

1 **Title: SCD inhibition preferentially eradicates AML displaying high de novo**
2 **fatty acid desaturation and synergizes with chemotherapy**

4 **Authors:** Vilma Dembitz^{1,2}, Hannah Lawson¹, Richard Burt^{3,4}, Céline Philippe¹, Sophie C.
5 James¹, Samantha Atkinson^{3,4}, Jozef Durko¹, Lydia M. Wang¹, Joana Campos¹, Aoife M. S.
6 Magee¹, Keith Woodley¹, Michael Austin¹, Ana Rio-Machin⁵, Pedro Casado-Izquierdo⁵, Findlay
7 Bewicke-Copley⁵, Giovanny Rodriguez Blanco⁶, Diego Pereira Martins⁷, Lieve Oudejans⁷,
8 Emeline Boet^{8,9}, Alex von Kriegsheim⁶, Juerg Schwaller¹⁰, Andrew J. Finch¹¹, Bela Patel¹, Jean-
9 Emmanuel Sarry^{8,9}, Jerome Tamburini¹², Jan Jacob Schuringa⁷, Lori Hazlehurst¹³, John A.
10 Copland, III¹⁴, Mariia Yuneva⁴, Barrie Peck¹¹, Pedro Cutillas⁵, Jude Fitzgibbon⁵, Kevin Rouault-
11 Pierre¹, Kamil Kranc¹, Paolo Gallipoli^{1*}

12 **Affiliations:**

13 1 Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London,
14 London EC1M 5PZ, UK

15 2 Department of Physiology and Croatian Institute for Brain Research, University of Zagreb
16 School of Medicine, 10000 Zagreb, Croatia

17 3 Division of Cell and Molecular Biology, Imperial College London, London SW7 2BX, UK

18 4 Francis Crick Institute, London NW1 1AT, UK

19 5 Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary
20 University of London, London EC1M, London, UK

21 6 The University of Edinburgh MRC Institute of Genetics and Cancer, University of Edinburgh,
22 Edinburgh, EH4 2XU, UK

23 7 Department of Experimental Hematology, University Medical Center Groningen, University of
24 Groningen, 9713 GZ, Groningen, The Netherlands.

25 8 Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037,
26 CNRS U5077, LabEx Toucan, Toulouse, France

27 9 Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France

28 10 University Children's Hospital and Department of Biomedicine (DBM), University of Basel,
29 4031 Basel, Switzerland.

30 11 Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London,
31 London EC1M, London, UK

32 12 Translational Research Centre in Onco-hematology, Faculty of Medicine, University of
33 Geneva, and Swiss Cancer Center Leman, 1205 Geneva, Switzerland.

34 13 Modulation Therapeutics, Morgantown, West Virginia 26506, USA

35 14 Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA

36 *Correspondence: Paolo Gallipoli, Centre for Haemato-Oncology, Barts Cancer Institute, Queen
37 Mary University of London, Charterhouse Square, London EC1M 5PZ, UK; e-mail:
38 p.gallipoli@qmul.ac.uk

39 **One Sentence Summary:** SCD inhibition is toxic to AML cells with high rates of fatty acid
40 desaturation and in combination with chemotherapy prolongs survival in murine AML models.

44

45 **Abstract:** Identification of specific and therapeutically actionable vulnerabilities in acute
46 myeloid leukaemia (AML) is needed to improve patients' outcome. These features should be
47 ideally present in many patients independently of mutational background. Here we identify *de*
48 *novo* fatty acid (FA) desaturation, specifically stearoyl-CoA desaturase (SCD) inhibition, as a
49 therapeutic vulnerability across multiple AML models *in vitro* and *in vivo*. We use the novel
50 clinical grade SCD inhibitor SSI-4 to show that SCD inhibition induces AML cell death *via*
51 pleiotropic effects, and sensitivity is based on their dependency on FA desaturation regardless of
52 mutational profile. SSI-4 efficacy is enhanced by driving FA biosynthesis *in vitro* while stroma
53 confers protective effects that extend to *in vivo* models. SCD inhibition increases DNA damage
54 and its combination with standard DNA damage-inducing chemotherapy prolongs survival in
55 aggressive murine AML models. Our work supports developing FA desaturase inhibitors in
56 AML while stressing the importance of identifying predictive biomarkers of response and
57 biologically validated combination therapies to realize their therapeutic potential.

58

59 INTRODUCTION

60

61 AML is a highly aggressive malignant clonal disease of hematopoietic origin. Despite the
62 approval of several novel therapies in the past decade, AML prognosis remains poor with long-
63 term survival rates of about 30%(1). Development of novel therapeutic approaches for AML is
64 particularly challenging due to high genetic and cellular heterogeneity(2). Therefore,
65 identification of specific AML biological features beyond genetic mutations is needed for
66 development of targeted therapies to improve patient outcomes. Rewired metabolism is one such
67 feature(3), however discerning specific metabolic dependencies of malignant cells is crucial to
68 avoid generalized toxicity that often compromises clinical use of metabolic inhibitors(4).

69 Fatty acid (FA) metabolism has emerged as a cancer-specific vulnerability in multiple solid
70 cancers(5-8), but its role in hematological malignancies, and specifically AML, is less
71 characterized. In AML most preclinical evidence has focused on the role of fatty acid oxidation
72 (FAO)(9-11). However targeting FAO is associated with the risk of cardiac toxicity(12) and the
73 best characterised FAO inhibitor, etomoxir, proved to be systemically toxic, halting its clinical
74 development(13). Comparatively, targeting fatty acid synthesis (FAS), particularly stearoyl-CoA
75 desaturase 1 (SCD1, hereafter SCD), the enzyme converting saturated fatty acids (SFA)
76 palmitate and stearate into monounsaturated fatty acids (MUFA) palmitoleate and oleate(14),
77 appears to be more tolerable based on preclinical studies(15). SCD plays a role in metabolic
78 adaptation of acute lymphoblastic leukaemia to the central nervous system
79 microenvironment(16) and resistance of AML stem cells to NAMPT inhibitors(17).
80 Additionally, transcription factor C/AAAT-enhancer binding protein α (C/EBP α) regulates lipid
81 biosynthesis in *FLT3*-mutant AML cells by acting on the fatty acid synthase (FASN)-SCD axis,
82 which increases their ability to withstand oxidative stress and leads to greater sensitivity to *FLT3*
83 inhibitors upon SCD inhibition(18). However, the significance of SCD levels in AML prognosis
84 and response to therapy, its functional role, and potential as a therapeutic target, including
85 identification of biological determinants of sensitivity to its inhibition, remain unknown.

86 Here we address these questions utilising SSI-4, a novel clinical grade SCD inhibitor with a
87 favorable general toxicity profile(19). We show that SCD expression is prognostic in AML, and
88 its inhibition compromises viability in AML cell lines and primary samples with higher rates of
89 MUFA synthesis, without inducing hematological toxicity in mouse models. SCD activity

90 regulates sensitivity to anthracycline-based treatments and SCD inhibition combined with
91 standard AML chemotherapy prolongs survival in murine models of AML.

92

93 RESULTS

94

95 ***SCD levels are prognostic in AML and its inhibition induces cell death in a subset of AML cell*** 96 ***lines.***

97 Analysis of multiple independent gene expression profiles of newly diagnosed AML samples
98 shows that higher levels of *SCD* expression correlate with significantly decreased survival even
99 after correcting for age, gender and European Leukemia Net (ELN) prognostic group (Fig.1A-
100 B). This finding was confirmed when analyzing a local cohort of patients with adverse risk AML
101 (Suppl.Fig.1A) and, after our initial report(20), independently validated by other research
102 groups(21). High *SCD* expression correlates with several genes involved in FAS and
103 desaturation such as fatty acid synthase (*FASN*), fatty acid desaturase 1 and 2 (*FADS1* and
104 *FADS2*) and adverse prognostic features such as *TP53* mutant signatures and the leukemic stem
105 cell signature – LSC17(22) (Fig.1C, Suppl.Fig.1B). A biosynthesis of unsaturated fatty acids
106 (FA) gene signature is enriched in matched post-chemotherapy relapse versus diagnosis in
107 human AML samples (Fig.1D, Suppl.Fig.1C), together with a TCGA-generated SCD signature
108 (Fig.1E). Interestingly, SCD signature was inversely correlated with tumor burden in cytarabine
109 (Ara-C)-treated PDX models(11) and was significantly upregulated at nadir after chemotherapy
110 (minimal residual disease, MRD) (Fig.1F). Overall these data suggest that synthesis of
111 unsaturated FA is more active at points of leukemia resistance or progression raising the possibly
112 that SCD is linked with mechanisms regulating sensitivity to chemotherapy. To test SCD as a
113 therapeutic target, we used the clinical grade SCD inhibitor SSI-4 against a panel of human AML
114 cell lines. SSI-4 induced cell death in several cell lines (K562, MOLM-13, MV-4-11), while
115 others (OCI-AML3, THP-1, HL-60, Kasumi-1, TF-1) were resistant (Fig.1G). SSI-4 anti-
116 leukemic effects were a result of cell death induction, as no effects on cell cycle progression
117 were observed and sensitivity to SSI-4 was not associated to any mutational characteristics of the
118 cell lines tested (Suppl.Fig.1D-E).

119 We validated these data using another SCD inhibitor A939572 (Suppl.Fig.2A). Moreover, SCD
120 genetic depletion rapidly impaired growth in SSI-4-sensitive cells (Suppl.Fig.2B) but did not
121 decrease cell viability in standard culture conditions, possibly due to compensatory upregulation
122 of other fatty acid desaturases(23). However, when cells were grown in hypoxic conditions,
123 which are known to increase FAS and dependency on SCD(24), SCD depletion induced cell
124 death specifically in SSI-4 sensitive cells (Suppl.Fig.2C-D).

125

126 ***SCD activity dictates sensitivity to SCD inhibition by preventing SFA accumulation and*** 127 ***lipotoxicity.***

128 Since genetic features did not correlate with sensitivity to SCD inhibition, we analyzed publicly
129 available proteomic data(25) for SSI-4 sensitive and resistant cell lines. These showed an
130 enrichment in adipogenesis signature and higher SCD protein expression in sensitive cells
131 (Fig.2A-B) . Western blot analysis confirmed these findings, and although we cannot directly
132 correlate protein expression with enzymatic activity, this was suggestive of a greater dependency
133 on fatty acid desaturation in sensitive cells (Fig.2C-D). Indeed fatty acid quantitation showed
134 that the SFA/MUFA ratio is significantly higher in resistant cell lines when compared to

136 sensitive ones. Moreover, the expected increase in ratio upon SSI-4 treatment is much lower in
137 the resistant OCI-AML3 compared to the sensitive cells, indicating lower dependency on SCD
138 activity in resistant cells (Fig.2E-F). Conversely sensitivity to SCD inhibition did not correlate
139 with uptake of external lipids, or expression of lipid transporters CD36 and LDLR
140 (Suppl.Fig.2E), both previously identified as independent prognostic factors in AML(26, 27).
141 Gas chromatography-mass spectrometry (GC/MS) experiments tracing uniformly-labelled
142 ¹³Carbon (U-¹³C₆) glucose incorporation into FA demonstrated that in sensitive cells MUFA
143 biosynthesis (16:1, C18:1) was higher and more responsive to SCD inhibition. Interestingly,
144 treatment with SSI-4 also led to increased production of SFA stearate (C18:0) in sensitive cells.
145 Together these data suggest that SSI-4 sensitive cells have a more active *de novo* fatty acid
146 biosynthesis and desaturation. Moreover upon SCD inhibition FAS is further increased but
147 becomes uncoupled from desaturation thus causing an imbalance between SFA and MUFA
148 levels to a degree able to trigger lipotoxicity(28) and cell death (Fig.2F-G).

149
150 ***MUFA and SFA levels modulate sensitivity to SCD inhibition in AML cells by regulating***
151 ***FAS.***

152
153 The above data suggest that, in cells sensitive to SCD inhibition, MUFA production is a sensing
154 point for FAS pathway activity. To test this hypothesis, we grew cells in the presence of oleate
155 and noted decreased production of both SFA and MUFA (Fig.3A and Suppl.Fig.3A-B) which
156 also correlated with a complete rescue of SSI-4-mediated decrease in viability, supporting the
157 on-target efficacy of SSI-4 (Fig.3B). Conversely, addition of palmitate in non-toxic
158 concentration increased FAS and oleate production mostly in resistant, but not sensitive cells
159 (Fig.3C and Suppl.Fig.3A-B). This suggests that baseline MUFA production in resistant cells is
160 below its potential maximum and can be upregulated following palmitate supplementation.
161 Although exogenous palmitate can still be detoxified by desaturation both in sensitive and
162 resistant cells, as shown by total levels of labelled and unlabeled MUFA (Suppl.Fig.3B), in
163 palmitate rich conditions SCD inhibition results in a large increase in the SFA/MUFA ratio. This
164 is true even in resistant cells that do not display such strong imbalance upon treatment with SSI-4
165 alone (Fig.2E, Suppl.Fig.3A-C) and causes increased sensitivity to SSI-4 in both sensitive and
166 resistant cells in the presence of palmitate (Fig.3D).

167 These data demonstrate that changes in MUFA/SFA levels affect sensitivity to SCD inhibition
168 via modulation of FAS. To clarify the mechanistic underpinning of this observation we analyzed
169 changes in regulatory pathways of FAS in sensitive cells. Consistent with the observed increase
170 in the FAS rate, SCD inhibition reduced activation of AMPK (Fig.3E), thereby relieving its
171 inhibitory role on cleavage and consequent activation of SREBP2 (Fig.3F), a key transcription
172 factor modulating FAS enzymes expression(29, 30). As expected following SREBP2 activation,
173 we observed increased levels of FASN, SCD (Fig.2C and 3F) and total acetyl-Coa carboxylase
174 (ACC) which were reversed by the addition of oleate, thus confirming that MUFA levels relieve
175 SCD inhibition toxicity through downregulation of FAS (Fig.3F, Suppl.Fig.4A). Conversely, the
176 AMPK activator MK-8722 decreased both SREBP2 cleavage and expression of SCD and FASN
177 (Fig.3G). Although SREBP2 has mostly been described as a regulator of cholesterol synthesis,
178 while FAS is generally under regulation of SREBP1(30), in our system we observed more
179 consistent effects on SREBP2 following SCD inhibition and MUFA addition. Conversely, we
180 did not see a change in SREBP1 cleavage in response to SSI-4, with or without the addition of
181 oleate, even though AMPK activation with MK-8722 decreased SREBP1 cleavage as expected

182 (Suppl.Fig.4B). These data suggest that FAS in AML cell lines is prominently regulated by
183 SREBP2, as shown in other models(31).

184 Decreasing FAS by inhibition of either FASN or ACC or via AMPK activation abolished SSI-4
185 mediated toxicity (Fig.3H, Suppl.Fig.4B-C). Interestingly, analysis of the Depmap dataset shows
186 that SCD dependency inversely correlates with the expression levels of both *FASN* and *ACACA*
187 (ACC) across all cancer cells lines and particularly AML ones (Suppl.Fig. 4D). Overall these
188 data confirm that modulation of FAS impacts sensitivity to SCD inhibition.

189

190 ***Cell death in response to SSI-4 is mediated by lipid oxidative stress, integrated stress response***
191 ***and activation of apoptotic machinery.***

192

193 Transcriptomic analysis of SSI-4 treated cells confirmed the regulatory role of oleate levels on
194 the rate of FAS but also identified oxidative stress associated pathways (ferroptosis, glutathione
195 metabolism) and integrated stress/endoplasmic reticulum (ER) stress response as potential
196 downstream mechanisms leading to cell death (Fig.4A and Suppl.Fig.5A).

197 Consistent with SCD role in protection against oxidative stress and lipid peroxidation(18),
198 sensitive cells displayed a specific increase in lipid peroxidation as measured by Bodipy C11
199 staining upon treatment with SSI-4 (Fig.4B). A similar effect was observed in cells with
200 downregulated SCD in hypoxic condition where lipotoxicity is present (Suppl.Fig.5B).
201 Lipidomic analysis confirmed that lysophospholipids which have lost their polyunsaturated tail, a
202 known marker of lipid peroxidation(32), are the most enriched lipid class in response to SSI-4
203 (Fig.4C). This pattern was completely abrogated by the addition of oleate (Suppl.Fig.5C).
204 However, despite reducing peroxidation to the same extent of oleate (Suppl.Fig.5D-E), lipid
205 peroxidation inhibitors failed to or only partially rescued (Fig.4D and Suppl.Fig.5F-G) sensitive
206 cells from SSI-4-mediated cell death. Reversal of lipid peroxidation is therefore not sufficient to
207 prevent cell death induced by SCD inhibition.

208 SCD is essential for ER homeostasis(33) and SFA/MUFA imbalance is known to trigger ER
209 stress(34). Based on our transcriptomic data, we interrogated the three arms of the ER response
210 pathway (Suppl.Fig.6A). We noticed a substantial increase in targets downstream of PERK,
211 CHOP and ATF4, a moderate increase in IRE1 and IRE1-associated targets, spliced and total
212 XBP1, and no effects on the expression of ATF6. In accordance to that, PERK inhibitor
213 GSK2656157 rescued SSI-4-mediated cytotoxicity, while IRE1 inhibitor 4 μ 8c demonstrated
214 only milder cytoprotective effects at higher doses and ATF6 inhibitor Ceapin A7 had no effects
215 (Suppl.Fig.6B). The PERK pathway is a known regulator of apoptosis(35) and SSI-4 treatment
216 induced accumulation of apoptotic marker Annexin V and activation of apoptotic machinery in
217 both sensitive cells and resistant ones grown in the presence of palmitate (Fig.4E-F). Still, in
218 contrast to oleate supplementation, co-treatment with pan-caspase inhibitor Q-Vd-OPh resulted
219 in a significant, but only partial rescue of SSI-4 mediated cell death (Fig.4F-G).

220 Overall these data show that the lipotoxic reaction in response to SSI-4 cannot be reduced to the
221 activation of a single effector death mechanism and that SCD inhibition act as a pleiotropic
222 trigger which can activate several cell death modes concurrently, thus explaining the detection of
223 both ferroptosis or apoptosis markers(36). Consistent with this, inhibiting any of these cell death
224 mechanisms independently did not completely rescue the cytotoxic effects of SSI-4 supporting
225 their functional redundancy.

226

227 **Primary AML cells with higher levels of unsaturated fatty acids are sensitive to SCD
228 inhibition.**

229
230 To extend the translational relevance of our findings, we tested the effects of SSI-4 on primary
231 AML samples *in vitro*. First, we observed that co-culture of primary AML samples with MS-5
232 cells decreased sensitivity to SSI-4 and abolished palmitate-mediated toxicity, suggesting that the
233 presence of stroma could influence SCD dependency (Suppl.Fig.7A). We thus treated 36 primary
234 AML samples in stromal co-culture with SSI-4 and observed that, similar to cell lines, primary
235 samples dichotomized into sensitive and resistant (Fig.5A), with no clear relation to specific
236 driver mutations (Suppl. Table1). This was confirmed on an independent cohort of 11 primary
237 samples (Suppl.Fig.7C). We did not identify a sensitivity signature using transcriptomic or
238 proteomic approaches (data not shown), while phosphoproteomic data on a subset of AML
239 patient samples showed significantly higher levels of phosphorylated-insulin receptor substrate 2
240 (IRS2) in sensitive cells (Fig.5B) which was confirmed in an independent phosphoproteomic
241 analysis on a different patient sample subset (Suppl.Fig.7D). IRS2 is a downstream target of
242 receptor tyrosine kinases (RTK) and has been shown to specifically regulate the insulin-like
243 growth factor-1 (IGF-1) autocrine production and signaling in AML(37). The activation of RTK
244 was further supported by increased phosphorylation of AKT2 and PLEKHG3 (Suppl.Fig.7E).
245 Interestingly, increased activation of signaling downstream of RTK in this AML model did not
246 correlate with faster progression through cell cycle (Suppl.Fig.7F) suggesting that sensitivity is
247 not linked to a more proliferative phenotype, but potentially to the role of RTKs in regulation of
248 lipogenesis and energy metabolism(38). Indeed, in accordance with cell line data, sensitive
249 samples displayed higher levels of MUFA and a lower SFA/MUFA ratio compared to resistant
250 cells supporting their greater dependency on fatty acid desaturation (Fig.5C-D).

251 Given the observed stromal protection towards SSI-4-mediated toxicity, we tested to which
252 extent the anti-leukemic effect of SCD inhibition was maintained *in vivo* using patient derived
253 xenografts (PDX) from two sensitive AML samples. A decrease in bone marrow (BM) leukemia
254 burden following SSI-4 treatment was observed in both PDX model, although this reached
255 statistical significance only in one. Still, higher levels of lipid peroxidation in the human CD45⁺
256 compartment were noted following SSI-4 even when leukemic burden was not significantly
257 reduced (Fig.5E-F, Suppl.Fig.7G). This suggests that SCD inhibition primes AML cells to
258 aberrant oxidative stress *in vivo* even when its antileukemic effects are blunted.

259
260 ***In-vivo* SSI-4 treatment does not affect normal hematopoiesis and induces differentiation and
261 lipid oxidative stress in *iMLL-AF9* murine AML model.**

262
263 Although a favorable general toxicity profile of SSI-4 was demonstrated in previous animal
264 studies (5, 19), we also ascertained its potential hematopoietic toxicity. SSI-4 had no significant
265 hematopoietic toxicity, as shown by its effects on the peripheral blood (PB) counts and
266 hematopoietic progenitor compartments of treated animals (Fig.6A-B).

267 We then assessed the effects of SCD inhibition in two AML murine models expressing either the
268 *Hoxa9/Meis1* or inducible *MLL-AF9* (*iMLL-AF9*) oncogene. Both models were sensitive *in vitro*
269 to SSI-4 with toxicity reversed by addition of oleate (Fig.6C-D). Treatment *in vivo* of *iMLL-AF9*
270 model with SSI-4 resulted in induction of differentiation without significant decrease in BM
271 leukemic burden (Fig.6E). However, as seen in PDX, lipid peroxidation was increased in treated
272 AML cells *in vivo* (Fig.6F).

273

274 **SSI-4 combination with doxorubicin based chemotherapy is synergistic and prolongs survival**
275 **in murine AML models.**

276 Lipid peroxidation is the most consistent phenotype observed in response to SSI-4 across all
277 AML models tested and is known to induce DNA damage(39) through production of
278 malondialdehyde which forms DNA adducts in normal and oncogenic mammalian cells(40).
279 Moreover a role of SCD inhibition in modulating DNA damage repair via downregulation of
280 RAD51 has already been reported(33). In sensitive cells, a strong lipotoxic phenotype upon
281 combined treatment with palmitate and SSI-4 induced DNA damage as measured by
282 phosphorylated histone H2A.X (Fig.7A). This prompted us to assess the therapeutic potential of
283 SSI-4 combination with the DNA-damaging chemotherapeutic doxorubicin. Indeed, SSI-4
284 increased doxorubicin induced DNA damage (Fig.7B) with similar effects on lipid peroxidation
285 (Suppl.Fig.8A). Moreover SCD depletion resulted in growth disadvantage in the presence of
286 doxorubicin and increased sensitivity to doxorubicin-induced cytotoxicity (Fig.7C,
287 Suppl.Fig.8B). The relevance of the SFA/MUFA ratio and induction of lipotoxicity in
288 modulating AML cells sensitivity to anthracycline is further supported by the observation that
289 inhibition of palmitate production using a FASN inhibitor or AMPK activation reduces
290 sensitivity to doxorubicin alone or in combination with SSI-4 (Suppl.Fig.8C).

291 We detected synergism between SSI-4 and doxorubicin in MV-4-11 cells at the majority of dose
292 combinations, while in *iMLL-AF9* cells, which displayed greater sensitivity to doxorubicin,
293 synergy was evident when doxorubicin was applied in lower concentrations (Fig.7D). Moreover,
294 analysis of the BeatAML dataset showed that higher *SCD* expression correlates with reduced
295 sensitivity *in vitro* to cytarabine, an antimetabolite known to cause DNA damage and used in
296 combination with anthracyclines to treat AML patients (Suppl.Fig.8D). Finally, to validate these
297 findings *in vivo* we used two aggressive models of fully established AML that are more
298 representative of the scenario routinely encountered in clinic, a cell line derived xenograft (CDX)
299 and a transplant of leukemic *iMLL-AF9* cells. The latter reached an average leukemic blasts
300 infiltration in PB of 20% before treatment (Suppl.Fig.8E), a common criterion for AML
301 diagnosis. Similarly to what we observed in the PDX, response to SSI-4 therapy as a single agent
302 was varied with significant survival improvement in the CDX model but not in the murine *iMLL-*
303 *AF9* model. However in both models and consistent with the *in vitro* findings, combining SSI-4
304 treatment with doxorubicin and cytarabine, a protocol mimicking the standard intensive
305 chemotherapy used in patients, significantly prolonged survival (Fig.7E-F). Together these
306 results demonstrate that SCD inhibition augments efficacy of standard AML chemotherapy
307 likely by enhancing their ability to induce DNA damage.

308

309 **DISCUSSION**

310

311 In this work we sought to understand AML metabolic reliance on FAS to uncover novel
312 therapeutic vulnerabilities. Consistent with observations in several solid cancers(41-43), high
313 SCD expression is an adverse prognostic marker in AML. The prognostic role of SCD is likely
314 due to its association with sensitivity to chemotherapy given that biosynthesis of unsaturated
315 fatty acids is enriched in relapsed and chemo-refractory patients. The latter observation
316 emphasizes the potential of SCD inhibition as a treatment strategy in AML particularly when
317 combined with standard chemotherapy as supported by our data. The greatest challenge in
318 targeting SCD has been the lack of available clinical grade inhibitors(15). SSI-4 is under clinical

319 development for hepatocellular carcinoma(5), and in our study demonstrated potent anti-
320 leukemic effects *in vitro* on a subset of AML samples while showing no general or
321 hematopoietic toxicities.

322 Although specific mutations can dictate selective metabolic vulnerabilities(44), metabolic
323 dependencies can be present across multiple genetic backgrounds as a phenotype bottleneck i.e. a
324 state essential for continued tumorigenesis. This can be advantageous as metabolic
325 vulnerabilities can be exploited in a larger proportion of patients in a mutation-agnostic manner
326 but also highlights the challenge to identify determinants of sensitivity. This is particularly
327 crucial for metabolic inhibitors as they often target pathways central to the function of normal
328 cells/tissues. The favorable toxicity profile of SSI-4 is therefore even more translationally
329 relevant.

330 Leukemic cells clearly dichotomized in sensitive and resistant to SCD inhibition, a pattern also
331 observed in glioblastoma and melanoma(6, 45, 46). AML sensitivity to SSI-4 was not related to
332 mutational background, instead, sensitive cells displayed both greater *de novo* MUFA production
333 and higher MUFA levels. Sensitive cells dependency on FA desaturation caused a greater
334 SFA/MUFA imbalance upon SCD inhibition resulting in lipotoxicity. SCD appears to be the
335 regulatory nexus of *de novo* FAS in AML cells, because oleate decreases FAS both in resistant
336 and sensitive cells, rescuing SSI-4-mediated toxicity both by replenishing the MUFA pool, but
337 also preventing SFA production. Similar effects were observed in pancreatic duct
338 adenocarcinoma (PDAC) cells where exposure to oleate in delipidated medium also decreased
339 FA production, irrespective of SCD inhibition, and inhibition of SFA production rescued toxicity
340 of SCD inhibition, consistent with our model(47). It is therefore clear that to drive cytotoxicity
341 via SCD inhibition a significant imbalance between SFA/MUFA needs to be generated. This
342 could be also achieved by modulating the diet, either through a palmitate rich or a caloric
343 restricted diet, which creates a dependency on FAS and reduces SCD levels(47) and will be the
344 focus of future work. Conversely, therapeutic interventions which inhibit FAS might reduce the
345 efficacy of SCD inhibition and should be avoided in this setting.

346 While we did not detect a transcriptional signature of sensitivity, we noted that sensitive primary
347 AML samples displayed increased phosphorylation of IRS2, a direct downstream target of
348 insulin and growth factor receptors(48). Insulin is a known regulator of SCD expression(49), and
349 sensitivity to SCD inhibition in glioblastoma has been linked to increased ERK
350 phosphorylation(6), also a downstream target of RTK signaling(50), while FLT3 inhibition in
351 AML decreases MUFA levels through SCD downregulation(18). Interestingly, all the sensitive
352 cell lines in our study harbored mutations associated with increased RTK signaling (*BCR-ABL*,
353 *FLT3*) and resistant cell lines presented with *NRAS* mutation, that is known to decrease
354 sensitivity to SCD in solid cancer models(51). However, these observations could not be
355 replicated in our primary samples cohort, again highlighting the complexity of interactions
356 between mutational profiles and signaling mechanisms in AML(52). Although our data indicate
357 that sensitivity to SCD inhibition might correlate with levels of RTK signaling, further work on
358 larger patient cohorts is required to confirm this as a predictive biomarker of response.

359 The exact mechanism through which lipotoxicity induces cell death remains ill-defined. A
360 previous report ascribed palmitate-induced toxicity to induction of ER stress(34). Conversely,
361 reduction of MUFAAs is a known inducer of ferroptotic cell death(53). In response to SCD
362 inhibition we observed pleiotropic effects causing both increased ER stress with activation of
363 transcription factor DDIT3/CHOP and apoptotic machinery and elevated lipid peroxidation
364 which is a hallmark of ferroptosis(32). However, inhibition of each of these pathways alone

365 could achieve only a partial rescue of SSI-4-mediated cell death, indicating their functional
366 redundancy. Indeed it has already been shown in glioma cells that SCD inhibition results in
367 distinct downstream effects(28) and both apoptotic and ferroptotic cell death pathways are
368 triggered in response to SCD inhibition in ovarian cancer(36). These conclusions are further
369 supported by the observation that oleate supplementation, which can fully rescue viability of
370 SSI-4 treated cells, acts in parallel on FAS, lipid peroxidation, ER stress and apoptosis, in
371 accordance with its already known ability to rescue both apoptotic and ferroptotic cell death in
372 response to SFA accumulation(54).

373 SSI-4 toxic effects were less pronounced when primary AML cells were grown in co-culture
374 with stroma and were only partially maintained *in vivo*. As expected, and comparable to what is
375 described in glioblastoma(6), SSI-4 as a single agent did not consistently prolong survival in
376 AML mouse models. Still, increased lipid peroxidation as a marker of SCD inhibition was
377 maintained even when the decrease in leukemic burden was not prominent, indicating that SSI-4
378 treated leukemic cells are primed for a second cytotoxic hit. In our models lipotoxicity was
379 linked with increased DNA damage, consistent with what was seen in glioblastoma(6), and
380 oxidative stress-inducing strategies have been shown to enhance the response to chemotherapy in
381 AML(55). Indeed, we observed synergy between SCD inhibition and doxorubicin *in vitro* and
382 combination of SSI-4 with conventional AML chemotherapy in two aggressive AML models *in*
383 *vivo* significantly prolonged survival. These findings highlight that genuinely lethal metabolic
384 bottlenecks are often generated by the action of already approved therapeutic interventions and
385 metabolic vulnerabilities can be fully exploited via synergistic combination therapies(18, 56, 57).
386 In conclusion our findings support the efforts of devising new treatment approaches in AML
387 focusing on the metabolic axis of MUFA synthesis. Going forward, as will be the case for most
388 metabolic inhibitors, further research on the identification of predictive biomarkers of response
389 and novel combination approaches, with either other approved therapies or dietary interventions,
390 are essential for fully realizing the potential of targeting this axis in AML.

391
392 **MATERIALS AND METHODS**
393

394 **STUDY DESIGN**

395 This study aimed to reveal whether SCD represents a promising therapeutic target in acute
396 myeloid leukemia and determine toxicity and efficacy of clinical grade inhibitor SSI-4 in AML
397 setting. Therefore we used the full spectrum of AML models: patient datasets, cell lines, a cohort
398 of 47 primary AML samples from two independent institutions, murine AML models, cell line-
399 and patient- derived xenograft models. Initial epidemiological studies that attempted to evaluate
400 SCD association with AML prognosis and response to therapy were performed on datasets
401 comprising more than 1000 patients. Cell line studies on a panel of 8 genetically heterogeneous
402 AML cell lines were designed to determine SSI-4 efficiency in inducing anti-leukemic effects,
403 specificity to SCD inhibition, cellular metabolic response and modes of action. A wide cohort of
404 patient samples was screened for translational potential of effects observed on cell lines and
405 identification of potential biomarkers of response using genomic, transcriptomic, proteomic,
406 phosphoproteomic and metabolomic approaches. Mouse models were used to establish general
407 and hematopoietic toxicity of the compound *in vivo* as well as its therapeutic efficacy against
408 AML either alone or in combination with conventional chemotherapy. Animal sample size was
409 determined based on our previous experience and pilot studies. Number of biological replicates
410 is indicated in figure legends and for experimental work involving cell lines, a minimum of three

411 independent experiments were performed. Detailed methods are included in Supplementary
412 methods and all reagents used are listed in Supplementary table 2.

413
414 *Cell culture: cell lines and primary human AML patient derived samples*
415 K-562 (ATCC, CCL-243), MOLM-13, MV-4-11, THP-1, HL-60, Kasumi-1, OCI-AML3, TF-1
416 (Sanger Institute), 293T-Pheonix cells (kind gift of B. Huntly, University of Cambridge) and
417 MS-5 (DSMZ, ACC 441) cells were cultured following ATCC and DSMZ recommendations.
418 Cell lines used were STR typed and regularly checked for Mycoplasma contamination.
419 Frozen AML samples from Barts Cancer Institute (n=36) and University Medical Center
420 Groningen (n=11) were retrieved from respective institute's biobank thawed and plated in co-
421 culture with MS-5 stromal cells. After treatment with SSI-4, viability was determined using anti-
422 Annexin-V antibody in combination with propidium iodide or DAPI stain.
423 All human samples were obtained and studied after informed consent and protocol approval by
424 both institutions Ethical Committees and BCI Tissue Biobank's scientific sub-committee in
425 accordance with the Declaration of Helsinki.

426
427 *In vivo experiments*
428 All experiments on animals were performed under UK Home Office authorization. The mice
429 strains used in the study were NBSGW(58) and Vav-iCre (59) and were purchased from Jackson
430 Laboratory. *iMLL-AF9* mice were described previously(60) and were a kind gift of Jürg
431 Schwaller.

432 Animals were treated orally with 10 or 30 mg/kg SSI-4 in 10% Captisol solution or vehicle
433 control. For experiments involving conventional chemotherapy protocol, it was delivered in a 5
434 day protocol in which on days 1, 3 and 5 animals intravenously received 1.0 mg/kg doxorubicin
435 and 50 mg/kg cytarabine in the same syringe and on days 2 and 4 animals intravenously received
436 50 mg/kg cytarabine.

437 All recipients were culled upon reaching either treatment endpoint or humane endpoint, as noted
438 in survival curves, and their PB, spleen and BM were examined. Complete blood counts and
439 bone marrow cellularity counts were performed using Celltac α Automated Hematology
440 Analyzer (Nihon Kohden).

441
442 *Flow cytometry*
443 Briefly, Cell viability was determined using anti-Annexin V antibody with propidium iodide, 7-
444 AAD or Zombie NIR™ stains. Cell cycle progression was determined using PI solution. Lipid
445 uptake measurement was performed using C1-Bodipy C12 500/510, while lipid peroxidation was
446 measured with Bodipy 581/591 and determined as the ratio of MFI in the green and red channel.
447 Immunophenotypic analyses were performed using antibody cocktails as described in Figure
448 legends and Supplementary methods.

449 Flow cytometry analyses were performed using LSRFortessa and FACSymphony A3 (BD)
450 instruments and all data analysis was performed using FlowJo 10.0 software.

451
452 *RNA sequencing and analysis*
453 RNA Sequencing and bioinformatics analysis was provided by Novogene UK Company Limited
454 (Cambridge, UK).

455
456 *Glucose labelling*

457 Cells were grown for 24h in RPMI medium with no glucose, supplemented with 10% FBS, 50
458 IU/ml penicillin and 50 µg/ml streptomycin and 2 g/L U-¹³C₁₆-Glucose and treated with SSI-4 (1
459 µM) with or without the addition of BSA-conjugated sodium oleate (100 µM) or sodium
460 palmitate (100 µM). In analysis, fatty acids containing isotope ¹³C peaks m+0 and m+1 were
461 marked as unlabeled and the ones containing m+2 and higher as labelled.

462

463 *Metabolomics experiments*

464 For lipidomics analysis, lipid species were extracted using monophasic isopropanol extraction
465 and analyzed using liquid chromatography-mass spectrometry following the methodology
466 described before(61). Lipid annotation was performed with LipiDex software using the
467 parameters used in the original publication(62) and additional analysis of the lipidomics dataset
468 was performed with the LipidSuite webtool (<https://suite.lipidr.org>).

469 For fatty acid profiling, apolar metabolites were isolated from cells using chloroform:methanol
470 extraction and fatty acids partitioned from polar metabolites by resuspension of dried extracts in
471 chloroform:methanol:water. Data acquisition was performed using gas chromatography – mass
472 spectrometry. Data was acquired using MassHunter software (version B.07.02.1938). Data
473 analysis was performed using MANIC software, an in house-developed adaptation of the
474 GAVIN package(63). Fatty acids were identified and quantified by comparison to authentic
475 standards and ¹³C₁-lauric acid as an internal standard.

476

477 STATISTICS AND REPRODUCIBILITY

478 All data was analyzed and visualized in Prism 9.0 (GraphPad) and all data are shown as mean ±
479 standard error of the mean, unless otherwise stated. The cohorts were dichotomized into groups
480 with high and low gene expression after calculating the optimal cut point value using the receiver
481 operating characteristic (ROC) curve for censored overall survival data. Overall survival was
482 plotted using Kaplan–Meier plots, using Cox proportional hazard regression to compare the
483 differences between the curves, providing the Hazard ratio (HR) and the 95% confidence interval
484 (CI). According to data availability, we adjusted prognosis prediction for confounders as follows:
485 age (as continuous variable), sex (male vs. female), white blood cell counts (WBC, as
486 continuous), and European LeukemiaNet categorization (ELN2010 or ELN2017). The difference
487 between multiple experimental groups was analyzed by two-way ANOVA (Kruskal–Wallis test,
488 post hoc Dunn analysis) or two-tailed paired or unpaired Student’s t test. IC50 and cell viability
489 curves were determined using non-linear regression analyses. Correlation was calculated using
490 Pearson or Spearman correlation coefficients. P-values are indicated in Figure legends.

491

492

493 **References**

- 494 1. C. D. DiNardo, H. P. Erba, S. D. Freeman, A. H. Wei, Acute myeloid leukaemia. *The
495 Lancet*.
- 496 2. A. G. X. Zeng, S. Bansal, L. Jin, A. Mitchell, W. C. Chen, H. A. Abbas, M. Chan-Seng-
497 Yue, V. Voisin, P. van Galen, A. Tierens, M. Cheok, C. Preudhomme, H. Dombret, N.
498 Daver, P. A. Futreal, M. D. Minden, J. A. Kennedy, J. C. Y. Wang, J. E. Dick, A cellular
499 hierarchy framework for understanding heterogeneity and predicting drug response in
500 acute myeloid leukemia. *Nature Medicine* **28**, 1212-1223 (2022).
- 501 3. R. Culp-Hill, A. D'Alessandro, E. M. Pietras, Extinguishing the Embers: Targeting AML
502 Metabolism. *Trends in Molecular Medicine* **27**, 332-344 (2021).
- 503 4. T. A. Yap, N. Daver, M. Mahendra, J. Zhang, C. Kamiya-Matsuoka, F. Meric-Bernstam,
504 H. M. Kantarjian, F. Ravandi, M. E. Collins, M. E. D. Francesco, E. E. Dumbrava, S. Fu,
505 S. Gao, J. P. Gay, S. Gera, J. Han, D. S. Hong, E. J. Jabbour, Z. Ju, D. D. Karp, A. Lodi,
506 J. R. Molina, N. Baran, A. Naing, M. Ohanian, S. Pant, N. Pemmaraju, P. Bose, S. A.
507 Piha-Paul, J. Rodon, C. Salguero, K. Sasaki, A. K. Singh, V. Subbiah, A. M.
508 Tsimberidou, Q. A. Xu, M. Yilmaz, Q. Zhang, Y. Li, C. A. Bristow, M. B. Bhattacharjee,
509 S. Tiziani, T. P. Heffernan, C. P. Vellano, P. Jones, C. J. Heijnen, A. Kavelaars, J. R.
510 Marszalek, M. Konopleva, Complex I inhibitor of oxidative phosphorylation in advanced
511 solid tumors and acute myeloid leukemia: phase I trials. *Nature Medicine* **29**, 115-126
(2023).
- 512 5. M. K. F. Ma, E. Y. T. Lau, D. H. W. Leung, J. Lo, N. P. Y. Ho, L. K. W. Cheng, S. Ma,
513 C. H. Lin, J. A. Copland, J. Ding, R. C. L. Lo, I. O. L. Ng, T. K. W. Lee, Stearyl-CoA
514 desaturase regulates sorafenib resistance via modulation of ER stress-induced
515 differentiation. *Journal of Hepatology* **67**, 979-990 (2017).
- 516 6. K. M. Eyme, A. Sammarco, R. Jha, H. Mnatsakanyan, C. Pechdimaljian, L. Carvalho, R.
517 Neustadt, C. Moses, A. Alnasser, D. F. Tardiff, B. Su, K. J. Williams, S. J. Bensinger, C.
518 Y. Chung, C. E. Badr, Targeting de novo lipid synthesis induces lipotoxicity and impairs
519 DNA damage repair in glioblastoma mouse models. *Science Translational Medicine* **15**,
520 eabq6288.
- 521 7. B. Peck, Z. T. Schug, Q. Zhang, B. Dankworth, D. T. Jones, E. Smethurst, R. Patel, S.
522 Mason, M. Jiang, R. Saunders, M. Howell, R. Mitter, B. Spencer-Dene, G. Stamp, L.
523 McGarry, D. James, E. Shanks, E. O. Aboagye, S. E. Critchlow, H. Y. Leung, A. L.
524 Harris, M. J. O. Wakelam, E. Gottlieb, A. Schulze, Inhibition of fatty acid desaturation is
525 detrimental to cancer cell survival in metabolically compromised environments. *Cancer
& Metabolism* **4**, 6 (2016).
- 526 8. J. Li, S. Condello, J. Thomas-Pepin, X. Ma, Y. Xia, T. D. Hurley, D. Matei, J.-X. Cheng,
527 Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer
528 Stem Cells. *Cell Stem Cell* **20**, 303-314.e305 (2017).
- 529 9. I. Samudio, R. Harmancey, M. Fiegl, H. Kantarjian, M. Konopleva, B. Korchin, K.
530 Kaluarachchi, W. Bornmann, S. Duvvuri, H. Taegtmeyer, M. Andreeff, Pharmacologic
531 inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction.
532 *The Journal of Clinical Investigation* **120**, 142-156 (2010).
- 533 10. B. M. Stevens, C. L. Jones, D. A. Pollyea, R. Culp-Hill, A. D'Alessandro, A. Winters, A.
534 Krug, D. Abbott, M. Goosman, S. Pei, H. Ye, A. E. Gillen, M. W. Becker, M. R. Savona,
535 C. Smith, C. T. Jordan, Fatty acid metabolism underlies venetoclax resistance in acute
536 myeloid leukemia stem cells. *Nature Cancer* **1**, 1176-1187 (2020).

539 11. T. Farge, E. Saland, F. de Toni, N. Aroua, M. Hosseini, R. Perry, C. Bosc, M. Sugita, L.
540 Stuani, M. Fraisse, S. Scotland, C. Larue, H. Boutzen, V. Féliu, M.-L. Nicolau-Travers,
541 S. Cassant-Sourdy, N. Broin, M. David, N. Serhan, A. Sarry, S. Tavitian, T. Kaoma, L.
542 Vallar, J. Iacovoni, L. K. Linares, C. Montersino, R. Castellano, E. Griessinger, Y.
543 Collette, O. Duchamp, Y. Barreira, P. Hirsch, T. Palama, L. Gales, F. Delhommeau, B.
544 H. Garmy-Susini, J.-C. Portais, F. Vergez, M. Selak, G. Danet-Desnoyers, M. Carroll, C.
545 Récher, J.-E. Sarry, Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are
546 Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. *Cancer
547 Discovery* **7**, 716-735 (2017).

548 12. P. C. Schulze, K. Drosatos, I. J. Goldberg, Lipid Use and Misuse by the Heart.
549 *Circulation Research* **118**, 1736-1751 (2016).

550 13. Christian J. F. Holubarsch, M. Rohrbach, M. Karrasch, E. Boehm, L. Polonski, P.
551 Ponikowski, S. Rhein, A double-blind randomized multicentre clinical trial to evaluate
552 the efficacy and safety of two doses of etomoxir in comparison with placebo in patients
553 with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose
554 oxidation) study. *Clinical Science* **113**, 205-212 (2007).

555 14. J. M. Ntambi, M. Miyazaki, Regulation of stearoyl-CoA desaturases and role in
556 metabolism. *Progress in Lipid Research* **43**, 91-104 (2004).

557 15. Z. Tracz-Gaszewska, P. Dobrzyn, Stearoyl-CoA Desaturase 1 as a Therapeutic Target for
558 the Treatment of Cancer. *Cancers*. 2019 (10.3390/cancers11070948).

559 16. A. M. Savino, S. I. Fernandes, O. Olivares, A. Zemlyansky, A. Cousins, E. K. Markert, S.
560 Barel, I. Geron, L. Frishman, Y. Birger, C. Eckert, S. Tumanov, G. MacKay, J. J.
561 Kamphorst, P. Herzyk, J. Fernández-García, I. Abramovich, I. Mor, M. Bardini, E. Barin,
562 S. Janaki-Raman, J. R. Cross, M. G. Kharas, E. Gottlieb, S. Izraeli, C. Halsey, Metabolic
563 adaptation of acute lymphoblastic leukemia to the central nervous system
564 microenvironment depends on stearoyl-CoA desaturase. *Nature Cancer* **1**, 998-1009
565 (2020).

566 17. A. Subedi, Q. Liu, D. M. Ayyathan, D. Sharon, S. Cathelin, M. Hosseini, C. Xu, V.
567 Voisin, G. D. Bader, A. D'Alessandro, E. R. Lechman, J. E. Dick, M. D. Minden, J. C. Y.
568 Wang, S. M. Chan, Nicotinamide phosphoribosyltransferase inhibitors selectively induce
569 apoptosis of AML stem cells by disrupting lipid homeostasis. *Cell Stem Cell* **28**, 1851-
570 1867.e1858 (2021).

571 18. M. Sabatier, R. Birsen, L. Lauture, S. Mouche, P. Angelino, J. Dehairs, L. Goupille, I.
572 Boussaid, M. Heiblig, E. Boet, A. Sahal, E. Saland, J. C. Santos, M. Armengol, M.
573 Fernandez-Serrano, T. Farge, G. Cognet, F. Simonetta, C. Pignon, A. Graffeuil, C.
574 Mazzotti, H. Avet-Loiseau, O. Delos, J. Bertrand-Michel, A. Chedru, V. Dembitz, P.
575 Gallipoli, N. S. Anstee, S. Loo, A. H. Wei, M. Carroll, A. Goubard, R. Castellano, Y.
576 Collette, F. Vergez, V. Mansat-De Mas, S. Bertoli, S. Tavitian, M. Picard, C. Récher, N.
577 Bourges-Abella, F. Granat, O. Kosmider, P. Sujobert, B. Colsch, C. Joffre, L. Stuani, J.
578 V. Swinnen, H. Guillou, G. Roue, N. Hakim, A. S. Dejean, P. Tsantoulis, C. Larue, D.
579 Bouscary, J. Tamburini, J.-E. Sarry, C/EBP α confers dependence to fatty acid anabolic
580 pathways and vulnerability to lipid oxidative stress-induced ferroptosis in FLT3-mutant
581 leukemia. *Cancer Discovery*, CD-22-0411 (2023).

582 19. C. A. von Roemeling, T. R. Caulfield, L. Marlow, I. Bok, J. Wen, J. L. Miller, R.
583 Hughes, L. Hazlehurst, A. B. Pinkerton, D. C. Radisky, H. W. Tun, Y. S. Betty Kim, A.
584 L. Lane, J. A. Copland, Accelerated bottom-up drug design platform enables the

585 discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. *Oncotarget*;
586 Vol 9, No 1, (2017).

587 20. V. Dembitz, H. Lawson, C. Philippe, R. J. Burt, S. James, A. S. M. Magee, K. Woodley,
588 J. Durko, J. Campos, M. J. Austin, A. Rio-Machin, P. Casado Izquierdo, F. Bewicke-
589 Copley, G. Rodriguez Blanco, B. Patel, L. Hazlehurst, B. Peck, A. Finch, P. Cutillas, J.
590 Fitzgibbon, M. Yuneva, K. Rouault-Pierre, J. Copland, III, K. Kranc, P. Gallipoli,
591 Inhibition of Stearoyl-CoA Desaturase Has Anti-Leukemic Properties in Acute Myeloid
592 Leukemia. *Blood* **140**, 3058-3060 (2022).

593 21. H. S. Kim, D. Kim, J. Kim, S. Park, A. C. V. de Guzman, SCD and MTHFD2 inhibitors
594 for high-risk acute myeloid leukaemia patients, as suggested by ELN2017-pathway
595 association. *Clinical and Translational Medicine* **13**, e1311 (2023).

596 22. S. W. K. Ng, A. Mitchell, J. A. Kennedy, W. C. Chen, J. McLeod, N. Ibrahimova, A.
597 Arruda, A. Popescu, V. Gupta, A. D. Schimmer, A. C. Schuh, K. W. Yee, L. Bullinger,
598 T. Herold, D. Görlich, T. Büchner, W. Hiddemann, W. E. Berdel, B. Wörmann, M.
599 Cheok, C. Preudhomme, H. Dombret, K. Metzeler, C. Buske, B. Löwenberg, P. J. M.
600 Valk, P. W. Zandstra, M. D. Minden, J. E. Dick, J. C. Y. Wang, A 17-gene stemness
601 score for rapid determination of risk in acute leukaemia. *Nature* **540**, 433-437 (2016).

602 23. K. Vriens, S. Christen, S. Parik, D. Broekaert, K. Yoshinaga, A. Talebi, J. Dehairs, C.
603 Escalona-Noguero, R. Schmieder, T. Cornfield, C. Charlton, L. Romero-Pérez, M. Rossi,
604 G. Rinaldi, M. F. Orth, R. Boon, A. Kerstens, S. Y. Kwan, B. Faubert, A. Méndez-Lucas,
605 C. C. Kopitz, T. Chen, J. Fernandez-Garcia, J. A. G. Duarte, A. A. Schmitz, P.
606 Steigemann, M. Najimi, A. Hägebarth, J. A. Van Ginderachter, E. Sokal, N. Gotoh, K.-K.
607 Wong, C. Verfaillie, R. Derua, S. Munck, M. Yuneva, L. Beretta, R. J. DeBerardinis, J.
608 V. Swinnen, L. Hodson, D. Cassiman, C. Verslype, S. Christian, S. Grünewald, T. G. P.
609 Grünewald, S.-M. Fendt, Evidence for an alternative fatty acid desaturation pathway
610 increasing cancer plasticity. *Nature* **566**, 403-406 (2019).

611 24. J. P. Melana, F. Mignolli, T. Stoyanoff, M. V. Aguirre, M. A. Balboa, J. Balsinde, J. P.
612 Rodríguez, The Hypoxic Microenvironment Induces Stearoyl-CoA Desaturase-1
613 Overexpression and Lipidomic Profile Changes in Clear Cell Renal Cell Carcinoma.
614 *Cancers*. 2021 (10.3390/cancers13122962).

615 25. D. P. Nusinow, J. Szpyt, M. Ghandi, C. M. Rose, E. R. McDonald, M. Kalocsay, J. Jané-
616 Valbuena, E. Gelfand, D. K. Scheppe, M. Jedrychowski, J. Golji, D. A. Porter, T.
617 Rejtar, Y. K. Wang, G. V. Kryukov, F. Stegmeier, B. K. Erickson, L. A. Garraway, W. R.
618 Sellers, S. P. Gygi, Quantitative Proteomics of the Cancer Cell Line Encyclopedia. *Cell*
619 **180**, 387-402.e316 (2020).

620 26. G. Perea, A. Domingo, N. Villamor, C. Palacios, J. Juncà, P. Torres, A. Llorente, C.
621 Fernández, M. Tormo, M. P. Queipo de Llano, J. Bargay, M. Gallart, L. Florensa, P.
622 Vivancos, J. M. Martí, L. Font, J. Berlanga, J. Esteve, J. Bueno, J. M. Ribera, S. Brunet,
623 J. Sierra, J. F. Nomdedéu, Adverse prognostic impact of CD36 and CD2 expression in
624 adult de novo acute myeloid leukemia patients. *Leukemia Research* **29**, 1109-1116
625 (2005).

626 27. M. Floeth, S. Elges, J. Gerss, C. Schwöppe, T. Kessler, T. Herold, E. Wardelmann, W. E.
627 Berdel, G. Lenz, J.-H. Mikesch, W. Hartmann, C. Schliemann, L. Angenendt, Low-
628 density lipoprotein receptor (LDLR) is an independent adverse prognostic factor in acute
629 myeloid leukaemia. *British Journal of Haematology* **192**, 494-503 (2021).

630 28. K. J. Williams, J. P. Argus, Y. Zhu, M. Q. Wilks, B. N. Marbois, A. G. York, Y. Kidani,
631 A. L. Pourzia, D. Akhavan, D. N. Lisiero, E. Komisopoulou, A. H. Henkin, H. Soto, B.
632 T. Chamberlain, L. Vergnes, M. E. Jung, J. Z. Torres, L. M. Liau, H. R. Christofk, R. M.
633 Prins, P. S. Mischel, K. Reue, T. G. Graeber, S. J. Bensinger, An Essential Requirement
634 for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity. *Cancer
635 Research* **73**, 2850-2862 (2013).

636 29. Y. Li, S. Xu, M. M. Mihaylova, B. Zheng, X. Hou, B. Jiang, O. Park, Z. Luo, E. Lefai,
637 John Y. J. Shyy, B. Gao, M. Wierzbicki, Tony J. Verbeuren, Reuben J. Shaw, Richard A.
638 Cohen, M. Zang, AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate
639 Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. *Cell
640 Metabolism* **13**, 376-388 (2011).

641 30. H. Shimano, R. Sato, SREBP-regulated lipid metabolism: convergent physiology —
642 divergent pathophysiology. *Nature Reviews Endocrinology* **13**, 710-730 (2017).

643 31. L. Vergnes, R. G. Chin, T. de Aguiar Vallim, L. G. Fong, T. F. Osborne, S. G. Young, K.
644 Reue, SREBP-2-deficient and hypomorphic mice reveal roles for SREBP-2 in embryonic
645 development and SREBP-1c expression [S]. *Journal of Lipid Research* **57**, 410-421
646 (2016).

647 32. W. S. Yang, B. R. Stockwell, Ferroptosis: Death by Lipid Peroxidation. *Trends in Cell
648 Biology* **26**, 165-176 (2016).

649 33. K. Pinkham, D. J. Park, A. Hashemiaghdam, A. B. Kirov, I. Adam, K. Rosiak, C. C. da
650 Hora, J. Teng, P. S. Cheah, L. Carvalho, G. Ganguli-Indra, A. Kelly, A. K. Indra, C. E.
651 Badr, Stearoyl CoA Desaturase Is Essential for Regulation of Endoplasmic Reticulum
652 Homeostasis and Tumor Growth in Glioblastoma Cancer Stem Cells. *Stem Cell Reports*
653 **12**, 712-727 (2019).

654 34. M. Piccolis, L. M. Bond, M. Kampmann, P. Pulimeno, C. Chitraju, C. B. K. Jayson, L. P.
655 Vaites, S. Boland, Z. W. Lai, K. R. Gabriel, S. D. Elliott, J. A. Paulo, J. W. Harper, J. S.
656 Weissman, T. C. Walther, R. V. Farese, Probing the Global Cellular Responses to
657 Lipotoxicity Caused by Saturated Fatty Acids. *Molecular Cell* **74**, 32-44.e38 (2019).

658 35. S. A. Oakes, F. R. Papa, The Role of Endoplasmic Reticulum Stress in Human
659 Pathology. *Annual Review of Pathology: Mechanisms of Disease* **10**, 173-194 (2015).

660 36. L. Tesfay, B. T. Paul, A. Konstorum, Z. Deng, A. O. Cox, J. Lee, C. M. Furdui, P.
661 Hegde, F. M. Torti, S. V. Torti, Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer
662 Cells from Ferroptotic Cell Death. *Cancer Research* **79**, 5355-5366 (2019).

663 37. J. Tamburini, N. Chapuis, V. Bardet, S. Park, P. Sujobert, L. Willems, N. Ifrah, F.
664 Dreyfus, P. Mayeux, C. Lacombe, D. Bouscary, Mammalian target of rapamycin
665 (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-
666 like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for
667 therapeutic inhibition of both pathways. *Blood* **111**, 379-382 (2008).

668 38. B. A. Jin N, Lan X, Xu J, Wang X, Liu Y, Wang T, Tang S, Zeng H, Chen Z, Tan M, Ai
669 J, Xie H, Zhang T, Liu D, Huang R, Song Y, Leung EL, Yao X, Ding J, Geng M, Lin SH,
670 Huang M., Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven
671 cancer *Nature Communications* **10**, 2701 (2019).

672 39. F. Gentile, A. Arcaro, S. Pizzimenti, M. Daga, G. P. Cetrangolo, C. Dianzani, A. Lepore,
673 M. Graf, P. R. J. Ames, G. Barrera, DNA damage by lipid peroxidation products:
674 implications in cancer, inflammation and autoimmunity. *AIMS Genet* **04**, 103-137 (2017).

675 40. L. J. Marnett, Oxy radicals, lipid peroxidation and DNA damage. *Toxicology* **181-182**,
676 219-222 (2002).

677 41. S. M. Wang C, Ji J, Cai Q, Zhao Q, Jiang J, liu J, Zhang H, Zhu Z, Zhang J., Stearoyl-
678 CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer
679 cells and predicts poor prognosis of gastric cancer. *Aging (Albany NY)*. **12**, 15374-15391
680 (2020).

681 42. J. Wang, Y. Xu, L. Zhu, Y. Zou, W. Kong, B. Dong, J. Huang, Y. Chen, W. Xue, Y.
682 Huang, J. Zhang, High Expression of Stearoyl-CoA Desaturase 1 Predicts Poor Prognosis
683 in Patients with Clear-Cell Renal Cell Carcinoma. *PLOS ONE* **11**, e0166231 (2016).

684 43. H. Ran, Y. Zhu, R. Deng, Q. Zhang, X. Liu, M. Feng, J. Zhong, S. Lin, X. Tong, Q. Su,
685 Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose
686 by suppressing PTEN. *Journal of Experimental & Clinical Cancer Research* **37**, 54
687 (2018).

688 44. V. Dembitz, P. Gallipoli, The Role of Metabolism in the Development of Personalized
689 Therapies in Acute Myeloid Leukemia. *Frontiers in Oncology* **11**, (2021).

690 45. D. N. Oatman N, Arora P, Choi K, Gawali MV, Gupta N, Parameswaran S, Salomone J,
691 Reisz JA, Lawler S, Furnari F, Brennan C, Wu J, Sallans L, Gudelsky G, Desai P,
692 Gebelein B, Weirauch MT, D'Alessandro A, Komurov K, Dasgupta B., Mechanisms of
693 stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer *Science
694 Advances* **7**, eabd7459 (2021).

695 46. Y. Vivas-García, P. Falletta, J. Liebing, P. Louphrasitthiphol, Y. Feng, J. Chauhan, D. A.
696 Scott, N. Glodde, A. Chocarro-Calvo, S. Bonham, A. L. Osterman, R. Fischer, Z. e.
697 Ronai, C. García-Jiménez, M. Hölzel, C. R. Goding, Lineage-Restricted Regulation of
698 SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity.
699 *Molecular Cell* **77**, 120-137.e129 (2020).

700 47. E. C. Lien, A. M. Westermark, Y. Zhang, C. Yuan, Z. Li, A. N. Lau, K. M. Sapp, B. M.
701 Wolpin, M. G. Vander Heiden, Low glycaemic diets alter lipid metabolism to influence
702 tumour growth. *Nature* **599**, 302-307 (2021).

703 48. H. E. Metz, A. McGarry Houghton, Insulin Receptor Substrate Regulation of
704 Phosphoinositide 3-Kinase. *Clinical Cancer Research* **17**, 206-211 (2011).

705 49. D. Mauvoisin, C. Mounier, Hormonal and nutritional regulation of SCD1 gene
706 expression. *Biochimie* **93**, 78-86 (2011).

707 50. A. Kiyatkin, I. K. van Alderwerelt van Rosenthal, D. E. Klein, M. A. Lemmon,
708 Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. *Science
709 Signaling* **13**, eaaz5267 (2020).

710 51. J. J. Kamphorst, J. R. Cross, J. Fan, E. de Stanchina, R. Mathew, E. P. White, C. B.
711 Thompson, J. D. Rabinowitz, Hypoxic and Ras-transformed cells support growth by
712 scavenging unsaturated fatty acids from lysophospholipids. *Proceedings of the National
713 Academy of Sciences* **110**, 8882-8887 (2013).

714 52. W. E. Casado P, Miraki-Moud F, Hadi MM, Rio-Machin A, Rajeeve V, Pike R, Iqbal S,
715 Marfa S, Lea N, Best S, Gribben J, Fitzgibbon J, Cutillas PR., Proteomic and genomic
716 integration identifies kinase and differentiation determinants of kinase inhibitor
717 sensitivity in leukemia cells. *Leukemia* **32**, 1818-1822 (2018).

718 53. J. Rodencal, S. J. Dixon, A tale of two lipids: Lipid unsaturation commands ferroptosis
719 sensitivity. *PROTEOMICS* **23**, 2100308 (2023).

720 54. L. Magtanong, P.-J. Ko, M. To, J. Y. Cao, G. C. Forcina, A. Tarangelo, C. C. Ward, K.
721 Cho, G. J. Patti, D. K. Nomura, J. A. Olzmann, S. J. Dixon, Exogenous Monounsaturated
722 Fatty Acids Promote a Ferroptosis-Resistant Cell State. *Cell Chemical Biology* **26**, 420-
723 432.e429 (2019).

724 55. K. Eagle, Y. Jiang, X. Shi, M. Li, N. D. Obholzer, T. Hu, M. W. Perez, J. V. Koren, A.
725 Kitano, J. S. Yi, C. Y. Lin, D. Nakada, An oncogenic enhancer encodes selective
726 selenium dependency in AML. *Cell Stem Cell* **29**, 386-399.e387 (2022).

727 56. P. Gallipoli, G. Giotopoulos, K. Tzelepis, A. S. H. Costa, S. Vohra, P. Medina-Perez, F.
728 Basheer, L. Marando, L. Di Lisio, J. M. L. Dias, H. Yun, D. Sasca, S. J. Horton, G.
729 Vassiliou, C. Frezza, B. J. P. Huntly, Glutaminolysis is a metabolic dependency in
730 FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. *Blood*
731 **131**, 1639-1653 (2018).

732 57. K. Woodley, L. S. Dillingh, G. Giotopoulos, P. Madrigal, K. M. Rattigan, C. Philippe, V.
733 Dembitz, A. M. S. Magee, R. Asby, L. N. van de Lagemaat, C. Mapperley, S. C. James,
734 J. H. M. Prehn, K. Tzelepis, K. Rouault-Pierre, G. S. Vassiliou, K. R. Kranc, G. V.
735 Helgason, B. J. P. Huntly, P. Gallipoli, Mannose metabolism inhibition sensitizes acute
736 myeloid leukaemia cells to therapy by driving ferroptotic cell death. *Nature
737 Communications* **14**, 2132 (2023).

738 58. Brian E. McIntosh, Matthew E. Brown, Bret M. Duffin, John P. Maufort, David T.
739 Vereide, Igor I. Slukvin, James A. Thomson, Nonirradiated NOD,B6.SCID Il2r γ -/-
740 KitW41/W41 (NBSGW) Mice Support Multilineage Engraftment of Human
741 Hematopoietic Cells. *Stem Cell Reports* **4**, 171-180 (2015).

742 59. J. de Boer, A. Williams, G. Skavdis, N. Harker, M. Coles, M. Tolaini, T. Norton, K.
743 Williams, K. Roderick, A. J. Potocnik, D. Kioussis, Transgenic mice with hematopoietic
744 and lymphoid specific expression of Cre. *European Journal of Immunology* **33**, 314-325
745 (2003).

746 60. V. Stavropoulou, S. Kaspar, L. Brault, Mathijs A. Sanders, S. Juge, S. Morettini, A.
747 Tzankov, M. Iacovino, I. J. Lau, Thomas A. Milne, H. Royo, M. Kyba, Peter J. M. Valk,
748 Antoine H. F. M. Peters, J. Schwaller, MLL-AF9 Expression in Hematopoietic Stem
749 Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor
750 Outcome. *Cancer Cell* **30**, 43-58 (2016).

751 61. F. C. Blomme A, Mui E, Patel R, Ntala C, Jamieson LE, Planque M, McGregor GH,
752 Peixoto P, Hervouet E, Nixon C, Salji M, Gaughan L, Markert E, Repiscak P, Sumpton
753 D, Blanco GR, Lilla S, Kamphorst JJ, Graham D, Faulds K, MacKay GM, Fendt SM,
754 Zanivan S, Leung HY., 2,4-dienoyl-CoA reductase regulates lipid homeostasis in
755 treatment-resistant prostate cancer *Nature Communications* **11**, 2508 (2022).

756 62. R. J. Hutchins PD, Coon JJ., LipiDex: An Integrated Software Package for High-
757 Confidence Lipid Identification *Cell Systems* **6**, 621-625.e625 (2018).

758 63. V. Behrends, G. D. Tredwell, J. G. Bundy, A software complement to AMDIS for
759 processing GC-MS metabolomic data. *Analytical Biochemistry* **415**, 206-208 (2011).

760 64. R.-M. A. Casado P, Miettinen JJ, Bewicke-Copley F, Rouault-Pierre K, Krizsan S,
761 Parsons A, Rajeeve V, Miraki-Moud F, Taussig DC, Bödör C, Gribben J, Heckman C,
762 Fitzgibbon J, Cutillas PR., Integrative phosphoproteomics defines two biologically
763 distinct groups of KMT2A rearranged acute myeloid leukaemia with different drug
764 response phenotypes *Signal Transduction and Targeted Therapy* **8**, 80 (2023).

765 65. M. J. Christopher, A. A. Petti, M. P. Rettig, C. A. Miller, E. Chendamarai, E. J.
766 Duncavage, J. M. Klco, N. M. Helton, M. O'Laughlin, C. C. Fronick, R. S. Fulton, R. K.
767 Wilson, L. D. Wartman, J. S. Welch, S. E. Heath, J. D. Baty, J. E. Payton, T. A. Graubert,
768 D. C. Link, M. J. Walter, P. Westervelt, T. J. Ley, J. F. DiPersio, Immune Escape of
769 Relapsed AML Cells after Allogeneic Transplantation. *New England Journal of Medicine*
770 **379**, 2330-2341 (2018).

771

772

773 **List of Supplementary Materials**

774 Materials and Methods

775 Fig. S1 to S8

776 Tables S1 to S2 for multiple supplementary tables

777 Data files S1 to S3 (Excel files)

778

779 **Acknowledgments:** We would like to thank Dora Visnjic for helpful advice and discussion and
780 Han Tun and Justyna Gleba for critically reading the manuscript. We wish to thank the
781 Barts Cancer Institute tissue bank for sample collection and processing.

782 **Funding:**

783 Cancer Research UK Advanced Clinician Scientist fellowship C57799/A27964 (PG)

784 The Lady Tata Memorial Trust International Award for Research in Leukaemia (VD)

785 Cancer Research UK Core Award C16420/A18066 (BCI Flow cytometry facility)

786 **Author contributions:**

787 Conceptualization: PG, VD.

788 Methodology: VD, HL, RB, CP, MA, GRB, AvK, BP, JES, JT, AF, JAC, BP (2), KK,
789 PG. Validation: LO.

790 Formal analysis: ARM, PCI, FBC, DPM, GRB, EB.

791 Investigation: VD, HL, RB, CP, SJ, SA, JD, LW, JC, AM, KW, MA, GRB, LO.

792 Resources: CP, JES, JS, JT, JJS, LH, JAC, MY, PC, JF, KRP, KK, PG.

793 Writing – original draft: VD, PG.

794 Writing – review and editing: all authors.

795 Visualization: VD, PG.

796 Supervision: KRP, KK, PG.

797 Project administration: PG.

798 Funding acquisition: AvK, PC, JF, KK, PG.

799

800 **Competing interests:** LH is CEO and co-founder of Modulation Therapeutics, the company
801 holding intellectual property to SSI-4. J.A.C. holds a patent regarding use of the SCD inhibitor
802 SSI-4.

803

805 **Data and materials availability:**

806
807 All regents and materials in this study are listed in Supplementary table 1. SSI-4 can be obtained
808 through material transfer agreement (MTA) with Modulation therapeutics Inc. All cell lines
809 generated in this study can be obtained upon request.
810 The RNA-sequencing data generated in this study have been deposited in the ArrayExpress
811 database and are available at E-MTAB-13174. Data from free fatty acid profiling and lipidomics
812 analyses are available in Supplemental data 1, 2 and 3.
813 DNA sequencing, RNA sequencing, proteome and phosphoproteome data on BCI primary AML
814 samples were derived from previously published studies from Barts Cancer Institute(52, 64).
815 Publicly available clinical and transcriptomic data of five adult AML cohorts whose patients
816 were treated with intensive chemotherapy were used to investigate the prognostic role of SCD
817 expression: AML TCGA (data obtained from <https://www.cbiportal.org/>), GSE6891, GSE425
818 (Bullinger), GSE10358, GSE14468. Normalized gene expression data were retrieved from the
819 Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo/). SCD signature was
820 generated by dichotomizing patients in TCGA dataset in high and low expressing samples based
821 on median expression. Dataset GSE97631 was used to determine SCD signature expression in
822 MRD stage.
823 Data from manuscript 10.1056/NEJMoa1808777 (NEJM1808777),(65) and GSE66525 were
824 used to perform comparative RNASeq analyses on paired diagnosis-relapse samples in human
825 cohorts and murine models.
826 SCD signature was generated by dichotomizing patients in TCGA dataset in high and low
827 expressing samples based on median expression. Dataset GSE97631 was used to determine SCD
828 signature expression in MRD stage.
829 BeatAML dataset (data obtained <http://www.vizome.org/>), was used to determine association of
830 SCD expression with sensitivity to cytarabine *ex vivo*.
831 Data from manuscript 10.1016/j.cell.2019.12.023 were used for proteomics comparison of
832 sensitive and resistant cell lines. Normalization method used is described in the manuscript(25).
833 All code and data analyses are available upon request.

834 **Figure 1. SCD expression is prognostic in AML and SCD inhibition induces cell death in a subset of AML cell**
835 **lines.**

836 (A) Kaplan-Meier curves comparing overall survival and disease-free survival in TCGA AML patient cohort
837 dichotomized after *SCD* expression. Expression level of *SCD* was considered a continuous variable and Log rank
838 (Mantel-Cox) test was used for determining significance. (B) Forest plot of overall survival analyses considering
839 continuous *SCD* gene expression on several patients' datasets. Multivariate analysis corrected for confounding
840 variables like age, gender and ELN prognostic group in all datasets. (C) Single sample gene set enrichment analysis
841 (ssGSEA) on TCGA cohort in dependency to *SCD* expression. (D) Gene set enrichment analysis (GSEA) for KEGG
842 pathway Biosynthesis of unsaturated fatty acids and (E) TCGA-generated SCD signature in paired diagnosis-relapse
843 primary AML samples (NEJM1808777 dataset). (F) Tumor burden and SCD signature expression in Ara-C-treated
844 PDX models (GSE97631) and GSEA for SCD signature at MRD stage (E) A panel of eight AML cell lines was
845 treated with SSI-4 (0.01 - 10 μ M) or corresponding vehicle for 72h. Cells with less than 10% decrease in viability
846 were designated resistant. Results are presented as non-linear regression of normalized response and data points are
847 mean \pm SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

848
849 **Figure 2. SSI-4 sensitive cells display higher levels of SCD expression and enzymatic activity.**

850 (A) Significantly enriched MSigDB signatures in sensitive vs resistant cell lines from Cancer Cell Line
851 Encyclopedia proteomics dataset ranked by combined score from *Enrichr* enrichment analysis. Significantly
852 upregulated signatures in sensitive cells are presented on the right hand-side and down-regulated signatures on the
853 left hand-side of the graph. (B) Normalized expression of fatty acid synthesis related proteins in AML cell lines
854 tested. (C) Representative western blot of sensitive (K562, MOLM-13, MV-4-11) and resistant (OCI-AML3, THP-
855 1, HL-60) cell lines treated with SSI-4 (1 μ M) or vehicle control for 24h. (D) Densitometric analysis shows SCD
856 expression normalized to β -actin as loading control. (E) MOLM-13, MV-4-11 and OCI-AML3 were treated with
857 SSI-4 (1 μ M) or vehicle control for 24h. Graph represents ratio of C16 and C18 saturated (SFA) and
858 monounsaturated fatty acids (MUFA). (F) Schematic representation of *de novo* fatty acid synthesis pathway and
859 SFA/MUFA imbalance upon SCD inhibition in sensitive and resistant cells. ACLY - ATP-citrate lyase, ACC1 -
860 acetyl-CoA carboxylase, FASN - fatty acid synthase, ELOVL6 - ELOVL fatty acid elongase 6, SCD-1 - stearoyl-
861 Co desaturase. (G) MOLM-13, MV-4-11 and OCI-AML3 were grown in medium supplemented with ^{13}C -Glucose
862 (2 g/L) and treated with SSI-4 (1 μ M) or vehicle control for 24h. Graphs represents percentage of ^{13}C -glucose
863 incorporation in palmitate (C16:0), stearate (C18:0), palmitoleate (C16:1) and oleate (C18:1). Data are mean \pm SEM.
864 * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

865
866 **Figure 3. SFA/MUFA ratio and lipotoxicity in response to SCD inhibition depend on the activity of FAS**
867 **pathway.**

868 (A, C) MOLM-13, MV-4-11 and OCI-AML3 were labelled with ^{13}C -Glucose (2 g/L) and treated for 24h with SSI-4
869 (1 μ M) or vehicle control with or without the addition of oleate (100 μ M) or palmitate (100 μ M). Graphs represents
870 percentage of ^{13}C -glucose incorporation in palmitate (C16:0) and oleate (C18:1) (B, D) MOLM-13, MV-4-11 and
871 OCI-AML cells were treated for 72h with SSI-4 (1 μ M) with or without addition of oleate (100 μ M) or palmitate
872 (100 μ M). (E-G) Representative western blots of MOLM-13 cells treated for 24h with SSI-4 (1 μ M) or vehicle
873 control with or without addition of oleate (100 μ M) or direct AMPK activator MK-8722 (10 μ M). (H) MOLM-13
874 cells were treated for 72h with SSI-4 (1 μ M) with or without addition of FASN inhibitor Fasnall (20 μ M) or MK-
875 8722 (10 μ M). Viable cells were determined as Annexin-V/PI $^-$. Data are mean \pm SEM.* p < 0.05, ** p < 0.01, *** p
876 < 0.001, **** p < 0.0001.

877
878 **Figure 4. SSI-4 treatment induces both an increase in lipid peroxidation and activation of apoptotic**
879 **machinery.**

880 (A) Significantly enriched KEGG pathway signature in MV-4-11 cells treated with SSI-4 (1 μ M) or vehicle control
881 for 24h. (B) Sensitive K562, MOLM-13, MV-4-11 and resistant OCI-AML3, THP-1, HL-60 and Kasumi-1 cell
882 were treated for 24h with SSI-4 (1 μ M) or vehicle control. Lipid peroxidation was measured using Bodipy C11. (C)
883 Lipidomics analysis on MV-4-11 cells treated for 24h with SSI-4 (1 μ M) or vehicle control. Upper graph represents
884 enrichment analysis per lipid groups of treated cells vs. control (Q1-Q3 with line at median value) with significant
885 lipid groups marked in red. Lower graph represents significant differentially expressed individual lipids with

886 upregulated lipids presented on the right hand-side and down-regulated lipids on the left hand-side of the graph. Red
887 bars: padj < 0.05. (D) MV-4-11 and MOLM-13 cells were treated for 72h with SSI-4 (1 μ M) or vehicle control with
888 or without addition of Ferrostatin-1 (5 μ M). (E) MOLM-13 cells in early apoptosis (Annexin-V $^+$ /PI $^-$) after 72h
889 treatment with SSI-4 (1 μ M). (F) Representative western blot of MOLM-13 and OCI-AML3 cells treated for 72h
890 with SSI-4 (1 μ M) or vehicle control with or without addition of oleate (100 μ M) or palmitate (100 μ M). (G)
891 MOLM-13 and MV-4-11 cells were treated for 72h with SSI-4 (1 μ M) or vehicle control with or without addition of
892 Q-VD-OPh (50 μ M). Viable cells were determined as Annexin-V/PI $^-$. Data are mean \pm SEM. * p < 0.05, ** p <
893 0.01, *** p < 0.001, **** p < 0.0001.

894
895 **Figure 5. SSI-4 has antileukemic effects on a subset of primary AML patient samples both *in vitro* and *in vivo***
896 **with sensitive samples showing higher levels of MUFA.**

897 (A) AML primary samples (n=36) were depleted of T-cells and grown in co-culture with irradiated MS-5 cells for 7
898 days with addition of SSI-4 (1 μ M). Samples with less than 5% decrease in viability were designated to resistant
899 group. (B) Phosphorylated IRS2 in sensitive (n=5) vs resistant (n=11) samples measured using phosphoproteomic
900 analyses. Graphs represent relative intensity of phosphopeptides. (C-D) MUFA levels and SFA/MUFA ratio in
901 sensitive (n=4) vs resistant (n=7) samples. (E) Two sensitive samples *in vitro* were transplanted into NBSGW mice.
902 When engraftment of human CD45 $^+$ cells exceeded 5% in the BM, animals were treated with 10 mg/kg of SSI-4 or
903 corresponding vehicle orally for 14 days. Total number of human leukemic cells (hCD45 $^+$ hCD33 $^+$ hCD19 $^+$) isolated
904 from two legs at the end of the experiment. (F) In hCD45 $^+$ hCD33 $^+$ cells isolated from mice transplanted with AML5
905 sample lipid peroxidation was measured using Bodipy C11. Viable cells were determined as Annexin-V/PI $^-$. Data
906 are mean \pm SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

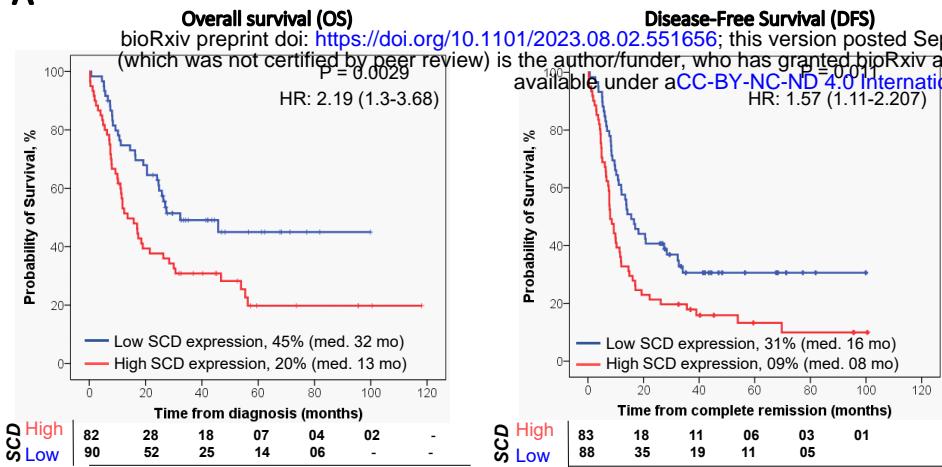
907
908 **Figure 6. SSI-4 demonstrates no hematopoietic toxicity but, as single agent, does not prolong survival in a**
909 **mouse AML model.**

910 (A) C57BL/6 mice (n=15) were treated with 10 and 30 mg/kg SSI-4 or corresponding vehicle orally for a total of 21
911 days with 2 days break after each 5 days of continuous treatment. PB counts of control or SSI-4 treated mice. WBC
912 – white blood cells, RBC – red blood cells, HGB – hemoglobin concentration, HCT – hematocrit, MCV – mean cell
913 volume, MCH – mean cell hemoglobin, MCHC – mean cell hemoglobin concentration, PLT – platelets. (B) Gating
914 strategy and total numbers of cells in LSK (Lin $^-$ Sca-1 $^+$ c-Kit $^+$), HPC-1 (LSK CD48 $^+$ CD150 $^-$), HPC-2 (LSK
915 CD48 $^+$ CD150 $^+$), HSC (LSK CD48 $^+$ CD150 $^+$), MPP (LSK CD48 $^+$ CD150 $^+$) compartments in the BM isolated from two
916 legs of treated animals. (C) Leukemic *Hoxa9/Meis1* and *iMLL-AF9* cells were treated with SSI-4 (0.01-10 μ M) or
917 corresponding vehicle. (D) Leukemic *Hoxa9/Meis1* and *iMLL-AF9* cells were treated with SSI-4 (1 μ M) or vehicle
918 control with or without addition of oleate (100 μ M) for 48h. (E) CD45.2 $^+$ LSK cells from *iMLL-AF9* mice were
919 transplanted to lethally irradiated syngeneic CD45.1 $^+$ /CD45.2 $^+$ recipient mice (n=10). After engraftment was
920 confirmed in PB, animals were treated with 10 mg/kg SSI-4 or corresponding vehicle orally for 20 days. Percentage
921 of CD45.2 $^+$ /Mac-1 $^+$ /Gr-1 $^+$ and CD45.2 $^+$ /Mac-1 $^+$ /Gr-1 $^-$ cells in the BM at the end of the experiment. (F) In CD45.2 $^+$
922 cells lipid peroxidation was measured using Bodipy C11. Viable cells were determined as Annexin-V/PI $^-$ or
923 Annexin-V $^-$ /7-AAD $^-$. Data are mean \pm SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

924
925 **Figure 7. Lipotoxicity increases DNA damage and SSI-4 acts synergistically with DNA damage inducing**
926 **chemotherapy both *in vitro* and *in vivo*.**

927 (A-B) Representative western blots of MV-4-11 cells treated with SSI-4 (1 μ M) or vehicle control with or without
928 addition of oleate (100 μ M), palmitate (100 μ M) or doxorubicin (1 μ M) for 24h. (C) MV-4-11 NT gRNA, SCD
929 gRNA 1 and SCD gRNA 2 were treated for 72h with doxorubicin (1 μ M). (D) MV-4-11 and leukemic *iMLL-AF9*
930 cells were treated for 72h with growing concentrations of SSI-4 and doxorubicin. Synergy was determined by Bliss
931 coefficient (ZIP Score > 10 indicates synergism). (E) MV-4-11 cells were transplanted into NBSGW mice (n=28).
932 14 days after transplant animals were treated for 9 days with 10 mg/kg SSI-4 or corresponding vehicle orally with or
933 without conventional chemotherapy protocol (3 days 1.0 mg/kg doxorubicin i.v., 5 days 50 mg/kg cytarabine i.v.).
934 (F) CD45.2 $^+$ leukemic *iMLL-AF9* cells were transplanted into CD45.1 $^+$ NBSGW mice (n=18). When leukemic
935 burden in PB reached 20%, animals were treated for 7 days with 10 mg/kg SSI-4 or corresponding vehicle orally
936 with or without conventional chemotherapy protocol. Kaplan-Meier curves represent overall survival of animals
937 treated with SSI-4 and corresponding vehicle with or without conventional chemotherapy. Viable cells were

938 determined as Annexin-V⁻/PI⁻ or Annexin-V⁻/Zombie⁻. Data are mean \pm SEM. * p < 0.05, ** p < 0.01, *** p <
939 0.001, **** p < 0.0001.
940


941 **Table 1. Molecular characteristics of patients samples at diagnosis (Barts Cancer Institute Tissue bank) –**
 942 **mutations marked as red, NA as grey, WT as white**
 943

	Sex	Age	karyotype	FLT3	NPM1	TP53	additional driver mutations
<i>SENSITIVE to SCD inhibition</i>							
AML1	M	74	add(21)(p11.2)				NRAS
AML2	M	52	Complex with t(10;11)				
AML3	F	32	t(6;11) rearrangement MLL-MLLT4				NRAS, KMT2A
AML4	M	75	normal				DNMT3A, IDH1 R132, NRAS
AML5	M	40	Complex with -5q and -7q				CEBPA
AML6	F	75	Complex				
AML7	M	48	Complex with monosomy 7 and 17				SF3B1, STAG2
AML8	M	79	normal				U2AF1, ASXL1, RUNX1, CSF3R, EZH2, CBL
AML9	F	56	normal				NRAS
AML10	M	19	t(9;11)(11q23) rearranged (MLL)				
AML11			normal				
AML12			normal				DNMT3A
AML13	M	59	normal				STAG2
AML14	F	49	normal				DNMT3A, NRAS, IDH1
AML15	M	24	normal				
AML16	NA	56	Complex				TET2, ASXL1, RUNX1
<i>RESISTANT to SCD inhibition</i>							
AML17	M	56	Complex				TET2
AML18	F	65	-7, -5q				NRAS, BCOR
AML19	M	56	complex				STAG2
AML20	F	54	Complex with -5 and loss of 17p				KMT2A, CEBPA
AML21	M	36	t(6;11)(q27;q23) (MLL)				TET2, NOTCH1
AML22	M	45	Re-arrangement Chr6 + Chr11 (11q13+11q23) (MLL)				CUX1
AML23	M	17	11q23 (MLL)				GATA2, KMT2A, PTPN11, U2AF1
AML24			normal				
AML25			-9				
AML26			-7q				DNMT3A, STAG2, IDH2, RUNX1
AML27	F	56	normal				DNMT3A, EZH2, ASXL1
AML28	F	58	t(3;14)				
AML29	M	52	normal				DNMT3A, NRAS
AML30	F	37	normal				
AML31	F	49	normal				
AML32	F	66	normal				
AML33	M	63	Complex				STAG2, BCORL1
AML34	F	64	MLL				GATA2, TET2, KRAS, BCORL1
AML35	F	55	-7/del(7)				CUX1, WT1, RUNX1
AML36	F	38	t(6;9)				

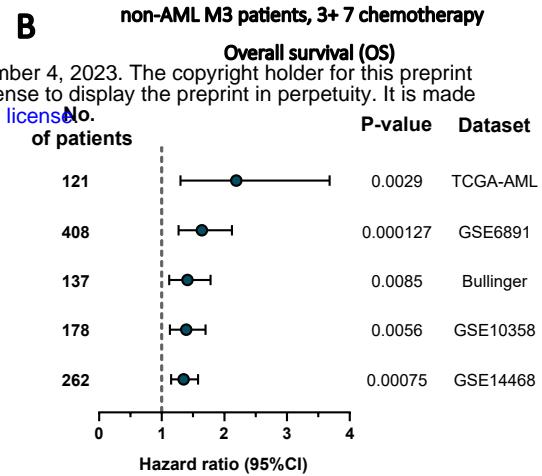
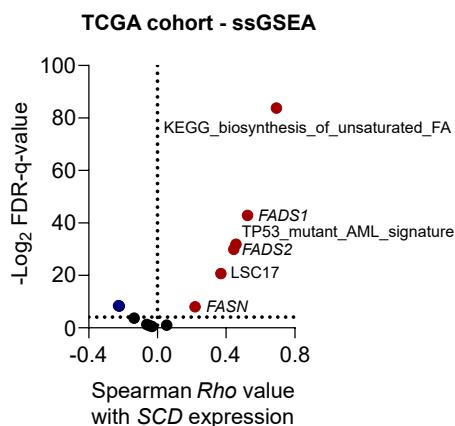
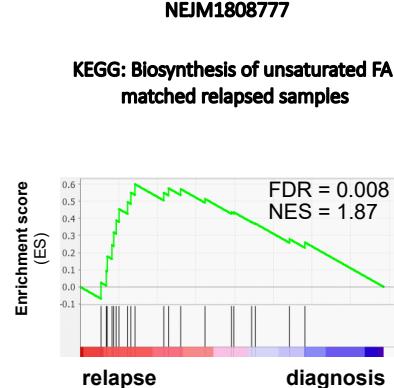
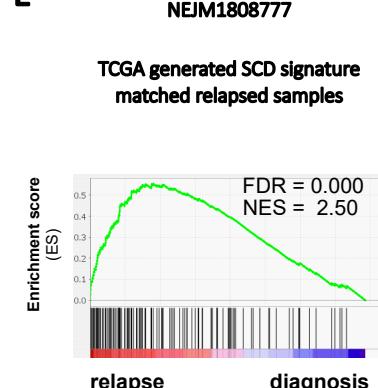
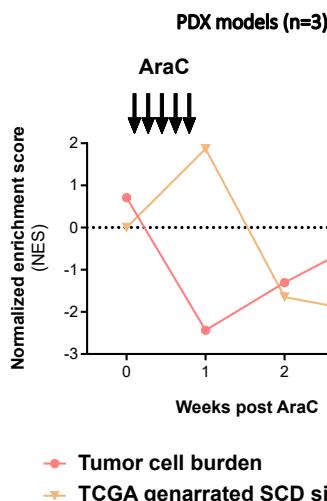

944
 945

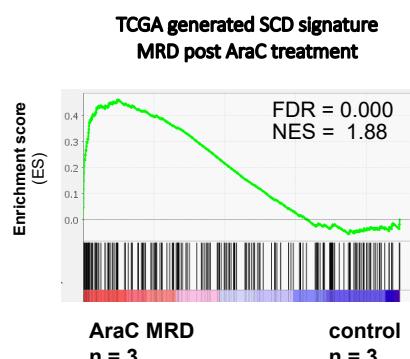
Figure 1

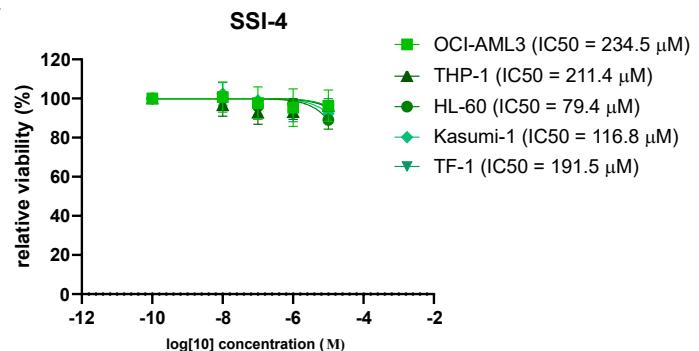
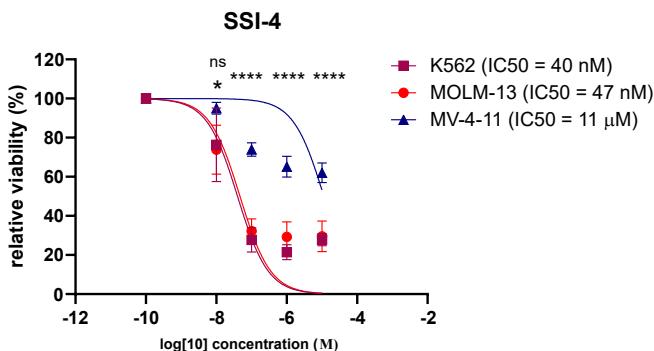

A


B


C


D


E



F

PDX models (n=3)

G

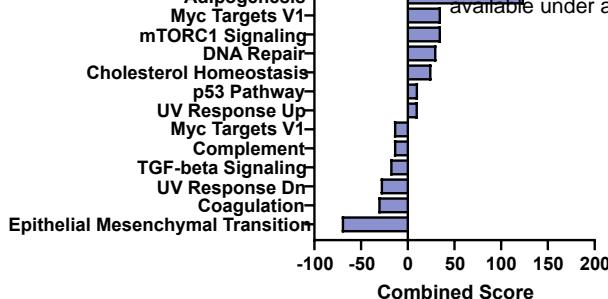
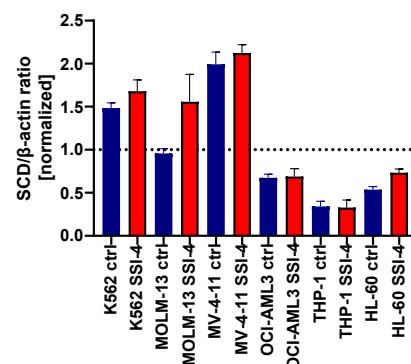
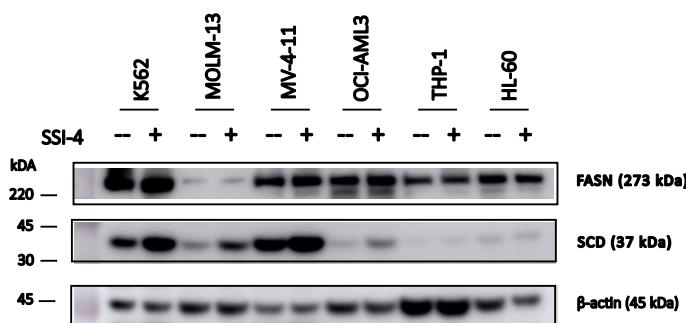
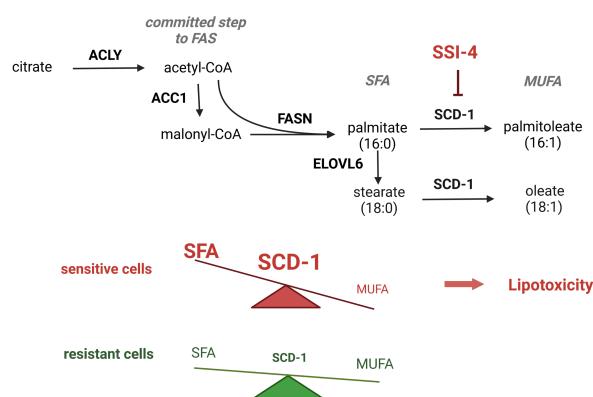
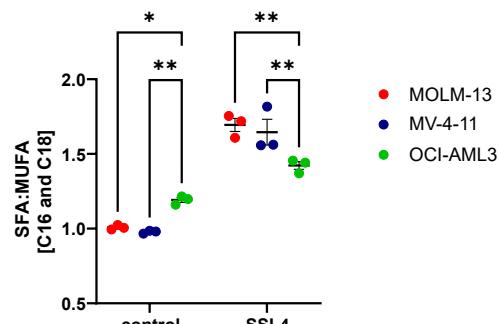
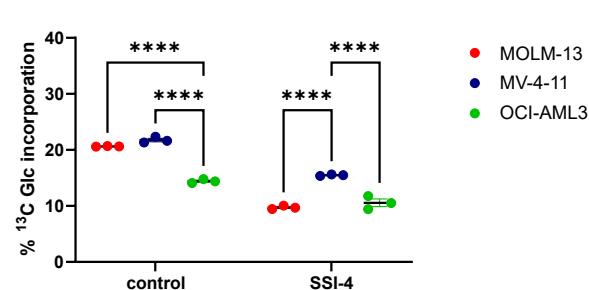
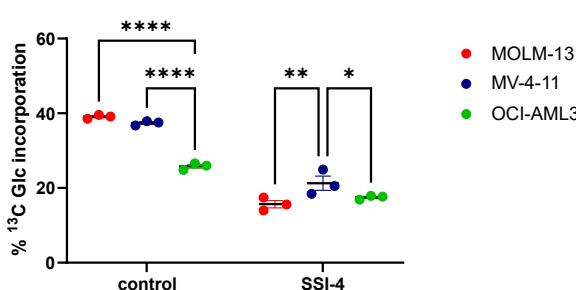
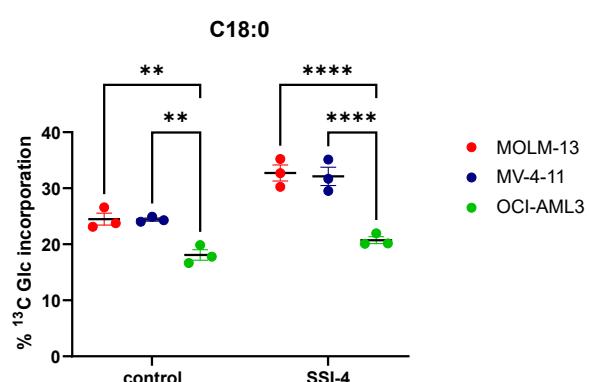
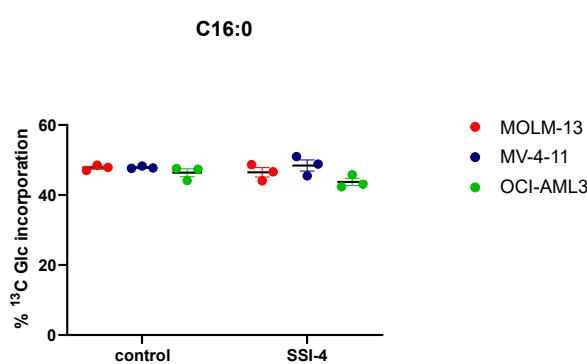



Figure 2

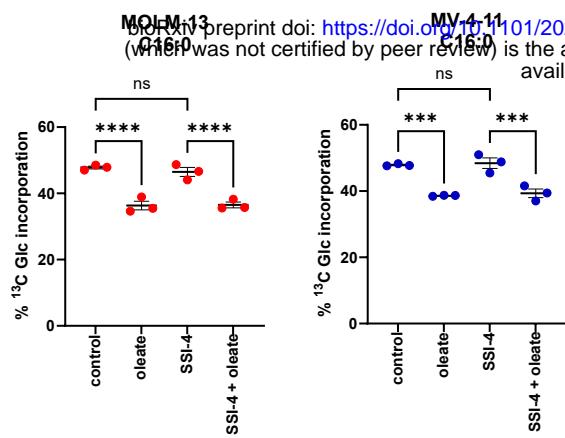


A

Sensitive vs resistant cell lines



bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.02.551656>; this version posted September 4, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.





C

E



G

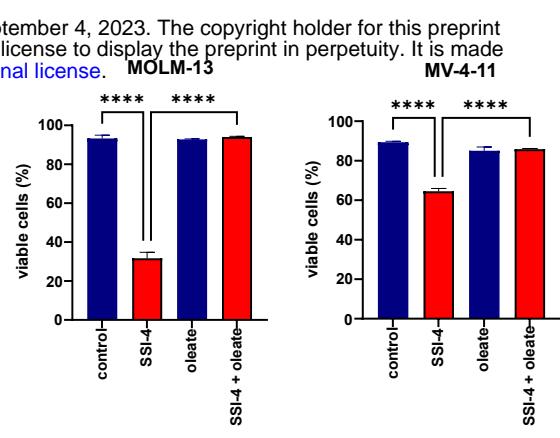
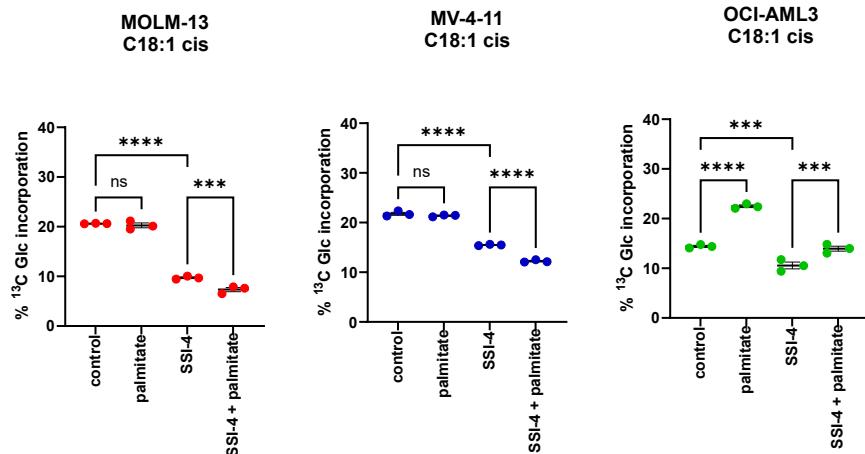
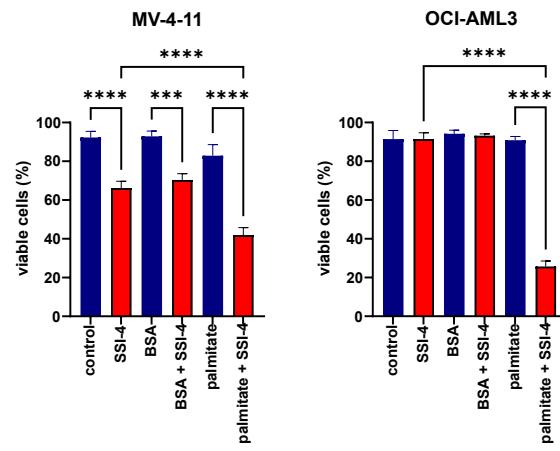
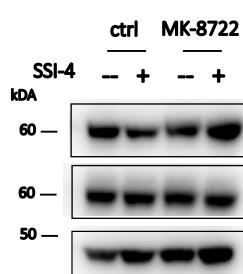


Figure 3

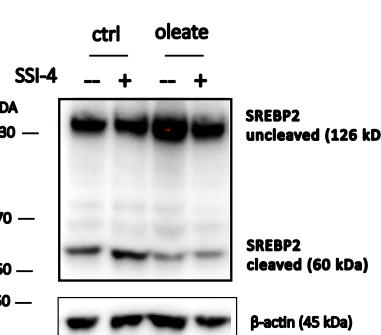

A


B

C



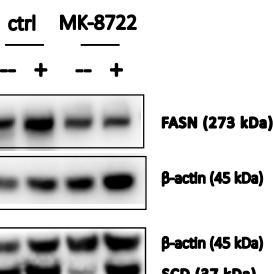
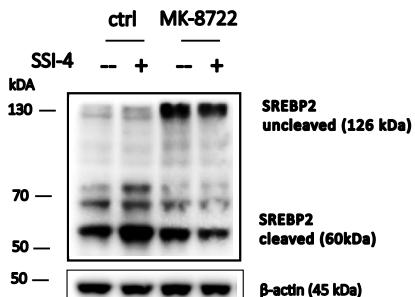
D



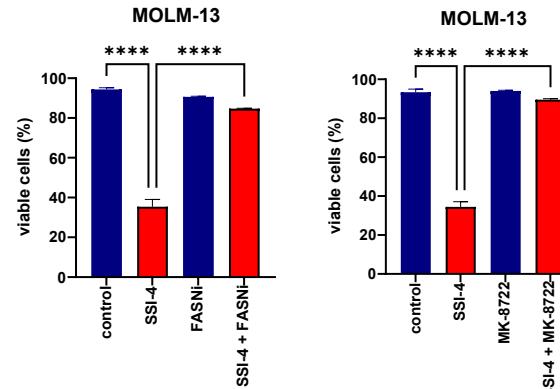
E

MOLM-13 24h

F

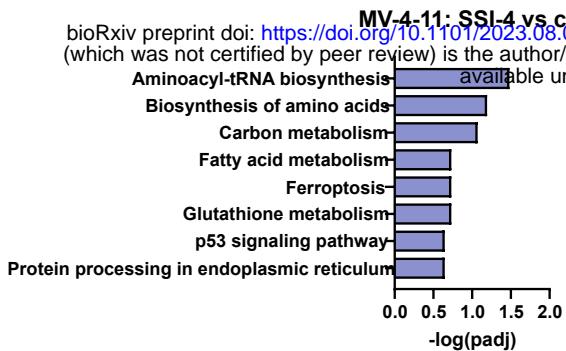



MOLM-13 24h



G

MOLM-13 24h



H

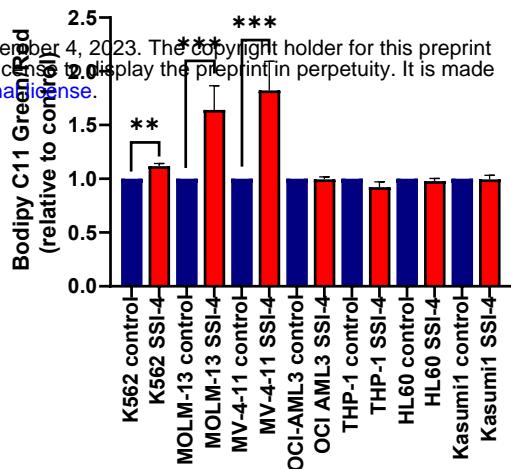
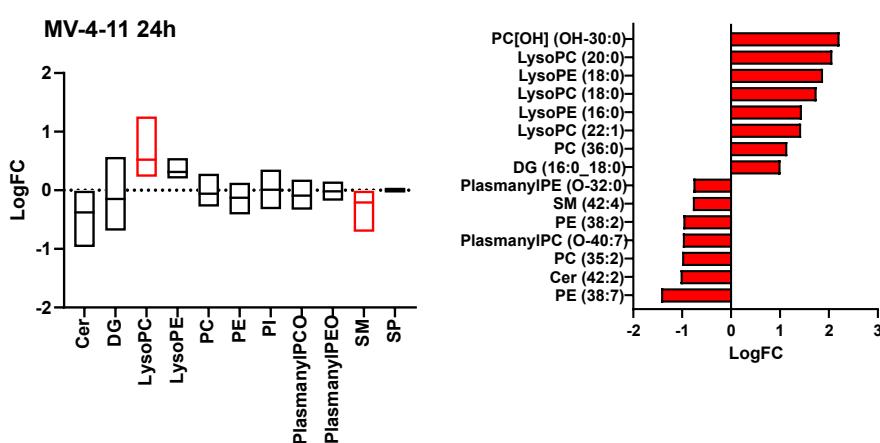
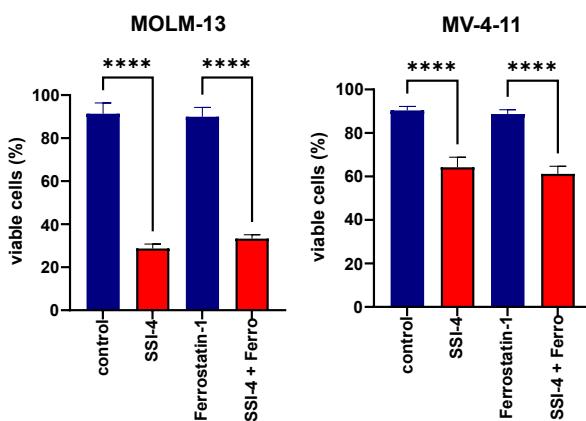
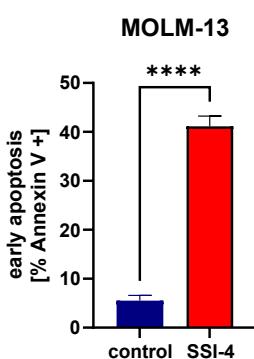
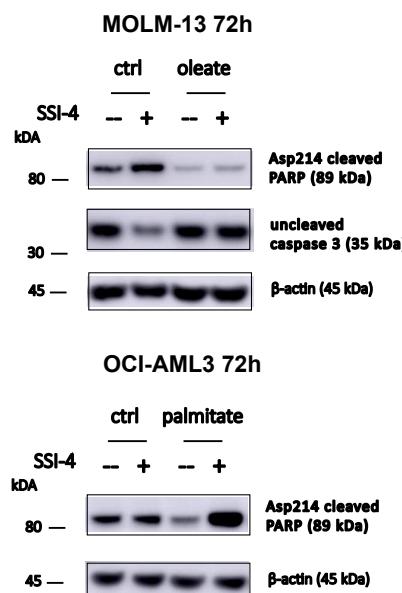


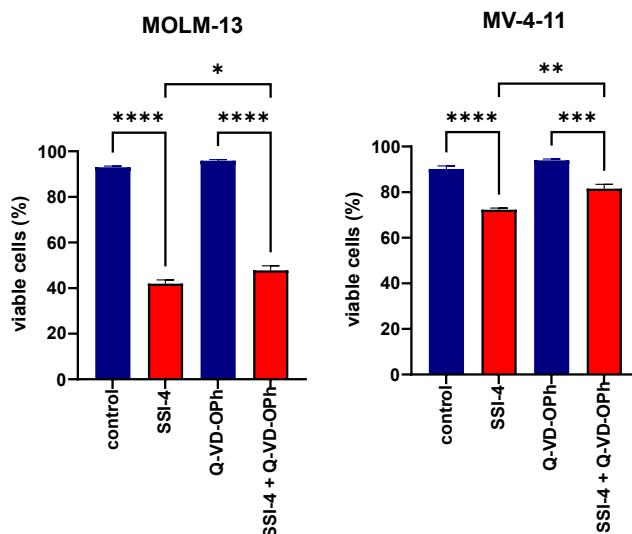
Figure 4


A

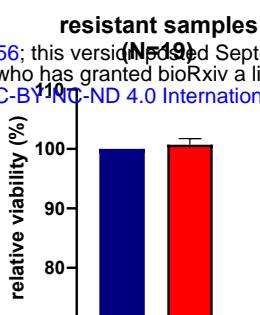
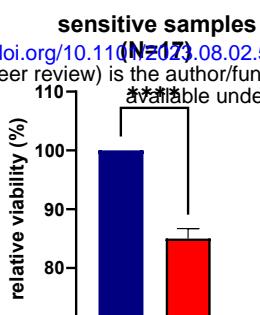
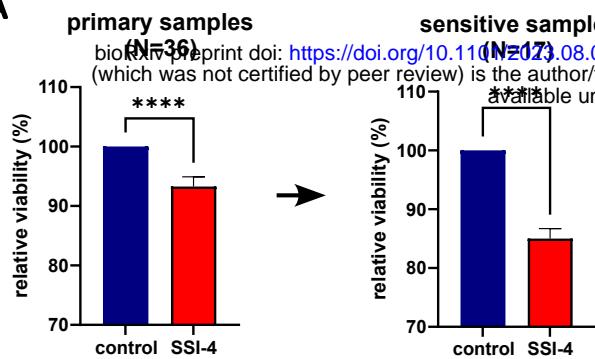

B


C


D


E

F

G

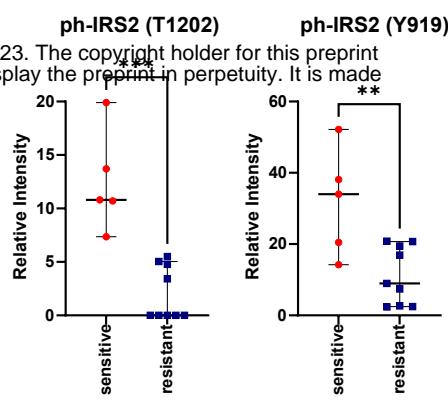
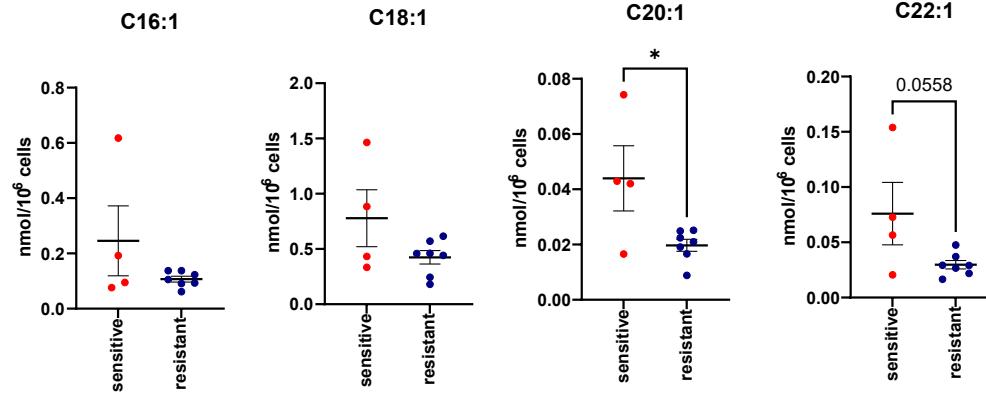
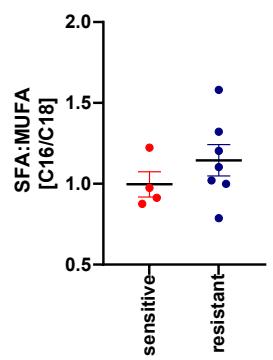
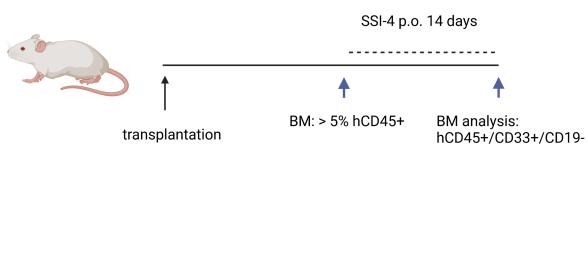
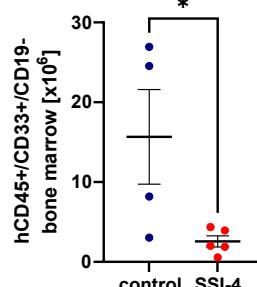


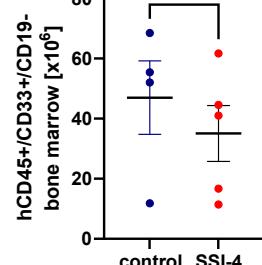
Figure 5

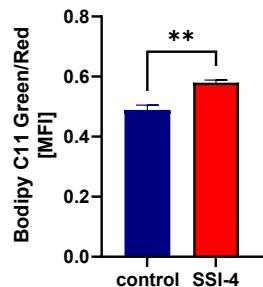

A


B

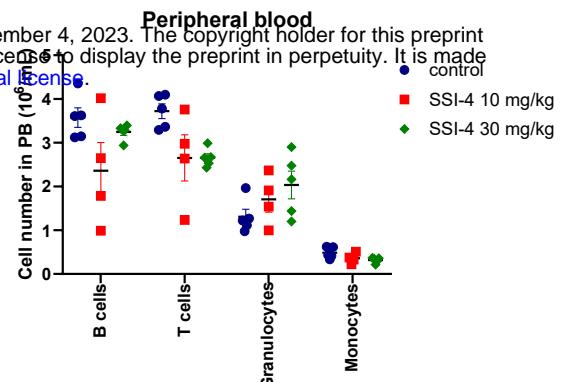
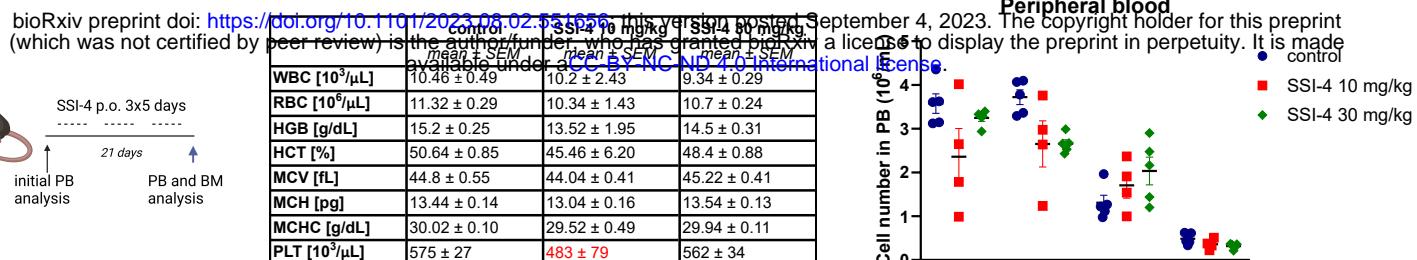

C


D


E


PDX AML3

PDX AML5



PDX AML5

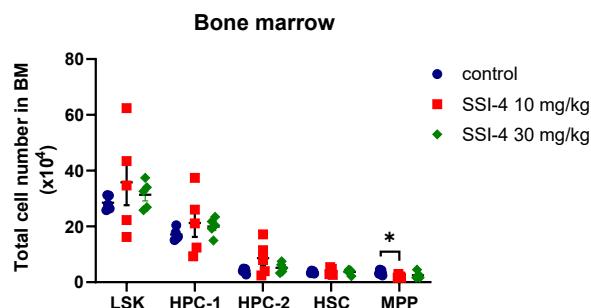
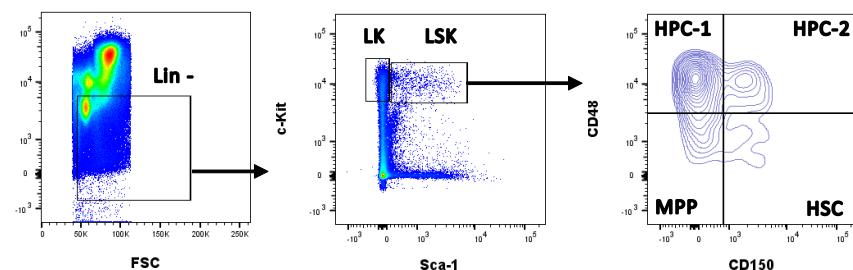
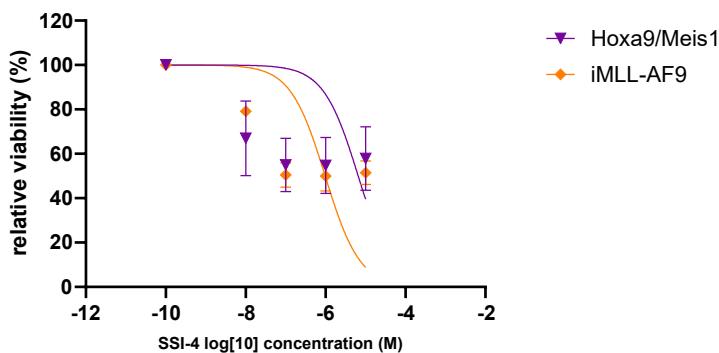
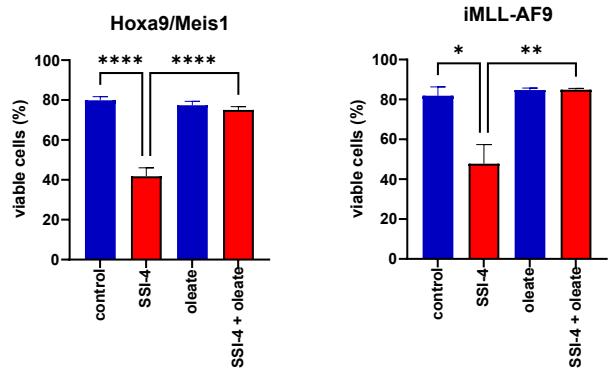
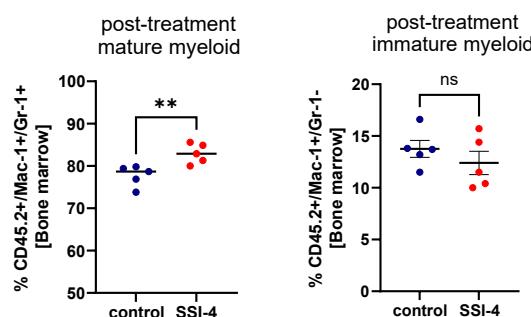
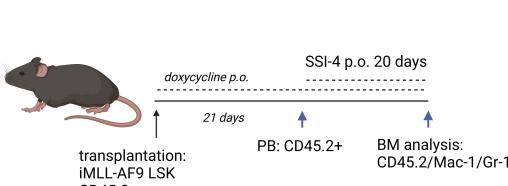
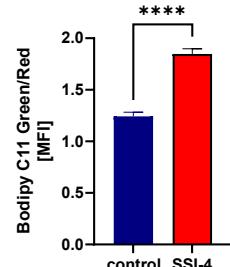


F

Figure 6

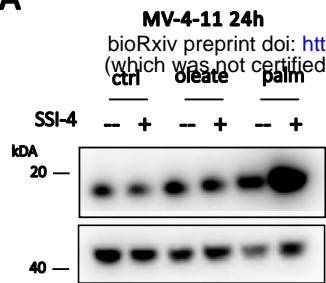

A


B



C


D

E



F

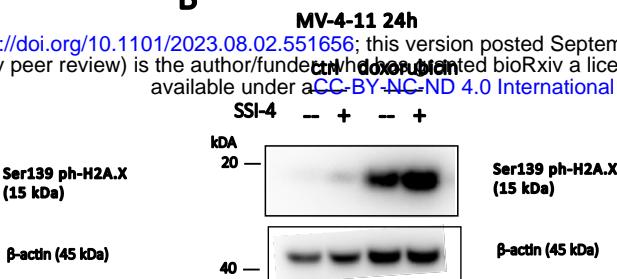
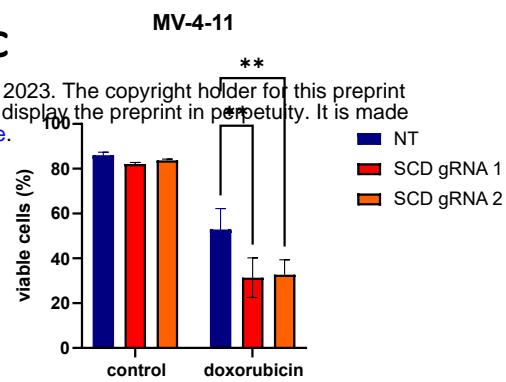
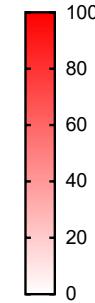
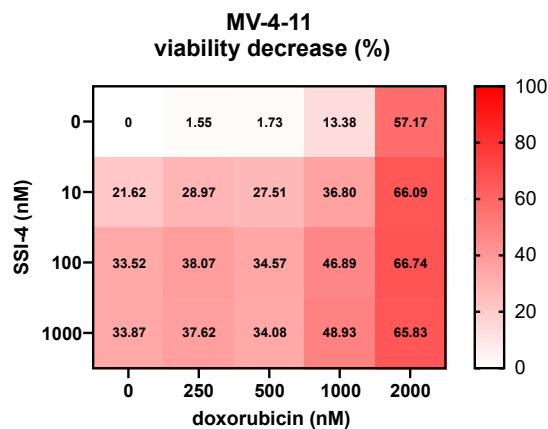
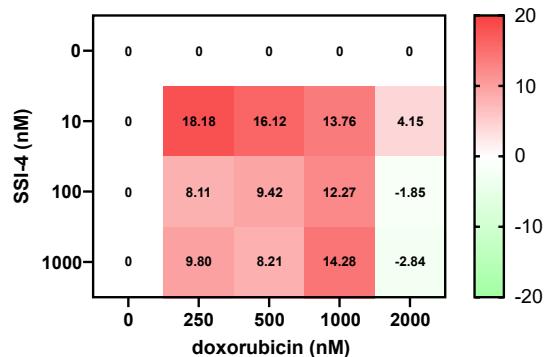


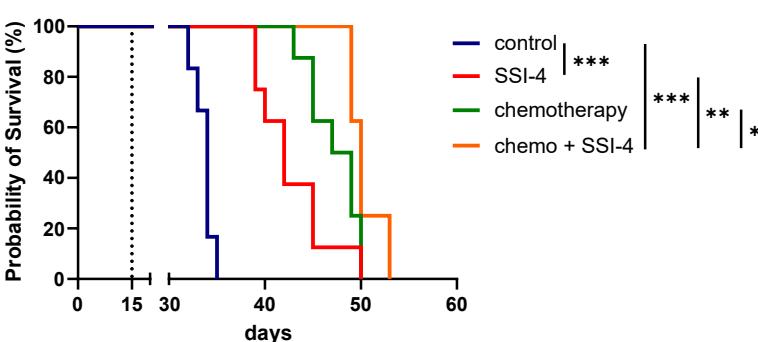
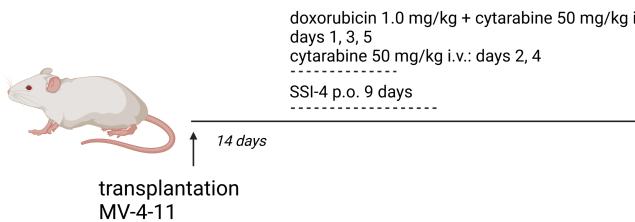
Figure 7

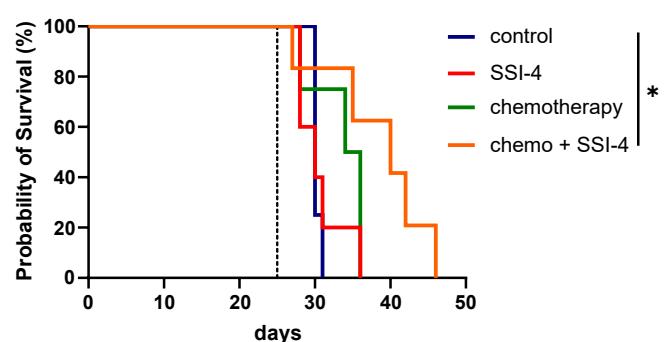
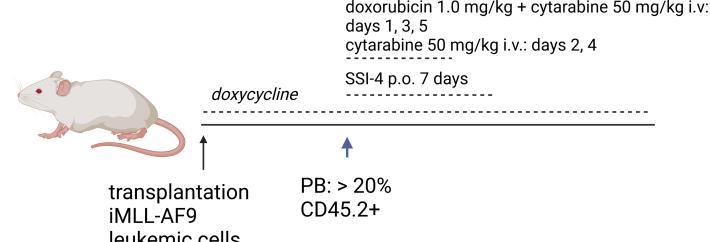

A



B


C

D



MV-4-11 ZIP Scores (average: 10.225)



iMLL-AF9 ZIP Scores (average: 2.342)

E

F

