
 
Characterization and decontamination of background noise in droplet-

based single-cell protein expression data with DecontPro 
 

Yuan Yin1, Masanao Yajima2, and Joshua D. Campbell1 

 
1 Section of Computational Biomedicine, Department of Medicine, Boston University School of 
Medicine, Boston, MA, USA. 
2 Department of Mathematics and Statistics, Boston University, Boston, MA, USA. 
 
 
Abstract 
Assays such as CITE-seq can measure the abundance of cell surface proteins on individual cells 
using antibody derived tags (ADTs). However, many ADTs have high levels of background noise 
that can obfuscate down-stream analyses. Using an exploratory analysis of PBMC datasets, we 
find that some droplets that were originally called “empty” due to low levels of RNA contained high 
levels of ADTs and likely corresponded to neutrophils. We identified a novel type of artifact in the 
empty droplets called a “spongelet” which has medium levels of ADT expression and is distinct 
from ambient noise. ADT expression levels in the spongelets correlate to ADT expression levels 
in the background peak of true cells in several datasets suggesting that they can contribute to 
background noise along with ambient ADTs. We then developed DecontPro, a novel Bayesian 
hierarchical model that can decontaminate ADT data by estimating and removing contamination 
from these sources. DecontPro outperforms other decontamination tools in removing aberrantly 
expressed ADTs while retaining native ADTs and in improving clustering specificity. Overall, these 
results suggest that identification of empty drops should be performed separately for RNA and 
ADT data and that DecontPro can be incorporated into CITE-seq workflows to improve the quality 
of downstream analyses. 
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Introduction 
Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is an assay that can 
quantify the abundance of RNA transcripts as well as cell surface proteins on individual cells1. 
Antibody-derived tags (ADTs) that bind to cell surface proteins are measured during sequencing 
to produce an ADT count matrix that quantifies the levels of these surface proteins. Information 
on the abundance of proteins complements single-cell RNA-seq (scRNA-seq) data and improves 
the ability to describe cell type and cell states with functional annotations2–4. Other variants of 
CITE-seq have been developed which can measure proteins in other settings such as CRISPR 
perturbations, single-cell ATAC-seq, or spatially resolved expression5–7. 
 
Previous studies have noted that individual ADTs often have a multimodal distribution including 
one lower “background” peak and one or more higher peaks attributed to the true signal from the 
cells. The lower background peak has been attributed to noise from non-specific binding of 
antibodies8. Algorithms such as TotalVI9 have tried to leverage the multi-modal nature to identify 
and remove the lower background peak for each ADT. Other approaches try to measure and 
remove background levels using “spike-in” reference cells from another species such as mouse1. 
Utilizing spike-ins adds extra complexity to the experimental design and assumes that rate of 
contamination in the reference cells will be the same for the cells of interest in the dataset. 
Additionally, none of these approaches quantify specific sources of contamination within each 
cell.  
 
Contamination from various sources can contribute to poor-quality data in single-cell assays. In 
scRNA-seq data, ambient RNA from the cell suspension can be counted along with a cell’s native 
RNA and result in contamination of gene markers between cell types10,11. Ambient contamination 
may also occur in CITE-seq data as the methods for generating CITE-seq data also rely on 
microfluidic droplet-based devices. Two computational methods, dsb12 and scAR13, have been 
proposed that use the ADT expression profiles of the “empty droplets”, i.e., droplets without a true 
cell to estimate and remove the noise from ambient material. However, these methods treat the 
empty droplets as a single source of noise. Furthermore, reliance on the empty droplets data may 
limit their application in cases where the empty droplet matrix is not available.  
 
In this study, we analyzed four CITE-seq datasets and showed that there are at least four different 
types of droplets including 1) droplets containing true cells with high RNA and high ADT content; 
2) droplets with low RNA content and high ADT content that are mislabeled as “empty droplets”; 
3) droplets containing low levels ADTs matching ambient distributions; and 4) droplets containing 
medium levels of ADTs with non-specific distributions, which we denote as “spongelets”. We show 
that the ADT expression profiles of spongelets are highly correlated with the expression profiles 
of the background peak in true cells and likely contribute to contamination along with ambient 
ADTs. Based on these results, we developed a novel Bayesian hierarchical model called 
DecontPro (Decontamination of Protein expression data) that removes the background peak by 
estimating ambient contamination as well as contamination derived from other sources such as 
spongelets or non-specific binding. When applied to different ADT datasets, DecontPro was able 
to preserve the expression of native markers in known cell types while removing contamination 
from the non-native markers. DecontPro outperformed other tools in removing non-native markers 
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and in improving downstream clustering in several benchmarking datasets. Finally, we show that 
DecontPro can increase the specificity of PD-1 expression in activated T and B-cells.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.01.27.525964doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.27.525964
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 
Different contamination profiles contribute to CITE-seq data  
We performed an exploratory analysis of CITE-seq and Total-seq datasets to understand 
heterogeneity among the droplets and to characterize different sources of contamination. We first 
analyzed a public dataset containing peripheral blood mononuclear cells from a healthy donor 
from 10x Genomics (PBMC 10K). Four distinct clusters of droplets were observed when 
comparing the total UMI counts of ADTs to total UMI counts of RNAs in each droplet (Fig. 1A). 
Cluster A had high counts for both RNA and ADTs and were called true cells by Cell Ranger 
(n=7,864 droplets). Clusters B-D were called empty droplets by Cell Ranger and had low RNA 
counts with varying levels of ADT counts. Cluster D contained droplets with low levels of both total 
RNA and total ADT counts (n=145,322 droplets). The average profile of the droplets from this 
cluster was highly correlated with the average profile of droplets from the Cell cluster for both 
RNA and ADTs for most datasets (R > 0.950) except for Golomb et al14 (R = 0.769; 
Supplementary Fig. S1) demonstrating that these droplets likely contain only ambient material9.    
 
Cluster B had an average of 5,168 ADTs counts per droplet (n=1,406 droplets) while cluster C 
had an average of 268 ADTs (n=70,157 droplets). To understand the ADT profiles in these 
clusters, we randomly sampled a thousand droplets from each of these two clusters and analyzed 
them with the droplets containing cells from cluster A using the standard Seurat clustering 
workflow15. Droplets from the clusters B and C formed their own distinct clusters (Fig. 1B). Cluster 
B had significantly higher levels of CD15 and CD16 compared to other populations, but few 
differentially expressed genes in the RNA data (Supplementary Fig. S2). This “mislabeled cell” 
cluster likely represents neutrophils which are prevalent in white blood cells but have low RNA 
content16,17 and suggests that viable cells with low RNA content may be readily characterized by 
ADT expression. Therefore, filtering of empty droplets should be performed separately for ADT 
and RNA data. In contrast to the mislabeled cell cluster B, cluster C did not show strong 
enrichment for any ADTs. The average profile of droplets in cluster C was not highly correlated to 
the average profile of the ambient cluster D (R = 0.312; Fig. 1C), confirming that the source of 
this cluster is not solely related to ambient ADTs. We assigned the name “spongelets” to the 
droplets in cluster C given that they contain medium levels of ADTs that do not have enrichment 
in specific cell types. 
 
The distribution of individual ADT expression in true cells is often multi-modal and contains more 
than one peak. For example, cells in cluster A have distributions of CD14, CD16, and CD45RA 
as bi-modal and the distribution of CD4 as tri-modal (Fig. 1D). The lower peak of the multi-modal 
densities has previously been characterized as background signals from non-specific binding of 
antibodies8. Interestingly, the density of ADTs in the spongelet cluster largely overlapped with the 
density of the lower peak in the cluster A (Fig. 1D, Supplementary Fig. S3). This overlap was 
also observed in the three other ADT datasets (Supplementary Figs. S4 – S7). The average 
percentage of each ADT in the lower peak of cluster A was highly correlated with the average 
percentage of each ADT in cluster C in the PBMC 10K dataset (R = 0.976; Fig. 1E), and to a 
lesser degree in two other datasets (R = 0.720 and R = 0.641; Supplementary Fig. S8). The low-
level background expression indicated by the lower peak is also manifested after normalizing Cell 
droplets by their library sizes and classifying them by their cell types. (Supplementary Fig. S9-
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S11). Low peaks of ADTs were observed in cell types that are not supposed to express the ADTs. 
Interestingly, the density showing the background peak for each ADT has a consistent mean 
across cell types. Overall, these findings suggest an association between the ADT expression 
profiles of spongelets and the lower background peaks observed in true cells. 
 

 
Figure 1. Analysis of ADT droplets in the PBMC 10K dataset. A. Among all droplets, only the cluster with high RNA-
seq library size were filtered as cell droplets by the 10x Genomics software, while we observed clusters with varying 
levels of ADT library sizes among the droplets labeled as empty. We identified three empty droplet clusters, and called 
them clusters B, C and D. B. A thousand droplets sampled from clusters C and D each were combined with Cell droplets 
for clustering using Seurat workflow. Distinct clusters were observed. C. The empirical distribution built using the 
droplets from cluster C (spongelet) and D (ambient) showed poor correlation. D. Density plots of droplets from the 
cluster C were close to the background peak of the Cell density plot. E. We manually curate the background peaks of 
the Cell density and normalize them into a multinomial distribution. The distribution was found to be highly correlated 
with the spongelet cluster empirical distribution.  
 
A novel model for estimating and removing decontamination 
We next sought to build a deconvolution algorithm that can estimate and remove contamination 
from the ambient material as well as any other sources contributing to the background including 
spongelets and non-specific binding. We assume that each cell is a mixture of three sources: 1) 
ADTs from the native cell, 2) ADTs from the ambient material present in the cell suspension, and 

Empty
Droplets

Filtered
Droplets

     1

    10

   100

  1000

 10000

100000

     1     10    100   1000  10000 100000
RNA Library Size

AD
T 

Li
br

ar
y 

Si
ze

A: Cell
B: Mislabeled
    Cell
C: Spongelet

D: Ambient

A

MonoCD14

NK
CD4TNative

CD4TMemory

B

CD8TMemory

ClusterBCD8TNaive
Doublets ClusterC

Doublets2

−10

−5

0

5

10

15

−10 −5 0 5 10
UMAP_1

U
M

AP
_2

B

R = 0.312

CD3
CD4

CD8a

CD14

CD15CD16

CD56

CD45RA

CD45RO

PD−1
IgG2b0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3
Spongelet Profile

Am
bi

en
t P

ro
fil

e

Ambient Profile vs. Spongelet Profile
C

0.00

0.25

0.50

0.75

1.00

1.25

1 5 10 100 1000 10000

de
ns

ity

CD4
D

0.00

0.25

0.50

0.75

1.00

1.25

1 5 10 100 1000 10000

de
ns

ity

CD14

0.00

0.25

0.50

0.75

1.00

1.25

1 5 10 100 1000 10000

de
ns

ity

CD16

0.00

0.25

0.50

0.75

1.00

1.25

1 5 10 100 1000 10000

de
ns

ity

CD45RA

Ambient Spongelet Cell

R = 0.976

CD8a CD14

CD15

CD16

CD45RA

PD−1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4
Spongelet Profile

C
el

l B
ac

kg
ro

un
d 

Pr
of

ile

Cell Background Profile vs. Spongelet Profile
E

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.01.27.525964doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.27.525964
http://creativecommons.org/licenses/by-nc-nd/4.0/


3) ADTs from any contamination source that contributes to a lower non-specific background peak 
(Fig. 2A). 
 
The native ADT expression of a cell population 𝑘 is characterized by a multinomial distribution 
𝜑!, where 𝜑!" represents the percentage of native expression attributed to ADT 𝑗. The ambient 
profile is characterized by a multinomial distribution 𝜂 where 𝜂" represents the percentage of 
ambient expression attributed to ADT 𝑗. We use a mixing parameter 𝜃#" to model the proportion 
of counts contributed by the ambient ADT 𝑗 to the droplet 𝑖, and 𝛽#" to model the proportion of 
counts from other background sources for ADT 𝑗 in droplet 𝑖. Parameter 𝜇" is the prior for 𝛽#" and 
represents the average background level for ADT 𝑗 in the dataset while parameter 𝛿# is the prior 
for 𝜃#" and represents the average ambient contamination level for droplet 𝑖. After mixing the 
parameters and scaling by the library size, the observed counts are generated from a Poisson 
distribution. 
 
When the raw matrix with empty droplets is available, the ambient profile 𝜂 can be estimated using 
the empirical distribution of the ambient droplets (i.e., droplets with low expression of ADTs). If 
the raw matrix is not provided, the ambient profile 𝜂 for a dataset can be estimated by calculating 
the average of the ADT across filtered cell droplets. This is due to the fact that the average cell 
profile is highly correlated to the empirical distribution of the ambient droplets in the majority of 
datasets. For example, we observed this pattern in three ADT datasets (PBMC 10k: R = 0.977, 
PBMC 5k: R = 0.991, MALT 10k: R = 0.968; Supplementary Fig. S1). The correlation is less 
strong for one dataset (Golomb: R = 0.769), primarily due to an outlier ADT Ly6C. Ly6C had 
uniformly high level of expression across droplets while other highly expressed ADTs were more 
localized to specific clusters (Supplementary Fig. S12). We use the variational inference 
framework provided by Stan to estimate the remaining parameters and deconvolute the ADT 
count matrix into the Native, Ambient, and Background matrices for downstream analysis (Fig. 
2B). Detailed description of the model can be found in the Methods section.  
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Figure 2. DecontPro can estimate and remove contamination from multiple sources in CITE-seq data. A. Single 
cells and ADTs are isolated in droplet compartments. Spongelet droplets contain some non-specific distribution and an 
intermediary level of ADTs, while ambient droplets have a low level of ADTs attributed to the ambient material from the 
cell suspension. Native ADTs refer to those that bind to their target cell surface proteins in the appropriate cell 
population. Background ADTs represent those from contamination sources other than ambient such as spongelets or 
non-specific binding of ADTs. These different sources of ADTs can be present and quantified together in each droplet 
during library preparation. B. The DecontPro model can deconvolute an ADT count matrix into a background matrix, 
an ambient matrix, and a native matrix along with the proportion of counts attributed to each source in each cell. The 
native matrix can be used in downstream analyses.  
 
Decontamination of PBMCs 
To demonstrate the ability of our method to improve data quality, we applied DecontPro to the 
PBMC 10k dataset from 10x Genomics and compared the distributions of counts before and after 
decontamination. In the original count matrix, all ADTs were expressed to some degree in nearly 
every cell cluster (Fig. 3A). After decontamination, known markers for cell types remained highly 
expressed (Fig. 3B). For example, CD19 is a B-cell marker with an average expression of 668.46 
in the B-cell cluster and a low average expression of 13.68 across other cell types in the original 
count matrix. After decontamination the only clusters retaining expression of CD19 were the B-
cells and doublets. Similarly, T-cell marker CD3 had remaining counts only in the T-cell clusters 
and a doublet cluster.  
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For most markers, the density of the estimated background largely overlapped with the lower 
peak across cell clusters. For example, the lower levels of CD3 were estimated to be largely 
background and removed in the CD16 Monocyte and NK clusters (Fig. 3C). Similarly, for CD16 
the lower levels of expression were estimated to be largely background in Naïve CD8 T-cells and 
T-regs clusters. As expected, native ADTs in their corresponding clusters were expressed at a 
higher level, and hence had a higher peak in the normalized counts' density, such as CD3 in CD8 
Naïve T-cells cluster and T-regs cluster. 
 
To systematically assess how well the algorithm performed in specificity in retaining native ADTs 
for clusters, we calculated the percentage of cells in each cluster expressing native marker ADTs 
before and after decontamination (Fig 3D). Markers and cell types included CD3 and CD4 for 
CD4+ T-cells, CD3 and CD8 for CD8+ T-cells, CD19 for B-cells, CD14 for CD14+ monocytes, 
CD16 for CD16+ monocytes, and CD56 for NK cells. In many cases, the algorithm was able to 
greatly reduce or completely remove aberrant counts in non-native cell types. For example, CD14 
expression was removed from T-cells, CD19 was removed from T-cells, NK-cells, and monocytes, 
and CD3 was removed from B-cells and monocytes. In some cases, the reduction left some ADT 
values in unexpected cell clusters. The monocyte marker CD14 was still detected in a high 
percentage of B-cells after decontamination (98%). However, the overall level of CD14 in B-cells 
was still greatly reduced compared to the original ADT counts (Supplementary Fig. S13).  
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Figure 3. Decontamination of the PBMC 10k dataset with DecontPro. A. Expression profiles of ADTs in cell 
populations before decontamination. All ADTs were expressed in each cell population to some degree B. After 
decontamination with DecontPro, aberrantly expressed ADTs were removed or greatly reduced in non-native cell 
populations. C. The density of normalized ADT expression for CD3 and CD16 in selected cell populations. The model 
estimated background was superimposed onto the density plot. D. Percentage of cells expressing known cell type 
markers before and after decontamination in different cell populations. Markers with a count greater than one were 
considered expressed in a cell. E. The DecontPro model estimates the proportion of counts coming from native, ambient 
and background sources in each droplet. The median percentage of native, ambient, and background counts was 
89.5%, 4.4%, and 5.5%, respectively. F. Using decontaminated counts improved separation of clusters on a UMAP.  
 
DecontPro also estimates the percentage of counts contributed by the native, ambient and 
background signals (Fig. 3E). As expected, the native counts took the highest percentage of 
libraries across droplets on average (median 89.5%, range 1.0% - 97.1%), whereas the 
background counts were estimated at a consistently lower amount (median 4.4%, range 2.0% - 
49.2%). The percentage of ambient ADTs had a similar median to the percentage of background 
counts, but a much larger range (median 5.5%, range 0.8% - 93.9%). Lastly, the clusters in the 
UMAP generated with the decontaminated counts were more separated compared to clusters in 
the UMAP generated with the original counts (Fig. 3F).  
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Benchmarking against Other Methods 

 
Figure 4. Benchmarking of ADT decontamination methods. We compared the ability of four algorithms to remove 
contamination from four datasets. The other methods include dsb, scAR, and totalVI. A. The average silhouette width 
for each cell cluster identified by Seurat was calculated before and after decontamination of ADT counts. A higher 
difference in silhouette widths indicates better improvement in cell similarity within that cluster. On average, DecontPro 
improved silhouette widths better than other methods for each dataset. B. For each dataset, a pair of scores were 
calculated after applying each decontamination algorithm to ascertain the degree to which each algorithm maintains 
true expression while removing contamination. The “positive” score was defined as the percentage of cells expressing 
native markers averaged across cell clusters. In contrast, the “negative” score was defined as the percentage of cells 
expressing non-native markers averaged across cell clusters. For example, in the CD4 naïve T-cells cluster, CD4 and 
CD45RA were defined as the native markers, while CD8 and CD45RO were defined as the non-native markers. As dsb 
outputs normalized continuous counts after decontamination, we applied two different thresholds to determine which 
markers were detected in each cell. The overall score is the positive score minus the negative score. Overall, DecontPro 
performs the best in the overall score in all four datasets. C. Density plot of CD3, CD4 and PD-1 before and after 
decontamination in the PBMC 10k dataset. The dsb output was exponentiated to allow for comparison with the 
uncorrected original count density. D. Box plot of PD-1 level in cell clusters after decontamination and scaling PBMC 
10k dataset. 
 
We benchmarked DecontPro against three other decontamination algorithms applicable to CITE-
seq datasets: dsb, scAR, and totalVI. To compare how well decontamination improved clustering, 
we calculated the mean silhouette width of each cell cluster identified by Seurat before and after 
decontaminating using four public datasets. A higher mean silhouette width indicates higher 
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similarities between cells within each cluster. Across all datasets, DecontPro showed the highest 
average improvement in silhouette widths after decontamination (Fig. 4A). We next sought to 
understand how effectively various algorithms improved the specificity of marker expressions in 
cell clusters. Specifically, we wanted to measure if the expected markers in annotated clusters 
retained their expression, while the unexpected markers from other cell types were removed. We 
calculated two scores for each algorithm on each dataset. A positive score was calculated by 
finding the percentage of cells in a cluster that express the expected “native” markers while a 
negative score calculated the percentage of cells in a cluster that express unexpected “non-
native” markers from other cell types. An effective decontamination algorithm will have a positive 
score close to 100 indicating that the expression of native markers was retained in their true cell 
population as well as a negative score close to 0 indicating that the expression of non-native 
markers from other cell types was successfully removed. The full list of annotated native markers 
for each cell type can be found in the Methods section. As a reference, the uncorrected original 
count data had high positive scores in all datasets and high negative scores close to 100 for the 
PBMC 10k, PBMC 5k and MALT 10k datasets, indicating a high level of contamination in most 
cell types (Fig. 4B). When using the difference between positive score and negative score to 
measure the algorithm performance, DecontPro showed high overall score, indicating that it 
retained the markers while removing the unexpected markers across datasets (PBMC 10k: 99, 
PBMC 5k: 99, MALT 10k: 98, Golomb: 97). As dsb performs its own normalization and scaling, 
the decontaminated count matrix is not directly comparable with the original count matrix. We 
therefore used two different thresholds for a maker to be considered detected in a cell (dsb: 1; 
dsb high threshold: 5) and calculated the scores accordingly. The higher threshold for dsb 
produced better negative scores more similar to algorithms such as DecontPro and scAR, at the 
expense of decreasing the positive scores in each dataset. The second-best performing algorithm 
across datasets based on difference between positive and negative scores was scAR (PBMC 
10k: 96, PBMC 5k: 90, MALT 10k: 99, Golomb: 82). 
 
For the PBMC 10k dataset, the decontamination results for known cell type markers were mostly 
similar across algorithms. For antibodies with high expression, such as CD3 and CD4, all 
algorithms retained the higher peak while significantly reducing the lower background peak (Fig. 
4C). However, PD-1 was expressed at lower levels and demonstrated a noticeable difference in 
decontamination results between algorithms. PD-1 is known to be predominantly expressed in 
activated T-cells, along with B-cells, natural killer (NK) cells and myeloid cells18–20. Our algorithm 
reduced the PD-1 expression significantly in the naïve T-cells population, while preserving the 
expression level in the CD4 memory T-cells, CD8 memory T-cells, and Treg clusters where we 
expected a high PD-1 level (Fig. 4D). Additionally, some levels in the B-cells and monocytes 
clusters were also retained. Dsb and totalVI largely repressed PD-1 expression in all clusters 
except CD4 memory T-cells, CD8 memory T-cells, and Treg cluster. ScAR is the only algorithm 
that retained PD-1 in the NK cells cluster but has also removed its expression in the Treg cluster. 
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Discussion 
We developed DecontPro, a Bayesian statistical model, that decontaminates two sources of 
contaminations we observed empirically in CITE-seq data. Previously, the empty drops were 
thought to only contain noise from ambient material from the cell suspension. Our analyses 
suggest that the empty droplets filtered using RNA are heterogeneous and may contain different 
sources of signal and noise. One cluster of empty droplets had high levels of specific ADTs and 
thus likely contained true cells. These results suggest the need for empty drop calling to be 
performed separately for ADT and RNA data. We also identified a cluster of empty droplets with 
medium levels of ADTs containing a different profile from that of the ambient droplets. We named 
these droplets “spongelets” because they had medium levels for most ADTs without any 
enrichment for specific ADTs compared to true cell clusters. Although our analysis did not reveal 
the source of the spongelets, we hypothesize that they could be due to the presence of debris 
from the dissociation procedure or dying cells with a permeable membrane. Further work will be 
required to identify the source of this artifact and understand how experimental parameters can 
be modified to decrease the contribution of spongelets to the background. 
 
These observations motivated us to design a decontamination algorithm that decomposes the 
ADT count matrix into three components: 1) native counts representing the contribution from true 
cells, 2) ambient counts representing the contribution from ambient material, and 3) background 
counts representing the contribution from other low level contamination sources such as non-
specific binding or spongelets. Importantly, this model allows DecontPro to work in situations 
where the raw empty droplet matrix is not available which is often the case in public repositories. 
To estimate the ambient profile of a dataset when the empty drop matrix is not available, we use 
the average of the true cells. We found that the average of the true cells was highly correlated to 
the ambient droplets in three out of the four datasets examined. The lower correlation in the 
Golomb dataset was primarily due to one ADT (Ly6C) which had lower than expected levels in 
the cells given the level in the ambient droplets. Other experimental procedures such as cell 
sorting for particular populations may also break the assumption that the cell average will 
accurately approximate the profile of the ambient droplets. In these cases, our software allows 
users to input the empty droplets to more accurately estimate the ambient profile.  
 
Overall, DecontPro can be used as an important quality assessment tool that estimates the levels 
of different sources contributing to the contamination in ADT data. The computational 
decontamination of ADT counts with DecontPro will aid in downstream clustering and visualization 
and can be systematically included in analysis workflows. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.01.27.525964doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.27.525964
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 
Empty droplet analyses 
The PBMC 10k dataset containing a total of 6,794,880 raw droplets and 7,865 filtered droplets 
was downloaded from the 10x Genomics website21. Droplets with zero total counts for both ADT 
and RNA were filtered. The library sizes for ADT and RNA were calculated by summing all the 
ADT and RNA counts in each droplet. The droplets with barcodes in the raw but not filtered 
dataset were named empty droplets. Clusters B, C and D in empty droplets were identified using 
k-means with the number of clusters set to 3. Profiles of cluster C (spongelet) and D (ambient) 
were calculated by summing ADT counts over droplets and normalizing the vector to one. The 
cell background profile was calculated by summing ADT counts over droplets that fall into the 
background peak and normalizing. The background peaks are manually identified using the 
bounds shown in Supplementary Figures S14-S16. Cell clusters were identified with markers: 
MonoCD14: (CD14+), CD4TMemory: (CD3+, CD4+, CD45RO+), CD4TNative: (CD3+, CD4+, 
CD45RA+), CD8TMemory: (CD3+, CD8+, CD45RO+), NK: (CD16+, CD56+), B: (CD19+), 
CD8TNaive: (CD3+, CD8+, CD45RA+). 
 
Data Generation Model 
For a droplet 𝑖 containing a cell of type 𝑘# having the library size 𝐿#, we assume the 𝑗$% ADT count 
𝑥#" is a realization from a Poisson distribution with rate parameter 𝜆#": 
 

𝑥#"|𝐿~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆#"𝐿#)	
	
When there is a total of 𝐼 droplets, 𝐽 ADTs and 𝐾 cell types, the count matrix can be organized 
into an 𝐼 by 𝐽 matrix 𝑋 = [𝑥#"] and a corresponding cell type indicator vector 𝑘 = [𝑘#]. We further 
assume that the overall expected rate of counts for an ADT in a cell (𝜆#") can be described as a 
sum of three components: 
 

𝜆#" = =1 − 𝛽#"@ ∗ 𝜃#" ∗ 𝜂" + =1 − 𝛽#"@ ∗ (1 − 𝜃#") ∗ 𝜙!!" + 𝛽#" 	
	
where 𝜙!!" is the normalized rate of counts for ADT 𝑗 in cell population 𝑘#, 𝜂" is the normalized 
rate of counts due to the ambient source for ADT 𝑗, 𝜃#" is the proportion of ambient material for 
ADT 𝑗 in cell 𝑖, and 𝛽#" is the normalized rate of contamination from all other background sources 
including spongelets and non-specific binding. 
 
We assume that some level of general background (𝛽#") will be present for each ADT in each cell 
and that the rates of native or ambient ADTs can be quantified in each droplet after subtracting 
out the background rate (1 − 𝛽#"). More specifically, the normalized rate of ambient ADTs can be 
expressed as the expected proportion of counts coming from the ambient distribution times the 
level of ambient contamination in that cell after excluding the general background rate: =1 − 𝛽#"@ ∗
𝜃#" ∗ 𝜂". The rate of true native ADT counts for a given cell can be expressed as the expected 
number of counts from that cell type after excluding the proportion of counts from both ambient 
contamination and background noise: =1 − 𝛽#"@ ∗ (1 − 𝜃#") ∗ 𝜙!!".  
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We put prior distributions on the rates of ambient contamination for all ADTs in a droplet and the 
background contamination for each ADT across all cells. 𝛽#" is drawn from a truncated normal 
parameterized by mean 𝜇" and bounded by (0, 0.5) while 𝜃#" is drawn from a truncated normal 
parameterized by mean 𝛿# and bounded by (0,1): 
 

𝛽#"~𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇" , 𝜏&)	
𝜃#"~𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑	𝑁𝑜𝑟𝑚𝑎𝑙(𝛿# , 𝜏')	

 
𝜏' and 𝜏& are hyperparameters that control how strongly individual contamination rates can 
deviate from the prior mean rates of 𝛿# and 𝜇", respectively. The plate diagram for the model is 
shown below. 
 

 
Figure 5. Summary of the DecontPro model. A. Plate diagram for the DecontPro model. B. The generative process 
of the DecontPro model. 
 
Application of DecontPro to ADT datasets 
Datasets were preprocessed by filtering out cell droplets with top and bottom one percent of ADT 
and RNA total library sizes, and droplets with 15% or higher mitochondrial gene counts. Cell 
clusters were generated using the Seurat package. The prior parameters were set to 𝜏'(PBMC 
10k: 2e-5, PBMC 5k: 5e-5, MALT 10k: 4e-5, Golomb: 2e-5) and 𝜏&(PBMC 10k: 2e-6, PBMC 5k: 
5e-6, MALT 10k: 2e-6, Golomb: 2e-6). The inference was done using the variational inference 
implementation in Stan22. 𝜃#" was initialized 1e-4 and 𝛽#" was initialized 1e-2. The max number of 
iterations were set to 50,000. 
 
Benchmarking of decontamination tools 
Four datasets were used in benchmarking. PBMC 10k: PBMCs from a healthy donor stained with 
17 Total-Seq-B antibodies (7,865 filtered droplets). PBMC 5k: PBMCs from a healthy donor 
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stained with 31 Total-Seq-B antibodies (5,527 filtered droplets). MALT 10k: Dissociated 
Extranodal Marginal Zone B-Cell Tumor cells stained with 17 Total-Seq-B antibodies (8,412 
filtered droplets). These three datasets were downloaded from 10x Genomics website. Golomb: 
Brain samples of mice with antibiotics induced gut microbiota depletion (30,569 filtered droplets). 
A panel of 31 antibodies was used for staining the samples of 3 young mice and 3 aged mice, 
and the samples were pooled together using hashtag oligo.  
 
The clustering of datasets was generated using the Seurat package. Silhouette widths were 
calculated on datasets after CLR normalization and averaged by clusters. The positive and 
negative scores for each dataset were calculated by finding the percentage of droplets in the 
dataset that belong to the clusters and have the markers expressed more than the threshold after 
decontamination. The threshold was set to 1 except when evaluating dsb, we also used a high 
threshold of 5 (reported the results as “dsb (high threshold)” in the main manuscript). The cell 
clusters and markers used to calculate the scores are listed in Supplementary Table S1. 
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