

1 **Shedding light on the Ophel biome: The Trans-Tethyan phylogeography of the sulfide
2 shrimp *Tethysbaena* (Peracarida: Thermosbaenacea) in the Levant**

3 Tamar Guy-Haim^{1*}, Oren Kolodny², Amos Frumkin³, Yair Achituv⁴, Ximena Velasquez¹,
4 Arseniy R. Morov¹

5

6 ¹National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, P.O.B.
7 2336, Haifa 3102201, Israel

8 ²Department of Ecology, Evolution, and Behavior, Institute for Life Sciences, The Hebrew University of
9 Jerusalem, Jerusalem 9190401, Israel

10 ³Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

11 ⁴The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel

12

13 * Corresponding author: tamar.guy-haim@ocean.org.il

14

15 **Running title:** Levantine subterranean crustacean phylogeography

16 **Article type:** Original Article

17

18 **ABSTRACT**

19 *Tethysbaena* are small peracarid crustaceans found in extreme environments such as
20 subterranean lakes and thermal springs, represented by endemic species found around the
21 ancient Tethys, including the Mediterranean, Arabian Sea, Mid-East Atlantic, and the
22 Caribbean Sea. Two *Tethysbaena* species are known from the Levant: *T. relicta*, inhabiting
23 the Dead Sea-Jordan Rift Valley, and *T. ophelicola*, found in the Ayyalon cave complex in
24 the Israeli coastal plain, both belonging to the same species-group based on morphological
25 cladistics. Along the biospeleological research of the Levantine subterranean fauna, three
26 biogeographic hypotheses determining their origins were proposed: (1) Pliocene
27 transgression, (2) Mid-late Miocene transgression, and (3) The Ophel Paradigm, according to
28 which these are inhabitants of a chemosynthetic biome as old as the Cambrian. We have used
29 mtDNA COI gene and a molecular clock approach to establish the phylogeny and assess the
30 divergence times of the Levantine *Tethysbaena*. Contrary to prior hypotheses, our results
31 indicate a two-stage colonization pattern: a late Oligocene transgression, through a marine
32 gulf extending from the Arabian Sea, leading to the colonization of *T. relicta* in the Dead
33 Sea-Jordan Rift Valley, and a Miocene transgression in the emerging Mediterranean region,
34 carrying *T. ophelicola* to the coastal plain of Israel.

35

36 **KEYWORDS:** Ayyalon cave; COI mtDNA; Dead Sea-Jordan Rift Valley; Oligo-Miocene
37 marine transgressions; Ophel; phylogeny; stygofauna; Thermosbaenacea; Tethys Sea;
38 vicariance

39 **INTRODUCTION**

40 Groundwater fauna (stygofauna) is characterized by short-range endemism and high species
41 crypticity. The unique suite of troglomorphic traits (e.g., loss of pigment, reduced eyes)
42 characterizing stygobionts often hinders distributional studies due to the highly convergent
43 characteristics that can obscure taxonomic relationships (Juan, Guzik, Jaume & Cooper,
44 2010; Porter, 2007). As a result, molecular phylogenetic tools have been extensively used
45 over the last two decades to infer stygofauna biogeographies and the underlying processes
46 shaping them (e.g., Abrams, Huey, Hillyer, Humphreys, Didham & Harvey, 2019; Asmyhr,
47 Hose, Graham & Stow, 2014; Bauzà-Ribot, Juan, Nardi, Oromí, Pons & Jaume, 2012;
48 Bradford, Adams, Humphreys, Austin & Cooper, 2010; Cánovas, Jurado-Rivera,
49 Cerro-Gálvez, Juan, Jaume & Pons, 2016; Cooper, Fišer, Zakšek, Delić, Borko, Faille &
50 Humphreys, 2023; Finston, Bradbury, Johnson & Knott, 2004; Guy-Haim, Simon-Blecher,
51 Frumkin, Naaman & Achituv, 2018; Jaume, 2008; Jurado-Rivera, Pons, Alvarez, Botello,
52 Humphreys, Page, Iliffe, Willassen, Meland & Juan, 2017; Marin, Krylenko & Palatov, 2021;
53 Matthews, Abrams, Cooper, Huey, Hillyer, Humphreys, Austin & Guzik, 2020).

54 Thermosbaenacea is a small order of peracarid crustaceans comprising unique and
55 highly specialized species adapted to extreme aquatic environments, including spring-fed
56 subterranean lakes and thermal springs, with their core populations found deep underground
57 in the inaccessible phreatic waters. Anoxic, sulfide-rich environments are favorable to
58 Thermosbaenacea—often feeding on bacterial mats formed by sulfide-oxidizing bacteria—
59 thus termed “sulfide shrimp” by Por (2014). Based on their distribution, it was assumed that
60 the ancestral habitat of the thermosbaenaceans is the ancient Tethys Sea, and they are
61 represented by relic fauna found around the Mediterranean, the Arabian Sea, Mid-East
62 Atlantic, and the Caribbean Sea (Hou & Li, 2018; Wagner, 1994). Among
63 thermosbaenaceans, *Tethysbaena* (family: Monodellidae) is the most speciose and

64 widespread genus, comprising 27 species in seven species-groups (Wagner, 1994; Wagner &
65 Bou, 2021). Only a few of the *Tethysbaena* species-groups were analyzed and supported by
66 molecular phylogenetic tools (Cánovas et al., 2016; Wagner & Chevaldonné, 2020).

67 Two species of *Tethysbaena* are known from Israel: *T. relicta* Por, 1962 (formerly
68 *Monodella relicta*) and *T. ophelicola* Wagner, 2012. Initially, fragments of *T. relicta* were
69 found in the hot spring Hamei Zohar by the Dead Sea in Israel (Por, 1962). Later, scattered
70 specimens of the same species were collected from the thermohaline spring En-Nur, on Lake
71 Kinneret shore, a few hundred kilometers to the north (Dimentman & Por, 1991), thus
72 inferring that *T. relicta* inhabits the whole groundwater system of the Dead Sea-Jordan Rift
73 Valley aquifer. *T. ophelicola* was found in the karstic underground basin near Ramla, named
74 Ayyalon-Nesher-Ramla complex (Por, 2014; Por, Dimentman, Frumkin & Naaman, 2013;
75 Wagner, 2012), 60 km west of the Dead Sea-Jordan Rift Valley, beyond the water divide of
76 Israel.

77 Based on synapomorphies of the antennular inner flagellum and maxilliped
78 macrosetae (Wagner, 1994), it was hypothesized that together with other closely allied
79 species—one species from Somalia (Chelazzi & Messana, 1982), four species from Oman
80 (Wagner, 2020), one species from Yemen (Wagner & Van Damme, 2021)—*T. relicta* and *T.*
81 *ophelicola* form the “*T. relicta*-group” (Wagner, 2012), suggesting a recent common
82 ancestor. An alternate hypothesis can be drawn from the phylogenetic analysis of the prawn
83 *Typhlocaris* (Guy-Haim et al., 2018), preying on *Tethysbaena* in Ayyalon and En-Nur
84 (Tsurnamal, 1978; Tsurnamal, 2008; Tsurnamal & Por, 1971; Wagner, 2012). Four
85 *Typhlocaris* species are known, two of which co-occur with *Tethysbaena*: *Ty. galilea*
86 inhabiting En-Nur spring (Calman, 1909; Tsurnamal, 1978) and *Ty. ayyaloni* from the
87 Ayyalon cave (Tsurnamal, 2008). The two additional *Typhlocaris* species are *Ty. salentina*
88 from Apulia region in Southeastern Italy (Caroli, 1923; Froglio & Ungaro, 2001) and *Ty.*

89 *lethaea* from Libya near Benghazi (Parisi, 1921). The molecular phylogeny of *Typhlocaris*
90 species showed that *Ty. ayyaloni* (Israel) and *Ty. salentina* (Italy) are more closely related to
91 each other than either of them is to *Ty. galilea* (Israel) (Guy-Haim et al., 2018). Accordingly,
92 we can hypothesize a similar phylogeographic pattern of the Levantine *Tethysbaena*, where
93 *T. ophelicola* would be more closely related to the Mediterranean species (“*T. argentarii*-
94 group”) than to *T. relicta*.

95 Along the biospeleological research of the Thermosbaenacea and other phyla of
96 subterranean crustaceans represented in the Dead Sea Rift Valley (Syncarida, and the families
97 Bogidiellidae and Typhlocarididae), three paradigms have been proposed to explain their
98 origins: (1) Pliocene marine transgression (Por, 1963), (2) Miocene Tethys transgression
99 (Dimentman & Por, 1991; Por, 1987), and (3) The Ophel Paradigm that offered a conceptual
100 framework, within which these styobionts are inhabitants of the ancient chemosynthetic
101 Ophel biome, dating back at least to the Cambrian (Por, 2011). Using a molecular clock
102 approach, Guy-Haim et al. (2018) estimated the divergence time of the *Typhlocaris* species.
103 They based their analysis on a calibration node inferred from a regional geological event—
104 the end of the marine connection between the Mediterranean Sea and the Dead Sea-Jordan
105 Rift Valley, marked by the top of Bira formation, dated to 7 MYA (Rozenbaum, Sandler,
106 Zilberman, Stein, Jicha & Singer, 2016), separating *Ty. galilea* and the *Typhlocaris* ancestor.
107 The inferred divergence time of *Ty. ayyaloni* and *Ty. salentina* was 5.7 (4.4–6.9) MYA, at the
108 time of the Messinian Salinity Crisis (5.96–5.33 MYA), when the Mediterranean Sea
109 desiccated and lost almost all its Miocene tropical fauna (Por, 1987; Por, 1989). It is therefore
110 an open question as to whether the same vicariant events have shaped the biogeographies of
111 both predator (*Typhlocaris*) and prey (*Tethysbaena*) subterranean crustaceans.

112 The main objectives of our study were to (1) reveal the phylogenetic relatedness of
113 the Levantine *Tethysbaena* species, and use these patterns to (2) infer the geological and
114 evolutionary processes that have shaped their divergence patterns.

115

116 MATERIALS AND METHODS

117 *Sampling sites, specimen collection and identification*

118 Specimens of *T. ophelicola* were collected by a hand pump from the inner pool of the Levana
119 cave (31.9223°N, 34.8942°E), part of the Ayyalon-Nesher-Ramla complex (Fig. 1).

120 Specimens of *T. relicta* were collected by a hand pump from an artificial tunnel near the
121 Dead Sea Shore penetrating the Judea Group aquifer, 6.5 km north of Hamei-Zohar
122 (31.2232°N, 35.3547°E) (Fig. 1). The *locus typicus* of *T. relicta*, the thermal spring of
123 Hamei-Zohar (Por, 1962), is no longer accessible since the 1970s, as hotels were built on the
124 spring area.

125 Part of the collected specimens was preserved in 70% ethanol and the other in absolute
126 ethanol for morphological and molecular analyses, respectively. Species identification of *T.*
127 *ophelicola* and *T. relicta* was performed using a stereomicroscope (SZX16, Olympus, Japan)
128 following the identification keys in Por (1962) and Wagner (1994); Wagner (2012).

129 *DNA extraction, amplification and sequencing*

130 Cánovas et al. (2016) used both mitochondrial cytochrome *c* oxidase subunit I (COI)
131 and nuclear 28S rRNA genes to assess the genetic population structure of the anchialine *T.*
132 *scabra* in the Balearic Islands, and found that the 28S rDNA gene showed low genetic
133 variation resulting in a poorly resolved phylogenetic tree, and they, therefore, based their
134 phylogenetic reconstruction and divergence time estimations on the COI gene only.
135 Following their finding, we have used the COI gene in our analysis.

136 Total genomic DNA was extracted from each individual using the DNEasy Blood and
137 Tissue kit (QIAGEN, Germany) according to the manufacturer's specifications. Following
138 the DNA extraction, the COI gene was amplified using PCR with universal primers
139 LCO1490 and HCO2198 (Folmer, Black, Hoeh, Lutz & Vrijenhoek, 1994). Reaction
140 conditions were as follows: 94 °C for 2 min, followed by 5 cycles of 94 °C for 40 s, 45 °C for
141 40 s, and 72 °C for 1 min, and followed by 30 cycles of 94 °C for 40 s, 51°C for 40 s, and 72
142 °C for 1 min, and a final elongation step of 72 °C for 10 min. Obtained PCR products were
143 purified and sequenced by Hylabs (Rehovot, Israel).

144 *Phylogenetic analysis*

145 A total of 22 COI sequences of *Tethysbaena* were analyzed, including *T. ophelicola* (n=3)
146 and *T. reducta* (n=3) obtained in this study. Additional sequences of *T. scabra* (Balearic
147 Islands, n=5), *T. argentaria* (Italy, n=2), *T. ledoyer* (France, n=2), *T. atlantomaroccana*
148 (Morocco, n=1), and further sequences of *Tethysbaena* sp., unidentified to the species level,
149 from Oman (n=2), Morocco (n=3) and the Dominican Republic (n=1), were obtained from
150 NCBI GenBank (<https://www.ncbi.nlm.nih.gov/genbank/>) and the European Nucleotide
151 Archive (<https://www.ebi.ac.uk/ena/browser/home>). The thermosbaenacean *Halosbaena tulki*
152 was chosen as an outgroup following Page, Hughes, Real, Stevens, King and Humphreys
153 (2016) and used as a root node in the phylogenetic analysis. All specimens, collection sites,
154 accession numbers, and related references are summarized in Table 1.

155 Sequence alignment was conducted using ClustalW embedded in MEGA v11.0
156 (Tamura, Stecher & Kumar, 2021). The best-fitting substitution model was selected
157 according to the Bayesian Information Criterion using Maximum-likelihood (ML) model
158 selection in MEGA. GBlocks v0.91.1 (Castresana, 2000) was used for trimming the
159 ambiguous blocks in the sequence alignment. ML analysis was performed using the T92+G+I
160 model (BIC= 6112.5) with 1000 bootstrapping replicates. Bayesian Metropolis coupled

161 Markov chain Monte Carlo (B-MCMC) analyses were conducted with MrBayes v3.2.7a
162 (Ronquist, Teslenko, Van Der Mark, Ayres, Darling, Höhna, Larget, Liu, Suchard &
163 Huelsenbeck, 2012) on XSEDE in the CIPRES v3.3 Science Gateway portal
164 (<https://www.phylo.org/portal2>) with nst=2, rates=gamma, and
165 statefreqpr=fixed(fixedest=equal). Two independent runs of 10,000,000 generations each
166 performed, sampling every 1000 generations. A burn-in at 25% of the sampled trees was set
167 for final tree production. Convergence and effective sampling of runs was assessed using
168 Tracer v. 1.6 (Drummond & Rambaut, 2007), and the post-burnin tree samples were
169 summarized using the sumt.

170 *Estimation of divergence times*

171 Molecular clock calculations for cave-dwelling species are often contentious (Page,
172 Humphreys & Hughes, 2008). Stygobionts often exhibit unique evolutionary characteristics
173 and experiences, including isolation, reduced gene flow, small population sizes, and distinct
174 selective pressures. These factors can lead to deviations from a constant rate of molecular
175 evolution among lineages, rendering a strict molecular clock assumption less realistic.
176 Therefore, we used a relaxed molecular clock approach (Drummond, Ho, Phillips &
177 Rambaut, 2006). Cánovas et al. (2016) assessed the divergence time of the Western
178 Mediterranean *Tethysbaena*, *T. scabra* from the Balearic Islands, and *T. argentarii* from Italy
179 using the COI gene. They based the substitution rates on the mean rate estimated for a co-
180 occurring anchialine stygobiont amphipod *Metacrangonyx longipes*, 1.32% per lineage and
181 million years (0.89–1.95, 95% CI) (Bauzá-Ribot et al., 2012). Following Cánovas et al.
182 (2016), we implemented this substitution rate in our dataset.

183 A relaxed-clock MCMC (Markov Chain Monte Carlo) approach using the
184 uncorrelated log-normal model was implemented in BEAST v2.4 (Drummond & Rambaut,
185 2007; Suchard, Lemey, Baele, Ayres, Drummond & Rambaut, 2018; Suchard & Rambaut,

186 2009). The Yule process was chosen as speciation process. Three independent runs, each of
187 50,000,000 generations, were performed, with sampling every 5000 generations. The three
188 separate runs were then combined (following the removal of 10% burn-in) using
189 LogCombiner v2.5.2. Log files were analyzed with Tracer v1.6 (Drummond & Rambaut,
190 2007), to assess convergence, confirm the combined effective sample sizes for all parameters,
191 and ensure that the MCMC chain had run long enough to get a valid estimate of the
192 parameters (Drummond & Rambaut, 2007). Maximum clade credibility (MCC, hereafter)
193 tree was then produced using TreeAnnotator v2.4.7 (Rambaut & Drummond, 2017). FigTree
194 v.1.4.4 (Rambaut, 2018) was used to visualize the MCC tree and the highest posterior density
195 (HPD, hereafter) ranges.

196

197 **RESULTS**

198 *Morphological identification*

199 Specimens of *T. relicta* collected from the Dead Sea tunnel were similar to the specimens
200 from Hamei-Zohar thermal spring described by Por (1962), and included males, with no
201 ovigerous or brooding females (Fig. 2A). The average length (excluding antennae) was
202 $2104 \pm 181 \mu\text{m}$ ($n=5$, $\pm\text{SD}$, hereafter). The following morphological features characterized the
203 specimens as belonging to *T. relicta*: 8 segments in the main flagellum (endopodite) of
204 antenna 1; 7 terminal plumidenticulate macrosetae on the maxilliped; the uropod included 5
205 medial plumose macrosetae, 11–13 plumose macrosetae in the endopodite, and 16–19
206 macrosetae in the second segment of the exopodite. The mean width:length ratio of the telson
207 was 1.15.

208 Specimens of *T. ophelicola* from Levana cave were similar to the specimens from
209 Ayyalon cave described by Wagner (2012), and included males, brooding females and
210 postmarsupial juveniles (Fig. 2B–D). The average length (excluding antennae) was 2276 ± 380

211 μm in males (n=5) and $2620\pm139\ \mu\text{m}$ in females (n=5). The following morphological features
212 were found: 7 segments in the main flagellum (endopodite) of antenna 1; 7 terminal
213 plumidenticulate macrosetae on the maxilliped; uropod included 4 medial plumose
214 macrosetae and 18–22 plumose macrosetae in the endopodite and the second segment of the
215 exopodite. The mean width:length ratio of the telson was 1.10.

216 *Molecular phylogenetic analysis*

217 The DNA barcode consisting of a fragment of 708 bp of the COI gene was sequenced from 6
218 specimens of *T. ayyaloni* and *T. relicta*. Sequences were deposited in NCBI GenBank under
219 accession numbers OR189199–OR189204. The phylogenetic analysis included 16 additional
220 *Tethysbaena* sequences and one *Halosbaena tulki* sequence as an outgroup (Table 1). The
221 overall alignment was 691 bp long, with 227 parsimonious informative sites.

222 ML and Bayesian phylogenetic analyses showed similar tree topologies (Fig. 3). The
223 Levantine *Tethysbaena* species from Israel present polyphyly, where *T. ayyaloni* lies within a
224 Mediterranean clade (including *T. scabra* from the Balearic Islands, *T. ledoyerii* from
225 Southern France and *T. argentarii* from Italy) with 100% bootstrapping support and 0.99
226 posterior probability, and *T. relicta* clusters with *Tethysbaena* sp. from Oman (100%
227 bootstrapping support and 1.00 posterior probability), and the Dominican Republic
228 (87%/0.83 bootstrapping support/posterior probability), forming the Arabian-Caribbean
229 clade. The Atlantic *Tethysbaena* *T. atlantomaroccana* is a sister taxon to the Mediterranean
230 clade species, although with a lower support/probability. The other Moroccan *Tethysbaena*
231 species from Tasla and Lamkedmya were in a more basal position but showed lower
232 bootstrapping support (<50%).

233 *Divergence time estimation*

234 Effective sample size (ESS) values were at least 436 and 356 for the posterior and prior
235 statistics, respectively, 1738 for the likelihood statistic, and greater than 1400 for all MRCA

236 times estimates, suggesting good mixing and an effective MCMC sampling of the posterior
237 distribution.

238 We estimated the ages for eight nodes (Table 2). The youngest node was the most
239 recent common ancestor of *T. leyoderi* from Southern France and *T. scabra* from the Balearic
240 Islands, which returned a mean estimate at 8.31 MYA with 95 % HPD of 10.15–3.97 MYA.
241 The next mean estimate is the divergence of *T. ophelicola* from the clade of *T. leyoderi* and *T.*
242 *scabra*, dated to 9.46 MYA, with 95% HPD of 14.20–5.71 MYA. The mean age of the most
243 common ancestor of all Mediterranean *Tethysbaena* was 10.71 MYA with 95 % HPD of
244 16.27–6.04 MYA. The most recent ancestor of the Mediterranean clade and *T.*
245 *atlantomaroccana* from Morocco was dated to 32.41 MYA with 95 % HPD of 47.53–18.37
246 MYA. The mean age of the node linking *T. relict*a from the Dead Sea-Jordan Rift Valley and
247 *Tethysbaena* from Oman was 20.13 MYA with 95 % HPD of 41.69–13.25 MYA. The node
248 of the most recent common ancestor of *T. relict*a, *Tethysbaena* from Oman, and the
249 *Tethysbaena* from the Dominican Republic had a mean estimate of 35.84 MYA with 95 %
250 HPD of 51.41–22.16 MYA. The mean age for the node linking the Arabian-Caribbean clade
251 (*T. relict*a + *Tethysbaena* sp. Oman + *Tethysbaena* sp. Dominican Republic) with the
252 Mediterranean-Atlantic clade (*T. scabra* + *T. leyoderi* + *T. ophelicola* + *T. argentarii* + *T.*
253 *atlantomaroccana*) was 40.42 MYA with 95 % HPD of 56.09–25.72 MYA. The estimate for
254 the root node linking *Tethysbaena* and *Halosbaena* was 79.96 MYA with 95% HPD of
255 137.8–32.68 MYA.

256

257 **DISCUSSION**

258 In his monography on Thermosbaenacea, [Wagner \(1994\)](#) divided the Monodellidae family to
259 two genera, the monotypic *Monodella* and the speciose *Tethysbaena*, which he named after
260 the ancient Tethys Sea and the Greek word "βαίνειν" (meaning "to walk"), referring to these

261 animals as “walkers of the Tethys Sea”. He noted that although there is a great similarity
262 among the different species, six species-groups can be identified based on morphological
263 characters. With the later finding of *T. exigua* from Southern France, a seventh group was
264 established (Wagner & Bou, 2021). Here, we analyzed the phylogenetic relatedness and
265 divergence times of the two Levantine *Tethysbaena* species found in Israel: *T. relicta* from
266 the Dead Sea-Jordan Rift Valley, and *T. ophelicola*, from the Ayyalon-Nesher-Ramla cave
267 complex in central Israel.

268 According to Wagner (2012) and Wagner and Van Damme (2021), both Levantine species
269 belong to “*T. relicta*-group” (together with four species from Oman, one species from
270 Somalia and one species from Yemen), implying that these are sister taxa sharing a most
271 recent common ancestor. Our results reject the morphology-based cladistics and support the
272 hypothesis suggesting that *T. relicta* shared an ancestor with *Tethysbaena* species from Oman
273 and Dominican Republic, whereas the circum-Mediterranean species (including *T.*
274 *ophelicola*) share another ancestor. Indeed, discrepancies between morphological cladistics
275 and molecular phylogeny are common in cave fauna and were often attributed to their
276 troglomorphic traits (Bishop & Iiiffe, 2012; Juan et al., 2010; Porter, 2007).

277 Three paradigms determining the origin of the Thermosbaenacea and other phyla of
278 subterranean crustaceans represented in the Dead Sea-Jordan Rift Valley (Syncarida, and the
279 families Bogidiellidae and Typhlocarididae) and around the Mediterranean were defined. The
280 earlier paradigm suggested that the Levantine *Tethysbaena*, among other subterranean salt-
281 water fauna, have resulted from a late Pliocene pre-glacial (Piacenzian) marine transgression
282 (Fryer, 1964; Hubault, 1937; Por, 1963). A narrow gulf penetrated into the coastal line near
283 the present-day mount Carmel and then bent southwards along the Dead Sea-Jordan Rift
284 Valley reaching a basin that extended south of the present Dead Sea (Picard, 1943).
285 According to this paradigm, the Pliocene Mediterranean was still inhabited by a very large

286 number of Tethys remnants, including thermosbaenaceans, that were stranded in the Rift
287 Valley and around the Mediterranean.

288 [Por \(1986\)](#) rejected the first paradigm, noting that the Pliocene Mediterranean no
289 longer contained the tropical fauna that include the *Tethysbaena* ancestor and that the short-
290 lived Pliocene transgression did not establish viable marine environments. Instead, he
291 posited that these species represent marine fauna colonized by Miocene transgression, the
292 last time that tropical sea penetrated inland in the Levant, and left stranded following a late
293 Miocene regression ([Dimentman & Por, 1991](#); [Por, 1987](#); [Por, 1989](#)). This second paradigm
294 was supported by [Guy-Haim et al. \(2018\)](#) who used a molecular clock approach to estimate
295 the divergence time of the *Typhlocaris* species, based on a calibration node inferred from the
296 end of the marine connection between the Mediterranean Sea and the Dead Sea-Jordan Rift
297 Valley, marked by the top of Bira formation, dated to 7 MYA ([Rozenbaum et al., 2016](#)).
298 They inferred a divergence time of *Typhlocaris* from Ayyalon cave and Italy of 5.7 (4.4–
299 6.9) MYA, at the time of the Messinian Salinity Crisis. During this event, the African plate
300 moved towards the Euro-Asian plate, closing the Straits of Gibraltar and temporarily isolating
301 the Mediterranean Sea from the Atlantic Ocean ([Krijgsman, Hilgen, Raffi, Sierro & Wilson,
302 1999](#)). As a result, the Mediterranean Sea partly desiccated and transformed into small
303 hypersaline basins, losing almost all its Miocene tropical fauna, including those able to
304 colonize subterranean waters ([Por, 1975](#); [Por, 1986](#); [Por, 1987](#); [Por, 1989](#)).

305 With the discovery of the Ayyalon cave system and its endemic stygofauna in 2006, a
306 third paradigm known as “the Ophel Paradigm” was developed by [Por \(2007\)](#). He identified
307 the “Ophel” as a continental subterranean biome, subsisting on chemoautotrophic bacterial
308 food, independently of the exclusive allochthonous epigean food of photoautotrophic origin.
309 Within this biome, *Tethysbaena* are primary consumers, presenting a typical feeding behavior
310 of upside-down swimming-gathering of sulfur bacteria or bacterial mats ([Por, 2011](#); [Wagner,](#)

311 2012). Following the development of the new chemosynthetic-based biome paradigm, Por
312 presented an alternative to the Tethys stranding paradigm, stating that the “*Ophel paradigm*
313 *falsified first of all my own, previously held views*” on the diversification of the subterranean
314 fauna in the Levant (Por, 2011). He noted that the pre-Messinian fauna of the fossiliferous
315 taxa of the foraminiferans, the mollusks and the teleost fishes was similar to the recent Red
316 Sea fauna or different only at the species level, and there is no indication for extinction of
317 crustaceans during the Tertiary, thus the origin of the subterranean Levantine fauna is of
318 earlier origin (Por, 2010). Por suggested that the Ophelic biome is possibly at least as old as
319 the Cambrian, which had a diverse aquatic crustacean and arthropodan palaeofauna,
320 including Thermosbaenacea (Por, 2011).

321 Cánovas et al. (2016) assessed the divergence time of the Western Mediterranean
322 *Tethysbaena*, *T. scabra* from the Balearic Islands and *T. argentarii* from Italy using the COI
323 gene. They based the substitution rates on the mean rate estimated for a co-occurring
324 anchialine stygobiont amphipod *Metacrangonyx longipes*, 1.32% per lineage and million
325 years (0.89–1.95, 95% CI) (Bauzá-Ribot et al., 2012) and estimated the divergence time of *T.*
326 *scabra* and *T. argentarii* to the early Tortonian, 10.7 MYA. Following Cánovas et al. (2016),
327 we have used the COI gene to assess the divergence times of the Levantine *Tethysbaena*, *T.*
328 *relicta* and *T. opehlicola*, and additional *Tethysbaena* species from around the Mediterranean,
329 Arabian, and Caribbean Sea, using the Australian *Halosbaena* as an outgroup.

330 Our analysis shows that the divergence times of *Tethysbaena* species are earlier than
331 those of *Typhlocaris* species, pre-dating the upper-Miocene Messinian Salinity Crisis. Most
332 divergence events occurred in the Miocene and Oligocene. The Dead Sea-Jordan Rift Valley
333 *T. relicta* shares a most recent common ancestor with *Tethysbaena* from the Arabian Sea
334 (Oman), dated to the early Miocene, 20.13 MYA (with 95% HPD of 41.69 – 13.25),
335 corresponding with the Oligo-Miocene rift-flank uplift of the Arabian plate during the

336 formation of the Red Sea and Gulf of Aden (Omar & Steckler, 1995; Stern & Johnson, 2010).
337 Both *T. relicta* and the *Tethysbaena* from Oman separated from the Caribbean *Tethysbaena*
338 during the Eocene-Oligocene transition, when global cooling and tectonic uplift caused sea
339 level decline and led to the establishment of the modern Caribbean Seaway (Iturralde-Vinent
340 & MacPhee, 1999; Iturralde-Vinent, 2006; Weaver, Cruz, Johnson, Dupin & Weaver, 2016).

341 The most recent common ancestor of the Mediterranean *Tethysbaena* species—*T.*
342 *ophelicola* from the coastal plain of Israel, *T. scabra* from the Balearic Islands, *T. ledoyerii*
343 from Southern France, and *T. argentarii* from Italy—dated to the Tortonian in the Mid
344 Miocene, 10.71 MYA (with 95% HPD of 6.27 – 6.04) as was previously found by Cánovas et
345 al. (2016). The Ayyalon cave *Tethysbaena*, *T. ophelicola*, separated from other
346 Mediterranean species around that time, 9.46 MYA (with 95% HPD of 14.20–5.71). The
347 thermal water of the Ayyalon cave complex is part of the Yarkon-Taninim aquifer
348 (Weinberger, Rosenthal, Ben-Zvi & Zeitoun, 1994). During Oligocene-Miocene regressions,
349 canyons were entrenched along the Mediterranean Sea shoreline, serving as major outlets of
350 the Yarkon-Taninim aquifer, potentially forming anchialine karst caves (Frumkin,
351 Dimentman & Naaman, 2022; Laskow, Gandler, Goldberg, Gvirtzman & Frumkin, 2011).
352 Page et al. (2016) hypothesized that the ancestral habitats of Thermosbaenacea are Tethyan
353 anchialine caves. Accordingly, we can assume that the ancestor of *T. ophelicola* inhabited
354 coastal anchialine caves in the Miocene Tethys.

355 The most recent common ancestor of the Mediterranean and the Arabian-Caribbean
356 clades of *Tethysbaena* is dated to the upper Eocene. During that period, the collision between
357 the Arabian Plate and the Eurasian Plate resulted in the uplift of the Zagros Mountains in Iran
358 (Moutherieu, Lacombe & Vergés, 2012). These mountain ranges acted as barriers, further
359 isolating the Arabian Sea from the Mediterranean region (Sanmartín, 2003). The oldest, root
360 node (*Tethysbaena-Halosbaena*) dated to 79.96 MYA (with the caveat of a low posterior

361 probability and a large 95% HPD interval, 137.8 – 32.68 MYA). [Page et al. \(2016\)](#)
362 established the phylogeny and divergence dates of the thermosbaenacean *Halosbaena*. They
363 used the *Tethysbaena-Halosbaena* divergence as a calibration node, based on the presence of
364 a continuous band of ocean crust through the length of the North Atlantic, indicating the
365 maximum extent of the Tethys and the final opening of the Atlantic, dated to 107.5 MYA
366 (with 95% HPD of 125–90). Thus, *Tethysbaena* ancestor in both our analysis and in [Page et](#)
367 [al. \(2016\)](#) dates to the Cretaceous. The validity of the Paleozoic Ophel-driven hypothesis is
368 also undermined by the deep phylogeny of peracaridean orders based on the small-subunit
369 (SSU) rRNA gene, which showed that the thermosbaenacean lineage does not occupy a basal
370 position relative to other peracarids ([Spears, DeBry, Abele & Chodyla, 2005](#)).

371 Overall, the molecular clock-based divergence patterns presented here do not support
372 the previously proposed hypotheses regarding the origins of the Levantine *Tethysbaena*.
373 Instead, we infer a complex, two-stage colonization pattern of the *Tethysbaena* species in the
374 Levant: (1) a late Oligocene transgression event, through a marine gulf extending from the
375 Arabian Sea in the East to the Sea of Galilee in the west, leading to the colonization of *T.*
376 *relicta* in the Dead Sea-Jordan Rift Valley, and (2) a Miocene transgression event in the
377 Mediterranean region, carrying *T. ophelicola* to the coastal plain of Israel. Our results also
378 show that the Cretaceous *Tethysbaena* ancestor first established in present-day Morocco, and
379 then diverged into two groups. The first is a Tethyan group including Oman, the Dead Sea-
380 Jordan Rift Valley and the Caribbean Sea. The second group formed around the emerging
381 Mediterranean Sea, in its marginal aquifers, including Ayyalon, Southern France, Italy and
382 the Balearic Islands.

383

384 **CONCLUSIONS**

385 Our results reject the morphology-based cladistics and suggest that *T. relicta* shared a most
386 recent common ancestor with *Tethysbaena* species from Oman and Dominican Republic,
387 whereas the circum-Mediterranean species, including *T. ophelicola*, shared another ancestor.
388 The molecular dating analysis suggest a two-stage colonization of the *Tethysbaena* species in
389 the Levant, explaining their distant origins: a late Oligocene transgression leading to the
390 colonization of *T. relicta* in the Dead Sea-Jordan Rift Valley, and a Miocene transgression in
391 the Mediterranean region followed by a marine regression, stranding *T. ophelicola* in the
392 coastal plain of Israel. The speciose *Tethysbaena* provides an exquisite opportunity for testing
393 paleogeographic paradigms. Here we analyzed the phylogenetic relationships and divergence
394 of nine out of twenty-seven known *Tethysbaena* species using the mitochondrial barcode
395 gene. Future studies should examine additional species utilizing more genes or complete
396 genomes to further unveil the phylogeny and biogeography of this unique group of ancient
397 subterranean crustaceans.

398 The study of these subterranean species is not only an opportunity to broaden our
399 understanding of paleogeography; it is also paramount for the protection of the hidden
400 biodiversity found in these largely inaccessible habitats, but which is nonetheless hugely
401 influenced by human activity. Extraction of groundwater for irrigation and other uses,
402 pollution, as well as quarrying, mining, and above-ground development may put these
403 underground ecosystems at severe risk. The unique and often endemic nature of stygobiont
404 species makes them even more prone to extinction, and extensive exploration of this under-
405 explored biome, worldwide, is necessary in order to gain understanding and appreciation of
406 the hidden biodiversity underground – an understanding that may pave the way for
407 conservation of these species and their ecosystems.

408

409 **ACKNOWLEDGEMENTS**

410 We are immensely grateful to Boaz Langford, Israel Naaman, Yoav Negev, Lior Enmar, Ilia
411 Kutuzov, Shlomit Cooper-Frumkin, Amitai Cooper, and the Israel Cave Research Center
412 team for their support in field sampling. We thank Chanan Dimentman for sharing invaluable
413 knowledge on subterranean Levantine fauna, and Stas Malavin for providing helpful
414 comments on the draft.

415

416 **DATA AVAILABILITY STATEMENT**

417 The data underlying this article are available in the GenBank Nucleotide Database at
418 <https://www.ncbi.nlm.nih.gov/genbank/>, and can be accessed with accession numbers
419 OR189199–OR189204.

420

421

422

423 **REFERENCES**

424 **Abrams KM, Huey JA, Hillyer MJ, Humphreys WF, Didham RK, Harvey MS. 2019.** Too hot to handle: Cenozoic aridification drives multiple independent incursions of
425 *Schizomida* (Hubbardiidae) into hypogean environments. *Molecular phylogenetics*
426 and evolution **139**: 106532.

427 **Asmyhr MG, Hose G, Graham P, Stow AJ. 2014.** Fine-scale genetics of subterranean
428 syncarids. *Freshwater Biology* **59**: 1-11.

429 **Bauzá-Ribot MM, Juan C, Nardi F, Oromí P, Pons J, Jaume D. 2012.** Mitogenomic
430 phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid
431 crustaceans. *Current Biology* **22**: 2069-2074.

432 **Bishop RE, Iliffe TM. 2012.** Ecological physiology of the anchialine shrimp *Barbouria*
433 *cubensis*: a comparison of epigean and hypogean populations. *Marine Biodiversity*
434 **42**: 303-310.

435 **Bradford T, Adams M, Humphreys WF, Austin A, Cooper S. 2010.** DNA barcoding of
436 stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western
437 Australia's arid zone. *Molecular Ecology Resources* **10**: 41-50.

438 **Calman WT. 1909.** V. On a Blind Prawn from the Sea of Galilee (*Typhlocaris galilea*, g. et
439 sp. n.). *Transactions of the Linnean Society of London. 2nd Series. Zoology* **11**: 93-97.

440 **Cánovas F, Jurado Rivera JA, Cerro Gálvez E, Juan C, Jaume D, Pons J. 2016.** DNA
441 barcodes, cryptic diversity and phylogeography of a W Mediterranean assemblage of
442 thermosbaenacean crustaceans. *Zoologica Scripta* **45**: 659-670.

444 **Caroli E. 1923.** Di una specie italiana di *Typhlocaris* (*T. salentina* n. sp.) con osservazioni
445 morfologiche e biologiche sul genere. *Bulletino della Società di Naturalisti in Napoli*
446 **35:** 265-267.

447 **Castresana J. 2000.** Selection of conserved blocks from multiple alignments for their use in
448 phylogenetic analysis. *Molecular biology and evolution* **17:** 540-552.

449 **Chelazzi L, Messana G. 1982.** *Monodella somala* n. sp. (Crustacea Thermosbaenacea) from
450 the Somali Democratic Republic. *Monitore Zoologico Italiano. Supplemento* **16:** 161-
451 172.

452 **Cooper S, Fišer C, Zakšek V, Delić T, Borko Š, Faille A, Humphreys W. 2023.**
453 Phylogenies reveal speciation dynamics: case studies from groundwater *Groundwater*
454 *Ecology and Evolution*: Elsevier. 165-183.

455 **Dimentman C, Por F. 1991.** The origin of the subterranean fauna of the Jordan-Dead Sea
456 Rift-Valley-new data. *Stygologia* **6:** 155-164.

457 **Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006.** Relaxed phylogenetics and
458 dating with confidence. *PLoS biology* **4:** e88.

459 **Drummond AJ, Rambaut A. 2007.** BEAST: Bayesian evolutionary analysis by sampling
460 trees. *BMC evolutionary biology* **7:** 1-8.

461 **Finston TL, Bradbury JH, Johnson MS, Knott B. 2004.** When morphology and molecular
462 markers conflict: a case history of subterranean amphipods from the Pilbara, Western
463 Australia. *Animal Biodiversity and Conservation* **27:** 83-94.

464 **Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994.** DNA primers for amplification
465 of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.
466 *Molecular Marine Biology and Biotechnology* **3:** 294-299.

467 **Froglia C, Ungaro N. 2001.** An unusual new record of *Typhlocaris salentina* (Caroli, 1923)
468 (Decapoda: Typhlocarididae) from subterranean water of Apulia (Southern Italy). *Atti*
469 *della Società Italiana di Scienze naturali e del Museo Civico di Storia naturale di*
470 *Milano* **142:** 103-108.

471 **Frumkin A, Dimentman C, Naaman I. 2022.** Biogeography of living fossils as a key for
472 geological reconstruction of the East Mediterranean: Ayyalon-Nesher Ramla system,
473 Israel. *Quaternary International* **624:** 168-180.

474 **Fryer G. 1964.** IV.—Studies on the Functional Morphology and Feeding Mechanism of
475 *Monodella argentariai* Stella (Crustacea: Thermosbaenacea). *Earth and Environmental*
476 *Science Transactions of The Royal Society of Edinburgh* **66:** 49-90.

477 **Guy-Haim T, Simon-Blecher N, Frumkin A, Naaman I, Achituv Y. 2018.** Multiple
478 transgressions and slow evolution shape the phylogeographic pattern of the blind
479 cave-dwelling shrimp *Typhlocaris*. *PeerJ* **6:** e5268.

480 **Hou Z, Li S. 2018.** Tethyan changes shaped aquatic diversification. *Biological Reviews* **93:**
481 874-896.

482 **Hubault E. 1937.** *Monolistra hercegoviniensis Absolon: sphéromien cavernicole*
483 *d'Herzégovine et Sphaeromicola stammeri klie son commensal.*

484 **Iturralde-Vinent M, MacPhee RD. 1999.** Paleogeography of the Caribbean region:
485 implications for Cenozoic biogeography. *Bulletin of the AMNH*: no. 238.

486 **Iturralde-Vinent MA. 2006.** Meso-Cenozoic Caribbean paleogeography: implications for
487 the historical biogeography of the region. *International Geology Review* **48:** 791-827.

488 **Jaume D. 2008.** Global diversity of spelaeogriphaceans & thermosbaenaceans (Crustacea;
489 Spelaeogriphacea & Thermosbaenacea) in freshwater. *Hydrobiologia* **595:** 219-224.

490 **Juan C, Guzik MT, Jaume D, Cooper SJ. 2010.** Evolution in caves: Darwin's 'wrecks of
491 ancient life' in the molecular era. *Molecular Ecology* **19:** 3865-3880.

492 **Jurado-Rivera JA, Pons J, Alvarez F, Botello A, Humphreys WF, Page TJ, Iliffe TM,**

493 *Willassen E, Meland K, Juan C. 2017.* Phylogenetic evidence that both ancient

494 vicariance and dispersal have contributed to the biogeographic patterns of anchialine
495 cave shrimps. *Scientific Reports* **7**: 2852.

496 **Krijgsman W, Hilgen FJ, Raffi I, Sierra FJ, Wilson D. 1999.** Chronology, causes and
497 progression of the Messinian salinity crisis. *Nature* **400**: 652-655.

498 **Laskow M, Gandler M, Goldberg I, Gvirtzman H, Frumkin A. 2011.** Deep confined karst
499 detection, analysis and paleo-hydrology reconstruction at a basin-wide scale using
500 new geophysical interpretation of borehole logs. *Journal of Hydrology* **406**: 158-169.

501 **Marin I, Krylenko S, Palatov D. 2021.** The Caucasian relicts: a new species of the genus
502 *Niphargus* (Crustacea: Amphipoda: Niphargidae) from the Gelendzhik-Tuapse area of
503 the Russian southwestern Caucasus. *Zootaxa* **4963**: zootaxa. 4963.4963. 4963-
504 zootaxa. 4963.4963. 4965.

505 **Matthews EF, Abrams KM, Cooper SJ, Huey JA, Hillyer MJ, Humphreys WF, Austin
506 AD, Guzik MT. 2020.** Scratching the surface of subterranean biodiversity: molecular
507 analysis reveals a diverse and previously unknown fauna of Parabathynellidae
508 (Crustacea: Bathynellacea) from the Pilbara, Western Australia. *Molecular
509 phylogenetics and evolution* **142**: 106643.

510 **Moutherae F, Lacombe O, Vergés J. 2012.** Building the Zagros collisional orogen:
511 timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence.
512 *Tectonophysics* **532**: 27-60.

513 **Omar GI, Steckler MS. 1995.** Fission track evidence on the initial rifting of the Red Sea:
514 two pulses, no propagation. *Science* **270**: 1341-1344.

515 **Page TJ, Hughes JM, Real KM, Stevens MI, King RA, Humphreys WF. 2016.** Allegory
516 of a cave crustacean: systematic and biogeographic reality of *Halosbaena* (Peracarida:
517 Thermosbaenacea) sought with molecular data at multiple scales. *Marine Biodiversity*
518 **48**: 1185-1202.

519 **Page TJ, Humphreys WF, Hughes JM. 2008.** Shrimps down under: evolutionary
520 relationships of subterranean crustaceans from Western Australia (Decapoda:
521 Atyidae: *Stygiocaris*). *PLOS one* **3**: e1618.

522 **Picard L. 1943.** Structure and evolution of Palestine: Geol. Dept., Hebrew University,
523 *Publication* **84**: 187.

524 **Por FD. 1962.** Un nouveau Thermosbaenacé, *Monodella relicta* n. sp. dans la dépression de
525 la Mer Morte. *Crustaceana* **3**: 304-310.

526 **Por FD. 1963.** The relict aquatic fauna of the Jordan Rift Valley: new contributions and
527 review. *Israel Journal of Zoology* **12**: 47-58.

528 **Por FD. 1975.** An Outline of the Zoogeography of the Levant 1. *Zoologica Scripta* **4**: 5-20.

529 **Por FD. 1986.** Crustacean biogeography of the late middle Miocene middle eastern
530 landbridge *Crustacean biogeography*: Routledge. 69-84.

531 **Por FD. 1987.** The Levantine landbridge: historical and present patterns. Proceedings of the
532 Symposium on the Fauna and Zoogeography of the Middle East: Dr Ludwig Reichert
533 Verlag Wiesbaden, 23-28.

534 **Por FD. 1989.** *The legacy of Tethys: an aquatic biogeography of the Levant*. Springer
535 Science & Business Media.

536 **Por FD. 2007.** Ophel: a groundwater biome based on chemoautotrophic resources. The
537 global significance of the Ayyalon cave finds, Israel. *Hydrobiologia* **592**: 1-10.

538 **Por FD. 2010.** Climate Optimum rejuvenates the Mediterranean marine world. *Integrative
539 Zoology* **5**: 112-121.

540 **Por FD. 2011.** Groundwater life: Some new biospeleological views resulting from the ophel
541 paradigm.

542 **Por FD. 2014.** Sulfide shrimp? Observations on the concealed life history of the
543 Thermosbaenacea (Crustacea). *Subterranean Biology* **14**: 63-77.

544 **Por FD, Dimentman C, Frumkin A, Naaman I.** 2013. Animal life in the chemoautotrophic
545 ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): A summing up.

546 **Porter ML.** 2007. Subterranean biogeography: what have we learned from molecular
547 techniques. *Journal of Cave and Karst Studies* **69**: 179-186.

548 **Rambaut A.** 2018. FigTree 1.4. 4 (computer program).

549 **Rambaut A, Drummond A.** 2017. TreeAnnotator v. 2.4. 7. *Edinburgh: University of*
550 *Edinburgh, Institute of Evolutionary Biology.*

551 **Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B,**
552 **Liu L, Suchard MA, Huelsenbeck JP.** 2012. MrBayes 3.2: efficient Bayesian
553 phylogenetic inference and model choice across a large model space. *Systematic*
554 *biology* **61**: 539-542.

555 **Rozenbaum A, Sandler A, Zilberman E, Stein M, Jicha B, Singer B.** 2016. 40Ar/39Ar
556 chronostratigraphy of late Miocene–early Pliocene continental aquatic basins in SE
557 Galilee, Israel. *Bulletin* **128**: 1383-1402.

558 **Sanmartín I.** 2003. Dispersal vs. vicariance in the Mediterranean: historical biogeography of
559 the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). *Journal of Biogeography*
560 **30**: 1883-1897.

561 **Spears T, DeBry RW, Abele LG, Chodyla K.** 2005. Peracarid monophyly and interordinal
562 phylogeny inferred from nuclear small-subunit ribosomal DNA sequences (Crustacea:
563 Malacostraca: Peracarida). *Proceedings of the biological Society of Washington* **118**:
564 117-157.

565 **Stern RJ, Johnson P.** 2010. Continental lithosphere of the Arabian Plate: a geologic,
566 petrologic, and geophysical synthesis. *Earth-Science Reviews* **101**: 29-67.

567 **Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A.** 2018. Bayesian
568 phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus evolution*
569 **4**: vey016.

570 **Suchard MA, Rambaut A.** 2009. Many-core algorithms for statistical phylogenetics.
571 *Bioinformatics* **25**: 1370-1376.

572 **Tamura K, Stecher G, Kumar S.** 2021. MEGA11: molecular evolutionary genetics analysis
573 version 11. *Molecular biology and evolution* **38**: 3022-3027.

574 **Tsurnamal M.** 1978. The Biology and Ecology of the Blind Prawn, *Typhlocaris Galilea*
575 Calman (Decapoda, Caridea) 1. *Crustaceana* **34**: 195-213.

576 **Tsurnamal M.** 2008. A new species of the stygobiotic blind prawn *Typhlocaris* Calman,
577 1909 (Decapoda, Palaemonidae, Typhlocaridinae) from Israel. *Crustaceana* **81**: 487.

578 **Tsurnamal M, Por FD.** 1971. The subterranean fauna associated with the blind palaemonid
579 prawn *Typhlocaris galilea* Calman. *International Journal of Speleology* **3**: 3.

580 **Wagner H, Van Damme K.** 2021. A new thermosbaenacean of the genus *Tethysbaena*
581 (Peracarida, Thermosbaenacea, Monodellidae) from Socotra Island, Yemen.
582 *Crustaceana* **94**: 487-506.

583 **Wagner HP.** 1994. A monographic review of the Thermosbaenacea (Crustacea: Peracarida)
584 A study on their morphology, taxonomy, phylogeny and biogeography. *Zoologische*
585 *Verhandelingen* **291**: 1-338.

586 **Wagner HP.** 2012. *Tethysbaena ophelica* n. sp.(Thermosbaenacea), a new prime consumer
587 in the Ophel biome of the Ayyalon Cave, Israel. *Crustaceana*: 1571-1587.

588 **Wagner HP.** 2020. Stygofauna of Oman, 8. The Thermosbaenacea collected during the
589 biological groundwater survey of Oman of 1996. *Crustaceana* **93**: 1197-1232.

590 **Wagner HP, Bou C.** 2021. Two new species of Thermosbaenacea (Peracarida,
591 Halosbaenidae and Monodellidae) from southern France. *Crustaceana* **94**: 993-1019.

592 **Wagner HP, Chevaldonné P. 2020.** *Tethysbaena ledoyeri* n. sp., a new thermosbaenacean
593 species (Thermosbaenacea) from the Port-Miou karstic aquifer in southern France.
594 *Crustaceana* **93**: 819-841.

595 **Weaver PF, Cruz A, Johnson S, Dupin J, Weaver KF. 2016.** Colonizing the Caribbean:
596 biogeography and evolution of livebearing fishes of the genus *Limia* (Poeciliidae).
597 *Journal of Biogeography* **43**: 1808-1819.

598 **Weinberger G, Rosenthal E, Ben-Zvi A, Zeitoun D. 1994.** The Yarkon-Taninim
599 groundwater basin, Israel hydrogeology: case study and critical review. *Journal of*
600 *Hydrology* **161**: 227-255.

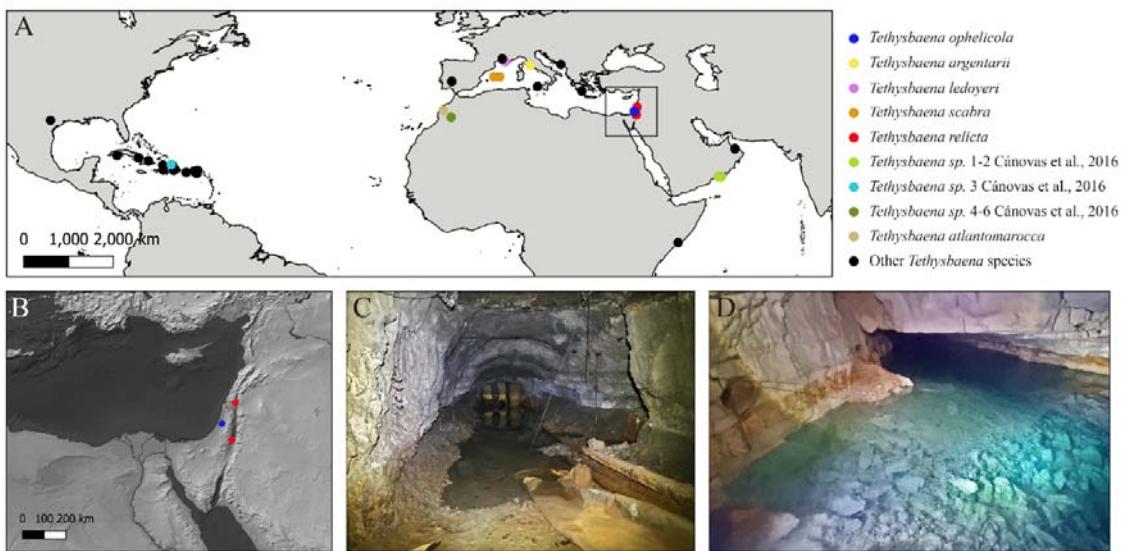
601

602

603 **TABLES**

604 Table 1: *Tethysbaena* species and outgroup included in the phylogenetic analysis

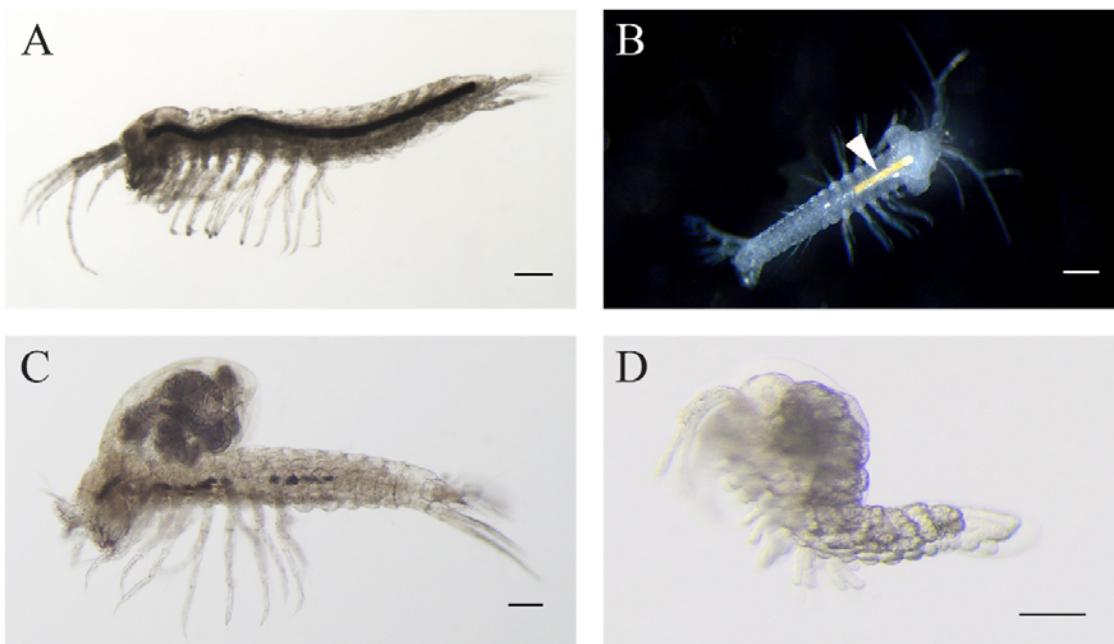
		Accession		
	Species	number	Locality	Reference
1	<i>Tethysbaena relicta</i>	OR189199.1	Dead Sea tunnel, Israel	This study
2	<i>Tethysbaena relicta</i>	OR189200.1	Dead Sea tunnel, Israel	This study
3	<i>Tethysbaena relicta</i>	OR189201.1	Dead Sea tunnel, Israel	This study
4	<i>Tethysbaena ophelicola</i>	OR189202.1	Levana cave, Israel	This study
5	<i>Tethysbaena ophelicola</i>	OR189203.1	Levana cave, Israel	This study
6	<i>Tethysbaena ophelicola</i>	OR189204.1	Levana cave, Israel	This study
7	<i>Tethysbaena ledoyeri</i>	QLI41807.1	Southern France	Wagner and Chevaldonné (2020)
8	<i>Tethysbaena ledoyeri</i>	QLI41808.1	Southern France	Wagner and Chevaldonné (2020)
9	<i>Tethysbaena argentarii</i>	CUS46917.1	Monte Argentario, Italy	Cánovas et al. (2016)
10	<i>Tethysbaena argentarii</i>	CUS46930.1	Monte Argentario, Italy	Cánovas et al. (2016)
11	<i>Tethysbaena scabra</i>	CUS46960.1	Balearic Islands	Cánovas et al. (2016)
12	<i>Tethysbaena scabra</i>	CUS46971.1	Balearic Islands	Cánovas et al. (2016)
13	<i>Tethysbaena scabra</i>	CUS47003.1	Balearic Islands	Cánovas et al. (2016)
14	<i>Tethysbaena scabra</i>	CUS47030.1	Balearic Islands	Cánovas et al. (2016)
15	<i>Tethysbaena scabra</i>	CUS46938.1	Balearic Islands	Cánovas et al. (2016)
16	<i>Tethysbaena atlantomaroccana</i>	CUS47049.1	Marrakech, Morocco	Cánovas et al. (2016)
17	<i>Tethysbaena</i> sp. 1	CUS47046.1	Dhofar coast, Oman	Cánovas et al. (2016)
18	<i>Tethysbaena</i> sp. 2	CUS47047.1	Dhofar coast, Oman	Cánovas et al. (2016)
19	<i>Tethysbaena</i> sp. 3	CUS47048.1	Southwest Dominican Republic	Cánovas et al. (2016)
20	<i>Tethysbaena</i> sp. 4	CUS47050.1	Tasla, Morocco	Cánovas et al. (2016)
21	<i>Tethysbaena</i> sp. 5	CUS47051.1	Tasla, Morocco	Cánovas et al. (2016)
22	<i>Tethysbaena</i> sp. 6	CUS47052.1	Lamkedmya, Morocco	Cánovas et al. (2016)
23	<i>Halosbaena tulki</i> (outgroup)	KT984092.1	Australia	Page et al. (2016)


605

606 **Table 2:** Divergence times for *Tethysbaena* species as estimated by the Bayesian evolutionary
607 analysis method calculated using the COI gene molecular evolution based on Cánovas et al.
608 (2016) and Bauzá-Ribot et al. (2012). Node ages and highest posterior density ($\pm 95\%$ HPD)
609 ranges are given in million years round.

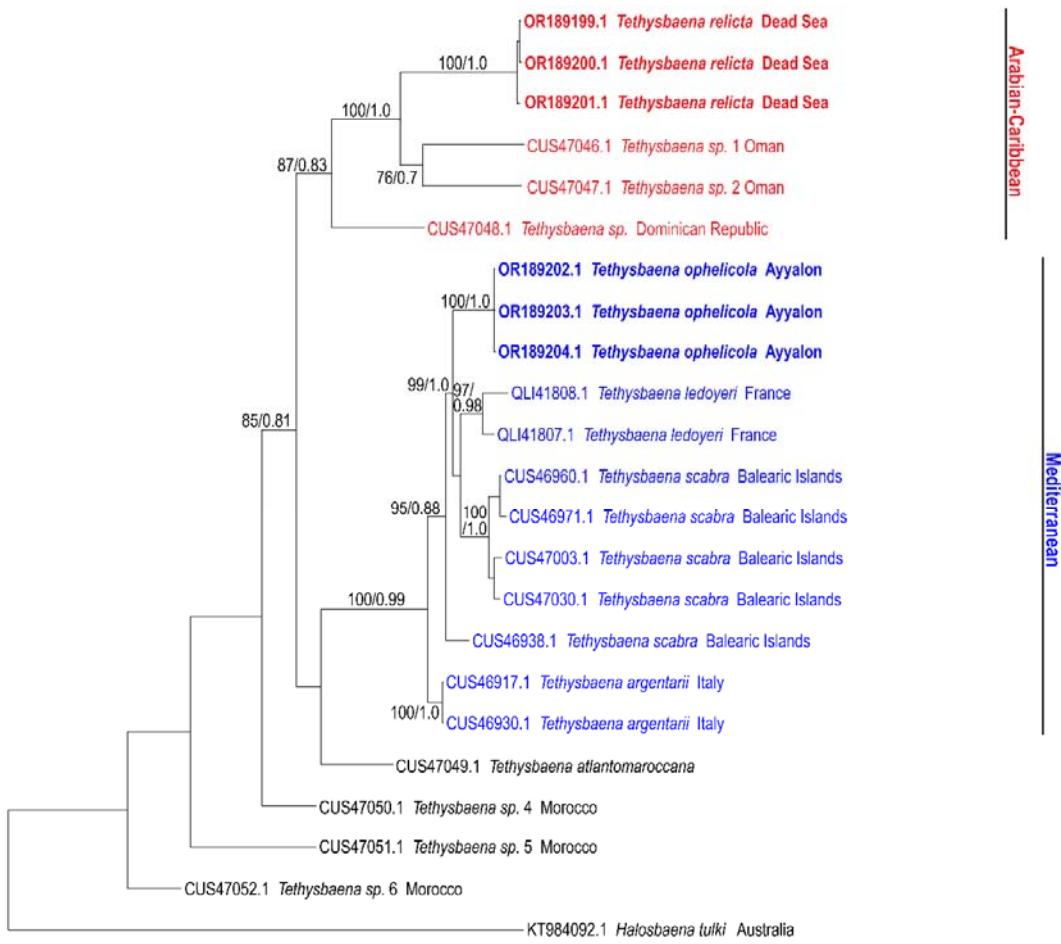
	Clade divergence (nodes)	Node age (MYA) (95% HPD range)	Geological period
1	<i>T. scabra</i> — <i>T. leyoderi</i>	8.31 (10.15 – 3.97)	Miocene
2	<i>T. scabra</i> + <i>T. leyoderi</i> — <i>T. ophelicola</i>	9.46 (14.20 – 5.71)	Miocene
3	<i>T. scabra</i> + <i>T. leyoderi</i> + <i>T. ophelicola</i> — <i>T. argentarii</i>	10.71 (16.27 – 6.04)	Miocene
4	<i>T. scabra</i> + <i>T. leyoderi</i> + <i>T. ophelicola</i> + <i>T. argentarii</i> — <i>T. atlantomaroccana</i>	32.41 (47.53 – 18.37)	Oligocene
5	<i>T. relicta</i> — <i>Tethysbaena</i> sp. (Oman)	20.13 (41.69 – 13.25)	Miocene
6	<i>T. relicta</i> + <i>Tethysbaena</i> sp. (Oman) — <i>Tethysbaena</i> sp. (Dominican Republic)	35.83 (51.41 – 22.16)	Eocene
7	<i>T. scabra</i> + <i>T. leyoderi</i> + <i>T. ophelicola</i> + <i>T. argentarii</i> + <i>T. atlantomaroccana</i> — <i>T. relicta</i> + <i>Tethysbaena</i> sp. (Oman) + <i>Tethysbaena</i> sp. (Dominican Republic)	40.42 (56.09 – 25.72)	Eocene
8	<i>Tethysbaena</i> — <i>Halosbaena</i>	79.96 (137.8 – 32.68)	Cretaceous

610


611 **FIGURES**

613 **Figure 1.** *Tethysbaena* distribution and habitats. **A.** Global *Tethysbaena* distribution. The
614 species included in the phylogenetic analysis are presented in colored circles. Other
615 *Tethysbaena* species are presented in black. Based on documented records in Wagner (1994);
616 Wagner (2012); Wagner (2020), Cánovas et al. (2016); Wagner and Chevaldonné (2020) and
617 Wagner and Bou (2021). **B.** Levantine distribution of *T. ophelicola* and *T. relicta*. **C-D.**
618 *Tethysbaena* Levantine habitats. **C.** An artificial tunnel near the Dead Sea, Israel. **D.** Levana
619 (Ayyalon) cave, Israel.

620


621

622

623 **Figure 2. A.** *Tethysbaena relicta* Por, 1962 male. **B-D.** *Tethysbaena ophelicola* Wagner,
624 2012 male (B), brooding female (C), and postmarsupial juvenile (D). The arrowhead points to
625 the orange coloration of the gut (B), indicating the presence of sulfide-oxidizing bacteria. The
626 scale bar denotes 200 μ m in A-C and 100 μ m in D.

627

628

629 **Figure 3.** Maximum-Likelihood phylogenetic tree of *Tethysbaena* based on the COI gene,
630 using the T92+G+I substitution model. *Halosbaena tulki* was used as a root node. At each
631 node, the number on the left size of the slash indicates the percentage of ML bootstrap
632 support (1000 replicates), and the right number indicates the Bayesian posterior probability
633 expressed as a decimal fraction, for nodes that received at least 50% support. The scale bar
634 denotes the estimated number of nucleotide substitutions per site.

636 **Figure 4.** *Tethysbaena* time tree using the COI gene. A relaxed MCMC clock using the
 637 uncorrelated log-normal model and substitution rate based on Cánovas et al. (2016) were
 638 implemented in BEAST v2.4. Mean ages are presented on the nodes, and the 95% HPD
 639 (highest posterior density) are presented by the blue bars.

640