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Abstract

Volume electron microscopy (VEM) has become a rapidly developing technique for studying the
3D architecture of biological specimens, such as cells, tissues, and organs at nanometer resolution;
this technique involves collecting a series of electron micrographs of axial sequential sections and
reconstructing the 3D volume, providing useful information on the cellular ultrastructural
spectrum. This technique currently suffers from anisotropic resolution between the lateral (X, y)
and axial (z) directions and the loss/damage of sections. Here, we develop a new algorithm,
ISOVEM, based on a video transformer model to boost the axial resolution and achieve isotropic
reconstruction of vEM. By learning high-resolution axial structures and utilizing the 3D continuity
of biological structures, IsoVEM can recover axial information and repair random lost/damaged
sections based on a self-supervision strategy, achieving a higher resolution than existing methods,
which has been validated for both simulated FIB-SEM datasets and experimental sSSTEM datasets.
In addition to visual validation, the segmentation efficiency and statistical precision of various
ultrastructures, e.g., neurons, mitochondria, vesicles, and membrane bilayers, also prove the better
performance of IsOVEM. Therefore, using ISOVEM, we achieve isotropic reconstruction via
anisotropic axial sampling, which increases the VEM throughput for studying large-scale
biological architectures.

1. Introduction

In recent years, with the continuous development and optimization of electron microscope
imaging technology, big data storage, image processing technology and computer hardware
technology, volume electron microscopy (VEM) has developed rapidly. vVEM allows direct
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depiction of the 3D ultrastructures of organisms, cells®* and tissues>® and has been widely used in
connectomic studies of neurons”°. The physical scale studied by VEM is also increasing, from the
nanoscale to tens of microns and even hundreds of microns %, Thus, the rapid development of
VEM has promoted its wide application in the life sciences 23, medicine ** and clinical
diagnosis 1"?°, and VEM has become one of the most important and state-of-the-art technologies in
the above fields. For these reasons, vVEM was named one of Nature's top 7 technologies to watch
in 2023.

Even with the most advanced technology, there are still difficulties or flaws that need to be
overcome for VEM. The different imaging methods used for VEM include volume transmission
electron microscopy (TEM) and volume scanning electron microscopy (SEM)®. The volume TEM
technique includes serial section electron tomography (ssET) and sSTEM. Volume SEM
techniques include serial block surface scanning electron microscopy (SBF-SEM)Y, serial
ultrathin section scanning electron microscopy (ssSEM) and focused ion beam scanning electron
microscopy (FIB-SEM)X. ATUM-SEM 2122 and AutoCUTs-SEM 2> which can automatically tape-
collect serial sections, are sSSSEM methods.

For VEM, the z-axis direction of the reconstructed volumes of sSTEM and ssSEM ! can
contain only the integrated information of the thickness of each section, so the section thickness
determines the axial voxel size. Usually, the section thickness is approximately tens of nanometers,
which is several times or even tens of times the lateral plane thickness; this results in the
anisotropy of the information between the lateral and axial directions. Similarly, the axial
resolution of SBF-SEM depends on the thickness of the sample sequentially cut by the diamond
knife and the depth that the electron beam penetrates. FEI designed the volume scope with
automatic deconvolution and multienergy imaging methods to enhance the axial resolution of
SBF-SEM further. However, at present, the isotropic resolution achieved by the volume scope is
dozens of nanometers. Therefore, SSTEM, ssSEM and SBF-SEM are anisotropic VEM techniques
for which the target is ten nanometers or more common. ssET and FIB-SEM can achieve isotropic
VEM reconstruction. However, because each section of ssET can be tilted within only a limited
angular range, the reconstructed result is not complete in Fourier space because information is lost
in the high-angle range; this phenomenon is known as the missing cone problem. At present, none
of the methods can fill missing cones with complete accurate high-frequency information. In
contrast, SSET can be applied to only small volumes ranging from hundreds of nanometers to
several microns. FIB-SEM can be used to control the cutting thickness more precisely by
controlling the ion beam current and accelerating voltage to realize isotropic 3D reconstruction. C.
Shan Xu and Harald Hess developed enhanced FIB-SEM, which enables large-scale isotropic
reconstruction, with cumulative collective volumes up to 10° microns in several months 2,
However, the time cost is a major issue that must be considered when performing large-volume
3D reconstruction. In addition, enhanced FIB-SEM is available at only a few institutions.
Therefore, FIB-SEM is currently applicable mainly to isotropic reconstructions of small-volume
samples. However, further development of these techniques is needed for efficient isotropic
reconstructions at a large scale and high resolution.

Our research goal is to routinely obtain isotropic high-resolution information from large-
volume samples via the above VEM technique. Due to the limitations of the above techniques,
large-scale and high-resolution isotropic reconstructions cannot be widely realized. Previously,
interpolation was usually applied to reconstruction results to reduce the anisotropy effect caused
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by the loss of axial information. However, the errors and artifacts caused by interpolation are
obvious, especially in the case of anisotropic reconstruction with high-anisotropy factors, such as
8X and 10 X.

In recent years, various types of deep learning algorithms have continuously emerged and
promoted the development of artificial intelligence. Subsequently, its application in VEM has
gradually increased. Heinrich first introduced the concept of deep learning to VEM in an attempt to
solve the anisotropic reconstruction problem %, demonstrating the feasibility of 3D-FSRCNN and
3D-SRUNet for performing isotropic reconstruction via supervised learning, and the results are
superior to those of bicubic interpolation. However, this was a supervised 3D reconstruction
method that was carried out only when ground-truth data were available. However, isotropic
ground-truth volumes cannot be obtained via ssSSEM/ssTEM/SBF-SEM in VEM studies, which
limits the application of such supervised deep learning methods in VEMs. Self-supervised deep
learning methods without the need for ground truth are more suitable for isotropic reconstruction
of VEMs, including those of Kausumi Hagita et al.?®, Xue Yang Fu et al.?’, and Hyoungjun Park et
al.®® et al. These methods are all based on generating adversarial networks (GANS), using high-
resolution two-dimensional images in the lateral direction as unpaired self-supervised signals and
guiding the model to restore axial low-resolution images by domain transferring. Specifically,
Kausumi Hagita et al.?® first used the SRGAN? to restore simulated anisotropic FIB-SEM
volumes, and Hyoungjun Park et al.?® applied similar methods to fluorescence 3D imaging. Xue
Yang Fu et al.?” adopted a better CycleGAN®® to deal with the blind degradation of VEM and
performed isotropic reconstruction on real SSTEM data with a 10X anisotropy factor. However,
these GANSs still adopt a 2D network architecture, which has shortcomings in modeling the
intersection continuity of 3D volumes. And moreover, due to the high difficulty and instability of
training, the final reconstruction results may contain many artifacts, such as texture artifacts or
structural deformations. Several studies have also used video models to recover axial information;
for example, Zejin Wang et al. * designed a video frame interpolation model with a self-attention
mechanism that completes the intermediate section between two sections but achieves only 2 X
axial information recovery.

More recently, diffusion model-based VEM isotropic reconstruction methods, such as
DiffuselR®, EMDiffuse®® and DiffusionEM3* , have emerged. Overall, the diffusion model has
better high-frequency information recovery ability and training stability than does the GAN.
Among these methods, DiffuselR and DiffusionEM are used in combination with the zero-shot
restoration paradigm,; in addition, the diffusion model is trained using lateral sections, after which
the anisotropic axial sections are restored during sampling. In contrast, EMDiffuse uses a diffusion
model to implement a toolbox for electron microscopy restoration, which includes superresolution,
denoising, and isotropic reconstruction. However, these diffusion model methods still use a 2D
model architecture, only partially compensating for the lack of spatial continuity through
positional encoding. Moreover, sampling and training of diffusion models are time-consuming,
which becomes a bottleneck in practical applications. Therefore, it is necessary to design new deep
learning models for isotropic reconstruction.

Other factors affecting the effectiveness of VEM reconstruction include artifacts such as
section damage, creases, contamination and other human defects, which are inevitable during
sample preparation. This not only affects preprocessing operations, such as stitching and
alignment between images, but also reduces the overall spatial resolution of the subsequent
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reconstruction results. For samples with many defects, samples can be reprepared only to obtain
high-quality images, which slows the speed and efficiency of VEM research. In recent years,
image inpainting methods 3 involving deep learning have been developed rapidly in image
editing and photo restoration, compensating for the disadvantage that the information repaired by
traditional methods does not match the original semantics. Moreover, these technologies have
also been gradually developed and applied in medical image repair’, such as inpainting for MRI
spectroscopy images,. Commonly used inpainting networks include convolutional neural networks
based on context encoders®, fully convolutional neural networks based on global and local
context discriminators®?, vanilla GAN networks based on generating images with random noise*,
U-Net networks based on pyramid context encoders*, transformer networks* and other related
methods*®°, To our knowledge, the application of inpainting in VEM is still very rare. By using
the continuity prior of the ultrastructure between continuous sections or continuous block face
images and combining this information with the long-term attention mechanism of the transformer
model, we believe that the transformer network can be extended to the inpainting of VEM images
with defects such as missing sections, damage, and wrinkles. This approach will not only repair
the above defects in VEM raw images but also save time and economic costs in sample preparation.

In this work, we propose the ISOVEM deep learning model, which uses a video transformer to
solve the isotropic reconstruction problem of VEM and handles image inpainting for defects in the
xy plane simultaneously. ISOVEM restores axial information by learning the high-resolution lateral
information of anisotropic volumes in a self-supervised manner. By adopting a video transformer
architecture that includes self-attention and a mutual attention mechanism, the spatial continuity of
3D structures can be effectively learned, avoiding the discontinuous layered artifacts in 3D
reconstruction volumes that typically appear in 2D models. Moreover, for data with section
deficiency or even sections lost during data collection, IsoOVEM can be extended to ISOVEM+ by
performing section image inpainting and isotropic reconstruction simultaneously. For example,
ISOVEM+ can achieve reliable section inpainting based on interframe continuity and a video
transformer model. In addition, IsoVEM can achieve arbitrary-scale isotropic reconstruction
during the inference stage, which enables ISoVEM to be easily transferred to other vVEM data with
different anisotropic factors, even for fractional factors. The pretrained IsoVEM has good transfer
robustness, indicating its potential as a universal pretrained isotropic reconstruction model for
VEMs. On both simulated anisotropic FIB-SEM and real anisotropic sSSTEM data, IsoVEM
significantly improved the morphological restoration of organelle ultrastructures of different types
and scales, such as neurons, mitochondria, vesicles and bilayers. Based on multiple qualitative
indicators, including reconstruction accuracy, artifact restriction, training stability and speed,
ISOVEM is far superior to interpolation, better than existing self-supervised methods, and close to
existing supervised methods. This approach further facilitates downstream analysis related to
connectomics or structures, including 3D segmentation and statistical analysis.

2. Results

For the isotropic reconstruction problem of VEM, we designed a video transformer-based self-
supervised deep learning model named IsoVEM (Section 2.1), which shows superior isotropic
performance compared with traditional interpolation algorithms and other self-supervised
algorithms both for simulated anisotropic FIB-SEM data (Section 2.2) and real anisotropic SSTEM
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data (Section 2.3). The Fourier shell correlation (FSC) criterion is used to determine the accurate
resolution of the reconstructed volume via the IsoVEM. Experiments on simulated anisotropic
data demonstrate that for 40 nm section thicknesses and 5 nm lateral spatial sampling, axial
information above 18 nm can be accurately recovered. Segmenting organelles such as neurons and
mitochondria and the corresponding statistical analysis further demonstrated the accuracy and
reliability of IsoVEM. Moreover, IsoOVEM can achieve isotropic reconstruction with any
anisotropic factor and has good transfer robustness for various VEM data, such as different tissues
and organs collected by FIB-SEM, ssTEM or ssSEM (Section 2.4). IsoVEM can be extended to
IsoVEM+ when facing common section deficiency, such as when performing section inpainting
for missing sections or contaminated or broken areas while isotropic reconstruction occurs
(Section 2.5). To the best of our knowledge, IsoOVEM is the first method for realizing isotropic
reconstruction and inpainting simultaneously.

2.1 Algorithm design and network architecture

Since the isotropic ground truth of the VEM cannot be obtained, we adopt a self-supervised
learning strategy for calculating the anisotropic volume. For dataset preparation, we crop the
anisotropic volume into subvolumes of a specific size to generate training/validation/test datasets
(Fig. 1a). The training set usually accounts for 60%~80%, the validation set is the remaining area
that does not overlap with the training set, and the test set can include any other data that are
different from those in the training set. To utilize lateral high-resolution information for self-
supervision, we perform anisotropic degradation on subvolumes in the training set along the X/Y
axis to construct paired training data. The degradation process is performed by an anisotropic
average pooling operator (Fig. 1a), which is suitable for using multiple modalities of VEM
(Supplementary Note 1) and was used in previous work?®. During training, the paired subvolumes
are augmented with eight types of orthogonal rotation and regarded as video clips along the z-axis
(Fig. 1b). After feeding them into ISOVEM, the subvolumes are superresolved along the simulated
degradation axis (X/Y), and the weighted sum of the L1 and SSIM differences is taken as the loss
function (Fig. 1b). During inference, the input subvolumes are also augmented with eight types of
orthogonal rotations and then regarded as video clips along the X/Y axis (Fig. 1b). After model
inference, 8 superresolved rotation augmentation results are average ensembled to generate the
final reconstruction. Finally, the reconstructed subvolumes in the test dataset are stitched
according to the cropping coordinates to obtain the whole isotropic reconstructed volume. The
network architecture of IsoVEM (Fig. 1c) is designed as a multiscale symmetrical stack of
transformer blocks with an arbitrary-scale upsampling module. Specifically, given a subvolume or
video clip, the process flow is as follows. First, feature extraction is performed by spatial 2D
convolution for each frame in the video clip. Then, the feature maps are processed by multiple
transformer stages, where the 1~7" stages perform multiscale symmetrical feature reconstruction
in UNet>® shape and the 8" stage performs fine feature fusion at the original scale. The upsampling
and downsampling operations are symmetrical in layout and operated before the feature maps
enter a certain transformer stage; only the spatial size of each video frame is changed while
keeping the temporal length unchanged. Each transformer stage contains a stack of transformer
blocks to jointly extract features, perform motion alignment between frames, and fuse the
interframe information. The number of transformer blocks in the 8th stage is usually more than
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that in the 1%~7" stages (M>N). Finally, the feature maps are isotropically reconstructed along the
simulated degradation axis (X/Y) to generate an isotropic subvolume. Global residual connections
and skip connections are adopted to better reuse features and facilitate network learning.

Inspired by a video restoration transformer (VRT) %, the transformer block includes two types of
attention modules, MSA (multihead self-attention) and MMA (multihead mutual attention), to
perform feature extraction and motion alignment (Supplementary Note 2). Self-attention®
(Extended Data Fig. 1a) uses self-similarity prior to images to make the feature more focused on
important regions; this approach has been proven to be effective in various computer vision
tasks.>® As shown in Extended Data Fig. 2, the self-attention map shows which areas of the input
video clip are focused on, illustrating the long-distance dependency modeling ability across frames
and the robustness to different structures. In contrast to self-attention, mutual attention (Extended
Data Fig. 1b) emphasizes joint motion estimation and implicit feature alignment between two
adjacent frames. The mutual attention map reflects the position correspondence between these two
frames. Compared to explicit motion estimation and compensation methods such as optical
flow>*% and image warping, mutual attention has a simpler implementation, is more robust to
large structural deformations between frames, avoids mismatch artifacts, and is more flexible for
information warping in latent space. The multihead strategy®? is used for the above two attention
mechanisms to enhance the semantic representation capabilities. Dividing and shifting attention
windows (Supplementary Note 2) in the adjacent network layer to preserve long-distance
dependency®® is necessary to reduce the computational cost of video processing, as shown in
Extended Data Fig. 1c.

After the multiscale transformer stages, the feature maps are isotropically resolved by a
reconstruction module composed of an anisotropic pixel shuffling®’and trilinear interpolation to
realize arbitrary-scale upsampling. First, the pixel shuffling operation is anisotropic, enhancing the
resolution along only a single spatial axis direction. Second, the following trilinear interpolation
enables plug-and-play arbitrary-scale upsampling, even for fractional scale factors. It should be
noted that an anisotropic pixel shuffle can upsample at any positive integer scale factor, as long as
the number of channels increases linearly with the scale factor. However, the scale factor during
model inference must be consistent with that during the training phase. By following trilinear
interpolation after an anisotropic pixel shuffle, the model can infer a scale factor that is
inconsistent with the training phase, facilitating the transfer of the pretrained model to other vVEM
data with different anisotropic scale factors, even for fractional numbers. In addition, trilinear
interpolation is effective for backpropagation and is lightweight without increasing the number of
parameters or computations.

In summary, ISOVEM integrates feature extraction, motion alignment, and information fusion
at multiple resolutions via multiscale video transformer stages and performs arbitrary-scale
upsampling via the combination of anisotropic pixel shuffling and trilinear interpolation.
Compared with existing isotropic reconstruction methods for vEMs, ISOVEM can trace structural
movement between frames and maintain long-distance continuity, while 2D deep learning models
cannot perform well. It also avoids the training instability and high-frequency artifacts that often
occur in GAN-based models such as the SRGAN?® and CycleGAN®. It achieves excellent
performance far beyond bicubic interpolation and close to supervised method® (Fig. 2).
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Fig. 1: Algorithm design and process framework of IsoVEM.
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Fig. 1 | Algorithm design and process framework of I1sSOVEM. a, Generating subvolume sets for deep learning
from raw anisotropic VEM volumes. The subvolumes are degraded along the X or Y axis to generate paired LR-HR
data for self-supervised training using anisotropic average pooling as a degradation simulation method. Ai, Cj, and
D« represent the training set, validation set and test set, respectively; Bi represents the degradation volume along
the X or Y axis. b, In the training and inference process, the model regards the input subvolume as a video clip
along the Z-axis and X/Y-axis, respectively. The loss function is set as the weighted sum of the L1 and SSIM

losses. Cj or Dy are the input data that need to be inferred by the ISOVEM network.ﬁi is the output of the

ISOVEM network, which is superresolved along the degradation axis. (fj or 5k is the inferred volume. ¢, The

model architecture is designed as a multiscale video transformer and upsampling reconstruction module. The 1% to
7t stages are constructed for multiscale feature extraction, and each scale has N transformer blocks containing
MSA and MMA to perform implicit motion alignment. The 8™ stage has M transformer blocks designed for feature
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fusion. Arbitrary anisotropic restoration is achieved by trilinear interpolation after pixel shuffling inside the

network.

2.2 Isotropic reconstruction for the simulation dataset with ground-

truth data

We downloaded isotropic data from mouse brain neurons collected by FIB-SEM from the EPFL
website (https://www.epfl.ch/labs/cvlab/data/data-em/) and simulated 8 X anisotropy by
averaging multiple frames every 8 sections. The sample contains not only subcellular structures,
such as neurons and mitochondria, but also the ultrastructures of vesicles and cell boundaries at
the nanometer level. This sample is typical for ultrastructure research using VEM technology, so
we used these data to simulate serial section generation and test the effectiveness of the IsoVEM
algorithm.

Compared with the supervised method®® and CycleGAN?’, we found that the IsoVEM yields
the most isotropic information in both the image space and Fourier space (Fig. 2a). The power
spectra of the x-z planes show that IsoVEM can restore Fourier space information within the same
diameter as the supervised network, while both CycleGAN?" and bicubic interpolation present
elliptical diffraction information in Fourier space (Fig. 2a). More intuitively, the reconstruction
results of the x-z planes of the IsoVEM method showed the same details as those of the supervised
method ((Fig. 2a), and the resulting is significantly better than the bicubic interpolated one (Fig.
2a and Extended Data Movie 1). And more over, even the details were the same as those of the
ground truth (Fig. 2a), such as the bilateral membranes (red box) and the mitochondrial cristae
(blue box) (Fig. 2a). However, although the reconstruction of CycleGAN and bicubic interpolation
also restore some axial information, the overall contrast is blurred, and structural details such as
bilateral membranes cannot be presented.

We further segmented and extracted mouse neurons and mitochondria and performed
morphological comparative statistics to confirm the effectiveness of IsoVEM further (Fig. 2b, c
and d). For the sake of generality, we segmented three different locations of neurons in the
reconstruction results of each method. The neurons recovered by ISoOVEM had no jagged edges,
and the voxel coincidence was closest to the ground truth (Fig. 2b and d). In addition to supervised
methods, the segmentation breakpoints of neurons in the ISOVEM reconstruction results were also
the smallest among all the deep learning-based methods and interpolation methods (Fig. 2c and d).
For neurons 2 and 3, the number of broken points was even less than that of the supervised method.
We believe that this is because 1IsoVEM makes full use of the 3D spatial information of the data
through the video transformer model, so the reconstructed results were more continuous both in
the whole volume and in the local ultrastructure, such as synapses. Mitochondrial segmentation
via IsoVEM reconstruction revealed easily recognizable and complete mitochondria. Compared
with those of the CycleGAN or interpolation methods, the mitochondria in the IsOVEM
reconstructed results had the highest colocalization volume with the isotropic ground truth
according to FIB (33.76 um3), which was almost the same as that of the supervision method
(33.87 um3), while the interpolation method had the smallest colocalization volume (33.19 um3)
(Extended Data Fig. 3).

FSC has been widely used as the gold standard for reliable reconstruction resolution
estimation via cryoEM. Here, we introduce FSC calculations into these EPFL data with ground
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truth data. The FSC of the isotropic reconstruction result was calculated by comparing the Fourier
shell cross-correlation with the ground-truth volume. Except for the supervised deep learning
method, the FSC performance of ISOVEM is significantly better than that of the bicubic
interpolation and CycleGAN methods (Fig. 2e). According to the FSC-0.5 criterion, ISOVEM
could reach 18 nm isotropic resolution. These open EPFL data has 5 nm isotropic resolution, and
we simulated the axial degradation with anisotropy 8, which means that the section thickness was
simulated as 40 nm. The 18 nm recovery data imply that if people want to obtain a 20 nm axial
resolution, slicing a sample with a 40 nm thickness will completely replace the 20 nm slicing
strategy. This approach will save half the number of sections and further save at least 50% of the
time during the entire process, such as sample preparation, 2D registration and 3D reconstruction.
Moreover, electron microscopy and computer expenditure costs are reduced.

We also calculated the 1IsoVEM performance with different anisotropy factors and quantified
the restoration quality by the pixel-based quantitative indicators PSNR, the structural similarity
indices SSIM and MS-SSIM, and the visual perception indicator LPIPS for both the whole 3D
reconstruction volume and three orthogonal planes (XY, XZ, and YZ). With an anisotropy factor
of 4 or 8, all the above metrics for the ISOVEM were better than those of the methods based on
bicubic interpolation or the CycleGAN (Extended Data Fig. 5 and Supplementary Table 2). This
finding is consistent with the fact that the ultrastructures of neurons (Fig. 2) and mitochondria
(Extended Data Fig. 3) observed by ISoVEM were closest to the ground truth. The double-layer
membrane structure on the cell boundary region recovered by IsoVEM was even more continuous
than that recovered by the supervised method (Fig. 2a, red arrows).

Taken together, the above findings demonstrate that IsOVEM can be used to recover
ultrastructures with higher-resolution information in organelles and achieve reliable isotropic
reconstruction results with higher FSC, lower reconstruction error and better visual perception
(Fig. 2, Extended Data Figs. 3 and 4).
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Fig. 2: Comparison of isotropic reconstruction results of IsoVEM with existing methods
on EPFL dataset with ground truth.
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Fig. 2 | Comparison of isotropic reconstruction results of IsOVEM with existing methods on the EPFL
dataset with the ground truth. a, The lines from top to bottom represent the ground truth, the reconstruction of
IsoVEM, CycleGAN and bicubic interpolation, respectively. All methods are shown with an orthogonal view and
full volume, while the power spectrum of the orthogonal x-z plane is presented. The local membrane structures and
mitochondria from the full volume are highlighted with enlarged images and arrows (red arrows for membrane
structures and blue arrows for mitochondria). b, Three neurons from the results of different reconstruction methods
were segmented. Colocalization analysis between reconstructed neurons generated by different methods and
ground-truth neurons was carried out. The values in the figure represent the volume of the colocalization in cubic
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microns. Except for the supervised method, the neurons segmented from the ISOVEM reconstruction result had the
largest colocalization volume with the ground truth. ¢, Analysis of neuronal connectivity. The values in the figure
represent neuron connectivity. A larger value indicates more breakpoints and poorer connectivity. Among the
neurons isolated from 4 different isotropic reconstruction results, those extracted via the interpolation method
exhibited the worst neuronal connectivity. The neuron connectivity of our ISOVEM method was better than that of
CycleGAN. It was even better than the supervised method for neurons 2 and 3. d, The volume of overlapping
regions and the number of discontinuous breaks of neurons in Fig. 2b and c were statistically analyzed. As Fig. 2b
and Fig. 2c show, the bicubic interpolation method has the most breakpoints, the IsoVEM method was superior to
the CycleGAN method, and the number of breakpoints for neurons from the ground truth was the lowest. The
colocalization overlap volume of neurons for the interpolation method was the smallest, while the colocalization
volume for IsoVEM reached the same level as that for the supervised methods. e, FSC cross-correlation calculation
between the volume of each isotropic reconstruction method and the ground-truth volume. With the FSC 0.5
standard criterion and under the condition of a 5 nm imaging pixel in the x-y plane, ISOVEM recovered reliable
axial information at 18 nm. Moreover, the FSC curve for IsoVEM (red curve) had a significantly greater

correlation with the ground-truth structure, second to only the FSC curve of the supervised approach (green curve).

2.3 lIsotropic information recovery by IsoVEM for real data without

ground truth

To further demonstrate the effectiveness of IsoVEM and its applicability to other vVEM modal data,
we tested the public ssTEM dataset Cremifrom website (http://cremi.org/). CREMI provides
publicly available raw ssTEM images of the Drosophila melanogaster brain for algorithmic
development and evaluation of neural circuits. These CREMI data were collected via sSTEM with
an anisotropy factor of 10, and no ground truth was available for comparison. Therefore, we
directly compared our method with traditional bicubic interpolation methods and CycleGAN
networks. The results show that for such high-anisotropy data, ISOVEM reconstruction had the
best structural details (Fig. 3a and b). The CycleGAN network recovered some axial information
but could not recover the details of membrane-like structures, such as double layers of membranes
(Fig. 3b). The results of the bicubic interpolation method were undoubtedly the worst; the overall
axial structure was fuzzy, and the structural details were smoothed out (Fig. 3b). In contrast, the
whole volume generated by IsoOVEM provided continuous and natural structural information in 3D
due to the space continuity learning advantage of video transformers in ISoVEM, while the volume
obtained by CycleGAN or bicubic interpolation had obvious layer artifacts in the z axial direction.
The reason is that CycleGAN is a two-dimensional model, and frame-by-frame inference along
the x(y) axis generates layered discontinuous artifacts on the yz(xz) planes, which are difficult to
eliminate even in the presence of training data augmentation. In contrast, IsOVEM keeps each
section as a continuous video frame and adopts self-attention and mutual attention mechanisms for
interframe motion alignment, thus maintaining the spatial continuity of the reconstructed volume.
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Fig. 3: Comparison on real ssTEM data Cremi with anisotropic factor 10.
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Fig. 3: Comparison of real ssSTEM data CREMI with an anisotropy factor of 10. a, The IsOVEM is clearer,
and the sample details are more natural, while bicubic interpolation produces blurred structures, while CycleGAN
exhibits layered artifacts. b, Highlighted regions for the above three reconstruction methods in a. IsOVEM (red
rectangle) shows more complete and clearer structures at the boundaries of the membranous structure and the
structure of the internal ridges of the mitochondria than CycleGAN (yellow rectangle) and bicubic interpolation
(blue rectangle). ¢, d, Uncertainty map comparison for IsoVEM and CycleGAN. The artifact signal of CycleGAN
was significantly larger than that of ISOVEM in three orthogonal directions, which indicates that the predictions of
8 kinds of rotation augmentation had larger standard deviations. ISOVEM reconstructed more stable and reliable
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structural information than CycleGAN. e, Mitochondria segmentation using SAM for reconstruction results of
ISOVEM, CycleGAN and bicubic methods. Mitochondrial segmentation was performed using the instance
segmentation method in the SAM.

To further evaluate the reliability of the model predictions on the CREMI dataset without the
ground truth, artifact analysis was performed based on model uncertainty®. The training data were
augmented based on 8 orthogonal rotations during model inference, so the model uncertainty
could be measured by the standard deviation of those 8 predictions, and an uncertainty map of this
deviation was generated to represent the reliability of each voxel position during model prediction.
This is a disguised statistical verification method for the reality constraint when there is no truth
value to compare. We compared the uncertainty maps of IsoVEM and CycleGAN on the CREMI
dataset along each orthogonal axis (Fig. 3c) and found that CycleGAN had significantly more
artifacts than IsoVEM, although they had similar structural textures. To verify the correlation
between the uncertainty map and the error map, we evaluated the EPFL dataset with the ground
truth (Extended Data Fig. 4). Both the uncertainty maps and error maps had the same distribution
for bright regions, which appeared at membrane boundaries and complex structures. It should be
noted that the defective area was removed by the network, so it was not reflected in the uncertainty
map but still existed in the error map.

We attempted to segment the reconstruction result with the “segment anything model”
(SAM)®. Compared with the CycleGAN results (Extended Data Fig. 6¢c and d) or bicubic
interpolation (Extended Data Fig. 6e and f), the segmentation results for ISOVEM were obviously
better (Extended Data Fig. 6a and b). The boundaries of the vesicles (Extended Data Fig. 6a) and
membrane structures (Extended Data Fig. 6b) were clearly separated. For CycleGAN, due to the
presence of artifacts, the edge segmentation of vesicles is not accurate, and the double-layer
membrane is predicted to be a single-layer membrane. The mitochondrial segmentation of
IsoOVEM was also more accurate than that of the other methods, and the segmentation results for
CycleGAN or the bicubic method showed that some mitochondria were not recognized (yellow
arrow), while some areas that were not mitochondria were misidentified (red arrow) (Fig. 3e). This
is because ISOVEM can reconstruct 3D space information continuously, especially when axial
information is restored and staircase artifacts are removed. Therefore, the reconstruction of
ISOVEM facilitates downstream analysis of ultrastructures and the study of biological mechanisms.

2.4 Transferability of IsoVEM

For the isotropic reconstruction of VEM, there are two problems associated with the scale factor
and the model. First, different data have different anisotropy scale factors, which may be positive
integers or decimals. The other is how to ensure that the model trained on the data with anisotropy

a can be transferred to another dataset with anisotropy b(b # a). We solved the above two

problems through an arbitrary-scale upsampling module, which contains an anisotropic pixel
shuffling step followed by trilinear interpolation (see Section 2.1 for details). This allows the
IsOVEM to adapt to data with different anisotropic factors and make pretrained models transfer
directly among them. We performed model inference on an arbitrary scale using the model trained
on the 10x anisotropic CREMI dataset described in Section 2.3. For CycleGAN, to realize
arbitrary-scale reconstruction during inference without changing the model weights, we simply
changed the scale factor of the up- and downsampling module in the CycleGAN network.
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Compared with the CycleGAN and bicubic interpolation methods, 1ISOVEM obtained complete and
clearer ultrastructural information, and CycleGAN yielded obvious artifacts due to the mismatch
between the network weight and anisotropy factor. Additionally, bicubic interpolation structures
became blurred for large anisotropic factors (Fig. 4a). We also evaluate the EPFL dataset with
ground-truth data (Extended Data Fig. 7) by simulating anisotropic data of any scale factor with an
average pooling operation, as described in Section 2.1. Then, 5-nm isotropic data were
reconstructed using different methods. The PSNR, SSIM, etc., validation indicators of these
methods are shown in Supplementary Table 3. The IsoVEM obtained the best evaluation
indicators among all three methods and different anisotropic factors.

The plug-and-play arbitrary-scale upsampling enables IsoVEM to transfer between different
anisotropic data, including those collected using different electron microscopies, without the need
for training on different data each time. For example, data collected via FIB-SEM were simulated
as 8x anisotropic degradation along the z-axis, which could be recovered from the model trained
on CREMI data collected via ssTEM with an anisotropy factor of 10 and vice versa (Fig. 4b and
Supplementary Table 4). The performance of model fine-tuning across datasets was comparable to
that of direct training and inference in the target domain data, which shows that the model has
good transfer robustness (Fig. 4b and Supplementary Table 4). In this way, once the pretrained
model is available, it can take less time to achieve good reconstruction through transfer learning in
practical applications. (Fig. 4 b).
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Fig. 4 | Model inference with different anisotropic factors and transfer robustness. a, We directly applied the
ISOVEM trained on the 10x anisotropic CREMI dataset to simulate anisotropic EPFL data with arbitrary factors of
10x, 12x, 15x, 17.5x, and 20x. These factors covered odd numbers, integers, and decimals, ranging from 10x to
fairly high 20x anisotropy. Compared with CycleGAN or bicubic interpolation, IsSOVEM had clearer ultrastructural
details for any anisotropic scale factor. b, After training on certain anisotropic factors, the ISOVEM easily
performed network transfer learning between various anisotropic data. Here, when IsoVEM was trained using
CREMI data with 10X anisotropy, the EPFL sample could be inferred and restored very well. The SSIM, MS-
SSIM and PSNR for the transfer learning isotropic results were almost the same as those for the no transfer
learning reconstruction. For the network trained by EPFL data with simulated 8x anisotropy, IsOVEM could also
obtain CREMI structure details that were almost the same as those obtained without transfer learning. For both
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cases, the indicators or ultrastructure details for transfer learning after hyperparameter tuning were only slightly

improved compared with the results without tuning. All scale bars are 500 nm.

2.5 IsoVEM+: section inpainting and isotropic volume reconstruction

simultaneously

At the sample preparation stage, artificial defects such as sample contamination, section wrinkles,
broken sections, etc., are inevitable. For example, sections after diamond knife cutting may not be
collected on tape, which results in missing sections during imaging. The occurrence of these
phenomena brings further difficulties and challenges to 3D reconstruction of anisotropic VEM data.
To solve these problems, we further developed the inpainting function for lost frames and
defective frames, which is named IsoVEM+ and can achieve isotropic reconstruction and section
inpainting simultaneously for defective data with missing sections, contamination, blurring,
creases and so on.

In the first step, we used self-supervised training data {B;, 4;} consistent with those in Section
2.1 but randomly replaced some input frames as blank frames {B,} while keeping supervision

{A;}unchanged. Then, ISoVEM training was performed as described in Section 2.1. This process

involves simultaneous z-axis information estimation and x-y plane temporal inpainting for
interframe filling. The second step removes defective sections by model inference. The defective

area or lost frames of the input data are replaced with zero to generate {C_J} or {D,}, which
represent the validation and testing sets, respectively, and a video clip is formed along the z-axis.
The model performs inpainting only when the scale factor s is set to 1 and generates {CJ’} or{D;},

where contents are filled at blank defective frames based on contextual information. Then, the
defective frames of the original data are replaced with the corresponding predictions of the model
to generate a complete volume, which is used as input for isotropic reconstruction inference in the
next step. The third step is basically the same as in Section 2.1 to perform isotropic reconstruction

and obtain {C;} or {D,.}. The defect removal data form a video clip along the z-axis, and the model

performs isotropic resolution recovery only with a scale factor set to the anisotropy ratio.

We validated the performance of IsoVEM+ for single-defective section recovery and
isotropic reconstruction on the EPFL dataset, which contains ground-truth data. The original data
were simulated to be degraded by 8x anisotropy, after which twelve frames of the anisotropic
volume were randomly selected and replaced with a blank along the z-axis. We trained IsoVEM+
and performed single-defective section recovery and isotropic reconstruction. Surprisingly, the
frames that were lost in the simulation were recovered very well and had almost identical
ultrastructures and information distributions to those of the corresponding frames in the ground
truth (Fig. 5b and Extended Data Fig. 8). Through contextual feature training, the missing frame
information is estimated accurately. The SSIM was greater than or near 0.6, and the PSNR was
approximately 25 between the recovery frame and the ground truth for all the lost frames
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(Supplementary Table 5). This is another embodiment of the ability of ISOVEM to continuously
recover spatial information. For isotropic recovery, we compared the results between the results
with frame loss and without loss in Section 2.2, which involved degradation but without frame
removal. We found that both the ultrastructure and the validation indices obtained with the ground
truth were similar, while the SSIM and PSNR were slightly lower than those obtained without
frame loss (Fig. 5¢ and Supplementary Table 5).

Fig. 5: IsoVEM+ for slice inpainting and isotropic reconstruction simultaneously.

< . Scale Factor=S |

Isotropic inference by IsoVEM

[+

Reconstruction with section lost

Reconstruction without section lost

Fig. 5| IsoVEM+ for simultaneous section inpainting and isotropic reconstruction. a, Pipeline for ISOVEM+
to jointly perform single-section inpainting and isotropic reconstruction on the condition of anisotropic data with

defective sections. /L- ) ﬁi ) CA}-, and ﬁk have the same meanings as in Fig. 1b. Ei is the result of replacing the

random portion of frames in ﬁi with a blank, and fj, ﬁk are the validation set and a test set with frames missing.
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Cj',DJ{: are the inpainting results of the validation set and a test set with frames missing, respectively. In the
training stage, the model is trained jointly for single-frame inpainting and isotropic reconstruction, changing the

input data from éi to E , as described in Section 2.1. In the inference process, the model first performs section
inpainting and generates (fj, ﬁk along the z-axis with an anisotropic scale factor of 1 and then performs isotropic

reconstruction Cj' ,D,’i along the x/y axis based on (fj, 51\:- b, Verifying the model's inpainting performance for lost

frames on the EPFL dataset. The 11% section of the EPFL data with 8 X anisotropy simulation is removed, filled
with zero, and then inpainted using IsoOVEM+. The top image is the 11" section inpainted with IsOVEM+, while
the bottom image is the ground truth. ¢, 3D reconstruction of ISOVEM+ with section lost (top) and IsoVEM
without section lost (bottom). Both have similar ultrastructural details.

3. Discussion

The isotropic reconstruction method IsoVEM utilizes the 3D space continuity capability of video
transformers to achieve outstanding reconstruction results and is suitable for the recovery of VEM
data with any positive integer or decimal anisotropic factor. It can be applied to FIB-SEM, ssTEM,
ssSEM and other different modal data and can be transferred from one to another, even in the case
of different anisotropic factors. In addition, the model can handle the case of defective sections,
which improves the robustness against disturbances from real imaging conditions such as
contamination, missing sections, broken sections, and wrinkles. It provides reliable high-
resolution isotropic data for downstream segmentation and ultrastructure analysis, such as neurons,
mitochondria, etc.

ISOVEM can be further optimized and improved. First, the z-axis section degradation is
approximated as average pooling in 3D, which can be replaced by other operations, such as frame
extraction, or even by a deep learning network to simulate the degradation process. Second,
ISOVEM achieves section inpainting while isotropic reconstruction. This attachable 2D section
recovery function can be further expanded into section denoising or deblurring, simply by
changing the input data during training accordingly. Third, in custom experiments, many
intermediate steps of the IsoVEM, including the multiscale hierarchy, attention module, plug-and-
play upsampling operator and loss functions, can be modified to achieve the best performance in
their own experiments.

We verified that the pretrained IsoVEM model on a single dataset yields good transfer
performance on other modal data. This indicates that ISoOVEM pretrained on large-scale VEM data
may become a universal VEM reconstruction model without the need for retraining. More tests for
various datasets will be performed in future studies.

In addition, the image inpainting function in IsoVEM+ will, in turn, improve image
registration accuracy. After reregistration, the images are then inpainted and isotropically
reconstructed with IsoVEM+, which further improves the resolution of the results. Therefore,
repeated iterations of IsoVEM+ and image registration will further improve the image quality of
VEM reconstruction and bring many potential conveniences to the ultrastructure study of large-
scale biological samples.
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4. Method

Image dataset preparation and preprocessing

The image datasets used in this work were prepared and preprocessed several times prior to
analysis.

Image dataset acquisition

The image volumes were obtained from two sources:

(1) EPFL dataset: An isotropic FIB-SEM dataset®® of neural tissue from the hippocampal CA1
region was downloaded from the EPFL website (https://www.epfl.ch/labs/cvlab/data/data-em/).
The original isotropic dataset represents a 5x5x5 um?® volume at 5x5x5 nm/voxel resolution. This
image was downsampled by 4x and 8x along the z-axis to generate simulated anisotropic datasets
for validating isotropic reconstruction methods and comparative analysis.

(2) CREMI dataset: Serial section TEM images of neural tissue were obtained from the CREMI
repository. The datasets contain 193 sections at 4 < 4 x 40 nm/voxel resolution (Dataset A)
(padded version, https://cremi.org/data/).

Image registration

The "Register Virtual Stack Slices" plugin in ImageJ was utilized to align the serial tissue sections
along the z-axis. This plugin aligns adjacent image sections using an automated feature matching
algorithm based on the scale invariant feature transform (SIFT)®%2, For feature extraction, the
“rigidly translated and rotated” model was used. For registration, the alignment models we used
were “rigid - translate and rotate” and “moving least squares - maximal warping”. The optimal
model was selected based on evaluation of the aligned image stack quality. When needed, elastic
transforms were applied to refine the section alignment further. This plugin incrementally registers
each section to the previous section to generate the aligned 3D image volume by extracting
features between sections and finding optimal transforms to match them.

Image cropping

The aligned image stacks were cropped down to specific regions of interest containing relevant
ultrastructural tissue details. Cropping served two purposes: 1) focusing the analysis on relevant
tissue areas and 2) removing large black areas introduced by rotation during image alignment.
Cropping helped reduce file sizes and excluded unnecessary background regions from further
analysis.

Image enhancement

To enhance image contrast and standardize brightness across the image set, contrast limited
adaptive histogram equalization (CLAHE) was applied®. This technique improves local contrast
within small regions while limiting noise amplification. The CLAHE parameters were optimized
to avoid overenhancement artifacts.

Dataset preparation

The image datasets were extracted and preprocessed into three subsets: training, validation, and
test sets. This enables model training, hyperparameter tuning, and unbiased evaluation.

The training dataset comprises the majority of images used to fit the model parameters. The
full training datasets contain several blocks of anisotropic volumetric data (separation based on the
spatial location of the defect sections). During training, random subvolumes of a fixed size (e.qg.,
16x128x128, 32x128x128) are sampled across these various blocks to form the training inputs for
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each batch. This allows the model to train on diverse samples from a broader data distribution. To
augment the training data, 8 orthogonal 3D rotations were applied.

A smaller portion of the stacks was clipped from the original complete blocks of anisotropic
volumes for model validation. The validation subblocks are disjointed during the training process.
The reconstruction of the validation data is completed at the best checkpoint for optimal isotropic
quality. The validation subvolumes undergo identical preprocessing as the training data without
augmentation.

The test dataset comprises one complete block of anisotropic EM volumes. Since training and
inference occur on different dimensions, the same volumes used during training can also serve as
test data. Using the same volumes enables direct evaluation of how well the model can
superresolve in the z-dimension based on x-y training. The test volume also underwent standard
preprocessing, similar to training data preparation, to eliminate reconstruction artifacts as much as
possible.

Network and hyperparameter design

For the model architecture, we set the number of stages of the multiscale transformer to 8: the
1st~4th stage, the 4th~7th stage, and the 8th stage for downsampling, upsampling and feature
fusion, respectively. In the first 7 stages, each stage contains 4 (N=4) transformer blocks (TBs), in
which 3 TBs contain both MMA and MSA followed by 1 TB containing only MSA. The 8th stage
included 12TBs containing only MSAs. The channel sizes for the first 7 stages and the 8th stage
are 40 and 60, respectively. For the attention module in the TB, we set the number of attention
heads to 4 for both the MSA and MMA.. The attention sizes are set as (2,2,16) and (2,2,20) for the
EPFL and CREMI datasets, respectively. The larger the attention size is, the larger the model size.
The model parameters of these two datasets are 1.4 M and 1.4 M, respectively.

In the model training stage, we set the training subvolume sizes to (16,16,128) and
(16,16,160) for the EPFL and CREMI data, respectively. The batch sizes are all set to (2,2,1). We
augment the input data by random cropping and 8 orthogonal 3D rotations. The loss function

(Equation 3) we use is the weighted sum of L, (Equation 1) and the SSIM loss (Equation 2). The

optimizer uses Adam®with Bl = 0.9 and B2 = 0.999. The learning rate is set to le™> and an
attenuation strategy is not used. It takes approximately 80k~150k iterations to reach convergence.

Ly = IISF = IR]ly gy
Lssim = "SSi'mUSR) - SSimUHR)lll 2

Leotar = Ly + algsim (3)
where I"R is a high-resolution image and I°R is a superresolution reconstructed image. The weight
parameter « is set to 1 in all our experiments.

In the model inference stage, we generate the testing subvolumes by cropping the large
volume with overlap (8,8,8) in 3D, the size of which is consistent with the training volume. Model
inference on those subvolumes in an augmentation manner by 8 orthogonal 3D rotations. The
generated isotropic subvolumes are then stitched in 3D to obtain the whole volume according to
the cropping coordinates. Linear fusion is adopted for the overlapping area during stitching.
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The code was implemented in Python 3.8 and PyTorch 1.8.1. Model training and testing were
conducted on a single RTX 3090 NVIDIA GPU card for all the experiments. Depending on the
size of the VEM dataset, it took approximately 0.8~1.2 days to train the model and several hours
for model inference.

Evaluation metric

We used four quality assessment metrics to evaluate the isotropic reconstruction performance on
the EPFL-simulated degraded data:

(1) SSIM, Structural Similarity Index Measure

The SSIM score®® can reflect the perception of the human visual system on local structural
changes in images. The computation is based on three factors: luminance (I), contrast (c) and
structure (s). The overall index is their multiplicative combination.

SSIM(x, y) = [1(e, M1*[cCe WP [sCe T (4

2ty + Gy 20,0, + (;

xy) = 2l 2 s(x,y) =

l(xr ) = —Jc( 2
Y uE +us + G

0,0y + (3 )
where a =B =y =1and Cs=C2/2. ui, py, 0y, 0,, and a,,, are the local means, standard deviations,

and cross-covariance for images x and y, respectively. The SSIM values range between 0 and 1;

the closer the value is to 1, the better the performance.

(2) MS-SSIM, Multiscale Structural Similarity Index Measure

MS-SSIM®® extends the SSIM measurement to multiple scales, where the image at scale M is half
the image at scale M-1. Through such adaptation, the MS-SSIM is more robust than the SSIM for
various image resolutions.

M
MSSSIM(x,y) = [Ly (x,y)]™M l_[ [C](x,y)]ﬁj [SJ(X»Y)]V}
J=1
(6)

ds = ﬁs =V¥Ys = 0.1333.

(3) PSNR, peak signal-to-noise ratio

The PSNR is the ratio between the maximum possible signal power of an image and the power of
corrupting noise that affects the image quality. In the actual calculation, we estimate the PSNR of
an image by comparing it to an ideal clean image with the maximum possible power. A high
PSNR indicates good image quality.

PSNR=10-1 ((L_l)z) 20-1 (L_l)
= - lo —_— = - lo —_—
S0\ "MSE So\sE) )
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MSE = — Z I x(i, ) — y(i, ) 112
' 8)

where L is the number of maximum possible intensity levels in an image. x and y are two images
to be compared with the same height n and width m.

(4) LPIPS, learned perceptual image patch similarity

LPIPS® calculates the perceptual similarity between two images and matches human perception
well. LPIPS first generates activations of two 2D images by means of a pretrained network (such
as VGGNet, which is pretrained on ImageNet), and then calculates the feature differences on
different layers and spatial dimensions. Since the VEM data are 3D, we calculate the LPIPS of
each frame and average it along a certain axis. A low LPIPS indicates that the image patches are
perceptively similar.

1 . . 2
d(x,y) = Z WZ lw, © (xfilw - J’nw)"Z
l L I!h,w (9)

where ¥ and § denote the activation of two image patches. I represents the layer of the network,

and A and W represent the height and width of the image, respectively.

(5) FSC, Fourier shell cross-correlation
FSC® is a function of spatial frequency and was first introduced by Harauz and van Heel. The
method calculates the normalized cross-correlation coefficient between two 3D volumes on

corresponding shells with radius , in Fourier space. We calculated the FSC between the ISOVEM

reconstructed volume and the corresponding ground-truth volume. The signal-to-noise ratio of
VEM data is much better than that of cryoEM data. Therefore, we use the FSC-0.5 standard, which
is more suitable for situations where the signal is much more significant than the noise .

Zrer,— Fy (1)F; (1)

FSC(r;) =
JZTETI- F12 (r)'Zreri Fzz ()

(10)

where F;(r) and F,(r) are the Fourier transforms of the IsoVEM reconstructed volume and

ground-truth volume, respectively, at radius r in Fourier space; F; (r) is the conjugator of F, ().

Evaluation of the Restored VEM Volumes Postprocessing
Reconstruction was performed on the complete datasets using the checkpoints with the best
validation performance. A comprehensive evaluation was performed on the restored VEM volumes.
The restored output was imported into MIB for segmentation. The GraghCut-based semiautomatic
segmentation pipeline and deep learning-based automatic segmentation pipeline were used in the
MIB to delineate critical ultrastructural boundaries®® ™.

For the downsampled EPFL dataset, the neurons randomly selected from the ground truth
were segmented by labeling the foreground and background features using the GraphCut tool. We
used the same predefined features to segment the corresponding neurons in the restored datasets.
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The segmentation results of these volumes restored by various methods and ground truths were
imported into Imaris for surface rendering. We compared the number of disconnected components
and overlapping volume/voxels of the surface to assess the pixel similarity and topological
relationship similarity between the reconstructed data and the original data. The F1 score was
calculated as the harmonic mean of the precision and recall scores of a model. It is defined as
follows:

2 X precision X recall

F1 — score = —
precision + recall (11)

where precision is the number of true positive results divided by the number of all positive results,
including those not identified correctly, and recall is the number of true positive results divided by
the number of all samples that should have been identified as positive.
For the CREMI dataset, we used the segment anything model SAM (https://segment-
anything.com/) to assess the topological structural relationships of the datasets via segmentation of
membranes, vesicles, mitochondria, etc.
Statistical analysis
Surface-rendered Imaris models were used to characterize neurons and organelle morphologies in
3D. We used Excel to integrate and analyze the preliminary statistical data and GraphPad Prism
9.5 to complete the plotting and significance testing analyses.

Data availability

1. The EPFL dataset was downloaded from the EPFL website
(https://www.epfl.ch/labs/cvlab/data/data-em/).
2. The CRIMI dataset was obtained from the CREMI repository (https://cremi.org/data/).

Code availability

The source codes of IsOVEM are available at https://github.com/cbmi-group/IsoVEM.
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