-transmission with phasing using gnomAD on even 

chromosomes (e.g., chromosomes 2, 4, 6, etc). Of these 4,775 trio samples, 3,836 were in the 

full release of gnomAD and were removed from gnomAD for trio validation. This resulted in a set 
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of 121,912 gnomAD samples from which we derived haplotype estimates. We then performed 

phasing using the EM algorithm as above. 

We classified trio variant pairs into 1) unable to phase using our approach (either variant 

not seen in gnomAD, or singleton-singleton variant pairs seen in the same individual in 

gnomAD), 2) indeterminate phase (those with intermediate 0.02 < Ptrans < 0.55), 3) incorrectly 

phased, or 4) correctly phased. Accuracy was calculated as the number of variant pairs 

correctly phased divided by the number of pairs correctly and incorrectly phased. 

 

CpG analysis 

 Single nucleotide variants seen in the trio data were divided into transitions and 

transversions. Transitions were further subdivided into those that are CpG mutations (5’-CpG-3’ 

mutating to 5’-TpG-3’) and those that are not. For each CpG transition, we calculated the mean 

DNA methylation values across 37 tissues in ENCODE20. We then stratified CpG transitions into 

3 levels: low (missing or < 0.2), medium (0.2–0.6), and high (> 0.6) methylation. Phasing 

accuracy–here, the proportion correct (correct classifications/all classifications)–was then 

calculated for pairwise combinations of transversions, non-CpG transitions, low methylation 

CpG transitions, medium methylation CpG transitions, and high methylation CpG transitions. All 

SNVs were included in the analysis and population-specific EM estimates were used. 

 

Calculating accuracy as a function of genetic distance 

To estimate the genetic distance between pairs of genetic variants, we interpolated 

genetic distances between variant pairs using a genetic map from HapMap235 

(https://github.com/joepickrell/1000-genomes-genetic-maps). We downloaded a pre-generated 

HapMap2 genetic map representing average over recombination rates in the CEU, YRI, and 

ASN populations. We then ran interpolate_maps.py (downloaded from 

https://github.com/joepickrell/1000-genomes-genetic-

maps/blob/master/scripts/interpolate_maps.py) for all variant pairs in the phasing trio data. As 

above, accuracy is the proportion of correct classifications. 

 

MNV analysis 

 We obtained multi-nucleotide variant pairs for which read-back phasing had previously 

been calculated22. We included only multi-nucleotide variant pairs where each constituent 

variant was analyzed in our study. Phasing estimates were calculated using cosmopolitan EM 

estimates. 
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Rare disease patient analysis 

627 patients from the Broad Institute Center for Mendelian Genetics (CMG)25 with a 

confident or strong candidate genetic diagnosis of a Mendelian condition were selected for 

analysis. Each patient carried two presumed bi-allelic variants in an autosomal recessive 

disease gene consistent with the patient’s phenotype. For 293 of the patients, both variants 

were present in gnomAD and phase was predicted. Trio-sequencing (i.e., sequencing of the 

proband and the two unaffected biological parents) had been performed for 168 of the 293 

patients. For fully sequenced trios, we were able to confirm phasing of the two variants via 

phase-by-transmission. 

 

Determining counts of individuals with two rare, damaging variants 

 Variants were annotated with the worst consequence on the canonical transcript by the 

Ensembl Variant Effect Predictor (VEP)36. pLoF were annotated with LOFTEE20, and only high 

confidence LoF variants were counted as “pLoF”. Missense variants were annotated with 

REVEL26. REVEL scores ≥ 0.932 were counted as “strong_revel_missense”, ≥ 0.773 as 

“moderate_to_strong_revel_missense”, ≥ 0.644 as “weak_to_strong_revel_missense” in line 

with recent ClinGen recommendations27. 

Variant pairs were annotated with predicted phase based on the Ptrans thresholds. All 

singleton-singleton variant pairs (AC = 1) and variant pairs with an indeterminate Ptrans values 

(0.02 < Ptrans < 0.55) were annotated as unphased. 

 Five AF thresholds were selected for analysis and variant pairs were filtered based on 

the highest global AF and, where available, the “popmax” AF of each variant in gnomAD (i.e., 

the highest AF information for the non-bottlenecked population - excluding ASJ, FIN and 

“Remaining”): 0.5%, 1%, 1.5%, 2%, and 5%. Further, all variant pairs containing a variant with 

an AF > 5% in a bottlenecked population were filtered out. 

The number of individuals carrying a variant pair (irrespective of phase) and the number 

indicated to be compound heterozygous (in trans), unphased (indeterminate), and on the same 

haplogroup (in cis) were counted gene-wise by AF threshold and combined functional 

consequences (26 consequences). This counting was repeated twice, once restricting 

individuals to be counted in only one phase group, prioritizing in trans over unphased and 

unphased over in cis (displayed in the “variant co-occurrence” gnomAD browser feature), and 

once allowing individuals to be counted in multiple phase groups, if carrying multiple variant 

pairs in the same gene with different phase predictions. 
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Essential gene lists 

 The following essential gene lists were queried for the presence of the true “human 

knock-out” genes identified in this study: 

● 2,454 genes essential in mice from Georgi et al. 201337 

● 553 pan-cancer core fitness genes from Behan et al., 201938 

● 360 core essential genes from genomic perturbation screens from Hart et al. 201439 

● 684 genes essential in culture by CRISPR screening from Hart et al. 201740 

● 1,075 genes annotated by the ADaM analysis of a large collection of gene dependency 

profiles (CRISPR-Cas9 screens) across human cancer cell lines from Vinceti et al. 

202141 

 

Code availability 
The code used to estimate Ptrans estimates for variant pairs and to determine the number of 

individuals carrying rare, compound heterozygous variants can be found at: 

https://github.com/broadinstitute/gnomad_chets 

 
Data availability 
We provide both web-based look up tools and downloads for the data generated here. A look-up 

tool to find the likely co-occurrence pattern between two rare (global allele frequency in gnomAD 

exomes < 5%) coding, flanking intronic (from position -1 to -3 in acceptor sites, and +1 to +8 in 

donor sites) or 5’/3’ UTR variants can be found at: 

https://gnomad.broadinstitute.org/variant-cooccurrence 

 

Additionally, we display the per-gene counts tables that detail the number of individuals with two 

rare variants, stratified by AF and functional consequence, on each gene’s main page. One 

table details counts of individuals with two heterozygous variants and includes predicted phase, 

while the second details individuals with homozygous variants. Both can be found by clicking on 

the “Variant Co-occurrence” tab on each gene’s main page. 

 

All variant co-occurrence tables can be downloaded from: 

https://gnomad.broadinstitute.org/downloads#v2-variant-cooccurrence 

 
Ethical compliance and informed consent statement 
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Informed consent was obtained by collaborators for all participants in the Broad Institute Center 

for Mendelian Genetics (CMG), and individual-level data, including genomics and clinical data, 

were de-identified and coded by our collaborators before analysis here. We have complied with 

all relevant ethical regulations. This work was approved by the Broad Institute of MIT and 

Harvard, Mass General Brigham IRB. 
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Supplementary Figures 
 

 
Supplementary Figure 1: Principal component analysis (PCA) plot for the full gnomAD v2 

cohort (left) and specifically for the trios (right, trios in black) included in this paper. The top row 

shows PC1 vs PC2, the middle row shows PC3 vs PC4, and the bottom row shows PC5 vs 

PC6. Genetic ancestry group labels for the global gnomAD populations were done as described 

in Karczewski et al. 202020.  
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Supplementary Figure 2: Number of variant pairs observed per trio sample as a function of 

ancestry and AF. All variant pairs are shown in a. Variant pairs in which both variants are 
moderate effect or predicted loss-of-function (pLoF) are shown in b. Variant pairs in which both 

variants are pLoF are shown in c. Variant AF is the AF of the less common variant in a given 

variant pair and is population-specific frequency. AFR = African/African American; AMR = 

Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE = 

non-Finnish European; SAS = South Asian.  
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Supplementary Figure 3: a, Pie chart of variant effect annotations in the trio samples. Effect 

predictions are stratified among pLoF, moderate effect, and low effect variants. Percentages are 

shown in parentheses. b, Proportion of variant pairs falling within 2 bp, within 10 bp, within 150 

bp, within the same exon, and proportion that can be phased using the EM algorithm and the 

gnomAD resource. 
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Supplementary Figure 4: a-g, Histogram of  Ptrans  scores for variant pairs in cis (top, blue) and 

in trans (bottom, red) for each population.  Ptrans scores are population-specific. AFR = 

African/African American; AMR = Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS = 

East Asian; FIN = Finnish; NFE = non-Finnish European; SAS = South Asian. 
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Supplementary Figure 5: Receiver-operator (a) and Precision-recall (b) curves for use of Ptrans 

for distinguishing between variant pairs on same versus opposite haplotypes. Separate lines are 

shown for each genetic ancestry group. Ptrans scores are population-specific. AFR = 

African/African American; AMR = Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS = 

East Asian; FIN = Finnish; NFE = non-Finnish European; SAS = South Asian. 
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Supplementary Figure 6: Phasing performance for population-specific versus cosmopolitan 

Ptrans scores for each population. AFR = African/African American; AMR = Admixed 

American/Latino; ASJ = Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE = non-

Finnish European; SAS = South Asian. 
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Supplementary Figure 7: Phasing accuracy for transversions, non-CpG transitions, and CpG 

transitions. CpG transitions are further stratified by degree of DNA methylation (low, medium, or 

high) as in Karczewski et al20. Shading of squares and numbers in each square represents 

phasing accuracy. Phasing accuracies are based on variant pairs seen in all populations and 

utilize population-specific Ptrans estimates. Accuracy is shown for all variants (a), variants in trans 

(b), and variants in cis (c).  
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Supplementary Figure 8: a, Phasing performance when subsampling gnomAD to 1000, 

10,000, 100,000 or using all samples. Phasing performance is based on cosmopolitan Ptrans 

estimates and is calculated across trio samples from all populations. b, Phasing performance as 

a function of variant AF for the more common variant in a variant pair.  Phasing performance is 

based on population-specific Ptrans estimates and is calculated across trio samples from all 

populations. c, Proportion of variants falling into different AF bins when subsampling NFE 

gnomAD trios from 2815 trios down to 282, 563, or 1408 trios. Allele frequencies reflect the 

rarer variant in a variant pair. d, Phasing performance when subsampling NFE gnomAD 

samples as described in c.   
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Supplementary Figure 9: a, Proportion of genes with one or more individuals in gnomAD 

carrying two rare variants at ≤ 1% and ≤ 5% AF stratified by predicted functional effect and 

phase. For compound heterozygous (comp het, in trans), unphased, and in cis, both variants in 

the variant pair must be annotated with a consequence at least as severe as the consequence 

displayed. b, Number of individuals per gene in gnomAD carrying two rare variants at ≤ 1% and 

≤ 5% AF stratified by predicted functional effect and phase. For compound heterozygous (in 

trans) both variants in the variant pair must be annotated with a consequence at least as severe 

as the consequence displayed. In the box plots, the center line is the median, the box limits are 

the upper and lower quartiles, and the whiskers extend to the 1.5x the interquartile range. Any 

points shown are outliers. “comp het (in trans)” refers to compound heterozygous; “hom” refers 

to homozygous. 
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Supplemental Tables 
 
Table S1. CMG diagnostic variants. In this table, we provide details about the presumed bi-

allelic causal variants from 293 individuals from the Broad Institute Center for Mendelian 

Genetics. For each variant pair, we provide the gene symbol (“gene_name”), information about 

the position and alleles of both variants, whether both of the variants were singletons in 

gnomAD (“singleton_singleton”) and seen in the same individual or not, the estimated 

cosmopolitan Ptrans value, the predicted phase based on the cosmopolitan Ptrans value 

(“cosmopolitan_phase_prediction”), the imputed population ancestry of the CMG individual 

(“imputed_population_ancestry”), the predicted phased based on the population-specific Ptrans 

value (“population_specific_phase_prediction”), the known phase from phase by transmission 

when trio data were available (“phase_by_transmission”), and an explanation for incorrect 

predictions where applicable (“incorrect_prediction_explanation”). 

 
Table S2. Manual curation results for compound heterozygous loss-of-function variants. Here, 

we provide the variant curation information for the 28 genes that have predicted compound 

heterozygous loss-of-function variants with AF ≤ 1%. For every predicted compound 

heterozygous variant pair, we provide the gene symbol, maximum AF in the gnomAD exomes 

from the two variants (“variant_pair_max_af”), the number of individuals who carry the variant 

pair (“n_individuals”), information about the position and alleles of both variants, any manual 

curation flags e.g., mapping error for the variants, and the final loss-of-function curation for both 

variants as well as the variant pair (“high_confidence_human_knock_out”). 
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