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Abstract

Recessive diseases arise when both the maternal and the paternal copies of a gene are
impacted by a damaging genetic variant in the affected individual. When a patient carries two
different potentially causal variants in a gene for a given disorder, accurate diagnosis requires
determining that these two variants occur on different copies of the chromosome (i.e., are in
trans) rather than on the same copy (i.e. in cis). However, current approaches for determining
phase, beyond parental testing, are limited in clinical settings. We developed a strategy for
inferring phase for rare variant pairs within genes, leveraging genotypes observed in exome
sequencing data from the Genome Aggregation Database (gnomAD v2, n=125,748). When
applied to trio data where phase can be determined by transmission, our approach estimates
phase with 95.7% accuracy and remains accurate even for very rare variants (allele frequency <
1x10™). We also correctly phase 95.9% of variant pairs in a set of 293 patients with Mendelian
conditions carrying presumed causal compound heterozygous variants. We provide a public
resource of phasing estimates from gnomAD, including phasing estimates for coding variants
across the genome and counts per gene of rare variants in trans, that can aid interpretation of

rare co-occurring variants in the context of recessive disease.
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Determination of phase has important implications in clinical genetics, particularly in the
diagnosis of recessive diseases that result from disruption of both copies of a gene. The
disrupting bi-allelic variants can be either homozygous, where the same variant is present on
both copies, or compound heterozygous, where two different variants are present on the two
copies of the gene. Compound heterozygous variants present a challenge in genetic diagnosis
because two variants observed within a gene in an individual can occur in frans or in cis, and
only the former scenario results in compound heterozygosity. However, parental data are often
not readily available for phasing or parents may not be available for follow-up testing, and short-
read next generation sequencing largely cannot directly distinguish whether variant pairs are in
trans or in cis. Thus, there is an important need for other approaches to accurately, easily, and
cheaply determine phase of variant pairs.

The genetic relationship between a pair of variants on a haplotype can be disrupted by
one of two processes: meiotic recombination and recurrent mutations. Meiotic recombination
occurs more frequently in “hotspot” regions, and the probability of a recombination event
occurring increases with distance between two variants’. A recurrent germline mutation event
affecting a variant on a haplotype can also disrupt the genetic relationship of the variants on the
haplotype. Rates of recurrent mutations are dependent on mutation type (e.g., transition versus
transversion) and epigenetic marks (particularly CpG methylation), among other factors?.
Thus, the rates of both meiotic recombination and mutation have important implications in
determining the phase of variants.

There are several approaches for directly inferring phase for variant pairs observed in an
individual. Phase may be determined directly using data from sequencing reads. However, for
data from typical short-read sequencing technologies such as lllumina, read-based phasing
methods are generally only possible for variants in close proximity to each other’, although
some variant pairs at longer distances can be phased with more sophisticated algorithms®"°.
Long-read sequencing technologies allow for direct determination of phase for variant pairs at
longer distances, but these technologies are more expensive and have not yet been widely
applied in clinical settings'"'?. There are also laboratory-based molecular methods for
determining phase of variant pairs, but these methods are low-throughput and technically
challenging'®. While phase can be determined based on transmission of variants from parents
to offspring, this approach increases cost and may pose other logistical and ethical challenges,
and is not always an option if parents are deceased, unavailable (e.g., living far away or

incarcerated), unknown in the case of adoption, or unwilling to participate. These direct phasing
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approaches all thus present critical limitations for determining phase of variant pairs within an
individual in a clinical setting.

Alternative, indirect approaches for phasing rely on statistical methods applied to
population data (reviewed in Tewhey et al.’* and Browning and Browning'®). Many of these
approaches build off of the Li-Stephens model'® and leverage genetic data from large numbers
of unrelated or distantly related individuals to identify shared haplotypes among individuals in a

=19 However, these methods require a large number of reference samples (typically

population
n ~10°-10° individuals) and are computationally intensive to perform. These approaches perform
less well for rare variants. Furthermore, these approaches cannot be readily applied to exome
sequencing data which does not provide enough density of surrounding variants to allow for
accurate phasing. Despite these limitations, these population-based approaches are attractive
because they do not require sequencing of additional family members or application of
expensive sequencing approaches.

In this work, we sought to address existing challenges of phasing in clinical settings,
particularly with regard to rare variants observed in exome sequencing data. We implement an
approach that leverages the principles of population-based phasing by estimating haplotype
patterns from a large reference population and using these patterns to infer variant phase in an
individual. We cataloged the haplotype patterns of rare coding and flanking intronic/UTR
variants within genes using the Genome Aggregation Database (gnomAD), which performed
aggregation and joint genotyping of exome sequencing data from 125,748 individuals®°. We
then demonstrate that we can leverage these data to generate a resource for phasing rare
coding variants observed in an individual, and identify factors that influence the accuracy of our
approach. Additionally, we provide statistics for how often different types of variants are
observed in trans within gnomAD, stratified by AF and mutational consequence, to provide a
background rate contextualization when observing biallelic rare variants in rare disease cases.
Finally, we disseminate these resources in a user-friendly fashion via the gnomAD browser for

community use.

Results
Inference of phase in gnomAD

We sought to address the challenges of phasing variants observed in individual samples
in clinical settings by applying the principles of population-based phasing. Specifically, to infer
the phase of variants in an individual, we leveraged the fact that haplotypes are usually shared

across individuals in a population (Fig. 1a). If two variants are in c¢is in many individuals in a
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population, then they are likely to be cis in any given individual’s genome. Similarly, if two
variants are in trans in other individuals in a population, then they are likely to be trans in any
given individual’'s genome. This latter scenario also provides information that the variant
combination may be tolerated in frans since it has been found in an individual in gnomAD. We
reasoned that by generating phasing estimates from a large reference population, we could infer
the phase of variants observed in an individual.

Predicting the phase of a given pair of variants in an individual first requires that we
estimate the haplotype frequencies in the population for a given pair of variants. To estimate
haplotype frequencies, we used exome sequencing samples from gnomAD v2, a large
sequencing aggregation database®. In total, there were 125,748 exome sequencing samples
after rigorous sample and variant quality control (Online Methods). There are several key
advantages of using gnomAD as a reference dataset for calculating haplotype frequencies.
First, samples in gnomAD undergo uniform processing and variant-calling, mitigating the impact
of technical artifacts. Second, with over 125,000 individuals in gnomAD, the database provides
sufficient sample sizes to estimate haplotype frequencies below 1x107°. Lastly, gnomAD offers
significant genetic ancestral diversity, allowing results of our study to be applied beyond
samples with European ancestry.

We focus in this study on pairs of rare exonic variants occurring in the same gene, which
are of the greatest interest in the context of Mendelian conditions. We required both variants to
have a global minor allele frequency (AF) in gnomAD exomes <5% and required variants to be
coding, flanking intronic (from position -1 to -3 in acceptor sites, and +1 to +8 in donor sites) or
in the 5°/3’ UTRs. This encompassed 5,320,037,963 unique variant pair combinations across
19,877 genes. Of these variant pairs, 11,786,014 are carried by the same individual at least
once in gnomAD, of which only 105,322 are both singleton variants and seen in the same
individual, where we are unable to make a phase prediction. We performed estimates based on
all exome sequencing samples in gnomAD v2, as well as separate estimates within each
genetic ancestry group (African/African American [AFR]: n=8128; Admixed American [AMR]:
17296; Ashkenazi Jewish [ASJ]: 5040; East Asian [EAS]: 9179; Finnish [FIN]: 10824; non-
Finnish European [NFE]: 56885; Remaining: 3070; South Asian [SAS]: 15308).

For each pair of variants, we first generated pairwise genotype counts in gnomAD, with
nine possible pairwise genotypes for each pair of variants (Fig. 1a). We then applied the
Expectation-Maximization (EM) algorithm to each pair of variants to generate haplotype

frequency estimates based on the observed pairwise genotype counts?’. For a given pair of
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variants observed in an individual, the probability of two variants being in trans (Pians) is the

probability of inheriting each of the haplotypes that contain only one of the two variant alleles.

Validation of phasing estimates using trio data

To measure the accuracy of our approach, we analyzed variants in a set of 4,992 trios
that underwent exome sequencing and joint processing with gnomAD. In this trio structure, we
could accurately measure phase using parental transmission as a gold standard and could
compare with phase as predicted using the EM algorithm in gnomAD samples. We first
estimated the genetic ancestry of each individual in the trios by projecting on the principal
components of ancestry in the gnomAD v2 samples (Supplementary Fig. 1). Of the 4,992
children from the trios, 4,775 were assigned to one of seven genetic ancestry groups (AFR: 73;
AMR: 358; ASJ: 62; EAS: 1252; FIN: 149; NFE: 2815; SAS: 46). For validating and measuring
accuracy of our approach, we removed from gnomAD any samples in our trio dataset that did
not fall into one of the seven aforementioned genetic ancestry groups. We used our method
leveraging gnomAD data to estimate phase for every pair of rare (global AF < 5% and
population AF < 5%) coding and flanking intronic/UTR variants within genes observed in either
of the parents. Across the 4,775 trio samples, we identified 339,857 unique variant pairs and
1,115,347 total variant pairs (mean 241.7 variant pairs per trio sample) (Supplementary Fig.
2a). On average, each trio sample had 64.4 variant pairs where both variants were missense,
inframe insertions/deletions (indels) or predicted loss-of-function (pLoF), and 0.35 pLoF/pLoF
variant pairs (Supplementary Fig. 2b-c). Nearly all of the variants identified in the trios were
single nucleotide variants, with only 2.7% being short indels. A breakdown of functional
consequences for these variants is depicted in Supplementary Fig. 3a.

The vast majority (91.1%) of unique variant pairs seen in the trio samples were observed
in gnomAD at least once and thus amenable to our phasing approach (Fig. 1d). By contrast,
only 2.1% of variant pairs in these samples were within 10 bp of each other, the range in which
we previously found read-back phasing of the physical read data to be most effective’
(Supplementary Fig. 3b). Additionally, we find that 8.2% of variant pairs were within 150 bp,
the typical length of an lllumina exome sequencing read 19.2% of variant pairs were within the
same exon. Thus, our approach has a much higher ability to phase variants than physical read-
back phasing data.

For each variant pair, we calculated the probability of being in frans (Pians) based on the
haplotype frequency estimates in gnomAD as described above. We found a bimodal distribution

of Pians SCores; that is, the majority of probabilities were either very high (> 0.99; suggesting a
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high likelihood of being in trans), or they were very low (< 0.01; suggesting a high likelihood of
being in cis) (Fig. 1b, Supplementary Fig. 4a-g). Using the trio phasing-by-transmission data
as a gold standard, we generated receiver-operator curves for distinguishing whether a variant
pair is likely in trans and found that our approach achieved high sensitivity and specificity (area
under curve [AUC] ranging from 0.892 to 0.997 across the component genetic ancestry groups)
(Supplementary Fig. 5a) and high precision and recall (Supplementary Fig. 5b).

We next defined Pians thresholds for classifying variants as being in cis versus tfrans (see
Methods for additional details). To set these thresholds, we first binned variant pairs observed in
the trio data based on their Pyans Scores calculated from gnomAD samples from the same
genetic ancestry group. We used only variants on odd chromosomes (i.e., chromosomes 1, 3, 5,
etc) to determine Pyans thresholds. For each Pians bin, we calculated the proportion of trio variant
pairs that were in cis or frans based on trio phasing-by-transmission. The Ptrans threshold for
variant pairs in trans was defined as the minimum Pyans such that = 90% of variant pairs in that
bin were in trans based on trio phasing-by-transmission. Similarly, the Pyans threshold for
variants in cis was defined as the maximum Pyans such that = 90% of variant pairs in that bin
were in cis based on trio phasing by transmission. This resulted in Pians thresholds of < 0.02 and
= 0.55 as the threshold for variants in cis and trans, respectively (Fig. 1c).

We next assessed how well our Pyans thresholds performed by measuring phasing
accuracy using the EM algorithm against trio phasing-by-transmission as a gold standard. For
measuring accuracy, we utilized only variant pairs observed on even chromosomes (i.e.,
chromosomes 2, 4, 6, etc). Overall, 91.1% of unique variant pairs had both variants present in
the corresponding population in gnomAD and therefore were amenable to phasing (Fig. 1d),
with only a minority (8.6%) of unique variant pairs having an intermediate Pyans Score (i.e., 0.02 <
Pians < 0.55) and thus an indeterminate phase. We calculated accuracy as the percentage of
phaseable variant pairs (i.e., both variants present in gnomAD, and Phrans score < 0.02 or = 0.55)
that were correctly phased. Based on these Pians thresholds, the overall phasing accuracy was
95.8%. The accuracy for unique variant pairs that are in cis based on trio data was 91.7%, and
the accuracy for variant pairs in trans was 99.7%.

We also calculated the overall percentage of variants correctly phased in a given
individual (i.e., variants are counted more than once if seen multiple times in the trio data).
96.9% variant pairs in a given individual had both variants present in gnomAD and therefore
were amenable to phasing, and 92.3% of variant pairs observed in a given individual were
correctly phased using our approach. Accuracy is lower, but still high, for rare variants; notably,

among variant pairs with AF < 0.1%, 80.1% of variant pairs in a given individual were correctly
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phased. Together, these results suggest that our approach can generate highly accurate

phasing estimates.
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Fig. 1: Overview of phasing approach using Expectation-Maximization method in
gnomAD. a, Schematic of phasing approach. b, Histogram of Pyans scores for variant pairs in
cis (top, blue) and in trans (bottom, red). ¢, Proportion of variant pairs in each Pyans bin that are
in trans. Each point represents variant pairs with Pians bin size of 0.01. Blue dashed line at 10%
indicates the Pyans threshold at which = 90% of variant pairs in bin are on the same haplotype
(Pyans < 0.02). Red dashed line at 90% indicates the Pians threshold at which = 90% of variant
pairs in bin are on opposite haplotypes (Pwans 2 0.55). Calculations are performed using variant
pairs with population AF = 1x10*. d, Performance of Pyans for distinguishing variant pairs in cis

and trans. Accuracy is calculated as the proportion of variant pairs correctly phased (green


https://doi.org/10.1101/2023.03.19.533370
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533370; this version posted August 21, 2023. The copyright holder for this pre&int
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

bars) divided by the proportion of variant pairs phased using Pians (Orange plus green bars). b-d,

Pians SCOres are population-specific.

Accuracy of phasing across allele frequencies

Since the variants that are most likely to be of interest in clinical genetics are rare, we
assessed the accuracy of phasing at different AF bins. We found high accuracy (i.e., proportion
correct classifications) ranging from 0.779 to 0.988 across pairs of AF bins (Fig. 2). In general,
accuracy remained high across allele frequencies for variant pairs in frans based on trio phasing
data. For variant pairs in cis based on trio phasing data, accuracy was high when the allele
frequencies of both variants in the pair were high (AF = 0.001). However, accuracy was much
lower for rare variants in cis (AF < 1x10™), and in particular when one variant in the pair is rare
and the other is more common (Fig. 2¢). Variant pairs where both variants are singletons (i.e.,
observed once in gnomAD) were phased well for variants in frans based on the trio phasing
data (accuracy of 0.993). Given the lack of information, we do not report the phasing estimates

for singleton/singleton variant pairs in cis (see Discussion).
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Fig. 2: Phasing accuracy as a function of variant allele frequency (AF). Phasing accuracy
at different AF bins for all variant pairs (a), variant pairs in trans (b), and variant pairs in cis (c).
Shading of squares and numbers in each square represent the phasing accuracy. Y-axis labels
refer to the more frequent variant in each variant pair and X-axis labels refer to the rarer variant
in each variant pair. Accuracy is the proportion of correct classifications (i.e., correct
classifications / all classifications) and is calculated for all unique variant pairs seen in the trio

data across all populations using population-specific Pyans calculations.
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Accuracy of phasing across genetic ancestry groups

In the above analyses, we used Pians estimates calculated from samples in gnomAD with
the same genetic ancestry group (“population”) in which the variant pair was seen in the trio
data. We next asked if using all samples in gnomAD to calculate Pians (“cosmopolitan”) would
improve accuracy given larger sample sizes from which to calculate Pians (Supplementary Fig.
6), with the caveat that using the full set of gnomAD samples would result in some genetic
ancestry mismatching. Across populations, we found that accuracy was generally similar when
using population-specific ancestry estimates as compared to cosmopolitan estimates (Fig. 3a-
b). However, for certain genetic ancestry groups such as AFR and EAS, accuracy was slightly
lower when using cosmopolitan estimates as compared to population-specific estimates
specifically for variants in frans in these populations. For example, the phasing accuracy for
variants in trans in the AFR ancestry group was 0.995 when using AFR-specific Pians €stimates,
but drops to 0.952 when cosmopolitan Pyans €stimates are used. These results suggest that
cosmopolitan estimates allow a greater proportion of variants to be phased with generally
similar accuracy as population-specific estimates, though we do identify certain scenarios where

more caution is required.
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Fig. 3: Phasing accuracy using population-specific versus cosmopolitan Pans estimates.
Population-specific Prans €stimates are shown in light blue and cosmopolitan Pians €stimates are
shown in medium blue. Accuracies are shown separately for variants in trans (a, left) and

variants in cis (b, right)

Effect of variant distance and mutation rates on phasing accuracy
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One factor that is predicted to affect the accuracy of our phasing estimates is the
frequency of meiotic recombination between pairs of variants, as recombination events would
disrupt the haplotype configuration of the variant pairs. To further explore the impact of
recombination, we plotted the accuracy of our phasing estimates as a function of physical
distance between variant pairs. We found that for variants in trans, the accuracy of phasing was
maintained across physical distances. However, for variant pairs in cis, the accuracy rapidly
decreased with longer physical distances (Fig. 4a). Since physical distance is only a proxy for
recombination frequency, we also performed this analysis using interpolated genetic distances
(Fig. 4b). We found again that variants in frans had preserved phasing accuracy across genetic
distances, while variants in cis had phasing estimates that decreased substantially with genetic
distance, particularly at distances greater than 0.1 centiMorgan.

We also tested the effect of recombination by examining a set of 20,319 multinucleotide
variants (MNVs), which are pairs of genetic variants in cis that are very close together in
physical distance (< 2 bp) and thus have minimal opportunity for recombination between them.
These variants have previously been accurately phased using physical read data???*. When
examining this set of MNVs, we found that the phasing accuracy using our approach was
96.0%, with only 3.5% of MNVs phased incorrectly (the remaining 0.46% had indeterminate
phasing estimates). We found that the vast majority of MNVs that were phased incorrectly using

Ptans had disparate AFs between the two variants, similar to what we had observed above (data

not shown).
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variants (x-axis). Blue represents variants on the same haplotype (in cis), and red represents
variants on opposite haplotypes (in frans). b, Same as a, except the x-axis shows genetic
distance (in centiMorgans). Accuracies for a and b are based on unique variant pairs observed

across all genetic ancestry groups and are calculated using population-specific Pians €stimates.

Another potential driver of inaccurate phasing is recurrent germline mutations, and the
rate at which recurrent germline mutations occur can be highly variable. Transitions have higher
mutation rates than transversions®?*. Furthermore, CpG transitions have the highest mutation
rates among single nucleotide changes, with mutation rates increasing with higher methylation
rates at the CpG sites?. To better understand the impact of mutation rates on phasing
accuracy, we classified each single nucleotide variant (SNV) in the trio data as a transversion,
non-CpG transition, or CpG transition. For CpG transitions, we further classified the SNV as
having low, medium, or high DNA methylation as before®®. We then calculated phasing accuracy
as a function of combinations of mutation types using the trio data (Supplementary Fig. 7a-c).
We found similar accuracy for transversions and transitions (~0.97) (Supplementary Fig. 7a).
However, we found that the mutation rates had a strong impact on variant pairs in cis but not
those in trans (Supplementary Fig. 7b-c). For variants in cis, the phasing accuracies were
lower at medium and high methylation CpG sites (0.82-0.89) than they were for low methylation
sites (0.96). These results are consistent with recurrent mutations contributing to inaccurate

phasing estimates, particularly for variant pairs in cis.

Evaluation of limitations of phasing approach

We next sought to address several limitations we observed in our current phasing data.
First, 4.7% of variant pairs in the 4,775 trios were not present in gnomAD and thus not
amenable to phasing even using cosmopolitan Pyans €stimates. To understand how the
proportion of variants amenable to phasing changes as a function of gnomAD reference sample
size, we performed a subsampling analysis of gnomAD from 121,912 (all of gnomAD v2 after
removing overlapping trio samples) down to 1,000, 10,000, or 100,000 samples
(Supplementary Fig. 8a). We found that subsampling greatly reduces the proportion of variants
amenable to phasing, but that accuracy is generally preserved. For example, when subsampling
down to 10,000 samples, just 76.4% of variant pairs observed in the trios were amenable to
phasing, but phasing accuracy remained high (91.9%) when using cosmopolitan Pyans €stimates

(compared to 93.6% accuracy when using the full gnomAD cohort).
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We next assessed variant pairs with intermediate EM scores (0.02 < Pirans < 0.55) where
our approach gives an indeterminate phase estimate. We found that nearly all (99.8%) of the
variant pairs with intermediate Pians SCOres included more common variants (AF = 0.001)
(Supplementary Fig. 8b). For variant pairs where the more common variant had AF = 0.001,
9.5% of variant pairs had an intermediate Pyans SCore. In contrast, variant pairs where the more
common variant with AF < 0.001, just 0.19% of variant pairs had an intermediate Ptrans SCOre.
Intermediate Pians SCOres can only occur when all four haplotypes are observed. For rare
variants, typically not all four haplotype combinations due to sampling and because rare variants
are younger and have less opportunity for recombination/recurrent mutation to generate all
haplotype combinations.

Finally, we investigated the seemingly counterintuitive observation that phasing accuracy
was lowest for NFE, where we had the highest number of gnomAD reference samples. We
postulated that this apparent lower phasing accuracy in NFEs might be due to the larger number
of trios we tested (for example, we tested 2815 NFE trio samples compared to 73 AFR
samples), rather than an issue with phasing of NFE samples in the gnomAD reference dataset
itself. To test this, we randomly subsampled the NFE trio samples from 2815 trios down to 282
(10%), 563 (20%) or 1408 (50%) trios. Upon subsampling, we found that a smaller proportion of
unique variant pairs were in lower AF bins (< 1x10*) where phasing is most challenging
(Supplementary Fig. 8c), with a corresponding improvement in accuracy upon subsampling of
the trio samples (Supplementary Fig. 8d). These results suggest that the observation of a
lower phasing accuracy in NFE is an artifact of ascertaining and testing a larger number of NFE
trio samples. Intuitively, this artifact results from our approach of measuring accuracy using
unique variant pairs within a population. With increasing numbers of trios tested in our trio
validation set, more common variant pairs where phasing accuracy is higher are observed
multiple times yet counted only once. In contrast, with larger numbers of trios tested, we

observe a larger number of unique rare variant pairs where accuracy is lower.

Demonstration of accuracy in a cohort of patients with Mendelian disorders

To demonstrate our approach in a clinically relevant situation, we turned to a set of 627
patients from the Broad Institute Center for Mendelian Genetics (CMG)%. All patients had a
confident or strong candidate genetic diagnosis of a Mendelian condition based on carrying two
rare variants in a recessive disease gene consistent with the patient’s phenotype. Across the
627 diagnoses, we were able to estimate phase for the 293 patients for which both variants

were present in gnomAD (Supplementary Table 1). For the analysis of these 293 variant pairs,
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we used the population-specific Pyans €stimate when available (n=215), and when not, we used
the cosmopolitan Pyans €stimates (n=78). Our phasing approach indicated 281 (95.9%) variant
pairs to be in frans, seven variant pairs (2.4%) to be in cis, and five (1.7%) as indeterminate
(0.02 < Pyans < 0.55 or singleton-singleton variant in the same individual). Had only the
cosmopolitan Prans estimates been used, one of the 281 in trans predictions would have been
predicted in cis and one indeterminate. Of the seven variant pairs indicated to be in cis, six
originated from patients with proband-only sequencing. For these patients, the responsible
clinician was contacted to ensure phenotype overlap with the disease gene and to pursue
parental Sanger sequencing for confirmatory phasing by transmission or long read sequencing,
where possible. The remaining variant pair predicted to be in cis originated from a patient with
trio-sequencing, which confirmed the variants to be in trans, and our inferred phase to be
incorrect. Further details on the incorrect prediction are provided in Supplementary Table 1.
Despite one error and several indeterminate predictions, overall, the results suggest that our
phasing approach is highly accurate in clinical scenarios in patients with suspected Mendelian
conditions and can be informative for a large fraction (just under 50% in our cohort) of candidate

diagnoses, dependant on presence of both variants in gnomAD.

Bi-allelic predicted damaging variants

Next, we tabulated for each gene the number of individuals in gnomAD who carry two
rare heterozygous variants, stratified by the predicted phase using Puans cutoffs (i.e., in frans,
unphased [intermediate Pians], and in cis), AF, and the predicted functional consequence of the
least damaging variant in the pair. For comparison, we tabulated individuals with homozygous
variants in the same manner. We classified predicted functional consequences as pLoF,
missense with deleteriousness scored by REVEL? in line with recent ClinGen
recommendations?’, and synonymous. These data are available for gnomAD v2 as a
downloadable table with the counts of individuals by phase for each gene across a total of 26
consequences and five AF thresholds.

Overall, the number of individuals with rare, compound heterozygous (in frans),
predicted damaging variants was low (median 0 individuals per gene with compound
heterozygous loss-of-function variants at < 1% AF, range 0-9) and only occurred in a small
number of genes (Fig- 5 and Supplementary Fig. 9). Twenty eight genes carried compound
heterozygous pLoF variants (in 56 individuals) and an additional four genes carried compound
heterozygous variants with at least a strong REVEL missense predicted consequence (in six

individuals) at < 1% AF cutoff. The vast majority of these genes have not, to date, been
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associated with disease (Fig. 5b). Manual curation of the pLoF variants resulted in seven high
confidence “human knock-out” genes (ARHGEF37, CCDC66, FAM81B, FYB2, GNLY, RBKS,
and SDSL). These genes are not associated with Mendelian disease nor are they known to be
essential (see Methods for additional details). In the remaining 21 of the 28 genes with
compound heterozygous pLoF variants, true loss-of-function was found to be uncertain or
unlikely following manual curation, due, for example, to the variant falling in the last exon of the
gene, in a weakly conserved exon, or in the minority of transcripts (Supplemental Table 2). We
previously manually curated all homozygous pLoF variants in gnomAD?. The absence of rare
compound heterozygous “human knock-out” events in essential genes was expected given that

gnomAD is largely depleted of individuals with severe, early-onset conditions.
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Fig. 5: Counts of genes with variants in trans in gnomAD. a, Proportion of genes with one or
more individuals in gnomAD carrying predicted compound heterozygous (in frans) variants or a

homozygous variant at < 1% and < 5% AF stratified by predicted functional consequence. b,
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Number of genes with = 1 individual in gnomAD carrying compound heterozygous (in trans) or
homozygous predicted damaging variants at < 1% AF, stratified by predicted functional
consequence and Mendelian disease-association in the Online Mendelian Inheritance in Man
database (OMIM). In total, 28 genes (25 non-disease, 2 AD, and 1 AR) carried predicted
compound heterozygous loss-of-function variants at < 1% AF, only seven of which were high
confidence “human knock-out” events following manual curation. For predicted compound
heterozygous variants, both variants in the variant pair must be annotated with a consequence
at least as severe as the consequence listed (i.e., a compound heterozygous loss-of-function
variant would be counted under the pLoF category but also included with a less deleterious
variant under the other categories). All homozygous pLoF variants previously underwent manual

|20

curation as part of Karczewski et al”. AF, allele frequency; comp het, compound heterozygous;

hom, homozygous; AD, autosomal dominant; AR, autosomal recessive.

Generation of public resource

To make our resource widely usable to both clinicians and researchers, we have
calculated and released pairwise genotype counts and phasing estimates for each pair of rare
coding variants occurring in the same gene for gnomAD. These genotype counts are phasing
estimates shown for all pairs of variants within a gene where both variants have global minor AF
(or population-specific frequency) in gnomAD exomes < 5%, and are either coding, flanking
intronic (from position -1 to -3 in acceptor sites, and +1 to +8 in donor sites) or in the 5/3° UTRs.
We have integrated these data into the gnomAD browser so that clinicians and researchers can
easily look up a pair of variants to obtain the genotype counts, haplotype frequency estimates,
Pians €stimates, and likely co-occurrence pattern (Fig. 6a). These results are shown for each
individual genetic ancestry group and across all genetic ancestries in gnomAD v2. In addition,
the data are available as a downloadable table for all variant pairs that were seen in at least one

individual.
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A

Overview

Population Samples consistent with variants Samples consistent with variants Samples consistent with 'c":_’;: R RTanCS
appearing on different haplotypes appearing on the same haplotype either co-occurrence pattern pattern

African/African-American 1,060 0 3 Different haplotypes
Latino/Admixed American 300 0 1 Different haplotypes
Ashkenazi Jewish 66 0 0 Different haplotypes
East Asian 13 0 0 No prediction”
European (Finnish) 697 0 0 No prediction”
European (non-Finnish) 1,283 0 0 Different haplotypes
Other 76 0 0 Different haplotypes
South Asian 31 0 0 Different haplotypes
All 3,526 0 4 Different haplotypes

(LD Only samples covered at both variant sites are included in this table.

* A likely co-occurrence pattern cannot be calculated in some cases, such as when only one of the variants is observed in a population.

Details

Select a population in the overview table to view genotype counts for that population.

Genotype Counts Estimated Haplotype Counts
1-55523855-G-A 1-55523855-G-A
G/G G/A AA G A
G/G 94121 G 191,695 1,272
1-55505647-G-T
1-55505647-G-T GJT T 2,335 0
L The estimated probability that these variants occur in different haplotypes is >99%.
[l samples consistent with variants appearing on different haplotypes. E] Probability values are not well calibrated, particularly where both variants are
[l samples consistent with variants appearing on the same haplotype. extremely rare. Interpret with caution. Please see our blog post on variant co-
[l Samples consistent with either co-occurrence pattern. occurrence for accuracy estimates and additional detail.

Based on their co-occurrence pattern in gnomAD, these variants are likely found on
different haplotypes in most individuals in gnomAD.

([CZD) Only samples covered at both variant sites are included in this table.

gnOmAD browser gnomADv21.1  ~ Search About Team News Changelog Downloads Policies Publications Feedback Help

GBA1 glucosylceramidase beta 1 Dataset [ gnomAD V211 ~ gnomAD Vs v2.1 - |@

(Constraint @) (Variant co-occurrence @)

Individuals with two heterozygous rare variants (number predicted in trans)

Genome build GRCh37 / hg19
Ensembl gene ID ENSG00000177628.11

Symbol in GENCODE v19 GBA Consequence Allele frequency
Ensembl canonical transcript @ ENST00000327247.5 s5% s1% s0.5%
Other transcripts ENSTO0000427500.3, ENST00000497670.1, and 12 more PLOF + pLoF 00 00 00
Region 1:155204243-155214490
AV S strong missense or worse + strong missense or worse 0(0) 0(0) 0(0)
moderate missense or worse + moderate missense or worse 5 (0) 5(0) 5(0
weak missense or worse + weak missense or worse 16 (3) 16(3) 70
122.(35) 49.(3) 24.(1)
SYNONYMOUS O WOrse + Synonymous or worse 171(37) 85(3) 49(1)
Individuals with homozygous rare variants
Consequence Allele frequency
s5% s1% s05%
pLoF 0 0 0
0 0 0
moderate missense or worse 0 0 0
weak missense or worse 12 12 5
missense or worse 48 15 7
synon; 54 19 n
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Fig. 6: Publicly-available browser for sharing of phasing data. a, Sample gnomAD browser
output for two variants (1-55505647-G-T and 1-55523855-G-A) in the gene PCSK9. On the top,
a table subdivided by genetic ancestry group displays how many individuals in gnomAD from
that genetic ancestry are consistent with the two variants occurring on different haplotypes
(trans), and how many individuals are consistent with their occurring on the same haplotype
(cis). Below that, there is a 3x3 table that contains the 9 possible combinations of genotypes for
the two variants of interest. The number of individuals in gnomAD that fall in each of these
combinations are shown and are colored by whether they are consistent with variants falling on
different haplotypes (red) or the same haplotype (blue), or whether they are indeterminate
(purple). The estimated haplotype counts for the four possible haplotypes for the two variants as
calculated by the EM algorithm is displayed on the bottom right. The probability of being in trans
for this particular pair of variants is > 99%. b, Variant co-occurrence tables on the gene landing
page. For each gene (GBA1 shown), the top table lists the number of individuals carrying pairs
of rare heterozygous variants by inferred phase, AF, and predicted functional consequence. The
number of individuals with homozygous variants are tabulated in the same manner and
presented as a comparison below. AF thresholds of < 5%, < 1%, and < 0.5% are displayed
across six predicted functional consequences (combinations of pLoF, various evidence
strengths of predicted pathogenicity for missense variants, and synonymous variants). Both
variants in the variant pair must be annotated with a consequence at least as severe as the

consequence listed (i.e., pLoF + strong missense also includes pLoF + pLoF).

Furthermore, on the landing page of each gene in the gnomAD v2 browser, we have
incorporated counts tables detailing the number of individuals carrying two rare variants
stratified by AF, and functional consequence. The first table counts individuals carrying two rare
heterozygous variants by predicted phase (in trans, unphased, and in cis) and the second table
counts individuals carrying homozygous variants (Fig. 6b). We envision that these data will aid
the medical genetics community in interpreting the clinical significance of co-occurring variants
in the context of recessive conditions. The data for all genes are also available as a

downloadable table within gnomAD v2.

Discussion
In this work, we have leveraged a large exome sequencing cohort to estimate haplotype
frequencies for pairs of rare variants within genes, and demonstrate that these haplotype

frequency estimates can be utilized to predict phase of pairs of variants. Overall, we achieve
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high accuracy across a range of allele frequencies and across genetic ancestries, and
demonstrate that our approach is able to distinguish variants that are likely compound
heterozygous in a clinical setting. Finally, we freely disseminate our results in an easy-to-use
browser for the community.

Our work addresses an important challenge of phasing rare variants using short-read
exome sequencing data. While this scenario is very common in medical genetics, other phasing
approaches such as phasing-by-transmission or population-based phasing are challenging to
apply. We leveraged gnomAD to estimate haplotype frequencies to predict phase of variant
pairs seen within genes. We found that our approach was able to address these challenges of
phasing in medical genetics and was generally accurate across a range of AFs (even for
singleton variants) and across genetic ancestries. Most notably, 96.9% of rare (AF < 5%) variant
pairs in a given individual had both variants present in gnomAD and therefore were amenable to
phasing using our approach, which is much higher than the proportion amenable to phasing
using physical read data. Overall, 92.3% of variant pairs observed in a given individual were
correctly phased using our approach. Thus, our approach can be applied to the vast majority of
rare variant pairs and can generate accurate phasing estimates for variants of medical
importance in rare recessive genetic diseases.

However, we found that our approach was less accurate for rare variants in cis. This
lower accuracy for variants in cis is intuitive, as for rare variants, a recombination event or
germline mutation event is much more likely to disrupt a haplotype comprised of two variants
than to bring two rare variants onto the same haplotype. Consistent with this intuition, we found
that for variants in cis, phasing accuracy diminished linearly with genetic distance as a measure
of recombination rates, but that phasing accuracy was maintained across genetic and physical
distances between pairs of variants in frans. Similarly, the phasing accuracy for variant pairs in
cis was lower at more mutable sites such as CpG sites that are frequently methylated. Thus,
users should exercise caution for rare variants at highly mutable sites where our approach
predicts the variants to be trans since the variants may actually be in cis. We note that in the
context of recessive disorders in medical genetics, the incorrect phasing of cis variants as frans
is the more desirable error mode to enable follow-up of a variant pair that may be causal.

We also compared population-specific estimates with phasing estimates derived from
samples across all genetic ancestry groups in gnomAD v2 (“cosmopolitan”). While population-
specific phasing estimates are more likely to match the haplotypes seen in a given individual,
they utilize information from fewer samples in gnomAD. We found that, in general, population-

specific estimates were similar in accuracy to using cosmopolitan estimates. For individuals of
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AFR genetic ancestry, however, we found that use of cosmopolitan estimates resulted in slightly
lower phasing accuracy than the use of AFR-specific estimates for variants in frans (Fig. 3a).
This is consistent with the observation that there are more unique haplotypes seen in individuals
of AFR genetic ancestry and/or older haplotypes in individuals of AFR genetic ancestry for
which recombination is more likely to have occurred?®. Moreover, there are other genetic
ancestry groups not currently represented in gnomAD for which we expect this phasing
approach to have lower accuracy than in the well-represented genetic ancestry groups.
Additionally, we recognize that many individuals are not well represented by a discrete genetic
ancestry group, but instead represent admixtures of two or more populations. Future work on
phasing will likely benefit from considering ancestry as a continuous variable®®. For the analysis
of rare disease patients with candidate compound heterozygous variants, our data suggests that
population-specific estimates, when available, should be used first-line followed by the
cosmopolitan estimate.

Pairs of singleton variants pose a unique challenge. When a pair of singleton variants is
observed in different individuals in a population, this provides evidence that the variants are on
different haplotypes. However, if a pair of singleton variants is observed in the same individual
in the population, we cannot readily distinguish whether the variants are on the same haplotype
or different haplotypes as we lack information from other individuals in the population for
singleton variants. For this reason, we have chosen to not report phasing estimates for singleton
variant pairs that are observed in the same individuals in gnomAD. Nonetheless, using our trio
data, 93% of these singleton variant pairs observed in the same individual in gnomAD were in
cis based on our trio validation data.

Our work focuses on the challenging, yet common, scenario of determining phase for
rare variants identified in exome sequencing of rare disease patients in the absence of parental
data. We utilized the EM algorithm to phase pairs of variants instead of more sophisticated

1619 First, exome and targeted gene

population-based phasing approaches for several reasons
panel sequencing data pose a unique challenge for population-based phasing given the sparsity
of variants, precluding the use of common non-coding variants as a “scaffold” for phasing.
Recent work performed population-based phasing of rare variants from exome sequencing data
by combining the exome data with SNP genotyping arrays'®*°. However, SNP genotyping data
are not usually generated in conjunction with a clinical sequencing test and were not readily
available for much of gnomAD. Second, rare variants, which are of the greatest interest in
Mendelian diseases, are challenging to phase using population-based approaches given the

small numbers of shared haplotypes from which to derive phasing estimates in the population.
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Recent methods have shown accurate phasing of rare variants using genome sequencing
data'"'%%" but relies on a large genome reference panel. In our work, there were limited
numbers of genome sequences available for use in a population-based phasing approach.
However, as the numbers of genome sequencing samples increases in future releases of
gnomAD, this may represent a tractable and more accurate approach for phasing of rare
variants. Even with the falling cost of genome sequencing, exome sequencing and targeted
gene sequencing remain commonly used in clinical settings. Thus, we anticipate that our
approach and the resources we have generated will remain useful. Third, we found that
application of the EM algorithm to pairs of variants was more intuitive to illustrate how phasing
estimates were derived from genotype data, allowing users to more easily assess the reliability
of phasing estimates we provide for any given pair of variants. Together, the EM algorithm
provided us with the unique ability to phase pairs of rare variants in exome data in an intuitive
fashion.

Utilizing phase estimates to tabulate the number of individuals in gnomAD with two rare
predicted in frans variants by gene, we found that there are only a small number of “human
knock-out” genes affected by predicted compound heterozygous (in frans) loss-of-function
variants, and that this number is substantially lower than is observed for homozygous loss-of-
function variants. These compound heterozygous “human knock-out” events occurred in genes
that are not known to be essential, an expected finding given that gnomAD is largely depleted of
individuals with severe and early-onset conditions. When analyzing the 23,667 individuals that
carry two pLoF variants with AF < 1%, we predict that in 20,706 (88%) of those individuals, the
variant pair is in cis and only a small fraction (~0.2%) are confidently predicted to be in trans.
This may be counter-intuitive, so warrants emphasis: when a pair of rare pLoF variants is
observed in the same gene in an individual from a general population sample, it is vastly more
likely that these variants are carried on the same haplotype than that the individual is a genuine
“knock-out” due to compound heterozygosity.

To aid the medical genetics community in interpreting the clinical significance of rare co-
occurring variants in the context of recessive disease, we have released these counts across a
spectrum of variant consequences (pLoF, missense, and synonymous) and allele frequencies
by gene in the gnomAD browser. These provide background frequencies—to the best of our
ability—of compound heterozygous rare damaging variants. These background frequencies can
be used to assess the probability that a given variant pair identified in a patient may have
occurred by chance. We note, however, that our ability to identify rare variant pairs in frans in

gnomAD v2 individuals is limited by the fact the same dataset was used for training. Indeed, in
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these individuals, our ability to detect variant pairs in frans extends largely to variant pairs with
AF > 0.5%, as nearly all rarer variant combinations were dominated by indeterminate phase and
very few predictions for variant pairs in trans. The per-gene variant co-occurrence resource
developed and released here is therefore to be considered a first step in this space. We plan to
use the predictions from this dataset (gnomAD v2) on newer versions of gnomAD with additional
samples, where we can more confidently predict rare variant pairs that are in trans.

Beyond our current restriction to predicting within the gnomAD dataset, there are several
other important limitations to our work. First, we have only reported phasing estimates for rare
coding and flanking intronic/UTR variant pairs within genes in order to limit the computational
burden. We believe that these are the variant pairs of most interest to the medical genetics
community, but acknowledge that phase with deeper intronic variation will become important as
more genome sequencing is performed. Second, while there was a broad range of genetic
ancestral diversity represented in our samples, future studies would benefit from even larger
sample sizes, especially for genetic ancestry groups not well represented in our present study.
Finally, we have only tested our phasing accuracy in a clinical setting in a retrospective manner

and future prospective studies will be needed to confirm the clinical utility of our approach.

Online Methods
gnomAD characteristics and data processing

In this work, we used exome sequencing data from the gnomAD v2.1 dataset (n =
125,748 individuals). These data were uniformly processed, underwent joint variant calling, and
rigorous quality control, as described in Karczewski et al.?°. Briefly, we aggregated ~200k
exome sequences and ~20k genome sequences, primarily from case-control studies of
common adult-onset conditions, and applied a BWA-Picard-GATK pipeline®. Using Hail

(https://github.com/hail-is/hail), we then removed samples that (1) failed population- and

platform-specific quality control, (2) had second-degree or closer relations in the dataset, (3) did
not have appropriate consent for release, and (4) had known severe, early-onset conditions. For
variant quality control, we trained a random forest on site-level and genotype-level metrics (e.g.,
the quality by depth, QD), and demonstrated that it achieved both high precision and recall for
both common and rare variants.

We subsetted the final cleaned gnomAD dataset for variants with global AF in gnomAD
exomes < 5% that were either coding, flanking intronic (from position -1 to -3 in acceptor sites,
and +1 to +8 in donor sites) or in the 5/3° UTRs. In total, this encompasses 5,320,037,963
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unique variant pairs across 19,877 genes when removing singleton-singleton variant pairs seen

in the same individual. We specifically extracted 20,921,100 pairs of variants, most of which

were seen at least once in the same individual to create a more manageable downloadable file.
Analysis in this manuscript was performed using Hail version 0.2.105%, and analysis

code is available at https://github.com/broadinstitute/gnomad_chets.

Haplotype estimates

Consider two variants, A and B. A and B represent the major alleles, and a and b
represent the respective minor alleles. There are thus 9 pairwise genotypes for A and B: AABB,
AaBB, aaBB, AABb, AaBb, aaBb, AAbb, Aabb, and aabb. Of these pairwise genotypes, only the
phase for the double heterozygote (AaBb) is unknown. From these 9 possible genotypes, there
are four possible haplotype configurations: AB, Ab, aB, and ab.

For each pair of variants, we applied the expectation-maximization (EM) algorithm?' to
estimate haplotype frequencies from genotype counts. The initial conditions of the EM algorithm
were set by partitioning the doubly heterozygous (AaBb) genotype counts equally between the
ABJab and Ab|aB haplotype configurations. The EM algorithm was run until convergence or until
the absolute value of the difference between consecutive maximum likelihood function values
was less than 1x107. We calculated haplotype frequencies based on genotypes present within
the same genetic ancestry group (“population-specific”) or using all samples from gnomAD
(“cosmopolitan”). Haplotype frequency estimates were performed using Hail.

We then calculate Pyans as the likelihood that any given pair of doubly heterozygous
variants (AaBb) in a patient is compound heterozygous (Ab|aB). Pwans can be calculated simply
from the haplotype frequency estimates (AB, Ab, aB, and ab):

Ptans =((AbxaB))/(ABxab+AbxaB)
Thus, Ptans Simply represents the probability that the patient is compound heterozygous by

inheriting both the Ab and aB haplotypes.

Determination of Pyans cutoffs

To determine Pyans cutoffs for classifying variants as occurring in cis or trans, we binned
variant pairs on odd chromosomes (chromosome 1, 3, 5, etc) in increments of 0.01 of Pirans. FOr
each bin, we calculated the proportion of variant pairs in that bin that are compound
heterozygous based on phasing by trio data. The Pyans for variants in trans was determined as
the minimum Pyans such that 90% of variants in the bin are compound heterozygous based on

trio data. The Pyans for variants in cis was determined as the maximum Pyans such that 90% of
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variants in the bin are in cis based on trio data. For these calculations, we used only variants
where both variants had a population AF = 1x10™. We used trio samples across all genetic

ancestry groups and population-specific Prans Values for determination of the cutoffs.

Trio validation data

We made use of 4,992 parent-child trios that were jointly processed and variant-called
with gnomAD. Having access to parental genotypes allows us to perform phase-by-transmission
and accurately determine whether two co-occurring variants in the same gene are in cis or in
trans.

First, we estimated genetic ancestry of each individual in the trios by using ancestry
inference estimates from the full gnomAD dataset, as previously described?. Briefly, we
selected bi-allelic variants that passed all hard filters, had allele frequencies in a joint exome
and genome callset > 0.001, and high joint call rates (> 0.99). The variants were then LD-
pruned (r-=0.1) and used in a principal component analysis (PCA). We previously used
samples with known genetic ancestry to train a random forest on the first 20 principal
components (PCs), and assigned samples to a genetic ancestry group based on having a
random forest probability > 0.9. For the trios in this cohort, we projected their PCs for genetic
ancestry onto the same gnomAD v2 samples to infer the genetic ancestry used here (Figure
S1). Of these 4922 trios, 4,775 of the children from the trios were assigned to one of the seven
genetic ancestry groups in this study based on PCA and were used in this study.

We then phased the trio data using the Hail phase_by transmission
(https://hail.is/docs/0.2/experimental/index.html#hail.experimental.phase_by transmission)
function, which uses Mendelian transmission of alleles to infer haplotypes in trios for all sites
that are not heterozygous in all members of the trio. Assigning haplotypes in trios based on
parental genotype has traditionally been the gold standard, has switch error rates below 0.1%,
and importantly errors aren't dependent on the allele frequency of the variants phased*. To
maximize our confidence in the genotypes and phasing, we filtered genotypes to include only
those with genotype quality (GQ) > 20, depth > 10 and allele balance > 0.2 for heterozygous
genotypes prior to phasing. Sex chromosomes were excluded. In total, there were 339,857
unique variant pairs and 1,115,347 total variant pairs.

We compared trio phasing-by-transmission with phasing using gnomAD on even
chromosomes (e.g., chromosomes 2, 4, 6, etc). Of these 4,775 trio samples, 3,836 were in the

full release of gnomAD and were removed from gnomAD for trio validation. This resulted in a set


https://doi.org/10.1101/2023.03.19.533370
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533370; this version posted August 21, 2023. The copyright holder for this prgﬁ}int
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

of 121,912 gnomAD samples from which we derived haplotype estimates. We then performed
phasing using the EM algorithm as above.

We classified trio variant pairs into 1) unable to phase using our approach (either variant
not seen in gnomAD, or singleton-singleton variant pairs seen in the same individual in
gnomAD), 2) indeterminate phase (those with intermediate 0.02 < Pyans < 0.55), 3) incorrectly
phased, or 4) correctly phased. Accuracy was calculated as the number of variant pairs

correctly phased divided by the number of pairs correctly and incorrectly phased.

CpG analysis

Single nucleotide variants seen in the trio data were divided into transitions and
transversions. Transitions were further subdivided into those that are CpG mutations (5’-CpG-3’
mutating to 5’-TpG-3’) and those that are not. For each CpG transition, we calculated the mean
DNA methylation values across 37 tissues in ENCODE?°. We then stratified CpG transitions into
3 levels: low (missing or < 0.2), medium (0.2—-0.6), and high (> 0.6) methylation. Phasing
accuracy—here, the proportion correct (correct classifications/all classifications)-was then
calculated for pairwise combinations of transversions, non-CpG transitions, low methylation
CpG transitions, medium methylation CpG transitions, and high methylation CpG transitions. All

SNVs were included in the analysis and population-specific EM estimates were used.

Calculating accuracy as a function of genetic distance

To estimate the genetic distance between pairs of genetic variants, we interpolated
genetic distances between variant pairs using a genetic map from HapMap23®
(https://github.com/joepickrell/1000-genomes-genetic-maps). We downloaded a pre-generated
HapMap2 genetic map representing average over recombination rates in the CEU, YRI, and
ASN populations. We then ran interpolate_maps.py (downloaded from

https://github.com/joepickrell/1000-genomes-genetic-

maps/blob/master/scripts/interpolate_maps.py) for all variant pairs in the phasing trio data. As

above, accuracy is the proportion of correct classifications.

MNYV analysis

We obtained multi-nucleotide variant pairs for which read-back phasing had previously
been calculated®. We included only multi-nucleotide variant pairs where each constituent
variant was analyzed in our study. Phasing estimates were calculated using cosmopolitan EM

estimates.
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Rare disease patient analysis

627 patients from the Broad Institute Center for Mendelian Genetics (CMG)? with a
confident or strong candidate genetic diagnosis of a Mendelian condition were selected for
analysis. Each patient carried two presumed bi-allelic variants in an autosomal recessive
disease gene consistent with the patient’s phenotype. For 293 of the patients, both variants
were present in gnomAD and phase was predicted. Trio-sequencing (i.e., sequencing of the
proband and the two unaffected biological parents) had been performed for 168 of the 293
patients. For fully sequenced trios, we were able to confirm phasing of the two variants via

phase-by-transmission.

Determining counts of individuals with two rare, damaging variants

Variants were annotated with the worst consequence on the canonical transcript by the
Ensembl Variant Effect Predictor (VEP). pLoF were annotated with LOFTEE?, and only high
confidence LoF variants were counted as “pLoF”. Missense variants were annotated with
REVEL?®. REVEL scores = 0.932 were counted as “strong_revel_missense”, =2 0.773 as
“‘moderate_to_strong_revel_missense”, = 0.644 as “weak_to_strong_revel _missense” in line
with recent ClinGen recommendations?’.

Variant pairs were annotated with predicted phase based on the Pyans thresholds. All
singleton-singleton variant pairs (AC = 1) and variant pairs with an indeterminate Pyans values
(0.02 < Pyans < 0.55) were annotated as unphased.

Five AF thresholds were selected for analysis and variant pairs were filtered based on
the highest global AF and, where available, the “popmax” AF of each variant in gnomAD (i.e.,
the highest AF information for the non-bottlenecked population - excluding ASJ, FIN and
‘Remaining”): 0.5%, 1%, 1.5%, 2%, and 5%. Further, all variant pairs containing a variant with
an AF > 5% in a bottlenecked population were filtered out.

The number of individuals carrying a variant pair (irrespective of phase) and the number
indicated to be compound heterozygous (in trans), unphased (indeterminate), and on the same
haplogroup (in cis) were counted gene-wise by AF threshold and combined functional
consequences (26 consequences). This counting was repeated twice, once restricting
individuals to be counted in only one phase group, prioritizing in trans over unphased and
unphased over in cis (displayed in the “variant co-occurrence” gnomAD browser feature), and
once allowing individuals to be counted in multiple phase groups, if carrying multiple variant

pairs in the same gene with different phase predictions.
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Essential gene lists
The following essential gene lists were queried for the presence of the true “human
knock-out” genes identified in this study:
e 2,454 genes essential in mice from Georgi et al. 2013*’
e 553 pan-cancer core fitness genes from Behan et al., 2019
e 360 core essential genes from genomic perturbation screens from Hart et al. 2014°°
e 684 genes essential in culture by CRISPR screening from Hart et al. 20174
e 1,075 genes annotated by the ADaM analysis of a large collection of gene dependency
profiles (CRISPR-Cas9 screens) across human cancer cell lines from Vinceti et al.
20214

Code availability
The code used to estimate Pyans estimates for variant pairs and to determine the number of
individuals carrying rare, compound heterozygous variants can be found at:

https://github.com/broadinstitute/gnomad chets

Data availability

We provide both web-based look up tools and downloads for the data generated here. A look-up
tool to find the likely co-occurrence pattern between two rare (global allele frequency in gnomAD
exomes < 5%) coding, flanking intronic (from position -1 to -3 in acceptor sites, and +1 to +8 in
donor sites) or 5/3’ UTR variants can be found at:

https://gnomad.broadinstitute.org/variant-cooccurrence

Additionally, we display the per-gene counts tables that detail the number of individuals with two
rare variants, stratified by AF and functional consequence, on each gene’s main page. One

table details counts of individuals with two heterozygous variants and includes predicted phase,
while the second details individuals with homozygous variants. Both can be found by clicking on

the “Variant Co-occurrence” tab on each gene’s main page.

All variant co-occurrence tables can be downloaded from:

https://gnomad.broadinstitute.org/downloads#v2-variant-cooccurrence
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Supplementary Figure 1: Principal component analysis (PCA) plot for the full gnomAD v2
cohort (left) and specifically for the trios (right, trios in black) included in this paper. The top row
shows PC1 vs PC2, the middle row shows PC3 vs PC4, and the bottom row shows PC5 vs
PC6. Genetic ancestry group labels for the global gnomAD populations were done as described
in Karczewski et al. 2020%°.


https://doi.org/10.1101/2023.03.19.533370
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533370; this version posted August 21, 2023. The copyright holder for this pr’e)&int
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure S2
AFR AMR ASJ EAS FIN NFE SAS
©
>
ke
2 300
i)
£
=
[}
Q.
4
‘©
Q200
=
c
K]
s
>
k]
3 100
e}
€
3
C I- L
0_-- . ____-_L L — -L [ —L __-LL ___-
»\ \ \ \ — — — . . .
é’\é?@ SIS @f\»egx\ Q& e@@o »\QQ\\ Q& S ORNRS é&y“ »\Q\ Q Q«;\ & o«\\» Q& e@%@\e’\@"\ Q&
O "o \q»d-u@" \Q,\ﬁ-g N F PO EF R \g.d-e L0 @ a0 00
F o S Voo W Sy WO RO W ».Q\ T NP O WP N O
WFTE T EET T EET O EEE 0SS W T USEe
< NI N N AN NI AN
b variant allele frequency
©
>
°
>
2 754
£
-
[0}
o
14
‘©
Q 50
=
C
K]
=
©
>
Z
o
& 25
e}
€
>
: L I- i
AR
, aaf%@ S SRS é°q0°°\b’\ge"\ o" Q"’\ g)\&?}‘f@’\@"\ S ,9&"\’@‘\ @\Q\\ Q"\ 6’3\ &Q@‘\.@’\Qd‘\ O S’; &Q s ’\Q\\ 6‘\ 6”\ \& Q,\’\Qd‘\ ON 6”\
FF TN EF AN CF NS & F O X F DO\ 'Q"'0°° SO
%‘Q O N oy W coav Wt N Q’\‘Q’\‘ Wt o Wt > \& N oo
SOLE RSN RS RIS RSN RN QQ ¢ SRS
Q*-\ \.\-\-\ Q+\ Q+\ Q+\ .\-\-\ Q+\
c variant allele frequency
©
3
°
> -
2 03
£
@
Q.
14
©
Q 24
=
C
8
=
©
>
Z
o
o]
S o011
| l
=
c
oA [ | l_-_. [ | I.-_ I. [T | ae L I. [ I | L
N
& \o »\Q«\ \\@ é°qz~"°~°"\e°"\.°\\.°°’\ 5.}@@\00\@\&\\_@\@ \Qq N »\Q\\@@ é\@e@o\@ »\\Qx\@ Qq o\»\ QRS c',\@q,\"\e’\@"\@" _@
QQ' +g\‘\\ \g_g\\+°.oe .\e_@,\*.b.ec ‘\%Q,\'\'Q NI \°~’_<S\+B NINH Q‘,\-\.Q.QQ '\("_@\*'Q'QQ
F oSS Vet it Vel iens Voo iens Yeforgiens e S Vopig e
OO RERTSIOR REATSIORS RERISIORS RERASICRS @ \'909\“' RSN
Q‘F\ JF € € Q&€ N N N

variant allele frequency

. same haplotype (cis) . opposite haplotypes (trans)


https://doi.org/10.1101/2023.03.19.533370
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533370; this version posted August 21, 2023. The copyright holder for this pr&Qint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Figure 2: Number of variant pairs observed per trio sample as a function of
ancestry and AF. All variant pairs are shown in a. Variant pairs in which both variants are
moderate effect or predicted loss-of-function (pLoF) are shown in b. Variant pairs in which both
variants are pLoF are shown in c. Variant AF is the AF of the less common variant in a given
variant pair and is population-specific frequency. AFR = African/African American; AMR =
Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE =

non-Finnish European; SAS = South Asian.
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Supplementary Figure 3: a, Pie chart of variant effect annotations in the trio samples. Effect
predictions are stratified among pLoF, moderate effect, and low effect variants. Percentages are
shown in parentheses. b, Proportion of variant pairs falling within 2 bp, within 10 bp, within 150
bp, within the same exon, and proportion that can be phased using the EM algorithm and the

gnomAD resource.
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Supplementary Figure 4: a-g, Histogram of Pyans scores for variant pairs in cis (top, blue) and

in trans (bottom, red) for each population. Pians SCOres are population-specific. AFR =
African/African American; AMR = Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS =
East Asian; FIN = Finnish; NFE = non-Finnish European; SAS = South Asian.
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Supplementary Figure 5: Receiver-operator (a) and Precision-recall (b) curves for use of Pyans
for distinguishing between variant pairs on same versus opposite haplotypes. Separate lines are
shown for each genetic ancestry group. Pians SCOres are population-specific. AFR =
African/African American; AMR = Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS =
East Asian; FIN = Finnish; NFE = non-Finnish European; SAS = South Asian.
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Supplementary Figure 6: Phasing performance for population-specific versus cosmopolitan
Pians scores for each population. AFR = African/African American; AMR = Admixed
American/Latino; ASJ = Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE = non-
Finnish European; SAS = South Asian.
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Supplementary Figure 7: Phasing accuracy for transversions, non-CpG transitions, and CpG
transitions. CpG transitions are further stratified by degree of DNA methylation (low, medium, or
high) as in Karczewski et al?°. Shading of squares and numbers in each square represents
phasing accuracy. Phasing accuracies are based on variant pairs seen in all populations and
utilize population-specific Pyans €stimates. Accuracy is shown for all variants (a), variants in trans

(b), and variants in cis (c).
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Supplementary Figure 8: a, Phasing performance when subsampling gnomAD to 1000,
10,000, 100,000 or using all samples. Phasing performance is based on cosmopolitan Pyans
estimates and is calculated across trio samples from all populations. b, Phasing performance as
a function of variant AF for the more common variant in a variant pair. Phasing performance is
based on population-specific Pyans €stimates and is calculated across trio samples from all
populations. ¢, Proportion of variants falling into different AF bins when subsampling NFE
gnomAD trios from 2815 trios down to 282, 563, or 1408 trios. Allele frequencies reflect the
rarer variant in a variant pair. d, Phasing performance when subsampling NFE gnomAD

samples as described in c.
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Supplementary Figure 9: a, Proportion of genes with one or more individuals in gnomAD
carrying two rare variants at < 1% and < 5% AF stratified by predicted functional effect and
phase. For compound heterozygous (comp het, in frans), unphased, and in cis, both variants in
the variant pair must be annotated with a consequence at least as severe as the consequence
displayed. b, Number of individuals per gene in gnomAD carrying two rare variants at < 1% and
< 5% AF stratified by predicted functional effect and phase. For compound heterozygous (in
trans) both variants in the variant pair must be annotated with a consequence at least as severe
as the consequence displayed. In the box plots, the center line is the median, the box limits are
the upper and lower quartiles, and the whiskers extend to the 1.5x the interquartile range. Any
points shown are outliers. “comp het (in trans)” refers to compound heterozygous; “hom” refers

to homozygous.
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Supplemental Tables

Table S1. CMG diagnostic variants. In this table, we provide details about the presumed bi-
allelic causal variants from 293 individuals from the Broad Institute Center for Mendelian
Genetics. For each variant pair, we provide the gene symbol (“gene_name”), information about
the position and alleles of both variants, whether both of the variants were singletons in
gnomAD (“singleton_singleton”) and seen in the same individual or not, the estimated
cosmopolitan Prans value, the predicted phase based on the cosmopolitan Pians value
(“cosmopolitan_phase_prediction”), the imputed population ancestry of the CMG individual
(“imputed_population_ancestry”), the predicted phased based on the population-specific Pirans
value (“population_specific_phase_prediction”), the known phase from phase by transmission
when trio data were available (“phase_by_transmission”), and an explanation for incorrect

predictions where applicable (“incorrect_prediction_explanation”).

Table S2. Manual curation results for compound heterozygous loss-of-function variants. Here,
we provide the variant curation information for the 28 genes that have predicted compound
heterozygous loss-of-function variants with AF < 1%. For every predicted compound
heterozygous variant pair, we provide the gene symbol, maximum AF in the gnomAD exomes
from the two variants (“variant_pair_max_af’), the number of individuals who carry the variant
pair (“n_individuals”), information about the position and alleles of both variants, any manual
curation flags e.g., mapping error for the variants, and the final loss-of-function curation for both

variants as well as the variant pair (“high_confidence_human_knock_out”).
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