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Abstract

Plants respond to elevated atmospheric CO> concentrations by reducing leaf nitrogen content and
photosynthetic capacity — patterns that correspond with increased net photosynthesis rates, total
leaf area, and total biomass. Nitrogen supply has been hypothesized to be the primary factor
controlling these responses, as nitrogen availability limits net primary productivity globally.
Recent work using evo-evolutionary optimality theory suggests that leaf photosynthetic
responses to elevated CO» are independent of nitrogen supply and are instead driven by leaf
nitrogen demand to build and maintain photosynthetic enzymes, which optimizes resource
allocation to photosynthetic capacity and maximizes allocation to growth. Here, Glycine max L.
(Merr) seedlings were grown under two CO> concentrations, with and without inoculation with
Bradyrhizobium japonicum, and across nine soil nitrogen fertilization treatments in a full-
factorial growth chamber experiment to reconcile the role of nitrogen supply and demand on leaf
and whole-plant responses to elevated CO.. After seven weeks, elevated CO; increased net
photosynthesis rates despite reduced leaf nitrogen content and maximum rates of Ribulose-1,5-
bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation and electron transport for
RuBP regeneration. Effects of elevated CO> on net photosynthesis and indices of photosynthetic

capacity were independent of nitrogen fertilization and inoculation. However, increasing
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nitrogen fertilization enhanced positive effects of elevated CO- on total leaf area and total
biomass due to increased nitrogen uptake and reduced carbon costs to acquire nitrogen. Whole-
plant responses to elevated CO; were not modified by inoculation across the nitrogen
fertilization gradient, as plant investment toward symbiotic nitrogen fixation was similar between
CO; treatments. These results indicate that leaf nitrogen demand to build and maintain
photosynthetic enzymes drives leaf photosynthetic responses to elevated CO», while nitrogen
supply regulates whole-plant responses. Our findings build on previous work suggesting that
terrestrial biosphere models may improve simulations of photosynthetic processes under future

novel environments by adopting optimality principles.

Keywords
acclimation, eco-evolutionary optimality, growth chamber, least-cost theory, nitrogen acquisition

strategy, photosynthesis, plant functional ecology, whole-plant growth

Introduction
Terrestrial ecosystems are regulated by complex carbon and nitrogen cycles. As a result,
terrestrial biosphere models, which are beginning to include coupled carbon and nitrogen cycles
(Shi et al., 2016; Davies-Barnard et al., 2020; Braghiere et al., 2022), must accurately represent
these cycles under different environmental scenarios to reliably simulate carbon and nitrogen
fluxes (Oreskes et al., 1994; Prentice et al., 2015). While the inclusion of coupled carbon and
nitrogen cycles in terrestrial biosphere models was intended to improve model reliability, large
uncertainty in the role of nitrogen availability and nitrogen acquisition strategy on leaf and whole
plant responses to increasing atmospheric CO2 concentrations persists (Arora et al., 2020;
Davies-Barnard et al., 2020; Kou-Giesbrecht et al., 2023), contributing to widespread divergence
in future carbon and nitrogen flux simulations across terrestrial biosphere models (Hungate et al.,
2003; Friedlingstein et al., 2014; Zaehle et al., 2014; Wieder et al., 2015; Meyerholt et al.,
2020).

Over the past few decades, numerous studies have sought to elucidate plant responses to
elevated CO», revealing consistent leaf and whole-plant patterns. At the leaf level, Cs plants
grown under elevated CO; exhibit increased net photosynthesis rates compared to plants grown

under ambient CO> (Medlyn et al., 1999; Ainsworth & Long, 2005; Bernacchi ef al., 2005; Lee
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et al.,2011; Poorter et al., 2022). These patterns correspond with reduced mass- and area-based
leaf nitrogen content, increased leaf mass per area, reduced stomatal conductance, and reduced
photosynthetic capacity, yielding increased photosynthetic nitrogen-use efficiency and water-use
efficiency (Curtis, 1996; Drake et al., 1997; Medlyn et al., 1999; Ainsworth & Long, 2005;
Ainsworth & Rogers, 2007; Lee et al., 2011; Pastore et al., 2019; Poorter et al., 2022). At the
whole-plant level, C; plants grown under elevated CO; exhibit increased total leaf area, which
supports greater net primary productivity and total biomass compared to plants grown under
ambient CO> (Coleman et al., 1993; Ainsworth et al., 2002; Ainsworth & Rogers, 2007; Finzi et
al., 2007; Poorter et al., 2022). Some experiments suggest that elevated CO, increases
belowground carbon allocation and the ratio of root biomass to shoot biomass compared to plants
grown under ambient CO; (Nie ef al., 2013), though this allocation response is not consistently
observed (Luo et al., 1994; Poorter et al., 2022).

Despite consistent plant responses to elevated CO> documented across experiments,
mechanisms that drive these responses remain unresolved. Some have hypothesized that plant
responses to elevated CO» are constrained by nitrogen availability, as net primary productivity is
limited by nitrogen availability globally (Vitousek & Howarth, 1991; LeBauer & Treseder,
2008). The progressive nitrogen limitation hypothesis predicts that elevated CO; will increase
plant nitrogen uptake to support greater net primary productivity, which will cause nitrogen
availability to decline over time (Luo et al., 2004). The hypothesis predicts that this response
should increase growth and net primary productivity under elevated CO; over short time scales
that dampen with time as nitrogen becomes progressively more limiting and stored in longer-
lived tissues. Growth responses to elevated CO; expected from the progressive nitrogen
limitation hypothesis have received some support from free-air CO> enrichment experiments
(Reich et al., 2006; Norby et al., 2010), though these patterns are not consistently observed
(Finzi et al., 2006, 2007; Moore et al., 2006; Liang et al., 2016).

Assuming positive relationships between soil nitrogen availability, leaf nitrogen content,
and photosynthetic capacity (Field & Mooney, 1986; Evans, 1989; Evans & Seemann, 1989;
Walker et al., 2014; Firn et al., 2019; Liang et al., 2020), the progressive nitrogen limitation
hypothesis implies that reductions in nitrogen availability over time might explain why Cs plants
exhibit decreased leaf nitrogen content and photosynthetic capacity under elevated COs,.

However, results from free-air CO> enrichment experiments show that reductions in leaf nitrogen
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94 content and photosynthetic capacity under elevated CO; are decoupled from changes in nitrogen
95 availability (Crous et al., 2010; Lee et al., 2011; Pastore et al., 2019). Additionally, variance in
96 leaf nitrogen and photosynthetic capacity across environmental gradients tends to be more
97  strongly determined through aboveground growth conditions that set demand to build and
98  maintain photosynthetic enzymes than through changes in soil resource availability (Dong et al.,
99 2017, 2020, 2022a; Smith et al., 2019; Smith & Keenan, 2020; Paillassa et al., 2020; Peng et al.,
100  2021; Querejeta et al., 2022; Westerband et al., 2023; Waring et al., 2023). These patterns
101  indicate that leaf photosynthetic responses to elevated CO2 may be a product of altered leaf
102 nitrogen demand to build and maintain photosynthetic enzymes and may not be as strongly
103 linked to changes in nitrogen availability.
104 Eco-evolutionary optimality theory provides a framework for understanding how leaf
105  photosynthetic responses to elevated CO2 may be determined through demand to build and
106  maintain photosynthetic enzymes (Harrison et al., 2021). Merging photosynthetic least-cost
107  (Wright et al., 2003; Prentice et al., 2014) and optimal coordination (Chen et al., 1993; Maire et
108  al., 2012) theories, eco-evolutionary optimality theory posits that reduced leaf nitrogen allocation
109  under elevated COz is the downstream result of a stronger downregulation in the maximum rate
110  of Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation (Vcmax)
111 than the maximum rate of electron transport for RuBP regeneration (Jmax), which reduces leaf
112 nitrogen demand to build and maintain photosynthetic enzymes. Optimal leaf nitrogen allocation
113 to photosynthetic capacity allows plants to make more efficient use of available light while
114  avoiding overinvestment in Rubisco, which has high nitrogen and energetic costs of construction
115  and maintenance (Evans, 1989; Sage, 1994; Evans & Clarke, 2019). Such optimal leaf nitrogen
116  allocation responses to elevated CO» increases photosynthetic nitrogen-use efficiency and allows
117  increased net photosynthesis rates to be achieved through increasingly equal co-limitation of
118  Rubisco carboxylation and electron transport for RuBP regeneration (Chen et al., 1993; Maire et
119  al.,2012; Wang et al., 2017; Smith et al., 2019). The expected optimal leaf response to elevated
120  COxz has received some empirical support (Crous et al., 2010; Lee et al., 2011; Smith & Keenan,
121 2020; Harrison et al., 2021; Dong et al., 2022b; Cui et al., 2023), though no studies have
122 connected these patterns with concurrently measured whole-plant responses.
123 The eco-evolutionary optimality hypothesis deviates from the progressive nitrogen

124 limitation hypothesis by indicating that photosynthetic responses to elevated CO- are driven by
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125  leaf nitrogen demand to build and maintain photosynthetic enzymes and are independent of

126  changes in soil nitrogen supply. However, the eco-evolutionary optimality hypothesis does not
127  discount the role of soil nitrogen availability on whole-plant responses to elevated CO2, where
128  the expected optimal strategy in response to elevated CO; is to allocate surplus nitrogen not

129  needed to satisfy leaf nitrogen demand toward the construction of a greater quantity of optimally
130 coordinated leaves and other plant organs. Thus, whether the supply-driven progressive nitrogen
131  limitation hypothesis or demand-driven eco-evolutionary optimality hypothesis controls plant
132 responses to elevated CO2 may be a matter of scale, where leaf photosynthetic responses to

133 elevated CO; are determined through demand to build and maintain photosynthetic enzymes and
134 whole-plant responses to elevated CO; are regulated by changes in nitrogen supply.

135 Plants allocate carbon belowground in exchange for nutrients through different nutrient
136  acquisition strategies, including direct uptake pathways or symbioses with mycorrhizal fungi and
137  symbiotic nitrogen-fixing bacteria (Gutschick, 1981; Smith & Read, 2008). Carbon costs to

138  acquire nitrogen, or the amount of carbon allocated belowground per unit nitrogen acquired, vary
139  in species with different nitrogen acquisition strategies and are dependent on environmental

140  factors such as atmospheric CO2, temperature, light availability, and nutrient availability

141  (Brzostek et al., 2014; Terrer et al., 2018; Allen et al., 2020; Eastman et al., 2021; Perkowski et
142 al.,2021; Lu et al., 2022; Peng et al., 2023). Therefore, nitrogen acquisition strategy cannot be
143 ignored when considering effects of nitrogen availability on plant responses to elevated CO.. To
144  date, few studies account for acquisition strategy when considering the role of nitrogen

145  availability on leaf and whole-plant responses to elevated CO- (e.g., Terrer et al., 2016, 2018;
146  Smith & Keenan, 2020). Such studies found that nitrogen acquisition strategies with reduced

147  carbon costs to acquire nitrogen may buffer the effect of nitrogen limitation at the whole-plant
148  level (Terrer et al., 2018), but leaf-level responses remain inconsistent (Terrer et al., 2018; Smith
149 & Keenan, 2020).

150 Here, we conducted a growth chamber experiment using Glycine max L. (Merr.)

151  seedlings grown under full factorial combinations of two CO; concentrations, two inoculation
152  treatments, and nine soil nitrogen fertilization treatments to reconcile the role of nitrogen supply
153  and demand on plant responses to elevated CO2. We used this experimental setup to test the

154  following hypotheses:
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(1) Following the demand-driven eco-evolutionary optimality hypothesis, elevated CO; will
downregulate Vemax more strongly than Jmax, increasing Jmax: Vemax and allowing increased
net photosynthesis rates to approach equal co-limitation of Rubisco carboxylation and
electron transport for RuBP regeneration. Leaf photosynthetic responses to elevated CO-
will be independent of nitrogen fertilization and inoculation treatment and will
correspond with increased photosynthetic nitrogen-use efficiency.

(2) Following the supply-driven nitrogen limitation hypothesis, positive effects of elevated
CO: on total leaf area and total biomass will be enhanced with increasing nitrogen
fertilization due to increased plant nitrogen uptake and reduced carbon costs to acquire
nitrogen. Inoculation with symbiotic nitrogen-fixing bacteria will enhance positive
growth responses to elevated CO», though these responses will only be apparent under
low nitrogen fertilization levels where individuals will have increased investment in

nitrogen acquisition through symbiotic nitrogen fixation.

Methods

Seed treatments and experimental design

Glycine max seeds were planted in 144 6-liter surface sterilized pots (NS-600, Nursery Supplies,
Orange, CA, USA) containing a steam-sterilized 70:30 volume: volume mix of Sphagnum peat
moss (Premier Horticulture, Quakertown, PA, USA) to sand (Pavestone, Atlanta, GA, USA).
Before planting, all G. max seeds were surface sterilized in 2% sodium hypochlorite for 3
minutes, followed by three separate 3-minute washes with ultrapure water (MilliQ 7000;
MilliporeSigma, Burlington, MA USA). Subsets of surface-sterilized seeds were inoculated with
Bradyrhizobium japonicum (Verdesian N-Dure™ Soybean, Cary, NC, USA) in a slurry
following manufacturer recommendations (3.12 g inoculant and 241 g ultrapure water per 1 kg
seed).

Seventy-two pots were randomly planted with surface-sterilized seeds inoculated with B.
Jjaponicum, while the remaining 72 pots were planted with surface-sterilized uninoculated seeds.
Thirty-six pots in each inoculation treatment were randomly placed in one of two atmospheric
CO; treatments (420 and 1000 umol mol! CO»). Plants in each unique inoculation-by-CO,
treatment combination randomly received one of nine nitrogen fertilization treatments equivalent

to 0 (0 mM), 35 (2.5 mM), 70 (5 mM), 105 (7.5 mM), 140 (10 mM), 210 (15 mM), 280 (20
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mM), 350 (25 mM), or 630 ppm (45 mM) N. Nitrogen fertilization treatments were created using
a modified Hoagland’s solution (Hoagland & Arnon, 1950) designed to keep concentrations of
all other macronutrients and micronutrients equivalent across treatments (Table S1). Plants
received the same nitrogen fertilization treatment twice per week in 150 mL doses as topical

agents to the soil surface.

Growth chamber conditions
Plants were randomly placed in one of six Percival LED-41L2 growth chambers (Percival
Scientific Inc., Perry, IA, USA) over two experimental iterations due to chamber space
limitation. Two iterations were conducted such that one iteration included all plants grown under
elevated CO; plants, and the second iteration included all plants grown under ambient COs.
Average (= SD) CO; concentrations across chambers throughout the experiment were 439+5
umol mol! CO» for the ambient treatment and 989+4 umol mol! CO; for the elevated treatment.
Daytime growth conditions were simulated using a 16-hour photoperiod, with incoming
light radiation set to chamber maximum (mean+SD: 1230+12 pmol m™ s™! across chambers), air
temperature set to 25°C, and relative humidity set to 50%. The remaining 8-hour period
simulated nighttime growing conditions, with incoming light radiation set to 0 pumol m2 s,
chamber temperature set to 17°C, and relative humidity set to 50%. Transitions between daytime
and nighttime growing conditions were simulated by ramping incoming light radiation in 45-
minute increments and temperature in 90-minute increments over a 3-hour period (Table S2).
Plants grew under average (+ SD) daytime light intensity of 1049+27 pmol m2 s!,
including ramping periods. In the elevated CO:x iteration, plants grew under 24.0+0.2°C during
the day, 16.4+0.8°C during the night, and 51.6+0.4% relative humidity. In the ambient CO»
iteration, plants grew under 23.9+0.2°C during the day, 16.0+1.4°C during the night, and
50.3+0.2% relative humidity. Within each experiment iteration, any differences in climate
conditions across the six chambers were accounted for by shuffling the same group of plants
throughout the growth chambers. This process was done by iteratively moving the group of
plants on the top rack of a chamber to the bottom rack of the same chamber, while
simultaneously moving the group of plants on the bottom rack of a chamber to the top rack of the
adjacent chamber. Plants were moved within and across chambers daily during each experiment

iteration.
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217

218  Leaf gas exchange measurements

219  Leaf gas exchange measurements were collected on the seventh week of development, before the
220  onset of reproduction. All gas exchange measurements were collected on the center leaf of the
221  most recent fully expanded trifoliate leaf set using LI-6800 portable photosynthesis machines
222 configured with a 6800-01A fluorometer head and 6 cm? aperture (LI-COR Biosciences,

223 Lincoln, NE, USA). Specifically, net photosynthesis (Anet; pmol m? s!), stomatal conductance
224 (gsw; mol m? s1), and intercellular CO; (Ci; pmol mol!) concentrations were measured across a
225  range of atmospheric CO> concentrations (i.e., an Ane/Ci curve) using the Dynamic

226  Assimilation™ Technique. The Dynamic Assimilation™ Technique corresponds well with

227  traditional steady-state Ane/Ci curves in G. max (Saathoff & Welles, 2021). Ane/Ci curves were
228  generated along a reference CO, ramp down from 420 umol mol™! CO; to 20 pmol mol! CO,,
229  followed by a ramp up from 420 pmol mol! CO: to 1620 umol mol™! CO; after a 90-second wait
230  period at 420 umol mol! CO,. The ramp rate for each curve was set to 200 pmol mol™! min!,
231  logging every five seconds, which generated 96 data points per response curve. All Ane/Ci curves
232 were generated after Anet and gsw stabilized in a LI-6800 cuvette set to a 500 mol s™! flow rate,
233 10000 rpm mixing fan speed, 1.5 kPa vapor pressure deficit, 25°C leaf temperature, 2000 pmol
234 m?s!incoming light radiation, and initial reference CO; set to 420 umol mol™!.

235 Snapshot 4net measurements were extracted from each An./C; curve, both at a common
236  CO: concentration, 420 umol mol™! COz (Anet420; pmol m2 s7), and under each individual’s

237  growth CO; concentration, 420 and 1000 umol mol! CO» (Anetgrowth; pmol m2 s!). Dark

238  respiration (Rq; pmol m s7') measurements were collected with the same leaf used to generate
239 Ane/Ci curves following at least 30 minutes of darkness. Measurements were collected on a 5-
240  second log interval for 60 seconds after the leaf stabilized in a LI-6800 cuvette set to a 500 mol
241 s flow rate, 10000 rpm mixing fan speed, 1.5 kPa vapor pressure deficit, 25°C leaf temperature,
242 and 420 pmol mol! reference CO, concentration (regardless of CO; treatment), with incoming
243 light radiation set to 0 pmol m2 s”!. A single dark respiration value was determined for each leaf
244 by calculating the mean dark respiration value across the logging interval.

245

246  A/C; curve-fitting and parameter estimation
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247  Aned/Ci curves were fit using the ‘fitaci’ function in the ‘plantecophys’ R package (Duursma,

248  2015). This function estimates the maximum rate of Rubisco carboxylation (Vcmax; pmol m2 s!)
249  and maximum rate of electron transport for RuBP regeneration (Jmax; pmol m s'') based on the
250  Farquhar ef al. (1980) biochemical model of C3 photosynthesis. Triose phosphate utilization

251  (TPU) limitation was included as an additional rate-limiting step in all curve fits after visually
252  observing clear TPU limitation for most curves. All curve fits included measured dark respiration
253  values. As 4ne/C; curves were generated using a common leaf temperature (25°C), curves were
254 fit using Michaelis-Menten coefficients for Rubisco affinity to CO; (Kc; pmol mol!) and O> (Ko;
255  mmol mol!), and the CO, compensation point (I"; pmol mol™') reported in Bernacchi et al.

256 (2001). Specifically, K. was set to 404.9 umol mol’!, K, was set to 278.4 umol mol’!, and I™* was
257  setto 42.75 umol mol'. For clarity, Vemax, Jmax, and R4 estimates are referenced throughout the
258  rest of the paper as Vemax2s, Jmax2s, and Raos.

259

260  Leaf trait measurements

261  The leaf used to generate Ane/Ci curves and dark respiration measurements was harvested

262  immediately following gas exchange measurements. Images of each focal leaf were curated

263  using a flat-bed scanner to determine fresh leaf area using the 'LeafArea' R package (Katabuchi,
264  2015), which automates leaf area calculations using ImageJ software (Schneider et al., 2012).
265  Post-processed images were visually assessed to check against errors in the automation process.
266  Each leaf was dried at 65°C for at least 48 hours and subsequently weighed and ground until
267  homogenized. Leaf mass per area (Marea; g m™?) was calculated as the ratio of dry leaf biomass to
268  fresh leaf area. Leaf nitrogen content (Nmass; gN g'') was quantified using a subsample of ground
269  and homogenized leaf tissue through elemental combustion analysis (Costech-4010, Costech,
270  Inc., Valencia, CA, USA). Leaf nitrogen content per unit leaf area (Narea; gN m2) was calculated
271 by multiplying Nmass and Marea. Photosynthetic nitrogen-use efficiency (PNUEgowth; pmol CO2
272  g!' Ns!) was estimated as the ratio of Anetgrowth t0 Narea.

273 Chlorophyll content was extracted from a second leaf in the same trifoliate leaf set as the
274  leafused to generate Ane/Ci curves. A cork borer was used to punch between 3-5 0.6 cm? disks
275  from the leaf. Images of each set of leaf disks were curated using a flat-bed scanner to determine
276  wet leaf area, again quantified using the 'LeafArea’ R package (Katabuchi, 2015). Leaf disks

277  were shuttled into a test tube containing 10 mL dimethyl sulfoxide, vortexed, and incubated at
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278  65°C for 120 minutes (Barnes et al., 1992). Incubated test tubes were vortexed again before

279  being loaded in 150 pL triplicate aliquots to a 96-well plate. Dimethyl sulfoxide was loaded in
280  each plate as a single 150 pL triplicate aliquot and used as a blank. Absorbance measurements at
281 649 nm (A4e49) and 665 nm (A4ess) were recorded in each well using a plate reader (Biotek Synergy
282  HI; Biotek Instruments, Winooski, VT USA), with triplicates averaged and corrected by the

283  mean of the blank absorbance value. Blank-corrected absorbance values were used to estimate

284  Chly (ug mL") and Chly, (ug mL™") following equations from Wellburn (1994):

285 Chly, = 12.47Aggs — 3.62A¢40 (1)
286 and
287 Chlb == 25'O6A649 - 6'5A665 (2)

288  Chl, and Chl, were converted to mmol mL! using the molar masses of chlorophyll @ (893.51 g
289  mol™) and chlorophyll 5 (907.47 g mol!), then added together to calculate the total chlorophyll
290  content in dimethyl sulfoxide extractant (mmol mL-"). Total chlorophyll content (mmol) was
291  determined by multiplying the total chlorophyll content in dimethyl sulfoxide by the volume of
292 dimethyl sulfoxide extractant (10 mL). Area-based chlorophyll content (Chlarea; mmol m2) was
293  then calculated by dividing the total chlorophyll content by the total area of the leaf disks.

294 Subsamples of ground and homogenized leaf tissue were sent to the University of

295  California-Davis Stable Isotope Facility to determine leaf !°C and §!°N using an elemental
296  analyzer (Elementar vario MICRO cube elemental analyzer; Elementar Analysensysteme GmbH,
297  Langenselbold, Germany) interfaced to an isotope ratio mass spectrometer (PDZ Europa 20-20
298  Isotope Ratio Mass Spectrometer, Sercon Ltd., Chestshire, UK). Leaf 8'3C was used to estimate
299  the time-integrated ratio of leaf intercellular CO> concentration to atmospheric CO>

300  concentration (¥, unitless) using leaf 3'3C and chamber air §'3C following Farquhar et al. (1989):

301 y=2¢a 3)

b—a

302  where A3C represents the relative difference between leaf '°C (%o) and air 8'*C (%o), and is

303  calculated as:

5136air_513Cleaf
1+513Cleaf

304 A3C = (4)

305  81Cair is the chamber 8'3C air fractionation, a represents the fractionation between 2C and 13C
306  due to diffusion in air, assumed to be 4.4%o, and b represents the fractionation caused by Rubisco

307  carboxylation, assumed to be 27%o (Farquhar et al., 1989). 8'*Cair was quantified in each

10
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308  chamber by collecting air samples in triplicate for each CO; treatment using a 20 mL syringe
309  (Air-Tite Products Co., Inc., Virginia Beach, VA, USA). Each air sample was plunged into a

310  manually evacuated 10 mL Exetainer (Labco Ltd., Lampeter, UK) and sent to the University of
311  California-Davis Stable Isotope Facility, where 8'3Cair was determined using a gas inlet system
312 (GasBenchll; Thermo Fisher Scientific, Waltham, MA, USA) coupled to an isotope ratio mass
313 spectrometer (Thermo Finnigan Delta Plus XL; Thermo Fisher Scientific, Waltham, MA, USA).
314 3BCai for each CO; treatment was estimated by calculating the mean of the triplicate 8'*Cair

315  samples within each chamber, then calculating the mean 8'3Cair across all chambers. Specifically,
316 3'3Cair was -8.81%o for the ambient CO; treatment and -5.95%o for the elevated CO; treatment.
317 Finally, the percent of leaf nitrogen acquired from the atmosphere (%Nat; %) was

318  estimated using leaf 8'°N and the following equation adapted from Andrews ef al. (2011):

15 15
6 °Ngirect—6 Nsample

319 %Ngpq = )

85N girect—6 5 Nfixation
320  where 8" Nuiree: refers to the '°N value from plants that exclusively acquired nitrogen via direct
321  uptake, 8" Ngamplc refers to an individual’s leaf 3'°N, and 8! Niixation refers to the 8'°N value from
322 individuals that were entirely reliant on nitrogen fixation. 8'*Naireet Was calculated as the mean
323 leaf 8'°N of uninoculated individuals within each unique nitrogen fertilization-by-CO, treatment
324  combination. Any individual with visual evidence of root nodule formation or nodule initiation
325  was omitted from the calculation of 3'*Nairect. 8'°Niixation Was calculated within each CO;

326  treatment using the mean leaf 3'°N of inoculated individuals that received 0 ppm N. 8"*Niixation
327  was not calculated within each unique nitrogen fertilization-by-CO; treatment combination, as
328  previous studies suggest decreased reliance on nitrogen fixation with increasing nitrogen

329  fertilization (e.g., Perkowski ef al., 2021).

330

331  Whole-plant measurements

332 Seven weeks after experiment initiation and immediately following gas exchange measurements,
333  all individuals were harvested, and biomass of major organ types (leaves, stems, roots, and

334  nodules when present) were separated. Fresh leaf area of all harvested leaves was measured

335  using a LI-3100C (LI-COR Biosciences, Lincoln, Nebraska, USA). Total fresh leaf area (cm?)
336  was calculated as the sum of all leaf areas, including the leaf used to collect gas exchange data

337  and the leaf used to extract chlorophyll content. All harvested material was dried in an oven set
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338  to 65°C for at least 48 hours to a constant mass, weighed, and ground to homogeneity. Leaves
339  and root nodules were ground using a mortar and pestle, while stems and roots were ground
340  using an E3300 Single Speed Mini Cutting Mill (Eberbach Corp., MI, USA). Total biomass (g)
341  was calculated as the sum of dry leaf, stem, root, and root nodule biomass. Carbon and nitrogen
342 content was measured for each organ type through elemental combustion (Costech-4010,

343  Costech, Inc., Valencia, CA, USA) using subsamples of ground and homogenized organ tissue.
344  The ratio of root nodule biomass to root biomass was calculated as an additional indicator of
345  investment toward symbiotic nitrogen fixation.

346 Following Perkowski et al. (2021), carbon costs to acquire nitrogen were quantified as
347  the ratio of belowground carbon biomass to total nitrogen biomass (Neos; gC gN!). Belowground
348  carbon biomass (Cyg; gC) was calculated as the sum of root carbon biomass and root nodule
349  carbon biomass. Root carbon biomass and root nodule carbon biomass were calculated as the
350  product of the organ biomass and respective organ carbon content. Total nitrogen biomass (Nwp;
351  gN) was calculated as the sum of total leaf, stem, root, and root nodule nitrogen biomass. Leaf,
352 stem, root, and root nodule nitrogen biomass was calculated as the product of the organ biomass
353  and respective organ nitrogen content. This calculation does not account for additional carbon
354  costs associated with respiration, root exudation, or root turnover, and therefore may

355  underestimate carbon costs to acquire nitrogen (Perkowski et al., 2021).

356

357  Statistical analyses

358  Uninoculated plants that had substantial root nodule formation (root nodule biomass: root

359  biomass values greater than 0.05 g g'!) were removed from analyses under the assumption that
360 plants were either incompletely sterilized or were colonized by symbiotic nitrogen-fixing

361  bacteria from neighboring plants in the chamber. This decision resulted in the removal of sixteen
362  plants from the analysis: two plants in the elevated CO> treatment that received 35 ppm N, three
363  plants in the elevated CO: treatment that received 70 ppm N, one plant in the elevated CO»

364  treatment that received 210 ppm N, two plants in the elevated CO; treatment that received 280
365 ppm N, two plants in the ambient CO; treatment that received 0 ppm N, three plants in the

366  ambient CO> treatment that received 70 ppm N, two plants in the ambient CO; treatment that

367 received 105 ppm N, and one plant in the ambient CO> treatment that received 280 ppm N.
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368 A series of linear mixed-effects models were built to investigate the impacts of CO»

369  concentration, nitrogen fertilization, and inoculation on G. max leaf nitrogen allocation, gas

370  exchange, whole-plant growth, and investment in nitrogen fixation. All models included CO>
371 treatment as a categorical fixed effect, inoculation treatment as a categorical fixed effect, and
372  nitrogen fertilization as a continuous fixed effect, with all possible interaction terms between all
373  three fixed effects also included. Models accounted for climatic differences between chambers
374  across experiment iterations by including a random intercept term that nested the starting

375  chamber rack by CO; treatment. Models with this independent variable structure were created for
376  each of the following dependent variables: Narea, Marea, Nmass, Chlarca, Anet420, Anet,growth, Vemax2s,
377 Jmax2s, Jmax2s: Vemaxes, Razs, PNUEgrowin, ), total leaf area, total biomass, Neost, Cog, Nwp, YoNdfa,
378  rood nodule biomass: root biomass, root nodule biomass, and root biomass.

379 Shapiro-Wilk tests of normality were used to assess whether linear mixed-effects models
380  satisfied residual normality assumptions. All models that did not satisfy residual normality

381  assumptions satisfied such assumptions when response variables were fit using either a natural
382  log or square root data transformation (Shapiro-Wilk: p>0.05 in all cases). Specifically, models
383 for Narea, Nmass, Chlarca, Anet,420, Anet,growth, Vemax25, Jmax2s, Jmax2s: Vemax2s, Rd2s, PNUEgrowi, , total
384  leaf area, and Ncost €ach satisfied residual normality assumptions without data transformation.
385  Models for Marea, total biomass, and Cv, satisfied residual normality assumptions with a natural
386  log data transformation, while models for Ny, root nodule biomass: root biomass, root nodule
387  biomass, root biomass, and %Nur. satisfied residual normality assumptions with a square root
388  data transformation.

389 In all models, we used the ‘Imer’ function in the ‘Ime4’ R package (Bates ef al., 2015) to
390 fit each model and the ‘Anova’ function in the ‘car’ R package (Fox & Weisberg, 2019) to

391  calculate Type I Wald's %? and determine the significance (a=0.05) of each fixed effect

392  coefficient. We used the ‘emmeans’ R package (Lenth, 2019) to conduct post-hoc comparisons
393  using Tukey's tests, where degrees of freedom were approximated using the Kenward-Roger
394  approach (Kenward & Roger, 1997). Trendlines and error ribbons representing the 95%

395  confidence intervals were drawn in all figures using ‘emmeans’ outputs across the range in

396  nitrogen fertilization values. All analyses and plots were conducted in R version 4.1.0 (R Core

397  Team, 2021). Model results for y, Cyvg, Nwp, root nodule biomass: root biomass, root nodule
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398  biomass, and root biomass are reported in the Supplemental Material (Tables S3-S6; Figs. S3-
399  S6).

400

401  Results

402  Leaf nitrogen content

403  Elevated CO; reduced Narca, Nmass, and Chlarea by 29%, 50%, and 31%, respectively, and

404  increased Marwa by 44% (p<0.001 in all cases; Table 1). Interactions between nitrogen

405  fertilization and CO: (p<0.05 in all cases; Table 1) indicated that positive effects of increasing
406  nitrogen fertilization on Narea, Nmass, and Marea (p<0.001 in all cases; Table 1) were stronger under
407  ambient CO2 than elevated CO: (Tukey test of the nitrogen fertilization-trait slope between CO»:
408  p<0.05 in all cases). These responses resulted in a stronger reduction in Narea and Nmass and a
409  stronger increase in Marea under elevated CO:2 with increasing nitrogen fertilization than ambient
410  CO; (Fig. S1). Nitrogen fertilization did not modify reductions in Chlarea due to elevated CO>
411  (Tukey test of the nitrogen fertilization-Chlarea slope between CO» treatments: p>0.05).

412 An interaction between inoculation and CO; (p<0.05; Table 1) indicated that reductions
413 in Naea due to elevated CO, were stronger in uninoculated plants (36% reduction; Tukey test of
414  the CO; effect in uninoculated plants: »p<0.001) than inoculated plants (22% reduction; Tukey
415  test of the CO> effect in inoculated plants: p<0.001). Inoculation did not modify Nmass, Marea, OF
416  Chlarea responses to elevated CO, (CO»-by-inoculation interaction: p>0.05 in all cases; Table 1).
417  However, an interaction between nitrogen fertilization and inoculation (p<0.05 in all cases; Table
418  1; Figs. la-d) indicated that positive effects of increasing nitrogen fertilization on Narea, Nmass,
419  Moarea, and Chlarea (p<0.001 in all cases; Table 1) were stronger in uninoculated plants compared
420  to inoculated plants (Tukey test of the nitrogen fertilization-trait slope between inoculation

421  treatments: p<0.05 in all cases).

422
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Table 1 Effects of CO: concentration, inoculation, and nitrogen fertilization on leaf nitrogen allocation”

Narea Nmass Mareaa Chlarea

df e p e p e p e p
CO; 1 155908  <0.001 272362  <0.001 151319  <0.001 69233  <0.001
Tnoculation () 1 86029 <0.001 15576  <0.001  19.158  <0.001 136341  <0.001
N fertilization (N) 1 316408  <0.001 106.659  <0.001  21.440  <0.001 163.111  <0.001
CO,*1 1 4.729 0.030 2.025 0.155 0.029 0.866 2.102 0.147
CO.*N 1 5.723 0.017 22542  <0.001 7.619 0.006 2.999 0.083
I*N 1 43381  <0.001  11.137 0.001 5.022 0.025 75769  <0.001
COL*I*N 1 0.489 0.484 0.041 0.839 0.208 0.649 2.144 0.143

*Significance determined using Type II Wald y? tests (a=0.05). P-values less than 0.05 are in bold. A superscript
trait labels to indicate if models were fit with natural log-transformed response variables. Key: df=degrees of freedom, y>=Wald chi-

square test statistic, Narea=leaf nitrogen content per unit leaf area (gN m2), Nmass=leaf nitrogen content (gN g!), Marea=leaf mass per

unit leaf area (g m).

€qr”

is included after
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430
431  Figure 1 Effects of COz concentration, nitrogen fertilization, and inoculation on leaf nitrogen per

432  unit leaf area (a), leaf nitrogen per unit leaf mass (b), leaf mass per unit leaf area (c), and

433 chlorophyll content per unit leaf area (d). Nitrogen fertilization is represented on the x-axis in all
434  panels. Red shaded points and trendlines indicate plants grown under elevated CO», while blue
435  shaded points and trendlines indicate plants grown under ambient CO,. Light blue and red

436  circular points and trendlines indicate measurements collected from uninoculated plants, while
437  dark blue and red triangular points indicate measurements collected from inoculated plants. Solid
438  trendlines indicate regression slopes that are different from zero (p<0.05), while dashed

439  trendlines indicate slopes that are not distinguishable from zero (p>0.05).

440
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441  Gas exchange

442  Elevated CO: decreased Anet420 by 17% (p<0.001; Table 2) and increased Anet,growth by 33%

443  (p<0.001; Table 2). Nitrogen fertilization did not modify effects of elevated CO> on Anet420 Or
444 Anergrowtn (CO2-by-nitrogen fertilization interaction: p>0.05 in both cases; Table 2; Fig. 2a-b).
445  Inoculation did not modify Anet 420 responses to elevated CO, (CO»-by-inoculation interaction:
446  p>0.05). However, an interaction between CO; and inoculation (p<0.05; Table 2) indicated that
447  inoculated plants experienced a stronger increase in Anet,growth due to elevated CO- (38% increase;
448  Tukey test of the CO; effect in inoculated plants: p<0.001) compared to uninoculated plants

449  (26% increase; Tukey test of the CO; effect in uninoculated plants: p<0.05). An interaction

450  between nitrogen fertilization and inoculation (p<0.001 in both cases; Table 2) indicated that
451  positive effects of increasing nitrogen fertilization on Anet420 and Anet,growth (<0.001 in both

452  cases; Table 2; Fig. 2a-b) were stronger in uninoculated plants than inoculated plants (Tukey test
453  comparing the nitrogen fertilization-trait slope between inoculation treatments: p<0.001 in both
454  cases).

455 Elevated CO; decreased Vemaxzs and Jmaxzs by 16% and 10%, respectively, increasing

456 Jmax2s:Vemax2s by 8% (p<0.05 in all cases; Table 2; Fig. 2¢c-€). Vemax2s, Jmax2s, and Jmax2s: Vemax2s
457  responses to elevated CO2 were not modified by nitrogen fertilization (CO»-by-nitrogen

458  fertilization interaction: p>0.05 in all cases; Table 2; Fig. 2¢c-¢e) or inoculation (CO»-by-

459  inoculation interaction: p>0.05 in all cases; Table 2). An interaction between nitrogen

460  fertilization and inoculation (p<0.05 in both cases; Table 2) indicated that positive effects of

461  increasing nitrogen fertilization on Vemax2s and Jmaxas (p<0.001 in both cases; Table 2) and

462  negative effects of increasing nitrogen fertilization on Jmax2s:Vemax2s (p<0.001; Table 2) were

463  driven by uninoculated plants (Tukey test of the nitrogen fertilization-trait slope in uninoculated
464  plants: p<0.001 in all cases), as there was no effect of nitrogen fertilization on Vemax2s, Jmax2s, OF
465  Jmax2s:Vemaxes in inoculated plants (Tukey test of the nitrogen fertilization-trait slope in inoculated
466  plants: p>0.05 in all cases).

467 There was no effect of CO, concentration on Rqzs (p>0.05; Table 2). An interaction

468  between nitrogen fertilization and inoculation (p<0.001; Table 2) indicated that the positive

469  effect of increasing nitrogen fertilization on Ra2s (»p<<0.05; Table 2) was driven by uninoculated

470  plants (Tukey test of the nitrogen fertilization-Rq2s slope in uninoculated plants: p<0.001), as
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471  there was no effect of nitrogen fertilization on Rq»s in inoculated plants (Tukey test of the

472  nitrogen fertilization-Rq>s slope in inoculated plants: p>0.05).

473

474  Photosynthetic nitrogen-use efficiency

475  Elevated CO2 increased PNUEgowh by 90% (p<0.001; Table 2; Fig. 3), a pattern that was not
476  modified by inoculation treatment (CO2-by-inoculation interaction: p>0.05; Table 2). An

477  interaction between CO> and nitrogen fertilization (»p<0.05; Table 2) indicated that the positive
478  effect of elevated CO, on PNUEg.win decreased with increasing nitrogen fertilization (Fig. S2).
479  This pattern was driven by a negative effect of increasing nitrogen fertilization on PNUEgrowth
480  (p<0.001; Table 2) that was stronger under elevated CO, than ambient CO; (Tukey test

481  comparing the nitrogen fertilization-PNUEgrowtn Slope between CO» treatments: p<0.05). An
482  interaction between nitrogen fertilization and inoculation (p<0.001; Table 2; Fig. 3) indicated
483  that the negative effect of increasing nitrogen fertilization on PNUEgown Was driven by

484  inoculated plants (Tukey test of the nitrogen fertilization-PNUEgow slope in inoculated plants:
485  p<0.001), as there was no effect of nitrogen fertilization on PNUEgow in uninoculated plants
486  (Tukey test of the nitrogen fertilization-PNUEgow slope in uninoculated plants: p>0.05).

487
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Table 2 Effects of CO> concentration, inoculation, and nitrogen fertilization on leaf gas exchange”

A net,420 A net,growth chaxZS Ji max25
df X P X p X P X P
CO; 1 15.747 <0.001 52.716 <0.001 18.039 <0.001 6.042 0.014
Inoculation (I) 1 77.137 <0.001 83.008 <0.001 98.579 <0.001 85.064 <0.001
N fertilization (N) 1 11.986 <0.001 14.658 <0.001 37.053 <0.001 25.356 <0.001
COx*1 1 1.032 0.310 5.634 0.018 0.065 0.799 0.667 0.414
COx*N 1 1.998 0.158 0.135 0.713 1.758 0.185 0.742 0.389
I*N 1 46.800 <0.001 50.774 <0.001 60.394 <0.001 57.41 <0.001
CO*I*N 1 0.002 0.964 1.332 0.248 0.748 0.387 0.377 0.539
Jmax25: Vemax2s Razs PNUEgrowtn
e p e p x p
CO; 1 92.010 <0.001 0.256 0.613  300.197 <0.001
Inoculation (I) 1 27.768 <0.001 3.094 0.079 9.897 0.002
N fertilization (N) 1 28.147 <0.001 5.965 0.015 29.695 <0.001
COx*1 1 2916 0.088 2.563 0.109 0.944 0.331
COx*N 1 3.210 0.073 2.675 0.102 5.359 0.021
I*N 1 9.607 0.002 12.083 0.001 10.883 <0.001
CO*I*N 1 1.102 0.294 0.244 0.622 0.369 0.544

*Significance determined using Type I1 Wald y? tests (0=0.05). P-values less than 0.05 are in bold. Key: df=degrees of freedom,

7*=Wald chi-square test statistic, Ane=net photosynthesis rate (umol m? ), Vemaxos=maximum rate of Rubisco carboxylation at 25°C

(umol m? s1), Jmax2s=maximum rate of electron transport for RuBP regeneration at 25°C (umol m s™), Jmax2s: Vemax25=ratio of Jmax2s

to Vemax2s (unitless), Raxs=dark respiration at 25°C (umol m s'!), PNUEgowi=photosynthetic nitrogen-use efficiency (umol CO, gN!

sh
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Figure 2 Effects of CO, nitrogen fertilization, and inoculation on net photosynthesis measured

at 420 umol mol™! CO; (a), net photosynthesis measured under growth CO» concentration (b), the

maximum rate of Rubisco carboxylation at 25°C (c), the maximum rate of electron transport for

RuBP regeneration at 25°C (d), the ratio of the maximum rate of electron transport for RuBP

regeneration to the maximum rate of Rubisco carboxylation (e), and dark respiration at 25°C (f).

Nitrogen fertilization is represented on the x-axis. Red shaded points and trendlines indicate

plants grown under elevated CO, while blue shaded points and trendlines indicate plants grown

under ambient CO». Light blue and red circular points and trendlines indicate measurements

collected from uninoculated plants, while dark blue and red triangular points indicate

measurements collected from inoculated plants. Solid trendlines indicate regression slopes that

are different from zero (p<0.05), while dashed trendlines indicate slopes that are not

distinguishable from zero (p>0.05).
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Figure 3 Effects of CO, nitrogen fertilization, and inoculation on photosynthetic nitrogen-use
efficiency. Nitrogen fertilization is represented on the x-axis. Red shaded points and trendlines
indicate plants grown under elevated CO2, while blue shaded points and trendlines indicate
plants grown under ambient CO;. Light blue and red circular points and trendlines indicate
measurements collected from uninoculated plants, while dark blue and red triangular points
indicate measurements collected from inoculated plants. Solid trendlines indicate regression
slopes that are different from zero (p<0.05), while dashed trendlines indicate slopes that are not

distinguishable from zero (p>0.05).
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519  Whole-plant traits

520  Elevated COz increased total leaf area and total biomass by 51% and 102%, respectively

521  (p<0.001 in both cases; Table 3). Positive effects of elevated CO. on total leaf area and total
522  biomass were enhanced with increasing nitrogen fertilization (CO»-by-nitrogen fertilization

523  interaction: p<0.001 in both cases; Table 3; Fig. 4a-b) but not inoculation (CO»-by-inoculation
524  interaction: p>0.05 in both cases; Table 3). An interaction between nitrogen fertilization and
525  inoculation (p<0.001 in both cases; Table 3) indicated that positive effects of increasing nitrogen
526  fertilization on total leaf area and total biomass (»<0.001 in both cases; Table 3) were stronger in
527  uninoculated plants than inoculated plants (Tukey tests comparing the nitrogen fertilization-trait
528  slopes between inoculation treatments: p<0.05 for both traits).

529 Elevated CO; increased Ncost by 62% (p<0.001; Table 3), a pattern that was not modified
530 by nitrogen fertilization (CO>-by-nitrogen fertilization interaction: p>0.05; Table 3). An

531 interaction between CO; and inoculation (p<0.05; Table 3) indicated that the positive effect of
532 elevated CO2 on Ncost Was stronger in uninoculated plants (99% increase; Tukey test evaluating
533 the CO; effect on Neost in uninoculated plants: p<0.001) than inoculated plants (21% increase
534  Tukey test evaluating the CO; effect on Neos: in inoculated plants: p<0.05). An interaction

535  between nitrogen fertilization and inoculation (p<0.001; Table 3) indicated that the negative
536  effect of increasing nitrogen fertilization on Neost (p<0.001; Table 3) was stronger in

537  uninoculated plants (Tukey test comparing the nitrogen fertilization-Ncost slope between

538  inoculation treatments: p<<0.001). A three-way interaction (»p<0.001; Table 3) indicated that

539 interactions between nitrogen fertilization and inoculation were stronger under elevated CO> than
540  ambient COx. This pattern was driven by greater Ncost in uninoculated plants grown under

541  elevated CO: and low nitrogen fertilization than any other CO-by-inoculation treatment

542  combination under low nitrogen fertilization (Tukey test comparing Ncost in uninoculated

543  individuals grown under elevated CO; and 0 ppm N to all other COz-inoculation treatment

544  combinations grown under 0 ppm N: p<0.001 in all cases; Fig. 4c). Ncost was generally reduced
545  ininoculated plants (p<0.001; Table 3). Negative effects of increasing nitrogen fertilization and
546  inoculation on Ncost Were driven by stronger positive effects of each treatment on Nyp than Cog,
547  while positive effects of elevated CO2 on Neost were driven by stronger positive effects on Cyg
548  than Ny, (Table S4; Fig. S4).

549
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Nitrogen fixation

Elevated CO; had no effect on %~Nur (p=0.472; Table 3; Fig. 4d). An interaction between
nitrogen fertilization and inoculation (p<0.001; Table 3) indicated that the negative effect of
increasing nitrogen fertilization on %MNut. (p<0.001; Table 3) was driven by inoculated plants
(Tukey test of the nitrogen fertilization-%MNys slope in inoculated plants: p<0.001), as there was
no effect of nitrogen fertilization on %Nt in uninoculated plants (Tukey test of the nitrogen

fertilization-%Ngs. slope in uninoculated plants: p>0.05; Fig. 4d).
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558
559

560
561
562
563
564

Table 3 Effects of CO; concentration, inoculation, and nitrogen fertilization on whole-plant growth, carbon costs to acquire nitrogen,

and investment toward symbiotic nitrogen fixation”

Carbon cost to

Total leaf area Total biomass® . ] % Nata®
acquire nitrogen

df e P e p e p e p

CO2 1 69.291 <0.001 131.477 <0.001 88.189 <0.001 0.518 0.472
Inoculation (1) 1 35.715 <0.001 34.264 <0.001 136.343 <0.001 955.57 <0.001
N fertilization (N) 1 274.199 <0.001  269.046 <0.001 80.501 <0.001 292.938 <0.001
COx*1 1 2.064 0.151 0.518 0.472 85.237 <0.001 2.010 0.156
CO2*N 1 18.655 <0.001 16.877 <0.001 1.050 0.306 2.716 0.099
I*N 1 10.804 0.001 15.779 <0.001 46.489 <0.001 231.29 <0.001
CO*I*N 1 <0.001 0.990 0.023 0.880 18.125 <0.001 2.119 0.145

*Significance determined using Type I Wald y? tests (¢=0.05). P-values less than 0.05 are in bold and p-values between 0.05 and 0.10

are italicized. A superscript

of freedom, y>=Wald chi-square test statistic, total leaf area (cm?), total biomass (g), carbon cost to acquire nitrogen (gC gN™!),

b

%Nar.=percent leaf nitrogen content fixed from the atmosphere (%).

after trait labels indicates if models were fit using square root transformed variables. Key: df=degrees
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Figure 4. Effects of CO., nitrogen fertilization, and inoculation on total leaf area (a), total
biomass (b), structural carbon costs to acquire nitrogen (c), and percent of leaf nitrogen content
derived from the atmosphere (d). Nitrogen fertilization is represented on the x-axis. Red shaded
points and trendlines indicate plants grown under elevated CO», while blue shaded points and
trendlines indicate plants grown under ambient CO,. Light blue and red circular points and
trendlines indicate measurements collected from uninoculated plants, while dark blue and red
triangular points indicate measurements collected from inoculated plants. Solid trendlines
indicate regression slopes that are different from zero (p<0.05), while dashed trendlines indicate

slopes that are not distinguishable from zero (p>0.05).
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577  Discussion

578  Glycine max seedlings were grown under two CO> concentrations, two inoculation treatments,
579  and nine soil nitrogen fertilization treatments in a full-factorial growth chamber experiment to
580  reconcile the role of nitrogen supply, demand, and acquisition strategy on leaf and whole-plant
581  responses to elevated COs,.

582 Results revealed that elevated CO» increased Anet,growth despite reduced Narea, Vemax2s, and
583 Jmaxzs. Larger reductions in Vemax2s than Jmaxzs increased Jmax2s: Vemax2s, while respective increases
584  and decreases in Anet,growth and Narea increased photosynthetic nitrogen-use efficiency. Effects of
585  elevated CO2 on Anet,growth, Vemax2s, Jmax2s, and Jmax2s: Vemax2s were similar across the nitrogen

586  fertilization gradient, suggesting that leaf photosynthetic responses to elevated CO2 were

587  decoupled from changes in nitrogen supply. Instead, increased Jmax2s: Vemax2s under elevated CO»
588 indicated that plants responded to increasing atmospheric CO2 concentrations by allowing

589  enhanced net photosynthesis rates to be achieved by approaching equal co-limitation of Rubisco
590  carboxylation rate-limited photosynthesis and electron transport for RuBP regeneration rate-
591  limited photosynthesis (Chen et al., 1993; Maire et al., 2012). These responses supported our
592  hypothesis that leaf photosynthetic responses to elevated CO, would be driven by leaf nitrogen
593  demand to build and maintain photosynthetic enzymes and would be independent of nitrogen
594 supply. Leaf photosynthetic responses to elevated CO; corresponded with increased total leaf
595  area and total biomass, patterns that were enhanced with increasing nitrogen fertilization and
596  associated with increased nitrogen uptake efficiency. These results supported our hypothesis that
597  whole-plant responses to elevated CO2 would be constrained by nitrogen supply. However,

598  contrasting our hypothesis, inoculation did not modify whole-plant responses to elevated CO:
599  due to similar plant investment in symbiotic nitrogen fixation between CO> treatments.

600 Combined, results indicate that nitrogen supply and demand were each important factors
601  that determined plant responses to elevated CO, — leaf nitrogen demand to build and maintain
602  photosynthetic enzymes drove leaf photosynthetic responses to elevated CO», while nitrogen
603  supply constrained whole-plant growth responses to elevated CO». These findings support leaf-
604 level patterns expected from eco-evolutionary optimality theory, suggesting that terrestrial

605  biosphere models may improve simulations of leaf photosynthetic processes under future novel

606  environments by considering frameworks that adopt optimality principles (Smith & Keenan,
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607  2020; Harrison et al., 2021; Luo et al., 2021). Below, we expand and contextualize these

608  conclusions and suggest their implications for terrestrial biosphere model development.

609

610  Nitrogen supply and demand regulate leaf and whole-plant responses to elevated CO; at

611  different scales

612  Leaf photosynthetic responses to elevated CO, were consistent with previous studies that have
613  investigated or reviewed leaf responses to elevated CO; (Drake et al., 1997; Makino et al., 1997,
614  Ainsworth ef al., 2002; Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Crous et al., 2010;
615 Leeetal,2011; Smith & Dukes, 2013; Poorter et al., 2022), and follow patterns expected from
616  eco-evolutionary optimality theory (Chen ef al., 1993; Wright et al., 2003; Maire et al., 2012;
617  Prentice et al., 2014; Wang et al., 2017; Smith et al., 2019; Smith & Keenan, 2020; Harrison et
618 al., 2021). Positive effects of elevated CO2 on Anet,growth and Jmax2s: Vemaxzs and negative effects of
619  elevated COz on Vemaxes and Jmaxas were similar across the nitrogen fertilization gradient,

620 indicating that leaf photosynthetic responses to elevated CO, were decoupled from changes in
621  nitrogen supply. Increased Jmax2s: Vemax2s and photosynthetic nitrogen-use efficiency under

622  elevated CO> provide strong support for the idea that leaves were downregulating Vemaxos in

623  response to elevated CO: such that enhanced net photosynthesis rates approached becoming

624  equally co-limited by Rubisco carboxylation and RuBP regeneration (Chen et al., 1993; Maire et
625  al., 2012; Smith & Keenan, 2020). These patterns suggest that leaf photosynthetic responses to
626  elevated CO2 were likely the result of reduced demand to build and maintain photosynthetic

627  enzymes, following patterns expected from eco-evolutionary optimality theory (Harrison et al.,
628  2021; Dong et al., 2022b).

629 Whole-plant responses were also consistent with previous studies that have investigated
630  or reviewed whole-plant responses to elevated CO (Makino et al., 1997; Ainsworth et al., 2002;
631  Hungate et al., 2003; Ainsworth & Long, 2005; Norby ef al., 2010; Smith & Dukes, 2013;

632  Poorter et al., 2022). Greater whole-plant growth under elevated CO» was associated with greater
633  carbon costs to acquire nitrogen through stronger increases in belowground carbon allocation
634  than whole-plant nitrogen uptake. These patterns indicate that plants grown under elevated CO:
635  supported greater total leaf area and total biomass through increased plant nitrogen uptake,

636  though at reduced nitrogen uptake efficiency. Unlike leaf photosynthetic responses to elevated

637  COao, positive whole-plant responses to elevated CO; were enhanced with increasing nitrogen
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638  fertilization, supporting our hypothesis that nitrogen supply would constrain whole-plant

639  responses to elevated CO> (Hungate et al., 2003; Luo et al., 2004; Finzi et al., 2007). Positive
640 effects of increasing nitrogen fertilization on total leaf area and total biomass were associated
641  with reductions in carbon costs to acquire nitrogen, a pattern that was driven by stronger

642  increases in whole-plant nitrogen uptake than belowground carbon allocation (Perkowski et al.,
643  2021). While reductions in carbon costs to acquire nitrogen due to increasing nitrogen

644  fertilization were similar between CO; treatments, increasing nitrogen fertilization increased
645  whole-plant nitrogen uptake more strongly under elevated CO». This pattern, coupled with

646  similar effects of nitrogen fertilization on belowground carbon allocation responses to elevated
647  COo, indicated that stronger growth responses to elevated CO> with increasing nitrogen

648  fertilization were likely driven by enhanced nitrogen uptake efficiency. These findings suggest
649 that positive short-term effects of nitrogen supply on whole-plant responses to elevated CO> are
650  linked to reduced costs of acquiring nitrogen and increased nitrogen uptake efficiency,

651  supporting conclusions from Terrer ef al. (2018).

652 Our findings indicate that nitrogen supply and demand could each explain plant responses
653  to elevated COz, though these factors operated at different scales. Specifically, photosynthetic
654  responses to elevated CO, were determined through reduced leaf nitrogen demand to build and
655  maintain photosynthetic enzymes. Reduced leaf nitrogen demand resulted in a shift in nitrogen
656 allocation to photosynthetic enzymes independent of soil nitrogen supply that increased

657  photosynthetic nitrogen use efficiency and allowed net photosynthesis rates to occur by

658  approaching optimal coordination of Rubisco carboxylation-limited and RuBP regeneration-
659  limited photosynthesis. Whole-plant responses to elevated CO, were enhanced with increasing
660  soil nitrogen supply. Interestingly, optimized nitrogen allocation to photosynthetic capacity may
661  have resulted in nitrogen savings at the leaf level that could have maximized nitrogen allocation
662  to growth. These results suggest that plants grown under elevated CO: responded to increased
663  nitrogen supply by increasing the number of optimally coordinated leaves and that the

664  downregulation in photosynthetic capacity under elevated CO; was not a direct response to

665  changes in nitrogen supply.

666

667  Inoculation with symbiotic nitrogen-fixing bacteria does not modify leaf or whole-plant

668  responses to elevated CO;
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669  Inoculation increased Narca, Anet,420, Anet,growth, Vemax2s, Jmax2s, photosynthetic nitrogen-use

670 efficiency, total leaf area, and total biomass, and decreased Jmax25: Vemax2s and Razs. These patterns
671  support previous literature suggesting that species that form associations with symbiotic

672  nitrogen-fixing bacteria often have increased leaf nitrogen content, photosynthetic capacity, and
673  growth compared to species that do not form such associations (Adams et al., 2016; Bytnerowicz
674 et al., 2023). Positive effects of inoculation on leaf and whole-plant traits were strongest under
675  low nitrogen fertilization and rapidly diminished with increasing nitrogen fertilization as

676  investment in symbiotic nitrogen fixation decreased (Andrews et al., 2011; Friel & Friesen,

677  2019; McCulloch & Porder, 2021; Perkowski ef al., 2021), supporting the idea that nitrogen

678  fixation is a nutrient acquisition strategy that may confer competitive benefits for nitrogen-fixing
679  species growing in low soil nitrogen environments (Rastetter ez al., 2001; Vitousek et al., 2002).
680 Interestingly, inoculation did not modify effects of elevated CO; on Vemax2s, Jmax2s,

681  Jmax2s:Vemax2s, photosynthetic nitrogen-use efficiency, total leaf area, or total biomass. These

682  patterns corresponded with null effects of elevated CO2 on %Nar. and the ratio of root nodule
683  biomass to root biomass, suggesting that null inoculation effects on plant responses to elevated
684  CO were primarily due to similar plant investments toward symbiotic nitrogen fixation between
685  COs treatments. We observed these patterns regardless of nitrogen fertilization level, contrasting
686  our hypothesis that inoculation would enhance whole-plant responses to elevated CO; under low
687  nitrogen fertilization where individuals were expected to be invested more strongly in symbiotic
688  nitrogen fixation. These patterns also contrast previous work showing that inoculated G. max is
689  generally more responsive to increasing atmospheric CO> concentrations (Ainsworth et al.,

690  2002) and that plant investment toward symbiotic nitrogen fixation tends to be greater under

691  scenarios that increase whole-plant demand to acquire nitrogen (Taylor & Menge, 2018; Friel &
692  Friesen, 2019; McCulloch & Porder, 2021).

693

694  Implications for future model development

695  Many terrestrial biosphere models predict photosynthetic capacity through parameterized

696  relationships between Narea and Vemax (Rogers, 2014; Rogers ef al., 2017), which assumes that
697 leaf nitrogen-photosynthesis relationships are constant across growing environments. Our results
698  build on previous work suggesting that leaf nitrogen-photosynthesis relationships dynamically

699  change across growing environments (Smith & Keenan, 2020; Luo ef al., 2021; Dong et al.,
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700  2022b; Waring et al., 2023), as elevated CO; reduced leaf nitrogen content more strongly than it
701  increased Anetgrowth and decreased Vemaxes and Jmax2s. Additionally, positive effects of increasing
702 nitrogen fertilization on indices of photosynthetic capacity were only apparent in uninoculated
703  plants, as there was no effect of nitrogen fertilization on Vemax2s or Jmax2s in inoculated plants.
704  Positive effects of increasing nitrogen fertilization on Narea and Chlarca were also markedly

705  weaker in inoculated plants compared to uninoculated plants. These patterns indicate that leaf
706  nitrogen-photosynthesis relationships are context-dependent on nitrogen acquisition strategy,
707  may only be constant in environments where nitrogen supply limits leaf physiology, and will
708 likely shift in response to increasing atmospheric CO> concentrations. Terrestrial biosphere

709  models that predict photosynthetic capacity through parameterized relationships between Narea
710  and Vemax (e.g., Kattge et al., 2009; Walker et al., 2014) may risk overestimating photosynthetic
711  capacity, therefore net primary productivity and the magnitude of the land carbon sink, under
712 future novel growth environments.

713 Our results demonstrate that optimal resource allocation to photosynthetic capacity

714 defines leaf photosynthetic responses to elevated CO> and that these responses are independent
715  of nitrogen supply. Current approaches for simulating photosynthetic responses to CO; in

716  terrestrial biosphere models with coupled carbon and nitrogen cycles often invoke patterns

717  expected from progressive nitrogen limitation, where photosynthetic responses to elevated CO-
718  are modeled as a function of positive relationships between nitrogen availability and leaf

719  nitrogen content. Our results contradict this framework, suggesting that photosynthetic responses
720  to elevated CO; are driven by optimal nitrogen investment to satisfy leaf nitrogen demand to

721  build and maintain photosynthetic enzymes. Optimality models that use principles from optimal
722 coordination and photosynthetic least-cost theories (Wang et al., 2017; Stocker et al., 2020; Scott
723 & Smith, 2022) are capable of capturing responses to CO2 independent of nitrogen supply (Smith
724 & Keenan, 2020; Harrison ef al., 2021), suggesting that including optimality frameworks in

725  terrestrial biosphere models may improve the accuracy by which photosynthetic processes are
726  simulated in response to increasing atmospheric CO> concentrations.

727 Previous work has highlighted the fact that pot experiments restrict belowground rooting
728  volume and may alter plant allocation responses to environmental change (Ainsworth et al.,

729  2002; Poorter et al., 2012). In this study, the ratio of pot volume to total biomass was greater

730  under elevated CO; and increased with increasing nitrogen fertilization such that several

30


https://doi.org/10.1101/2023.11.30.567584
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.30.567584; this version posted December 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

731  treatment combinations exceeded values recommended by Poorter ef al. (2012) to avoid growth
732 limitation imposed by restricted pot volume (<1 g L!; Table S6; Fig. S6). While pot size may
733 have limited plant responses to elevated CO,, similar responses to elevated CO> have been

734 observed using field measurements that do not restrict belowground rooting volume (Bernacchi
735  etal., 2005; Crous et al., 2010; Lee et al., 2011; Pastore et al., 2019; Smith & Keenan, 2020).
736  Additionally, there was no apparent saturating effect of increasing fertilization on total biomass,
737  belowground carbon biomass, or root biomass under conditions where biomass: pot volume

738  ratios exceeded 1 g L'! (e.g., individuals of either inoculation status grown under high

739  fertilization and elevated CO.), which might be expected if pot volume had limited plant growth.
740  The lack of such responses indicate that the pot volume used in this study (6 L) was sufficient to
741  avoid growth limitation.

742

743 Conclusions

744 Our results indicate that nitrogen supply and demand each helped explain G. max responses to
745  elevated CO», though operated at different scales. Supporting eco-evolutionary optimality theory,
746 leaf photosynthetic responses to elevated CO; were independent of soil nitrogen supply and

747  ability to associate with symbiotic nitrogen-fixing bacteria and were instead driven by leaf

748  nitrogen demand to build and maintain photosynthetic enzymes such that net photosynthesis

749  rates approached optimal coordination. Supporting the progressive nitrogen limitation

750  hypothesis, whole-plant responses to elevated CO> were enhanced with increasing nitrogen

751  fertilization due to increased plant nitrogen uptake efficiency coupled with possible cascading
752  effects of nitrogen savings at the leaf level that may have maximized nitrogen allocation to

753  whole-plant growth. However, inoculation did not modify whole-plant responses to elevated
754  COao, as plants invested similarly in symbiotic nitrogen fixation between CO; treatments. Results
755  suggest that plants grown under elevated CO; responded to increased nitrogen supply by

756  increasing the number of optimally coordinated leaves and that the downregulation in

757  photosynthetic capacity under elevated CO2 was not modified by changes in nitrogen supply.
758  The differential role of nitrogen supply on leaf and whole-plant responses to elevated CO»

759  coupled with dynamic leaf nitrogen-photosynthesis relationships across CO> and nitrogen

760  fertilization treatments suggests that terrestrial biosphere models may improve simulations of
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761  photosynthetic responses to increasing atmospheric CO2 concentrations by adopting frameworks
762  that include optimality principles.
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