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Abstract Learning to perform a perceptual decision task is generally achieved through sessions
of effortful practice with feedback. Here, we investigated how passive exposure to task-relevant
stimuli, which is relatively effortless and does not require feedback, influences active learning.
First, we trained mice in a sound-categorization task with various schedules combining passive
exposure and active training. Mice that received passive exposure exhibited faster learning,
regardless of whether this exposure occurred entirely before active training or was interleaved
between active sessions. We next trained neural-network models with different architectures and
learning rules to perform the task. Networks that use the statistical properties of stimuli to
enhance separability of the data via unsupervised learning during passive exposure provided the
best account of the behavioral observations. We further found that, during interleaved schedules,
there is an increased alignment between weight updates from passive exposure and active
training, such that a few interleaved sessions can be as effective as schedules with long periods
of passive exposure before active training, consistent with our behavioral observations. These
results provide key insights for the design of efficient training schedules that combine active
learning and passive exposure in both natural and artificial systems.

Introduction
Active learning of a perceptual decision task requires both expending effort to perform the task
and having access to feedback about task performance. Passive exposure to sensory stimuli, on
the other hand, is relatively effortless and does not require feedback about performance. Since
animals are continuously exposed to stimuli in their environment, the nervous system could take
advantage of this passive exposure, for example by learning features related to the statistical struc-
ture of the stimulus distribution, to increase the speed and efficiency of active task learning. For
auditory learning in particular, schedules that effectively combine active training and passive ex-
posure could yield more efficient approaches for learning to discriminate ethologically relevant
sounds (as needed for example during second-language learning or musical training in humans)
compared to active training alone.

A large body of research has demonstrated that exposure to sounds early in life influences the
ability to discriminate acoustic stimuli (Kuhl et al., 2003;Maye et al., 2002; Kral, 2013). However, the
conditions under which passive exposure in the adult can help auditory learning are not well un-
derstood. In humans, previous work has demonstrated that, under specific conditions, interleaved
passive exposure is beneficial for learning, sometimes to the extent that active sessions can be re-
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placed with passive exposure and still yield similar performance (Wright et al., 2015). In other ani-
mals, which provide greater experimental access for investigating the neural mechanisms of learn-
ing, studies have focused mostly on the effects of perceptual learning (the experience-dependent
enhancement in sensory discrimination) from exposure to stimuli during active training (Bao et al.,
2004; Polley et al., 2006; Caras and Sanes, 2017). Although some progress has beenmade for other
sensory modalities, such as olfaction (Fleming et al., 2019), the question of whether and how the
combination of passive exposure with active training improves auditory learning in animal models
has received little attention, limiting the ability to investigate the neural mechanisms that might be
involved.

Using inexpensive unlabeled data during passive exposure to improve the efficiency of active
training is also of great interest for machine learning, where large quantities of labeled training
data are not always readily available. Recent approaches for training deep networks for speech
recognition have successfully used large quantities of unlabeled data to achieve state-of-the-art
levels of performance with minimal active training (Baevski et al., 2020, 2021). Moreover, theoreti-
cal work inspired by neurobiology has argued that unsupervised learning, which may occur during
passive exposure, couldmodify neural representations in such a way as to later facilitate more effi-
cient supervised learning (Nassar et al., 2021). However, optimal ways to combine supervised and
unsupervised learning, as well as the mechanisms that may underlie such benefits from passive
exposure, remain unknown.

As a first step toward addressing these gaps in knowledge, we evaluated whether passive ex-
posure to sounds improves learning of a sound categorization task in mice. We found that passive
presentation of stimuli enhanced learning speed in mice, either when passive presentation oc-
curred before any active training or when passive exposure sessions were interleaved with active
training. Then, we performed a theoretical analysis of learning in artificial neural networks that
combine different learning rules to identify the conditions under which they account for the ex-
perimental data. Our theoretical analysis indicates that the experimentally observed benefits of
passive exposure can be accounted for by networks in which unsupervised learning in early layers
shapes neural representations of sensory stimuli, while supervised learning in later layers uses
these representations to drive behavior.
Results
Learning a sound categorization task
We first designed a two-alternative choice sound categorization task to allow testing the effects of
passive exposure on categorization learning. In this task, freely moving mice had to discriminate
whether the slope of a frequency-modulated soundwas positive or negative. Animals initiated each
trial by poking the center port of a 3-port chamber, at which point a 200-ms sound was presented
after a brief silent delay. Mice then had to choose the left or right reward ports depending on
the slope of the stimulus (Fig. 1A). Animals were trained once per day using a schedule with the
following stages (Fig. 1B): shaping stages (S0-S2), in which animals learned to poke and obtain
water reward; the main training stage with two stimuli (S3), in which animals learned to associate
a stimulus with a reward port; and a psychometrics testing stage (S4), in which mice were tested
with 6 different stimuli, including the two extremes presented in S3. Fig. 1C illustrates the learning
performance for one mouse, showing the time to reach 70% correct trials and the performance
at 21 days, as estimated from a linear fit to the daily average performance. Performance starts
around 50% correct (chance level for the binary choice) and reaches a level above 80% by the
end of stage S3. During this training stage, animals were limited to 500 trials in each session to
facilitate comparisons across animals. Overall, the number of trials in which animals made no
choice after initiating a trial was negligible (averaging 0.18% of trials acrossmice). Fig. 1D illustrates
the performance of the same mouse during one session of the psychometrics testing stage (S4).
As expected, stimuli with FM slopes closer to zero result in responses closer to chance level (50%).
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Figure 1. Two-alternative choice sound categorization task for mice. (A)Mice initiated a trial by poking theirnose into the center port of a three-port chamber, triggering the presentation of a frequency modulated (FM)sound. To obtain reward, animals had to choose the correct side port according to the slope of the frequencymodulation (left for positive slopes, right for negative slopes). (B) Training schedule: mice underwent severalshaping stages (S0-S2) before learning the full task; the main learning stage (stage S3) used only the highestand lowest FM slopes; psychometric performance was evaluated using 6 different FM slopes (stage S4). (C)Daily performance for one mouse during S3. Arrows indicate estimates of the time to reach 70% correct andthe performance at 21 days given a linear fit (black line). (D) Average leftward choices for each FM slopeduring one session of S4 for the mouse in C. Error bars indicate 95% confidence intervals.

Passive exposure to sounds improves learning
To test whether passive exposure to sounds enhances acoustic categorization learning of these
sounds, we created 3 cohorts of mice (Fig. 2A). The first cohort, named “active training only” (A
only), followed the training schedule described above with no additional exposure to the sounds.
The second cohort, “active training with passive exposure” (A+P), received additional passive expo-
sure to sounds during stages S3 and S4. The last cohort, “passive exposure before active training”
(P:A), received passive exposure to sounds before starting the main learning stage S3. Passive ex-
posure for the A+P and P:A cohorts consisted of additional presentation of all 6 sounds used in
S4, randomly ordered, while animals were in their home cages inside a sound isolation booth. Ani-
mals received an average of about 3600 passive trials each day, corresponding to 600 daily passive
presentations of each of the 6 stimuli. The amount of passive exposure for P:Amicematched what
A+P mice received during stage 3. During stage S4, A+P mice received additional passive sessions.

We evaluated the learning performance of animals from each cohort by fitting a straight line to
the daily performance of each mouse during S3 and estimating two quantities from these fits: the
performance at 21 days (Fig. 2B), and the number of days required to reach 70% of trials correct
(Fig. 2C). The distributions of these estimates suggested that each cohort included two types of
learners: one group of fast learners and one group of slow learners. To test whether this bimodality
was indeed present, we applied a Gaussian mixture model to the data in Fig. 2B and compared the
Bayesian Information Criterion (BIC) for models with 𝑘 = 1 vs. 𝑘 = 2 Gaussian components. When
comparing BIC, models with lower BIC are generally preferred. We found that, for both cohorts
that included passive exposure, the BIC for 𝑘 = 2 was lower than for 𝑘 = 1 (Table 1), indicating that
a model with two components best captured the data. For the cohort with no passive exposure,
the BIC was lower when using a single component. However, to make comparisons across cohorts
more equitable, we applied the 2-component Gaussian mixture model to all cohorts and focused
further analysis on the group of faster learners from each cohort. The mice that were categorized
as fast learners based on their performance at 21 days (Fig. 2B) were the same mice that were
categorized as fast learners based on the number of days to reach 70% performance (Fig. 2C).

As a first test of whether passive exposure influenced learning speed, we quantified the average
learning curve across fast learners from each cohort (Fig. 2D). The learning curves show a clear im-
provement for animals that had passive exposure compared to those who did not. These curves,
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Figure 2. Passive exposure to sounds improves learning speed. (A) Training schedule for each mouse cohort:A-only mice received no passive exposure; A+P mice received passive exposure sessions during stage S3; P:Amice received a similar number of passive exposure sessions before S2. (B) Distributions of performance at21 days of S3 given estimates from linear fits to the learning curve for each mouse from each cohort. Solidlines represent the results from a Gaussian mixture model with 2 components, separating “fast” from “slow”learners. (C) Distributions of times to reach 70% correct given estimates from linear fits. (D) Average learningcurves across fast learners from each cohort. Shading represent the standard error of the mean across mice.
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however, suggested no differences between animals that had interleaved passive-exposure ses-
sions during active-training days (A+P) and animals that had all of their passive exposure occur
before the main learning stage (P:A). A quantification of these effects across animals confirmed
these observations. Specifically, the time to reach 70% correct trials (Fig. 2E) was shorter for ani-
mals that experienced passive exposure to sounds compared to those who did not (𝑝 = 0.01 for A
only vs. A+P, 𝑝 = 0.006 for A only vs. P:A, Wilcoxon rank-sum test), while we found no statistically
significant difference between the A+P and P:A cohorts (𝑝 = 0.71, Wilcoxon rank-sum test). A similar
result was observed for the estimated performance at 21 days (Fig. 2F), where animals with pas-
sive exposure showed better performance (𝑝 = 0.01 for A only vs. A+P, 𝑝 = 0.006 for A only vs. P:A,
Wilcoxon rank-sum test), while we found no difference between the A+P and P:A cohorts (𝑝 = 0.47,
Wilcoxon rank-sum test). These observations point to an unexpected result: the performance of
animals after a few interleaved passive exposure sessions was as high as that for animals that had
received all passive exposures before learning the task, suggesting an interaction between passive
exposure and active learning.

To ensure that the apparent effects of passive exposure were not the result of using a simple
linear fit to the learning data, we also compared the performance of each animal averaged over the
last four days of the learning stage (Fig. 2G). Comparisons across cohorts matched those observed
from the linear fit estimates, where mice with passive exposure displayed higher performance
(𝑝 = 0.01 for A only vs. A+P, 𝑝 = 0.006 for A only vs. P:A, 𝑝 = 0.71 for A+P vs. P:A, Wilcoxon rank-
sum test). An analysis of the slow learners from each cohort revealed similar trends, where the
performance on the last four days for animals with only active sessions was lower (66.5% across
2 mice) than for mice with passive exposure (70.4% across 3 A+P mice and 76.5% across 4 P:A
mice), although these differenceswere not statistically significant (p-values in the range 0.064–0.16,
Wilcoxon rank-sum test). Overall, these results indicate that passive exposure to task-relevant
sounds—either before or during learning—can enhance acoustic categorization learning in adult
mice, and they point to a non-trivial interaction between passive exposure and active learning,
which we further investigate in our theoretical analysis below.
Passive exposure influences responses to intermediate sounds not used during
training
To test whether passive exposure influenced the behavioral responses to sounds beyond those
used during the active training sessions, we evaluated the psychometric performance of animals
from each cohort during stage S4. We first estimated the average psychometric curves across
all mice from each cohort during the first 4 days of S4 (Fig. 3A). These curves illustrate that, as
expected from the results of S3, the performance on the extreme sounds is better for animals
that received passive exposure. Moreover, these curves hinted at differences across cohorts in
the responses to intermediate sounds, which were presented during passive exposure, but had
not been part of the active training during the learning stage. To quantify these effects, we first
measured the average performance across all stimuli and found that animals that experienced
passive exposure achieved a higher fraction of correct trials overall compared to those that did
not experience passive exposure (𝑝 = 0.01 for A only vs. A+P, 𝑝 = 0.01 for A only vs. P:A, 𝑝 = 0.27
for A+P vs. P:A, Wilcoxon rank-sum test) (Fig. 3B). This disparity in overall performance was the
result of differences in both the responses to the extreme sounds (Fig. 3C) as well the responses
to intermediate sounds (𝑝 = 0.037 for A only vs. A+P, 𝑝 = 0.028 for A only vs. P:A, 𝑝 = 0.36 for
A+P vs. P:A, Wilcoxon rank-sum test) (Fig. 3D). To evaluate the possibility that having no passive
exposure resulted in shallower psychometric curves, we compared the psychometric slopes across
cohorts. We found no significant difference in psychometric slopes across cohorts (𝑝 = 0.07 for A
only vs. A+P, 𝑝 = 1 for A only vs. P:A, 𝑝 = 0.86 for A+P vs. P:A, Wilcoxon rank-sum test, Fig. 3E).
This observation, together with the changes in performance for extreme stimuli, suggest that the
observed effects of passive exposure are not simply captured by psychometric curves becoming
less shallow. Overall, these observations indicate that passive exposure can have an effect on the
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behavioral responses to stimuli beyond those used during the active training sessions.
To test whether the asymptotic performance of animals was affected by passive exposure, we

compared the psychometric performance across cohorts after 21 days of S4 sessions. We found
that animals with no passive exposure improved their average performance during these few
weeks (𝑝 = 0.031 when comparing early and late periods of S4, Wilcoxon signed-rank test), while
other cohorts did not change in any consistent manner, suggesting that most of these mice had al-
ready reached asymptotic performance (𝑝 = 0.56 for A+P, 𝑝 = 1.0 for P:A, Wilcoxon signed-rank test).
During this period, animals with no passive exposure improved until they were indistinguishable
from those with passive exposure (𝑝 > 0.26 for all comparisons, Wilcoxon rank-sum test) (Fig. 3F-J).
These results indicate that the differences observed across cohorts were not the result of specific
sets of animals having predisposition for poorer learning, but rather, that passive exposure speeds
up learning performance without an apparent change in final performance.
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Figure 3. Passive exposure improves categorization of intermediate stimuli. (A) Average psychometricperformance for the first 4 days of stage S4 across fast learners from each group. Error bars show thestandard error of the mean across mice. (B) Performance averaged across all stimuli is better for mice withpassive exposure. Horizontal lines indicate median across mice. (C) Performance for extreme stimuli(included in S3) is better for mice with passive exposure. (D) Performance for intermediate stimuli (whichwere not used in the task before S4) is better for mice with passive exposure. (E) Psychometric slope is notdifferent across groups. (F-J) All groups achieve similar levels of performance after 3 weeks of additionaltraining. Stars indicate 𝑝 < 0.05.

A one-layer model does not benefit from passive pre-exposure
In the experiments described above, we found that passive exposure to task-relevant stimuli ben-
efits learning, regardless of whether it occurred before or in-between active training sessions. In
order to gain insight into the neural mechanisms thatmight underlie this observation, we analyzed
the effects of active learning and passive exposure in a family of artificial neural network models
combining supervised and unsupervised learning. Specifically, we evaluated the consequences
of different learning algorithms, learning schedules, network architectures, and stimulus distribu-
tions on the learning outcomes. To simulate frequency-modulated sound inputs, we provided our
models with input representations 𝑥⃗ = 𝜇 + 𝜉, where 𝜇 deterministically encodes the stimulus, and
𝜉 is isotropic noise with covariance 𝜎2

𝑥𝐈. The binary output of the models corresponds to the choice
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to lick the left or right port in the experiment. We assumed that one direction in the space of
all possible input representations corresponds to the FM slope parameter. The sounds with the
most extreme FM slopes presented to the models lie at the points ±𝜇0, and, as for the mice in the
experiment, the task the models were tested on was to associate these two most extreme input
representations with the labels ±1. We trained the models with combinations of:

• Active Learning: The model was provided with a sample from the extremes of the stimulus
distribution and the corresponding sample label.

• Passive Exposure: The model was provided with a sample but no label. To replicate the pas-
sive exposure sessions in the experiment, these passive samples were drawn from normal
distributions with means at six points on the line segment between +𝜇0 and −𝜇0 and noise
covariance Σ.

We aimed to find models that can replicate the general experimental observation that passive
exposure improves learning speed. Thus, all themodels we considered included some parameters
that were trained using unsupervised learning, which does not require feedback about task per-
formance, during the active and passive training sessions. Since the models also had to learn the
association between labels and stimuli, they also needed to include parameters that were trained
during active sessions using supervised learning, which makes use of feedback about task perfor-
mance.

Active trials and passive exposures were combined into the following three training schedules:
• Active only (A only): The model was always provided with a sample and its label during 5000
total trials of training.

• Active and Passive (A + P): The model also underwent 5000 active trials, but each one was
followed by 9 passive exposures.

• Passive then Active (P : A): Themodel was first presented with 45000 passive exposures, then
underwent 5000 active trials.
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Figure 4. A single-layer model (Model 1) does not benefit from passive pre-exposure. (A): Networkarchitecture for the one-layer model. (B): The network is trained to find a hyperplane orthogonal to thedecoding direction Δ𝜇0. (C): Learning performance for different training schedules.

The firstmodel (Model 1) we consideredwas the simplest possible neural networkmodel, which
consisted of a single output neuron reading out from an input representation (Fig. 4A). In this one-
layer model, the input representation 𝑥⃗ was multiplied by a weight vector 𝑣 to produce an output
𝑆(𝑣 ⋅ 𝑥⃗), where 𝑆 is the logistic sigmoid function. The task the model had to perform is illustrated
in Fig. 4B: the weight vector 𝑣 is orthogonal to the decision hyperplane, so its optimal orientation
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would be along the direction Δ𝜇0 = +𝜇0 − (−𝜇0). Accounting for the experimental data requires
a model that changes even when no labels are provided during passive exposure. Therefore, we
trained themodel with both supervised learning (in which the weight 𝑣 undergoes gradient descent,
equivalent to logistic regression) and unsupervised learning (where the weight 𝑣 is trained with Heb-
bian learning with weight decay using Oja’s rule (Oja, 1982)). The unsupervised learning rule used
here aligns the normal vector to the decision hyperplane with the direction of highest variance in
the input representation, which in this case is the coding direction spanned by Δ𝜇0. For training,we used the three learning schedules introduced above. During the active sessions, the weight 𝑣
was trained by both supervised and unsupervised learning, while, during the passive sessions, only
the unsupervised learning rule was used.

As in the experiment, interleaving active trials with passive exposure (the A + P condition) facil-
itated learning and slightly sped up training relative to active-only training (Fig. 4C). Long passive
pre-exposure before active learning (P:A condition), however, did not contribute to task learning in
this model. This can be explained by the symmetry of the task: the decision hyperplane oriented
itself in the optimal direction to separate the point clouds, however, because the algorithm didn’t
know about the data labels, there was a 50% chance it was correctly oriented, and a 50% chance it
was oriented exactly in the wrong direction. These two possible configurations of the model after
the passive pre-exposure sessions averaged out, giving no net benefit to the P:A schedule over the
active-only training. Because of this failure, the one-layer model cannot capture the experimental
observation that passive pre-exposure improves the speed of learning.
Passive exposure is beneficial when building latent representations with unsuper-
vised learning
To remedy this shortcoming, we studied a simple extension to the above model by adding an addi-
tional layer of hidden neurons. In addition to the readout weights 𝑣, this two-layermodel has initial
weights𝑊 mapping the input representation 𝑥⃗ to a hidden representation ℎ⃗ = 𝑊 𝑥⃗. The output of
themodel is then 𝑆(𝑣 ⋅𝑊 ℎ⃗). For our simulations, the dimension of the hidden layer 𝑑hid was smaller
than the input dimension 𝑑. We trained 𝑣 using the same algorithms as in the one-layer model. In
addition, we have the option to train𝑊 with either supervised learning, unsupervised learning, or
both. As for the one-layer model, we needed to include both supervised and unsupervised learn-
ing to account for the experimental observations. The simplest way to incorporate this is to have
supervised learning in one layer and unsupervised learning in the other one.

First, we investigated what happens if we use supervised learning for the input weights𝑊 and
unsupervised learning for the readout weights 𝑣. This defines Model 2 (Fig. 5A). In this model, the
relative learning performance for all schedules was similar to that of Model 1 (Fig. 5C). This can
be understood by observing that, since the hidden-layer representation did not change during
passive exposure in the P:A schedule, the active sessions started from a representation that did
not allow the signal to be decoded, as illustrated in Fig. 5B. Thus, there was no benefit from the
initial passive sessions in this model, which contradicts the experimental outcomes. Here, we do
not make claims about the relative performance of the learners in Model 2 with those of Model 1
(since the hyperparameters of each model were chosen independently such that they give rise to
similar asymptotic accuracies). Instead, the conclusions are drawn by comparing different learning
schedules for a given model.

Another possibility (Model 3) to incorporate both types of learning in this network is to learn
the input weights𝑊 by unsupervised learning and the readout weights 𝑣 using supervised learning
(Fig. 5D). Doing so allowed the passive exposures to build a representation of the first principal com-
ponent of the input representation, which enhanced the decodability in the hidden layer (Fig. 5E).
For this model, the speed of learning for both the P:A and A+P training schedules increased com-
pared to the active-only case (Fig. 5F), accounting for the main feature of behavioral experiments,
namely, that passive exposure enhances learning speeds.

While this general behavior is consistent with the experimental results, twomain issues remain
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Figure 5. Passive exposure benefits learning in a two-layer model with unsupervised learning in the first layer.
(A): Network architecture for Model 2, which has supervised learning (SL) at the input layer, and unsupervisedlearning (UL) at the readout. (B): Learning dynamics of the hidden-layer representation of this model for theP:A schedule. (C): Learning performance for different training schedules for Model 2. (D-F): Model 3, whichhas unsupervised learning (UL) at the input layer, and supervised learning (SL) at the readout.

to better account for the data. First, the learning curve for the P:A learners in Fig. 5D rises very
quickly compared to the A+P models (which built up the same representation more gradually dur-
ing the active trial period). In contrast, these two conditions had similar learning speeds in our
experiments. Second, because of the unsupervised learning rule chosen for Models 1-3, the cod-
ing direction of the neural representation of stimuli must align with the first principal component
of the neural representation for the system to benefit from passive exposure. In general, how-
ever, features that are relevant for learning will not always be encoded along the first principal
component. The following section presents solutions to both of these issues.
Building higher-dimensional latent representations improves learning for more-
general input distributions
A limitation of Model 3 is that Hebbian learning only builds a representation of the direction of
highest variance (the first principal component) of the input representation. In real neural repre-
sentations, however, the coding direction will not always align with the first principal component.
To investigate what happens in this case, we trained Model 3 on a non-isotropic input distribution,
setting Σ = diag(𝜎2

1 , 𝜎
2
2 , 𝜎

2
2 ,…) with 𝜎1 ≫ 𝜎2. We set the extreme means ±𝜇0 = ±𝑒2, where 𝑒𝑖 is theunit vector along the 𝑖th dimension. For these inputs, the coding direction represents the second

principal component (Fig. 6A). In this case, passive exposure is counterproductive for learning be-
cause the variance in the coding direction is lost in the hidden-layer representation, so it cannot
be used to distinguish the two input distributions, leading to worse performance of A+P and P:A
learners relative to A-only learners (Fig. 6B).

To address this issue, we implemented a model that uses the similarity matching unsupervised
learning algorithm (Pehlevan et al., 2015) to build a higher-dimensional hidden representation
that includes higher principal components. To do this, we modified the network to include lateral
weights 𝑀 connecting the hidden units in our two-layer model (Fig. 6C). These new connections
were trained using anti-Hebbian learning and have the function of decorrelating the hidden units.

With these modifications, which define Model 4, the performance (Fig. 6D) was similar to that
of Model 3 with the isotropic input distribution (Fig. 5F). Specifically, in the P:A schedule, the rep-
resentation built up during passive sessions aided decodability, slightly increased the speed of
learning, and led to a higher final performance relative to the A-only schedule. However, while
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the P:A learning performance exhibited some improvement over the A-only performance, the A+P
learning performance did not show a comparable improvement for any set of hyperparameters
that we investigated (seeMethods). This is because, in the P:A schedule, the active training benefits
from a representation that aids decoding, while this representation must be built up over time for
the learners in the A+P schedule. Thus, the P:A curve in Fig. 6D initially rises faster than the A+P
curve, unlike in the experimental outcomes shown in Fig. 2D. Together, these results show that,
in the case where the task-relevant encoding direction is not aligned with the direction of highest
variance in the input representation, a more-sophisticated unsupervised learning algorithm is ca-
pable of accounting for the enhanced learning due to passive exposure, but not for the similarity
in the improvements exhibited by the A+P and P:A training schedules.
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Figure 7. A more-general two-layer model accounts for similar benefits of A+P and P:A training schedules. (A):Schematic illustration of Model 5, which combines supervised and unsupervised learning at the input layer ofweights. (B): Input distribution, in which the decoding direction is not aligned with any particular principalcomponent. (C): Learning performance of Model 5. (D): Psychometric curves showing classificationperformance for all stimuli after 1500 trials, where the stimulus parameter 𝜌 linearly interpolates between thetwo extreme stimulus values. (E): Psychometric curves showing classification performance after 5000 trials.
(F): Schematic illustration of the angle between the summed weight updates during active training andpassive exposure for A+P (top) and P:A (bottom) learners. (G): The alignment of active and passive weightupdates for 𝑛 = 50 networks trained with either the A+P or P:A schedule after 1500 trials (𝑝 < 10−3, Wilcoxonrank-sum test; box percentiles are 25/75).

So far, we have only considered input stimulus representations for which the decoding direc-
tion lay in the subspace spanned by the highest principal components, such that unsupervised
learning at the input layer is sufficient to create an optimal latent representation. In a more natu-
ral setting, parts of the decoding directionmight be aligned with the highest principal components,
but part of it might not be. To study this case, we created a model (Model 5) with two new features.
First, this model receives an input representation in which the coding direction has a nonzero pro-
jection along the first 30 principal components. Second, because an unsupervised learning rule
that finds leading principal components alone is insufficient to reach an optimal solution when the
signal is not entirely contained within the leading principal components, this model combines both
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supervised and unsupervised learning at the input layer (Fig. 7A, 7B). Compared to Models 3 and 4,
P:A and A+P schedules led to similar improvements over A-only training (Fig. 7C), consistent with
the experimental results shown in Fig. 2D.

In addition, when we tested the performance for all 6 stimuli at different points in learning,
this model reproduced the main features of the psychometric curves from the experimental data.
In particular, midway through training we found that the psychometric curves for the A+P and
P:A learners had fully converged and were mostly overlapping, while the A-only learners exhibited
relatively poorer classification performance for all stimulus values (Fig. 7D; cf. Fig. 3A). At the end of
training, all three curves converged to very similar values for all stimulus values (Fig. 7E; cf. Fig. 3F).
Thus, Model 5 reproduced all of the key findings from the experiments, including the behaviors of
the learning curves and psychometric curves in all three training conditions.

In Models 3 and 4, we found that P:A learning was initially faster than A+P learning, which we at-
tributed to the larger number of representation-improving passive exposures that the P:A learners
received in the early phases of training. Somewhat surprisingly, we then found in Model 5 that the
P:A and A+P learning curves rose comparably quickly during the initial phase of active training. We
hypothesized that this occurred due to an improved alignment in the weight updates during active
learning and passive exposure in the A+P case (in which these updates occur in alternation) vs. the
P:A case (in which all of the passive-exposure updates occur before the active-training updates). To
test this, we computed the angle of the sum of all active updates relative to the sum of all passive
updates in A+P and P:A learners (Fig. 7F). Consistent with our hypothesis, we found that the active
and passive updates weremore aligned for the A+P learners than for the P:A learners (Fig. 7G). This
result establishes a potential mechanism by which an interleaved schedule of active training and
passive exposure leads to more-efficient learning (in the sense of requiring, for a given number of
active-training steps, fewer passive exposures to achieve a given performance) than a schedule in
which passive exposure entirely precedes active training.

Together, our experimental and theoretical results have shown that the experimentally ob-
served benefit of passive exposure in both the P:A and the A+P schedules is consistent with neural
network models that build latent representations of features that are determined by statistical
properties of the input distribution, as long as those features aid the decoding of task-relevant
variables.
Discussion
In this work, we have shown that passive exposure to task-relevant stimuli increases the speed
of learning during active training in adult mice performing a sound-categorization task. Specifi-
cally, for the amount of passive exposure used here, we found similar increases in cases where
the passive exposure occurred before active training or interleaved with active training, even at
early points where the cumulative number of passive exposures in the latter case was far smaller.
Using artificial neural networks, we showed that these results are consistent with a multi-layer
model in which unsupervised learning in an early layer creates a latent hidden representation that
reflects the statistics of the input stimuli, and supervised learning in a later layer is then used to
decode the stimulus properties and map them onto appropriate behaviors. Finally, we found that
improved learning efficiency when passive exposure is interleaved with active training rather than
occurring entirely before active training can be accounted for by active and passive weight updates
adding together more constructively in interleaved training—a result that may have implications
for designing optimal training schedules in humans, animals, and artificial neural networks.

Various lines of research have investigated the idea that exposure to stimuli may influence per-
ceptual judgements. Multiple studies have demonstrated that the statistics of sensory stimulation
during an animal’s development have a strong influence on the perceptual abilities (and associated
neural correlates) in the adult (Hensch, 2004). Other studies in adults have focused on perceptual
learning, generally defined as experience-dependent enhancements of the ability to perceive and
discriminate sensory stimuli during perceptual decision tasks (Gold and Watanabe, 2010). These
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studies have shown decreases in the strength, quality or duration of a stimulus needed to obtain
a particular level of accuracy, as animals get more exposure to the task stimuli. A key observa-
tion from these studies is that these effects can be disambiguated from other forms of learning,
such as those that establish task rules. In addition to these perceptual enhancements, learning
related to specific stimulus features can occur even when subjects are not told of the relevance of
these features for a given task. Studies of this phenomenon, usually called “incidental learning”,
have shown for example that subjects can incidentally learn categories of complex acoustic ex-
emplars that occur before visual stimuli, even when the instructed task is visual detection (Gabay
et al., 2015). Beyond these effects of incidental learning, studies in humans have found that, un-
der specific conditions, passive exposure to sounds interleaved with training can be beneficial for
learning, sometimes to the extent that active sessions can be replaced with passive exposure and
still yield similar performance (Wright et al., 2015)—an effect that was later replicated for olfactory
learning in mice (Fleming et al., 2019). Our experimental results complement these observations
by demonstrating that passive exposure in adult mice (either interleaved with training or before
training) enhances the learning of acoustic categories, opening new avenues for the detailed in-
vestigation of the neural mechanisms of the improvements that result from passive exposure in
audition.

One important question to address in future studies is to which extent the passive stimuli need
to be related to those presented in the task. Related to this point, previous work has shown that
sensory enrichment alone can change cortical sensory maps (Polley et al., 2004) and improve task-
performance (Mandairon et al., 2006; Alwis and Rajan, 2014) . Beyond the effects on learning and
perceptual judgment, studies in rodents have shown that the effect of stimulus pre-exposure in
classical conditioning paradigms can vary depending on test procedures, the similarity of preex-
posure and training procedures, and the choice of response measure (De Hoz and Nelken, 2014;
Holland, 2018). This suggests that learning associations related to reward or punishment and the
perceptual enhancements that come from passive exposure may rely on different mechanisms
and, under some conditions, compete with each other (McLaren et al., 1989). Therefore, the de-
sign of schedules that benefit optimally from passive exposure must take these mechanisms into
account. Given these constraints, a better understanding of the neuralmechanisms underlying the
influence of passive exposure, achievable through a combination of theoretical approaches and
experiments in animals that provide sufficient experimental access, have the potential to guide the
design of appropriate schedules in a more efficient manner compared to behavioral experiments
alone.

In our experiments, we found that providing animals with passive exposure before task training
vs. interleaved with task training led to comparable benefits. This unexpected result could be a
consequence of the large number of passive-exposure trials provided to the animal on each day.
A comprehensive evaluation of the effects on learning performance as a function of number of
passive exposures may be needed to test this hypothesis. Our models, in contrast, most often
found that exposure before task training led to larger gains (Models 3-4), compared to interleaved
exposure, although we also found a model that led to comparably large gains in these two cases
(Model 5). These theoretical results suggest that different schedules of passive exposure and active
training might lead to significant differences in learning performance, and future experimental
work could test whether this in fact occurs.

Ourmodelsmake the experimental prediction that stimulus features should becomemore eas-
ily decodable from neural representations following frequent exposure to those stimulus features,
even before those stimuli have occurred within the context of a learned task. Related to this idea,
previous work has shown that neural responses in primary sensory cortices exhibit within-session
adaptation to stimulus statistics (Dean et al., 2005; Sharpee et al., 2006; Garcia-Lazaro et al., 2007;
Gutnisky and Dragoi, 2008). However, less is known about how such within-session adaptation
relates to long-term plasticity occurring across days. Future experiments that include recording
throughout task learning could test whether neural representations evolve in a manner consistent
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with our models.
In the machine learning literature, various approaches to combine labeled and unlabeled data

in a semi-supervised learning classification algorithm have been put forward (Van Engelen and
Hoos, 2020), including some biologically plausible implementations (Gu et al., 2019; Genkin et al.,
2019). In most of these, unlabeled data is either used for regularization (e.g., Belkin et al. (2005))
or is assigned pseudo-labels and then used for training (Triguero et al., 2015). In contrast, in our
model we used unsupervised learning in an early layer to create a useful representation for super-
vised learning downstream, a simple form of semi-supervised feature learning.

One limitation of our modeling approach is that the set of models that we consider does not
include some features that may be important for fully capturing the mechanisms of unsupervised
learning during passive exposure in the brain. More-sophisticated approaches beyond learning
rules that implement linear dimensionality reduction will be required for cases in which relevant
stimulus features are encoded in highly nonlinear ways, as would likely be the case for natural
sound stimuli. If the input statistics are very complex, simple forms of initial unsupervised learning
such as the ones that we used might not be helpful for improving hidden-layer representations
and learning (Iyer et al., 2020). Recent years have seen tremendous advances in addressing this
challenge by the use of self-supervised learning to learn complex stimulus features in deep neural
networks (e.g., Devlin et al. (2018); Oord et al. (2018); Grill et al. (2020)). While the models that
we have presented make simplifying assumptions about the stimulus statistics and learning rules,
we conjecture that the principle they are meant to illustrate—namely, that unsupervised learning
can make subsequent supervised learning more efficient by improving neural representations—
applies broadly across different stimulus statistics and learning rules.
Methods
Animal subjects
A total of 27 wild-type C57BL/6J adult mice of both sexes, ages 2.5–4months at the beginning of be-
havioral training, were used in this study. All mice were housed in groups of same-sex littermates
in a 12:12 hour light-dark cycle. Experiments were carried out during the dark period, when mice
are most active. Mice were water-restricted to motivate them to perform the behavioral task. Mice
were weighed and their health checked after each behavioral session, and they were provided with
a water supplement if their weight was below 80% of their baseline. Except for these supplements,
access to water was restricted to the time of the task during experimental days. Free water was
provided on days with no experimental sessions. All procedures were carried out in accordance
with National Institutes of Health Standards and were approved by the University of Oregon Insti-
tutional Animal Care and Use Committee.

The behavioral data was collected using the taskontrol software platform (https://taskontrol.
readthedocs.io) written in the Python programming language (www.python.org). Freely moving mice
were trained to discriminate whether the slope of a 200-ms frequency-modulated sound was posi-
tive or negative. Animals initiated each trial by poking the center port of a 3-port chamber, at which
point the sound was presented after a brief silent delay (150-250 ms, uniformly distributed). Mice
then had to choose the left or right reward ports depending on the slope of the stimulus: left for
an upward frequency sweep and right for a downward sweep. Animals were allowed to withdraw
before the end of the sound to make a choice, and had up to 4 seconds after the end of the sound
to enter a side port. If a mouse did not respond in this period of time, the trial was aborted and not
considered during data analysis. Correct choices were rewarded with a 2ul water, while incorrect
choices yielded nothing and animals had to start a new trial by poking again in the center port.

Animals were first trainedwith frequency-modulated sounds that spanned the frequency range
from 6 to 13 kHz, resulting in an FM slope of +/-5.6 oct/s. To evaluate psychometric performance,
the frequency rangewas varied to achieve intermediate FM slopes (3.4 and 1.1 oct/s), while keeping
the duration of the sounds and the middle frequency constant. All sounds were presented at an
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intensity of 70 dB SPL.
Training stages
Mice were trained to perform the task through a sequence of shaping stages and having a single
1-hour behavior session each day. In stage 0, the goal was to familiarize animals with the reward
delivery ports. During this stage, whenever an animal poked in the side port corresponding to that
trial (the port was randomized on each trial), water was delivered immediately. Animals stayed
in this stage for 2 days. The goal of Stage 1 was to teach animals that a trial starts by poking in
the center. During this stage, whenever the animal poked in the center port, water was delivered
immediately in the corresponding side port for that trial. Animals stayed in this stage for 4 days.
The goal of Stage 2 was to teach animals to wait for the beginning of the sound and only then
make a choice by reaching the correct reward side port. If animals reached the incorrect port, they
still had a chance to get a reward by going to the other side port within 4 seconds of the end of
the sound stimulus. During this stage, the delay between the center poke and the stimulus was
increased by 10 ms every 10 trials, starting at 10 ms. Animals stayed in this stage until 70% of the
mice achieved 300 rewarded trials in a session (corresponding to 12 days for “A only” and “A+P”
cohorts, and 9 days for the “P:A” cohort).

Stage 3was themain learning stage inwhich animals only got rewarded if theymade the correct
choice in their first attempt on each trial. During this stage, we implemented a bias-correction
method as follows. If the percentage of correct choices on either side was lower than 20%, the
next session was set in a mode where error trials were followed by identical trials, until the mouse
made the correct choice. Animals were taken off bias correction when the percentage of correct
choices for both sides was above 30%. Bias-correction sessions were not included in the analysis
of learning speed. Learning performance during stage 3 was evaluated for 26 days.

After themain learning stage, animals transitioned to Stage 4 where we evaluated their psycho-
metric performance by introducing 4 new sounds of intermediate FM slope, for a total of 6 sounds
per session. Which sound was presented on each trial was randomized according to a uniform
distribution. The 3 sounds with positive FM slope were rewarded on the left port, while those with
negative FM slope were rewarded on the right port.
Passive exposure
Mice were grouped into 3 cohorts: an “active training only” (A only) cohort, an “active training
with passive exposure” (A+P) cohort, and a “passive exposure before active training” (P:A) cohort.
Animals that eventually formed the first two cohorts were trained simultaneously in stages 0-2.
This group was then split into the “A only” and “A+P” by selecting animals to match as closely as
possible the average initial performance after shaping between the two cohorts. The “P:A” mice
were trained as a separate cohort. Animals in this cohort had free access to water until their active
training sessions started. One mouse that did not perform enough trials in stage 2 was removed
from the study and excluded from further analysis. The total number of animals included in each
cohort was therefore: 8 A only mice, 9 A+P mice, and 9 P:A mice.

Passive exposure consisted of the additional presentation of all 6 sounds used in stage 4, ran-
domly ordered, while animals were in their home cages inside a sound isolation booth. Animals
received an average of about 3600 passive trials each day, corresponding to 600 daily passive
presentations of each of the 6 stimuli. Stimuli were presented every 4.5 seconds. During these
sessions, animals showed both periods of activity (running, climbing, etc.) and periods of inactivity.
For animals in the A+P cohort, passive exposure sessions took place the same day as active training
sessions, usually a few hours after training.
Analysis of behavioral data
To characterize the learning performance of each animal, we calculated the percentage of correct
trials for each behavioral session during Stage 3 and fit a straight line (without constraints) to these
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data. Using these linear fits, we determined the performance at 21 days and the number of days
required to reach 70% of trials correct for each animal. To test for bimodality of the distributions
of these estimates, we used a Mixture Gaussian Model (implemented in the scikit-learn Python
package: Pedregosa et al. (2011)).

The psychometric performance for each mouse was estimated by fitting a sigmoidal curve to
the percentage of trials with leftward choices for each stimulus averaged across all sessions of
interest (days 1-4 or days 21-24 of stage 4). The psychometric slope presented in Fig. 3 was de-
termined from the maximum slope of this sigmoidal fit. The average psychometric performance
for each cohort was calculated by first estimating the average performance for each stimulus for
each animal, and then averaging across animals. To test differences between cohorts we used the
non-parametric Wilcoxon rank-sum test.
Modeling
The neural network models described in this article were implemented in JAX (Bradbury et al.,
2018), their source code is available at https://github.com/cschmidat/behaviour-models. The networks
were trained on inputs drawn fromnormal distributions (𝜇,Σ), parameterized by themean 𝜇. We
assume these means all lie on a line segment, ending at the values ±𝜇0. We trained the models in
three different settings: With isotropic input, non-isotropic input, and a non-aligned input, in which
the decoding direction is only partially aligned with the highest principal components. For the
isotropic input, we chose an input dimension 𝑑 = 50, andmeans along 𝜇0 = 1.5 𝑒1 , where 𝑒𝑖 denotesthe unit vector along the 𝑖th direction. Because the model is linear, this choice entails no loss of
generality. The covariance matrix was chosen to be Σ = 𝐈. For the non-isotropic input, we set
𝑑 = 50 and 𝜇0 = 1.4 𝑒2, and the covariance to Σ = diag(𝜎2

1 , 𝜎
2
2 , 𝜎

2
2 ,…), with 𝜎1 = 1 and 𝜎2 =

√

8. For the
non-aligned input, we set 𝑑 = 100, 𝜇0 =

1.5
√

30

∑30
𝑖=1 𝑒𝑖 and Σ = diag(𝜎2

1 ,… , 𝜎2
1

⏟⏞⏞⏟⏞⏞⏟
20

, 𝜎2
2 ,… , 𝜎2

2
⏟⏞⏞⏟⏞⏞⏟

80

), where 𝜎1 =
√

2

and 𝜎2 = 1. With this choice of parameters, the decoding direction is only partially aligned with
the first 20 principal-component directions of the input distribution. For all three of these input
distributions, the optimal performance for a classifier is about 95%.

The models were trained in discrete steps, corresponding to either:
• One passive exposure, where the models were supplied with a sample drawn from  (𝜇,Σ),
with 𝜇 randomly chosen from six regularly interspaced points on the line segment from −𝜇0to +𝜇0.• One active trial, where themodelswere suppliedwith either (i) a sample drawn from (+𝜇0,Σ)with target output 𝑦 = 1 (corresponding to label+1) or (ii) a sample drawn from (−𝜇0,Σ)withtarget output 𝑦 = 0 (corresponding to label −1)

Active trials and passive exposures were combined into the following three training schedules:
• A only: The model underwent 5000 active trials.
• A + P: Each of 5000 active trials was followed by 9 passive exposures.
• P : A: The model was first presented with 45000 passive exposures, then underwent 5000
active trials.

With these input representations and learning schedules, we trained 5 models with distinct
architectures and learning rules. Model 1was a one-layermodel with supervised and unsupervised
learning for the readout weights 𝑣. Supervised learning corresponds to stochastic gradient descent
on the binary cross-entropy as the loss function, which results in the learning rule

Δ𝑣𝑖 = 𝜂(𝑥𝑖(𝑦 − 𝑦̂(𝑥)) − 2𝜆𝑣𝑖),

where 𝜂 is the learning rate, 𝑦̂ is the model output and 𝜆 is the weight decay parameter. Unsuper-
vised learning corresponds to Hebbian learning with learning rule:

Δ𝑣𝑖 = 𝜂(𝑥𝑖(2𝑦̂ − 1) − 𝜆(2𝑦̂ − 1)2𝑣𝑖),
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Table 1. Hyperparamters used for shown results
Model 1 Model 2 Model 3 Model 4 Model 5

𝜂𝑣,𝑈𝐿 1 ⋅ 10−4 5 ⋅ 10−2 – – 1 ⋅ 10−5

𝜆𝑣,𝑈𝐿 2.4 1 – – 1
𝜂𝑣,𝑆𝐿 2 ⋅ 10−4 – 1 ⋅ 10−2 3 ⋅ 10−3 2 ⋅ 10−3

𝜆𝑣,𝑆𝐿 5 ⋅ 10−2 – 2 ⋅ 10−2 3 ⋅ 10−2 5 ⋅ 10−2

𝜂𝑊 ,𝑈𝐿 – – 2 ⋅ 10−5 8 ⋅ 10−6 6 ⋅ 10−5

𝜆𝑊 ,𝑈𝐿 – – 1 1 4
𝜂𝑊 ,𝑆𝐿 – 1 ⋅ 10−3 – – 1 ⋅ 10−4

𝜆𝑊 ,𝑆𝐿 – 1 ⋅ 10−3 – – 1 ⋅ 10−3

where, as before, 𝜂 is the learning rate and 𝜆 is a weight-decay constant. In Model 1, we trained 𝑣
using unsupervised learning during all passive exposures, and using both unsupervised learning
and supervised learning during active trials.

The two-layer architecture introduces additional weights𝑊 to map the input 𝑥⃗ to a latent rep-
resentation ℎ⃗ = 𝑊 𝑥⃗, which is used by the readout weights 𝑣 to produce the output 𝑦̂ = 𝑆(𝑣 ⋅𝑊 𝑥⃗).
As for 𝑣, the input weights𝑊 can be trained by supervised learning and unsupervised learning. For
supervised learning, we again used stochastic gradient descent on the binary cross-entropy, while,
for unsupervised learning, Hebbian learning with weight decay was used:

Δ𝑊𝑖𝑗 = 𝜂
(

𝑥𝑖ℎ𝑗 − 𝜆||ℎ⃗||2𝑊𝑖𝑗

)

.

In Model 2, we trained 𝑣 using unsupervised learning during all passive exposures and active trials,
and 𝑊 using supervised learning during the active trials. In Model 3, we trained 𝑊 using unsu-
pervised learning during all passive exposures and active trials, and 𝑣 using supervised learning
during the active trials. In Model 4, we expanded Model 3 by introducing an additional lateral set
of weights𝑀 between the hidden-layer neurons, which was trained during the passive exposures
and active trials using anti-Hebbian learning:

Δ𝑀𝑖𝑗 = 𝜂(ℎ𝑖ℎ𝑗 − 𝜆𝑀𝑖𝑗).

Assuming that the neurons in the hidden layer quickly settle to a steady state, the effect of the lat-
eral weights can be taken into account by using the hidden layer representation at this equilibrium
(Pehlevan et al., 2015):

ℎ⃗ = 𝑀−1𝑊 𝑥.

InModel 5, we used the same architecture and learning rules as inModel 4, but additionally trained
𝑊 using supervised learning during active trials.

We chose the hyperparameters 𝜂 for all supervised learning rules such that the learning curve
for the learners in the A-only schedule approximately matched the learning performance of the
mice in the experiments. The learning rate for the unsupervised algorithms determines the sep-
aration of the learners with passive exposure and was chosen such that it maximized the separa-
tion while maintaining stability of the learning algorithm (the instability occurs when the learning
rate for the unsupervised algorithms is set too high). The weight-decay parameters determine the
asymptotic size of the weights when the learning algorithms converge. They were chosen such
that the asymptotic norm of all weights matched the norm at initialization. The values for all hy-
perparameters can be found in Table 1.
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