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Structured Abstract

INTRODUCTION: Previous studies have applied normative modeling on a single
neuroimaging modality to investigate Alzheimer Disease (AD) heterogeneity. We employed
a deep learning-based multimodal normative framework to analyze individual-level variation

across ATN (amyloid-tau-neurodegeneration) imaging biomarkers.

METHODS: We selected cross-sectional discovery (n = 665) and replication cohorts (n =
430) with available T1-weighted MRI, amyloid and tau PET. Normative modeling estimated
individual-level abnormal deviations in amyloid-positive individuals compared to amyloid-
negative controls. Regional abnormality patterns were mapped at different clinical group
levels to assess intra-group heterogeneity. An individual-level disease severity index (DSI)
was calculated using both the spatial extent and magnitude of abnormal deviations across
ATN.

RESULTS: Greater intra-group heterogeneity in ATN abnormality patterns was observed in
more severe clinical stages of AD. Higher DSI was associated with worse cognitive function
and increased risk of disease progression.

DI SCUSSION: Subject-specific abnormality maps across ATN reveal the heterogeneous

impact of AD on the brain.
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1.Background

Alzheimer Disease (AD) is the leading cause of dementia, characterized by cognitive and
functional impairments that disrupt daily activities.[1,2] AD is highly heterogeneous,
exhibiting considerable variability in clinical manifestations, cognitive decline, disease
progression, and neuropathological changes, even within specific diagnostic categories.[3]
However, traditional statistical approaches in AD research often overlook this heterogeneity,
relying on case-control designs and group averages, effectively treating AD patients as a
homogenous group. To progress toward precision medicine in AD, it is essential to move
beyond the “average AD patient” approach and the assumption that AD affects all patients in
the same way, and characterize disease abnormalities at the individual-level.[4]

Data-driven clustering methods have been the predominant approach for exploring
heterogeneity in AD[5]. Normative modeling is an emerging statistical technique that differs
from clustering by focusing on subject-level variation instead of group averages.[6-8]
Typically, normative analysis in AD research models the relationship between brain
measures and covariates (e.g., age, sex) using univariate Bayesian regression models[8,9] or
w-scores[10,11], applied to a reference group of healthy controls. The trained normative
models are subsequently used to estimate how every AD individual deviates from the norm,
resulting in a map of individual-level variability.[8,9] However, normative modeling
approaches typically construct separate regression models independently for each brain
region, ignoring the multivariate nature of the data. To address this limitation, deep learning
approaches based on autoencoders have been used as normative models. These models
effectively capture the complex non-linear interactions between brain regions. However,
these interactions are typically restricted to same modality measurements.[12-14]

Indeed, most previous studies employing normative models have primarily relied on

single modality neuroimaging data to characterize heterogeneity in neuropsychiatric[6,7,15]


https://doi.org/10.1101/2023.08.15.553412
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553412; this version posted June 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

and neurodegenerative disorders, including AD.[8,16] This is particularly limiting in the case
of AD, which is a multi-factorial disease, involving multiple pathological processes that
interact and contribute to disease progression. To accurately characterize AD, multi-modal
imaging that can quantify biomarker pathology - including amyloid deposition, pathologic
tau and neurodegeneration - is essential. Together, these biomarkers compose the National
Institute on Aging and Alzheimer's Association research framework that helps with defining
AD as a biological construct and facilitates a more comprehensive understanding of
individual differences in cognitive performance and clinical progression.[17-21] However,
despite recent progress on developing deep learning models for normative modeling across
multiple modalities[22-24], these efforts have primarily been methodological and have not
investigated AD heterogeneity by taking into account core AD biomarkers (i.e., amyloid and
tau).[25]

In this study, we aimed to identify individual patterns of neuroanatomical and
neuropathological variation in the brains of individuals with AD using a deep learning based
normative modeling framework across amyloid-tau-neurodegeneration (ATN)[26] imaging
biomarker data from Alzheimer's Disease Neuroimaging Initiative (ADNI). Accordingly, we
trained our previously validated normative modeling framework,[22,24] which is based on
multimodal variational autoencoders (mmVAE), on data from a reference control group (i.e.,
amyloid negative cognitively unimpaired (CU) subjects). We subsequently used the trained
model to estimate the extent to which individuals spanning the AD spectrum (ADS) deviate
from the normative distribution. Our main objectives can be summarized as follows: (i)
assess the extent of neuroanatomical and neuropathological variability between individual
patients based on overlapping or distinct patterns of abnormal deviations, (ii) quantify intra-
group heterogeneity within ADS clinical groups based on differences in between-participant

dissimilarity in abnormal deviations across ATN, (iii) estimate a disease severity index (DSI)


https://doi.org/10.1101/2023.08.15.553412
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553412; this version posted June 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

for each ADS individual that can capture both the spatial extent of abnormality and the
magnitude of regional abnormal deviations across ATN, (iv) examine whether the DSI is
related to severity of dementia, impaired cognition and risk of disease progression. The
results were replicated in an independent dataset, part of the Charles F. and Joanne Knight

Alzheimer’s Disease Research Center (ADRC) dataset at Washington University in St. Louis.

2. Materials and M ethods

2.1 Participants

We constructed a discovery dataset consisting of individuals from ADNI and a replication
dataset consisting of individuals from the Charles F. and Joanne Knight Alzheimer’s Disease
Research Center (ADRC) dataset at Washington University in St. Louis. For both datasets,
participants were required to have T1-weighted magnetic resonance imaging (MRI), as well
as amyloid and tau PET imaging, completed within 1 year of one another. Note that these are
cross-sectional cohorts, and we included only the first visit for each individual for which all
modalities were available. For both datasets independently, we selected two groups based on
amyloid status (Section 2.2.3): (1) a reference control group of amyloid-negative CU (i.e.,
Clinical Dementia Rating (CDR®) = 0) individuals, which was used to train the deep learning
based normative model; and (2) a target disease group of amyloid positive individuals across
the ADS. A total of 434 amyloid-negative CU participants were included in the reference
control group (ADNI-CU), and 231 amyloid positive individuals across the ADS were
included in the target disease group (ADNI-ADS) from ADNI (Figure 1A). For ADRC, the
reference group (ADRC-CU) consisted of 301 amyloid negative CU individuals, while the
disease group (ADRC-ADS) consisted of 129 amyloid positive individuals on the ADS

(Figure 1B).
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ADNI-ADS individuals were assigned into 3 diagnostic groups based on CDR: CDR
= 0 or preclinical AD (n = 121), CDR = 0.5 (n = 80) and CDR >=1 (n = 30) (Figure 1A).
Similarly, the number of ADRC-ADS individuals in the corresponding groups were 98, 24
and 7 respectively (Figure 1B). The ADNI-CU group was further divided into a training set
for model training (ADNI-CU-train; n = 326), a holdout validation set (ADNI-CU-holdout; n
= 65) and a test set (ADNI-CU-test; n = 43) at a ratio of 75:15:10 (Figure 1A). The validation
set was used to standardize deviations of ADNI-ADS, and calculate Z-scores relative to
ADNI-CU. The test sets served as a baseline control group to compare statistics of ADS
individuals against amyloid-negative CU participants. Similarly, the ADRC-CU group was
also divided into a training set for transfer learning on the replication dataset (ADRC-CU-tl;
n = 225), a holdout validation set (ADRC-CU-holdout; n = 45) and a test set (ADRC-CU-

test; n = 31) (Figure 1B).

2.2 T1-weighted MRI imaging

2.2.1 Image acquisition

ADNI participants included in our analysis underwent T1-weighted MRI imaging using 3T

MRI scanners (details are available online https://adni.loni.usc.edu/methods/mri-tool/mri-

analysis/). Knight ADRC participants underwent T1-weighted MRI imaging using the
Siemens Biograph mMR 3T scanner. Detailed information about MRI image acquisition for

the Knight ADRC dataset can be found in the Supplementary Methods (SM1.1).

2.2.2 Image pre-processing

The T1-weighted sequences from ADNI and Knight ADRC were pre-processed using
FreeSurfer versions 6 and 5.3, respectively. The cortical surface of each hemisphere was
parcellated according to the Desikan—Killiany atlas[27] and anatomical region of interest

(ROI) measures were obtained via a whole-brain segmentation procedure (Aseg atlas).[28]
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The final data included in our analyses (both ADNI and Knight ADRC) included pre-
processed regional grey matter volumes of 66 cortical ROIs (33 per hemisphere) and 24
subcortical ROIs for each participant. All ROl volumes were normalized by the intracranial
volume (ICV). Detailed MRI pre-processing protocols for ADNI are available online

(https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/). Further information about MRI

processing protocols for the Knight ADRC dataset can be found in the Supplementary

Methods (SM1.2).

2.3 Amyloid and tau PET imaging

2.3.1 Image acquisition

ADNI participants underwent amyloid-PET imaging with either [*°F]-Florbetapir (FBP) or
[*®F]-Florbetaben (FBB) tracers and tau-PET imaging with [*®F]-Flortaucipir (FTP). Details
regarding PET acquisition for ADNI are available online

(https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/). Knight ADRC

participants underwent amyloid-PET imaging with either FBP or [*'C]-Pittsburgh Compound
B (PIB). Tau-PET imaging was performed using FTP. Further information about PET image
acquisition for the Knight ADRC can be found in the Supplementary Methods (SM2.1). To
avoid harmonization issues due to multiple tracers, we only included data collected using

FBP in our analyses for both ADNI and Knight ADRC.

2.3.2 Image pre-processing

ADNI PET images (FBP and FTP) were registered to the nearest T1-weighted image, which
was subsequently processed with FreeSurfer version 6. Detailed PET pre-processing

protocols for ADNI can be found available online (https://adni.loni.usc.edu/methods/pet-

analysis-method/pet-analysis/). All PET images from Knight ADRC (FBP and FTP) were

processed using the PET Unified Pipeline (https://github.com/ysu001/PUP)[29,30]. Further

information about PET processing protocols for Knight ADRC can be found in the
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Supplementary Methods (SM2.2). Similar to MRI ROI volumes, the final amyloid-FBP and
tau-FTP data included in our analyses from both ADNI and Knight ADRC consisted of
regional standardized uptake value ratio (SUVR) values for 66 cortical ROIs (33 per
hemisphere) and 24 subcortical ROIs for each participant. Regional SUVR values in ADNI
for amyloid-FBP and tau-FTP were normalized relative to the whole cerebellum and inferior
cerebellar gray matter reference region respectively. For Knight ADRC, all regional SUVRs
for both amyloid-FBP and tau-FTP were calculated with cerebellum cortex as the reference
region.

2.3.3 Amyloid positivity

A summary estimate of global amyloid (FBP) burden in ADNI was calculated as the average
SUVR within cortical meta-ROI (spanning frontal, anterior/posterior cingulate, lateral
parietal, and lateral temporal regions) which was normalized with a whole cerebellum
reference region. ADNI individuals with meta-ROl SUVR uptake greater than 1.11 cut-off
were labelled as amyloid positive, following established cut-off procedures recommended
within ADNI documentation.[31-34].

For Knight ADRC, an estimate of total cortical amyloid burden was derived by
computing the SUVR of a meta-ROI consisting of lateral and medial orbitofrontal, middle
and superior temporal, superior frontal, rostral middle frontal, and precuneus ROIs from both
hemispheres. The meta-ROlI SUVR was normalized using the cerebellar cortex reference
region. Knight ADRC individuals with meta-ROl SUVR greater than the 1.24 cut-off were

considered amyloid positive, in line with the established literature.[18,35]

2.4 Clinical and cognitive assessments
Clinical and cognitive assessments for both ADNI and Knight ADRC were only included if
they occurred within one year of MRI imaging. Participants were assessed for dementia using

the CDR Scale[36]. Cognitive performance was quantified by computing neuropsychological
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composites for memory, executive functioning, and language, independently for ADNI and

Knight ADRC (SM3).

2.5 Multimodal Normative Modeling

2.5.1 Model training

In this study, we used a previously validated deep learning based normative modeling
framework.[12,22,24] This framework is based on a multimodal variational autoencoder
(mmVAE), which takes as input cross-sectional ATN biomarker data including regional gray
matter volumes, as well as amyloid FBP and tau FTP SUVR values (Figure S1). mmVAE
had separate encoders for each modality to learn a shared latent space, which is a joint
distribution across the different modalities. The shared information in the aggregated latent
space was fed through modality-specific decoders to reconstruct each modality (Figure S1).
Details of the mmVAE architecture are provided in Supplementary Methods (SM4.1,
SM4.2).

Initially, mmVAE was trained using the ADNI-CU-train set, where the input matrix
had dimensions of 326 x 270 (subjects x ROIls, with 90 ROIs for each modality). During
training, mmVAE learns to reconstruct the multimodal input data as closely as possible to the
original. The joint latent distribution allows the model to learn the healthy brain patterns
across all modalities. These include the variability in MRI estimates, regional noise or off-
target binding for amyloid FBP and age-associated tau FTP accumulation within healthy
individuals. mmVAE was conditioned on the age and sex of participants to remove the effect
of covariates (see Supplementary Methods SM4.3). For replication in the Knight ADRC
dataset, mmVAE pretrained on ADNI-CU-train underwent fine-tuning on ADRC-CU-tl
through transfer learning (Section 2.1). Further information about model training and

hyperparameter details are available in Supplementary Methods (SM4.3).


https://doi.org/10.1101/2023.08.15.553412
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553412; this version posted June 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

2.5.2 Calculating regional deviations for each modality

The main idea of the normative approach is that mmVAE learns only to reconstruct the data
of CU individuals. Since individuals on the ADS will differ from CU individuals due to the
AD pathology, mmVAE will be less precise in reconstructing their data. As a result, the
difference between the reconstructed and input data will be larger in the ADS cohort
compared to CU individuals. For each participant in ADNI-ADS and ADRC-ADS, deviations
for each region and for each modality can be calculated as the squared error between input

and reconstructed data (Figure S1).

2.5.3 Normalizing deviations into Z-scores

Considering the complexity of the brain data, we expect that mmVAE might not fully capture
normal variations in healthy subjects, leading to some reconstruction error. Hence, it' is
important to standardize ADNI-ADS deviations using ADNI-CU-holdout set (see section 2.1)
as a reference for the CU population. We utilized the mean and variance (calculated
independently for each region) from ADNI-CU-holdout to normalize regional deviations in
the ADNI-ADS cohort across each modality. Following fine-tuning of mmVAE on ADRC-
CU-tl, a similar process was applied using ADRC-CU-holdout to normalize deviations in
ADRC-ADS. This step generated regional, modality-specific Z-score deviations for each
individual in the ADS cohort relative to the normative range of the respective reference

control group (Figure S1).

2.6 Statistical Analysis

2.6.1 Reqgional abnormal deviations across ATN biomarkers

For MRI gray matter volumes, regional Z-scores below -1.96 (bottom 2.5% of the normative

distribution) were labelled as abnormal (statistically significant) deviations. As followed in
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previous normative modeling literature[8,16], the lower bound was used because we were
interested in gray matter loss (MRI atrophy) associated with neurodegeneration. Similarly
regional deviations in amyloid-FBP and tau-FTP SUVR were identified as abnormal if their
Z-scores were above 1.96 (top 2.5% of the normative distribution). This upper bound was
chosen to focus on increased amyloid/tau SUVR uptake (high amyloid/tau burden) linked to
pathological accumulation.[8,16] For each ADS individual, we created a binary thresholded
abnormality map, marking regions with abnormal deviations as 1 and others as 0. These
abnormality maps were calculated for each modality (MRI, amyloid, or tau) with 90 regions

each and also aggregated across all modalities combined (270 regions).

2.6.2 Group differences of regional abnormal deviations across ATN imaging biomarkers

We examined the magnitude of abnormal deviations in each region between amyloid
negative CU individuals (CU-test; section 2.1) and clinical groups along the ADS: (i) CDR =
0 (preclinical AD), (ii) CDR = 0.5 (very mild dementia), and (iii) CDR >= 1 (mild or more
severe dementia). Our aim was to validate the derived regional abnormal deviations by
examine examining whether these deviations showed increased group differences across
progressive CDR stages. We quantified group differences using Cohen’s d-statistic effect
size, calculated separately for each modality.38 A higher effect size when comparing regional
MRI volumes indicated lower gray matter volume (more atrophy). Similarly, a higher effect
size when comparing amyloid or tau uptake indicated elevated SUVR uptake (higher amyloid
and tau loads) compared to the amyloid-negative CU group. We repeated these group

comparisons for both ADNI and Knight ADRC independently.

2.6.3 Analysis of spatial distribution of abnormal deviations across ATN across ATN
imaging biomarkers

The group comparisons between each of the ADS groups and the amyloid-negative CU group

(section 2.6.2) effectively assumed that every clinical group is homogenous in the regional
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patterns of abnormal deviations across all the modalities. To better understand disease
heterogeneity, we also aimed to assess the variability in spatial patterns of neurodegeneration
(MRI atrophy) and neuropathology (amyloid and tau deposition) across clinical groups.
Towards this end, we computed the proportion of abnormal deviations (fraction of
individuals with abnormal deviations; section 2.6.1) separately for each region, modality and
clinical group. The regional proportion of abnormal deviations was calculated for each of the
ADS clinical groups and a group of amyloid-negative CU individuals (CU-test; section 2.1)

independently for both the ADNI and Knight ADRC datasets.

2.6.4 Intra-group heterogeneity within ADS groups

Next, we aimed to quantify the intra-group heterogeneity across ADS clinical groups and
assess whether this increases across progressive dementia stages. We used hamming distance
to measure the dissimilarity in binary-thresholded abnormality maps (section 2.6.1) between
every pair of ADS individuals, with higher distance indicating more dissimilarity. Hamming
distances were estimated for both modality-specific abnormality maps (hamming_mri,
hamming_amyloid and hamming_tau) and abnormality maps aggregated across all modalities
(hamming_all). Median hamming distances were compared across ADS groups and an
amyloid-negative CU group (CU-test; section 2.1). Distribution of hamming distances were
visualized using kernel density estimation (KDE) plots across ADS groups, reflecting the
extent of intra-group heterogeneity. The intra-group heterogeneity analysis was performed

independently for both ADNI and Knight ADRC cohorts.

2.6.5 Disease severity index (DSI) across ADS groups

Our objective was to design a Disease Severity Index (DSI) for each ADS individual which
can capture both the spatial extent and magnitude of regional abnormal deviations across

multiple modalities into a single, subject-specific metric. DSI was calculated separately for
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each modality (DSI_mri, DSI_amyloid, DSI_tau) and also aggregated across all modalities
(DSI_all). Specifically, every individual's DSI was calculated by i) first performing an inner
product between the binary thresholded abnormality map (section 2.6.1) and the regional
deviation vector; and then normalizing the inner product by the total number of regions (ns =
90 for DSI_mri, DSI_amyloid, DSI_tau and ng = 270 for DSI_all).

DSI_all represents a personalized measure of brain health that accounts for individual
variability in gray matter volume, and amyloid and tau deposition, rather than relying on
average group relationships. To demonstrate this, we first compared DSI values between the
different ADS groups and a group of amyloid-negative CU individuals (CU-test; section 2.1).
This allowed us to examine the association between increasing DSI and progressive dementia
stages (high CDR). FDR-corrected post hoc Tukey comparisons were used for pairwise group

differences.

2.6.6 Association between DSI and cognitive performance

We then examined the associations between DSI values (DSI_mri, DSI_amyloid, DSI_tau
and DSI_all) and the three neuropsychological composites: memory, executive functioning,
and language (section 2.4, SM3) in both ADNI-ADS and ADRC-ADS cohorts. The
associations were estimated using linear regression, adjusted for age and sex. Additionally,
Pearson correlation coefficient was used to measure the pairwise correlation between each of

the DSI categories and the composites.

2.6.7 Relationship between DSI and CDR progression

Lastly, we examined associations of DSI_all and clinical progression in both ADNI-ADS and
ADRC-ADS cohorts. For this analysis, we included subjects with follow-up CDR status data,
who were CDR < 1 at their baseline visit with all three modalities present. We analyzed the

relationship between DSI_all and CDR progression using survival analysis, adjusting for age
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and sex. The event of interest was progression to CDR >= 1. A Kaplan-Meier plot was used
to illustrate the impact of the 4 DSI_all quantiles on disease progression risk. Log-rank tests
estimated pairwise differences in progression risk among the DSI_all quantiles. Post-hoc

comparisons were adjusted for multiple comparisons using FDR.[37]

2.6.8 Code availability and visualizations

All analyses were performed using Python 3.7. All visualizations of the brain atlases for the
effect size maps (Section 2.5.2) and proportion of abnormal deviation maps (Section 2.5.3)
were visualized using the python package ggseg.[38] Hamming distance distributions at
group level were visualized using kernel density estimation (KDE) plots. Code for the project

will be made publicly available upon acceptance.

3. Results

3.1 Dataset characteristics

Sample characteristics for the ADNI-ADS and ADRC-ADS cohorts are shown in Table 1.
The ADNI-ADS cohort was older (p = 0.035), while the ADRC-ADS cohort had more
females (p = 0.006). ADRC-ADS showed less memory impairment, indicated by higher
MMSE scores (p < 0.001) and a higher proportion of individuals with CDR = 0 or preclinical
AD (p <0.001).

Sample characteristics for the ADNI-CU and ADRC-CU datasets are in Table S1. ADNI-CU
participants were older (p < 0.001), whereas there were more females in ADRC-CU (p =
0.026). ADNI-CU participants had slightly lower MMSE scores than ADRC-CU, but this
difference was not statistically significant (p = 0.067). CU participants in ADNI and ADRC
had lower age and higher MMSE scores compared to their ADS counterparts (i.e., ADNI-CU
vs. ADNI-ADS; ADRC-CU vs. ADRC-ADS), with all differences being statistically

significant (p < 0.001).
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3.2 More severedementia was associated with pronounced regional
atrophy and elevated regional amyloid and tau burden in ADS patients

3.2.1 Discovery dataset - ADNI

Region-level (total of 90 regions—FDR corrected) pairwise group comparisons with
amyloid-negative CU individuals (CU-test) provided evidence that gray matter volumes were
lower in 56 regions in mild or more severe dementia, in 22 regions in very mild dementia,
and no regions in preclinical AD (Table S2). Maximum group differences in atrophy were
observed in the temporal, parietal, and hippocampal regions, and to a lesser extent in the
frontal, occipital, and amygdala regions (Figure 2A). Expectedly, regional-level pairwise
group comparisons with amyloid-negative CU individuals revealed higher amyloid burden in
84 regions in mild or severe dementia, in 75 regions in very mild dementia, and 85 regions in
preclinical AD (Table S2). Higher effect sizes for amyloid burden were mostly observed in
the medial orbitofrontal, precuneus, temporal and frontal pole regions. Similarly, pairwise
group comparisons with CU individuals revealed increased tau deposition in 80 regions in
mild or severe dementia, in 62 regions in very mild dementia, and no regions in preclinical
AD (Table S2). Regions with high effect sizes for tau burden included the temporal, frontal,

precuneus, parietal and hippocampal regions (Figure 2A).

3.2.2 Replication dataset - Knight ADRC

We found a notable similarity between the effect size maps estimated in ADRC-ADS and in
ADNI-ADS (Figure 2B). Similar to ADNI-ADS, statistically significant volumetric
differences in ADRC-ADS were mainly seen in the temporal, parietal, and hippocampal
regions. More regions showed pronounced atrophy in mild or severe dementia (n, = 50)
compared to very mild dementia (n, = 25), with no abnormal regions for preclinical AD.

Elevated amyloid burden was observed in more regions for mild or severe dementia (n, = 81)
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compared to very mild dementia (n, = 77), with 82 abnormal regions for preclinical AD
(Table S2). Greater effect sizes were observed in the frontal and temporal regions (Figure
2B). Similarly, statistically significant group differences in regional tau deposition were
found across various dementia severity levels (mild or severe dementia; n, = 74, very mild
dementia; n, = 52, and preclinical AD; n, = 0), with greater effect sizes observed in the

temporal and hippocampal regions (Table S2, Figure 2B).

3.3 ADS individualswith mor e sever e dementia have higher proportion of
abnormal deviationsin regional atrophy, amyloid and tau burden

3.3.1 Discovery dataset - ADNI

The proportion of abnormal deviations defined within each clinical group differed in regional
patterns between the mild or more severe dementia, the very mild dementia, the preclinical
AD, and the controls group (Figure 3A). As far as regional gray matter volumes are
concerned, the highest proportion of abnormal deviations was observed in hippocampal
regions: 47% in the mild or more severe dementia group, 25% in the very mild dementia
group, 6% in the preclinical AD group, and 3% in the amyloid-negative CU group. Regarding
regional amyloid burden, the highest proportion of abnormal deviations was observed for
precuneus and frontal pole cortices: 100% in the mild or more severe dementia group, 87% in
the very mild dementia group, 71% in the preclinical AD group, and 5% in the CU group.
Lastly, the proportion of abnormal deviations in tau deposition was observed in hippocampal
and entorhinal regions: 84% in the mild or more severe to severe dementia group, 65% in the
very mild dementia group, 24% in the preclinical AD group, and 14% in the CU group.
Overall, a higher proportion of abnormal deviations was observed for regional amyloid and
tau burden than gray matter volume. This trend was consistent across the dementia stages

(Figure 3A).
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3.3.2 Replication dataset - Knight ADRC

In line with the ADNI-ADS results, we observed a consistent pattern of higher proportion of
regional abnormal deviations with increased dementia severity (Figure 3B). Additionally, we
observed similar regional patterns of abnormal deviations across all three modalities.
Specifically, the highest proportion of abnormal deviations was observed for the same
regions in both datasets, i.e., hippocampal and temporal regions for MRI, frontal regions and
precuneus for amyloid, and temporal and parietal regions for tau (Figure 3B) However, a
lower proportion or regional abnormal deviations was observed for the mild or more severe
dementia group in ADRC-ADS compared to the corresponding group in ADNI-ADS. This is

likely due to the smaller sample size for this group (n =7) in ADRC-ADS (Figure 3B).

3.4 ADS individualswith more sever e dementia are mor e heter ogenous
compar ed to individuals with less dementia

3.4.1 Discovery dataset - ADNI

The distribution of Hamming distance calculated for all modalities (hamming_all) showed
greater within-group heterogeneity (dissimilarity) for ADNI-ADS individuals at progressive
stages of dementia (Figure 4A). The median Hamming distance (hamming_all) significantly
differed between groups overall (p < 0.001). Pairwise comparisons in median hamming
distance (Tukey post-hoc) were all significant (p < 0.001) except between the very mild
dementia and the mild or more severe dementia group. Specifically, the Hamming distance
was the highest in individuals with mild or more severe dementia (median 62, IQR 39, 95%
Cl1 60.3-63.8), followed by the very mild dementia group (median 56, IQR 34, 95% CI 58.1—
59.3) and the preclinical AD (CDR = 0) group (median 47, IQR 30, 95% CI 49.2-50.1)
(Figure 4A). The lowest Hamming distance was observed in the CU group (ADNI-CU-test;

median 5, IQR 6, 95% CI 8.4-10.7). For Hamming distance variants calculated using a single
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modality, we observed the same pattern of higher dissimilarity for ADS patients at
progressive stages of dementia (Figure S2A). Within each clinical group, MRI showed the
highest within-group heterogeneity in spatial patterns of abnormal deviations, followed by

tau and amyloid (Figure S2A).

3.4.2 Replication dataset - Knight ADRC

Consistent with ADNI-ADS results, we observed greater within-group dissimilarity for
ADRC-ADS individuals at progressive stages of dementia (Figure 4B). Similar to ADNI, the
median Hamming distance (hamming_all) significantly differed between groups overall (p <
0.001). Pairwise comparisons in median hamming distance (Tukey post-hoc) were all
significant (p < 0.001) except between the very mild dementia and the mild or more severe
dementia group. Within-group dissimilarity was higher for the mild or more severe (median
39, IQR 40, 95% CI 28.8-43.5) and the very mild dementia (median 30, IQR 33, 95% CI
30.7-34.5) groups compared to preclinical AD (median 14, IQR 20, 95% CI 21.6-22.9) and
the CU groups (median 4, IQR 8, 95% CI 6.9-8.5). We observed the same trend when
examining Hamming distances calculated for each modality separately (hamming_mri,
hamming_amyloid, and hamming_tau). Lastly, similarly to ADNI-ADS results, MRI
exhibited the highest within-group dissimilarity in spatial patterns of abnormal deviations

compared to amyloid and tau (Figure S2B).

3.5Higher DSI was associated with progressive stages of dementia

3.5.1 Discovery dataset - ADNI

DSI calculated across all modalities (DSI_all) exhibited minimal values for CU individuals
(ADNI-CU-test; mean = 0.06, IQR = 0.03, 95% CI = [0.007-0.1]), with a consistently
increasing trend across dementia stages (Figure 5A). Specifically, maximum DSI_all values

were observed for ADNI-ADS individuals with mild or more severe dementia (mean = 1.8,
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IQR = 1.5, 95% CI = [1.31-2.26]), followed by individuals with very mild dementia (mean =
1.1, IQR = 1.3, 95% CI = [0.87-1.25]) and preclinical AD individuals (mean = 0.45, IQR =
0.6, 95% CI = [0.39-0.52]). Pairwise group differences were statistically significant (FDR
corrected p < 0.05), except between very mild dementia and mild to more severe dementia
groups (Figure 5A). When calculated across individual modalities, DSI values consistently
increased at more advanced stages of dementia for all three modalities (i.e., DSI_mri,
DSI_amyloid, DSI_tau; Figure S3A). DSI values calculated for amyloid and tau
(DSI_amyloid, DSI_tau) were higher across CDR groups compared to DSI values calculated
for MRI (DSI_mri). Pairwise group differences were statistically significant for DSI
calculated for individual modalities except between very mild dementia and moderate to
severe dementia groups for DSI_mri, DSI_amyloid, DSI_tau, and between CU-test and

preclinical AD for DSI_mri and DSI_tau (Figure S3A).

3.5.2 Replication dataset — Knight ADRC

We found similar patterns of increasing DSI values at progressive dementia stages in the
ADRC-ADS cohort (Figure 5B). DSI_all was highest for individuals with mild to more
severe dementia (mean = 0.46, IQR = 0.28, 95% CI = [0.25-0.6]) and lowest for ADRC-CU-
test individuals (mean = 0.006, IQR = 0.005, 95% CI = [0.002-0.008]) (Figure 5B).
Individuals with preclinical AD (mean = 0.21, IQR = 0.22, 95% CI = [0.12-0.37]) and very
mild dementia exhibited intermediate DSI_all values (mean = 0.32, IQR = 0.32, 95% CI =
[0.21-0.5]). Pairwise group differences were statistically significant (p < 0.05) except
between the very mild dementia and moderate to severe dementia groups (Figure 5B).
Notably, higher DSI_all values were observed in ADNI-ADS compared to ADRC-ADS,
likely due to more ADS individuals with advanced disease stages in ADNI compared to the
ADRC dataset. Modality-specific DSI values (i.e., DSI_mri, DSI_amyloid, and DSI_tau) for

ADRC-ADS individuals showed similar trends as observed in ADNI (Figure S3B).
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3.6 Higher DSI values wer e associated with impaired cognition

3.6.1 Discovery dataset - ADNI

Linear regression, adjusted for age and sex, revealed significant associations between higher
DSI_all values and decreased values in neuropsychological composites: memory (f = -0.6; p
< 0.001; r = -0.62), executive functioning (f = -0.46; p < 0.001; r = -0.54), and language ( =
-0.39; p < 0.001; r = -0.47) (Table 2). Similar statistically significant associations were
observed for DSI values based on individual modalities (DSI_mri, DSI_amyloid, DSI_tau).
The correlations were higher for DSI_tau compared to DSI_mri and DSI_amyloid (Table S3).
However, correlations were higher for DSI_all compared to modality-specific DSI,

highlighting the benefits of taking into account information across all modalities (Table 2).

3.6.2 Replication dataset - Knight ADRC

We observed similar trends of significant associations between DSI_all and the
neuropsychological composites in ADRC-ADS (Table 2). In ADRC-ADS, DSI_all was
significantly associated with memory (p = —-0.71; p < 0.001; r = -0.68), executive functioning
(B =-0.52; p <0.001; r =-0.56), and language (p = —0.36; p < 0.001; r = -0.41). Similarly,
DSI calculated for individual modalities exhibited significant associations with cognitive
domains, with DSI_amyloid and DSI_tau generally showing higher correlations than

DSI_mri (Table S3).

3.7 Higher DS isassociated with increased risk for clinical progression

3.7.1 Discovery dataset - ADNI

Longitudinal clinical status data were available for 175 individuals in ADNI-ADS with either
no or very mild dementia at baseline. DSI_all was significantly associated with the risk of

progressing to mild or more severe dementia (p < 0.001; Figure 6A). Notably, individuals in
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higher DSI quartiles, particularly g4 (p < 0.001) and g3 (p < 0.01), demonstrated a
heightened risk of progression compared to those in lower quartiles, namely g1 and g2 (Table

S4).

3.7.2 Replication dataset - Knight ADRC

Longitudinal clinical status data were available for 85 ADS individuals with either no or very
mild dementia at baseline (CDR = 0 or CDR = 0.5). As in ADNI-ADS, the survival analysis
in ADRC-ADS showed an association between DSI_all and clinical progression (Figure 6B).
In ADRC-ADS, individuals in g4 (p < 0.001) and g3 (p < 0.01) progressed more rapidly to

severe dementia than those in gl and g2 (Table S4).

4. Discussion

In this study, we applied a deep learning based normative modeling framework across
multiple neuroimaging modalities to assess heterogeneity in neuroanatomical and
neuropathological changes in the brain of individuals with AD. Results showed evidence of
(i) heterogeneous patterns of abnormal deviations in regional volumetric measurements as
well as amyloid and tau deposition between patients with AD; (ii) increased dissimilarity in
spatial patterns of abnormal deviations for AD patients at more severe dementia stages; (iii)
associations of DSI, which distils spatial patterns of abnormal deviations across multiple
modalities in a single index for each subject, with cognitive performance, as well as (iv)
associations of DSI with increased risk of disease progression. Our observations were
reproducible in both the discovery and replication datasets, which demonstrated the

generalizability of our scientific findings.

4.1 Deep learning based normative modeling


https://doi.org/10.1101/2023.08.15.553412
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553412; this version posted June 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Normative approaches to study heterogeneity in AD typically learn a regression model
independently for each brain region, ignoring the multivariate nature of the data.[4,8,16] Our
work used a deep learning-based normative model, specifically a variational autoencoder, to
capture the complex non-linear interactions within multivariate data, rather than modeling
each variable independently. However, existing studies using deep normative models have
been limited in studying interactions between single modality measurements (e.g., regional
volumetric measurements extracted from T1-weighted MRI).[12,13] To accurately
characterize a multi-factorial disease like AD, it is essential to use multiple neuroimaging
modalities that can quantify biomarker pathology - including neurodegeneration, amyloid and
tau deposition. Despite recent progress on developing deep learning normative models for
multiple modalities, these approaches have primarily focused on methodological
advancements.[14,23] Further, these studies validated their approach using measurements
extracted from MRI and did not investigate AD heterogeneity using the core AD biomarkers
(i.e. amyloid and tau). Our work used a multimodal deep learning based normative modeling
framework to investigate AD heterogeneity through the lens of multimodal imaging-based

ATN biomarkers i.e., neurodegeneration, amyloid and tau biomarkers.

4.2 Variation in spatial patternsof abnormal deviations across gray matter
volume, amyloid and tau burden

Our findings both complement and provide new insights to the established understanding of
the neurobiology of AD. High proportion of abnormal deviations in regional gray matter
volumetric measurements was observed in hippocampal and medial-temporal regions, areas
known to be associated with neurodegeneration.[39,40] Abnormal deviations in amyloid
deposition were observed the most in the in the precuneus, frontal and temporal regions,
which are among the first areas to accumulate FBP amyloid pathology.[41-43] Similarly,

maximum abnormal deviations in tau deposition were observed in the medial and lateral
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temporal regions. These regions are among the first to accumulate tau and are typically used
to construct the meta-ROI to characterize early tau accumulation.[10,44]

The regions with the highest proportion of abnormal deviations across all modalities
(e.g., medial-temporal regions) represent the areas associated with onset of clinical symptoms
related to “typical AD”. The proportion of abnormal deviations for these “typical” regions
also increases with disease severity which complements the current literature on AD.[39,40]
However, our work extends the literature by showing that there are other regions with lower
proportion of abnormal deviations. This suggests partial overlap between ADS patients,
which challenges the validity of a “typical AD” patient. Further, this is in conflict with the
assumption of disease group homogeneity that is common among typical analytical tools,
such as case-control studies. Further evidence for the partial overlap between patients were
provided by the Hamming distance analyses, which quantified it and demonstrated increased
dissimilarity in spatial patterns of abnormal deviations between AD patients at more severe
dementia stages. Together, the results of the regional proportion of abnormal deviations
across the three modalities (Figure 3) and the results of the Hamming distance analyses
(Figure 4) provide evidence that ADS patients not only differ in the number of regions with
statistically significant abnormal deviations but also in their respective patterns of abnormal
deviations.

Further, our results indicated that for all ADS groups, the spatial patterns of abnormal
deviations for MRI had the highest within-group dissimilarity, followed by tau and amyloid
(Figure S2). These observations are also supported by our results in Figure 3 where the
highest proportion of abnormal deviations across all ADS groups was the lowest for MRI
(47%), higher for tau (84%) and the highest for amyloid (100%). This indicated greater
variation in the spatial patterns of gray matter atrophy and tau pathology compared to

amyloid deposition.
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The observed variation in abnormal deviations across the three imaging modalities is
in line with previous single-modality normative modeling and subtyping studies.[16,45,46]
Specifically, a similar proportion of regional abnormal deviations was reported in a previous
normative modeling study examining cortical thickness heterogeneity in AD.[16] Moreover,
studies using T1-weighted MRI or tau PET to estimate subtypes within the ADS population
identified more subtypes for MRI (4 subtypes[47-49] or 3 subtypes[50-53]) and tau (4
subtypes[45,54,55]) compared to the ones using amyloid PET as the input modality (2
subtypes[46,56]). The fewer amyloid-driven subtypes indicate less heterogeneity compared to

MRI and tau, consistent with our findings.

4.3 DSl _all asa potential marker of brain health

We developed a multimodal metric DSI_all which provides an individualized metric of brain
health that takes into account individual variability in patterns of gray matter volume,
amyloid and tau deposition instead of quantifying group average relationships. Recent studies
have relied on single modality to calculate the total count of regions with abnormal
deviations in cortical thickness as a marker of disease progression.[8,16] Additionally, recent
studies have also quantified tau spread (TSS) for predicting cognitive impairment and disease
progression.[57,58] In contrast to these previous approaches, DSI_all captures both the
spatial spread and magnitude of regional abnormal deviations across all modalities. This
allows DSI_all to quantify neurodegenerative and neuropathological changes in the brain,
providing a personalized metric of brain health, which can assist in clinical decision making.
This is further supported by the demonstrated associations with cognitive performance,
disease severity and clinical progression. Lastly, DSI_all can be potentially used to monitor
the amyloid burden and track patient response to recently FDA-approved AD treatments,

such as Aducanumab and Lecanemab medications.[59,60]


https://doi.org/10.1101/2023.08.15.553412
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553412; this version posted June 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

4.4 Limitations, and scope for futurework

There are certain limitations that need to be considered regarding our analyses. First, we used
cross-sectional imaging data for our normative modeling framework, providing a snapshot of
the disease at a specific time. Due to the cross-sectional setting, it is challenging to
distinguish between stages and subtypes. While the results of our analyses examining the
regional proportions of abnormal deviations as well as patient dissimilarity across disease
stages demonstrated that the observed variability of spatial patterns is due to both disease
progression and spatial heterogeneity, future works should incorporate serial neuroimaging
data collected across multiple time points to better characterize disease progression and
heterogeneity. Second, both ADNI and Knight ADRC datasets consisted of individuals from
North America only, which are not representative of the general population. Future normative
modeling works should consider a more diverse population for the reference control group,
sampled from different geographical regions. This can allow studies to have a larger sample
size for a more accurate representation of the healthy brain. Third, the imaging scans in the
discovery and replication cohorts were processed with a different version of FreeSurfer
(FreeSurfer 6 for ADNI and FreeSurfer 5.3 for ADRC). Although we fine-tuned our pre-
trained normative model on the replication cohort, the different versions of FreeSurfer may
potentially add noise to the normative model. To address this issue, it is important to consider
harmonization methods like COMBAT for future multi-site studies on normative

modeling.[61]

45 Conclusions

In this paper, we assessed the heterogeneity in AD through the lens of multiple neuroimaging
modalities by estimating regional statistically significant neurodegenerative and

neuropathological deviations at the individual level. We studied these subject-specific maps
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of regional abnormal deviations across gray matter volume, amyloid burden and tau
deposition and observed higher variability in the spatial patterns of MRI atrophy compared to
amyloid and tau burden. Additionally, we showed higher within-group heterogeneity for
ADS patients at increased dementia stages. Lastly, we developed an individualized metric of
brain health that summarizes the extent and severity of neurodegeneration and
neuropathology. Together the individualized disease severity index and the subject-specific
maps of abnormal deviations have the potential to assist in clinical decision making and
monitor patient response to anti-amyloid treatments. Our results were reproducible in both

the discovery and replication datasets, demonstrating the generalizability of our findings.
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Figure Captions

Figure 1. Flow chart of ADNI (1A) and Knight ADRC (1B) study participants.
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Figure 2: Brain atlas maps (Desikan-Killiany atlas for 66 cortical regions and Aseg atlas for
24 subcortical regions) showing the pairwise group differences in magnitude of deviations at
each region between the amyloid negative CU group and each of the CDR groups in ADNI
(2A) and Knight ADRC (2B). The figures from left to right indicate the brain maps
corresponding to MRI, amyloid and tau, respectively. The color bar represents the effect size
(Cohen’s d statistic). Effect sizes of d =0.2,d = 0.5, and d = 0.8 are typically categorized as
small, medium, and large, respectively. Gray regions represent the regions with no

statistically significant deviations after FDR correction.

Figure 3: Brain atlas maps (Desikan-Killiany atlas for 66 cortical regions and Aseg atlas for
24 subcortical regions) showing the proportion of abnormal deviations for each region in
ADNI (3A) and Knight ADRC (3B). The figures from left to right indicate the brain maps
corresponding to MRI, amyloid and tau respectively. The color bar represents the proportion
of abnormal deviations of each region from 0 to 100%. Gray represents that no participants

have abnormal deviations for that region.

Figure 4: Hamming distance density (KDE plot) which illustrates the spread of dissimilarity
in abnormality patterns (calculated by the Hamming distance for all modalities or
hamming_all; see Section 2.5.4) within each CDR group for ADNI (4A) and Knight ADRC
(4B). Higher hamming distance values indicated intra-group more heterogeneity in

abnormality patterns.
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Figure 5: Box plot showing DSI_all (DSI across all modalities; see Section 2.5.5) for both
ADNI (5A) and Knight ADRC (5B). The x-axis shows the different CDR groups in the ADS
and CU-test (Section 2.2.1 and 2.3.1). FDR-corrected post hoc Tukey comparisons used to
assess pairwise group differences. Abbreviations: DSI: Disease Severity Index, CDR =
Clinical Dementia Rating. Statistical annotations: ns: not significant 0.05 <p <=1, *0.01 <p

<=0.05, ** 0.001 < p < 0.01, *** p < 0.001.

Figure 6: Kaplan-Meier plot of conversion from CDR < 1 to CDR >=1 for ADNI-ADS (6A)
and ADRC-ADS (6B) participants. The x-axis and the y-axis represent the follow-up period
(in months) and the probability of progressing from CDR <1 to CDR >= 1 respectively. The
four lines represent the four quantiles of DSI_all (DSI across all modalities), shown by blue,
red, green and orange respectively. The filled color span represents the 95% confidence

intervals.
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