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Abstract 

 Volume electron microscopy (vEM) has become a rapidly developing technique for studying the 

3D architecture of biological specimens, such as cells, tissues, and organs at nanometer resolution; 

this technique involves collecting a series of electron micrographs of axial sequential sections and 

reconstructing the 3D volume, providing useful information on the cellular ultrastructural 

spectrum. This technique currently suffers from anisotropic resolution between the lateral (x, y) 

and axial (z) directions and the loss/damage of sections. Here, we develop a new algorithm, 

IsoVEM, based on a video transformer model to boost the axial resolution and achieve isotropic 

reconstruction of vEM. By learning high-resolution axial structures and utilizing the 3D continuity 

of biological structures, IsoVEM can recover axial information and repair random lost/damaged 

sections based on a self-supervision strategy, achieving a higher resolution than existing methods, 

which has been validated for both simulated FIB-SEM datasets and experimental ssTEM datasets. 

In addition to visual validation, the segmentation efficiency and statistical precision of various 

ultrastructures, e.g., neurons, mitochondria, vesicles, and membrane bilayers, also prove the better 

performance of IsoVEM. Therefore, using IsoVEM, we achieve isotropic reconstruction via 

anisotropic axial sampling, which increases the vEM throughput for studying large-scale 

biological architectures. 

 

1. Introduction 

In recent years, with the continuous development and optimization of electron microscope 

imaging technology, big data storage, image processing technology and computer hardware 

technology, volume electron microscopy (vEM) has developed rapidly. vEM allows direct 
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depiction of the 3D ultrastructures of organisms, cells1-4 and tissues5,6 and has been widely used in 

connectomic studies of neurons7-10. The physical scale studied by vEM is also increasing, from the 

nanoscale to tens of microns and even hundreds of microns 9,11. Thus, the rapid development of 

vEM has promoted its wide application in the life sciences 12,13, medicine 14-16 and clinical 

diagnosis 17-20, and vEM has become one of the most important and state-of-the-art technologies in 

the above fields. For these reasons, vEM was named one of Nature's top 7 technologies to watch 

in 2023. 

Even with the most advanced technology, there are still difficulties or flaws that need to be 

overcome for vEM. The different imaging methods used for vEM include volume transmission 

electron microscopy (TEM) and volume scanning electron microscopy (SEM)9. The volume TEM 

technique includes serial section electron tomography (ssET) and ssTEM. Volume SEM 

techniques include serial block surface scanning electron microscopy (SBF-SEM)11, serial 

ultrathin section scanning electron microscopy (ssSEM) and focused ion beam scanning electron 

microscopy (FIB-SEM)11. ATUM-SEM 21,22 and AutoCUTs-SEM 23, which can automatically tape-

collect serial sections, are ssSEM methods. 

For vEM, the z-axis direction of the reconstructed volumes of ssTEM and ssSEM 11 can 

contain only the integrated information of the thickness of each section, so the section thickness 

determines the axial voxel size. Usually, the section thickness is approximately tens of nanometers, 

which is several times or even tens of times the lateral plane thickness; this results in the 

anisotropy of the information between the lateral and axial directions. Similarly, the axial 

resolution of SBF-SEM depends on the thickness of the sample sequentially cut by the diamond 

knife and the depth that the electron beam penetrates. FEI designed the volume scope with 

automatic deconvolution and multienergy imaging methods to enhance the axial resolution of 

SBF-SEM further. However, at present, the isotropic resolution achieved by the volume scope is 

dozens of nanometers. Therefore, ssTEM, ssSEM and SBF-SEM are anisotropic vEM techniques 

for which the target is ten nanometers or more common. ssET and FIB-SEM can achieve isotropic 

vEM reconstruction. However, because each section of ssET can be tilted within only a limited 

angular range, the reconstructed result is not complete in Fourier space because information is lost 

in the high-angle range; this phenomenon is known as the missing cone problem. At present, none 

of the methods can fill missing cones with complete accurate high-frequency information. In 

contrast, ssET can be applied to only small volumes ranging from hundreds of nanometers to 

several microns. FIB-SEM can be used to control the cutting thickness more precisely by 

controlling the ion beam current and accelerating voltage to realize isotropic 3D reconstruction. C. 

Shan Xu and Harald Hess developed enhanced FIB-SEM, which enables large-scale isotropic 

reconstruction, with cumulative collective volumes up to 106 microns in several months 24. 

However, the time cost is a major issue that must be considered when performing large-volume 

3D reconstruction. In addition, enhanced FIB-SEM is available at only a few institutions. 

Therefore, FIB-SEM is currently applicable mainly to isotropic reconstructions of small-volume 

samples. However, further development of these techniques is needed for efficient isotropic 

reconstructions at a large scale and high resolution. 

        Our research goal is to routinely obtain isotropic high-resolution information from large-

volume samples via the above vEM technique. Due to the limitations of the above techniques, 

large-scale and high-resolution isotropic reconstructions cannot be widely realized. Previously, 

interpolation was usually applied to reconstruction results to reduce the anisotropy effect caused 
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by the loss of axial information. However, the errors and artifacts caused by interpolation are 

obvious, especially in the case of anisotropic reconstruction with high-anisotropy factors, such as 

8× and 10×. 

In recent years, various types of deep learning algorithms have continuously emerged and 

promoted the development of artificial intelligence. Subsequently, its application in vEM has 

gradually increased. Heinrich first introduced the concept of deep learning to vEM in an attempt to 

solve the anisotropic reconstruction problem 25, demonstrating the feasibility of 3D-FSRCNN and 

3D-SRUNet for performing isotropic reconstruction via supervised learning, and the results are 

superior to those of bicubic interpolation. However, this was a supervised 3D reconstruction 

method that was carried out only when ground-truth data were available. However, isotropic 

ground-truth volumes cannot be obtained via ssSEM/ssTEM/SBF-SEM in vEM studies, which 

limits the application of such supervised deep learning methods in vEMs. Self-supervised deep 

learning methods without the need for ground truth are more suitable for isotropic reconstruction 

of vEMs, including those of Kausumi Hagita et al.26, Xue Yang Fu et al.27, and Hyoungjun Park et 

al.28 et al. These methods are all based on generating adversarial networks (GANs), using high-

resolution two-dimensional images in the lateral direction as unpaired self-supervised signals and 

guiding the model to restore axial low-resolution images by domain transferring. Specifically, 

Kausumi Hagita et al.26 first used the SRGAN29 to restore simulated anisotropic FIB-SEM 

volumes, and Hyoungjun Park et al.28 applied similar methods to fluorescence 3D imaging. Xue 

Yang Fu et al.27 adopted a better CycleGAN30 to deal with the blind degradation of vEM and 

performed isotropic reconstruction on real ssTEM data with a 10× anisotropy factor. However, 

these GANs still adopt a 2D network architecture, which has shortcomings in modeling the 

intersection continuity of 3D volumes. And moreover, due to the high difficulty and instability of 

training, the final reconstruction results may contain many artifacts, such as texture artifacts or 

structural deformations. Several studies have also used video models to recover axial information; 

for example, Zejin Wang et al. 31 designed a video frame interpolation model with a self-attention 

mechanism that completes the intermediate section between two sections but achieves only 2× 

axial information recovery. 

More recently, diffusion model-based vEM isotropic reconstruction methods, such as 

DiffuseIR32, EMDiffuse33 and DiffusionEM34 , have emerged. Overall, the diffusion model has 

better high-frequency information recovery ability and training stability than does the GAN. 

Among these methods, DiffuseIR and DiffusionEM are used in combination with the zero-shot 

restoration paradigm; in addition, the diffusion model is trained using lateral sections, after which 

the anisotropic axial sections are restored during sampling. In contrast, EMDiffuse uses a diffusion 

model to implement a toolbox for electron microscopy restoration, which includes superresolution, 

denoising, and isotropic reconstruction. However, these diffusion model methods still use a 2D 

model architecture, only partially compensating for the lack of spatial continuity through 

positional encoding. Moreover, sampling and training of diffusion models are time-consuming, 

which becomes a bottleneck in practical applications. Therefore, it is necessary to design new deep 

learning models for isotropic reconstruction. 

Other factors affecting the effectiveness of vEM reconstruction include artifacts such as 

section damage, creases, contamination and other human defects, which are inevitable during 

sample preparation. This not only affects preprocessing operations, such as stitching and 

alignment between images, but also reduces the overall spatial resolution of the subsequent 
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reconstruction results. For samples with many defects, samples can be reprepared only to obtain 

high-quality images, which slows the speed and efficiency of vEM research. In recent years, 

image inpainting methods 35-39 involving deep learning have been developed rapidly in image 

editing and photo restoration, compensating for the disadvantage that the information repaired by 

traditional methods does not match the original semantics. Moreover, these technologies have 

also been gradually developed and applied in medical image repair40, such as inpainting for MRI 

spectroscopy images,. Commonly used inpainting networks include convolutional neural networks 

based on context encoders41, fully convolutional neural networks based on global and local 

context discriminators42, vanilla GAN networks based on generating images with random noise43, 

U-Net networks based on pyramid context encoders44, transformer networks45 and other related 

methods46-49. To our knowledge, the application of inpainting in vEM is still very rare. By using 

the continuity prior of the ultrastructure between continuous sections or continuous block face 

images and combining this information with the long-term attention mechanism of the transformer 

model, we believe that the transformer network can be extended to the inpainting of vEM images 

with defects such as missing sections, damage, and wrinkles. This approach will not only repair 

the above defects in vEM raw images but also save time and economic costs in sample preparation. 

In this work, we propose the IsoVEM deep learning model, which uses a video transformer to 

solve the isotropic reconstruction problem of vEM and handles image inpainting for defects in the 

xy plane simultaneously. IsoVEM restores axial information by learning the high-resolution lateral 

information of anisotropic volumes in a self-supervised manner. By adopting a video transformer 

architecture that includes self-attention and a mutual attention mechanism, the spatial continuity of 

3D structures can be effectively learned, avoiding the discontinuous layered artifacts in 3D 

reconstruction volumes that typically appear in 2D models. Moreover, for data with section 

deficiency or even sections lost during data collection, IsoVEM can be extended to IsoVEM+ by 

performing section image inpainting and isotropic reconstruction simultaneously. For example, 

IsoVEM+ can achieve reliable section inpainting based on interframe continuity and a video 

transformer model. In addition, IsoVEM can achieve arbitrary-scale isotropic reconstruction 

during the inference stage, which enables IsoVEM to be easily transferred to other vEM data with 

different anisotropic factors, even for fractional factors. The pretrained IsoVEM has good transfer 

robustness, indicating its potential as a universal pretrained isotropic reconstruction model for 

vEMs. On both simulated anisotropic FIB-SEM and real anisotropic ssTEM data, IsoVEM 

significantly improved the morphological restoration of organelle ultrastructures of different types 

and scales, such as neurons, mitochondria, vesicles and bilayers. Based on multiple qualitative 

indicators, including reconstruction accuracy, artifact restriction, training stability and speed, 

IsoVEM is far superior to interpolation, better than existing self-supervised methods, and close to 

existing supervised methods. This approach further facilitates downstream analysis related to 

connectomics or structures, including 3D segmentation and statistical analysis. 

 

2. Results 

For the isotropic reconstruction problem of vEM, we designed a video transformer-based self-

supervised deep learning model named IsoVEM (Section 2.1), which shows superior isotropic 

performance compared with traditional interpolation algorithms and other self-supervised 

algorithms both for simulated anisotropic FIB-SEM data (Section 2.2) and real anisotropic ssTEM 
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data (Section 2.3). The Fourier shell correlation (FSC) criterion is used to determine the accurate 

resolution of the reconstructed volume via the IsoVEM. Experiments on simulated anisotropic 

data demonstrate that for 40 nm section thicknesses and 5 nm lateral spatial sampling, axial 

information above 18 nm can be accurately recovered. Segmenting organelles such as neurons and 

mitochondria and the corresponding statistical analysis further demonstrated the accuracy and 

reliability of IsoVEM. Moreover, IsoVEM can achieve isotropic reconstruction with any 

anisotropic factor and has good transfer robustness for various vEM data, such as different tissues 

and organs collected by FIB-SEM, ssTEM or ssSEM (Section 2.4). IsoVEM can be extended to 

IsoVEM+ when facing common section deficiency, such as when performing section inpainting 

for missing sections or contaminated or broken areas while isotropic reconstruction occurs 

(Section 2.5). To the best of our knowledge, IsoVEM is the first method for realizing isotropic 

reconstruction and inpainting simultaneously. 

 

2.1 Algorithm design and network architecture 

Since the isotropic ground truth of the vEM cannot be obtained, we adopt a self-supervised 

learning strategy for calculating the anisotropic volume. For dataset preparation, we crop the 

anisotropic volume into subvolumes of a specific size to generate training/validation/test datasets 

(Fig. 1a). The training set usually accounts for 60%~80%, the validation set is the remaining area 

that does not overlap with the training set, and the test set can include any other data that are 

different from those in the training set. To utilize lateral high-resolution information for self-

supervision, we perform anisotropic degradation on subvolumes in the training set along the X/Y 

axis to construct paired training data. The degradation process is performed by an anisotropic 

average pooling operator (Fig. 1a), which is suitable for using multiple modalities of vEM 

(Supplementary Note 1) and was used in previous work25. During training, the paired subvolumes 

are augmented with eight types of orthogonal rotation and regarded as video clips along the z-axis 

(Fig. 1b). After feeding them into IsoVEM, the subvolumes are superresolved along the simulated 

degradation axis (X/Y), and the weighted sum of the L1 and SSIM differences is taken as the loss 

function (Fig. 1b). During inference, the input subvolumes are also augmented with eight types of 

orthogonal rotations and then regarded as video clips along the X/Y axis (Fig. 1b). After model 

inference, 8 superresolved rotation augmentation results are average ensembled to generate the 

final reconstruction. Finally, the reconstructed subvolumes in the test dataset are stitched 

according to the cropping coordinates to obtain the whole isotropic reconstructed volume. The 

network architecture of IsoVEM (Fig. 1c) is designed as a multiscale symmetrical stack of 

transformer blocks with an arbitrary-scale upsampling module. Specifically, given a subvolume or 

video clip, the process flow is as follows. First, feature extraction is performed by spatial 2D 

convolution for each frame in the video clip. Then, the feature maps are processed by multiple 

transformer stages, where the 1~7th stages perform multiscale symmetrical feature reconstruction 

in UNet50 shape and the 8th stage performs fine feature fusion at the original scale. The upsampling 

and downsampling operations are symmetrical in layout and operated before the feature maps 

enter a certain transformer stage; only the spatial size of each video frame is changed while 

keeping the temporal length unchanged. Each transformer stage contains a stack of transformer 

blocks to jointly extract features, perform motion alignment between frames, and fuse the 

interframe information. The number of transformer blocks in the 8th stage is usually more than 
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that in the 1st~7th stages (M>N). Finally, the feature maps are isotropically reconstructed along the 

simulated degradation axis (X/Y) to generate an isotropic subvolume. Global residual connections 

and skip connections are adopted to better reuse features and facilitate network learning. 

Inspired by a video restoration transformer (VRT) 51, the transformer block includes two types of 

attention modules, MSA (multihead self-attention) and MMA (multihead mutual attention), to 

perform feature extraction and motion alignment (Supplementary Note 2). Self-attention52 

(Extended Data Fig. 1a) uses self-similarity prior to images to make the feature more focused on 

important regions; this approach has been proven to be effective in various computer vision 

tasks.53 As shown in Extended Data Fig. 2, the self-attention map shows which areas of the input 

video clip are focused on, illustrating the long-distance dependency modeling ability across frames 

and the robustness to different structures. In contrast to self-attention, mutual attention (Extended 

Data Fig. 1b) emphasizes joint motion estimation and implicit feature alignment between two 

adjacent frames. The mutual attention map reflects the position correspondence between these two 

frames. Compared to explicit motion estimation and compensation methods such as optical 

flow54,55 and image warping, mutual attention has a simpler implementation, is more robust to 

large structural deformations between frames, avoids mismatch artifacts, and is more flexible for 

information warping in latent space. The multihead strategy52 is used for the above two attention 

mechanisms to enhance the semantic representation capabilities. Dividing and shifting attention 

windows (Supplementary Note 2) in the adjacent network layer to preserve long-distance 

dependency56 is necessary to reduce the computational cost of video processing, as shown in 

Extended Data Fig. 1c. 

After the multiscale transformer stages, the feature maps are isotropically resolved by a 

reconstruction module composed of an anisotropic pixel shuffling57and trilinear interpolation to 

realize arbitrary-scale upsampling. First, the pixel shuffling operation is anisotropic, enhancing the 

resolution along only a single spatial axis direction. Second, the following trilinear interpolation 

enables plug-and-play arbitrary-scale upsampling, even for fractional scale factors. It should be 

noted that an anisotropic pixel shuffle can upsample at any positive integer scale factor, as long as 

the number of channels increases linearly with the scale factor. However, the scale factor during 

model inference must be consistent with that during the training phase. By following trilinear 

interpolation after an anisotropic pixel shuffle, the model can infer a scale factor that is 

inconsistent with the training phase, facilitating the transfer of the pretrained model to other vEM 

data with different anisotropic scale factors, even for fractional numbers. In addition, trilinear 

interpolation is effective for backpropagation and is lightweight without increasing the number of 

parameters or computations. 

In summary, IsoVEM integrates feature extraction, motion alignment, and information fusion 

at multiple resolutions via multiscale video transformer stages and performs arbitrary-scale 

upsampling via the combination of anisotropic pixel shuffling and trilinear interpolation. 

Compared with existing isotropic reconstruction methods for vEMs, IsoVEM can trace structural 

movement between frames and maintain long-distance continuity, while 2D deep learning models 

cannot perform well. It also avoids the training instability and high-frequency artifacts that often 

occur in GAN-based models such as the SRGAN29 and CycleGAN30. It achieves excellent 

performance far beyond bicubic interpolation and close to supervised method25 (Fig. 2). 
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Fig. 1 | Algorithm design and process framework of IsoVEM. a, Generating subvolume sets for deep learning 

from raw anisotropic vEM volumes. The subvolumes are degraded along the X or Y axis to generate paired LR-HR 

data for self-supervised training using anisotropic average pooling as a degradation simulation method. Ai, Cj, and 

Dk represent the training set, validation set and test set, respectively; Bi represents the degradation volume along 

the X or Y axis. b, In the training and inference process, the model regards the input subvolume as a video clip 

along the Z-axis and X/Y-axis, respectively. The loss function is set as the weighted sum of the L1 and SSIM 

losses. Cj or Dk  are the input data that need to be inferred by the IsoVEM network.  is the output of the 

IsoVEM network, which is superresolved along the degradation axis.  or  is the inferred volume. c, The 

model architecture is designed as a multiscale video transformer and upsampling reconstruction module. The 1st to 

7th stages are constructed for multiscale feature extraction, and each scale has N transformer blocks containing 

MSA and MMA to perform implicit motion alignment. The 8th stage has M transformer blocks designed for feature 
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fusion. Arbitrary anisotropic restoration is achieved by trilinear interpolation after pixel shuffling inside the 

network. 

2.2 Isotropic reconstruction for the simulation dataset with ground-

truth data 

We downloaded isotropic data from mouse brain neurons collected by FIB-SEM from the EPFL 

website (https://www.epfl.ch/labs/cvlab/data/data-em/) and simulated 8×  anisotropy by 

averaging multiple frames every 8 sections. The sample contains not only subcellular structures, 

such as neurons and mitochondria, but also the ultrastructures of vesicles and cell boundaries at 

the nanometer level. This sample is typical for ultrastructure research using vEM technology, so 

we used these data to simulate serial section generation and test the effectiveness of the IsoVEM 

algorithm. 

Compared with the supervised method25 and CycleGAN27, we found that the IsoVEM yields 

the most isotropic information in both the image space and Fourier space (Fig. 2a). The power 

spectra of the x-z planes show that IsoVEM can restore Fourier space information within the same 

diameter as the supervised network, while both CycleGAN27 and bicubic interpolation present 

elliptical diffraction information in Fourier space (Fig. 2a). More intuitively, the reconstruction 

results of the x-z planes of the IsoVEM method showed the same details as those of the supervised 

method ((Fig. 2a), and the resulting is significantly better than the bicubic interpolated one (Fig. 

2a and Extended Data Movie 1). And more over, even the details were the same as those of the 

ground truth (Fig. 2a), such as the bilateral membranes (red box) and the mitochondrial cristae 

(blue box) (Fig. 2a). However, although the reconstruction of CycleGAN and bicubic interpolation 

also restore some axial information, the overall contrast is blurred, and structural details such as 

bilateral membranes cannot be presented. 

We further segmented and extracted mouse neurons and mitochondria and performed 

morphological comparative statistics to confirm the effectiveness of IsoVEM further (Fig. 2b, c 

and d). For the sake of generality, we segmented three different locations of neurons in the 

reconstruction results of each method. The neurons recovered by IsoVEM had no jagged edges, 

and the voxel coincidence was closest to the ground truth (Fig. 2b and d). In addition to supervised 

methods, the segmentation breakpoints of neurons in the IsoVEM reconstruction results were also 

the smallest among all the deep learning-based methods and interpolation methods (Fig. 2c and d). 

For neurons 2 and 3, the number of broken points was even less than that of the supervised method. 

We believe that this is because IsoVEM makes full use of the 3D spatial information of the data 

through the video transformer model, so the reconstructed results were more continuous both in 

the whole volume and in the local ultrastructure, such as synapses. Mitochondrial segmentation 

via IsoVEM reconstruction revealed easily recognizable and complete mitochondria. Compared 

with those of the CycleGAN or interpolation methods, the mitochondria in the IsoVEM 

reconstructed results had the highest colocalization volume with the isotropic ground truth 

according to FIB (33.76 μm3), which was almost the same as that of the supervision method 

(33.87 μm3), while the interpolation method had the smallest colocalization volume (33.19 μm3) 

(Extended Data Fig. 3). 

FSC has been widely used as the gold standard for reliable reconstruction resolution 

estimation via cryoEM. Here, we introduce FSC calculations into these EPFL data with ground 
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truth data. The FSC of the isotropic reconstruction result was calculated by comparing the Fourier 

shell cross-correlation with the ground-truth volume. Except for the supervised deep learning 

method, the FSC performance of IsoVEM is significantly better than that of the bicubic 

interpolation and CycleGAN methods (Fig. 2e). According to the FSC-0.5 criterion, IsoVEM 

could reach 18 nm isotropic resolution. These open EPFL data has 5 nm isotropic resolution, and 

we simulated the axial degradation with anisotropy 8, which means that the section thickness was 

simulated as 40 nm. The 18 nm recovery data imply that if people want to obtain a 20 nm axial 

resolution, slicing a sample with a 40 nm thickness will completely replace the 20 nm slicing 

strategy. This approach will save half the number of sections and further save at least 50% of the 

time during the entire process, such as sample preparation, 2D registration and 3D reconstruction. 

Moreover, electron microscopy and computer expenditure costs are reduced. 

We also calculated the IsoVEM performance with different anisotropy factors and quantified 

the restoration quality by the pixel-based quantitative indicators PSNR, the structural similarity 

indices SSIM and MS-SSIM, and the visual perception indicator LPIPS for both the whole 3D 

reconstruction volume and three orthogonal planes (XY, XZ, and YZ). With an anisotropy factor 

of 4 or 8, all the above metrics for the IsoVEM were better than those of the methods based on 

bicubic interpolation or the CycleGAN (Extended Data Fig. 5 and Supplementary Table 2). This 

finding is consistent with the fact that the ultrastructures of neurons (Fig. 2) and mitochondria 

(Extended Data Fig. 3) observed by IsoVEM were closest to the ground truth. The double-layer 

membrane structure on the cell boundary region recovered by IsoVEM was even more continuous 

than that recovered by the supervised method (Fig. 2a, red arrows). 

Taken together, the above findings demonstrate that IsoVEM can be used to recover 

ultrastructures with higher-resolution information in organelles and achieve reliable isotropic 

reconstruction results with higher FSC, lower reconstruction error and better visual perception 

(Fig. 2, Extended Data Figs. 3 and 4). 
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Fig. 2 | Comparison of isotropic reconstruction results of IsoVEM with existing methods on the EPFL 

dataset with the ground truth. a, The lines from top to bottom represent the ground truth, the reconstruction of 

IsoVEM, CycleGAN and bicubic interpolation, respectively. All methods are shown with an orthogonal view and 

full volume, while the power spectrum of the orthogonal x-z plane is presented. The local membrane structures and 

mitochondria from the full volume are highlighted with enlarged images and arrows (red arrows for membrane 

structures and blue arrows for mitochondria). b, Three neurons from the results of different reconstruction methods 

were segmented. Colocalization analysis between reconstructed neurons generated by different methods and 

ground-truth neurons was carried out. The values in the figure represent the volume of the colocalization in cubic 
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microns. Except for the supervised method, the neurons segmented from the IsoVEM reconstruction result had the 

largest colocalization volume with the ground truth. c, Analysis of neuronal connectivity. The values in the figure 

represent neuron connectivity. A larger value indicates more breakpoints and poorer connectivity. Among the 

neurons isolated from 4 different isotropic reconstruction results, those extracted via the interpolation method 

exhibited the worst neuronal connectivity. The neuron connectivity of our IsoVEM method was better than that of 

CycleGAN. It was even better than the supervised method for neurons 2 and 3. d, The volume of overlapping 

regions and the number of discontinuous breaks of neurons in Fig. 2b and c were statistically analyzed. As Fig. 2b 

and Fig. 2c show, the bicubic interpolation method has the most breakpoints, the IsoVEM method was superior to 

the CycleGAN method, and the number of breakpoints for neurons from the ground truth was the lowest. The 

colocalization overlap volume of neurons for the interpolation method was the smallest, while the colocalization 

volume for IsoVEM reached the same level as that for the supervised methods. e, FSC cross-correlation calculation 

between the volume of each isotropic reconstruction method and the ground-truth volume. With the FSC 0.5 

standard criterion and under the condition of a 5 nm imaging pixel in the x-y plane, IsoVEM recovered reliable 

axial information at 18 nm. Moreover, the FSC curve for IsoVEM (red curve) had a significantly greater 

correlation with the ground-truth structure, second to only the FSC curve of the supervised approach (green curve). 

2.3 Isotropic information recovery by IsoVEM for real data without 

ground truth 

To further demonstrate the effectiveness of IsoVEM and its applicability to other vEM modal data, 

we tested the public ssTEM dataset Cremifrom website (http://cremi.org/). CREMI provides 

publicly available raw ssTEM images of the Drosophila melanogaster brain for algorithmic 

development and evaluation of neural circuits. These CREMI data were collected via ssTEM with 

an anisotropy factor of 10, and no ground truth was available for comparison. Therefore, we 

directly compared our method with traditional bicubic interpolation methods and CycleGAN 

networks. The results show that for such high-anisotropy data, IsoVEM reconstruction had the 

best structural details (Fig. 3a and b). The CycleGAN network recovered some axial information 

but could not recover the details of membrane-like structures, such as double layers of membranes 

(Fig. 3b). The results of the bicubic interpolation method were undoubtedly the worst; the overall 

axial structure was fuzzy, and the structural details were smoothed out (Fig. 3b). In contrast, the 

whole volume generated by IsoVEM provided continuous and natural structural information in 3D 

due to the space continuity learning advantage of video transformers in IsoVEM, while the volume 

obtained by CycleGAN or bicubic interpolation had obvious layer artifacts in the z axial direction. 

The reason is that CycleGAN is a two-dimensional model, and frame-by-frame inference along 

the x(y) axis generates layered discontinuous artifacts on the yz(xz) planes, which are difficult to 

eliminate even in the presence of training data augmentation. In contrast, IsoVEM keeps each 

section as a continuous video frame and adopts self-attention and mutual attention mechanisms for 

interframe motion alignment, thus maintaining the spatial continuity of the reconstructed volume. 
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Fig. 3: Comparison of real ssTEM data CREMI with an anisotropy factor of 10. a, The IsoVEM is clearer, 

and the sample details are more natural, while bicubic interpolation produces blurred structures, while CycleGAN 

exhibits layered artifacts. b, Highlighted regions for the above three reconstruction methods in a. IsoVEM (red 

rectangle) shows more complete and clearer structures at the boundaries of the membranous structure and the 

structure of the internal ridges of the mitochondria than CycleGAN (yellow rectangle) and bicubic interpolation 

(blue rectangle). c, d, Uncertainty map comparison for IsoVEM and CycleGAN. The artifact signal of CycleGAN 

was significantly larger than that of IsoVEM in three orthogonal directions, which indicates that the predictions of 

8 kinds of rotation augmentation had larger standard deviations. IsoVEM reconstructed more stable and reliable 
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structural information than CycleGAN. e, Mitochondria segmentation using SAM for reconstruction results of 

IsoVEM, CycleGAN and bicubic methods. Mitochondrial segmentation was performed using the instance 

segmentation method in the SAM. 

To further evaluate the reliability of the model predictions on the CREMI dataset without the 

ground truth, artifact analysis was performed based on model uncertainty33. The training data were 

augmented based on 8 orthogonal rotations during model inference, so the model uncertainty 

could be measured by the standard deviation of those 8 predictions, and an uncertainty map of this 

deviation was generated to represent the reliability of each voxel position during model prediction. 

This is a disguised statistical verification method for the reality constraint when there is no truth 

value to compare. We compared the uncertainty maps of IsoVEM and CycleGAN on the CREMI 

dataset along each orthogonal axis (Fig. 3c) and found that CycleGAN had significantly more 

artifacts than IsoVEM, although they had similar structural textures. To verify the correlation 

between the uncertainty map and the error map, we evaluated the EPFL dataset with the ground 

truth (Extended Data Fig. 4). Both the uncertainty maps and error maps had the same distribution 

for bright regions, which appeared at membrane boundaries and complex structures. It should be 

noted that the defective area was removed by the network, so it was not reflected in the uncertainty 

map but still existed in the error map. 

We attempted to segment the reconstruction result with the “segment anything model” 

(SAM)58. Compared with the CycleGAN results (Extended Data Fig. 6c and d) or bicubic 

interpolation (Extended Data Fig. 6e and f), the segmentation results for IsoVEM were obviously 

better (Extended Data Fig. 6a and b). The boundaries of the vesicles (Extended Data Fig. 6a) and 

membrane structures (Extended Data Fig. 6b) were clearly separated. For CycleGAN, due to the 

presence of artifacts, the edge segmentation of vesicles is not accurate, and the double-layer 

membrane is predicted to be a single-layer membrane. The mitochondrial segmentation of 

IsoVEM was also more accurate than that of the other methods, and the segmentation results for 

CycleGAN or the bicubic method showed that some mitochondria were not recognized (yellow 

arrow), while some areas that were not mitochondria were misidentified (red arrow) (Fig. 3e). This 

is because IsoVEM can reconstruct 3D space information continuously, especially when axial 

information is restored and staircase artifacts are removed. Therefore, the reconstruction of 

IsoVEM facilitates downstream analysis of ultrastructures and the study of biological mechanisms. 

2.4 Transferability of IsoVEM 

For the isotropic reconstruction of vEM, there are two problems associated with the scale factor 

and the model. First, different data have different anisotropy scale factors, which may be positive 

integers or decimals. The other is how to ensure that the model trained on the data with anisotropy 

 can be transferred to another dataset with anisotropy . We solved the above two 

problems through an arbitrary-scale upsampling module, which contains an anisotropic pixel 

shuffling step followed by trilinear interpolation (see Section 2.1 for details). This allows the 

IsoVEM to adapt to data with different anisotropic factors and make pretrained models transfer 

directly among them. We performed model inference on an arbitrary scale using the model trained 

on the 10x anisotropic CREMI dataset described in Section 2.3. For CycleGAN, to realize 

arbitrary-scale reconstruction during inference without changing the model weights, we simply 

changed the scale factor of the up- and downsampling module in the CycleGAN network. 
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Compared with the CycleGAN and bicubic interpolation methods, IsoVEM obtained complete and 

clearer ultrastructural information, and CycleGAN yielded obvious artifacts due to the mismatch 

between the network weight and anisotropy factor. Additionally, bicubic interpolation structures 

became blurred for large anisotropic factors (Fig. 4a). We also evaluate the EPFL dataset with 

ground-truth data (Extended Data Fig. 7) by simulating anisotropic data of any scale factor with an 

average pooling operation, as described in Section 2.1. Then, 5-nm isotropic data were 

reconstructed using different methods. The PSNR, SSIM, etc., validation indicators of these 

methods are shown in Supplementary Table 3. The IsoVEM obtained the best evaluation 

indicators among all three methods and different anisotropic factors. 

The plug-and-play arbitrary-scale upsampling enables IsoVEM to transfer between different 

anisotropic data, including those collected using different electron microscopies, without the need 

for training on different data each time. For example, data collected via FIB-SEM were simulated 

as 8x anisotropic degradation along the z-axis, which could be recovered from the model trained 

on CREMI data collected via ssTEM with an anisotropy factor of 10 and vice versa (Fig. 4b and 

Supplementary Table 4). The performance of model fine-tuning across datasets was comparable to 

that of direct training and inference in the target domain data, which shows that the model  has 

good transfer robustness (Fig. 4b and Supplementary Table 4). In this way, once the pretrained 

model is available, it can take less time to achieve good reconstruction through transfer learning in 

practical applications. (Fig. 4 b). 
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Fig. 4 | Model inference with different anisotropic factors and transfer robustness. a, We directly applied the 

IsoVEM trained on the 10x anisotropic CREMI dataset to simulate anisotropic EPFL data with arbitrary factors of 

10x, 12x, 15x, 17.5x, and 20x. These factors covered odd numbers, integers, and decimals, ranging from 10x to 

fairly high 20x anisotropy. Compared with CycleGAN or bicubic interpolation, IsoVEM had clearer ultrastructural 

details for any anisotropic scale factor. b, After training on certain anisotropic factors, the IsoVEM easily 

performed network transfer learning between various anisotropic data. Here, when IsoVEM was trained using 

CREMI data with 10× anisotropy, the EPFL sample could be inferred and restored very well. The SSIM, MS-

SSIM and PSNR for the transfer learning isotropic results were almost the same as those for the no transfer 

learning reconstruction. For the network trained by EPFL data with simulated 8x anisotropy, IsoVEM could also 

obtain CREMI structure details that were almost the same as those obtained without transfer learning. For both 
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cases, the indicators or ultrastructure details for transfer learning after hyperparameter tuning were only slightly 

improved compared with the results without tuning. All scale bars are 500 nm. 

2.5 IsoVEM+: section inpainting and isotropic volume reconstruction 

simultaneously 

At the sample preparation stage, artificial defects such as sample contamination, section wrinkles, 

broken sections, etc., are inevitable. For example, sections after diamond knife cutting may not be 

collected on tape, which results in missing sections during imaging. The occurrence of these 

phenomena brings further difficulties and challenges to 3D reconstruction of anisotropic vEM data. 

To solve these problems, we further developed the inpainting function for lost frames and 

defective frames, which is named IsoVEM+ and can achieve isotropic reconstruction and section 

inpainting simultaneously for defective data with missing sections, contamination, blurring, 

creases and so on. 

In the first step, we used self-supervised training data  consistent with those in Section 

2.1 but randomly replaced some input frames as blank frames while keeping supervision 

unchanged. Then, IsoVEM training was performed as described in Section 2.1. This process 

involves simultaneous z-axis information estimation and x-y plane temporal inpainting for 

interframe filling. The second step removes defective sections by model inference. The defective 

area or lost frames of the input data are replaced with zero to generate  or , which 

represent the validation and testing sets, respectively, and a video clip is formed along the z-axis. 

The model performs inpainting only when the scale factor  is set to 1 and generates  or , 

where contents are filled at blank defective frames based on contextual information. Then, the 

defective frames of the original data are replaced with the corresponding predictions of the model 

to generate a complete volume, which is used as input for isotropic reconstruction inference in the 

next step. The third step is basically the same as in Section 2.1 to perform isotropic reconstruction 

and obtain  or . The defect removal data form a video clip along the z-axis, and the model 

performs isotropic resolution recovery only with a scale factor set to the anisotropy ratio. 

We validated the performance of IsoVEM+ for single-defective section recovery and 

isotropic reconstruction on the EPFL dataset, which contains ground-truth data. The original data 

were simulated to be degraded by 8x anisotropy, after which twelve frames of the anisotropic 

volume were randomly selected and replaced with a blank along the z-axis. We trained IsoVEM+ 

and performed single-defective section recovery and isotropic reconstruction. Surprisingly, the 

frames that were lost in the simulation were recovered very well and had almost identical 

ultrastructures and information distributions to those of the corresponding frames in the ground 

truth (Fig. 5b and Extended Data Fig. 8). Through contextual feature training, the missing frame 

information is estimated accurately. The SSIM was greater than or near 0.6, and the PSNR was 

approximately 25 between the recovery frame and the ground truth for all the lost frames 
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(Supplementary Table 5). This is another embodiment of the ability of IsoVEM to continuously 

recover spatial information. For isotropic recovery, we compared the results between the results 

with frame loss and without loss in Section 2.2, which involved degradation but without frame 

removal. We found that both the ultrastructure and the validation indices obtained with the ground 

truth were similar, while the SSIM and PSNR were slightly lower than those obtained without 

frame loss (Fig. 5c and Supplementary Table 5). 

 

Fig. 5 | IsoVEM+ for simultaneous section inpainting and isotropic reconstruction. a, Pipeline for IsoVEM+ 

to jointly perform single-section inpainting and isotropic reconstruction on the condition of anisotropic data with 

defective sections.  ,  , , and have the same meanings as in Fig. 1b.  is the result of replacing the 

random portion of frames in   with a blank, and  are the validation set and a test set with frames missing. 
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 are the inpainting results of the validation set and a test set with frames missing, respectively. In the 

training stage, the model is trained jointly for single-frame inpainting and isotropic reconstruction, changing the 

input data from  to , as described in Section 2.1. In the inference process, the model first performs section 

inpainting and generates  along the z-axis with an anisotropic scale factor of 1 and then performs isotropic 

reconstruction along the x/y axis based on . b, Verifying the model's inpainting performance for lost 

frames on the EPFL dataset. The 11th section of the EPFL data with 8× anisotropy simulation is removed, filled 

with zero, and then inpainted using IsoVEM+. The top image is the 11th section inpainted with IsoVEM+, while 

the bottom image is the ground truth. c, 3D reconstruction of IsoVEM+ with section lost (top) and IsoVEM 

without section lost (bottom). Both have similar ultrastructural details. 

 

3. Discussion 

The isotropic reconstruction method IsoVEM utilizes the 3D space continuity capability of video 

transformers to achieve outstanding reconstruction results and is suitable for the recovery of vEM 

data with any positive integer or decimal anisotropic factor. It can be applied to FIB-SEM, ssTEM, 

ssSEM and other different modal data and can be transferred from one to another, even in the case 

of different anisotropic factors. In addition, the model can handle the case of defective sections, 

which improves the robustness against disturbances from real imaging conditions such as 

contamination, missing sections, broken sections, and wrinkles. It provides reliable high-

resolution isotropic data for downstream segmentation and ultrastructure analysis, such as neurons, 

mitochondria, etc.  

IsoVEM can be further optimized and improved. First, the z-axis section degradation is 

approximated as average pooling in 3D, which can be replaced by other operations, such as frame 

extraction, or even by a deep learning network to simulate the degradation process. Second, 

IsoVEM achieves section inpainting while isotropic reconstruction. This attachable 2D section 

recovery function can be further expanded into section denoising or deblurring, simply by 

changing the input data during training accordingly. Third, in custom experiments, many 

intermediate steps of the IsoVEM, including the multiscale hierarchy, attention module, plug-and-

play upsampling operator and loss functions, can be modified to achieve the best performance in 

their own experiments. 

We verified that the pretrained IsoVEM model on a single dataset yields good transfer 

performance on other modal data. This indicates that IsoVEM pretrained on large-scale vEM data 

may become a universal vEM reconstruction model without the need for retraining. More tests for 

various datasets will be performed in future studies. 

In addition, the image inpainting function in IsoVEM+ will, in turn, improve image 

registration accuracy. After reregistration, the images are then inpainted and isotropically 

reconstructed with IsoVEM+, which further improves the resolution of the results. Therefore, 

repeated iterations of IsoVEM+ and image registration will further improve the image quality of 

vEM reconstruction and bring many potential conveniences to the ultrastructure study of large-

scale biological samples. 
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4. Method 

Image dataset preparation and preprocessing 

The image datasets used in this work were prepared and preprocessed several times prior to 

analysis. 

Image dataset acquisition 

The image volumes were obtained from two sources: 

(1) EPFL dataset: An isotropic FIB-SEM dataset59 of neural tissue from the hippocampal CA1 

region was downloaded from the EPFL website (https://www.epfl.ch/labs/cvlab/data/data-em/). 

The original isotropic dataset represents a 5x5x5 μm3 volume at 5x5x5 nm/voxel resolution. This 

image was downsampled by 4x and 8x along the z-axis to generate simulated anisotropic datasets 

for validating isotropic reconstruction methods and comparative analysis. 

(2) CREMI dataset: Serial section TEM images of neural tissue were obtained from the CREMI 

repository. The datasets contain 193 sections at 4 × 4 × 40 nm/voxel resolution (Dataset A) 

(padded version, https://cremi.org/data/). 

Image registration 

The "Register Virtual Stack Slices" plugin in ImageJ was utilized to align the serial tissue sections 

along the z-axis. This plugin aligns adjacent image sections using an automated feature matching 

algorithm based on the scale invariant feature transform (SIFT)60-62. For feature extraction, the 

“rigidly translated and rotated” model was used. For registration, the alignment models we used 

were “rigid - translate and rotate” and “moving least squares - maximal warping”. The optimal 

model was selected based on evaluation of the aligned image stack quality. When needed, elastic 

transforms were applied to refine the section alignment further. This plugin incrementally registers 

each section to the previous section to generate the aligned 3D image volume by extracting 

features between sections and finding optimal transforms to match them. 

Image cropping 

The aligned image stacks were cropped down to specific regions of interest containing relevant 

ultrastructural tissue details. Cropping served two purposes: 1) focusing the analysis on relevant 

tissue areas and 2) removing large black areas introduced by rotation during image alignment. 

Cropping helped reduce file sizes and excluded unnecessary background regions from further 

analysis. 

Image enhancement 

To enhance image contrast and standardize brightness across the image set, contrast limited 

adaptive histogram equalization (CLAHE) was applied63. This technique improves local contrast 

within small regions while limiting noise amplification. The CLAHE parameters were optimized 

to avoid overenhancement artifacts. 

Dataset preparation 

The image datasets were extracted and preprocessed into three subsets: training, validation, and 

test sets. This enables model training, hyperparameter tuning, and unbiased evaluation. 

The training dataset comprises the majority of images used to fit the model parameters. The 

full training datasets contain several blocks of anisotropic volumetric data (separation based on the 

spatial location of the defect sections). During training, random subvolumes of a fixed size (e.g., 

16x128x128, 32x128x128) are sampled across these various blocks to form the training inputs for 
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each batch. This allows the model to train on diverse samples from a broader data distribution. To 

augment the training data, 8 orthogonal 3D rotations were applied. 

A smaller portion of the stacks was clipped from the original complete blocks of anisotropic 

volumes for model validation. The validation subblocks are disjointed during the training process. 

The reconstruction of the validation data is completed at the best checkpoint for optimal isotropic 

quality. The validation subvolumes undergo identical preprocessing as the training data without 

augmentation. 

The test dataset comprises one complete block of anisotropic EM volumes. Since training and 

inference occur on different dimensions, the same volumes used during training can also serve as 

test data. Using the same volumes enables direct evaluation of how well the model can 

superresolve in the z-dimension based on x-y training. The test volume also underwent standard 

preprocessing, similar to training data preparation, to eliminate reconstruction artifacts as much as 

possible. 

Network and hyperparameter design 

For the model architecture, we set the number of stages of the multiscale transformer to 8: the 

1st~4th stage, the 4th~7th stage, and the 8th stage for downsampling, upsampling and feature 

fusion, respectively. In the first 7 stages, each stage contains 4 (N=4) transformer blocks (TBs), in 

which 3 TBs contain both MMA and MSA followed by 1 TB containing only MSA. The 8th stage 

included 12TBs containing only MSAs. The channel sizes for the first 7 stages and the 8th stage 

are 40 and 60, respectively. For the attention module in the TB, we set the number of attention 

heads to 4 for both the MSA and MMA. The attention sizes are set as (2,2,16) and (2,2,20) for the 

EPFL and CREMI datasets, respectively. The larger the attention size is, the larger the model size. 

The model parameters of these two datasets are 1.4 M and 1.4 M, respectively. 

In the model training stage, we set the training subvolume sizes to (16,16,128) and 

(16,16,160) for the EPFL and CREMI data, respectively. The batch sizes are all set to (2,2,1). We 

augment the input data by random cropping and 8 orthogonal 3D rotations. The loss function 

(Equation 3) we use is the weighted sum of  (Equation 1) and the SSIM loss (Equation 2). The 

optimizer uses Adam64with β1 = 0.9 and β2 = 0.999. The learning rate is set to 1e–3, and an 

attenuation strategy is not used. It takes approximately 80k~150k iterations to reach convergence. 

      (1) 

      (2) 

      (3) 

where IHR is a high-resolution image and ISR is a superresolution reconstructed image. The weight 

parameter  is set to 1 in all our experiments. 

In the model inference stage, we generate the testing subvolumes by cropping the large 

volume with overlap (8,8,8) in 3D, the size of which is consistent with the training volume. Model 

inference on those subvolumes in an augmentation manner by 8 orthogonal 3D rotations. The 

generated isotropic subvolumes are then stitched in 3D to obtain the whole volume according to 

the cropping coordinates. Linear fusion is adopted for the overlapping area during stitching. 
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The code was implemented in Python 3.8 and PyTorch 1.8.1. Model training and testing were 

conducted on a single RTX 3090 NVIDIA GPU card for all the experiments. Depending on the 

size of the vEM dataset, it took approximately 0.8~1.2 days to train the model and several hours 

for model inference. 

Evaluation metric 

We used four quality assessment metrics to evaluate the isotropic reconstruction performance on 

the EPFL-simulated degraded data: 

(1) SSIM, Structural Similarity Index Measure 

The SSIM score65 can reflect the perception of the human visual system on local structural 

changes in images. The computation is based on three factors: luminance (l), contrast (c) and 

structure (s). The overall index is their multiplicative combination. 

     (4) 

 

        (5) 

where α=β=γ=1 and C3=C2/2. , , ,  and  are the local means, standard deviations, 

and cross-covariance for images  and , respectively. The SSIM values range between 0 and 1; 

the closer the value is to 1, the better the performance. 

(2) MS-SSIM, Multiscale Structural Similarity Index Measure 

MS-SSIM66 extends the SSIM measurement to multiple scales, where the image at scale M is half 

the image at scale M-1. Through such adaptation, the MS-SSIM is more robust than the SSIM for 

various image resolutions. 

     (6) 

where , , , , and 

. 

(3) PSNR, peak signal-to-noise ratio 

The PSNR is the ratio between the maximum possible signal power of an image and the power of 

corrupting noise that affects the image quality. In the actual calculation, we estimate the PSNR of 

an image by comparing it to an ideal clean image with the maximum possible power. A high 

PSNR indicates good image quality. 

     (7) 
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      (8) 

where L is the number of maximum possible intensity levels in an image. x and y are two images 

to be compared with the same height n and width m. 

(4) LPIPS, learned perceptual image patch similarity 

LPIPS67 calculates the perceptual similarity between two images and matches human perception 

well. LPIPS first generates activations of two 2D images by means of a pretrained network (such 

as VGGNet, which is pretrained on ImageNet), and then calculates the feature differences on 

different layers and spatial dimensions. Since the vEM data are 3D, we calculate the LPIPS of 

each frame and average it along a certain axis. A low LPIPS indicates that the image patches are 

perceptively similar. 

     (9) 

where  and  denote the activation of two image patches.  represents the layer of the network, 

and  and  represent the height and width of the image, respectively. 

(5) FSC, Fourier shell cross-correlation 

FSC68 is a function of spatial frequency and was first introduced by Harauz and van Heel. The 

method calculates the normalized cross-correlation coefficient between two 3D volumes on 

corresponding shells with radius  in Fourier space. We calculated the FSC between the IsoVEM 

reconstructed volume and the corresponding ground-truth volume. The signal-to-noise ratio of 

vEM data is much better than that of cryoEM data. Therefore, we use the FSC-0.5 standard, which 

is more suitable for situations where the signal is much more significant than the noise 68. 

    (10) 

where  and  are the Fourier transforms of the IsoVEM reconstructed volume and 

ground-truth volume, respectively, at radius r in Fourier space;  is the conjugator of  

Evaluation of the Restored vEM Volumes Postprocessing 

Reconstruction was performed on the complete datasets using the checkpoints with the best 

validation performance. A comprehensive evaluation was performed on the restored vEM volumes. 

The restored output was imported into MIB for segmentation. The GraghCut-based semiautomatic 

segmentation pipeline and deep learning-based automatic segmentation pipeline were used in the 

MIB to delineate critical ultrastructural boundaries69,70. 

For the downsampled EPFL dataset, the neurons randomly selected from the ground truth 

were segmented by labeling the foreground and background features using the GraphCut tool. We 

used the same predefined features to segment the corresponding neurons in the restored datasets. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 27, 2023. ; https://doi.org/10.1101/2023.11.22.567807doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.567807
http://creativecommons.org/licenses/by-nc-nd/4.0/


The segmentation results of these volumes restored by various methods and ground truths were 

imported into Imaris for surface rendering. We compared the number of disconnected components 

and overlapping volume/voxels of the surface to assess the pixel similarity and topological 

relationship similarity between the reconstructed data and the original data. The F1 score was 

calculated as the harmonic mean of the precision and recall scores of a model. It is defined as 

follows: 

     (11) 

where precision is the number of true positive results divided by the number of all positive results, 

including those not identified correctly, and recall is the number of true positive results divided by 

the number of all samples that should have been identified as positive. 

For the CREMI dataset, we used the segment anything model SAM (https://segment-

anything.com/) to assess the topological structural relationships of the datasets via segmentation of 

membranes, vesicles, mitochondria, etc. 

Statistical analysis 

Surface-rendered Imaris models were used to characterize neurons and organelle morphologies in 

3D. We used Excel to integrate and analyze the preliminary statistical data and GraphPad Prism 

9.5 to complete the plotting and significance testing analyses. 

 

Data availability 

1. The EPFL dataset was downloaded from the EPFL website 

(https://www.epfl.ch/labs/cvlab/data/data-em/). 

2. The CRIMI dataset was obtained from the CREMI repository (https://cremi.org/data/). 

 

Code availability 

The source codes of IsoVEM are available at https://github.com/cbmi-group/IsoVEM. 
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