

Spatial enhancer activation determines inhibitory neuron identity

Elena Dvoretskova 1,2,+ , May C. Ho^{1,2,+}, Volker Kittke^{3,4,+}, Florian Neuhaus^{1,2},
Ilaria Vitali 1,2, Daniel D. Lam^{3,4}, Irene Delgado⁵, Chao Feng^{1,2}, Miguel Torres⁵,
Juliane Winkelmann^{3,4,6} and Christian Mayer 1,2,*

¹Max Planck Institute for Biological Intelligence, Martinsried, 82152, Germany

²Max Planck Institute of Neurobiology, Martinsried, 82152, Germany

³Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Neurogenomics, Neuherberg, 85764 Germany

⁴Technical University of Munich, TUM School of Medicine, Institute of Human Genetics, Munich, 81675, Germany

⁵Centro Nacional de Investigaciones Cardiovasculares (CNIC), Cardiovascular Development Program, Madrid, 28029, Spain

⁶Munich Cluster for Systems Neurology (SyNergy), Munich, 81377, Germany

+these authors contributed equally to this work

*christian.mayer@bi.mpg.de

1

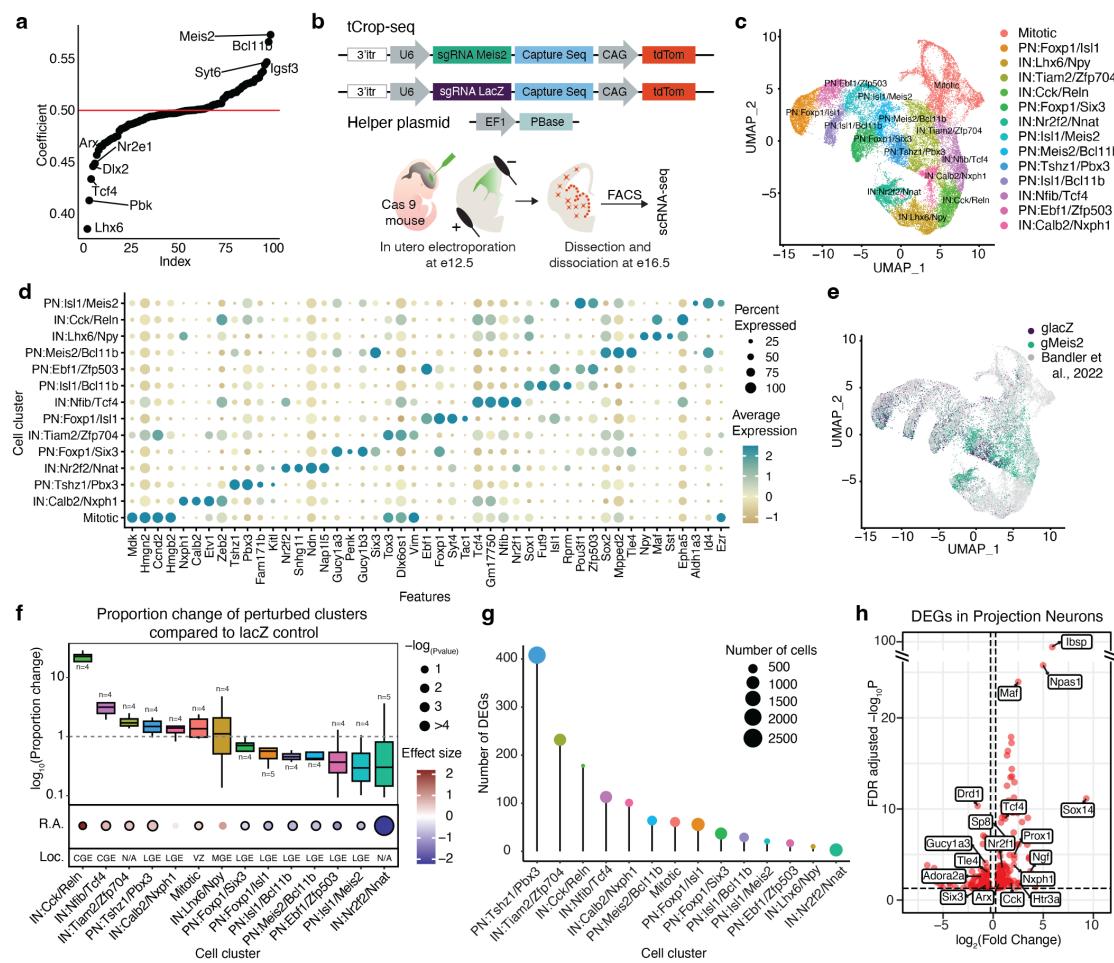
Abstract

2 The mammalian telencephalon contains a tremendous diversity of GABAergic
3 projection neuron and interneuron types, that originate in a germinal zone of the
4 embryonic basal ganglia. How genetic information in this transient structure is
5 transformed into different cell types is not yet fully understood. Using a combination
6 of *in vivo* CRISPR perturbation, lineage tracing, and ChIP-seq in mice, we found
7 that the transcription factor MEIS2 favors the development of projection neurons
8 through genomic binding sites in regulatory enhancers of projection neuron specific
9 genes. MEIS2 requires the presence of the homeodomain transcription factor DLX5
10 to direct its functional activity towards these sites. In interneuron precursors, the
11 activation of projection neuron specific enhancers by MEIS2 and DLX5 is repressed
12 by the transcription factor LHX6. When MEIS2 carries a mutation associated with
13 intellectual disability in humans, it is less effective at activating enhancers involved in
14 projection neuron development. This suggests that GABAergic differentiation may be
15 impaired in patients carrying this mutation. Our research supports a model ("Differential
16 Binding") where the spatial specific composition of transcription factors at *cis*-regulatory
17 elements determines differential gene expression and cell fate decisions in the ganglionic
18 eminence.

19 Introduction

20 The ganglionic eminences (GEs) are embryonic subpallidal structures that give rise to numerous
21 GABAergic inhibitory cell types (Bandler et al., 2017). It is divided into three spatial regions: the
22 medial (MGE), caudal (CGE), and lateral (LGE) GEs (Wonders and Anderson, 2006; Gelman et al.,
23 2011; Anderson et al., 2001). For example, the MGE and CGE produce many distinct types of
24 interneurons of the cortex, striatum, and hippocampus (Butt et al., 2005; Nery et al., 2002; Miyoshi
25 et al., 2010). In addition, the MGE generates prototypic neurons of the globus pallidus (Dodson
26 et al., 2015), and basal forebrain cholinergic neurons (Allaway and Machold, 2017), while the CGE
27 contributes to numerous amygdala nuclei (Tang et al., 2012). The LGE generates direct and indirect
28 spiny projection neurons (MSNs) of the striatum (Yun et al., 2003), arkipallidal neurons of the
29 globus pallidus (Dodson et al., 2015), olfactory bulb (OB) interneurons (Yun et al., 2003), as well as
30 neurons of the olfactory tubercle and amygdala (Ko et al., 2013).

31 Several transcription factors (TFs) and their co-factors have been shown to be necessary for
32 the specification of GABAergic subtypes (Leung et al., 2022; Flames et al., 2007), and their
33 dysregulation results in disease (Leung et al., 2022; Zug, 2022). For example, members of the DLX
34 family are present in the GE and are required for the development of GABAergic neurons (Anderson
35 et al., 1997; Stühmer et al., 2002; Lindtner et al., 2019). The LIM homeodomain TF LHX6 is
36 one of the factors known to regulate the generation of MGE-derived INs (Sandberg et al., 2016;
37 Zhao et al., 2008), whereas MEIS2, a member of the TALE family of homeodomain-containing
38 TFs, has been implicated in the generation of LGE-derived GABAergic PNs (Su et al., 2022).
39 Haploinsufficiency of *MEIS2* in humans results in cardiac and palate abnormalities, developmental
40 delay, and intellectual disability (Louw et al., 2015; Douglas et al., 2018; Giliberti et al., 2020;
41 Zhang et al., 2021). The mechanisms by which these TFs select and activate their targets remain
42 unclear.


43 Here, we used sparse CRISPR/Cas-mediated perturbation of *Meis2*, *Lhx6* and *Tcf4* in GABAergic
44 progenitors and tracked their developmental trajectories with lineage barcodes and single-cell

45 RNA sequencing (scRNA-seq). We found that the sparse perturbation of *Meis2* in the GE alters
46 the development of GABAergic neurons, increasing the proportion of IN clones at the expense
47 of PN clones. We identified genomic binding sites of MEIS1/2 in enhancers of genes that are
48 differentially expressed in GABAergic PNs. MEIS1/2's binding sites frequently overlapped with
49 binding sites of DLX5 and LHX6. We performed luciferase reporter assays and found that only in
50 the presence of DLX5 was MEIS2 able to activate the enhancers of PN genes. LHX6 repressed this
51 DLX5/MEIS2-induced cooperative activation of PN genes, thus likely promoting an IN fate. Finally,
52 a mutation of *Meis2* that causes intellectual disability in humans (Giliberti et al., 2020; Gangfuß
53 et al., 2021) was much less able to potentiate the DLX5-induced activation of these enhancers.
54 Our results indicate that MEIS2 acts as a transcriptional activator to generate patterns of enhancer
55 activation that specifies PN identities within GABAergic precursor cells. This mechanism may
56 contribute to neurological dysfunction in diseases caused by *MEIS2* mutations.

57 **Results**

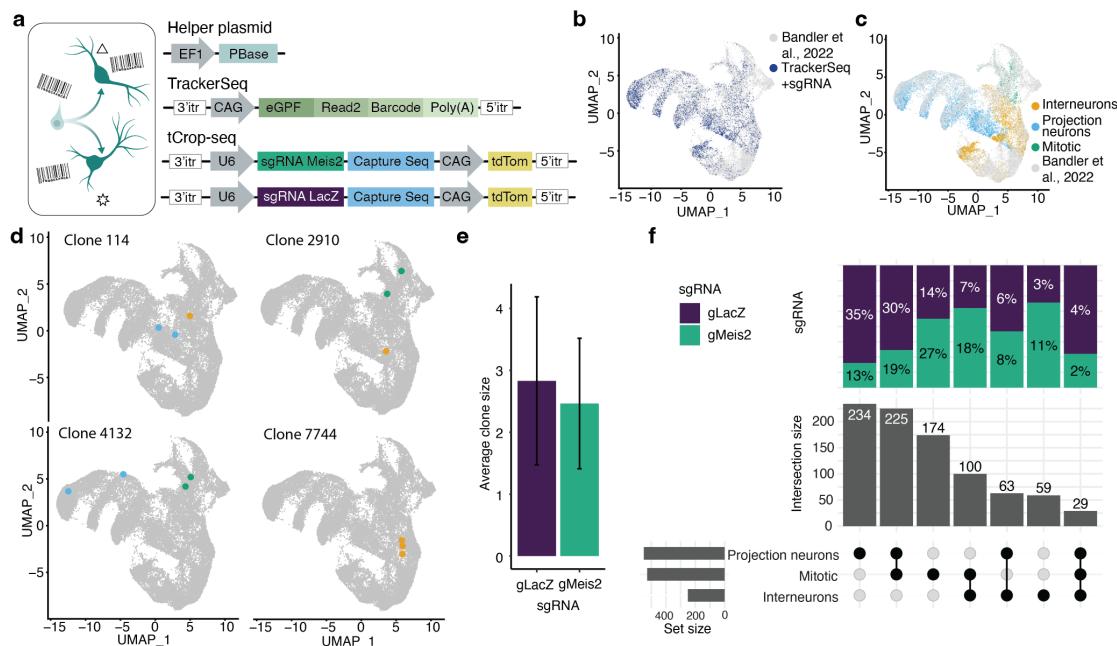
58 ***In vivo* tCROP-seq to assess the function of MEIS2 during fate decisions in 59 GABAergic precursors**

60 We conducted a logistic regression analysis on scRNA-seq data from the GE (Bandler et al., 2022)
61 to identify regulatory TFs that play a role in determining the fate of GABAergic PNs or INs. Our
62 findings revealed *Meis2* as the gene with the highest predictability for a PN fate, while *Lhx6* and
63 *Tcf4* emerged as strong predictors of an IN fate (Figure 1a, S1a). To investigate the effects of *Meis2*
64 perturbation on cellular fate decisions in a sparse population of precursors in the GE, we modified
65 CROP-seq (Datlinger et al., 2017), a powerful method that enables pooled CRISPR screens while
66 simultaneously capturing the transcriptome of individual cells. In our study, we focused on a sparse
67 population of precursors within the GE to investigate the impact of the depletion of *Meis2* on
68 fate decisions. Instead of lentiviral vectors to deliver single-guide RNAs (sgRNAs), our modified

Figure 1: *In vivo* tCROP-seq of *Meis2* in the mouse forebrain. **a**, Logistic regression coefficients of genes being predictive for interneuron or projection neuron fate. Genes with coefficients >0.5 are predictive of projection neuron fate, and genes with coefficients <0.5 are predictive of interneuron fate. **b**, Vector maps and schematic of the *in vivo* tCROP-seq workflow, in which mutations in individual genes are introduced *in utero* and the effect is determined at a later time point via scRNA-seq. **c**, Uniform Manifold Approximation and Projection (UMAP) plot of inhibitory cells colored by clusters. **d**, Dotplot of the top four marker genes of inhibitory clusters. **e**, UMAP plot of the integrated dataset colored by sgRNAs. Grey dots represent cells from a published dataset (Bandler et al., 2022). **f**, Top: Relative increase or decrease in the number of inhibitory cell clusters in gMeis2 compared to gLacZ. Bottom: Perturbation effects in different clusters compared to lacZ controls. Dot color corresponds to effect size, dot size corresponds to negative base 10 log(P-value). P-values were calculated from linear modeling, Padj was calculated by Benjamini & Hochberg FDR correction. The black outline indicates statistical significance ($p\text{-val} < 0.05$). R.E., Regression Analysis; Loc., Location of the presumed origin of the cluster within the GE. **g**, Lollipop plots showing the number of differentially expressed genes (DEGs) for gMeis2 in inhibitory clusters. **h**, Volcano plot depicting differentially expressed genes in gMeis2 and gLacZ projection neurons.

69 approach used a PiggyBac transposon-based strategy (tCROP-seq) and *in utero* electroporation to
70 efficiently deliver sgRNAs to cycling progenitors in the GE (Figure 1b). The transposon system
71 allows genes to be stably integrated into the genomes of electroporated cells and thus to be transmitted
72 to their postmitotic daughter cells (Ding et al., 2005). This increases the pool of perturbed cells and
73 ensures that the perturbation occurs during a period covering the peak of neurogenesis (Bandler et al.,
74 2022). We also added specific capture sequences to the sgRNA vectors that efficiently link sgRNAs
75 to cell barcodes, and enable sequencing of the protospacer from the transcriptome (Replogle et al.,
76 2020). tCROP-seq sgRNA vectors also encode TdTomato to enable the labeling and enrichment of
77 perturbed neurons. The efficiency of sgRNA *Meis2* to induce frame-shift mutations was validated
78 *in vitro* and *in vivo* prior to the tCROP-seq experiments (Table S1).

79 The tCROP-seq vectors were targeted by *in utero* electroporation at E12.5 to progenitor cells
80 of the GE in a mouse line ubiquitously expressing Cas9 (Platt et al., 2014) (Figure 1b). At E16.5,
81 most TdTomato+ cells had migrated away from the ventricular zone (VZ) and colonized a variety
82 of structures, including the striatum, cerebral cortex, and OB (Figure S1b-c), consistent with the
83 migration patterns of GE-derived inhibitory neurons at this stage (Anderson et al., 2001). Both
84 immunohistochemical analysis of TdTomato+ cells at E18 and scRNA-seq analysis at E16 showed
85 that the tCROP-seq vectors were expressed across a variety of MGC, CGE and LGE derived
86 inhibitory neuron types (Figure S1b, see below).

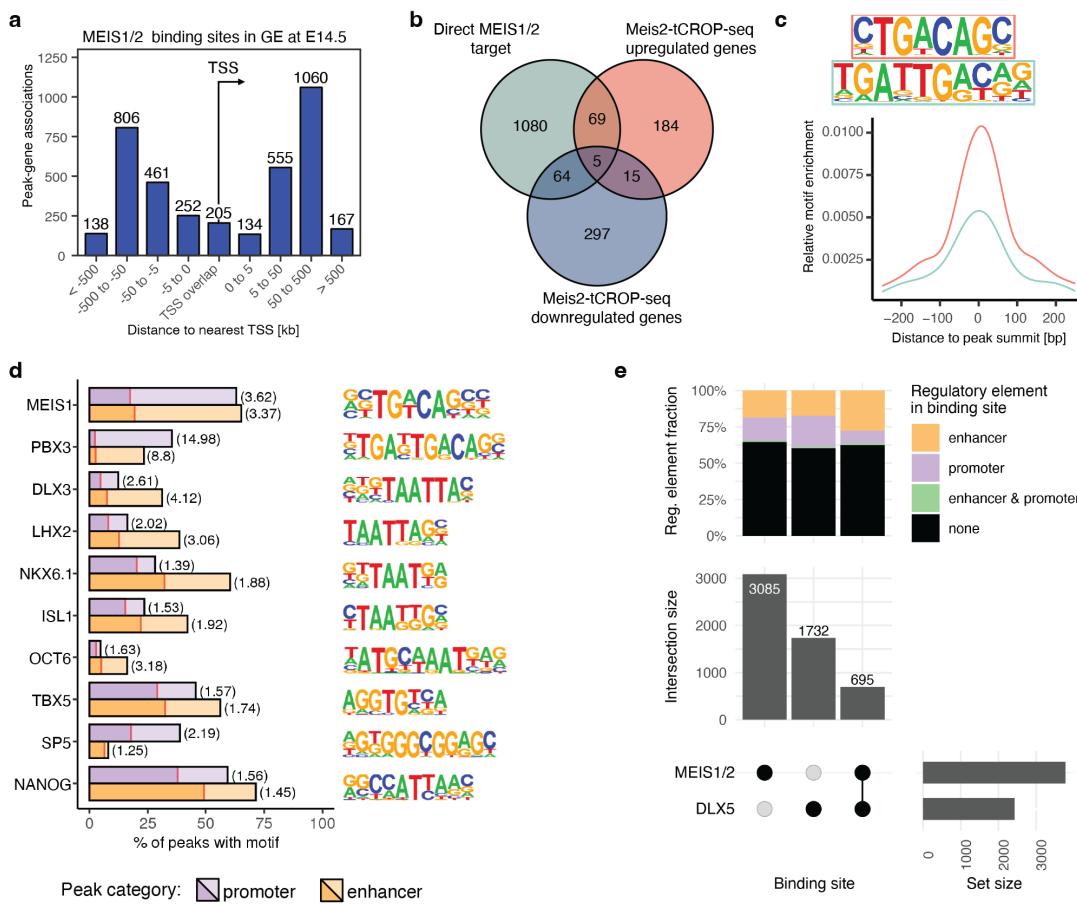

87 For the tCROP-seq experiment, we collected a total of 14 embryos from 10 pregnant females
88 (Table S9). Of these, 8 received sgRNAs for *Meis2* (gMeis2) and 6 received sgRNAs for *LacZ*
89 (gLacZ), which served as a control. Cortices, striata, and OBs were dissected at E16 and TdTomato+
90 cells were enriched by FACS. tCROP-seq allows the retrospective assessment of which sgRNA
91 was expressed in which cell. We pooled cells from embryos having received gLacZ or gMeis2,
92 and conducted multiplexed single-cell RNA sequencing to minimize batch effects (Figure 1b; see
93 Methods) (Jin et al., 2020). We sequenced 6 independent scRNA-seq experiments. Together, this
94 resulted in a dataset containing 34481 cells passing quality controls and filtering, that were linked
95 with either gLacZ (11009 cells) or gMeis2 (23472 cells). We projected cells into a shared embedding

96 using Harmony (Korsunsky et al., 2019) and applied a standard Seurat (Hao et al., 2021) analysis
97 pipeline (Figure S1d).

98 Single-cell perturbation of Meis2 alters the proportion of PNs and INs

99 Louvain clustering grouped glia cells, excitatory neurons, and inhibitory neurons into multiple
100 clusters (Figure S1d). We subset cells from inhibitory clusters (16098 inhibitory cells; Fig-
101 ure S1e-h) and integrated them with published scRNA-seq datasets from embryonic wild-type
102 mice (Bandler et al., 2022), to get a higher resolution of inhibitory cell states (Figure 1c). We
103 annotated 14 inhibitory clusters based on shared marker gene expression and grouped them
104 into three major classes: mitotic (mitotic), GABAergic PNs (PN:Foxp1/Six3, PN:Foxp1/Isl1,
105 PN:Isl1/Bcl11b, PN:Ebf1/Zfp503, PN:Meis2/Bcl11b, PN:Isl1/Meis2, PN:Tshz1/Pbx3), and GABAer-
106 gic INs (IN:Calb2/Nxph1, IN:Tiam2/Zfp704, IN:Nfib/Tcf4, IN:Lhx6/Npy, IN:Cck/Reln, IN:Nr2f2/Nnat;
107 Figure 1c-d, Table 1, Table S2). Cells expressing gMeis2 contained a reduced proportion of PN
108 cell-types and an increased proportion of IN cell-types, when compared to gLacZ controls (Figure
109 1f). Interestingly, the proportion of CGE-derived IN populations was increased in the gMeis2
110 condition, and the relative proportion of multiple PN types was decreased. This suggests that, under
111 normal conditions, MEIS2 promotes the generation of LGE-derived PN types at the expense of
112 CGE-derived IN types. A pseudo-bulk differential gene expression analysis (DEG) (Squair et al.,
113 2021) of GABAergic neurons comparing gMeis2 and gLacZ showed reduced expression levels of
114 genes known to be involved in PN development and increased expression levels of genes known to
115 be involved in IN development (Table S3). The impact of gMeis2 on differential gene expression
116 was strongest on the clusters PN:Tshz1/Pbx3, IN:Tiam2/Zfp704 and IN:Cck/Reln (Figure 1g, S2a,
117 Table S4). In PN clusters, gMeis2+ cells showed decreased expression levels of genes known to be
118 associated with PN identity, such as *Adora2a*, *Drd1*, and *Six3* (Kreitzer and Malenka, 2008; Song
119 et al., 2021; Knowles et al., 2021), compared to gLacZ (Figure 1h, Table S3-4). Many genes related
120 to IN development and specification, such as *Maf*, *Tcf4*, *Prox1*, *Arx* (Lim et al., 2018; Miyoshi
121 et al., 2015; Batista-Brito et al., 2008), were up-regulated in PN clusters (Figure 1h, Table S3-4).

122 Furthermore, also the proportion of mitotic progenitors was increased in gMeis2 compared to gLacZ.
 123 Genes involved in cell proliferation and differentiation were up-regulated in the mitotic cluster in
 124 gMeis2, in particular the gene *Wnt5a*, which is part of the non-canonical WNT signalling pathway
 125 (Chenn and Walsh, 2002; Megason and McMahon, 2002) (Figure 1f, S2b,c). GO Term analysis
 126 of the up and down-regulated DEGs revealed that processes, such as neuron development, axon
 extension, and neuron differentiation, were deregulated (Figure S2d).


Figure 2: In vivo TrackerSeq lineage tracing and tCROP-seq perturbation of *Meis2*. **a**, Schematic of TrackerSeq lineage tracing, in which clonal boundaries are determined using heritable RNA tags. **b**, UMAP of the integrated dataset with labelling of cells containing TrackerSeq lineage barcodes. **c**, UMAP of the integrated dataset colored by cell class (mitotic, interneurons, projection neurons). **d**, Examples of clones that are shared between classes, and an example of a clone restricted to one class. **e**, Bar graph depicting the average clone size of inhibitory clones in the gLacZ and gMeis2 datasets. **f**, UpSet plot showing clonal intersections between cell classes. The bar graph on top displays the proportion of clones belonging to gLacZ or gMeis2. The bar graph in the middle shows the number of observed intersections. The bar graph on the left indicates the number of cells per cluster.

127

128 **Combined *in vivo* lineage tracing and tCROP-seq reveals a shift in clonal
129 compositions of perturbed cells**

130 Our findings thus far raised the question of how neurons with a broad PN identity (Louvain clustering
131 grouped them into PNs) acquired CGE/MGE-IN signatures. One possibility would be that the
132 perturbation in gMeis2 alters the cell cycle dynamics of PN progenitors or that PN progenitors
133 undergo cell death. Alternatively, progenitors of the LGE-PN lineage may fail to establish a proper
134 PN identity and switch to a CGE/MGE-IN identity. To test these possibilities, we combined tCROP-
135 seq with a barcode lineage tracing method called TrackerSeq ([Bandler et al., 2022](#)), that integrates
136 heritable DNA barcodes into the genome of electroporated progenitors, enabling the tracking of
137 clonal relationships between their daughter neurons (Figure 2a). tCROP-seq and TrackerSeq can be
138 used simultaneously because we have implemented a similar transposase strategy for both methods
139 (Figure 2a). We used *in utero* electroporation at E12.5 to introduce the TrackerSeq barcode library
140 and tCROP-seq sgRNAs to cycling progenitors in the GE. We collected TdTomato/EGFP+ cells
141 from 4 independent batches and prepared sequencing libraries for transcriptomes, sgRNAs, and
142 lineage barcodes. The cells with TrackerSeq barcodes were part of the preceding tCROP-seq analysis
143 and were thus integrated in the same embedding (Figure 2b). Consistent with Bandler *et al.* 2022
144 ([Bandler et al., 2022](#)), we found clones composed of mitotic cells, PNs, INs, and combinations
145 thereof (Figure 2c-d). The average clonal size of multi-cell in gMeis2 was unchanged compared to
146 gLacZ (Figure 2e and Figure S2e-f), suggesting that cell cycle dynamics or cell-death are unlikely to
147 be responsible for the observed proportional shift in cell fate. The proportion of clones consisting of
148 only mitotic cells was relatively increased in gMeis2 compared to gLacZ, which agrees with a report
149 showing that MEIS2 is required for LGE progenitors to leave the cell cycle ([Su et al., 2022](#)) (Figure
150 2f). 225 clones dispersed across mitotic and PN clusters (mitotic-PN), and 100 clones dispersed
151 across mitotic and IN clusters (mitotic-IN; Figure 2f). Strikingly, when we compared clonal patterns
152 of gMeis2 and gLacZ cells, we observed a pronounced shift toward IN-only and mitotic-IN clones.
153 Conversely, the number of PN-only, and mitotic-PN clones was decreased (Figure 2f). Furthermore,

154 the coupling of multi-cell clones within interneuron clusters was reduced in gMeis2, which may
 155 indicate that a wider range of lineages develop into interneuron precursors as a result of the fate
 156 switch from PNs to INs (Figure S2g). Our results indicate that perturbation of progenitors with
 157 gMeis2 leads to a partial change in the fate of newly generated neurons, resulting in a bias in favour
 158 of INs instead of PNs.

Figure 3: DNA binding sites of MEIS1/2 in the GE at E14.5. **a**, Distribution of MEIS1/2-ChIP-seq peaks relative to the nearest transcriptional start site (TSS). **b**, Venn diagram showing overlap between MEIS1/2 target genes and genes up- or downregulated in inhibitory neurons of gMeis2-tCROP-seq ($p_{val_adj} < 0.05 \& (avg_logFC < -1.0 | avg_logFC > 1.0)$). Overlap of up- and down-regulated genes is due to opposite regulation in different subtypes of inhibitory neurons. **c**, *De novo* identified MEIS1/2 binding motifs and their position relative to peak summits. **d**, Motif occurrence of selected known motifs enriched within enhancer- or promoter-overlapping MEIS1/2 binding sites (light bars) compared to G/C-matched reference sequences (dark bars), with fold-enrichment in parentheses. **e**, Overlap between binding sites of MEIS1/2 and DLX5 (bottom), with respective distribution of binding sites overlapping promoter and/or enhancer regions.

159 **Genomic binding of DLX5 and MEIS2 in the embryonic GE**

160 To identify target genes of MEIS2, we performed chromatin immunoprecipitation-sequencing
161 (ChIP-seq) on GE tissue dissected from E14.5 mouse embryos, using a combination of anti-MEIS1/2
162 and anti-MEIS2 antibodies. In the GE, the expression of *Meis2* is higher and more widespread than
163 that of *Meis1*, therefore the antibodies are likely to bind primarily to MEIS2 epitopes (Figure S3a-b).
164 We identified 3780 MEIS1/2 binding sites, of which 16% were located within 5 kb of a transcription
165 start site (TSS; Figure 3a). 20% of the biding sites overlapped with developmental enhancers linked
166 to putative target genes (Gorkin et al., 2020), Table S5). Our data predict that MEIS1/2 directly
167 regulates 1218 target genes, either by binding to their TSS or distal enhancers. Many of the target
168 genes (16%) overlapped with genes that were up-regulated in gMeis2-tCROP-seq positive PNs
169 cells (Figure 3b, Table S4-5). *De-novo* motif analysis revealed the previously described MEIS1/2
170 core hexameric and decameric binding motifs TGACAG and TGATTGACAG, which were highly
171 enriched at the centers of the peaks. These motifs correspond to either the binding of the MEIS
172 homodimer, or the MEIS/PBX heterodimer, respectively (Chang et al., 1997; Shen et al., 1997)
173 (Figure 3c, S3b). Binding motifs containing the core sequence TAATT were strongly enriched in
174 MEIS1/2 ChIP-seq peaks, and enriched at enhancers compared to TSS-associated regions. This
175 motif is shared by several homeodomain TF families including those of DLX, LHX and ISL (Figure
176 3d) (Leung et al., 2022), of which several members are expressed in the GE (Mayer et al., 2018;
177 Leung et al., 2022; Flames et al., 2007). Among them, we found the strongest enrichment for the
178 binding motif of DLX3 (Figure 3d).

179 All DLX TFs share a common conserved motif, of which DLX1, DLX2, DLX5, and DLX6
180 are known to be master regulators of inhibitory neuron development in the forebrain (Lindtner
181 et al., 2019; Panganiban and Rubenstein, 2002). Because *Meis2* and *Dlx5* are co-expressed in PN
182 precursor cells of the GE (Figure S4g, S6), we next tested if MEIS2 and DLX5 interact in the GE.
183 First, we compared the binding sites of MEIS1/2 with those of a published DLX5 ChIP-seq dataset
184 in mouse GE (Lindtner et al., 2019). Numerous MEIS1/2 binding sites (695; 18%) overlapped with

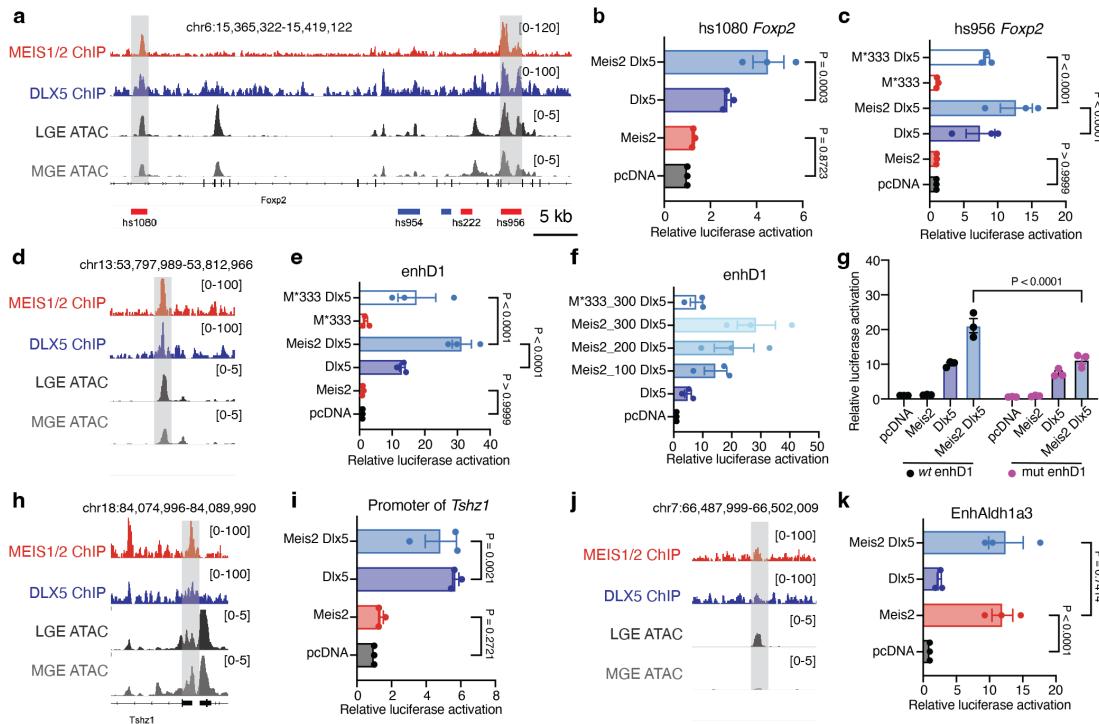
185 DLX5 binding sites. Remarkably, the proportion of enhancers at shared (MEIS1/2-DLX5) binding
186 sites was significantly increased compared to MEIS1/2- and DLX5-exclusive binding sites (Figure
187 3e; $p = 8.856\text{e-}9$, Chi²-test). The spacing and orientation of MEIS and DLX motifs have previously
188 been described *in vitro*, and changes in spacing between co-transcription factors have been shown to
189 affect gene regulatory capacity (Jolma et al., 2015; Ng et al., 2014; Jindal and Farley, 2021). In our
190 data, the most common motif spacing was 2-4 bp. In contrast to published *in vitro* experiments that
191 observed a fixed spacing of 2 bp between MEIS1 and DLX3 (Jolma et al., 2015), we observed a
192 wider range of spacing (Figure S3d). Together, our findings suggest a potential cooperative role of
193 MEIS1/2 and DLX5 in the fate determination of GE-derived neurons.

194 **Functional link between MEIS2/DLX5 and PN fate**

195 To investigate the possibility of a functional link between MEIS2 and DLX5 in PN development,
196 we performed a series of dual luciferase reporter assays to measure the activity of select genomic
197 enhancers in the presence of MEIS2, DLX5, or both. To select enhancers active in the developing
198 forebrain, we intersected MEIS1/2-DLX5 co-binding sites from ChIP-seq data with the VISTA *in*
199 *vivo* enhancer database (Visel et al., 2007) (Figure S3e). Additionally, we confirmed the accessibility
200 of the respective genomic regions, utilizing published scATAC-seq data of the LGE and MGE
201 (Rhodes et al., 2022) (Figure 4a). First, we chose two enhancers (hs1080 and hs956) of the TF
202 *Foxp2*, which both contained MEIS/DLX motifs with a spacing of 3 bps (Visel et al., 2007; Visel
203 et al., 2013) (Figure 4a, Figure S4a, b, d, e). *Foxp2* is expressed in precursors of GABAergic PNs
204 (Figure S4g), has previously been implicated in PN development (den Hoed et al., 2021; French and
205 Fisher, 2014), and is one of the genes that we found to be downregulated in gMeis2 tCROP-seq
206 experiments (Table S4). We transfected Neuro2a cells with a plasmid containing a selected enhancer
207 upstream of a minimal promoter and the firefly luciferase gene, as well as a control plasmid encoding
208 the NanoLuc luciferase gene under the PGK promoter. Additionally, we transfected the cells with
209 plasmids encoding *Dlx5*, *Meis2*, or both. If the enhancer can be activated by DLX5, MEIS2, or both,
210 the transfected cells would produce measurable luciferase activity. MEIS2 alone did not significantly

211 activate either enhancer, and both *Foxp2* enhancers were only modestly activated in the presence
212 of DLX5 alone (Figure 4b-c). Remarkably, MEIS2 and DLX5 together strongly potentiated the
213 DLX5-induced activation of the *Foxp2* enhancers. As expected, PBX1, a known interaction partner
214 of MEIS2 (Hyman-Walsh et al., 2010), increased the effect of MEIS2 (Figure S4c,f). These results
215 suggest that MEIS2 and DLX5 bind cooperatively at specific binding sites of enhancers to regulate
216 *Foxp2* expression.

217 Mutations in the *MEIS2* gene have been linked to intellectual disability, cardiac defects and facial
218 phenotypes (Louw et al., 2015; Verheije et al., 2019; Giliberti et al., 2020; Gangfuß et al., 2021).
219 At least four patients with severe disease carry either a frameshift mutation, an in-frame deletion,
220 or a missense mutation of a single highly conserved amino acid (Arg333) located in the MEIS2
221 homeodomain (Giliberti et al., 2020; Gangfuß et al., 2021). We tested whether the p.Arg333Lys
222 missense variant (MEIS2*333) can activate the *Foxp2* enhancer hs956. DLX5-dependent joint
223 activation of hs956 was greatly reduced with MEIS2*333 compared to wild-type MEIS2 (Figure
224 4c).


225 Next, we investigated whether the cooperation of MEIS2 and DLX5 at co-binding sites activates
226 a putative regulatory enhancer (enhD1) of *Drd1*. *Drd1* encodes for the dopamine receptor D1,
227 which is a top marker of D1-type medium spiny projection neurons (D1-MSN; PN:Foxp1/Isl1,
228 PN:Isl1/Bcl11b, PN:Ebf1/Zfp503) in the striatum (Gerfen and Surmeier, 2011) (Figure 4d, Figure
229 S4g). Its gene expression was strongly reduced in PN clusters in gMeis2 tCROP-seq experiments
230 (Table S4, Figure 1h). EnhD1 is predicted to be associated with *Drd1* (Figure S4h) (Gorkin
231 et al., 2020) and is located in the same topologically associated domain (TAD) (Bonev et al.,
232 2017). Furthermore, enhD1 contained pronounced ChIP-seq peaks for DLX and MEIS1/2 (Figure
233 4d), and multiple MEIS/DLX co-binding motifs (Figure S4i). Similar to the *Foxp2* enhancers,
234 MEIS2 did not activate enhD1, but it potentiated the effect of DLX5 on the activity of enhD1, in a
235 concentration-dependent manner (Figure 4e-f). The cooperative activation of enhD1 by MEIS2
236 and DLX5 was greatly reduced with the mutated version of MEIS2 (MEIS2*333; Figure 4f). A
237 truncated version of enhD1 in which a portion (TG) of the MEIS binding motif was removed at

238 multiple sites of the enhancer (Figure S4i), showed reduced activation by MEIS2/DLX5 compared
239 with the unmodified truncated enhD1 (Figure 4g). Taken together, our findings suggest that the
240 cooperation of MEIS2 and DLX5 at specific co-binding sites within *cis*-regulatory elements activates
241 PN-specific gene expression to promote PN fate.

242 Next, we tested whether MEIS2 is able to activate the promoters of its target genes *Pbx3*, *Tshz1*,
243 *Zfp503*, and *Six3*. All three genes are marker genes for different PN clusters, and they all contain
244 binding sites for MEIS in their promoters (Figure 1c, S5a-c). We found that the activation of these
245 promoters by MEIS2 is small (Figure S4h). Interestingly, even the *Tshz1* promoter, which contains
246 both DLX5 and MEIS1/2 motifs, was not activated by MEIS2, nor was MEIS2 able to enhance
247 the DLX5-induced activation of this promoter (Figure 4h-i). This may be because the motifs for
248 MEIS1/2 are far away from DLXs motifs (Figure 3d).

249 Our data suggest that in the GE, MEIS2 requires the presence of DLX5 to bind and co-activate
250 *cis*-regulatory enhancers with specific co-binding sites, and this process induces gene expression
251 related to PN development. We performed additional luciferase reporter assay experiments where we
252 included Dlx1, Dlx2, Dlx6 and expanded the analysis of the ChIP-seq datasets to include additional
253 members of the Dlx family (Dlx1, Dlx2). Our data indicate that Dlx1/2/6 TFs play a similar role as
254 Dlx5, and can activate the tested enhancers (Figure S11i-k, Table S5).

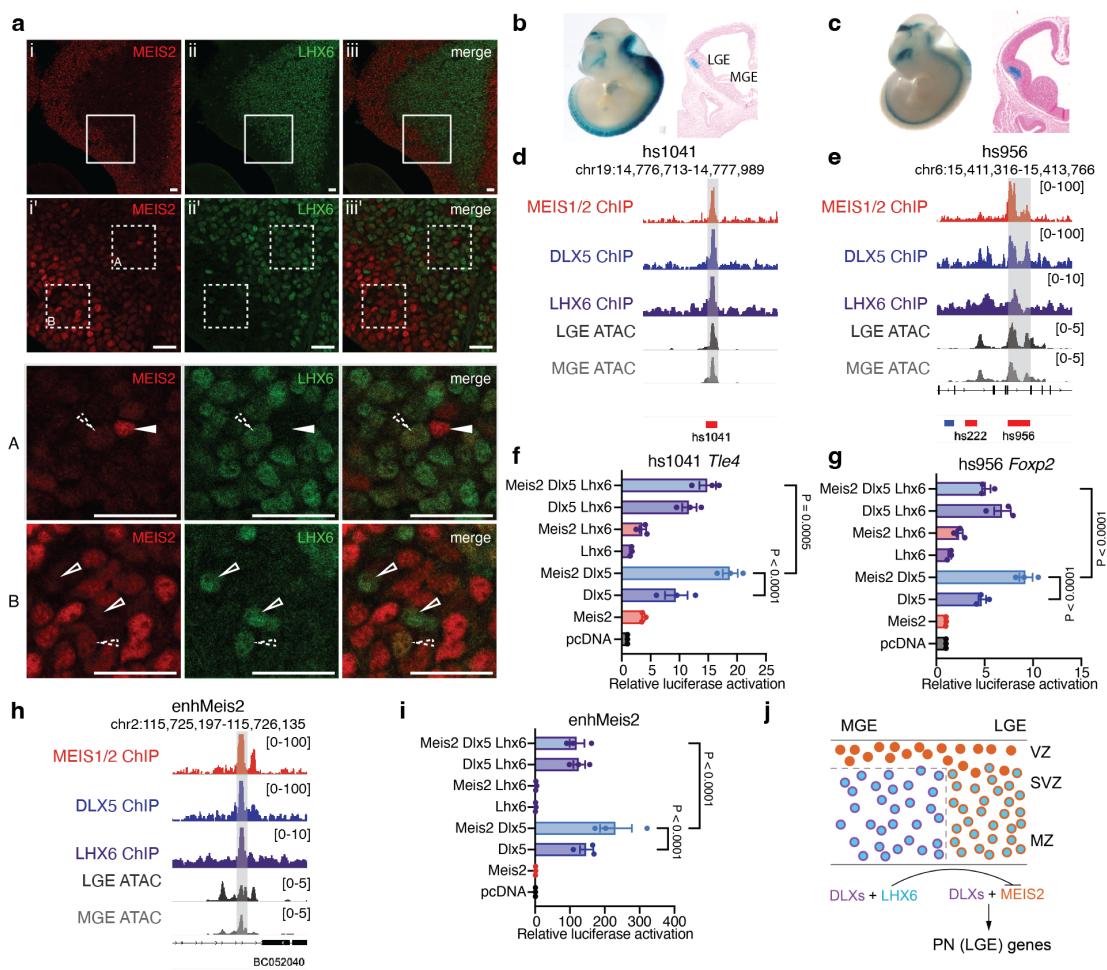
255 We tested a total of 8 enhancers of genes which are known to be important for inhibitory neuron
256 development using a dual-luciferase reporter assay (Figure S5g-h), and the results support this model.
257 Of the enhancers tested, only the LGE-specific enhancer of *Aldh1a3*, enhAldh1a3, which lacks a
258 MEIS1/2-DLX5 co-binding site, was strongly activated by MEIS2 alone (Figure 4j-k; Figure S4g).
259 *Aldh1a3* encodes an enzyme that synthesizes retinoic acid in LGE precursors at E12.5 (Molotkova
260 et al., 2007; Toresson et al., 1999) and is essential for the differentiation of striatal PNs (Chatzi et al.,
261 2011). *Aldh1a3* was greatly downregulated in several clusters in the gMeis2 tCROP-seq experiments
262 (Table S4). It remains unclear whether MEIS2 is able to activate enhAldh1a3 on its own, or whether
263 another co-factor, present in Neuro2a cells, is required.

Figure 4: Cooperation between MEIS2 and DLX5 activates enhancers of projection neuron-specific genes. **a**, Representative profiles of MEIS1/2 (red) and DLX5 (blue) ChIP-seq at E14.5 and E13.5 respectively, as well as scATAC-seq from LGE (dark gray) and MGE (gray) at E12.5 are shown at the *Foxp2* gene locus. DLX5 ChIP-seq data from (Lindtner et al., 2019); scATAC-seq data from (Rhodes et al., 2022). **b**, Luciferase activity driven by the enhancer hs1080, co-transfected with *Meis2* and *Dlx5* expression vectors in Neuro2a cells. **c**, Luciferase reporter assays of the enhancer hs956. **d**, Representative profiles of the *Drd1* gene enhancer enhD1. **e**, Luciferase reporter assays of enhD1. **f**, Luciferase reporter assays of enhD1, co-transfected with *Dlx5* and increasing concentration of *Meis2*, or with *Meis2**333. **g**, Luciferase reporter assays of the wild-type or mutated, shorter version of enhD1. **h**, Representative profiles of the *Tshz1* promoter. **i**, Luciferase reporter assays of the *Tshz1* promoter. **j**, Representative profiles of the *Aldh1a3* enhancer enhAldh1a3. **k**, Luciferase reporter assays of enhAldh1a3. In panels b, c, e, f, g, i and k, bars represent mean \pm s.e.m from a total of 9 replicates, split into three independent batches, each performed in triplicate. Points represent the mean of each batch for each condition. Statistical significance was assessed by two-way ANOVA. P-values of pairwise comparisons from post-hoc Tukey's HSD are presented for selected conditions.

264 **Spatial patterning and the functional activity of MEIS2 in the GE**

265 PNs of the striatum originate largely in the LGE, and many IN types, *e.g.*, those of the cortex,
266 originate in the MGE and CGE (Knowles et al., 2021; Lim et al., 2018; Bandler et al., 2017). *Meis2*
267 mRNA is initially expressed broadly in the VZ of the LGE, CGE and MGE. In neuronal precursors
268 of the subventricular (SVZ) and mantle zones (MZ), a spatial pattern of *Meis2* expression emerges,
269 where *Meis2* continues to be highly expressed in the LGE, but is absent in the MGE (Figure S6)
270 (Toresson et al., 1999; Su et al., 2022).

271 We next asked how the function of MEIS2 as a DLX-dependent activator of PN development
272 acquires LGE selectivity. We argued that LHX6 might be involved in this process. First, the mRNA
273 expression pattern of *Lhx6* contrasts with that of *Meis2*, being exclusively expressed in the MGE and
274 enriched in the SVZ and MZ (Figure S6) (Flames et al., 2007). Consistently, we found only a small
275 population of cells at the interface of the VZ and SVZ in the MGE, that showed co-immunoreactivity
276 of MEIS2 and LHX6 (Figure 5a). Second, LHX6 is a strong predictor of IN fate (Figure 1a) and its
277 activity is known to be required for the specification of cortical IN subtypes (Sandberg et al., 2016;
278 Zhang et al., 2013; Cesario et al., 2015).


279 We intersected ChIP-seq peaks in the GE of MEIS1/2, DLX5 (Lindtner et al., 2019) and LHX6
280 (Sandberg et al., 2016) (Figure S3f, Table S5). Out of 151 MEIS1/2-DLX5-LHX6 overlapping
281 peaks, 41 were within VISTA enhancers, and 28 of these enhancers showed activity in the developing
282 forebrain (Figure S3g, S7). We selected three of them to perform luciferase reporter assays (Figure
283 5b-g, S3h-j): (1) hs1041, an enhancer of the *Tle4*, which encodes transcription co-repressor 4, (2)
284 hs956, an enhancer of *Foxp2*, and (3) hs748, an enhancer of *Zfp503*, which encodes the zinc finger
285 protein TF 503 (NOLZ1). Genes regulated by the selected enhancers are known to play a role in
286 striatal development (Shang et al., 2022; den Hoed et al., 2021; French and Fisher, 2014; Su-Fehér
287 et al., 2021), were expressed in PN precursors (Table S2), and were reduced in several clusters in the
288 gMeis2 tCROP-seq experiments (Table S4). Consistent with the above findings, MEIS2 strongly
289 potentiated the DLX5-mediated activation of hs1041, hs956, and hs748 reporters. LHX6 alone

290 had little to no effect on the activation of these enhancers. However, co-expression of LHX6 with
291 MEIS2 and DLX5, resulted in a strong suppression of enhancer activity in all three cases (Figure
292 **5f-g, S3j**). This suggests that LHX6, whose expression is spatially restricted to the MGE, suppresses
293 the DLX5-MEIS2-induced enhancer activation in the MGE. To gather further evidence for this
294 mechanism, we screened 20 VISTA enhancers with overlapping ChIP-seq peaks for LHX6, MEIS1/2
295 and DLX5 (Figure **S7**). As expected, none of them exhibited robust activity in the MZ of the MGE.

296 Next, we explored the putative enhancer of *Meis2*, enhMeis2 (Gorkin et al., 2020), which also
297 contained MEIS1/2-DLX5-LHX6 co-binding sites (Figure **5h**). MEIS2 strongly potentiated the
298 DLX5-mediated activation of enhMeis2 (Figure **5i**), suggesting that in the presence of DLX5,
299 MEIS2 can promote its expression via the activation of enhMeis2. Self-activation has already been
300 reported previously for *Meis* genes (Bridoux et al., 2020). Strikingly, LHX6 strongly repressed the
301 MEIS2-DLX5 mediated activation of enhMeis2, suggesting that LHX6 suppresses the expression of
302 MEIS2, consistent with a recent *Lhx6* knockout study in mice (Asgarian et al., 2022). This may
303 explain the absence of MEIS2 in the SVZ and MZ of the MGE, and adds another level of regulation
304 aimed at suppressing PN fate in MGE precursors (Figure **5j, S6**). Together, LHX6 represses both
305 MEIS2 gene expression and function in MGE.

306 **Meis2 and Lhx6 alter gene modules in PNs and INs**

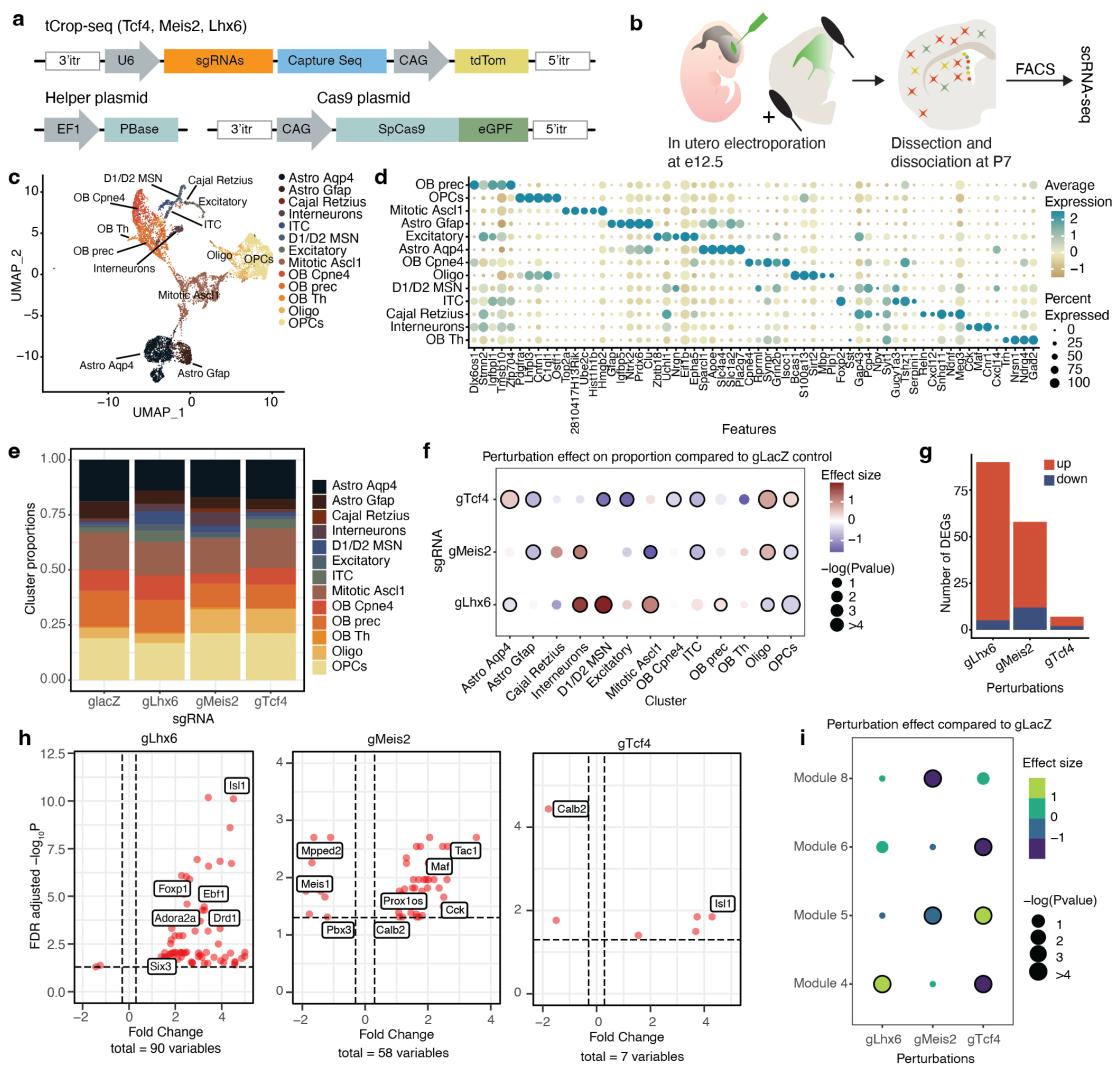

307 To explore how the depletion of embryonic TFs alters postnatal cell-type composition and identity,
308 we performed pooled tCROP-seq experiments with sgRNAs for *Meis2* (gMeis2), *Lhx6* (gLhx6),
309 *Tcf4* (gTcf4), and LacZ (gLacZ, control). Like LHX6, based on our regression analysis (Figure **1a**)
310 TCF4 is strongly predictive for an IN fate, but is expressed in all GE (Kim et al., 2020) (Figure
311 **S6**). We delivered sgRNAs via *in utero* electroporation at E12.5 (Figure **6a-b**), dissected 35 pups
312 at P7, enriched TdTomato/EGFP positive cells with FACS, and performed pooled scRNA-seq. A
313 total of ten scRNA-seq datasets were combined in silico, clustered, and annotated based on known
314 marker genes (Figure **6c-d, S8, S9**, Table S6, S9). All three perturbations had a significant effect
315 on the composition of cell types compared to the gLacZ control (Figure **6e-f**). As expected, cells

Figure 5: Regulation of LGE enhancers by MEIS2, DLX5 and LHX6. **a**, Immunohistochemistry of MEIS2 and LHX6 in the MGE of E13.5 embryos. MEIS2 immunoreactivity is high in cells of the VZ and low as cells transition to the VZ/MZ. Few cells in the SVZ retain MEIS2 expression (white triangle). Conversely, few cells in the VZ are immunoreactive for LHX6 (empty triangles). Some cells at the VZ/SVZ interface are co-immunoreactive against MEIS2 and LHX6 (dotted triangles). **b-c**, LacZ expression in the LGE of E12.5 embryos driven by the enhancers hs1041 and hs956 (Visel et al., 2007). **d-f**, Representative tracks of MEIS1/2 ChIP-seq in the GE at E14.5 (red), DLX5 ChIP-seq in the GE at E13.5 (blue) (Lindtner et al., 2019), LHX6 ChIP-seq in the GE at E13.5 (purple) (Sandberg et al., 2016) and scATAC-seq in LGE (dark gray) and MGE (gray) at E12.5 (Rhodes et al., 2022). **g-i**, Luciferase activity driven by hs1041, hs956, and hs748 enhancers co-transfected with *Meis2*, *Dlx5*, and *Lhx6* expression vectors in Neuro2a cells. **j**, Representative tracks of enhancer enhMeis2. **k**, Luciferase reporter assays of enhMeis2. **l**, Model of the proposed actions of MEIS2, DLX5 and LHX6. MEIS2 promotes projection neuron fate in the presence of DLX. LHX6 represses Meis2 expression and function. SVZ, subventricular zone; VZ, ventricular zone; MZ, mantle zone. In panels g, h, i, f, bars represent mean \pm s.e.m from a total of 9 replicates, split into three independent batches, each performed in triplicate. Points represent the mean of each batch for each condition. Statistical significance was assessed by two-way ANOVA. p-values of pairwise comparisons from post-hoc Tukey's HSD are presented for selected conditions.

316 expressing gLhx6 showed an increased proportion of medium spiny projection neurons (D1/D2
317 MSNs), OB precursors, and CGE INs compared to gLacZ. An increase of CGE INs after *Lhx6*
318 deletion has previously been reported (Vogt et al., 2014). In addition, consistent with our embryonic
319 tCROP-seq data, the proportion of INs was also increased in gMeis2 compared to gLacZ controls at
320 P7. Furthermore, cells expressing gMeis2 showed a reduced proportion of intercalated cells of the
321 amygdala (ITC), as well as OB inhibitory neurons and oligodendrocyte progenitors (Figure 6e-f).
322 gTcf4 expression had a more modest effect on cell proportions, showing only a slight reduction in
323 inhibitory neurons in the OB. Across all clusters, gLhx6, gMeis2, and gTcf4 positive cells had a
324 total of 90, 58, and 7 DEGs respectively (Figure 6g-h, Table S7). Many of them were marker genes
325 specifically expressed in IN or PN cell types (Table S6-7). gLhx6 perturbed cells were enriched
326 for PN specific genes (*Isl1*, *Foxp1*, *Ebf1*, *Adora2a*, *Drd1*, *Six3*). By contrast, gMeis2 DEGs were
327 enriched for IN-specific genes (*Maf* and *Prox1os*) and depleted for PN-specific genes (*Mpped2* and
328 *Pbx3*). Our data support the conclusion that MEIS2 primarily induces PN fate and LHX6 primarily
329 induces IN fate (Figure 1a).

330 ScRNA-seq data are highly heterogeneous and have numerous zero counts, making it challenging
331 to detect subtler perturbation-based biological changes in single cell datasets. To overcome these
332 limitations, we utilized Hotspot (DeTomaso and Yosef, 2021), a tool that identifies co-varying groups
333 of genes (modules). Each cell was assigned a gene module score, with higher scores indicating higher
334 association with that module. We identified 8 Hotspot gene modules (Figure S10a), 4 of which were
335 neuronal (Figure 6i, S10b). Module 5 represented mostly in OB neuroblasts and contained genes
336 enriched for neuronal differentiation. Module 4 represented MSN cell types and contained MSN
337 marker genes (e.g., *Foxp1*) and genes involved in retinoic acid receptor signalling (*Rarb*, *Rxrg*). The
338 retinoic acid pathway is involved in the switch between proliferation and differentiation (Berenguer
339 and Duester, 2022), which is essential for striatal development (Chatzi et al., 2011). Module 8 was
340 represented in OB precursors and ITC cells. This module contained *Meis2*, as well as some of its
341 target genes, such as *Pbx3* and *Etv1* (Table S4). Module 6 represented the OB-Cpne4 population
342 and was characterized by genes involved in calcium response and synapse organization. We fitted a

Figure 6: Embryonic disruption of developmental TFs alters postnatal cell types. Schematics of tCrop-seq vector maps **a** and the experimental workflow **b**. **c**, UMAP plot of the P7 data colored by cell type. **d**, Dot plot showing the top 5 marker genes of each cell type. OB, olfactory bulb cells; OPC, oligodendrocyte progenitor cells; ITC, intercalated cells; MSN, medium spiny neurons; Oligo, oligodendrocyte, Astro, astrocytes. **e**, Cell type compositions for each sgRNA. **f**, Perturbation effects in different clusters and sgRNAs compared to *gLacZ* control. Dot color corresponds to effect size, dot size corresponds to negative base 10 $\log(P\text{-value})$. P-values were calculated from linear modeling, *Padj* was calculated by Benjamini & Hochberg FDR correction. The black outline indicates statistical significance ($p\text{-val} < 0.05$). **g**, Bar plot showing the number of differentially expressed genes detected in each sgRNA. **h**, Volcano plot showing differentially expressed genes in inhibitory neurons for each sgRNA, compared to *gLacZ* that meet the cut-off criteria ($\text{FDR} < 0.05$, $\text{avg_logFC} > 0.5$). **i**, Dot plot showing the effect of perturbation by sgRNAs on the module scores of inhibitory modules. The p-values were adjusted using Bonferroni correction.

343 linear regression model that accounted for the batch and number of genes, and extracted the effect
344 sizes to estimate how the module scores in the perturbed cells deviated from gLacZ control cells (Jin
345 et al., 2020). For the three TFs, the perturbations had significant effects across different modules
346 (FDR-corrected $P < 0.05$; Figure 6i). The perturbation of *Lhx6* was positively associated with the
347 expression of module 4, consistent with the change in cell proportion and change in differentially
348 expressed genes. The perturbation of *Meis2* lowered the expression of both modules 8 and 5. The
349 perturbation of *Tcf4* had a significant effect across modules 6, 5, and 4, consistent with previous
350 findings showing that TCF4 is a key facilitator of neurogenesis and neuronal differentiation (Figure
351 6i) (Mesman et al., 2020; Teixeira et al., 2021). Taken together, the tCROP-seq data at P7 indicate a
352 marked influence of MEIS2, LHX6, and TCF4 on PN and IN specification.

353 Discussion

354 **MEIS2 induces GABAergic projection neuron fate.** In this study, we explored the role of the TF
355 MEIS2 in the development of GABAergic PNs and INs in the mammalian telencephalon. Our study
356 uses a new method combining transposon-based strategies for CRISPR perturbation sequencing
357 (tCrop-Seq) and barcode lineage tracing (TrackerSeq). Consistent with a previous study, in which a
358 conditional *Meis2* knockout mouse line was used (Su et al., 2022), CRISPR-induced perturbation
359 of *Meis2* in the GE decreased the expression of PN-specific genes, and reduced the proportion of
360 LGE-derived GABAergic PN types being generated. Along with this, we have observed an increase
361 in the proportion of CGE-derived IN types being generated. We conducted *in vitro* reporter assays
362 and found that MEIS2 requires the presence of DLX proteins to direct its functional activity towards
363 regulatory enhancers of PN-specific genes containing specific co-binding sites.

364 **The spatial selective activation of enhancers.** Our findings contribute to an overall picture
365 in which spatial selective enhancer activation plays a role in the early imprinting of GABAergic
366 identities (Figure S11). Different GABAergic cell types arise from regional differences in the
367 specification of GE progenitors, which are initially established by morphogenic molecules such as

368 retinoic acid (RA, LGE) (Chatzi et al., 2011), fibroblast growth factor (FGF) 8 and sonic hedgehog
369 (SHH, MGE) (Storm et al., 2006; Molotkova et al., 2007), FGF12 and FGF15 (CGE) (Borello
370 et al., 2008; Shohayeb et al., 2021), and their downstream TFs, such as MEIS2 (LGE), NKX2.1 &
371 LHX6 (MGE), and NR2F1/2 (CGE). Our results depict how spatial factors are utilized downstream
372 for selective enhancer activation: The tissue specificity of members of the DLX family in the GE,
373 directs the functional activity of MEIS2 to regulatory sites related to GABAergic PN development.
374 This is consistent with a proposed model of TALE TFs (e.g., MEIS) acting as broad co-activators of
375 homeobox genes (Bridoux et al., 2020). Multiple studies have demonstrated that MEIS proteins
376 require the presence of other TFs, such as PBX, HOX, TBX, and PAX6, to promote differentiation
377 in the limbs, heart, lens, hindbrain, and olfactory bulb (Schulte and Geerts, 2019; Bridoux et al.,
378 2020; Delgado et al., 2021; Selleri et al., 2019; Agoston et al., 2014). Furthermore, MEIS2 appears
379 to act in a highly context-dependent manner, as evidenced by the minimal overlap between MEIS1/2
380 ChIP-seq data from the retina (Dupacova et al., 2021) and ChIP-seq data from the GE (data not
381 shown).

382 DLX/MEIS2 could inhibit IN fate through the activation of repressive transcription factors, such
383 as ISL1, FOXP1/2, and SIX3, via co-repressors such as TLE1/4, or by promoting the expression
384 of microRNAs (miRNAs). We identified several miRNA host genes that were downregulated
385 in Meis2-tCROP-seq: *Mir124-2hg* *Gm27032*(miR-124a-2), *Arpp21* (miR-128-2), and *Gm27032*
386 (miR-124a-3; Table S4). miR-124 and miR-128 are some of the most abundant and highest enriched
387 miRNAs in the adult mouse and human brains (Zolboot et al., 2021). miR-128 deficiency in
388 D1-MSNs leads to juvenile hyperactivity, followed by lethal seizures at 5 months of age (Tan et al.,
389 2013).

390 **LHX6 plays an antagonistic role to MEIS2.** We demonstrated that in GE, MEIS2 and DLX5
391 together activate several enhancers associated with PN gene expression that we tested and that
392 are active in the LGE (Figure S7). This spatial component appears to be partially mediated by
393 LHX6, which antagonizes MEIS2 in two ways: First, we show that LHX6 suppresses a regulatory

394 element of *Meis2*, likely resulting in repression of *Meis2* gene expression in the SVZ/MZ of the
395 MGE. Consistently, *Meis2*, as well as the PN marker genes *Pbx3* and *Foxp1*, have been shown to
396 be up-regulated in E14.5 *Lhx6* knockout cells collected from the cortex (Asgarian et al., 2022).
397 Furthermore, conditional knockout of *Nkx2-1*, which acts upstream of LHX6, has been shown to
398 result in increased transcription of *Meis2* in the SVZ of the MGE (Sandberg et al., 2016) and an
399 enrichment of repressive regulatory elements in motifs consistent with the binding site of MEIS2
400 (Sandberg et al., 2018). Second, while *Meis2* mRNA is rapidly downregulated as cells enter the
401 SVZ/MZ, MEIS2 protein decay is expected to be slower (Figure S6) (Fischer et al., 2014). We
402 found co-immunoreactivity of MEIS2 and LHX6 in a small population of cells around the interface
403 of the VZ and SVZ in the MGE (Figure 5a). To counteract the residual protein activity, we found
404 that LHX6 can efficiently repress the cooperative MEIS2/DLX5 activation of PN fate genes in the
405 MGE (Figure 5f,g,i, S3e). The suppression by LHX6 could be mediated by a competition of LHX6
406 with DLX for the common DNA binding motif TAATT (Sandberg et al., 2016; Lindtner et al.,
407 2019). Alternatively, LHX6 could restrict the interaction of MEIS2/DLX5 with DNA through direct
408 binding to DLX5 or MEIS2. LHX6 belongs to the LIM domain homeodomain (LIM-HD) protein
409 family, which is characterized by two cysteine-rich LIM domains for protein-protein interactions
410 and a homeodomain for binding DNA (Hobert and Westphal, 2000). For example, LHX6 directly
411 interacts with PITX2 to inhibit its transcriptional activities (Zhang et al., 2013). In parallel, other
412 transcriptional programs are likely involved in the repression and activation of PN and IN cell fate
413 (Chapman et al., 2018; Leung et al., 2022).

414 **Differential binding or differential accessibility?** Delas et al. 2023 (Delás et al., 2023) propose
415 two *cis*-regulatory strategies that could drive cell fate choice in developing neural progenitors: One -
416 differential binding - relies on a common regulatory landscape, whereby the different composition
417 of TFs at these *cis*-regulatory elements dictates differential gene expression and cell fate decisions.
418 The other - differential accessibility - relies on cell-type-specific chromatin remodeling. Our results
419 support the first strategy: The enhancers we studied, are accessible in both the LGE and the MGE,

420 regardless of their *in vivo* activity pattern (Figure S7). Furthermore, while the selected enhancers are
421 accessible throughout all GEs, our data show that their activity depends on the TF composition. For
422 example, the *Foxp2* enhancer "hs956" is not active in the VZ of the GE (Figure S7), likely because
423 *Dlx* genes are absent in the VZ. This enhancer is active in the SVZ and MZ of the LGE, where both
424 *Meis2* and *Dlx* genes are expressed. The enhancer is not active in the SVZ/MZ of the MGE where
425 *Meis2* is absent, and a repressive TF such as *Lhx6* is present (Figure S6, S7).

426 **How do MEIS2 and DLX5 work together?** Agoston et al. 2014 ([Agoston et al., 2014](#)) performed
427 pull-down experiments with a tagged form of MEIS2 using OB tissue, and detected DLX-specific
428 protein bands in the MEIS2 precipitates. This could either indicate a direct protein interaction
429 or be the result of a process called 'DNA-guided cooperativity', a mechanism where certain TFs
430 cooperatively bind to adjacent DNA sites without forming stable, direct protein-protein interactions
431 ([Kim et al., 2023](#)). This form of co-binding is guided by the DNA sequence itself, rather than by
432 protein-protein interactions. In support of "DNA-guided cooperativity" as the mechanism underlying
433 the interaction between MEIS1 and DLX3, is a study by Jolma et al. ([Jolma et al., 2015](#)), which
434 performed *in vitro* structural analysis of the TF pairs, included a crystal structure of MEIS1 and
435 DLX3 bound to their identified recognition site. Their results demonstrated that the interactions
436 between MEIS and DLX are predominantly mediated by DNA.

437 **MEIS2 in Pathology:** Haploinsufficiency of the MEIS2 in humans results in an autosomal
438 dominant disease characterized by multiple congenital malformations, mild-to-severe intellectual
439 disability with poor speech, and delayed psychomotor development ([Louw et al., 2015](#); [Douglas
et al., 2018](#); [Giliberti et al., 2020](#); [Gangfuß et al., 2021](#); [Zhang et al., 2021](#)). The amino acid Arg333,
440 located in the homeodomain of MEIS2, is highly conserved across species and isoforms ([Longobardi
et al., 2014](#)), and was found mutated in at least four patients with severe disease ([Giliberti et al.,
2020](#); [Gangfuß et al., 2021](#)). Our study found that the missense mutation p.Arg333Lys led to a
442 strong decrease in enhancer activation compared to wild-type MEIS2. Due to the location of Arg333
443 in the homeodomain of MEIS2, it is likely that the mutations in this amino acid interfere with the
445

446 protein's DNA binding ability. This could result in a change in GABAergic cell type proportions,
447 in particular a reduced number of PNs in the striatum, caused by disturbed fate decisions during
448 embryogenesis, and ultimately elicit the disease phenotype seen in affected individuals.

449 **Conclusion** The efficiency with which MEIS2 can co-activate selective enhancers suggests a
450 general strategy for implementing spatial information to generate distinct cellular populations. The
451 ability of MEIS2 to induce context-specific cell types may exemplify how certain subsets of cells
452 in different parts of the body are affected in developmental disorders. Further research is needed
453 to fully comprehend the intricate interactions between TFs and co-factors in the regulation of cell
454 fate decisions during GABAergic neuron development and their potential implications in human
455 disease.

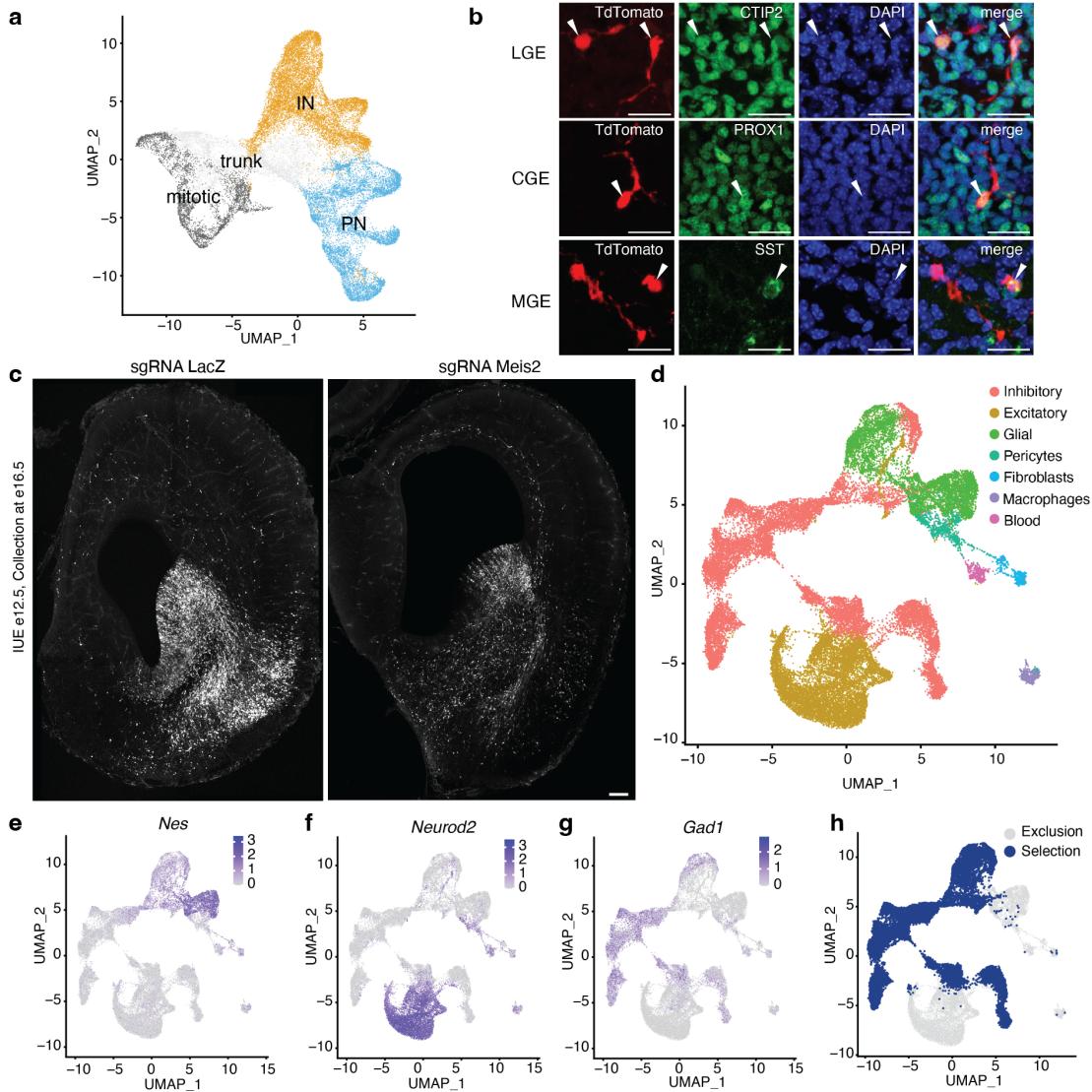
456 **Data availability**

457 The datasets used in this research article can be downloaded from the Gene Expression Om-
458 nibus (GEO) accession number GSE231779 (secure reviewer access token: cpclgssspnqpvmv).
459 Additionally, the code to reproduce the data analysis is available at [.](#)

460 **Acknowledgements**

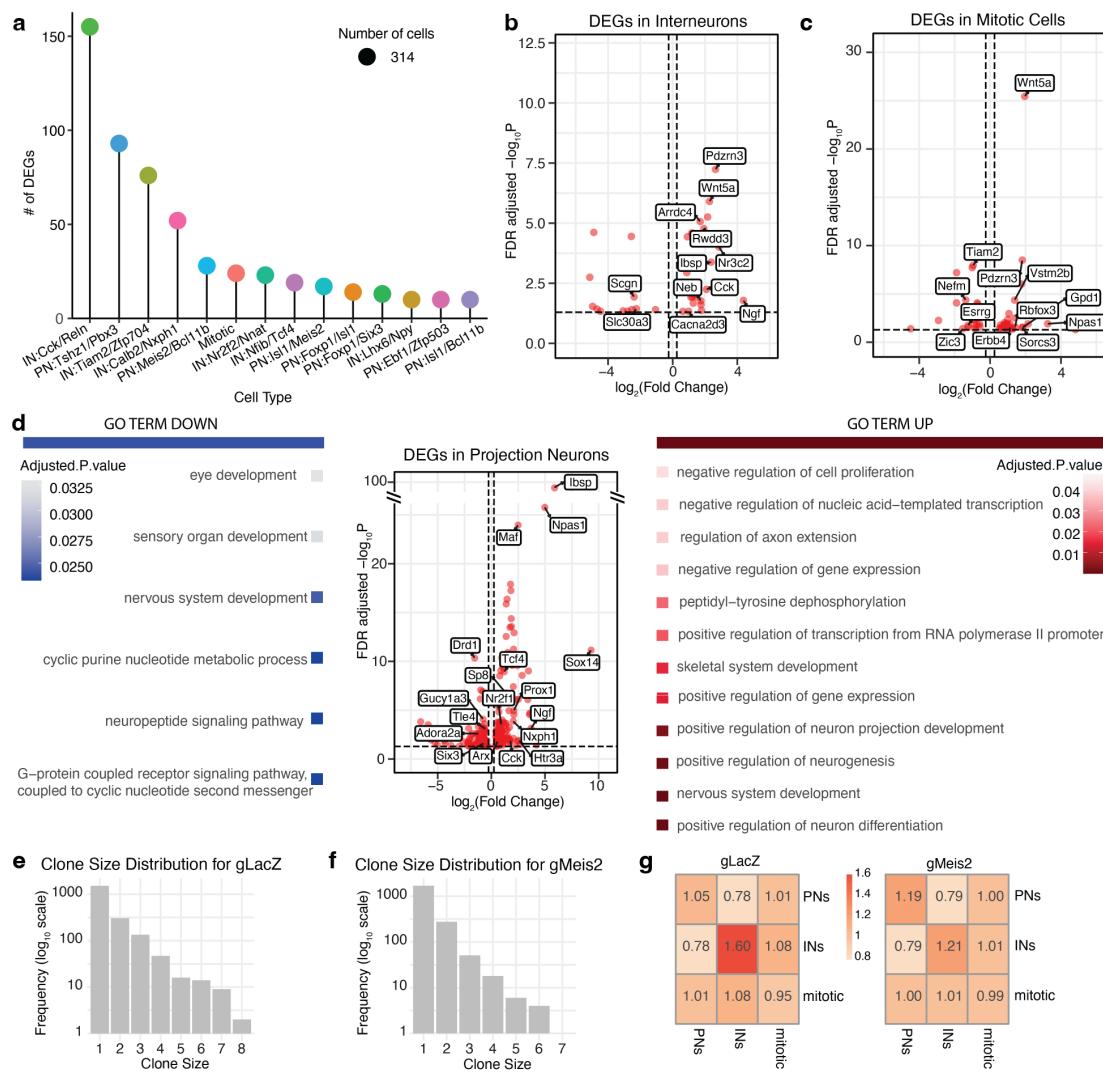
461 We thank members of the Mayer and Winkelmann laboratories for feedback and discussion; J. Kuhl
462 (somedonkey.com) for illustrations; R. H. Kim from the MPIB Next-Generation Sequencing core
463 facility, I. Velasques and G. Eckstein from the Genomics Core facility at the Helmholtz Zentrum
464 Munich (HMGU), M. Spitaler and M. Oster from the MPIB Imaging and FACS core facility, R.
465 Kasper from the MPIBI Imaging core facility and members of the MPIB/MPIBI animal facility
466 for their technical expertise. This work was supported by the Max-Planck Society, the European
467 Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation
468 program (ERC-2018-STG, grant agreement no. 803984, GIDE; to C.M.), and the European

469 Commission (SMART GRANT: ERA-NET NEURON, SMART: 01EW1605).

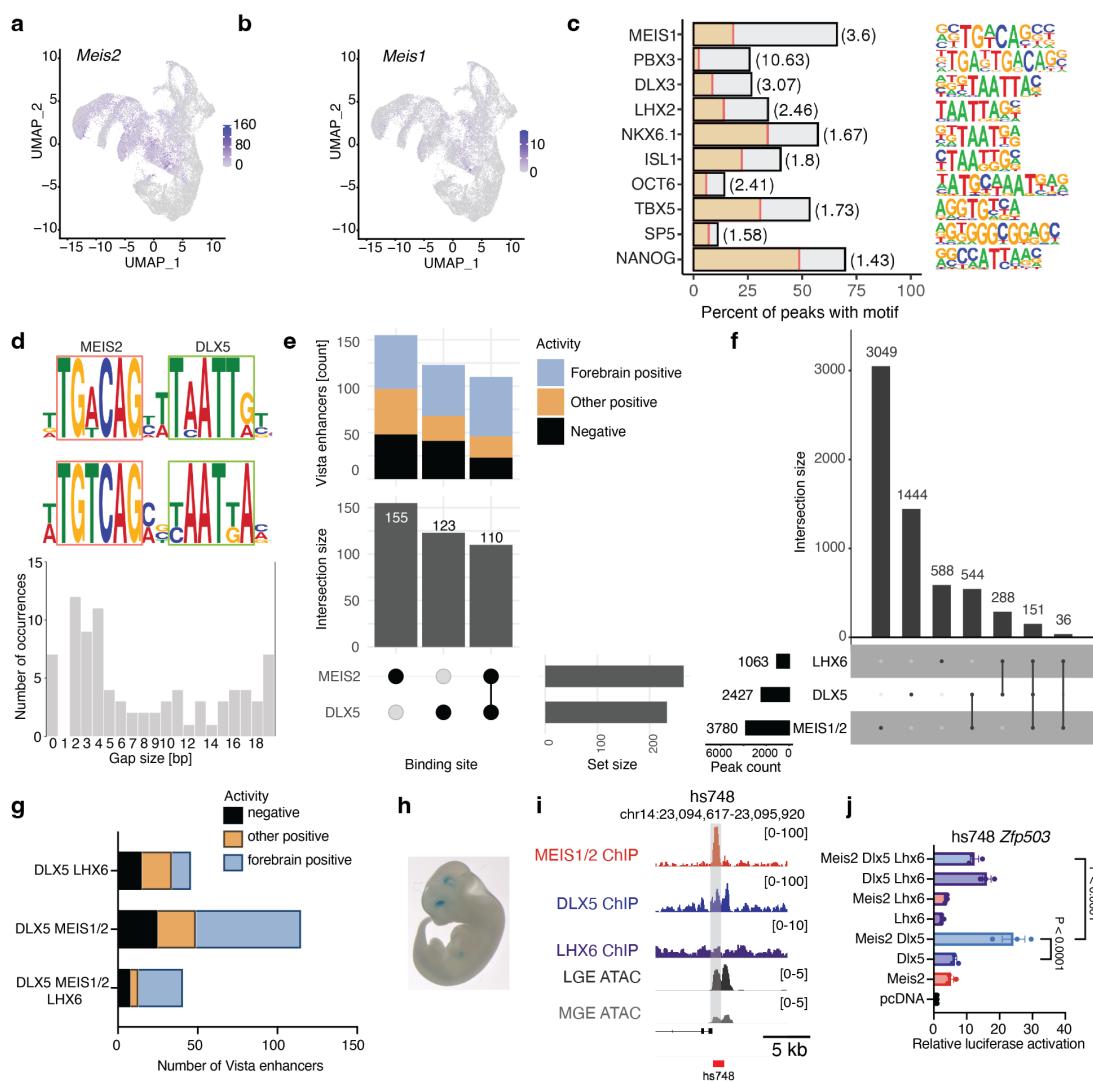

470 **Author contributions statement**

471 E.D. and C.M. conceived the project; M.H. and C.M. developed TrackerSeq; E.D. and C.M.
472 developed tCROP-seq; E.D., I.V. and C.M. conducted the tCROP-seq and TrackerSeq experiments;
473 D.D.L., I.D. and M.T. conducted the MEIS1/2 ChIP-seq experiments; E.D. conducted functional
474 reporter assay experiments; M.H. lead scRNA-seq, tCROP-seq, TrackerSeq computational analyses;
475 V.K. lead ChIP-seq analyses; F.N. conducted the logistic regression analysis; E.D., M.H., V.K.,
476 F.N., J.W. and C.M. prepared the manuscript with input from the remaining authors. **Competing**
477 **interests:** The authors declare no competing interests.

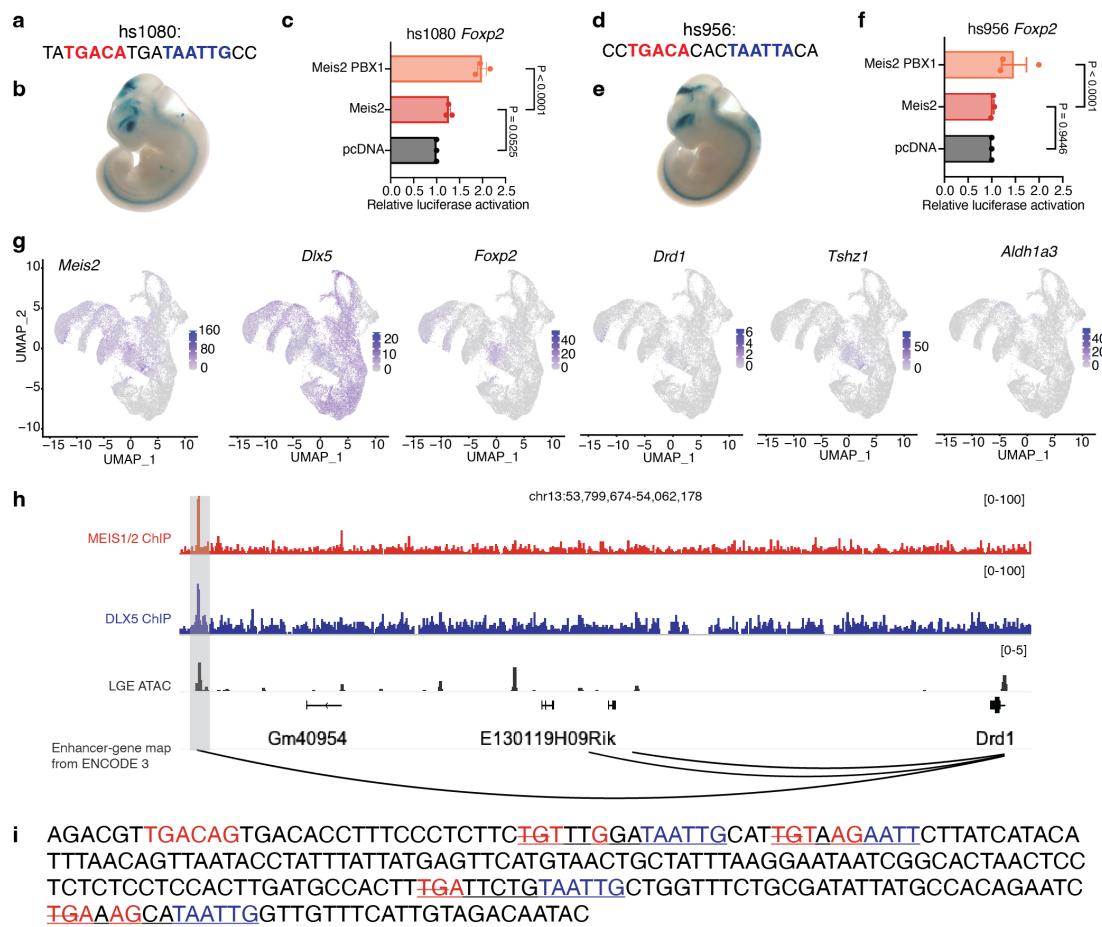
Cluster	Description	Region
Mitotic	Mitotic cells based on high expression of cell-cylce related genes	VZ
IN:Calb2/Nxph1	Precursor of Sst, Pvalb and Th INs	STR, CTX, OB
PN:Tshz1/Pbx3	Precursor of MSNs, ITCs	BNST, AMY
IN:Nr2f2/Nnat	Precursor of CGE derived INs	CTX, HC
PN:Foxp1/Six3	Precursor of D2-MSN, Ppp1r1b-type PN	STR, GP
IN:Tiam2/Zfp704	Precursor of CGE derived INs: Sst, Pvalb INs	CTX, HC, OB
PN:Foxp1/Isl1	Precursor of MSN	STR
IN:Nfib/Tcf4	Precursor of CGE derived INs	CTX, HC, OB
PN:Isl1/Bcl11b	Precursor of D1-MSN and Pp1r1b-type PN	STR, GP
PN:Ebf1/Zfp503	Precursor of D1-MSN	STR
PN:Meis2/Bcl11b	Precursor of MSN	STR, AMY
IN:Lhx6/Npy	Precursor of MGE derived INs: Pvalb, Sst	CTX, HC
IN:Cck/Rehn	Precursor of CGE derived INs: Vip, Reelin	CTX, HC
IN:PN:Isl1/Meis2	Precursor of MSN	AMY, BNST


Table 1: GABAergic precursor clusters and associated brain regions. The table presents E16 clusters of GABAergic neuronal precursors along with their corresponding descriptions and associated brain regions. At E16, these scRNA-seq clusters represent precursors of adult neuronal types, many of which are in the process of migration to their final settling positions. Due to the ongoing migration and developmental processes, the specific type they will differentiate into and the structure they will migrate to can only be inferred or hypothesized (Mayer et al., 2018; Lee et al., 2022; Lim et al., 2018; Bandler et al., 2022). We have inferred these potential future fates based on Mousebrain.org (La Manno et al., 2021) and DropViz.org (Saunders et al., 2018). AMY, Amygdala; BNST, Bed nucleus of the stria terminalis; CGE, caudal ganglionic eminence; MGE, medial ganglionic eminence CTX, Cortex; GP, Globus pallidus; HC, Hippocampus; ITC, intercalated cells; MSN, Medium spiny neuron; D1-MSN, DRD1-expressing MSN (direct pathway striatal projecting neuron); D2-MSN, DRD2-expressing MSN (indirect pathway striatal projecting neuron); Pvalb, Parvalbumin expressing interneuron; OB, Olfactory bulb; Sst, Somatostatin expressing interneuron; Th INs, TH expressing interneuron; Reelin, Reelin expressing interneurons; VIP, VIP expressing interneuron;

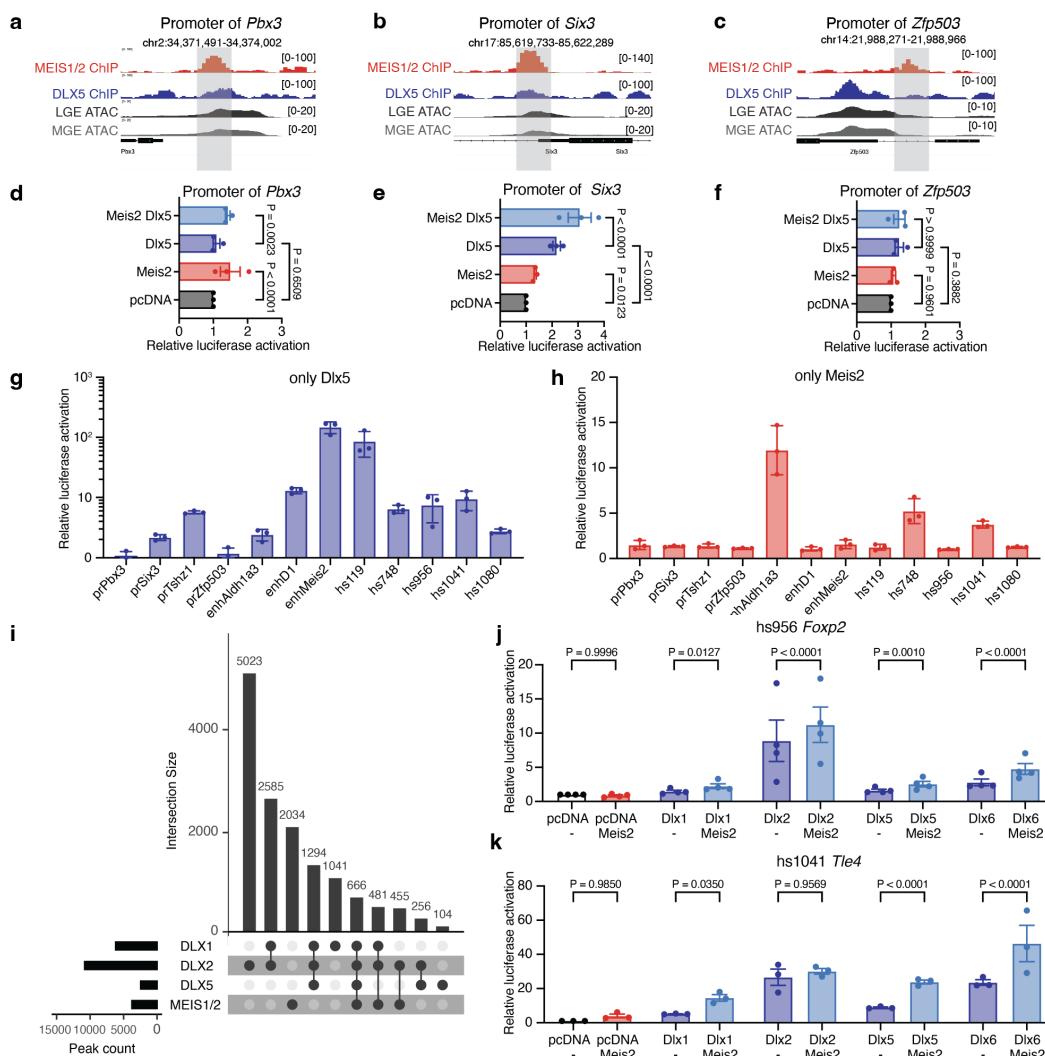
478 **Supplementary Figures**



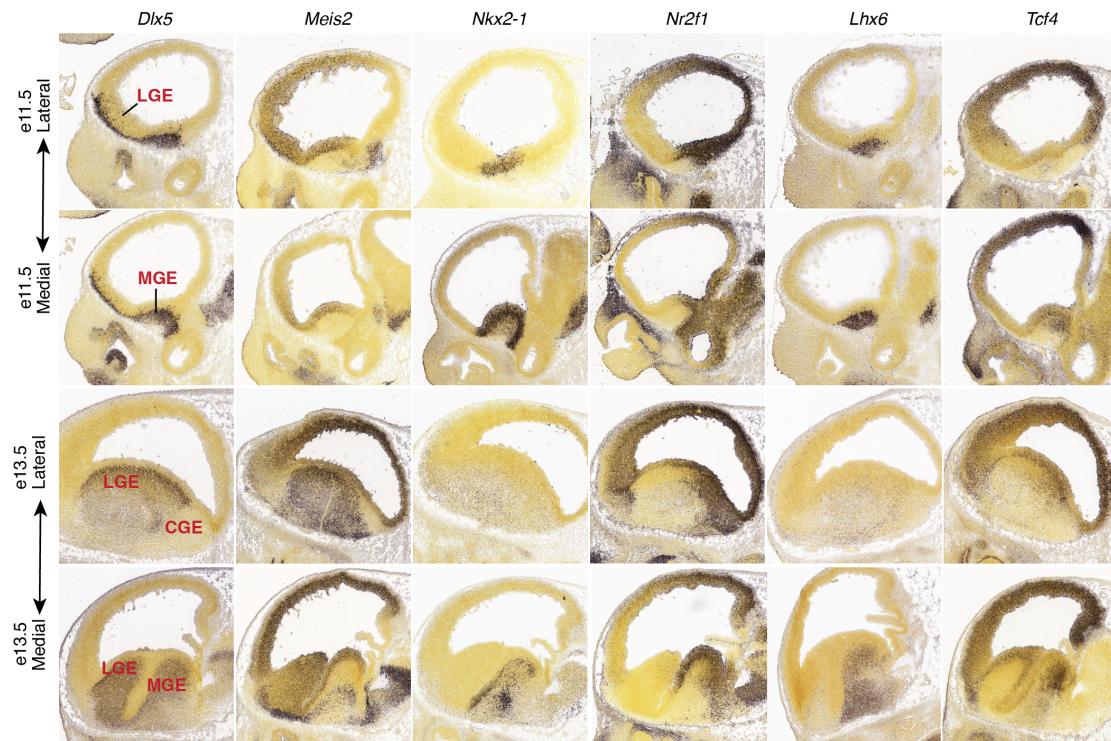
Supplementary Figure 1: *In utero* electroporation of sgRNA targets subtypes of GABAergic neurons.


a, UMAP depicting groups of cells used for the logistic regression analysis to predict PN and IN fate genes. Date from Bandler et al., 2022 (Bandler et al., 2022). **b**, Immunohistochemistry of E18.5 brains electroporated with tCROP-seq LacZ sgRNA vector at E12.5. Subsets of tdTomato-expressing neurons show immunoreactivity against markers of different inhibitory neuron types: anti-CTIP2, LGE-derived striatal PNs; anti-SST, MGE-derived cortical INs; anti-PROX1, CGE-derived cortical INs. **c**, Localization of tdTomato expression driven by gLacZ and gMeis2 plasmids in the cortex, striatum, and GE at E16.5, following IUE at E12.5. Scale bar, 0.1 mm. **d**, UMAP plot displaying E16 data colored according to cell classes. **e-g**, Feature plots depicting the expression of the canonical marker genes *Nes*, *Neurod2*, and *Gad1*. **h**, UMAP plot illustrating the selection of cells for downstream analysis.

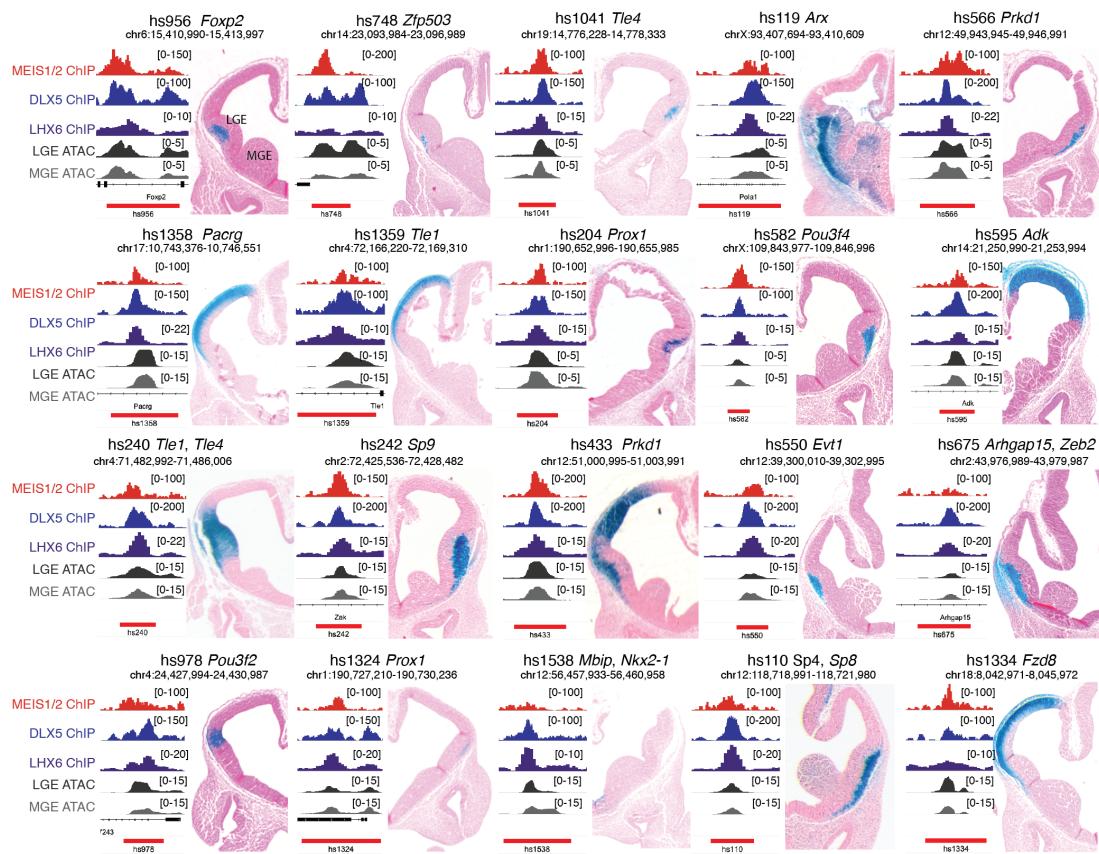
Supplementary Figure 2: gMeis2 modulates gene expression and influences clonal coupling. **a**, Lollipop plots illustrating the impact of gMeis2 on inhibitory clusters, with the number of differentially expressed genes (DEGs) shown after downsampling each group to 314 cells. **b**, Volcano plot depicting the differentially expressed genes in gMeis2 and gLacZ interneurons. **c**, Volcano plot depicting the differentially expressed genes in gMeis2 and gLacZ mitotic cells. **d**, Gene ontology analysis on differentially expressed genes (DEG) of clusters belonging to the projection neuron class. **e**, Histogram illustrating the distribution of clone sizes for the gLacZ TrackerSeq dataset. **f**, Histogram illustrating the distribution of clone sizes for the gMeis2 TrackerSeq dataset. **g**, Clonal overlap between cell states. The number of shared barcodes between pairs is normalized by expectation if clonal membership is shuffled.

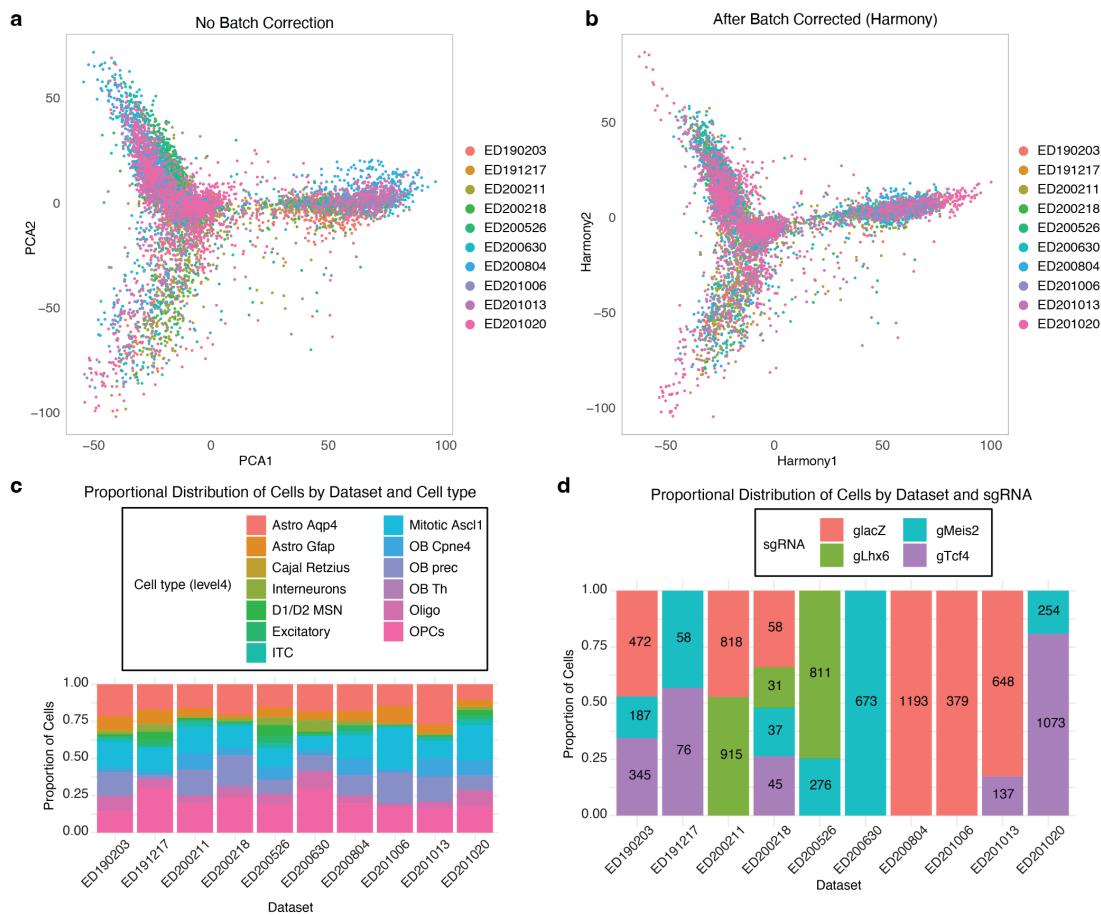


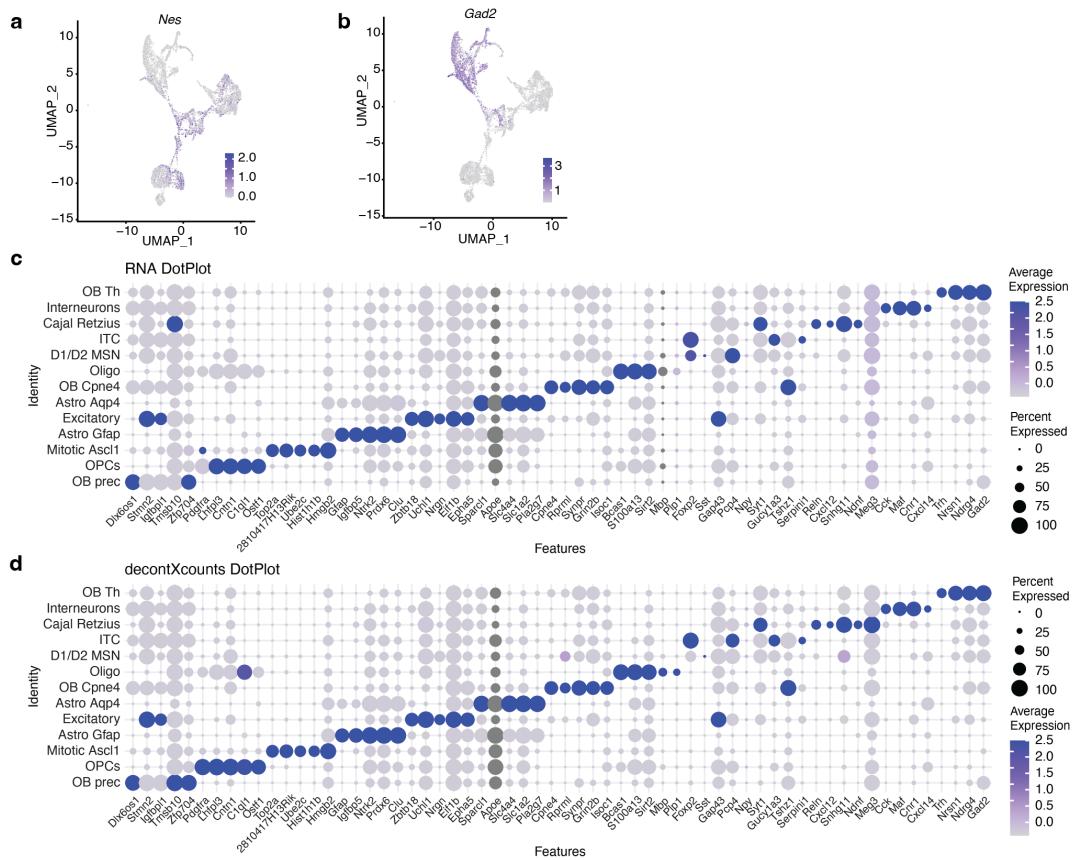
Supplementary Figure 3: Overlap of Meis1/2 and Dlx5 ChIP-seq binding sites in the ganglionic eminence (GE). **a**, Feature plot depicting the expression level of *Meis2* at E16. **b**, Feature plot depicting the expression level of *Meis1* at E16. **c**, Motif occurrence analysis of selected known motifs enriched within all MEIS1/2 binding sites (grey bars) compared to G/C-matched reference sequences (yellow). **d**, Motif spacing analysis of MEIS2 and DLX5 motifs within shared binding sites. The position weight matrix (PWM) of the most frequent motif configuration is shown on the left, while the right panel illustrates the overall distribution of the DLX5 motif in relation to the MEIS2 motif. **e**, Overlap analysis of binding sites between MEIS1/2 and DLX5 (bottom) and their distribution within different classes of Vista enhancers (top). **f**, Overlap analysis of binding sites between MEIS1/2, DLX5, and LHX6. **g**, Visualization of LacZ expression driven by the hs748 enhancer in the E12.5 mouse forebrain (Visel et al., 2007). **h**, Representative tracks of GE ChIP-seq of MEIS1/2 at E14.5 (red), DLX5 at E13.5 (blue) (Lindtner et al., 2019), LHX6 at E13.5 (purple) (Sandberg et al., 2016) and scATAC-seq (Rhodes et al., 2022) from the LGE (dark gray) and MGE (gray) at E12.5. **i**, Overlap between binding sites of MEIS1/2, DLX5, and LHX6 in enhancer hs748, which associated with the gene *Zfp503*. **j**, Luciferase activity driven by hs748, co-transfected with *Meis2*, *Dlx5*, and *Lhx6* expression vectors in Neuro2a cells. Bars represent mean \pm s.e.m from a total of 9 replicates, split into three independent batches, each performed in triplicate. Points represent the mean of each batch for each condition. Statistical significance was assessed by two-way ANOVA. P-values of pairwise comparisons from post-hoc Tukey's HSD are presented for selected conditions.



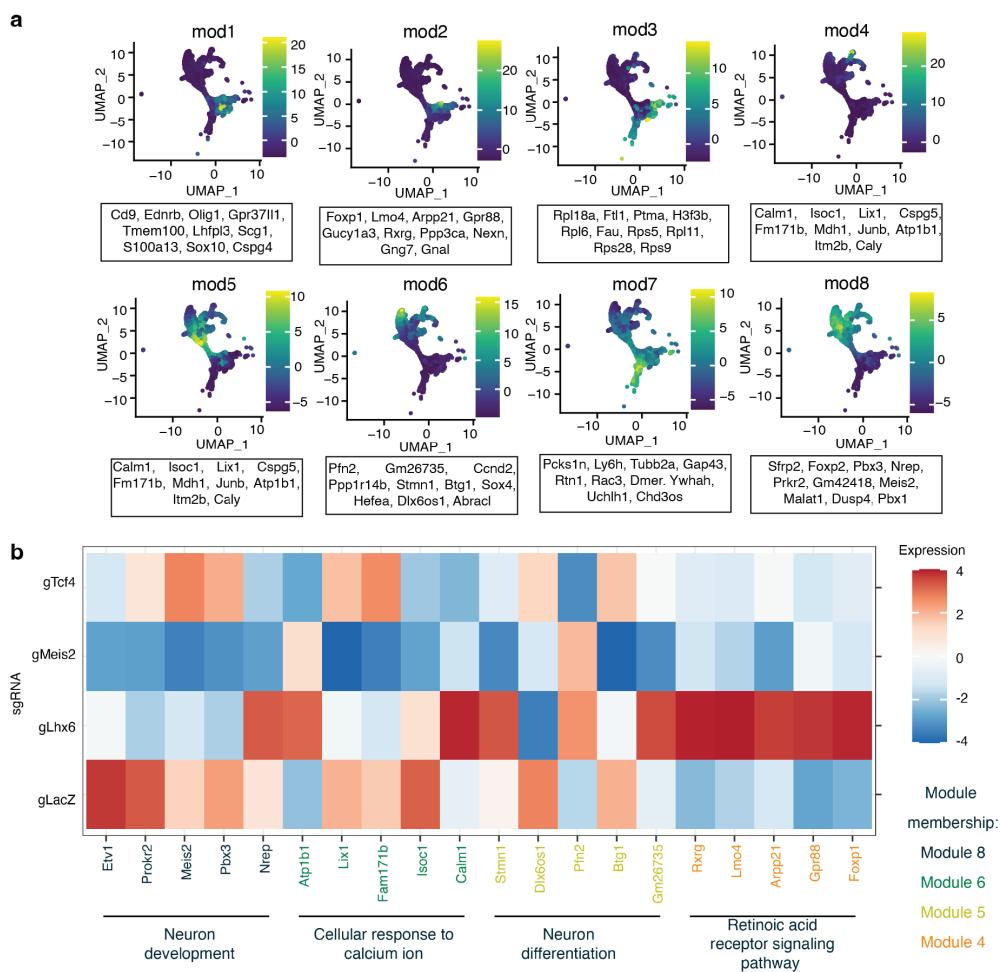
Supplementary Figure 4: Regulation and functional analysis of PN enhancers


a, d, Combined MEIS (red) and DLX (blue) binding motifs found within hs1080 (a) and hs956 (d) enhancers. **b**, hs1080 and **e** hs956 enhancers drive LacZ expression in E12.5 mouse forebrain (Visel et al., 2007). **c, f** Luciferase assay measuring the activation effect of MEIS2 and PBX1 on hs1080 (c) or hs956 (f) driven luciferase reporter in Neuro2a cells. **g**, Feature plot depicting the expression level of *Meis2*, *Dlx5*, *Foxp2*, *Drd1*, *Tshz1* and *Aldh1a3* at E16. **h**, Visualization of the *Drd1* locus with aligned tracks of MEIS1/2 ChIP-seq at E14.5 (red), DLX5 ChIP-seq at E13.5 (blue), and LGE (dark grey) (Rhodes et al., 2022). The predicted enhancer-gene interactions are also depicted (Gorkin et al., 2020). **i**, Depiction of the DNA sequence of the shortened version of the enhancer enhD1, highlighting the combined MEIS (red) and DLX (blue) binding motifs. The TG bases removed in the mutated version of enhD1 are indicated with a strikeout line. In panels c and f, bars represent mean \pm s.e.m from a total of 9 replicates, split into three independent batches, each performed in triplicate. Points represent the mean of each batch for each condition. Statistical significance was assessed by two-way ANOVA. P-values of pairwise comparisons from post-hoc Tukey's HSD are presented for selected conditions.

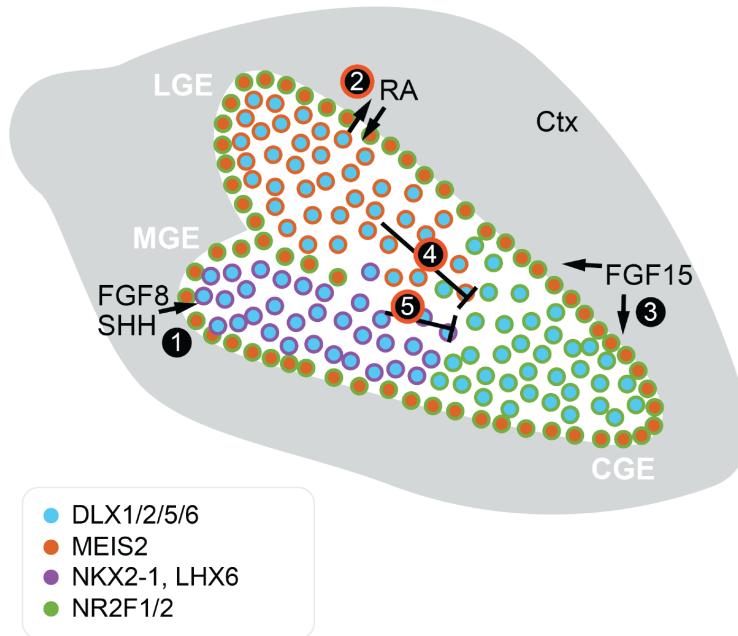

Supplementary Figure 5: MEIS2 acts primarily via distal enhancers in the GE. a-c. Representative tracks of MEIS1/2 ChIP-seq in the GE at E14.5 (red), DLX5 ChIP-seq in the GE at E13.5 (blue) (Lindtner et al., 2019), and scATAC-seq in the LGE (dark gray) and MGE (gray) at E12.5 (Rhodes et al., 2022) are shown at the gene promoters of *Pbx3*, *Six3* and *Zfp503*. **d-f**, Luciferase activity driven by promoters of *Pbx3*, *Six3* and *Zfp503* genes, transfected with MEIS2 and DLX5 expression vectors in Neuro2a cells. **g-h**, Luciferase activity driven by regulatory elements, transfected with MEIS2 (g) or DLX5 (h) expression vectors in Neuro2a cells. The data represents the combined results from multiple experiments. **i**, Overlap between binding sites of MEIS1/2, DLX1, DLX2 and DLX5. **j-k**, Luciferase activity driven by regulatory elements hs956 (j) and hs1080 (k), transfected with MEIS2 (g) and DLX1, DLX2, DLX5 or DLX6 expression vectors in Neuro2a cells. In panels d, e, f, g, h, j and k, bars represent mean \pm s.e.m from a total of 9 or 12 replicates, split into 3-4 independent batches, each performed in triplicate. Points represent the mean of each batch for each condition. Statistical significance was assessed by two-way ANOVA. P-values of pairwise comparisons from post-hoc Tukey's HSD are presented for selected conditions.


Supplementary Figure 6: Spatial expression patterns of TFs in the GE. *In situ* Hybridization (ISH) images of *Dlx5*, *Meis2*, *Nkx2-1*, *Nr2f1*, *Lhx6*, and *Tcf4* from the Allen Brain Institute's Developing Mouse Brain Atlas at E11.5 and E13.5. MGE, medial ganglionic eminence; LGE, lateral ganglionic eminence; CGE, caudal ganglionic eminence) are indicated.

Supplementary Figure 7: Spatial activity of Meis2 targets. Selected Vista enhancers with *in vivo* activity at E11.5 (Visel et al., 2007) and co-binding of MEIS-DLX5-LHX6. On the left side of each image are panels with representative tracks of GE ChIP-seq of MEIS1/2 at E14.5 (red), DLX5 at E13.5 (blue) (Lindtner et al., 2019), LHX6 at E13.5 (purple) (Sandberg et al., 2016) and scATAC-seq (Rhodes et al., 2022) from the LGE (dark gray) and MGE (gray) at E12.5. MGE, medial ganglionic eminence; LGE, lateral ganglionic eminence.



Supplementary Figure 8: Batch correction and sgRNA coverage of P7 tCROP-seq datasets. a-b, 2D visualization of the P7 tCROP-seq dataset pre (a) and post batch correction using Harmony (Korsunsky et al., 2019). **c**, Proportional distribution of cells categorized by dataset and cell type for the P7 tCROP-seq dataset. **d**, Proportional distribution of cells categorized by dataset and sgRNA for the P7 tCROP-seq dataset.



Supplementary Figure 9: Correct of the P7 tCROP-seq data for non-specific background expression.

a-b, Feature plots of canonical marker genes *Gad2* and *Nes* at P7. **c**, Dotplot demonstrating the top marker genes of inhibitory clusters using the "RNA count" data. **d**, Dotplot illustrating the top marker genes of inhibitory clusters using the "decontXcounts" (Yang et al., 2020) data, which corrects for potential non-specific background expression. The differences before and after correction are small.

Supplementary Figure 10: Module analysis using the P7 tCROP-seq dataset. a, Feature plots of gene module expression scores and the correlated genes within each module. **b**, Average expression of top 5 module genes for each sgRNA at P7.

Supplementary Figure 11: Schematic summary of spatial factors in the ganglionic eminence leading to specific enhancer activation. MGE, medial ganglionic eminence; CGE, caudal ganglionic eminence; LGE, lateral ganglionic eminence; Ctx, cortex; RA, retinoic acid; SHH, sonic hedgehog; FGF, fibroblast growth factor. 1. (Storm et al., 2006; Molotkova et al., 2007); 2, (Chatzi et al., 2011); 3, (Borello et al., 2008; Shohayeb et al., 2021); 4, (Su et al., 2022); 5, (Vogt et al., 2014). The red circle outline represents the findings of this study.

479 **Supplemental Material**

480 Tables are presented as individual Excel files.

481 • Table S1: Selected sgRNAs list with primers plus TrackerSeq primers.

482 • Table S2: E16-tCrop-seq top10 marker genes.

483 • Table S3: E16-tCrop-seq pseudo-bulk differential gene expression analysis.

484 • Table S4: E16-tCrop-seq interneuron clusters differential gene expression analysis.

485 • Table S5: ChIP-seq supplementary information.

486 • Table S6: P7-tCrop-seq top10 marker genes.

487 • Table S7: P7-tCrop-seq differential gene expression analysis.

488 • Table S8: Information on cloned regulatory elements used in luciferase reporter assays and
489 detailed statistics.

490 • Table S9: Datasets information.

491 **Methods**

492 **Cell line**

493 Mouse Neuro2a neuroblastoma cells (ECACC, 89121404) were cultured in Dulbecco's modified
494 Eagle medium (DMEM, Sigma, D6429) with high glucose, L-glutamine, and sodium pyruvate
495 supplemented with 10% (v/v) fetal bovine serum (FBS, Sigma, F9665) and containing 1% (v/v)
496 antibiotics (100 U/mL penicillin, 100 mg/mL streptomycin) (Sigma, P0781). Neuro2a cells were
497 incubated at 37 °C in a 5% CO₂ humidified atmosphere and passaged twice a week. Cell passage
498 numbers were limited to no more than 10.

499 **sgRNA selection and vector construction**

500 The piggyBac based backbone plasmid contains sgRNAs under the mouse U6 promoter, a gift
501 from Randy Platt, were modified by adding pCAG-TdTomato (Addgene, 59462) and a capture
502 sequence at the scaffold of sgRNA for 10x feature barcode retrieval (cs1 incorporated at the 3' end;
503 ([Replogle et al., 2020](#))) with use of NEBuilder HiFi DNA Assembly (NEB, E2621). sgRNAs were
504 designed using CRISPRick for CRISPRko ([Doench et al., 2016](#); [Sanson et al., 2018](#)) and validated
505 with inDelphi ([Shen et al., 2018](#)) for high frame shift efficiency. At least 3 sgRNAs per gene were
506 cloned using ssDNAs oliges (IDT) and NEBuilder HiFi DNA Assembly (NEB) into modified
507 backbone. The efficiency of sgRNA was measured in Neuro2A cells. Cells were transfected with
508 pCAG-Cas9-EGFP (gift from Randy Platt) and sgRNAs plasmids with TransIT-LT1 Transfection
509 Reagent (Mirus, MIR2305) and after 48 h were sorted with BD FACSaria III Cell Sorter (BD
510 FACSDiva Software, version 8.0.2) for TdTomato and EGFP. The genomic DNA was extracted
511 with Quick-DNA Miniprep Plus Kit (Zymo, D4068) and the region around sgRNA targeting was
512 amplified with Q5 polymerase (NEB, M094S) with primers listed in the Table S1, and afterwards
513 sent for Sanger sequencing at Microsynth Seqlab GmbH. The knockout efficiency quantified using
514 the Synthego ICE Analysis Tool ([Hsiau et al., 2019](#)). The results for selected sgRNAs are shown in

515 the Table S1.

516 **TrackerSeq library preparation and validation**

517 TrackerSeq is a piggyBac transposon-based (Ding et al., 2005) library, which was previously
518 developed by (Bandler et al., 2022) to be compatible with the 10x single-cell transcriptomic
519 platform. It records the *in vivo* lineage history of single cells through the integration of multiple
520 oligonucleotide sequences into the mouse genome. Each of these individual lineage barcodes
521 is a 37-bp long synthetic nucleotide that consists of short random nucleotides bridged by fixed
522 nucleotides. This design results in a library with a theoretical complexity of approximately 4.3
523 million lineage barcodes (16^8) with each barcode differing from another by at least 5 bp. To
524 construct the library, the piggyBac donor plasmid (Addgene, 40973) was altered to include a number
525 of modifications (Bandler et al., 2022). A Read2 partial primer sequence was cloned into the 3'
526 UTR of the EGFP to enable retrieval by the 10x platform. The sucrose gene was cloned into the
527 vector, so that empty plasmids that fail to incorporate a lineage barcode during the cloning process
528 are removed. Following digestion with BstXI (Jena Bioscience, EN-E2118) to remove the sucrose
529 gene, the plasmid was run on a gel and column purified. The lineage barcode oligo mix was cloned
530 downstream of the Read2 partial primer sequence in the purified donor plasmid via multiple Gibson
531 Assembly reactions (NEB, E2611S). Gibson assembly reactions were then pooled and desalted with
532 0.025 μ m MCE membrane (Millipore, VSWP02500) for 40 min, and finally concentrated using a
533 SpeedVac. 3 μ l of the purified assembly is incubated with 50 μ l of NEB 10- β -competent E.coli cells
534 (NEB, C3019H) for 30 min at 4 °C, then electroporated at 2.0 kV, 200 Ω , 25 μ F (Bio-Rad, Gene
535 Pulser Xcell Electroporation Systems). Electroporated E.coli were incubated for 90 min shaking at
536 37 °C and then plated into pre-warmed sucrose/ampicillin plates. The colonies were scraped off the
537 plates after 8 h, and the plasmids were grown in LB medium with ampicillin up to OD = 0.5. The
538 plasmid library was purified using a column purification kit (Zymo, D4202). We first assessed the
539 integrity of the TrackerSeq barcode libraries by sequencing the library to a depth of approximately
540 42 million reads to test whether any barcode was over-represented. Around 3.6 million valid lineage

541 barcodes that had a quality score of 30 or higher were extracted from the R2 FASTQ files using
542 Bartender (Zhao et al., 2018). One thousand barcodes were randomly sampled from the extracted
543 lineage barcodes to assess hamming distance. To group similar extracted barcodes into putative
544 barcodes, Bartender assigns a UMI to each barcode read to handle PCR jackpotting errors, and
545 clusters them. The cluster distance was set to 3 so that extracted barcodes within 3 bp of each other
546 have a chance of being clustered together. A total of 2×10^5 clusters of barcodes were identified,
547 suggesting that the barcode library has a diversity that is at least in the 10^5 range.

548 **Mice and *in utero* surgeries**

549 All mouse colonies were maintained in accordance with protocols approved by the Bavarian govern-
550 ment at the Max Planck Institute for Biological Intelligence or the Helmholtz-Zentrum München.
551 C57BL/6 *wt* females were crossed to C57BL/6 *wt* or to CAS9-EGFP (B6.Gt(ROSA)26Sortm1.1(CAG-
552 cas9*,-EGFP)Fezh/J, Jax 026179) males (Platt et al., 2014). Embryos were staged in days post-coitus,
553 with E0.5 defined as 12:00 of a day that a vaginal plug was detected after overnight mating. Timed
554 pregnant mice were anesthetized with isoflurane (5% induction, 2.5% during the surgery) and
555 treated with the analgesic Metamizol (WDT). A microsyringe pump (Nanoject III Programmable
556 Nano-liter Injector, 100/240V, DRUM3-000-207) was used to inject approximately 700 nl of DNA
557 plasmid solution made of 0.6 μ g/ μ l pEF1a-pBase (piggyBac-transposase; a gift from R. Platt) and
558 the sgRNA plasmid 0.7 μ g/ μ l, diluted in endo-free TE buffer and 0.002% Fast Green FCF (Sigma,
559 F7252), into the lateral ventricle. pCAG-Cas9-EGFP (a gift from Randy Platt) plasmid was added
560 when *wt* males were used for plugs. For TrackerSeq experiments, additionally barcode library (final
561 concentration 0.4 μ g/ μ l) was added to DNA plasmid solution. Embryos were then electroporated
562 by holding each head between large platinum-plated tweezer electrodes (5 mm in diameter, BTX,
563 45-0489) across the uterine wall, while 5 electric pulses (35 V, 50 ms at 1 Hz) were delivered
564 with a square-wave electroporator (BTX, ECM830) (Saito, 2006). We used large electrodes in
565 anticipation of targeting all areas of the GE (MGE, CGE, LGE) (Borrell et al., 2005). Pregnant
566 dams were kept in single cages and pups were kept with their mothers. To assess cells distribution

567 after *in utero* electroporation, embryos were collected after electroporation at E16.5 and E18.5.
568 Dissected brains were fixed overnight in 4 % paraformaldehyde and after were washed with PBS. 50
569 μ m tissue sections were prepared on Leica VT1200S Vibratome and were mounted on slides with
570 ProLong Glass Antifade Mountant (ThermoFisher). All images were acquired using STELLARIS 5
571 confocal microscope system (Leica). C57BL/6 wild type brains were prepared from E13.5 embryos,
572 post-fixed in 4% PFA solution for 2.5 h and subsequently washed with PBS.

573 Before preparing brain tissue for scRNA-seq, each brain was examined under a stereomicroscope
574 and only brains that met the following criteria were processed for scRNA-seq:

- 575 1. Dispersed tdTomato positive neurons throughout the neocortex. This indicates that we targeted
576 MGE/CGE-derived INs that migrate tangentially from the ventral progenitors, where they are
577 known to disperse to different cortical brain regions.
- 578 2. Dense tdTomato positive neurons throughout the striatum. MSNs are known to originate from
579 the LGE and account for ca. 90% of the neurons in the striatum.
- 580 3. TdTomato positive neurons in the OB. GABAergic precursors are known to migrate from the
581 LGE to the OB.

582 We performed immunohistochemical labelling to validate that after in IUE, individual brains express
583 sgRNA in cortical IN derived from the MGE (anti-SST antibodies) and CGE (anti-Prox1) and in
584 striatal MSNs derived from the LGE (anti-Ctip).

585 **Immunostainings**

586 Paraformaldehyde-fixed brains at E13.5 and E18.5 were incubated in 10%/20%/30% sucrose for 24
587 h each, embedded in Neg-50TM Frozen Section Medium (Epredia) and subsequently snap-frozen in
588 isobutane at -70°C. 16 μ m tissue sections were prepared on a Thermo Scientific CryoStar NX70
589 Cryostat and transferred to glass slides. Sections were incubated overnight with primary antibodies
590 anti-MEIS2 (SCBT, sc-515470-AF594, 1:250), anti-LHX6 (SCBT, sc-271433-AF488, 1:50), anti-
591 PROX1 (R&D Systems, AF2727, 1:250), anti-CTIP2 (Abcam, ab18465, 1:500). Sections were then

592 incubated with secondary antibodies at room temperature for 2 h at 1:500 dilution: anti-rabbit AF594
593 (Invitrogen, A21207); anti-rat AF488 (Invitrogen, A21208); anti-goat AF488 (Invitrogen, A11055).
594 Nuclei were counter-stained with DAPI and slides mounted with Aqua-Poly/Mount (Polysciences).
595 Fluorescence imaging was conducted on a LSM880 confocal microscope (Zeiss Microscopy) using
596 Plan-Apochromat 20/0.8 M27 or C-Apochromat 63x/1.2 W Korr M27 objectives.

597 **Sample collection**

598 We collected electroporated brains from mouse embryos at E16.5 in ice-cold Leibovitz's L-15
599 Medium (ThermoFisher, 11415064) with 5% FBS or at P7-8 in ice-cold Hibernate-A Medium
600 (ThermoFisher, A1247501) with 10% FBS and B-27 Supplement (ThermoFisher, 17504044). The
601 same media were used during flow cytometry sorting. Only forebrains were collected, thus excluding
602 the thalamus, hypothalamus, brainstem and cerebellum. Papain dissociation system (Worthington,
603 LK003150) was carried out according to the protocol described in Jin et al., 2020 ([Jin et al., 2020](#))
604 on the gentleMACS™ Octo Dissociator (Miltenyi Biotec). To isolate positive cells, flow cytometry
605 was done using a BD FACSaria III Cell Sorter (BD FACSDiva Software, version 8.0.2) with a
606 100- μ m nozzle. EGFP and TdTomato-positive cells were collected in bulk for testing sgRNA
607 Meis2 knockout efficiency following *in vitro* protocol (above), or downstream processing on the 10x
608 Genomics Chromium platform. After sorting 5,000–16,000 individual cells per sample, in PBS
609 (Lonza) with 0.02% BSA (NEB), were loaded onto a 10X Genomics Chromium platform for Gel
610 Beads-in-emulsion (GEM) and cDNA generation carrying cell- and transcript-specific barcode using
611 the Chromium Single Cell 3' Reagent Kit v3.1 with Feature Barcoding technology (PN-1000121)
612 following manufacture protocol (document number CG000205, 10X Genomics).

613 **Logistic regression model to predict IN and PN genes**

614 We used a recently published scRNA-seq data from ([Bandler et al., 2022](#)) to explore genes that are
615 predictive for interneuron or projection neuron fate. Raw Counts for samples from GE-specific
616 micro-dissections collected from WT mice at e13.5 and e15.5 were processed using Seurat ([Hao et al.,](#)

617 2021). After integrating across batches, counts were normalized and scaled. Cluster annotations
618 from (Bandler et al., 2022) were summarized into 4 broad cell classes: mitotic, trunk, interneuron
619 and projection neuron. For performing logistic regression we subsetted cells from interneuron
620 and projection neuron cell classes. Logistic regression was performed using 3000 most variable
621 genes. To account for balanced design, cells were sub-sampled to have equal number of cells
622 in both classes. A logistic regression model was trained on the scaled expression matrix of the
623 corresponding cells and genes, where 2/3s of cells were used for training and the other third for
624 validation. This was implemented using *cv.glmnet*(.., *family* = "binomial")-function from the
625 R-package *glmnet* (Friedman et al., 2010). The model achieved 99.15% accuracy on the held-out
626 validation set. For each gene, the model predicts a coefficient that reflects whether high expression
627 of the gene is predictive of a cell being an interneuron (coefficient $\in [0, 0.5]$) or a projection neuron
628 (coefficient $\in [0.5, 1]$).

629 Preparation of tCROP-seq libraries

630 Uniquely barcoded RNA transcripts (poly(A)-mRNA and sgRNA) were reverse transcribed. 3'
631 Gene Expression library and CRISPR Screening library were generated according to manufacturer's
632 user guide (Document number CG000205) with use of Chromium Library v3.1 kit (PN-1000121),
633 Feature Barcode Library Kit (PN-1000079) and Single Index Kit (PN-1000213) (10X Genomics).
634 Libraries were quantified with Agilent BioAnalyzer.

635 Preparation of TrackerSeq NGS libraries

636 The TrackerSeq lineage libraries retrieved from cDNA were amplified with Q5 polymerase (NEB,
637 M094S) in a 50- μ l reaction, using 10 μ l of cDNA as template (Bandler et al., 2022). Specifically,
638 each PCR contained: 25 μ l Q5 High-fidelity 2X Master Mix, 2.5 μ l 10 μ M P7-indexed reverse
639 primer, 2.5 μ l 10 μ M i5-indexed forward primer, 10 μ l molecular grade H₂O, 10 μ l cDNA (for
640 primer sequences and indices, see Table S1). Libraries were purified with a dual-sided selection
641 using SPRIselect (Beckman Coulter, B23318), and quantified with an Agilent BioAnalyzer.

642 **Sequencing and read mapping**

643 Transcriptome and CRISPR barcode libraries were sequenced either on an Illumina NextSeq 500
644 at the Next Generation Sequencing Facility of the Max Planck Institute of Biochemistry or on
645 a NovaSeq at the Genomics Core Facility at the Helmholtz Center in Munich. For a detailed
646 report on each dataset, see Table S9. Sequencing reads in FASTQ files were aligned to a reference
647 transcriptome (mm10-2.1.0) and collapsed into UMI counts using the 10x Genomics Cell Ranger
648 software (version 3.0.2 or 5.0.1).

649 **tCROP-seq pre-processing**

650 UMI count data was loaded into R and processed using the Seurat v4 package ([Hao et al., 2021](#)).
651 CRISPR gRNAs were recovered using CellRanger ([Zheng et al., 2017](#)), which produces an output
652 CSV file containing the cell barcodes and the sgRNA detected in that cell.

653 **Processing embryonic tCROP-seq datasets.** Electroporation of ventral progenitors using the
654 5 mm electrode targets some additional progenitors located adjacent to the ganglionic eminence.
655 These include progenitors of excitatory neurons located at the border between the pallium and the
656 subpallium. Thus, our data set consisted of: Inhibitory: 16098 neurons; Excitatory: 10010 neurons;
657 Glial: 5915 cells; Pericytes: 1008 cells; Fibroblasts: 537 cells; Macrophages: 523 cells; Blood: 390
658 cells; We focused only on cells from inhibitory neurons and excluded the others. We integrated
659 inhibitory neurons with scRNA-seq datasets from wild-type mice ([Bandler et al., 2022](#)) to get a
660 higher resolution of inhibitory cell states (Figure 1b) using the integration tool from Seurat ([Hao et al.,](#)
661 [2021](#)). We obtained cluster-specific marker genes by performing differential expression analysis
662 (see below). Clusters were assigned to cell types based on the expression of known marker genes,
663 primarily using <http://mousebrain.org/development/> ([La Manno et al., 2021](#)) and <https://DropViz.org>
664 ([Saunders et al., 2018](#)).

665 **Processing postnatal tCROP-seq datasets.** To process the P7 datasets, we integrated Harmony
666 (v1.0, ([Korsunsky et al., 2019](#))) into our Seurat ([Hao et al., 2021](#)) workflow for batch correction,
667 using default settings (theta = 2, lambda = 1, sigma = 0.1). We used the first 30 Harmony embeddings
668 for UMAP (<https://github.com/lmcinnes/umap>) visualizations and clustering analysis. To group
669 cells into clusters, we first constructed a shared-nearest neighbour graph from Harmony embeddings
670 using the FindNeighbors() algorithm, then input the graph into the FindClusters() function in Seurat
671 (dimensions = 30, res = 0.8). To test whether our postnatal dataset was subject to non-specific
672 background expression, we applied DecontX ([Yang et al., 2020](#)) using the default parameters. We
673 retrieved the count matrix from our Seurat object, created an SCE object, ran DecontX and then added
674 the corrected count matrix back to the Seurat object. The differences before and after correction are
675 relatively small. Therefore, we decided to use the uncorrected counts for the subsequent analysis.

676 **Comparing cell type composition between perturbations**

677 We compared the perturbation effect on cell type composition using the method described by Jin et
678 al. ([Jin et al., 2020](#)). A detailed script of the analysis is deposited on a <https://github.com/mayer->
679 [lab/Dvoretskova-et-al](#). Compositional change was investigated using the "CellComp_Poisson" R
680 function from Jin et al., 2020 ([Jin et al., 2020](#)). It performs Poisson regression analysis to identify
681 genes that are differentially expressed across different cell types, perturbations and batches. The
682 function first performs data cleaning by creating a metadata data frame and filtering out cells
683 with low counts. It then fits a Poisson regression model for each combination of cell type and
684 perturbation and extracts the coefficients for the perturbation variable. These coefficients are then
685 used to calculate p-values and adjusted p-values for each gene.

686 **Differential gene expression analysis**

687 We used the Libra package to perform differential gene expression analysis ([Squair et al., 2021](#)). We
688 ran the run_DE function on Seurat objects using the following parameters: de_family = pseudobulk,
689 de_family = pseudobulk, de_method = edgeR, de_type = LRT. We obtained DEGs of PNs or INs by

690 using run_DE function on cells grouped into classes (mitotic, projection neurons, and interneurons).
691 We filtered for statistically significant genes (FDR-adjusted p-value threshold = 0.05). Genes were
692 considered differentially expressed if avg_logFC < -1.0 or avg_logFC > 1.0.

693 We also utilized the R package "Libra" to calculate the differentially expressed (DE) genes for
694 each cluster (i_Calb2/Nxph1, i_Cck/Reln, i_Ebf1/Zfp503, i_Foxp1/Isl1, i_Foxp1/Six3, i_Isl1/Bcl11b,
695 i_Lhx6/Npy, i_Meis2/Bcl11b, i_Nfib/Tcf4, i_Nr2f2/Nnat, i_Tiam2/Zfp704, i_Tshz1/Pbx1). The
696 result of the DE analysis is in Table S4 (See attached table taken from our submission). We applied
697 the threshold $p_{val_adj} < 0.05 \& (avg_logFC < -1.0 | avg_logFC > 1.0)$ to select the genes for
698 intersection with the Chip-seq data. We combined DE genes from all subtypes, and in up or down
699 regulated genes we took unique gene symbols for the Venn diagram.

700 **TrackerSeq (lineage tracing) barcode processing and analysis**

701 For a subset of datasets (ED210204, ED210215, ED211111, ED211124), we included TrackerSeq
702 lineage barcodes to perform a clonal analysis. We followed the protocol outlined in (Bandler et al.,
703 2022) to process the TrackerSeq barcodes and obtain cloneIDs for each corresponding cell barcode.
704 The resulting cloneIDs were added to the Seurat object metadata. To quantify clonal relationship
705 between cell classes, the inhibitory clusters were first merged into cell classes (Figure 2c) based on
706 whether they were annotated as mitotic (*Ube2c* and *Top2a*), or as INs and PNs (*Gad2*). The UpSetR
707 library was used to count the number of clones shared between the neuronal classes, as well as the
708 proportion of clonal relationships in gMeis2 and gLacZ datasets. The set size is the number of cells
709 in the class. The UpSet bar plot shows the calculated proportion of each type of clonal distribution
710 category within the perturbation. Each percentage was obtained by dividing the clones belonging to
711 that category (e.g. clones containing only mitotic and INs) by the number of clones belonging to all
712 other categories of clonal distribution.

713 To quantify lineage coupling, we used a method from Weinreb et al. 2020 (Weinreb et al., 2020).
714 The method computes an observed/expected ratio of shared barcodes for each pair of cell-states. A
715 barcode is considered shared if it appears in at least one cell from both states. From the observed

716 shared barcode matrix O_{ij} , it derives an expected shared barcode matrix E_{ij} under the assumption
717 of no lineage couplings, as follows:

$$E_{ij} = \frac{\sum_k O_{kj} \cdot \sum_k O_{jk}}{\sum_{k,l} O_{kj}}$$

718 To avoid artifacts from particularly large or atypical clones, it re-computed these matrices 1000
719 times, each time using a random 25% sample of clones. The lineage coupling scores shown in
720 Figure S2g represent the median O_{ij}/E_{ij} from these 1000 randomized trials.

721 Hotspot analysis of gene coexpression

722 Hotspot(v0.91) is a tool for identifying co-expressing gene modules in a single-cell dataset ([DeTomaso](#)
723 and [Yosef, 2021](#)). It computes gene modules by evaluating the pairwise correlation of genes with high
724 local autocorrelation, then clusters the results into a gene-gene affinity matrix. The *Gad2*-expressing
725 inhibitory neuron population in the P7 dataset was first subset from the remainder of the dataset to
726 identify inhibitory specific modules in the embryonic dataset. We ran the depth-adjusted negative
727 binomial model on the entire count matrix and Harmony (v1.0) corrected principal components.
728 We computed a k-nearest-neighbors (KNN) graph with 30 neighbors, 9154 non-varying genes were
729 subsequently detected and removed. Autocorrelations between each gene were calculated, and the
730 top 500 significant (FDR < 0.05) genes were used to evaluate pairwise gene associations (local
731 correlations). After pairwise local correlations were calculated, we grouped genes into modules.
732 Modules were created through agglomerative clustering, where the minimum number of genes per
733 module was set to 30. 8 modules were identified, and 103 genes were not assigned to a module.
734 Summary per-cell module scores are calculated using the `calculate_module_scores()` function as
735 described by DeTomaso et al. ([DeTomaso and Yosef, 2021](#)). As described by Jin et al. 2020, linear
736 regression was used to test the relationship between perturbation and Hotspot module gene scores
737 ([Jin et al., 2020](#)).

738 **GO Term analysis of differentially expressed genes and module genes**

739 GO Term analysis was done using the package enrichR ([Kuleshov et al., 2016](#)). The DEGs and module
740 genes of each module were queried against the following databases: GO_Molecular_Functio_2018,
741 GO_Cellular_Component_2018, and GO_Biological_Process_2018. Only GO Terms that were
742 significant (p-value adjusted < 0.05) were kept.

743 **Luciferase assay**

744 Regulatory elements were amplified from mouse genomic DNA with Q5 polymerase (NEB,
745 M0491) using primers listed in Table S8 and cloned into pGL4.24[luc2P/minP] (Promega, E8421)
746 with NEBuilder HiFi DNA Assembly kit (NEB, E2621). Enhancer hs1080 had to be cloned
747 in reverse-complement. Mouse *Meis2* isoform D (4) (the tag was removed) and *Lhx6* variant 1
748 (C-DYK) expressing vectors were purchased from Genscript, *Dlx5* and *Pbx1* coding sequences
749 were amplified from mouse cDNA and cloned into pcDNA3.1 (Genscript). *Meis2* vector was
750 mutated with NEBuilder HiFi DNA Assembly kit (NEB, E2621) to harbor the human mutation
751 p.(Arg333Lys), c.998G>A (*Meis2**333) ([Verheij et al., 2019](#)). A short version of enhD1 luciferase
752 vector was mutated with use of a gBlock (IDT) and NEBuilder HiFi DNA Assembly kit (NEB,
753 E2621). Luciferase reporter vectors were co-transfected with pNL1.1.PGK[Nluc/PGK] (N1441,
754 Promega), pcDNA3 or pcDNA3-Dlx5, pcDNA3-PBX1, pcDNA3-Meis2, pcDNA3-Lhx6. Neuro2a
755 cells were seeded in 24-well plates at 80,000 cells per well and on the next day were transfected
756 with TransIT-LT1 Transfection Reagent (Mirus, MIR 2300), using 150 ng luciferase reporter, 10
757 ng Nluc/PGK and 350 ng total of pcDNA3.1 plasmids per well (150 ng per TFs vector). pcDNA
758 stands for a control plasmid pcDNA3.1 which does not contain a protein coding sequence. The
759 pcDNA was used to balance DNA load during transfections. Cells were harvested 24 hours after
760 transfection and luciferases activity was measured using Nano-Glo® Dual-Luciferase® Reporter
761 Assay System (Promega) on Berthold Multimode reader Tristar2S. A Nanoluc reporter was used for
762 normalization. Statistical tests were performed using the GraphPad Prism software (Version 10.0.2).

763 Two-way analysis of variance (ANOVA) followed by Tukey's honestly significant difference (HSD)
764 test were used to determine the statistical significance between various conditions. All results for
765 statistical analysis are listed in Table S8.

766 **Chromatin-Immunoprecipitation (ChIP)**

767 Mice were handled in accordance with the CNIC Ethics Committee, Spanish laws, and the EU
768 Directive 2010/63/EU for the use of animals in research. GEs and part of the underlying striatum of
769 70 wt C57BL/6 embryos at E14.5 were microdissected and immediately fixed in 1% formaldehyde
770 for 5 min. Tissue preparation, immunoprecipitation and sequencing on an Illumina HiSeq2500 were
771 performed as previously described ([Delgado et al., 2021](#)). Immunoprecipitation was carried out
772 using a combination of two anti-MEIS antibodies, one recognizing MEIS1A and MEIS2A, the other
773 recognizing all MEIS2 isoforms ([Mercader et al., 2005](#)).

774 **ChIP-seq Data Analysis**

775 61 bp single-end reads were trimmed using Cutadapt (v1.16) and mapped to GRCm38 using Bowtie2
776 (v2.3.0) ([Langmead and Salzberg, 2012](#)) followed by peak calling with MACS2 (v2.1.2) ([Feng
777 et al., 2012](#)) using a cutoff of $q=0.01$. TSS definitions were adapted from the eukaryotic promoter
778 database (mmEPDnew version 003) ([Meylan et al., 2020](#)). We determined the distance of each peak
779 to the nearest TSS using the R package plyranges (v1.180). Using custom R scripts, peaks were
780 assigned to the TSS of a gene when overlapping a ca. 5 kb region around a TSS, defined as promoter
781 region. Overlap with developmental enhancers ([Gorkin et al., 2020](#)) was determined in the same
782 way. Similarly, we determined overlap of MEIS2 binding sites with DLX5 binding sites at E13.5
783 from Lindtner et al. ([Lindtner et al., 2019](#)) and LHX6 binding sites at E13.5 from Sandberg et al.
784 ([Sandberg et al., 2016](#)). Enrichment of enhancer-overlapping peaks among shared MEIS2/DLX5
785 peaks, compared to MEIS2- and DLX5-exclusive peaks, was determined using Pearson's Chi-squared
786 test of the R 'stats' package(v4.0.2). Genomic tracks and Vista enhancers ([Visel et al., 2007](#)) were
787 visualized using the Integrated Genomics Viewer (v2.4.1) ([Robinson et al., 2011](#)).

788 Motif identification and enrichment of known motifs were carried out by HOMER (v4.10.4)
789 (Heinz et al., 2010) using default settings. Motif enrichment within enhancer- and promoter-
790 overlapping peaks was likewise performed with HOMER. We used SpaMo (v5.4.1) (Whington
791 et al., 2011)) to determine motif spacing between MEIS2 and DLX5 binding motifs in common
792 MEIS2/DLX5 binding sites, within 100 bp up- and down- stream of MEIS2 peak summits.

793 **Data used in this study**

794 GSE167047 (snATAC-seq of E12.5 MGE and LGE (Rhodes et al., 2022)), GSE85705 (LHX6-ChIP-
795 seq GE E13.5 (Sandberg et al., 2016)), GSE124936 (DLX1, DLX2 & DLX5-ChIP-seq GE E13.5
796 (Lindtner et al., 2019)) and GSE188528 (scRNA-seq of LGE, MGE, CGE E13.5 (Bandler et al.,
797 2022)) were downloaded from [GEO](#). Developmental enhancers and interacting genes (Gorkin et al.,
798 2020). Vista enhancer images were downloaded from the [Vista Enhancer Browser](#) (Visel et al.,
799 2007). ChIP-seq and ATAC-seq tracks were presented using the IGV software (Thorvaldsdóttir
800 et al., 2013)

801 **Data availability**

802 The sequencing datasets generated for the current study are available in the Gene Expression
803 Omnibus (GEO) under the accession number GSE231779.

804 **Code availability**

805 The analyses described here are available on [github.com/mayer-lab](#)

806 References

807 Agoston, Z., Heine, P., Brill, M. S., Grebbin, B. M., Hau, A.-C., Kallenborn-Gerhardt, W.,
808 Schramm, J., Götz, M., and Schulte, D. (2014). Meis2 is a pax6 co-factor in neurogenesis
809 and dopaminergic periglomerular fate specification in the adult olfactory bulb. *Development*,
810 141(1):28–38.

811 Allaway, K. C. and Machold, R. (2017). Developmental specification of forebrain cholinergic
812 neurons. *Dev Biol*, 421(1):1–7.

813 Anderson, S. A., Eisenstat, D. D., Shi, L., and Rubenstein, J. L. (1997). Interneuron migration
814 from basal forebrain to neocortex: dependence on dlx genes. *Science*, 278(5337):474–6.

815 Anderson, S. A., Marín, O., Horn, C., Jennings, K., and Rubenstein, J. L. (2001). Distinct cortical
816 migrations from the medial and lateral ganglionic eminences. *Development*, 128(3):353–63.

817 Asgarian, Z., Oliveira, M. G., Stryjewska, A., Maragkos, I., Rubin, A. N., Magno, L., Pachnis, V.,
818 Ghorbani, M., Hiebert, S. W., Denaxa, M., and Kessaris, N. (2022). Mtg8 interacts with lhx6
819 to specify cortical interneuron subtype identity. *Nat Commun*, 13(1):5217.

820 Bandler, R. C., Mayer, C., and Fishell, G. (2017). Cortical interneuron specification: the juncture
821 of genes, time and geometry. *Curr Opin Neurobiol*, 42:17–24.

822 Bandler, R. C., Vitali, I., Delgado, R. N., Ho, M. C., Dvoretskova, E., Ibarra Molinas, J. S., Frazel,
823 P. W., Mohammadkhani, M., Machold, R., Maedler, S., Liddelow, S. A., Nowakowski, T. J.,
824 Fishell, G., and Mayer, C. (2022). Single-cell delineation of lineage and genetic identity in
825 the mouse brain. *Nature*, 601(7893):404–409.

826 Batista-Brito, R., Machold, R., Klein, C., and Fishell, G. (2008). Gene expression in cortical
827 interneuron precursors is prescient of their mature function. *Cereb Cortex*, 18(10):2306–17.

828 Berenguer, M. and Duester, G. (2022). Retinoic acid, rars and early development. *J Mol Endocrinol*,
829 69(4):T59–T67.

830 Bonev, B., Mendelson Cohen, N., Szabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y., Xu,
831 X., Lv, X., Hugnot, J.-P., Tanay, A., and Cavalli, G. (2017). Multiscale 3d genome rewiring
832 during mouse neural development. *Cell*, 171(3):557–572.e24.

833 Borello, U., Cobos, I., Long, J. E., McWhirter, J. R., Murre, C., and Rubenstein, J. L. R. (2008).
834 Fgf15 promotes neurogenesis and opposes fgf8 function during neocortical development.
835 *Neural Dev*, 3:17.

836 Borrell, V., Yoshimura, Y., and Callaway, E. M. (2005). Targeted gene delivery to telencephalic
837 inhibitory neurons by directional in utero electroporation. *J Neurosci Methods*, 143(2):151–8.

838 Bridoux, L., Zarrineh, P., Mallen, J., Phuycaroen, M., Latorre, V., Ladam, F., Losa, M., Baker,
839 S. M., Sagerstrom, C., Mace, K. A., Rattray, M., and Bobola, N. (2020). Hox paralogs
840 selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of
841 enhancer activation. *PLoS Genet*, 16(12):e1009162.

842 Butt, S. J. B., Fuccillo, M., Nery, S., Noctor, S., Kriegstein, A., Corbin, J. G., and Fishell, G.
843 (2005). The temporal and spatial origins of cortical interneurons predict their physiological
844 subtype. *Neuron*, 48(4):591–604.

845 Cesario, J. M., Landin Malt, A., Deacon, L. J., Sandberg, M., Vogt, D., Tang, Z., Zhao, Y., Brown,
846 S., Rubenstein, J. L., and Jeong, J. (2015). Lhx6 and lhx8 promote palate development through
847 negative regulation of a cell cycle inhibitor gene, p57kip2. *Hum Mol Genet*, 24(17):5024–39.

848 Chang, C. P., Jacobs, Y., Nakamura, T., Jenkins, N. A., Copeland, N. G., and Cleary, M. L.
849 (1997). Meis proteins are major in vivo dna binding partners for wild-type but not chimeric
850 pbx proteins. *Mol Cell Biol*, 17(10):5679–87.

851 Chapman, H., Riesenbergs, A., Ehrman, L. A., Kohli, V., Nardini, D., Nakafuku, M., Campbell,
852 K., and Waclaw, R. R. (2018). Gsx transcription factors control neuronal versus glial
853 specification in ventricular zone progenitors of the mouse lateral ganglionic eminence. *Dev
854 Biol*, 442(1):115–126.

855 Chatzi, C., Brade, T., and Duester, G. (2011). Retinoic acid functions as a key gabaergic
856 differentiation signal in the basal ganglia. *PLoS Biol*, 9(4):e1000609.

857 Chenn, A. and Walsh, C. A. (2002). Regulation of cerebral cortical size by control of cell cycle
858 exit in neural precursors. *Science*, 297(5580):365–9.

859 Datlinger, P., Rendeiro, A. F., Schmidl, C., Krausgruber, T., Traxler, P., Klughammer, J., Schuster,
860 L. C., Kuchler, A., Alpar, D., and Bock, C. (2017). Pooled crispr screening with single-cell
861 transcriptome readout. *Nat Methods*, 14(3):297–301.

862 Delás, M. J., Kalaitzis, C. M., Fawzi, T., Demuth, M., Zhang, I., Stuart, H. T., Costantini, E.,
863 Ivanovitch, K., Tanaka, E. M., and Briscoe, J. (2023). Developmental cell fate choice in neural
864 tube progenitors employs two distinct cis-regulatory strategies. *Dev Cell*, 58(1):3–17.e8.

865 Delgado, I., Giovinazzo, G., Temiño, S., Gauthier, Y., Balsalobre, A., Drouin, J., and Torres, M.
866 (2021). Control of mouse limb initiation and antero-posterior patterning by meis transcription
867 factors. *Nat Commun*, 12(1):3086.

868 den Hoed, J., Devaraju, K., and Fisher, S. E. (2021). Molecular networks of the foxp2 transcription
869 factor in the brain. *EMBO Rep*, 22(8):e52803.

870 DeTomaso, D. and Yosef, N. (2021). Hotspot identifies informative gene modules across modalities
871 of single-cell genomics. *Cell Syst*, 12(5):446–456.e9.

872 Ding, S., Wu, X., Li, G., Han, M., Zhuang, Y., and Xu, T. (2005). Efficient transposition of the
873 piggybac (pb) transposon in mammalian cells and mice. *Cell*, 122(3):473–83.

874 Dodson, P. D., Larvin, J. T., Duffell, J. M., Garas, F. N., Doig, N. M., Kessaris, N., Duguid, I. C.,
875 Bogacz, R., Butt, S. J. B., and Magill, P. J. (2015). Distinct developmental origins manifest
876 in the specialized encoding of movement by adult neurons of the external globus pallidus.
877 *Neuron*, 86(2):501–13.

878 Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., Smith, I.,
879 Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., and Root, D. E. (2016).
880 Optimized sgrna design to maximize activity and minimize off-target effects of crispr-cas9.
881 *Nat Biotechnol*, 34(2):184–191.

882 Douglas, G., Cho, M. T., Telegrafi, A., Winter, S., Carmichael, J., Zackai, E. H., Deardorff, M. A.,
883 Harr, M., Williams, L., Psychogios, A., Erwin, A. L., Grebe, T., Retterer, K., and Juusola,
884 J. (2018). De novo missense variants in meis2 recapitulate the microdeletion phenotype of

885 cardiac and palate abnormalities, developmental delay, intellectual disability and dysmorphic
886 features. *Am J Med Genet A*, 176(9):1845–1851.

887 Dupacova, N., Antosova, B., Paces, J., and Kozmik, Z. (2021). Meis homeobox genes control
888 progenitor competence in the retina. *Proc Natl Acad Sci U S A*, 118(12).

889 Feng, J., Liu, T., Qin, B., Zhang, Y., and Liu, X. S. (2012). Identifying chip-seq enrichment using
890 macs. *Nat Protoc*, 7(9):1728–40.

891 Fischer, E. S., Böhm, K., Lydeard, J. R., Yang, H., Stadler, M. B., Cavadini, S., Nagel, J., Serluca,
892 F., Acker, V., Lingaraju, G. M., Tichkule, R. B., Schebesta, M., Forrester, W. C., Schirle, M.,
893 Hassiepen, U., Ottl, J., Hild, M., Beckwith, R. E. J., Harper, J. W., Jenkins, J. L., and Thomä,
894 N. H. (2014). Structure of the ddb1-crbn e3 ubiquitin ligase in complex with thalidomide.
895 *Nature*, 512(7512):49–53.

896 Flames, N., Pla, R., Gelman, D., Rubenstein, J., Puelles, L., and Marín, O. (2007). Delineation of
897 multiple subpallial progenitor domains by the combinatorial expression of transcriptional
898 codes. *J. Neurosci.; Journal of Neuroscience*, 27(36):9682–9695.

899 French, C. A. and Fisher, S. E. (2014). What can mice tell us about foxp2 function? *Curr Opin
900 Neurobiol*, 28:72–9.

901 Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear
902 models via coordinate descent. *J Stat Softw*, 33(1):1–22.

903 Gangfuß, A., Yigit, G., Altmüller, J., Nürnberg, P., Czeschik, J. C., Wollnik, B., Bögershausen,
904 N., Burfeind, P., Wieczorek, D., Kaiser, F., Roos, A., Kölbel, H., Schara-Schmidt, U., and
905 Kuechler, A. (2021). Intellectual disability associated with craniofacial dysmorphism, cleft
906 palate, and congenital heart defect due to a de novo meis2 mutation: A clinical longitudinal
907 study. *Am J Med Genet A*, 185(4):1216–1221.

908 Gelman, D., Griveau, A., Dehorter, N., Teissier, A., Varela, C., Pla, R., Pierani, A., and Marín,
909 O. (2011). A wide diversity of cortical gabaergic interneurons derives from the embryonic
910 preoptic area. *J Neurosci*, 31(46):16570–80.

911 Gerfen, C. R. and Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine.
912 *Annu Rev Neurosci*, 34:441–66.

913 Giliberti, A., Currò, A., Papa, F. T., Frullanti, E., Ariani, F., Coriolani, G., Grossi, S., Renieri,
914 A., and Mari, F. (2020). Meis2 gene is responsible for intellectual disability, cardiac defects
915 and a distinct facial phenotype. *Eur J Med Genet*, 63(1):103627.

916 Gorkin, D. U., Barozzi, I., Zhao, Y., Zhang, Y., Huang, H., Lee, A. Y., Li, B., Chiou, J.,
917 Wildberg, A., Ding, B., Zhang, B., Wang, M., Strattan, J. S., Davidson, J. M., Qiu, Y., Afzal,
918 V., Akiyama, J. A., Plajzer-Frick, I., Novak, C. S., Kato, M., Garvin, T. H., Pham, Q. T.,
919 Harrington, A. N., Mannion, B. J., Lee, E. A., Fukuda-Yuzawa, Y., He, Y., Preissl, S., Chee,
920 S., Han, J. Y., Williams, B. A., Trout, D., Amrhein, H., Yang, H., Cherry, J. M., Wang, W.,
921 Gaulton, K., Ecker, J. R., Shen, Y., Dickel, D. E., Visel, A., Pennacchio, L. A., and Ren,
922 B. (2020). An atlas of dynamic chromatin landscapes in mouse fetal development. *Nature*,
923 583(7818):744–751.

924 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, 3rd, W. M., Zheng, S., Butler, A., Lee, M. J., Wilk,
925 A. J., Darby, C., Zager, M., Hoffman, P., Stoeckius, M., Papalex, E., Mimitou, E. P., Jain, J.,

926 Srivastava, A., Stuart, T., Fleming, L. M., Yeung, B., Rogers, A. J., McElrath, J. M., Blish,
927 C. A., Gottardo, R., Smibert, P., and Satija, R. (2021). Integrated analysis of multimodal
928 single-cell data. *Cell*, 184(13):3573–3587.e29.

929 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C.,
930 Singh, H., and Glass, C. K. (2010). Simple combinations of lineage-determining transcription
931 factors prime cis-regulatory elements required for macrophage and b cell identities. *Mol Cell*,
932 38(4):576–89.

933 Hobert, O. and Westphal, H. (2000). Functions of lim-homeobox genes. *Trends Genet*, 16(2):75–
934 83.

935 Hsiau, T., Conant, D., Rossi, N., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K.,
936 Enzmann, B., and Stoner, R. (2019). Inference of crispr edits from sanger trace data. *bioRxiv*.

937 Hyman-Walsh, C., Bjerke, G. A., and Wotton, D. (2010). An autoinhibitory effect of the
938 homothorax domain of meis2. *FEBS J*, 277(12):2584–97.

939 Jin, X., Simmons, S. K., Guo, A., Shetty, A. S., Ko, M., Nguyen, L., Jokhi, V., Robinson, E.,
940 Oyler, P., Curry, N., Deangeli, G., Lodato, S., Levin, J. Z., Regev, A., Zhang, F., and Arlotta,
941 P. (2020). In vivo perturb-seq reveals neuronal and glial abnormalities associated with autism
942 risk genes. *Science*, 370(6520).

943 Jindal, G. A. and Farley, E. K. (2021). Enhancer grammar in development, evolution, and disease:
944 dependencies and interplay. *Dev Cell*, 56(5):575–587.

945 Jolma, A., Yin, Y., Nitta, K. R., Dave, K., Popov, A., Taipale, M., Enge, M., Kivioja, T.,
946 Morgunova, E., and Taipale, J. (2015). Dna-dependent formation of transcription factor pairs
947 alters their binding specificity. *Nature*, 527(7578):384–8.

948 Kim, H., Berens, N. C., Ochandarena, N. E., and Philpot, B. D. (2020). Region and cell type
949 distribution of tcf4 in the postnatal mouse brain. *Front Neuroanat*, 14:42.

950 Kim, S., Morgunova, E., Naqvi, S., Bader, M., Koska, M., Popov, A., Luong, C., Pogson, A.,
951 Claes, P., Taipale, J., and Wysocka, J. (2023). Dna-guided transcription factor cooperativity
952 shapes face and limb mesenchyme. *bioRxiv*.

953 Knowles, R., Dehorter, N., and Ellender, T. (2021). From progenitors to progeny: Shaping striatal
954 circuit development and function. *J Neurosci*, 41(46):9483–9502.

955 Ko, H.-A., Chen, S.-Y., Chen, H.-Y., Hao, H.-J., and Liu, F.-C. (2013). Cell type-selective
956 expression of the zinc finger-containing gene nolz-1/zfp503 in the developing mouse striatum.
957 *Neurosci Lett*, 548:44–9.

958 Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner,
959 M., Loh, P.-R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of
960 single-cell data with harmony. *Nat Methods*, 16(12):1289–1296.

961 Kreitzer, A. C. and Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function.
962 *Neuron*, 60(4):543–54.

963 Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev,
964 S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D.,
965 Gundersen, G. W., and Ma'ayan, A. (2016). Enrichr: a comprehensive gene set enrichment
966 analysis web server 2016 update. *Nucleic Acids Res*, 44(W1):W90–7.

967 La Manno, G., Siletti, K., Furlan, A., Gyllborg, D., Vinsland, E., Mossi Albiach, A., Matts-
968 son Langseth, C., Khven, I., Lederer, A. R., Dratva, L. M., Johnsson, A., Nilsson, M.,
969 Lönnerberg, P., and Linnarsson, S. (2021). Molecular architecture of the developing mouse
970 brain. *Nature*, 596(7870):92–96.

971 Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2. *Nat Methods*,
972 9(4):357–9.

973 Lee, D. R., Rhodes, C., Mitra, A., Zhang, Y., Maric, D., Dale, R. K., and Petros, T. J. (2022).
974 Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the
975 mouse forebrain. *Elife*, 11.

976 Leung, R. F., George, A. M., Roussel, E. M., Faux, M. C., Wigle, J. T., and Eisenstat, D. D.
977 (2022). Genetic regulation of vertebrate forebrain development by homeobox genes. *Front
978 Neurosci*, 16:843794.

979 Lim, L., Mi, D., Llorca, A., and Marín, O. (2018). Development and functional diversification of
980 cortical interneurons. *Neuron*, 100(2):294–313.

981 Lindtner, S., Catta-Preta, R., Tian, H., Su-Feher, L., Price, J. D., Dickel, D. E., Greiner, V.,
982 Silberberg, S. N., McKinsey, G. L., McManus, M. T., Pennacchio, L. A., Visel, A., Nord,
983 A. S., and Rubenstein, J. L. R. (2019). Genomic resolution of dlx-orchestrated transcriptional
984 circuits driving development of forebrain gabaergic neurons. *Cell Rep*, 28(8):2048–2063.e8.

985 Longobardi, E., Penkov, D., Mateos, D., De Florian, G., Torres, M., and Blasi, F. (2014).
986 Biochemistry of the tale transcription factors prep, meis, and pbx in vertebrates. *Dev Dyn*,
987 243(1):59–75.

988 Louw, J. J., Corveleyn, A., Jia, Y., Hens, G., Gewillig, M., and Devriendt, K. (2015). Meis2
989 involvement in cardiac development, cleft palate, and intellectual disability. *Am J Med Genet
990 A*, 167A(5):1142–6.

991 Mayer, C., Hafemeister, C., Bandler, R. C., Machold, R., Batista Brito, R., Jaglin, X., Allaway,
992 K., Butler, A., Fishell, G., and Satija, R. (2018). Developmental diversification of cortical
993 inhibitory interneurons. *Nature*, 555(7697):457–462.

994 Megason, S. G. and McMahon, A. P. (2002). A mitogen gradient of dorsal midline wnts organizes
995 growth in the cns. *Development*, 129(9):2087–98.

996 Mercader, N., Tanaka, E. M., and Torres, M. (2005). Proximodistal identity during vertebrate limb
997 regeneration is regulated by meis homeodomain proteins. *Development*, 132(18):4131–42.

998 Mesman, S., Bakker, R., and Smidt, M. P. (2020). Tcf4 is required for correct brain development
999 during embryogenesis. *Molecular and Cellular Neuroscience*, 106:103502.

1000 Meylan, P., Dreos, R., Ambrosini, G., Groux, R., and Bucher, P. (2020). Epd in 2020: enhanced
1001 data visualization and extension to ncRNA promoters. *Nucleic Acids Res*, 48(D1):D65–D69.

1002 Miyoshi, G., Hjerling-Leffler, J., Karayannidis, T., Sousa, V. H., Butt, S. J. B., Battiste, J.,
1003 Johnson, J. E., Machold, R. P., and Fishell, G. (2010). Genetic fate mapping reveals that the
1004 caudal ganglionic eminence produces a large and diverse population of superficial cortical
1005 interneurons. *J Neurosci*, 30(5):1582–94.

1006 Miyoshi, G., Young, A., Petros, T., Karayannis, T., McKenzie Chang, M., Lavado, A., Iwano, T.,
1007 Nakajima, M., Taniguchi, H., Huang, Z. J., Heintz, N., Oliver, G., Matsuzaki, F., Machold,
1008 R. P., and Fishell, G. (2015). Prox1 regulates the subtype-specific development of caudal
1009 ganglionic eminence-derived gabaergic cortical interneurons. *J Neurosci*, 35(37):12869–89.

1010 Molotkova, N., Molotkov, A., and Duester, G. (2007). Role of retinoic acid during forebrain
1011 development begins late when raldh3 generates retinoic acid in the ventral subventricular
1012 zone. *Dev Biol*, 303(2):601–10.

1013 Nery, S., Fishell, G., and Corbin, J. G. (2002). The caudal ganglionic eminence is a source of
1014 distinct cortical and subcortical cell populations. *Nat Neurosci*, 5(12):1279–87.

1015 Ng, F. S. L., Schütte, J., Ruau, D., Diamanti, E., Hannah, R., Kinston, S. J., and Göttgens, B.
1016 (2014). Constrained transcription factor spacing is prevalent and important for transcriptional
1017 control of mouse blood cells. *Nucleic Acids Res*, 42(22):13513–24.

1018 Panganiban, G. and Rubenstein, J. L. R. (2002). Developmental functions of the distal-less/dlx
1019 homeobox genes. *Development*, 129(19):4371–86.

1020 Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., Dahlman, J. E., Parnas,
1021 O., Eisenhaure, T. M., Jovanovic, M., Graham, D. B., Jhunjhunwala, S., Heidenreich, M.,
1022 Xavier, R. J., Langer, R., Anderson, D. G., Hacohen, N., Regev, A., Feng, G., Sharp, P. A.,
1023 and Zhang, F. (2014). Crispr-cas9 knockin mice for genome editing and cancer modeling.
1024 *Cell*, 159(2):440–55.

1025 Replogle, J. M., Norman, T. M., Xu, A., Hussmann, J. A., Chen, J., Cogan, J. Z., Meer, E. J., Terry,
1026 J. M., Riordan, D. P., Srinivas, N., Fiddes, I. T., Arthur, J. G., Alvarado, L. J., Pfeiffer, K. A.,
1027 Mikkelsen, T. S., Weissman, J. S., and Adamson, B. (2020). Combinatorial single-cell crispr
1028 screens by direct guide rna capture and targeted sequencing. *Nat Biotechnol*, 38(8):954–961.

1029 Rhodes, C. T., Thompson, J. J., Mitra, A., Asokumar, D., Lee, D. R., Lee, D. J., Zhang, Y.,
1030 Jason, E., Dale, R. K., Rocha, P. P., and Petros, T. J. (2022). An epigenome atlas of neural
1031 progenitors within the embryonic mouse forebrain. *Nat Commun*, 13(1):4196.

1032 Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and
1033 Mesirov, J. P. (2011). Integrative genomics viewer. *Nat Biotechnol*, 29(1):24–6.

1034 Saito, T. (2006). In vivo electroporation in the embryonic mouse central nervous system. *Nat
1035 Protoc*, 1(3):1552–8.

1036 Sandberg, M., Flandin, P., Silberberg, S., Su-Fehrer, L., Price, J. D., Hu, J. S., Kim, C., Visel, A.,
1037 Nord, A. S., and Rubenstein, J. L. R. (2016). Transcriptional networks controlled by nkx2-1
1038 in the development of forebrain gabaergic neurons. *Neuron*, 91(6):1260–1275.

1039 Sandberg, M., Taher, L., Hu, J., Black, B. L., Nord, A. S., and Rubenstein, J. L. R. (2018).
1040 Genomic analysis of transcriptional networks directing progression of cell states during mge
1041 development. *Neural Dev*, 13(1):21.

1042 Sanson, K. R., Hanna, R. E., Hegde, M., Donovan, K. F., Strand, C., Sullender, M. E., Vaimberg,
1043 E. W., Goodale, A., Root, D. E., Piccioni, F., and Doench, J. G. (2018). Optimized libraries
1044 for crispr-cas9 genetic screens with multiple modalities. *Nat Commun*, 9(1):5416.

1045 Saunders, A., Macosko, E. Z., Wysoker, A., Goldman, M., Krienen, F. M., de Rivera, H., Bien,
1046 E., Baum, M., Bortolin, L., Wang, S., Goeva, A., Nemesh, J., Kamitaki, N., Brumbaugh, S.,

1047 Kulp, D., and McCarroll, S. A. (2018). Molecular diversity and specializations among the
1048 cells of the adult mouse brain. *Cell*, 174(4):1015–1030.e16.

1049 Schulte, D. and Geerts, D. (2019). Meis transcription factors in development and disease.
1050 *Development*, 146(16).

1051 Selleri, L., Zappavigna, V., and Ferretti, E. (2019). 'building a perfect body': control of vertebrate
1052 organogenesis by pbx-dependent regulatory networks. *Genes Dev*, 33(5-6):258–275.

1053 Shang, Z., Yang, L., Wang, Z., Tian, Y., Gao, Y., Su, Z., Guo, R., Li, W., Liu, G., Li, X., Yang, Z.,
1054 Li, Z., and Zhang, Z. (2022). The transcription factor zfp503 promotes the d1 msn identity
1055 and represses the d2 msn identity. *Front Cell Dev Biol*, 10:948331.

1056 Shen, M. W., Arbab, M., Hsu, J. Y., Worstell, D., Culbertson, S. J., Krabbe, O., Cassa, C. A.,
1057 Liu, D. R., Gifford, D. K., and Sherwood, R. I. (2018). Predictable and precise template-free
1058 crispr editing of pathogenic variants. *Nature*, 563(7733):646–651.

1059 Shen, W. F., Montgomery, J. C., Rozenfeld, S., Moskow, J. J., Lawrence, H. J., Buchberg,
1060 A. M., and Largman, C. (1997). Abdb-like hox proteins stabilize dna binding by the meis1
1061 homeodomain proteins. *Mol Cell Biol*, 17(11):6448–58.

1062 Shohayeb, B., Muzar, Z., and Cooper, H. M. (2021). Conservation of neural progenitor identity
1063 and the emergence of neocortical neuronal diversity. *Semin Cell Dev Biol*, 118:4–13.

1064 Song, X., Chen, H., Shang, Z., Du, H., Li, Z., Wen, Y., Liu, G., Qi, D., You, Y., Yang, Z., Zhang,
1065 Z., and Xu, Z. (2021). Homeobox gene six3 is required for the differentiation of d2-type
1066 medium spiny neurons. *Neurosci Bull*, 37(7):985–998.

1067 Squair, J. W., Gautier, M., Kathe, C., Anderson, M. A., James, N. D., Hutson, T. H., Hudelle, R.,
1068 Qaiser, T., Matson, K. J. E., Barraud, Q., Levine, A. J., La Manno, G., Skinnider, M. A., and
1069 Courtine, G. (2021). Confronting false discoveries in single-cell differential expression. *Nat
1070 Commun*, 12(1):5692.

1071 Storm, E. E., Garel, S., Borello, U., Hebert, J. M., Martinez, S., McConnell, S. K., Martin, G. R.,
1072 and Rubenstein, J. L. R. (2006). Dose-dependent functions of fgf8 in regulating telencephalic
1073 patterning centers. *Development*, 133(9):1831–44.

1074 Stühmer, T., Anderson, S. A., Ekker, M., and Rubenstein, J. L. R. (2002). Ectopic expression
1075 of the dlx genes induces glutamic acid decarboxylase and dlx expression. *Development*,
1076 129(1):245–52.

1077 Su, Z., Wang, Z., Lindtner, S., Yang, L., Shang, Z., Tian, Y., Guo, R., You, Y., Zhou, W.,
1078 Rubenstein, J. L., Yang, Z., and Zhang, Z. (2022). Dlx1/2-dependent expression of meis2
1079 promotes neuronal fate determination in the mammalian striatum. *Development*, 149(4).

1080 Su-Feher, L., Rubin, A., Silberberg, S., Catta-Preta, R., Lim, K., Zdilar, I., McGinnis, C.,
1081 McKinsey, G., Rubino, T., Hawrylycz, M., Thompson, C., Gartner, Z., Puelles, L., Zeng, H.,
1082 Rubenstein, J., and Nord, A. (2021). Single cell enhancer activity maps neuronal lineages in
1083 embryonic mouse basal ganglia. *bioRxiv*.

1084 Tan, C. L., Plotkin, J. L., Venø, M. T., von Schimmelmann, M., Feinberg, P., Mann, S.,
1085 Handler, A., Kjems, J., Surmeier, D. J., O'Carroll, D., Greengard, P., and Schaefer, A.
1086 (2013). Microrna-128 governs neuronal excitability and motor behavior in mice. *Science*,
1087 342(6163):1254–8.

1088 Tang, K., Rubenstein, J. L. R., Tsai, S. Y., and Tsai, M.-J. (2012). Coup-tfii controls amygdala
1089 patterning by regulating neuropilin expression. *Development*, 139(9):1630–9.

1090 Teixeira, J. R., Szeto, R. A., Carvalho, V. M. A., Muotri, A. R., and Papes, F. (2021). Transcription
1091 factor 4 and its association with psychiatric disorders. *Transl Psychiatry*, 11(1):19.

1092 Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P. (2013). Integrative genomics viewer
1093 (igv): high-performance genomics data visualization and exploration. *Brief Bioinform*,
1094 14(2):178–92.

1095 Toresson, H., Mata de Urquiza, A., Fagerström, C., Perlmann, T., and Campbell, K. (1999).
1096 Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron
1097 differentiation. *Development*, 126(6):1317–26.

1098 Verheij, R., Kupchik, G. S., Isidor, B., Kroes, H. Y., Lynch, S. A., Hawkes, L., Hempel, M.,
1099 Gelb, B. D., Ghoumid, J., D'Amours, G., Chandler, K., Dubourg, C., Loddo, S., Tümer,
1100 Z., Shaw-Smith, C., Nizon, M., Shevell, M., Van Hoof, E., Anyane-Yeboa, K., Cerbone,
1101 G., Clayton-Smith, J., Cogné, B., Corre, P., Corveleyn, A., De Borre, M., Hjortshøj, T. D.,
1102 Fradin, M., Gewillig, M., Goldmuntz, E., Hens, G., Lemyre, E., Journel, H., Kini, U., Kortüm,
1103 F., Le Caignec, C., Novelli, A., Odent, S., Petit, F., Revah-Politi, A., Stong, N., Strom,
1104 T. M., van Binsbergen, E., DDD study, Devriendt, K., and Breckpot, J. (2019). Heterozygous
1105 loss-of-function variants of meis2 cause a triad of palatal defects, congenital heart defects,
1106 and intellectual disability. *Eur J Hum Genet*, 27(2):278–290.

1107 Visel, A., Minovitsky, S., Dubchak, I., and Pennacchio, L. A. (2007). Vista enhancer browser—a
1108 database of tissue-specific human enhancers. *Nucleic Acids Res*, 35(Database issue):D88–92.

1109 Visel, A., Taher, L., Girgis, H., May, D., Golonzha, O., Hoch, R. V., McKinsey, G. L.,
1110 Pattabiraman, K., Silberberg, S. N., Blow, M. J., Hansen, D. V., Nord, A. S., Akiyama, J. A.,
1111 Holt, A., Hosseini, R., Phouanenavong, S., Plajzer-Frick, I., Shoukry, M., Afzal, V., Kaplan,
1112 T., Kriegstein, A. R., Rubin, E. M., Ovcharenko, I., Pennacchio, L. A., and Rubenstein,
1113 J. L. R. (2013). A high-resolution enhancer atlas of the developing telencephalon. *Cell*,
1114 152(4):895–908.

1115 Vogt, D., Hunt, R. F., Mandal, S., Sandberg, M., Silberberg, S. N., Nagasawa, T., Yang, Z.,
1116 Baraban, S. C., and Rubenstein, J. L. R. (2014). Lhx6 directly regulates arx and cxcr7 to
1117 determine cortical interneuron fate and laminar position. *Neuron*, 82(2):350–64.

1118 Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D., and Klein, A. M. (2020). Lineage tracing
1119 on transcriptional landscapes links state to fate during differentiation. *Science*, 367(6479).

1120 Whitington, T., Frith, M. C., Johnson, J., and Bailey, T. L. (2011). Inferring transcription factor
1121 complexes from chip-seq data. *Nucleic Acids Res*, 39(15):e98.

1122 Wonders, C. P. and Anderson, S. A. (2006). The origin and specification of cortical interneurons.
1123 *Nat Rev Neurosci*, 7(9):687–96.

1124 Yang, S., Corbett, S. E., Koga, Y., Wang, Z., Johnson, W. E., Yajima, M., and Campbell, J. D.
1125 (2020). Decontamination of ambient rna in single-cell rna-seq with decontx. *Genome Biol*,
1126 21(1):57.

1127 Yun, K., Garel, S., Fischman, S., and Rubenstein, J. L. R. (2003). Patterning of the lateral
1128 ganglionic eminence by the gsh1 and gsh2 homeobox genes regulates striatal and olfactory

1129 bulb histogenesis and the growth of axons through the basal ganglia. *J Comp Neurol*,
1130 461(2):151–65.

1131 Zhang, B., Liu, M., Fong, C.-T., and Iqbal, M. A. (2021). Meis2 (15q14) gene deletions in
1132 siblings with mild developmental phenotypes and bifid uvula: documentation of mosaicism
1133 in an unaffected parent. *Mol Cytogenet*, 14(1):58.

1134 Zhang, Z., Gutierrez, D., Li, X., Bidlack, F., Cao, H., Wang, J., Andrade, K., Margolis, H. C.,
1135 and Amendt, B. A. (2013). The lim homeodomain transcription factor lhx6: a transcriptional
1136 repressor that interacts with pituitary homeobox 2 (pitx2) to regulate odontogenesis. *J Biol
1137 Chem*, 288(4):2485–500.

1138 Zhao, L., Liu, Z., Levy, S. F., and Wu, S. (2018). Bartender: a fast and accurate clustering
1139 algorithm to count barcode reads. *Bioinformatics*, 34(5):739–747.

1140 Zhao, Y., Flandin, P., Long, J. E., Cuesta, M. D., Westphal, H., and Rubenstein, J. L. R. (2008).
1141 Distinct molecular pathways for development of telencephalic interneuron subtypes revealed
1142 through analysis of lhx6 mutants. *J Comp Neurol*, 510(1):79–99.

1143 Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo, S. B.,
1144 Wheeler, T. D., McDermott, G. P., Zhu, J., Gregory, M. T., Shuga, J., Montesclaros, L.,
1145 Underwood, J. G., Masquelier, D. A., Nishimura, S. Y., Schnall-Levin, M., Wyatt, P. W.,
1146 Hindson, C. M., Bharadwaj, R., Wong, A., Ness, K. D., Beppu, L. W., Deeg, H. J., McFarland,
1147 C., Loeb, K. R., Valente, W. J., Ericson, N. G., Stevens, E. A., Radich, J. P., Mikkelsen, T. S.,
1148 Hindson, B. J., and Bielas, J. H. (2017). Massively parallel digital transcriptional profiling of
1149 single cells. *Nat Commun*, 8:14049.

1150 Zolboot, N., Du, J. X., Zampa, F., and Lippi, G. (2021). Micrornas instruct and maintain cell
1151 type diversity in the nervous system. *Front Mol Neurosci*, 14:646072.

1152 Zug, R. (2022). Developmental disorders caused by haploinsufficiency of transcriptional regulators:
1153 a perspective based on cell fate determination. *Biol Open*, 11(1).