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Abstract

Assays such as CITE-seq can measure the abundance of cell surface proteins on individual cells
using antibody derived tags (ADTs). However, many ADTs have high levels of background noise
that can obfuscate down-stream analyses. Using an exploratory analysis of PBMC datasets, we
find that some droplets that were originally called “empty” due to low levels of RNA contained high
levels of ADTs and likely corresponded to neutrophils. We identified a novel type of artifact in the
empty droplets called a “spongelet” which has medium levels of ADT expression and is distinct
from ambient noise. ADT expression levels in the spongelets correlate to ADT expression levels
in the background peak of true cells in several datasets suggesting that they can contribute to
background noise along with ambient ADTs. We then developed DecontPro, a novel Bayesian
hierarchical model that can decontaminate ADT data by estimating and removing contamination
from these sources. DecontPro outperforms other decontamination tools in removing aberrantly
expressed ADTs while retaining native ADTs and in improving clustering specificity. Overall, these
results suggest that identification of empty drops should be performed separately for RNA and
ADT data and that DecontPro can be incorporated into CITE-seq workflows to improve the quality
of downstream analyses.
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Introduction

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is an assay that can
quantify the abundance of RNA transcripts as well as cell surface proteins on individual cells’.
Antibody-derived tags (ADTs) that bind to cell surface proteins are measured during sequencing
to produce an ADT count matrix that quantifies the levels of these surface proteins. Information
on the abundance of proteins complements single-cell RNA-seq (scRNA-seq) data and improves
the ability to describe cell type and cell states with functional annotations®*. Other variants of
CITE-seq have been developed which can measure proteins in other settings such as CRISPR
perturbations, single-cell ATAC-seq, or spatially resolved expression®’.

Previous studies have noted that individual ADTs often have a multimodal distribution including
one lower “background” peak and one or more higher peaks attributed to the true signal from the
cells. The lower background peak has been attributed to noise from non-specific binding of
antibodies®. Algorithms such as TotalVI° have tried to leverage the multi-modal nature to identify
and remove the lower background peak for each ADT. Other approaches try to measure and
remove background levels using “spike-in” reference cells from another species such as mouse’'.
Utilizing spike-ins adds extra complexity to the experimental design and assumes that rate of
contamination in the reference cells will be the same for the cells of interest in the dataset.
Additionally, none of these approaches quantify specific sources of contamination within each
cell.

Contamination from various sources can contribute to poor-quality data in single-cell assays. In
scRNA-seq data, ambient RNA from the cell suspension can be counted along with a cell’s native
RNA and result in contamination of gene markers between cell types'®'". Ambient contamination
may also occur in CITE-seq data as the methods for generating CITE-seq data also rely on
microfluidic droplet-based devices. Two computational methods, dsb' and scAR'3, have been
proposed that use the ADT expression profiles of the “empty droplets”, i.e., droplets without a true
cell to estimate and remove the noise from ambient material. However, these methods treat the
empty droplets as a single source of noise. Furthermore, reliance on the empty droplets data may
limit their application in cases where the empty droplet matrix is not available.

In this study, we analyzed four CITE-seq datasets and showed that there are at least four different
types of droplets including 1) droplets containing true cells with high RNA and high ADT content;
2) droplets with low RNA content and high ADT content that are mislabeled as “empty droplets”;
3) droplets containing low levels ADTs matching ambient distributions; and 4) droplets containing
medium levels of ADTs with non-specific distributions, which we denote as “spongelets”. We show
that the ADT expression profiles of spongelets are highly correlated with the expression profiles
of the background peak in true cells and likely contribute to contamination along with ambient
ADTs. Based on these results, we developed a novel Bayesian hierarchical model called
DecontPro (Decontamination of Protein expression data) that removes the background peak by
estimating ambient contamination as well as contamination derived from other sources such as
spongelets or non-specific binding. When applied to different ADT datasets, DecontPro was able
to preserve the expression of native markers in known cell types while removing contamination
from the non-native markers. DecontPro outperformed other tools in removing non-native markers
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and in improving downstream clustering in several benchmarking datasets. Finally, we show that
DecontPro can increase the specificity of PD-1 expression in activated T and B-cells.
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Results

Different contamination profiles contribute to CITE-seq data

We performed an exploratory analysis of CITE-seq and Total-seq datasets to understand
heterogeneity among the droplets and to characterize different sources of contamination. We first
analyzed a public dataset containing peripheral blood mononuclear cells from a healthy donor
from 10x Genomics (PBMC 10K). Four distinct clusters of droplets were observed when
comparing the total UMI counts of ADTs to total UMI counts of RNAs in each droplet (Fig. 1A).
Cluster A had high counts for both RNA and ADTs and were called true cells by Cell Ranger
(n=7,864 droplets). Clusters B-D were called empty droplets by Cell Ranger and had low RNA
counts with varying levels of ADT counts. Cluster D contained droplets with low levels of both total
RNA and total ADT counts (n=145,322 droplets). The average profile of the droplets from this
cluster was highly correlated with the average profile of droplets from the Cell cluster for both
RNA and ADTs for most datasets (R > 0.950) except for Golomb et al™ (R = 0.769;
Supplementary Fig. S1) demonstrating that these droplets likely contain only ambient material®.

Cluster B had an average of 5,168 ADTs counts per droplet (n=1,406 droplets) while cluster C
had an average of 268 ADTs (n=70,157 droplets). To understand the ADT profiles in these
clusters, we randomly sampled a thousand droplets from each of these two clusters and analyzed
them with the droplets containing cells from cluster A using the standard Seurat clustering
workflow'®. Droplets from the clusters B and C formed their own distinct clusters (Fig. 1B). Cluster
B had significantly higher levels of CD15 and CD16 compared to other populations, but few
differentially expressed genes in the RNA data (Supplementary Fig. S2). This “mislabeled cell’
cluster likely represents neutrophils which are prevalent in white blood cells but have low RNA
content'®'” and suggests that viable cells with low RNA content may be readily characterized by
ADT expression. Therefore, filtering of empty droplets should be performed separately for ADT
and RNA data. In contrast to the mislabeled cell cluster B, cluster C did not show strong
enrichment for any ADTs. The average profile of droplets in cluster C was not highly correlated to
the average profile of the ambient cluster D (R = 0.312; Fig. 1C), confirming that the source of
this cluster is not solely related to ambient ADTs. We assigned the name “spongelets” to the
droplets in cluster C given that they contain medium levels of ADTs that do not have enrichment
in specific cell types.

The distribution of individual ADT expression in true cells is often multi-modal and contains more
than one peak. For example, cells in cluster A have distributions of CD14, CD16, and CD45RA
as bi-modal and the distribution of CD4 as tri-modal (Fig. 1D). The lower peak of the multi-modal
densities has previously been characterized as background signals from non-specific binding of
antibodies®. Interestingly, the density of ADTs in the spongelet cluster largely overlapped with the
density of the lower peak in the cluster A (Fig. 1D, Supplementary Fig. S3). This overlap was
also observed in the three other ADT datasets (Supplementary Figs. S4 — S7). The average
percentage of each ADT in the lower peak of cluster A was highly correlated with the average
percentage of each ADT in cluster C in the PBMC 10K dataset (R = 0.976; Fig. 1E), and to a
lesser degree in two other datasets (R = 0.720 and R = 0.641; Supplementary Fig. S8). The low-
level background expression indicated by the lower peak is also manifested after normalizing Cell
droplets by their library sizes and classifying them by their cell types. (Supplementary Fig. S9-
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S$11). Low peaks of ADTs were observed in cell types that are not supposed to express the ADTs.
Interestingly, the density showing the background peak for each ADT has a consistent mean
across cell types. Overall, these findings suggest an association between the ADT expression
profiles of spongelets and the lower background peaks observed in true cells.

A B
Ambient Profile vs. Spongelet Profile
15
100000+ Empty Filtered . ‘B 03
Droplets Droplets -
Doublets2
101
10000+
L
9 e 5 CodiNative 02 D3 -
@ «~ VS s ©
g 1000+ o x CD4
_’jﬁ < o CDETMematy Doublets _g
E > CDBTNaive , défor 2
< 100+ CDajilemory  “dlnk < 0.1 °
) : CDga
A: Cell =51 !' CD45RO gD16 cD15-
o B: Mislabeled § 79
10+ Cell cpsg CD14
©C: Spongelet MonoCD14 o
N D: Ambient -101 ;  PD-1 R=0312
0.0119G2b
1 10 100 1000 10000 100000 -10 -5 0 5 10 0.0 0.1 0.2 0.3
RNA Library Size UMAP_1 Spongelet Profile
D E . )
CD4 CD14 Cell Background Profile vs. Spongelet Profile
1.25 1.25
0.4
1.00 1.00
= 0.75 20.75
k7] k7]
5] s
£ 050 $ 050 03
0.25 { 0.25 g cD15
0.00 0.00{_ = =
1 510 100 1000 10000 1 510 100 1000 10000 %
CD16 CD45RA 392
[£}
1.25 1.25 g CB45RA
1.00 1.00 =
o CD16
2> 075 2075 0.1 o
cpeg, gpia
g 050 £ 0.50 0B
0.25 025 &S0
0.0 o R =0.976
0.00 { =™ 0.00] g
1 510 100 1000 10000 1 510 100 1000 10000 0.0 0.1 0.2 0.3 0.4
Spongelet Profile
Ambient == Spongelet D Cell

Figure 1. Analysis of ADT droplets in the PBMC 10K dataset. A. Among all droplets, only the cluster with high RNA-
seq library size were filtered as cell droplets by the 10x Genomics software, while we observed clusters with varying
levels of ADT library sizes among the droplets labeled as empty. We identified three empty droplet clusters, and called
them clusters B, C and D. B. A thousand droplets sampled from clusters C and D each were combined with Cell droplets
for clustering using Seurat workflow. Distinct clusters were observed. C. The empirical distribution built using the
droplets from cluster C (spongelet) and D (ambient) showed poor correlation. D. Density plots of droplets from the
cluster C were close to the background peak of the Cell density plot. E. We manually curate the background peaks of
the Cell density and normalize them into a multinomial distribution. The distribution was found to be highly correlated
with the spongelet cluster empirical distribution.

A novel model for estimating and removing decontamination

We next sought to build a deconvolution algorithm that can estimate and remove contamination
from the ambient material as well as any other sources contributing to the background including
spongelets and non-specific binding. We assume that each cell is a mixture of three sources: 1)
ADTs from the native cell, 2) ADTs from the ambient material present in the cell suspension, and
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3) ADTs from any contamination source that contributes to a lower non-specific background peak
(Fig. 2A).

The native ADT expression of a cell population k is characterized by a multinomial distribution
@k, Where ¢, ; represents the percentage of native expression attributed to ADT j. The ambient
profile is characterized by a multinomial distribution n where 7n; represents the percentage of
ambient expression attributed to ADT j. We use a mixing parameter 6;; to model the proportion
of counts contributed by the ambient ADT j to the droplet i, and S;; to model the proportion of
counts from other background sources for ADT j in droplet i. Parameter ; is the prior for §;; and
represents the average background level for ADT j in the dataset while parameter §; is the prior
for 6;; and represents the average ambient contamination level for droplet i. After mixing the
parameters and scaling by the library size, the observed counts are generated from a Poisson
distribution.

When the raw matrix with empty droplets is available, the ambient profile  can be estimated using
the empirical distribution of the ambient droplets (i.e., droplets with low expression of ADTs). If
the raw matrix is not provided, the ambient profile n for a dataset can be estimated by calculating
the average of the ADT across filtered cell droplets. This is due to the fact that the average cell
profile is highly correlated to the empirical distribution of the ambient droplets in the majority of
datasets. For example, we observed this pattern in three ADT datasets (PBMC 10k: R = 0.977,
PBMC 5k: R = 0.991, MALT 10k: R = 0.968; Supplementary Fig. S1). The correlation is less
strong for one dataset (Golomb: R = 0.769), primarily due to an outlier ADT Ly6C. Ly6C had
uniformly high level of expression across droplets while other highly expressed ADTs were more
localized to specific clusters (Supplementary Fig. S12). We use the variational inference
framework provided by Stan to estimate the remaining parameters and deconvolute the ADT
count matrix into the Native, Ambient, and Background matrices for downstream analysis (Fig.
2B). Detailed description of the model can be found in the Methods section.
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Figure 2. DecontPro can estimate and remove contamination from multiple sources in CITE-seq data. A. Single
cells and ADTs are isolated in droplet compartments. Spongelet droplets contain some non-specific distribution and an
intermediary level of ADTs, while ambient droplets have a low level of ADTs attributed to the ambient material from the
cell suspension. Native ADTs refer to those that bind to their target cell surface proteins in the appropriate cell
population. Background ADTs represent those from contamination sources other than ambient such as spongelets or
non-specific binding of ADTs. These different sources of ADTs can be present and quantified together in each droplet
during library preparation. B. The DecontPro model can deconvolute an ADT count matrix into a background matrix,
an ambient matrix, and a native matrix along with the proportion of counts attributed to each source in each cell. The
native matrix can be used in downstream analyses.

Decontamination of PBMCs

To demonstrate the ability of our method to improve data quality, we applied DecontPro to the
PBMC 10k dataset from 10x Genomics and compared the distributions of counts before and after
decontamination. In the original count matrix, all ADTs were expressed to some degree in nearly
every cell cluster (Fig. 3A). After decontamination, known markers for cell types remained highly
expressed (Fig. 3B). For example, CD19 is a B-cell marker with an average expression of 668.46
in the B-cell cluster and a low average expression of 13.68 across other cell types in the original
count matrix. After decontamination the only clusters retaining expression of CD19 were the B-
cells and doublets. Similarly, T-cell marker CD3 had remaining counts only in the T-cell clusters
and a doublet cluster.
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For most markers, the density of the estimated background largely overlapped with the lower
peak across cell clusters. For example, the lower levels of CD3 were estimated to be largely
background and removed in the CD16 Monocyte and NK clusters (Fig. 3C). Similarly, for CD16
the lower levels of expression were estimated to be largely background in Naive CD8 T-cells and
T-regs clusters. As expected, native ADTs in their corresponding clusters were expressed at a
higher level, and hence had a higher peak in the normalized counts' density, such as CD3 in CD8
Naive T-cells cluster and T-regs cluster.

To systematically assess how well the algorithm performed in specificity in retaining native ADTs
for clusters, we calculated the percentage of cells in each cluster expressing native marker ADTs
before and after decontamination (Fig 3D). Markers and cell types included CD3 and CD4 for
CD4+ T-cells, CD3 and CD8 for CD8+ T-cells, CD19 for B-cells, CD14 for CD14+ monocytes,
CD16 for CD16+ monocytes, and CD56 for NK cells. In many cases, the algorithm was able to
greatly reduce or completely remove aberrant counts in non-native cell types. For example, CD14
expression was removed from T-cells, CD19 was removed from T-cells, NK-cells, and monocytes,
and CD3 was removed from B-cells and monocytes. In some cases, the reduction left some ADT
values in unexpected cell clusters. The monocyte marker CD14 was still detected in a high
percentage of B-cells after decontamination (98%). However, the overall level of CD14 in B-cells
was still greatly reduced compared to the original ADT counts (Supplementary Fig. S13).
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Figure 3. Decontamination of the PBMC 10k dataset with DecontPro. A. Expression profiles of ADTs in cell
populations before decontamination. All ADTs were expressed in each cell population to some degree B. After
decontamination with DecontPro, aberrantly expressed ADTs were removed or greatly reduced in non-native cell
populations. C. The density of normalized ADT expression for CD3 and CD16 in selected cell populations. The model
estimated background was superimposed onto the density plot. D. Percentage of cells expressing known cell type
markers before and after decontamination in different cell populations. Markers with a count greater than one were
considered expressed in a cell. E. The DecontPro model estimates the proportion of counts coming from native, ambient
and background sources in each droplet. The median percentage of native, ambient, and background counts was
89.5%, 4.4%, and 5.5%, respectively. F. Using decontaminated counts improved separation of clusters on a UMAP.

DecontPro also estimates the percentage of counts contributed by the native, ambient and
background signals (Fig. 3E). As expected, the native counts took the highest percentage of
libraries across droplets on average (median 89.5%, range 1.0% - 97.1%), whereas the
background counts were estimated at a consistently lower amount (median 4.4%, range 2.0% -
49.2%). The percentage of ambient ADTs had a similar median to the percentage of background
counts, but a much larger range (median 5.5%, range 0.8% - 93.9%). Lastly, the clusters in the
UMAP generated with the decontaminated counts were more separated compared to clusters in
the UMAP generated with the original counts (Fig. 3F).
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Benchmarking against Other Methods
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Figure 4. Benchmarking of ADT decontamination methods. We compared the ability of four algorithms to remove
contamination from four datasets. The other methods include dsb, scAR, and totalVI. A. The average silhouette width
for each cell cluster identified by Seurat was calculated before and after decontamination of ADT counts. A higher
difference in silhouette widths indicates better improvement in cell similarity within that cluster. On average, DecontPro
improved silhouette widths better than other methods for each dataset. B. For each dataset, a pair of scores were
calculated after applying each decontamination algorithm to ascertain the degree to which each algorithm maintains
true expression while removing contamination. The “positive” score was defined as the percentage of cells expressing
native markers averaged across cell clusters. In contrast, the “negative” score was defined as the percentage of cells
expressing non-native markers averaged across cell clusters. For example, in the CD4 naive T-cells cluster, CD4 and
CD45RA were defined as the native markers, while CD8 and CD45RO were defined as the non-native markers. As dsb
outputs normalized continuous counts after decontamination, we applied two different thresholds to determine which
markers were detected in each cell. The overall score is the positive score minus the negative score. Overall, DecontPro
performs the best in the overall score in all four datasets. C. Density plot of CD3, CD4 and PD-1 before and after
decontamination in the PBMC 10k dataset. The dsb output was exponentiated to allow for comparison with the
uncorrected original count density. D. Box plot of PD-1 level in cell clusters after decontamination and scaling PBMC
10k dataset.

We benchmarked DecontPro against three other decontamination algorithms applicable to CITE-
seq datasets: dsb, scAR, and totalVI. To compare how well decontamination improved clustering,
we calculated the mean silhouette width of each cell cluster identified by Seurat before and after
decontaminating using four public datasets. A higher mean silhouette width indicates higher
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similarities between cells within each cluster. Across all datasets, DecontPro showed the highest
average improvement in silhouette widths after decontamination (Fig. 4A). We next sought to
understand how effectively various algorithms improved the specificity of marker expressions in
cell clusters. Specifically, we wanted to measure if the expected markers in annotated clusters
retained their expression, while the unexpected markers from other cell types were removed. We
calculated two scores for each algorithm on each dataset. A positive score was calculated by
finding the percentage of cells in a cluster that express the expected “native” markers while a
negative score calculated the percentage of cells in a cluster that express unexpected “non-
native” markers from other cell types. An effective decontamination algorithm will have a positive
score close to 100 indicating that the expression of native markers was retained in their true cell
population as well as a negative score close to 0 indicating that the expression of non-native
markers from other cell types was successfully removed. The full list of annotated native markers
for each cell type can be found in the Methods section. As a reference, the uncorrected original
count data had high positive scores in all datasets and high negative scores close to 100 for the
PBMC 10k, PBMC 5k and MALT 10k datasets, indicating a high level of contamination in most
cell types (Fig. 4B). When using the difference between positive score and negative score to
measure the algorithm performance, DecontPro showed high overall score, indicating that it
retained the markers while removing the unexpected markers across datasets (PBMC 10k: 99,
PBMC 5k: 99, MALT 10k: 98, Golomb: 97). As dsb performs its own normalization and scaling,
the decontaminated count matrix is not directly comparable with the original count matrix. We
therefore used two different thresholds for a maker to be considered detected in a cell (dsb: 1;
dsb high threshold: 5) and calculated the scores accordingly. The higher threshold for dsb
produced better negative scores more similar to algorithms such as DecontPro and scAR, at the
expense of decreasing the positive scores in each dataset. The second-best performing algorithm
across datasets based on difference between positive and negative scores was scAR (PBMC
10k: 96, PBMC 5k: 90, MALT 10k: 99, Golomb: 82).

For the PBMC 10k dataset, the decontamination results for known cell type markers were mostly
similar across algorithms. For antibodies with high expression, such as CD3 and CD4, all
algorithms retained the higher peak while significantly reducing the lower background peak (Fig.
4C). However, PD-1 was expressed at lower levels and demonstrated a noticeable difference in
decontamination results between algorithms. PD-1 is known to be predominantly expressed in
activated T-cells, along with B-cells, natural killer (NK) cells and myeloid cells'®%. Our algorithm
reduced the PD-1 expression significantly in the naive T-cells population, while preserving the
expression level in the CD4 memory T-cells, CD8 memory T-cells, and Treg clusters where we
expected a high PD-1 level (Fig. 4D). Additionally, some levels in the B-cells and monocytes
clusters were also retained. Dsb and totalVI largely repressed PD-1 expression in all clusters
except CD4 memory T-cells, CD8 memory T-cells, and Treg cluster. SCAR is the only algorithm
that retained PD-1 in the NK cells cluster but has also removed its expression in the Treg cluster.
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Discussion

We developed DecontPro, a Bayesian statistical model, that decontaminates two sources of
contaminations we observed empirically in CITE-seq data. Previously, the empty drops were
thought to only contain noise from ambient material from the cell suspension. Our analyses
suggest that the empty droplets filtered using RNA are heterogeneous and may contain different
sources of signal and noise. One cluster of empty droplets had high levels of specific ADTs and
thus likely contained true cells. These results suggest the need for empty drop calling to be
performed separately for ADT and RNA data. We also identified a cluster of empty droplets with
medium levels of ADTs containing a different profile from that of the ambient droplets. We named
these droplets “spongelets” because they had medium levels for most ADTs without any
enrichment for specific ADTs compared to true cell clusters. Although our analysis did not reveal
the source of the spongelets, we hypothesize that they could be due to the presence of debris
from the dissociation procedure or dying cells with a permeable membrane. Further work will be
required to identify the source of this artifact and understand how experimental parameters can
be modified to decrease the contribution of spongelets to the background.

These observations motivated us to design a decontamination algorithm that decomposes the
ADT count matrix into three components: 1) native counts representing the contribution from true
cells, 2) ambient counts representing the contribution from ambient material, and 3) background
counts representing the contribution from other low level contamination sources such as non-
specific binding or spongelets. Importantly, this model allows DecontPro to work in situations
where the raw empty droplet matrix is not available which is often the case in public repositories.
To estimate the ambient profile of a dataset when the empty drop matrix is not available, we use
the average of the true cells. We found that the average of the true cells was highly correlated to
the ambient droplets in three out of the four datasets examined. The lower correlation in the
Golomb dataset was primarily due to one ADT (Ly6C) which had lower than expected levels in
the cells given the level in the ambient droplets. Other experimental procedures such as cell
sorting for particular populations may also break the assumption that the cell average will
accurately approximate the profile of the ambient droplets. In these cases, our software allows
users to input the empty droplets to more accurately estimate the ambient profile.

Overall, DecontPro can be used as an important quality assessment tool that estimates the levels
of different sources contributing to the contamination in ADT data. The computational
decontamination of ADT counts with DecontPro will aid in downstream clustering and visualization
and can be systematically included in analysis workflows.
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Methods

Empty droplet analyses

The PBMC 10k dataset containing a total of 6,794,880 raw droplets and 7,865 filtered droplets
was downloaded from the 10x Genomics website?'. Droplets with zero total counts for both ADT
and RNA were filtered. The library sizes for ADT and RNA were calculated by summing all the
ADT and RNA counts in each droplet. The droplets with barcodes in the raw but not filtered
dataset were named empty droplets. Clusters B, C and D in empty droplets were identified using
k-means with the number of clusters set to 3. Profiles of cluster C (spongelet) and D (ambient)
were calculated by summing ADT counts over droplets and normalizing the vector to one. The
cell background profile was calculated by summing ADT counts over droplets that fall into the
background peak and normalizing. The background peaks are manually identified using the
bounds shown in Supplementary Figures S14-S16. Cell clusters were identified with markers:
MonoCD14: (CD14+), CD4TMemory: (CD3+, CD4+, CD45R0O+), CD4TNative: (CD3+, CD4+,
CD45RA+), CD8TMemory: (CD3+, CD8+, CD45R0O+), NK: (CD16+, CD56+), B: (CD19+),
CD8TNaive: (CD3+, CD8+, CD45RA+).

Data Generation Model
For a droplet i containing a cell of type k; having the library size L;, we assume the j* ADT count
x;;j is a realization from a Poisson distribution with rate parameter 4;;:

xij|L~Poisson(A;;L;)

When there is a total of I droplets, ] ADTs and K cell types, the count matrix can be organized
into an I by J matrix X = [x;;] and a corresponding cell type indicator vector k = [k;]. We further
assume that the overall expected rate of counts for an ADT in a cell (4;;) can be described as a
sum of three components:

Aij = (1= Bij) x0;5xnj + (1= Bij) * (1 — 0;) * P,j + Bij

where ¢, ; is the normalized rate of counts for ADT j in cell population k;, n; is the normalized
rate of counts due to the ambient source for ADT j, 6;; is the proportion of ambient material for
ADT jin cell i, and g;; is the normalized rate of contamination from all other background sources
including spongelets and non-specific binding.

We assume that some level of general background (f;;) will be present for each ADT in each cell
and that the rates of native or ambient ADTs can be quantified in each droplet after subtracting
out the background rate (1 — ;;). More specifically, the normalized rate of ambient ADTs can be
expressed as the expected proportion of counts coming from the ambient distribution times the
level of ambient contamination in that cell after excluding the general background rate: (1 - ﬁij) *
8;; *n;. The rate of true native ADT counts for a given cell can be expressed as the expected
number of counts from that cell type after excluding the proportion of counts from both ambient
contamination and background noise: (1 — B;;) * (1 — 6;;) * ¢y,


https://doi.org/10.1101/2023.01.27.525964
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.27.525964; this version posted February 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We put prior distributions on the rates of ambient contamination for all ADTs in a droplet and the
background contamination for each ADT across all cells. g;; is drawn from a truncated normal

parameterized by mean u; and bounded by (0, 0.5) while 6;; is drawn from a truncated normal
parameterized by mean §; and bounded by (0,1):

pij~Truncated Normal(u;, T3)
0;j~Truncated Normal(6;,T1)

7, and t, are hyperparameters that control how strongly individual contamination rates can
deviate from the prior mean rates of §; and u;, respectively. The plate diagram for the model is
shown below.

GENERATIVE PROCESS

Given cell type k, library size L for droplets, hyperparameters 71, 7o:

1. For each cell type k, generate native rate ¢y

2. For each droplet ¢, draw &;

3. For each ADT j, draw p;

4. For each ADT j in each droplet i, draw:

k

(a) 6;; ~ TruncatedNormal(d;, 1)
(b) Bij ~ TruncatedNormal(p;, T2)

(c) zi; ~ Poisson(Ai;L;)

where Aij = (1 — Bsj) * 65 % m; + (1 — Biz) * (1 — 65;) * i + Bij
)

Figure 5. Summary of the DecontPro model. A. Plate diagram for the DecontPro model. B. The generative process
of the DecontPro model.

Application of DecontPro to ADT datasets

Datasets were preprocessed by filtering out cell droplets with top and bottom one percent of ADT
and RNA total library sizes, and droplets with 15% or higher mitochondrial gene counts. Cell
clusters were generated using the Seurat package. The prior parameters were set to 7, (PBMC
10k: 2e-5, PBMC 5k: 5e-5, MALT 10k: 4e-5, Golomb: 2e-5) and 7,(PBMC 10k: 2e-6, PBMC 5k:
5e-6, MALT 10k: 2e-6, Golomb: 2e-6). The inference was done using the variational inference
implementation in Stan?®. 6;; was initialized 1e-4 and f5;; was initialized 1e-2. The max number of
iterations were set to 50,000.

Benchmarking of decontamination tools
Four datasets were used in benchmarking. PBMC 10k: PBMCs from a healthy donor stained with
17 Total-Seq-B antibodies (7,865 filtered droplets). PBMC 5k: PBMCs from a healthy donor
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stained with 31 Total-Seqg-B antibodies (5,527 filtered droplets). MALT 10k: Dissociated
Extranodal Marginal Zone B-Cell Tumor cells stained with 17 Total-Seg-B antibodies (8,412
filtered droplets). These three datasets were downloaded from 10x Genomics website. Golomb:
Brain samples of mice with antibiotics induced gut microbiota depletion (30,569 filtered droplets).
A panel of 31 antibodies was used for staining the samples of 3 young mice and 3 aged mice,
and the samples were pooled together using hashtag oligo.

The clustering of datasets was generated using the Seurat package. Silhouette widths were
calculated on datasets after CLR normalization and averaged by clusters. The positive and
negative scores for each dataset were calculated by finding the percentage of droplets in the
dataset that belong to the clusters and have the markers expressed more than the threshold after
decontamination. The threshold was set to 1 except when evaluating dsb, we also used a high
threshold of 5 (reported the results as “dsb (high threshold)” in the main manuscript). The cell
clusters and markers used to calculate the scores are listed in Supplementary Table S1.
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