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Abstract

DNA variation analysis has become indispensable in many aspects of mod-
ern biomedicine, most prominently in the comparison of normal and tumor
samples. Thousands of samples are collected in local sequencing efforts and
public databases requiring highly scalable, portable, and automated workflows
for streamlined processing. Here, we present nf-core/sarek 3, a well-established,
comprehensive variant calling and annotation pipeline for germline and somatic
samples. It is suitable for any genome with a known reference. We present a
full rewrite of the original pipeline showing a significant reduction of storage
requirements by using the CRAM format and runtime by increasing intra-sample
parallelization. Both are leading to a 70% cost reduction in commercial clouds
enabling users to do large-scale and cross-platform data analysis while keeping
costs and CO2 emissions low. The code is available at https://nf-co.re/sarek.

Keywords: workflows, cloud computing, variant calling, best practices, cost efficiency

1 Introduction

Genomic variation analysis of short-read data has become a key step for modern
personalized medicine as well as for fundamental biomedical research. In particular,
for biomedical assessment, it is used for characterizing genomes of samples taken from
both healthy or tumor tissue. In clinical applications, the resulting information can be
used to classify tumors and support treatment decisions [1–3] or research questions,
such as drug development [4] or identify variations of interest in larger cohorts for
further studies [5, 6]. The technologies and protocols for generating DNA sequencing
data vary a lot. Each of the technologies comes with different specialties ranging from
targeted gene panels and whole exomes (WES) to whole genomes (WGS) resulting
in raw data files from a few to hundreds of gigabytes (GB). Various project-specific
factors play a role in choosing the appropriate sequencing technologies, such as the
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particular type of genomic variations of interest, the cost for sequencing, analysis,
and data storage or turn-around times [7]. Panel and exome sequencing is cheaper
than WGS [8]. Targeting defined regions allows for having high coverage in these
regions. Hence, single nucleotide variants (SNVs) and small insertions and deletions
(Indels) can be determined with high confidence. WGS, on the other hand, can be
used to additionally investigate more complex alterations such as non-coding variants,
large structural variants (SV), and copy-number variations (CNV). Another aspect
is ethical considerations on how to handle ’accidentally detected’ genomic variation
in non-targeted genes which had been identified during the whole genome or whole
exome sequencing [9, 10].

Examples of large-scale genomics collection projects are TCGA/ICGC or the
100,000 Genomes Project. Some 6,800 whole-genome samples from the former were
uniformly processed for the ‘Pan Cancer Analysis of Whole Genomes’ study to obtain
a consistent set of somatic mutation calls [11]. More than 12,000 whole-genome sam-
ples from the latter were analyzed with respect to their mutational signatures to gain
insights into tissue-specific markers [12]. There are several national and international
initiatives that aim at gathering more and more sequenced genomes, such as the
Estonia Genome Project, the German Human Genome-Phenome Archive, the Iceland
Genome Project [13], or the European ’1+ Million Genomes’ Initiative. Such stud-
ies often encompass many patients and their samples are often collected over longer
periods of time at multiple sites. This requires stable, and reproducible pipelines that
can be run on a variety of different high-performance clusters and cloud setups with
differing scheduling system for distributed and homogeneous data processing [14].

Several pipelines [11, 15–18] have been published in different workflow languages
to automatically process reads from FastQ files to called (and annotated) variants
accompanied by countless in-house workflows. With a certain variety of tools, the
workflows usually encompass: quality control steps, read trimming, mapping, duplicate
marking, base quality score recalibration, variant calling, and possibly annotation (see
Fig. 1).

While there are many workflows available, nf-core/sarek [15] stands out with its
ability to process germline, tumor-only, and paired samples in one run. It can perform
SNV/Indel, SV, and CNV calling, as well as micro-satellite instability(MSI) analysis
of WGS, WES, and panel data with currently 12 different tools. Since the pipeline
is written in Nextflow [20], it benefits from the portability to any supported infras-
tructure, in particular several cloud vendors and common HPC schedulers enabling
cross-platform homogeneous data processing. Furthermore, the pipeline allows the pro-
cessing of non-model organisms. While the reference genomes and databases are most
comprehensively provided for human and mouse genomes as well as subsets for many
other organisms, they can be generated and saved for future runs for non-supported
species. nf-core/sarek is part of the nf-core community project [21] and has a growing
user base with now 242 stars on GitHub and 47.47K unique repository visitors since
July 2019 (as of 1st June 2023) who additionally contributes with supporting and
improving the code base either by direct contributions, suggesting features, or raising
issues.
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Fig. 1: There are many published and countless unpublished variant calling pipelines
written in dedicated workflow languages like Nextflow (NF), SnakeMake (SM) [19],
and Roddy. All pipelines align the reads, duplicate mark them, and employ various
QC metrics (see A1). nf-core/sarek, Ovarflow, and TOSCA have additional option for
base quality score recalibration. All pipelines allow variant calling and annotation.
The varying supported variant calling types are highlighted for each pipeline respec-
tively. For the One-touch pipelines (OTP), separate workflows have to be triggered for
each variant calling type with build-in annotation. nf-core/sarek stands out by cov-
ering germline, tumor-only, and paired variant calling followed by annotation across
whole genome, whole-exome, and panel sequencing data. The code is available online
and well-documented, implemented in Nextflow to enable portability to various infras-
tructures, and supported by an active community.

The pipeline has been used within the field of cancer research [22–27] and beyond,
such as the identification of rare variants in tinnitus patients [28], finding SNPs in
driver genes related to stress-response in cowpeas [29], the genomic profiling of wild
and commercial bumble bee populations [30], or the Personal Genome Project-UK [31].

Here, we present a re-implementation of the nf-core/sarek pipeline using the
Nextflow DSL2 framework, an extension of the Nextflow syntax allowing to develop
pipelines in a modular fashion, which increases user-based customization to maintain
a modern pipeline. The re-implementation is focused on reducing required compute
resources for efficient runs on different infrastructures. Minimizing required computing
resources has always been of large interest. In particular, in the genomics space, more
users run their calculations on several commercial and non-commercial cloud plat-
forms [14]. Commercial platforms usually come with a pay-per-use model, thus there
is a high interest to reduce costs due to finite funding. For non-commercial platforms
or local clusters, direct costs are possibly of lower interest, however, reducing required
resources allows for processing more samples in a shorter time frame. Furthermore, all
used tools have been updated to their latest version upon release. For various steps,
new tool options have been added, i.e. mapping with DragMap or variant calling with
DeepVariant [32], or fastP [33] for adapter trimming.
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Using this re-implementation, we show for the first time that population-scale
homogeneous recomputing of WGS on commercial clouds is possible.

Our findings demonstrate a 69% reduction in compute costs when utilizing the
nf-core/sarek 3.1.1 pipeline, in comparison to a previous version, nf-core/sarek 2.7.2.
This translates to costs of just $20 for comprehensive germline short and structural
variant calling, and annotation.

2 Results

2.1 Pipeline overview & summary of new tools and features

An overview of nf-core/sarek v3.1.1 is shown in Fig. 2. The input data is an nf-core
community standardized samplesheet in comma-separated value (CSV) format, that
provides all relevant metadata needed for the analysis as well as the paths to the FastQ
files. The pipeline has multiple entry points to facilitate (re-)computation of specific
steps (e.g. recalibration, variant calling, annotation) by providing a samplesheet with
paths to the intermediary (recalibrated) BAM/CRAM files. The pipeline processes
input sequencing data in FastQ file format based on GATK best-practice recommen-
dations [34], [35]. It consists of four major processing units: pre-processing, variant
calling, variant annotation, and quality control (QC) reporting.

Pre-processing

Enabling homogeneous processing of global genomic resources requires flexibility on
the genomic ”raw” input data. To cope with the fact that different data repositories
provide their ”primary” data in different formats, nf-core/sarek support both BAM
and FastQ as input. When BAMs are provided as starting input, they are converted
to FastQ via SAMtools [36] which allows for fully homogenous processing independent
of the provided input format.

The FastQ files are then split into shards with fastP including optional adapter
trimming allowing the subsequent alignment step to be run on smaller machines. FastP
has been introduced with the release v3.0 and is advantageous over other splitting and
adapter removal tools as it combines FastQ sharding and adapter removal into one
step, speeding up the computation. With this new implementation, we no longer need
to rely on Trim Galore! and Nextflow’s native splitFastq() function.

Version 3.1.1 of nf-core/sarek can handle UMI barcodes, which are used in some
protocols to detect low allele frequency variants [37]. The user can opt for using Ful-
crumgenomics’ fgbio1 tool, which generates a consensus read among the ones carrying
the same UMI. It will then use these reads as input for the remaining pre-processing
steps.

The split FastQ files are aligned with one of the available mappers, which include
BWA-MEM [38], BWA-MEM2 [39], or DragMap,2 and name- or coordinate-sorted
with SAMtools. By adding DragMap support, we comprehensively cover the commu-
nity’s needs. We added the missing pre-computed reference indices for BWA-MEM2

1https://github.com/fulcrumgenomics/fgbio
2https://github.com/Illumina/DRAGMAP)
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and DragMap for GRCh38 and GRCh37 to speed up the computation. As recom-
mended by GATK guidelines, we use the entire genome during mapping. Off-target
reads for WES and panel analysis are removed according to the provided BED file
during the base quality score recalibration (BQSR) step.

By default, the aligned BAMs are then merged, duplicates are marked with GATK4
Markduplicates, and converted to CRAM format in one process to reduce runtime and
storage needs. The duplicate marking step was improved by providing name-sorted
alignment files to GATK4 MarkDuplicatesSpark. If duplicate marking is skipped,
SAMtools is used for merging and conversion to CRAM format. BQSR on the result-
ing CRAM files is run with GATK4 BaseRecalibrator and GATK4 ApplyBQSR. For
both, the GATK Spark implementation is available. Both steps can be skipped, in
which case the mapped BAMs are converted to CRAMs using SAMtools.

In order to speed up the computation, genomic regions are processed in parallel
following the duplicate marking step. Small regions are grouped and processed together
to reduce the number of jobs spun up. By default, interval lists for the complete
reference genome provided by GATK are used, enabling scattering by chromosome,
and removing unresolved and difficult regions. For targeted sequencing data, we have
added support to use the respective target bed files for parallelization as recommended
by the GATK guidelines.3 Previously, BQSR was always run on the intervals provided
for WGS, which led to recalibrating off-target reads increasing computational resources
needed. We have added further support to allow users to control group size not just
for custom interval files, but also for the ones generated from the genomic regions,
allowing a more tailored setup.

Variant calling

nf-core/sarek includes a comprehensive set of variant callers to obtain SNPs/Indels,
SV, MSI, and/or CNV values using a total of 12 tools (Fig. 2). The variant calling
tools have to be selected by the user to ensure the resource footprint is kept low and
only necessary tools are run. They are executed in parallel. Newly included tools in
the v3.1.1 release are Deepvariant, CNVKit [40], and Tiddit [41]. Furthermore, Hap-
lotypecaller supports both single sample or joint-germline calling [42]. When both
Strelka2 [43] and Manta [44] are selected, the candidate Indels from Manta are used for
SNP/Indel calling according to the Strelka2 best-practices.4 We added a new param-
eter that allows skipping germline-only variant calling for paired samples to further
reduce time, costs, and compute resources for somatic variant calling. Furthermore,
scatter-gathering is now supported for all applicable variant calling tools across inter-
vals (see Supplementary Fig. B). The sharded VCF files are then merged with the
GATK4 MergeVCF tool. In this way, we reduce computing demands, by avoiding
repeated cycles of (de)compressing the files.

Variant annotation

The resulting VCF files can be annotated with VEP [45], snpEff [46], or both either
separately or by merging the output annotations. The annotation tool VEP has been

3https://gatk.broadinstitute.org/hc/en-us/articles/360035889551-When-should-I-restrict-my-analysis-to-specific-intervals-
4https://github.com/Illumina/strelka/blob/v2.9.x/docs/userGuide/README.md
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extended with new plugins allowing more comprehensive annotation: the previously
used plugin CADD [47] has been superseded by dbNSFP [48] providing 36 addi-
tional prediction algorithms. Furthermore, the plugins LOFTee [49], spliceAI [50], and
spliceRegion5 have been added.

QC reporting

Throughout the pipeline, quality control tools are run, including FastQC before align-
ment, mosdepth [51], and SAMtools post-duplicate marking and BQSR, as well as
vcftools [52] and bcftools on called variants. These results are collected into a Mul-
tiQC [53] report together with software version numbers of all the executed tools. The
previously used Qualimap [54], which has no direct CRAM support and requires a high
amount of computational resources, has been replaced with mosdepth, a fast quality
control tool for alignment files. The tool produces comprehensive output files allowing
to visualize, e.g. coverage data with the Integrated Genome Viewer (IGV) [55] for easy
inspection. In addition, we have enabled quality reporting such as mapping statistics
on provided CRAM files, when the pipeline is started from variant calling.

All tools have been updated to their latest stable release at the time of writing. For
a complete overview of the most important tool changes, see Supplementary Table C.

Pipeline skeleton changes

We expanded the continuous integration testing to include all the new functionality,
as well as adding md5sum checking of output files wherever possible. Addition-
ally, we added full size tests that are automatically run on each pipeline release.
All nf-core pipelines require a full-size test on realistic data upon release to ensure
functionality beyond small test data and portability to cloud infrastructures. The
datasets used here include the Genome in a Bottle (GiaB) data set HG001 (down-
sampled to 30X WGS) for germline variant calling testing and the tumor-normal pair
SRR7890919/SRR7890918 provided by the SEQC2 effort for somatic variant calling
testing. Since each of the selected datasets comes with validated VCFs to compare
against, they are suited for further benchmarking to investigate the variant calling
results. The results for each full size test are displayed on the website nf-co.re/sarek
and are available for anyone to explore or download.

High-quality code readability is achieved by combining modules used in the same
analysis context into subworkflows, e.g. variant calling with a specific tool and sub-
sequent indexing of the resulting VCF files. In addition, new analysis steps can be
added by providing such encapsulated subworkflows, and obsolete parts can quickly
be removed entirely. Furthermore, dividing different analysis steps into subworkflows
written in separate files simplifies development, which is often done asynchronously
with developers at different institutes.

2.2 CRAM format allows for storage space reduction

The pipeline has a large data footprint due to the number of computational steps,
input data size, and Nextflow’s requirement for a work directory with intermediate

5https://github.com/Ensembl/VEP plugins/blob/release/109/SpliceRegion.pm
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Fig. 2: Overview over nf-core/sarek. The pipeline consists of three sections:
pre-processing based on GATK Best-practice recommendations (mapping, duplicate
marking, and base quality score recalibration), variant calling supporting tools for
SNP/Indel, SV, CNV, MSI calling, and annotation. Throughout the pipeline, various
quality control tools are run and collated into a comprehensive MultiQC report. The
variant calling tools can be mixed in any combination and are all run in parallel.

results to facilitate resuming. In order to ease storage needs as a possible bottleneck,
CRAM files are used as of nf-core/sarek 3. They are a more compressed alternative
to BAM files storing only differences to the designated reference. A majority of tools
post-duplicate marking support CRAM files. The pipeline can handle both BAM files
and CRAM files as in- and output to accommodate various usage scenarios.

We evaluated the resource usage of the two alternatives by running five tumor-
normal pairs on nf-core/sarek 3.1.1 as well as on a branch6 based on the release in which
the internal format was replaced with BAM. Pre-processing (Fig. 3 and Supplemen-
tary Fig. D2) and variant calling (Supplementary Fig. D3) were evaluated separately.
For eleven processes, the CRAM-based setup resulted in a significant decrease in run-
time, for ten an increase in memory, and for eleven an increase in CPU hours could
be measured. The overall average CPU hours for the pre-processing benchmark on
CRAM version was 3,252.37, in comparison to BAM 3,761.07. The reduction in CPU
hours usage, however, had to be compensated by a 34% increase in memory usage.
The overall average total memory usage on the CRAM version was 10,346.8GB, for
the BAM version it summed up to 7,739.51GB. The storage usage for the work direc-
tory for pre-processing these samples drops by 65%, from 170.4TB (BAM) to 59.7TB
(CRAM). Processes outputting CRAM files reduce their storage needs by at least a
third. In the case of GATK4 ApplyBQSR it was reduced by 64%. Processes operating
on CRAM files outputting a different format, e.g. VCFs, show no change in storage
usage.

6https://github.com/FriederikeHanssen/sarek/tree/bam 31
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Fig. 3: Resource usage of nf-core/sarek 3.1.1 when storing intermediate data in BAM
versus CRAM format. A) Average realtime, and maximum CPU and memory usage
(peak rss) as reported by the Nextflow trace file for the main processes. For processes
split within a sample (i.e. ApplyBQSR), the task with the highest runtime per sam-
ple is shown as the process runtime. Resource usage was compared using the paired
Wilcoxon test (** p < 0.01, * p < 0.05). Two out of the four shown processes are sig-
nificantly faster when using CRAMs instead of BAMs at the expense of an increase
in memory or CPU usage. B) Storage was evaluated by calculating the total size of
the work directories of all tasks of the respective process. Each condition was repeated
three times for samples of five tumor-normal paired patients.

2.3 Scatter-gather implementations reduce runtime and
resource usage

Scatter/gather implementations are highly relevant for parallel processing approaches
across genomic regions for BQSR and variant calling. In this release, we have further
extended these options: Before mapping, the input FastQ files can now be split and
mapped in parallel. For BQSR and variant calling more options to customize the
amount of scattering as well as further support for all eligible variant callers are
implemented.

We evaluated the impact of different degrees of FastQ file sharding on the mapping
process by investigating the division step (fastP), mapping (BWA-MEM), and subse-
quent merging (GATK4 Markduplicates). The realtime as reported by the Nextflow
trace of the longest running mapping process of any one sample was summed up with
the realtime of fastP and GATK4 Markduplicates. The space of the work directories of
each involved task was summed up, as well as the CPU hours (see Fig. 4A). The over-
all runtime for the mapping processes decreases until it reaches a plateau at 12 shards,
achieving a reduction of the median runtime to 37%. The storage usage increased as
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soon as any sharding was done due to the sub-FastQs being written to the disk. The
CPU hours remain approximately the same due to the long alignment time for large
files (see Supplementary Fig E4).

We evaluated the impact of different degrees of scattering across genomic inter-
vals on the recalibration and variant calling process with respect to resource usage.
Similarly to the mapping processes, the most extended runtime per interval group
per samples of all involved processes for BQSR (GATK4 BaseRecalibrator, GATK4
GatherBQSRReports, GATK4 ApplyBQSR, and SAMtools merge) and variant call-
ing (calling and GATK4 MergeVCFs) was summed up respectively. Storage usage and
CPU hours results for all tasks were added up. The runtime decreased the most for
all measured tools (see Fig. 4B and Supplementary F) when the number of interval
groups was set to 21. Raising the number of interval groups did not decrease runtime
further. For GATK-based tools, storage usage increased with each further splitting of
interval groups. For BQSR storage requirements between 21 intervals groups and 124,
the default value, increased by a factor of five. For Deepvariant less storage space was
required when applying scattering (Supplementary F6), however, for all other variant
callers the storage needs remain on a stable level. The required CPU hours remain
stable across various amounts of scattering for all tools.
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Fig. 4: Sharding the input FastQ files and parallelizing computation on interval groups
reduces the overall runtime of the nf-core/sarek pipeline. A): Effect of sharding the
input files on the mapping processes, including fastP, BWA-MEM, and Markdupli-
cates. The input FastQ files were split into smaller pieces increasing the amounts of
shards and the runtime, work directory size, and CPU hours were evaluated for each
split size. FastP was run with a different number of CPUs corresponding to the desired
number of shards. B): Effect of parallelizing computations across interval groups on
BQSR processes, which include the BaseRecalibrator, GatherBQSRReports, Apply-
BQSR, and SAMtools merge process. When all intervals were processed together as
one group the memory requests for ApplyBQSR had to be increased. The violin plots
show computations on tumor-normal paired samples of five patients. The time was
evaluated by summing up the highest realtime per task per sample as reported by the
Nextflow trace report. The work directory size and CPU hours are the sums of all
involved tasks.
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2.4 Benchmarking of short variants against truth VCFs

The pipeline’s SNP and indel variant callers were evaluated for both the germline
and paired somatic analysis tracks, the former on three WGS datasets from Genome
in a Bottle (HG002-4) [56], the latter on three tumor-normal paired WES datasets
from the SEQ2 Consortium [57]. The results were compared to the respective “gold
standard” VCFs for high-confidence calls.

We evaluated the precision, recall, and F1 score over all samples. For the germline
calls of Deepvariant, only sample HG003 was used since its model was trained on the
remaining datasets. The tools’ precision, recall, and F1 scores are in accordance with
the previously reported FDA precision challenge [58] results for GiaB samples (see
Figure 5A, B for SNPs, Supplementary Figure G8 for Indels). BWA-MEM and BWA-
MEM2 lead to higher recall values than DragMap. Strelka2 together with Manta and
DeepVariant perform best in all three evaluated metrics. In addition, we investigated
one sample sequenced with MGI and BGISEQ respectively with similar results for all
variant callers (Supplementary G9, G10).

Similarly, we evaluated the precision, recall, and F1-score for the somatic calls.
Filtered Mutect2 calls have the highest precision calls for all samples, and FreeBayes
ones the highest recall values ( Fig. 5C,D for SNVs). The highest F1-Score is measured
for Mutect2, followed by Strelka2. For Indels, Strelka2 outperforms all other tools
(Supplementary Figure G8). The results are in-line with what has been previously
reported [59].

2.5 Comparison of copy-number calls against PCAWG samples

The pipelines’ paired somatic copy number calls from ASCAT, CNVKit, and Con-
trolFREEC were compared against 5 samples from the PCAWG [11] cohort. Each
sample has two call sets, one generated with the OTP pipeline and one with the
Sanger pipeline (SVCP). In Figure 6, for each tool the calls for each base are eval-
uated with respect to how many other tools confirmed the base. Calls are divided
into two categories: amplifications or deletions. For the former, for patient DO44890
the bases called by each tool are confirmed by at least 3 other tools. Similarly, for
DO44919 with an exception for the OTP results, where a set of bases could not be
confirmed by any other tool. For a majority of the CNVKit and ControlFREEC calls
were confirmed by 3 or more tools for each sample. Overall, there are fewer deletions
found than amplifications. For the samples DO44890 and DO44919 a majority of the
deletions were called by 2 or more tools. For the remaining samples, calls by CNVKit,
ControlFREEC, and SVCP were for a majority of the cases confirmed by one other
tool. All calls are visualized in Supplementary H.

2.6 Portability to AWS and computing costs

The sheer amount of existing genomics data and the unavoidable need for even
more data for the detection of disease-causing genotype-phenotype correlations or
population-scale analyses will test the limits of on-premise computing sooner or later.
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Fig. 5: Germline and somatic variant calling evaluation of high-confidence calls using
ground-truth benchmarking data with respect to SNPs. A,B: The germline variant
calling track of the pipeline was evaluated using 3 WGS GiaB datasets (HG002-
HG004). The average precision, recall, and F1-score values across all the samples are
plotted, respectively. C,D: The somatic paired variant calling track was evaluated
using three tumor-normal WES pairs (EA, FD, NV) from SEQ2C.

Consequently, more and more data analysis is shifted or supplemented by computa-
tion in the cloud. The most recent Nextflow Community survey 2023 indicates that
43% of users use cloud services, which represents an increase of 20% compared to the
previous year7 with AWS still being the most popular among the respondents. There-
fore, we evaluated the cost development of nf-core/sarek between 2.7.1 and 3.1.1 on
AWS Batch.

We were able to reduce cloud computing costs to approximately 30%(see Table 1).
Furthermore, we could reduce the overall runtime and CPU hours. For a single sample

7https://seqera.io/blog/the-state-of-the-workflow-2023-community-survey-results/
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Fig. 6: Copy number calling comparison of calls obtained with tools in nf-core/sarek
(ASCAT, CNVKit, ControlFREEC) and the two available call sets the ICGC portal
for 5 patients from the PCAWG [11] study. The calls are divided into deletions or
amplifications. For each event from each caller the number of tools supporting it are
plotted.

the needed CPU hours are reduced by approximately 70%, and the runtime by 84%.
Here, we used spot instances - unused instances auctioned off at a percentage of their
on-demand price - whose prices fluctuate constantly. The business models of the cloud
providers result in varying spot price percentages and spot prices are frequently subject
to change depending on the overall demand.

3 Discussion

An essential aspect of high-throughput processing is seamless scalability, one of the
main advantages of using a dedicated workflow language such as Nextflow. Combining
adapter trimming, quality control, and sharding of FastQ files in a single step, as well
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Table 1: Average costs per patient on AWS batch for
nf-core/sarek version 2.7.2 and 3.1.1. All pipeline runs
were performed with the tools, Strelka2, Manta, and
VEP. Each analysis run is repeated three times and
run on data from the donor DO50970 with either their
normal or tumor-normal paired sample. The normal
sample has a median coverage of 36X, the tumor sam-
ple of 65X.

Version Samples Avg. costs [$] Runtime CPU hours

2.7.2 1 normal 68.04 46h8m 1118.4
3.1.1 1 normal 20.82 12h4m 342.5
3.1.1 1 paired 66.83 31h47m 1324.3

as more tailored splitting into intervals for variant calling, reduces the needed CPU
hours by 66%. Replacing Nextflow’s native splitFastq() function with a dedicated
process, allows us to make use of all advantages of regular job submission, including
assigning resources to the jobs, automatic retries on job failure, and resume functional-
ity. Previous pipeline versions have typically not been able to split the FastQ files and
have, thus, missed out on scalability options. Our experiments have shown clear limits
for parallelization into interval groups. There is no further benefit to reducing run-
time beyond 21 interval groups. However, storage usage increases. This is respected in
future releases by setting the default number of interval groups to 21 further reducing
the storage footprint of the pipeline.

The switch to using CRAM files results in reduced storage space usage of 65%,
at the expense of higher memory requirements. The additional memory needs are
distributed over the thousands of tasks run for the benchmark. Due to this, in practice,
memory is not a limiting factor. The additional needs are only required for the task’s
run time, usually comprised of a couple of GB at most, and can subsequently be re-
used. The storage, however, accumulates over the entire pipeline run and can therefore
pose a bottleneck for usage scenarios with large input data sets relative to the available
storage on the respective compute system.

Both changes, switching to CRAM format reducing storage requirements by
two-thirds and reducing the amount of scattering - further reducing storage require-
ments by a factor of 5, will enable users to run the pipeline on smaller systems more
efficiently. While there are many benefits for the scientists running the pipeline, we
would like to emphasize also the ecological need to reduce the carbon footprint in
computational research. This is relevant in particular considering the ever-growing
number of available samples in national and international genome repositories, which
aim at facilitating truly comprehensive population-based analysis and understanding
underlying genome variations. Our results provide solutions to reduce CO2 emissions.

One of the main objectives of this work is to enable scientists to run the pipeline
in cloud environments at low costs per sample. Cost-efficient cloud computing is
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increasingly important for data-driven science. Intransparent and unpredictable cost
models discourage a scientist. Using the cloud setup as described in this work, we
reduced the costs to 50% in comparison to previous releases. Recently, Seqera Labs
posted a blog article8 showing further cost reductions when using nonvolatile memory
express (NVME) storage, a protocol to accelerate transfer speed, and a new fusion
file system promising even cheaper runs in the future. In addition, users can further
reduce their cloud costs by selecting compute instances in cheaper AWS regions and
fixing the spot price percentage they are willing to pay more tightly by enforcing an
upper bound for costs per sample at the expense of possible waiting time for such
machines to become available.

nf-core/sarek is an established, comprehensive variant calling pipeline in the
genomics field, which can be applied to any organism for which a reference genome
exists. Future releases further simplify analyses with custom references by enabling
pre-computation of all needed indices, an interesting feature when multiple users work
with organisms on shared systems for which reference files are not provided by default.
On request, such references and their corresponding indices and database files can be
added to the central resource AWS-iGenomes and made available to the community.

We benchmarked the pipelines performance for germline and somatic small vari-
ants against given truth datasets, as well as comparing copy number calls to ones
obtained by the PCAWG study. The copy number evaluation highlights the need for
validating calls with multiple tools. There is a set of bases showing strong evidence
by being called by all tools. However, some tools, CNVKit and ControlFREEC, show
a seemingly more conservative approach with calls validated by almost all others,
whereas ASCAT, SVCP, and OTP generated overall more calls which were confirmed
by fewer tools. The tools’ performance differs between samples indicating possible
further factors need to be taken into account. The similarities between ASCAT and
SVCP can be explained by the fact that the SVCP pipeline also uses an earlier
version of the ASCAT tool.

The nf-core/sarek rewrite to DSL2 makes the code base more maintainable and
easier to read, a factor that is crucial to allow new developers to join the effort with
a reasonable learning curve. All pipeline processes are specified in separate files in the
form of modules a majority of which are maintained by the nf-core community. Tools
used in the same context are combined into subworkflows. They will be added to the
nf-core subworkflows collection in the near future allowing further collaboration and
shared maintenance across pipelines and beyond the nf-core community. Modularis-
ing all tools will enable us to simply do a drop-in replacement when tools should be
exchanged for a different one or new ones added as they emerge. nf-core/tools installs
them in the appropriate directory, they just need to be called at the appropriate posi-
tion in a (sub)workflow. Furthermore, the use of modules allows users to customize
the released pipeline version at runtime. Before this change, it was necessary to change

8https://seqera.io/blog/breakthrough-performance-and-cost-efficiency-with-the-new-fusion-file-system/
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the underlying code if arguments of a tool were not exposed to the pipeline. This
was limiting for users since they had to wait for the feature to be implemented and
released before using it. With the new modular config files, arguments can be modified
by providing a user-based custom configuration setting the exact command line argu-
ments without changing the underlying code or the release tag. This allows a higher
degree of flexibility for the analysis whilst simultaneously using a released version.
Reproducibility can then be ensured as before by providing the exact release version,
pipeline parameters, and the respective custom config(s).

4 Methods

4.1 Implementation

nf-core/sarek is a Nextflow-based pipeline that has been part of the nf-core project
since release 2.5. Thus, nf-core/sarek is based on the nf-core template, which provides
a code and documentation skeleton to ensure current best practices. The pipeline
was one of the first to be ported from Nextflow’s domain specific language version 1
(DSL1) to DSL2. The DSL2 framework allows modularization and code sharing. 78
of 80 modules used in nf-core/sarek have been made available in the nf-core commu-
nity’s shared repository, nf-core/modules, implementing Nextflow wrappers around
ideally individual tools. The tools are typically accessible through (bio)conda [60] and
have a corresponding docker and singularity container provided by the Biocontain-
ers [61] community enabling portability and reproducibility for each such ‘module’.
This single-tool-per-process approach ensures that previously occurring dependency
conflicts are mitigated. nf-core/tools, a helper tool for users and developers, allows
easy creation, installation, and re-use of these modules, which will be important for
further extensions of nf-core/sarek.

4.2 Data sets & compute environments

In order to evaluate the computational requirements of the pipeline, five tumor-normal
paired samples from the ICGC LICA-FR [62] cohort are used (see Table 2). The
unaligned BAM files are downloaded and converted to paired-end FastQ files using
nf-core/bamtofastq v1.0.0 (formerly qbic-pipelines/bamtofastq) with Nextflow version
20.10.0 and singularity.

Unless otherwise indicated, evaluations are done with Nextflow version 22.10.2
build 5832 and Singularity 3.8.7-1.e18 on a shared HPC cluster. A parallel BeeGFS
filesystem [63] is used with 1 metadata and 2 storage nodes. Each storage node has 2
raid systems with 10*14TB disks respectively. The data systems are connected with
a 50GB ethernet connection. The HPC is using Slurm as scheduler and consists of 24
nodes with 32 cores and 64 threads each (2* AMD EPYC 7343) with 512GB RAM
and 2TB NVMEe disks as well as four nodes with 64 cores and 128 threads each (2*
AMD EPYC 7513) with 20248GB and RAM and 4TB NVMe disks, these NVMes are
utilized via Nextflow scratch option. To increase the speed and decrease the load on
the filesystem, calculations are therefore performed directly on the NVMe, and only
the results are written back to the BeeGFS. The cluster is shared and resources per
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Table 2: Datasets used for benchmarking are part of the LICA-FR cohort.
The BAM files are downloaded and converted to FastQ files. The respective
donor IDs and file sizes of the converted FastQ files are listed below.

normal tumor

Donor ID File size [GB] Median coverage[X] File size [GB] Median coverage[X]

DO50970 88 36 152 65
DO50974 101 54 173 84
DO50933 92 49 154 78
DO50935 116 60 166 90
DO50936 97 51 174 88

user are allocated by a Fair-share policy. At any time 100 tasks can be run at most
by a user in parallel.

All jobs are submitted using -profile cfc providing a cluster-specific configura-
tion, which is stored in the GitHub repository nf-core/configs.9

Resource usage for all experiments was evaluated by supplying:

Listing 1: trace.config

trace {

fields = ’task_id ,hash ,native_id ,process ,tag ,name ,

status ,exit ,module ,container ,cpus ,time ,disk ,memory ,

attempt ,submit , start ,complete ,duration ,realtime ,

queue ,%cpu ,%mem ,rss ,vmem ,peak_rss ,peak_vmem ,

rchar ,wchar ,syscr ,syscw ,read_bytes ,write_bytes ,

vol_ctxt ,inv_ctxt ,workdir ,scratch ,error_action ’

raw = true

}

in a custom configuration file and collecting the file sizes of the work directory with:

Listing 2: storage.sh

du -hb --all --max -depth =4 <absolute/path/to >/work/

> folder_sizes.tsv

4.3 Reducing storage requirements

In this release, the internal file format following duplicate marking is changed to using
CRAM files. To evaluate the required compute resources and the actual data footprint
for both file formats, five paired ICGC genomes are run through all tools part of nf-
core/sarek 3.1.1 and an altered version of nf-core/sarek 3.1.1 that uses the BAM format
instead. For each process, singularity containers from the Biocontainers registry are
used. Each run configuration is repeated three times. Unless otherwise specified, the
default parameters for nf-core/sarek 3.1.1 are used. We evaluate the pre-processing
and variant calling steps independently.

9https://github.com/nf-core/configs/blob/c709be3b599d463fcfa82196fd4c9c5fa1e99513/conf/cfc.config
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We evaluate all processes corresponding to FastQ quality control, aligning the reads
to the reference genome, duplicate marking, base quality score recalibration (BQSR),
and quality control of aligned reads. The command for running the pre-processing
steps is the following:

Listing 3: Pre-processing

nextflow run nf-core/sarek -r 3.1.1 -profile cfc \

--input ./input.csv

The memory requirements for BWA-MEM are increased to 60GB, as well as the
runtime for GATK4 Markduplicates and SAMtools merge to 16h and 8h respectively
from the provided defaults.

Secondly, we evaluate variant calling with all tools for all germline and paired
somatic variant calling for all samples:

Listing 4: Variant calling

nextflow run nf-core/sarek -r 3.1.1 -profile cfc \

--input recalibrated.csv \

--tools deepvariant ,haplotypecaller ,mutect2 ,strelka , \

freebayes ,ascat ,controlfreec , \

cnvkit ,manta ,tiddit ,msisensorpro \

--step variant_calling

The requested time for all processes is increased to 144h to mitigate interruptions
due to runtime time-outs by providing a custom configuration file.

4.4 Evaluation of pipeline runtime and resource usage

In order to evaluate the impact on runtime and storage requirements, ten sam-
ples are run with different sizes of scattered groups: 1, 10, 21, 40, 78, and 124
(default). In order to generate the respective interval group sizes the parameter
--nucleotides_per_second is set to 5000000, 400000, 200000, 70000, 10001, 1000
(default). For read splitting, fastP is run with various numbers of CPUs specified
(respectively, 0, 4, 8, 12 (default), and 16) since the tools generates chunks firstly by
number of CPUs and secondly by the maximum number of entries per file as defined
by a parameter. Here, it is set to 500,000,000 to prevent any further subdivision.

Example command for 40 interval groups and 8 FastQ file chunks:

Listing 5: Intra-sample parallelization

nextflow run nf-core/sarek -r 3.1.1 -profile cfc \

--input input.csv \

--tools deepvariant ,haplotypecaller ,mutect2 ,strelka ,

freebayes ,ascat ,controlfreec ,

cnvkit ,manta ,tiddit ,msisensorpro \

--nucleotides_per_second 70000 \

--split_fastq 500000000

-c ressource.config
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The memory requirements for BWA-MEM are increased to 60GB for all tests.
The memory for FreeBayes is increased to 24GB, for one interval group it is reduced
again to 18GB. For GATK4 ApplyBQSR the memory is increased to 16GB when all
intervals were processed in one group. For a full list of configs, see https://github.
com/qbic-projects/QSARK.

4.5 Benchmarking of short variants against truth VCFs

In order to benchmark the variants called by the pipeline, both the germline and paired
variant calling tools are evaluated on three datasets each: for the germline callers the
GiaB datasets HG002-HG004 [56] are used, for the paired somatic callers three WES
datasets from the Sequencing Quality Control Phase II Consortium [57]. Comparisons
are made only in the high-confidence regions defined for the benchmark, i.e. omitting
difficult-to-call regions.

Germline variant calling

The whole-genome germline GiaB samples from an Illumina NovaSeq are down-
loaded from the GiaB consortium’s ftp-server. Downsampling to 40x is done using
the seqtk10 tool. nf-core/sarek is run with default parameters. The parameter
--nucleotides_per_second is increased to 200,000. All eligible variant callers are
combined with all three mappers. Comparisons are calculated using hap.py,11 version
v0.3.14:

Listing 6: Evaluation of germline calls

hap.py HG00 {2,3,4} _GRCh38_1_22_v4 .2.1 _benchmark.vcf.gz \

query.vcf.gz \

-o results/ \

-V --engine=vcfeval \

--engine -vcfeval -template grch38.sdf \

--threads 3 \

-f \

HG00{2,3,4} _GRCh38_1_22_v4 .2.1 _benchmark_noinconsistent.bed \

--logfile results/

--scratch -prefix .

Short variant calls from Haplotypecaller, Deepvariant, Freebayes, and Strelka2
mapped with Dragmap (base quality recalibration is skipped), BWA-MEM, and
BWA-MEM2 are included in the analysis. Deepvariant is evaluated only on HG003.

Furthermore, reads for the sample HG002 sequenced with MGISEQ and
BGISEQ500 are downloaded from the manufacturer. They are downsampled to 20X,
30X, 40X, and 50X using seqtk and subsequently processed with nf-core/sarek 3.1.1
using default parameters and all eligible variant callers. Evaluation against the truth
VCF is done using hap.py.

10https://github.com/lh3/seqtk
11https://github.com/illumina/hap.py
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Somatic variant calling

The somatic short variant calls are evaluated on three whole-exome sequenc-
ing datasets: SRR7890919/SRR7890918 (EA), SRR7890878/SRR7890877 (FD),
SRR7890830/SRR7890846 (NV) run on an Illumina HiSeq 1500 (EA), 4000 (FD), 2500
(NV). The data is downloaded using nf-core/fetchngs v1.10.0. nf-core/sarek is run
on default parameters. In addition, trimming is enabled with --trim_fastq. When
using DragMap --skip_tools baserecalibrator is set. The VCFs are PASS filtered
using bcftools v1.10.2. The calls are evaluated using RTGTools [64] for a combina-
tion of each mapper with all available variant callers: Strelka2 together with Manta,
Freebayes, and Mutect2.

Listing 7: Evaluation of somatic calls

bcftools view -f ’PASS ,.’ \

results.vcf.gz \

-o query.vcf

rtg vcfeval -c query.vcf.gz \

-b high -confidence_sSNV_in_HC_regions_v1 .2. vcf.gz \

-o ./out/ \

-t grch38.sdf \

-e High -Confidence_Regions_v1 .2. bed \

--squash -ploidy --all -records --sample=ALT \

--bed -regions \

S07604624_Padded_Agilent_SureSelectXT_allexons_V6_UTR.bed

4.6 Comparison of copy number calls against PCAWG samples

In order to evaluate the copy number calls, WGS alignment files for 5 PCAWG
patients (DO44888, DO44930, DO44890, DO44919, DO44889) were downloaded and
reprocessed with nf-core/sarek. In addition, the provided copy number calls were down-
loaded from the ICGC portal for each patient. The calls are compared by dividing the
calls from each tool into two groups: amplifications and deletions. For each base, it is
then determined how many other tools identified for a given the same group. Visual-
ization of the respectively called copy numbers is done using karyoploteR [65] and
CopyNumberPlot [66].

Listing 8: Parameters to run nf-core/sarek for evaluation of copy number calls

nextflow run nf-core/sarek -r 3.4.0 -profile cfc \

--input input.csv --outdir results \

--tools ascat ,controlfreec ,cnvkit \

--only_paired_variant_calling \

-c ressources_cnv.config
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4.7 Portability to AWS cloud and computing cost

In order to evaluate the costs for running nf-core/sarek on AWS batch, the com-
pute environments are created using Tower Forge,12 with the following settings:
spot instance, max CPUs 1,000, EBS Auto scale, and fusion mounts enabled.
Instance types are chosen by using strategy ‘optimal’ with the allocation strat-
egy spot_capacity_optimized. The computation is run in AWS region us-east-1.
The pipeline runs are launched with Nextflow Tower setting the Nextflow ver-
sion to 22.10.3 by adding export NXF_VER=22.10.3 to the pre-run script and
process.afterScript = ‘sleep 60’ to the config section.

The pipeline is run on the normal sample for DO50970 using default settings
together with Strelka2, Manta, and VEP. For one paired sample evaluation, the
pipeline was run the tumor-normal pair (DO50970/DO50970).

nf-core/sarek 3.1.1 is run with --nucleotides_per_second 200000. For the
paired run, we set --only_paired_variant_calling.

The costs for nf-core/sarek 2.7.1 are evaluated on the same normal sample using
Strelka2, Manta, and VEP on default parameters. Compute resources for mapping
(372GB memory, 48 cpus), duplicate marking (30GB memory, 6 cpus), quality control
with BamQC (372GB memory, 48 cpus), GATK4 BaseRecalibrator (4GB memory, 4
cpus), and GATK4 ApplyBQSR (4GB memory) is increased.

Supplementary information. All supplementary files are available at https://
github.com/qbic-projects/qsark.
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Appendix A Overview of quality control tools in
variant calling pipelines
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Appendix B Intra-sample parallelization

Fig. B1: The figure depicts the processing of a single sample. While Nextflow runs the
analysis of each sample in parallel, intra-sample parallelization was implemented for
the mapping step by splitting the FastQ files beforehand, mapping each, and merging
all FastQ files belonging to one sample and duplicate marking them. Base quality
score recalibration and SNP/Indel calling are run across genomic intervals, which can
be either user-provided or GATK-provided interval files.
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Appendix C Table with detailed changes between
Sarek 2.5.2 and 3.1.1
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Appendix D Reducing storage requirements with
CRAM

Fig. D2: Resource usage of nf-core/sarek 3.1.1 when storing intermediate data in
BAM versus CRAM format for all pre-processing processes. A): Average realtime,
and maximum CPU and memory usage (peak rss) as reported by the Nextflow trace
file. For processes split within a sample (i.e. ApplyBQSR), the task with the highest
runtime per sample is shown as the process runtime. Resource usage was compared
using the paired Wilcoxon test (** p < 0.01, * p < 0.05). Seven of the eleven pro-
cesses are significantly faster when using the CRAM format. Five processes have a
significantly higher CPU hour usage, and three require more memory in comparison
to using BAMs. B): Storage was evaluated by calculating the total size of the work
directories of all tasks of the respective process. The storage usage between both is
identical, due to Nextflow accessing the input files via symlinks. Thus only the output
is measured here for each process, which is independent of input format. Each condi-
tion was repeated three times for samples of five tumor-normal paired patients.
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Fig. D3: Resource usage of all variant calling processes in nf-core/sarek 3.1.1 when
starting from BAM and CRAM format. A): Average realtime, and maximum CPU
and memory usage (peak rss) as reported by the Nextflow trace file. For processes
split within a sample, the task with the highest runtime per sample is shown as the
process runtime. Resource usage was compared using the paired Wilcoxon test (**
p < 0.01, * p < 0.05). Four of the 12 processes are significantly faster when using the
CRAM format. Six have a significantly higher CPU hour usage, and seven require more
memory in comparison to using BAMs. B): Storage was evaluated by calculating the
total size of the work directories of all tasks of the respective process. Six processes have
reduced storage requirements. Each condition was repeated three times for samples of
five tumor-normal paired patients.
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Appendix E Sharding FastQ files reduces runtime

Fig. E4: Dividing the input FastQ files into increasing amounts of shards. A):
Resource usage of fastP during sharding of the input FastQ files. The tool was run
with a different count of CPUs corresponding to the desired number of shards. B):
Resource usage of BWA-MEM during mapping of each shard. C): Resource usage of
the duplicate marking process. Merging of sharded bam files and duplicate marking is
performed with GATK4 Markduplicates. CRAM conversion is done with SAMTools.
The violin plots show computations on tumor-normal paired samples of five patients.
The time was evaluated by summing up the highest realtime per task per sample as
reported by the Nextflow trace report. The work directory size and CPU hours are
the sums of all involved tasks.
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Appendix F Splitting by intervals reduces runtime

Fig. F5: Parallel processing of interval groups reduces runtime A): GATK4 BaseRe-
calibrator runtime decreases with an increasing number of interval groups. Storage
space requirements increase, while CPU hours stay consistent.B): For GATK4 Gather-
BQSRReports all three metrics increase with an increasing number of interval groups.
C): For GATK4 ApplyBQSR the runtime decreases with an increasing number of
interval groups. Storage space requirements increase, while CPU hours stay consis-
tent. D): For SAMTools Merge all three metrics are consistent across the number of
interval groups. The violin plots show computations on tumor-normal paired samples
of five patients for each tool. The time was evaluated by summing up the highest real-
time per task per sample as reported by the Nextflow trace report. The work directory
size and CPU hours are the sums of all involved tasks.
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Fig. F6: Effect of parallelizing computations across interval groups on germline vari-
ant calling processes, which include the respective variant caller followed by GATK4
MergeVCFs. FreeBayes VCFs are sorted before merging. GATK4 HaplotypeCaller is
followed by GATK4 CNNSCoreVariants and GATK4 FilterVariantTranches. All vari-
ant callers speed up on parallel processing across 10 interval groups. DeepVariant and
HaplotypeCaller speed up further with fewer interval groups. Storage usage decreases
for DeepVariant for 10 interval groups and remains stable. FreeBayes and Strelka2
have similar storage usage across parallelization. For VCFs called by HaplotypeCaller
storage usage increases. CPU hours are similar across degrees of parallelization with
an increase measured for Strelka2. The violin plots show computations on normal sam-
ples of five patients. The time was evaluated by summing up the highest realtime per
task per sample as reported by the Nextflow trace report. The work directory size and
CPU hours are the sums of all involved tasks.
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Fig. F7: Effect of parallelizing computations across interval groups on somatic vari-
ant calling processes, which include the respective variant caller followed by GATK4
MergeVCFs. FreeBayes VCFs are sorted before merging. All variant callers speed
up on parallel processing across 10 interval groups. FreeBayes and Mutect2 further
speed up with 21 interval groups. Storage usage increases for FreeBayes for 10 inter-
val groups and remains stable. For Mutect2 storage usage increases with increasing
interval groups. It remains stable for Strelka2. CPU hours are similar across degrees
of parallelization with a decrease measured for Strelka2. The violin plots show com-
putations on tumor-normal paired samples of five patients. The time was evaluated
by summing up the highest realtime per task per sample as reported by the Nextflow
trace report. The work directory size and CPU hours are the sums of all involved tasks.
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Appendix G Benchmarking against truth datasets
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Fig. G8: Germline and somatic variant calling evaluation of high-confidence calls
using ground-truth benchmarking data with respect to Indels. A,B: The germline
track of the pipeline was evaluated using 3 WGS GiaB datasets (HG002-HG004).
The average precision, recall and F1-score values across all the samples are plotted
respectively. C,D: The paired calling track was evaluated using three tumor-normal
WES pairs (EA, FD, NV) from SEQ2C.
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Fig. G9: Germline variant calling evaluation of high-confidence calls using ground-
truth benchmarking data with respect to SNPs. Samples from MGISeq and BGISeq500
were mapped with BWA-MEM. Different coverages were used as input. For all inves-
tigated coverage values FreeBayes and DeepVariant have the highest recall. Strelka2
and DeepVariant show the highest precision values for all samples.
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Fig. G10: Germline variant calling evaluation of high-confidence calls using ground-
truth benchmarking data with respect to Indels. Samples from MGISeq and
BGISeq500 were mapped with BWA-MEM. Different coverages were used as input.
For all investigated coverage values HaplotypeCaller and DeepVariant have the highest
recall, followed by Strelka2. MGI samples analyzed with DeepVariant had the highest
precision values.
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Appendix H Comparison of CNV calls against
PCAWG samples
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Fig. H11: Comparison of copy number calls obtained with nf-core/sarek using
ASCAT, Control-FREEC, and CNVKit to the ones from the PCAWG study down-
loaded from the ICGC portal. For the latter, there are two results files available for
each patient respectively, one called with the OTP pipeline, one called with the Sanger
pipeline. The PCAWG calls agree for 3 patients. For DO44890 all calls across all
pipelines and tools agree. For DO44930 and DO44888, the nf-core/sarek ASCAT calls
are similar to both the OTP and Sanger pipeline based calls, the CNVKit and Control-
FREEC calls differ, but are similar towards each other. For DO44889 the nf-core/sarek
and Sanger pipeline calls overlap, as well as the OTP calls and nf-core/sarek Control-
FREEC and CNVKit calls. Lastly, for DO44919, all nf-core/sarek calls overlap with
the Sanger pipeline results, the OTP pipeline results differ.
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