

1 The consequence of ATP synthase dimer angle on mitochondrial  
2 morphology studied by cryo-electron tomography

3

4 Emma Buzzard<sup>1,2</sup>, Mathew McLaren<sup>1,2</sup>, Piotr Bragoszewski<sup>3</sup>, Andrea Brancaccio<sup>4,5</sup>, Holly Ford<sup>5</sup>, Bertram  
5 Daum<sup>1,2</sup>, Patricia Kuwabara<sup>5</sup>, Ian Collinson<sup>5</sup> & Vicki A.M. Gold<sup>1,2,\*</sup>.

6 <sup>1</sup> Living Systems Institute, University of Exeter, Exeter, UK.

7 <sup>2</sup> Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

8 <sup>3</sup> Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

9 <sup>4</sup> Institute of Chemical Sciences and Technologies "Giulio Natta", Department of Chemical Sciences and  
10 Materials Technologies, National Research Council (CNR), Rome, Italy.

11 <sup>5</sup> School of Biochemistry, University of Bristol, BS8 1TD, UK.

12 \*corresponding author: Vicki Gold; +44 (0)1392 727454; [v.a.m.gold@exeter.ac.uk](mailto:v.a.m.gold@exeter.ac.uk)

13

14 **Keywords:** Mitochondria, ATP synthase, Cryo-electron tomography, Sub-tomogram averaging, AlphaFold

15

16 **Abstract**

17 Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their  
18 characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase  
19 dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we  
20 determined the structure of the ATP synthase dimer from the nematode worm *C. elegans* and show that  
21 the dimer angle differs from previously determined structures. The consequences of this species-specific  
22 difference at the dimer interface were investigated by comparing *C. elegans* and *S. cerevisiae* mitochondrial  
23 morphology. We reveal that *C. elegans* has a larger ATP synthase dimer angle with more lamellar (flatter)  
24 cristae when compared to yeast. The underlying cause of this difference was investigated by generating an  
25 atomic model of the *C. elegans* ATP synthase dimer by homology modelling. A comparison of our *C.*  
26 *elegans* model to an existing *S. cerevisiae* structure reveals the presence of extensions and  
27 rearrangements in *C. elegans* subunits associated with maintaining the dimer interface. We speculate that  
28 increasing dimer angles could provide an advantage for species that inhabit variable-oxygen environments  
29 by forming flatter more energetically efficient cristae.

30 **Main Text**

31

32 **Introduction**

33 The  $F_1F_o$  ATP synthase is a molecular motor ubiquitous to all living organisms, required for the essential  
34 conversion of an electrochemical gradient into the universal energy currency ATP (1). The ATP synthase  
35 is composed of a catalytic  $F_1$  head connected to a membrane-embedded  $F_o$  motor by a central stalk; the  
36 entire assembly is visualised as a lollipop shape when examined by electron microscopy (2,3). The central  
37 stalk transmits the torque generated by rotation of  $F_o$  to the  $F_1$  head, and a peripheral stalk acts as an elastic  
38 spring, ensuring malleable coupling between  $F_1$  and  $F_o$  (4). Mitochondrial ATP synthases across species  
39 share the same complement of core subunits with varying nomenclature (Table S1) (5,6). In metazoans  
40 studied to date, the  $F_1$  head is comprised of  $\alpha$  and  $\beta$  subunits, the central stalk of  $\gamma$ ,  $\delta$  and  $\epsilon$  subunits, the  
41 peripheral stalk of  $\beta$ ,  $\delta$ ,  $F_6$  and oligomycin sensitivity conferral protein (OSCP) subunits, and the  $F_o$  motor  
42 contains the c-ring and subunit  $a$ .

43

44 Mitochondrial ATP synthases can assemble into dimers (7), of which there are 4 types (8): Type I is present  
45 in both multicellular (9–11) and unicellular organisms (12) and types II–IV are present in various unicellular  
46 organisms (13–18), reviewed in (8). When compared to type II–IV dimers, previously studied type I dimers  
47 contain an additional set of subunits at the dimer interface:  $e$ ,  $f$ ,  $g$ ,  $i/j$ ,  $k$  and 8 (Table S1) (8). Based on  
48 biochemical and imaging experiments, subunits  $e$  and  $g$  were shown to be essential for dimer formation  
49 (7,11,19–21). Dimers of ATP synthase assemble into oligomeric rows (or ribbons) along the curved ridges  
50 of crista membranes, observed by cryo-electron tomography (cryoET) (9,11,22). This formation of dimer  
51 rows is mediated by an ancestral motif in subunits  $e$  and  $g$  (20,21) with assistance from subunit  $k$  (5,23,24).  
52 Formation of dimer rows is required for crista membrane curvature, and thus maintenance of lamellar or  
53 tubular shaped cristae (11,12). Deformation of cristae into balloon-like structures was observed in *S.*  
54 *cerevisiae* after knockdown of interface subunits  $e$  or  $g$  (11) and in ageing *P. anserina*, when dimers

55 disassociated into monomers (12). Moreover, molecular simulations indicated that ATP synthase dimers  
56 have an innate propensity to induce membrane curvature (25). This was confirmed experimentally when  
57 dimers reconstituted into liposomes spontaneously self-assembled into oligomeric rows to engender this  
58 curvature, maintaining identical dimer angles to those observed in whole mitochondria (26).

59 *In situ* structures of type I ATP synthase dimers have been determined from native membranes (10,12,25–  
60 27). Mammals and fungi both display an average angle between the dimer heads of ~86° (10). Interestingly,  
61 higher-resolution single particle analysis of the purified bovine ATP synthase dimer reveals that dimer  
62 angles likely vary around this average (between 76° and 95°), depending on catalytic state (28). Further  
63 atomic-detail structures of purified mitochondrial type I ATP synthase dimers have also been determined  
64 from mammals (*Bos taurus* (23) and fungi (*S. cerevisiae* (29) and *Y. lipolytica* (22)). Whilst the structure  
65 and organisation of ATP synthase dimers has been studied across a range of different species, our  
66 knowledge of ATP synthases in invertebrates is lacking. The free-living nematode worm *C. elegans* is a  
67 well-established model system for the study of invertebrate cell and developmental biology (30), including  
68 the role of mitochondria in metabolism, health, disease and aging (31). To complement *in vivo* physiological  
69 studies, intact mitochondria can be stably prepared (32,33) for biochemical and structural analyses (34).  
70 Interestingly, studies have shown that nematodes lack the dimer-specific subunits i/j, k (35) and 8 (36)  
71 found in mammals and fungi (Table S1). Subunit 8 is encoded by one of two overlapping ATP synthase  
72 genes on the mitochondrial genome (37). Proteins encoded on the mitochondrial genome are translated  
73 from essential genes (38,39); thus it follows that subunit 8 is likely to be essential for respiration in mammals  
74 and fungi. The lack of dimer-specific subunits in *C. elegans* provides a unique opportunity to investigate  
75 how certain subunits influence ATP synthase dimer angles and mitochondrial morphology.

76

77 In this study, we employ cryoET and sub-tomogram averaging to determine the structure and membrane  
78 organisation of the *C. elegans* ATP synthase, revealing a novel average dimer angle of 105°. We also  
79 discover extra mass at the dimer interface compared to an equivalent *S. cerevisiae* structure determined in

80 the membrane (11). We subsequently compare mitochondria from both *C. elegans* and *S. cerevisiae* to  
81 investigate the relationship between ATP synthase dimer angle and crista morphology. Finally, we use  
82 AlphaFold (40) and AlphaFold multimer (41) to predict how protein chains in the *C. elegans* ATP synthase  
83 dimer may be arranged. This allows us to analyse subunit differences at the dimer interface and postulate  
84 the cause of variations in angle. We speculate that an evolutionary divergence at the dimer interface and  
85 corresponding widening of the dimer angle may be an adaptation to more variable oxygen environments.

86

## 87 **Results**

### 88 **The architecture of the *C. elegans* ATP synthase dimer**

89 To determine the arrangement and architecture of ATP synthase dimers in *C. elegans*, tomograms of whole  
90 mitochondria (Fig. 1A) and of isolated crista membranes (Fig. 1B) were analysed. ATP synthases were  
91 unambiguously identified by the characteristic lollipop shape of the 10 nm diameter F<sub>1</sub> heads positioned  
92 ~10 nm away from the membrane. We confirmed the presence of oligomeric ATP synthase dimer ribbons,  
93 localised at the sharp curved ridges of crista membranes, in both samples (Fig. 1A, B). Due to the obscuring  
94 presence of a dense matrix in whole mitochondria, many more dimers could be visualised in isolated crista  
95 membrane samples. Therefore, 3,234 dimer pairs were extracted from the crista membrane data for sub-  
96 tomogram averaging. After classification, a map of the *C. elegans* ATP synthase dimer was determined  
97 from 1,755 dimer pairs (Fig. 1C, Fig. S1, S2). Both the central and peripheral stalks were resolved clearly.

98

99 Previous studies revealed a type I dimer angle of ~86° across a range of mammalian and fungal species  
100 (10,12,25–27). The architecture of the membrane-bound *C. elegans* ATP synthase dimer is unlike any other  
101 species studied so far, with an average angle of 105° between the dimer heads (Fig. 2A). A comparison to  
102 the structure of the membrane-bound *S. cerevisiae* dimer (42), revealed that the wider dimer angle in *C.*  
103 *elegans* corresponds with a sharper angle of membrane curvature (50° compared to 74°) (Fig. 2B).  
104 Accordingly, a shorter distance is measured between the ATP synthase central stalks in *C. elegans*  
105 compared to *S. cerevisiae* (16.5 nm compared to 20 nm), which would have the effect of bringing the crista

106 membranes closer together. Intriguingly, the dimer interface in the *C. elegans* map is also visually different  
107 to its *S. cerevisiae* counterpart (Fig. 2B), and indeed all other type I dimers studied to date (10,12,25–27).  
108 This difference is likely attributable to the different complement of dimer interface subunits present in *C.*  
109 *elegans* compared to *S. cerevisiae* (Table S1, Fig. 2C). We also analysed the inter-dimer distance and  
110 angle between dimer heads in consecutive dimers in the oligomeric rows. This revealed an inter-dimer  
111 distance of 12.5 nm and angle between dimer heads of 20°. Despite differences in dimer angle, these  
112 values are consistent with those reported previously for the type II dimer from green algae (*Polytomella* sp.)  
113 (26) (Fig. S3), suggesting that dimer angle does not influence oligomerisation of ATP synthases into rows.

114

#### 115 **A wider dimer angle in *C. elegans* corresponds to flatter cristae**

116 We hypothesised that the wider dimer angle associated with sharper membrane curvature in the *C. elegans*  
117 ATP synthase dimer (Fig. 2B) would produce flatter cristae with a larger surface area to volume ratio. To  
118 test this, tomographic data of whole mitochondria from *C. elegans* and *S. cerevisiae* were collected and  
119 quantified. Qualitatively, *C. elegans* mitochondria have more lamellar shaped (or flatter) cristae, with sharp  
120 curved ridges, compared to mitochondria from *S. cerevisiae* (Fig. 3A, 3B, Movie S1 & S2). The surface  
121 area and volume of the crista membranes were quantified, to reveal that the surface area to volume ratio  
122 of the average crista membrane was significantly higher (~1.5 fold, \*\*\*\* p ≤ 0.0001) in *C. elegans* than in  
123 *S. cerevisiae* (Fig. 3B). In accordance with this, the average crista width in *C. elegans* was less than that  
124 observed in *S. cerevisiae* (Fig. 3C, D and E), suggesting that dimer angle exerts influence on mitochondrial  
125 morphology at the level of membrane curvature.

126

127 Mitochondria are dynamic organelles, and crista morphology can be influenced by a wide range of factors  
128 such as metabolic state (43–45). However, the average ATP synthase dimer angle remains consistent  
129 when imaged in membranes or on purification in detergent (10,28). Nevertheless, we corroborated our  
130 findings in whole mitochondria by measuring the width of isolated cristae containing either *C. elegans* or *S.*  
131 *cerevisiae* ATP synthase dimers used for structural determination (Fig. 2B). Our results confirm the

132 narrower crista width in *C. elegans* compared to *S. cerevisiae*. This indicates that the dimer angle and  
133 corresponding angle of membrane curvature is consistent, irrespective of the method employed for sample  
134 preparation or analysis.

135

136 **A unique arrangement of subunits at the *C. elegans* dimer interface**

137 We observed extra mass at the *C. elegans* dimer interface (Fig. 2B) not previously observed in other type  
138 I structures determined to date (10). Nematodes are missing subunit 8 (36) (Table S1, Fig. 2C), which plays  
139 a key structural role in other species (22,23,29,46). Moreover, subunit 8 is considered essential for  
140 respiration (38,39). Therefore, it is likely that other subunits undergo rearrangements at the dimer interface  
141 to compensate for the lack of subunit 8 in nematodes, which could contribute to the observed change of  
142 dimer angle. To explore this possibility, we performed multisequence alignments with *C. elegans*, *S.*  
143 *cerevisiae* and *B. taurus* (47–49). This revealed significant extensions in 3 *C. elegans* subunits located at  
144 the dimer interface (e, f and g), and in 3 of the 4 subunits in the peripheral stalk (b, d and F<sub>6</sub>) (Table S1,  
145 Fig. S4). Mass spectrometry was used to confirm that the extensions identified by sequence in the dimer  
146 interface subunits are present in the mature proteins (Fig. S5).

147

148 To investigate if the changes in the dimer interface and peripheral stalk subunits could account for the extra  
149 mass observed at the dimer interface (Fig. 2B), we built a homology model of the *C. elegans* ATP synthase.  
150 The ATP synthase dimer is too large to predict the structure as a single multimer, therefore we used  
151 AlphaFold (40) and AlphaFold multimer (41) to predict the structures of individual or small groups of  
152 subunits (Table S2, Fig. S6). Taking into account the fact that protein-protein interactions are likely  
153 important at the dimer interface, we predicted the dimer interface and peripheral stalk subunits both as  
154 individual subunits and as multimers. The peripheral stalk subunits were predicted successfully as a  
155 multimer, whereas the multimeric prediction for the dimer interface was poor. This could be explained by a  
156 limitation of AlphaFold multimer, which does not take stepwise assembly of complexes into account, instead  
157 assembling all proteins into a multimeric complex simultaneously (50). The result may also be attributable

158 to the unique dimer interface in *C. elegans* compared to previously determined structures. We therefore  
159 used individual predictions to model the dimer interface (Fig. S6). The predicted *C. elegans* structures were  
160 then fitted sequentially into a scaffold provided by the *B. taurus* ATP synthase dimer [PDB 7AJB] (Fig. S7,  
161 Fig. 4A). The atomic model of *B. taurus* was chosen as a scaffold due to its closer relation to *C. elegans*  
162 (both being metazoans) and possessing an equivalent number of subunits in the c-ring. The *C. elegans*  
163 ATP synthase dimer model was then split into monomers and each was fitted sequentially into our sub-  
164 tomogram average dimer map (Fig. S7, Fig. 4B), improving the fit considerably (Fig. S8). The *C. elegans*  
165 homology model correlated well to the sub-tomogram averaging map (Fig. S9 and Table S3), providing us  
166 with a useful working model to allow a comparison of *S. cerevisiae* and *C. elegans* ATP synthase dimers  
167 (Fig. 4C).

168

169 Interestingly, the extra mass identified at the *C. elegans* dimer interface (Fig. 2B) appears to be filled by a  
170 rearrangement of the subunits f and g in the model (Fig. 4C, D & E). This agrees with the observation that  
171 these subunits show extensions relative to their yeast homologues (Fig. S10). In addition, extensions in the  
172 *C. elegans* peripheral stalk subunits (subunits b, d and F<sub>0</sub>) may also contribute to the greater mass at  
173 the dimer interface compared to that observed in *S. cerevisiae* (Fig. S11). We cannot exclude the possibility  
174 that there are additional subunits as yet unidentified in *C. elegans* that may also contribute to the dimer  
175 interface. Finally, we fitted the *C. elegans* ATP synthase dimer model into a row of oligomeric dimer pairs  
176 along the curved edge of a crista (Fig. 4F, H). This reveals potential inter-dimer interactions mediated by  
177 subunit e (Fig. 4G, I and Fig. S12), in agreement with recent work demonstrating the key role that this  
178 subunit plays in oligomerisation and row formation (21).

179

## 180 **Discussion**

181 Owing to the essential and universal role of the ATP synthase across eukaryotic species, it is remarkable  
182 that the dimeric interface can be so variable (10). Until now, the arrangement of ATP synthases in  
183 invertebrates was unknown, as was the correlation between dimer angle and whole mitochondrial

184 morphology. In this work, a novel dimer angle for the ATP synthase from the nematode worm *C. elegans*  
185 was discovered. By comparing worm and yeast mitochondria, we correlated a wider ATP synthase dimer  
186 angle with flatter crista membrane morphology. Since dimer row formation is known to be instrumental in  
187 the formation of curved ridges in crista membranes (11,12,26), it is consistent that dimer angle influences  
188 the extent of membrane curvature.

189

190 The *C. elegans* ATP synthase dimer shows clear extra mass at the dimer interface when compared to other  
191 determined structures, which can be attributed to changes in subunit composition. Using sequence  
192 analysis, we detected extensions in 3 *C. elegans* dimer interface subunits (e, f and g), an extension in the  
193 peripheral stalk component subunit b, and a range of more subtle gaps and insertions in subunits d and F<sub>6</sub>.  
194 To investigate whether these could bulk out the width of the dimer interface, we built a homology model  
195 using AlphaFold (40) and AlphaFold multimer (41). A recently proposed alternative method employs the  
196 prediction of subcomponent structures using AlphaFold multimer based on known assembly intermediates  
197 (50). While conceptually advantageous for constructing a homology model of the ATP synthase dimer, only  
198 50% of all high-resolution non-redundant complexes with 10-30 chains from the PDB were successfully  
199 assembled (50). Moreover, the efficacy of this approach has yet to be evaluated on protein complexes  
200 exceeding 30 chains. Our homology model of the *C. elegans* ATP synthase dimer thus allows us to  
201 hypothesise how alterations in the organisation of subunits could influence dimer architecture. The ATP  
202 synthase structure is relatively well conserved across species (51), but this conservation is weaker at the  
203 dimer interface and peripheral stalk (52). The extensions in *C. elegans* subunits e, f and g appear to result  
204 in the rearrangement of subunits at the dimer interface relative to *S. cerevisiae*. In addition, the extension  
205 in peripheral stalk component subunit b, and the changes to subunits d and F<sub>6</sub>, appear to bulk out the width  
206 of the dimer interface. Some dimer interface subunits present in *S. cerevisiae* (j, k and 8) are absent in *C.*  
207 *elegans*. Whilst it cannot be completely excluded that a yet unidentified subunit may substitute for subunit  
208 8, we speculate that the absence of subunit 8 in worms (36) highlights an interesting evolutionary  
209 divergence. Subunit 8 is usually encoded by the mitochondrial genome, indicating that it is essential (38,39).

210 Additionally, subunit 8 appears to have a key structural role in joining the dimer interface to the peripheral  
211 stalk (22,23,29,46). It is therefore plausible that the space vacated by the absent subunit 8 is either resolved  
212 by the re-arrangement of neighbouring subunits, or by substituting one of the extensions of the Fo subunits  
213 close by (b, d, e, f or g).

214

215 Mitochondria have evolved their highly convoluted crista membranes to increase their surface area (53),  
216 hence accommodating the maximum amount of respiratory chain complexes. This has made it possible for  
217 eukaryotic organisms to deal with higher energy demands than prokaryotes (53). A flatter crista (in *C.*  
218 *elegans*) compared to a wider one (in *S. cerevisiae*) could allow greater packing of respiratory chain  
219 complexes along the flat membrane surfaces (10), increasing the relative amount of proton pumping. It has  
220 been suggested that cristae serve as proton concentrators that facilitate a directed flow from the source  
221 (respiratory chain) to sink (ATP synthase) (9,10); protons have been proposed to preferably migrate from  
222 source to sink along membrane surfaces. If this were the case, then reducing the width of the crista space  
223 would reduce the solvent volume within which protons dissipate, facilitating the efficiency of ATP synthesis.  
224 Both these factors could allow *C. elegans* to maximise energy production in its soil-based habitat (54),  
225 where conditions range from near hypoxia to atmospheric (55,56). In summary, we propose that a wider  
226 ATP synthase dimer angle associated with flatter cristae may be paramount for capitalising on ATP  
227 production when a higher level of oxygen becomes available, and that a range of angles has evolved to  
228 meet the energetic needs of different organisms. Future studies geared towards investigating dimer subunit  
229 composition, angle and corresponding crista morphology across a range of species inhabiting different  
230 environments will be key in providing further support for this hypothesis. We demonstrate that the  
231 divergence in ATP synthase dimer architecture relative to yeast and mammalian systems makes *C. elegans*  
232 an ideal model system for further investigation of the role of dimer angle in mitochondrial physiology, health  
233 and disease.

234

235 **Materials and Methods**

236

237 All standard reagents were purchased from Sigma-Aldrich (Burlington, USA).

238

239 ***C. elegans* and *S. cerevisiae* culture**

240 The *C. elegans* N2 Bristol strain was maintained at 20°C on 60 mm Nematode Growth Medium (NGM)  
241 plates seeded with *E. coli* OP50. For large scale preparations, a semi-synchronised population of *C.*  
242 *elegans* (achieved by starving so that they entered the dauer stage) (57,58) were grown in a liquid  
243 suspension of *E. coli* NA22 in S-basal complete medium (59) at 20°C, shaking at 200 rpm for 3 days to  
244 achieve adults. For further details see (33). *S. cerevisiae* 'Bakers's yeast' S288C derivative strains YPH499  
245 were cultured at 19 - 24°C in YPGal or YPG medium (1% w/v yeast extract, 2% w/v bactopeptone, 2% w/v  
246 galactose or 3% w/v glycerol) until OD 2-2.5 was reached. For further details see (60).

247

248 **Mitochondrial isolation**

249 *C. elegans* and *S. cerevisiae* were both harvested from liquid cultures by low speed centrifugation. *C.*  
250 *elegans* preparation required an additional sucrose flotation step to remove debris. To soften the *C. elegans*  
251 cuticle, the pellets underwent collagenase treatment (1 U/ml collagenase, 100 mM Tris-HCl pH 7.4 and 1  
252 mM CaCl<sub>2</sub>), whilst *S. cerevisiae* pellets underwent dithiothreitol (10 mM DTT, 100 mM Tris-SO<sub>4</sub> pH 9.4)  
253 and zymolyase treatment (4.5mg/g zymolyase, 1.2 M sorbitol, 20 mM potassium phosphate, pH 7.4) to  
254 disrupt the cell wall. Pellets from both species were re-suspended in homogenisation buffers. For *C.*  
255 *elegans*, this was STEG/M (220 mM mannitol, 70 mM sucrose, 5 mM Tris-HCl pH 7.4 and 1 mM EGTA  
256 supplemented with 1 mM PMSF in methanol and 1% (w/v) fatty acid-free BSA). For *S. cerevisiae* the  
257 homogenization buffer contained 0.6 M sorbitol, 10 mM Tris-HCl pH 7.4, 1 mM PMSF, 0.2% (w/v) BSA, 2  
258 mM magnesium acetate. The re-suspended *C. elegans* or *S. cerevisiae* samples were homogenised in a  
259 glass-Teflon Potter homogenisor to break open cells. Both samples were subsequently spun at low speed  
260 (750 – 3000 x g for 5-15 minutes) to remove cell debris and nuclei, and then at higher speed (12,000 x g

261 for 15 minutes) to pellet mitochondria. Purified mitochondria were re-suspended in buffers that were  
262 optimised to maintain intact mitochondria: 220 mM mannitol, 70 mM sucrose, 5 mM Tris-HCl pH 7.4 and 1  
263 mM EGTA for *C. elegans* or 250 mM sucrose, 2 mM magnesium acetate, 10 mM Mops, pH 7.2 for *S.*  
264 *cerevisiae*.

265

266 **Mitochondrial crista membrane isolation**

267 Crista membranes used for the sub-tomogram averaging experiments were generated by successive  
268 freeze-thaw cycles of mitochondria at -80°C. To purify mitochondrial membranes from other cellular  
269 material, membrane extracts were incubated for 1h at 4°C with an anti-NDUFS3 primary antibody  
270 (ab14711; abcam) against the matrix arm of complex I from *C. elegans*, followed by a 3h incubation with  
271 an anti-mouse secondary conjugated to a quantum dot emitting at 625 nm (Q22085; Invitrogen). Crista  
272 membranes were separated from unbound antibodies and other cellular material on an Optiprep gradient  
273 with 10 layers (200 µl volume each) ranging from 0 to 27% v/v of iodixanol in STEG/M buffer, by  
274 centrifugation at 80,000 × g for 30 min at 4°C using a TLS-55 rotor (Beckman Coulter Inc., Miami, FL, USA).  
275 Crista membranes were identified and removed based on fluorescence under a UV lamp. Samples were  
276 then diluted in STEG/M buffer to wash out the iodixanol, and spun at 20,000 × g for 15 min at 4 °C to pellet  
277 the membranes. The enriched cristae were again re-suspended in STEG/M buffer.

278

279 **Electron cryo-tomography**

280 Whole mitochondria or crista membranes were mixed 1:1 with 10 nm gold fiducials (Aurion, Wageningen,  
281 The Netherlands), applied to glow-discharged holey carbon EM grids (Quantifoil, Jena, Germany), and  
282 blotted for 5-6 seconds, followed by plunge-freezing in liquid ethane using a Vitrobot Mark IV  
283 (ThermoFisher, Massachusetts, USA) for *C. elegans*, or a home-made device for whole *S. cerevisiae*  
284 mitochondria. Pre-screening of *C. elegans* grids was carried out using an FEI Tecnai Spirit 120kV  
285 microscope (ThermoFisher), with a Oneview CCD Camera (Gatan, Pleasanton, USA). CryoET was  
286 performed using the same microscope for whole mitochondria, or using a 200 kV Talos Arctica

287 (ThermoFisher) for crista membranes, equipped with a K2 direct electron detector camera and a GIF  
288 Quantum LS energy filter (Gatan). CryoET of whole *S. cerevisiae* mitochondria was performed using a 300  
289 kV Titan Krios (ThermoFisher), K2 direct electron detector camera and a GIF Quantum LS energy filter  
290 (Gatan). Single tilt image series' ( $\pm 60$ , step size  $1.5^\circ$  -  $2^\circ$ ) were collected at -5 to -8  $\mu\text{m}$  underfocus at  
291 nominal magnification of 21,000 x for whole mitochondria and 39,000 x for crista membranes,  
292 corresponding to 5.4 and 3.58  $\text{\AA}$  pixel sizes respectively for *C. elegans*, or 26,000 x for whole mitochondria  
293 from *S. cerevisiae*, corresponding to a 4.51  $\text{\AA}$  pixel size. The total dose per tomogram was  $\sim 120 \text{ e}^-/\text{\AA}^2$  for  
294 whole mitochondria, and  $\sim 80 \text{ e}^-/\text{\AA}^2$  for isolated cristae. Tomograms were aligned using the gold fiducials in  
295 IMOD (University of Colorado, United States) (61) and volumes reconstructed via weighted back-projection.  
296 Contrast was enhanced by nonlinear anisotropic diffusion (NAD) filtering (62), followed by manual  
297 segmentation, also in IMOD. ImageJ (63) was used to generate movies of segmentations generated in  
298 IMOD.

299

### 300 **Subtomogram averaging**

301 3,234 *C. elegans* ATP synthase dimers were picked manually in IMOD, using NAD-filtered tomograms.  
302 Subvolumes containing the ATP synthase dimer were then extracted from tomograms that had not been  
303 NAD filtered. These sub-volumes were CTF corrected and imported into Relion 3.1 (64) using the approach  
304 and script described in (65). A reference-free initial model was generated using 3 x binned subvolumes and  
305 2,481 dimers were selected by 2D classification for an unbinned refinement. Finally, 1,755 dimers were  
306 selected from a 3D classification of this refined model to enter a final round of refinement and post-  
307 processing, resulting in a 38.6  $\text{\AA}$  resolution map. Fig. S1 details the full workflow.

308

### 309 **Homology model generation**

310 AlphaFold was used to predict five structural models of each ATP synthase subunit in *C. elegans* based on  
311 their mature protein sequence (40). Mature sequences were determined using MitoFates (66) or TargetP-

312 2.0 (67) to predict mitochondrial targeting sequences. All ATP synthase subunits known to be present in *C.*  
313 *elegans* were included, excepting a putative homologue of subunit j, on account of its poor alignment with  
314 other homologues, and absence of any corresponding peptides in mass spectrometry analysis of the *C.*  
315 *elegans* dimer. The structures of peripheral stalk subunits b, d and F<sub>6</sub> were predicted using AlphaFold  
316 multimer (41), as the individual predictions were unreliable. The models for each subunit with the highest  
317 average pLDDT score were fitted sequentially to a scaffold provided by the atomic model of the *S.*  
318 *cerevisiae* ATP synthase dimer [PDB 6BH8] in ChimeraX (68) using the Matchmaker tool. Where a subunit  
319 had more than one isoform, the version with the highest pLDDT score was used. In the case of subunit b,  
320 the isoform with the highest pLDDT score is also the only isoform expressed in somatic tissues (69). The  
321 resulting structure was divided into monomers, and fitted sequentially into the sub-tomogram average of  
322 the *C. elegans* ATP synthase dimer using the “fit in volume” tool in ChimeraX. The workflow is shown in  
323 Fig. S7. The resulting homology model was converted into an MRC map using the molmap command in  
324 ChimeraX (68). This map could then be fitted to the sub-tomogram average map of the *C. elegans* dimer  
325 for comparison (Fig. S19). The yeast monomeric atomic model [PDB 6CP6] (70) was used for additional  
326 analysis in Fig. S11.

327

### 328 **Mass spectrometry**

329 The ATP synthase was purified from *C. elegans* mitochondria using a method described previously (71,72),  
330 and analysed by Nano-LC mass spectrometry. Briefly, isolated mitochondria were solubilised and mixed  
331 with a His-tagged inhibitor protein IF<sub>1</sub>. This suspension was applied to a Nickel column to capture inhibited  
332 ATP synthase. The fraction most enriched in ATP synthase subunits was taken for mass spectrometry  
333 analysis. Further details are given in Supporting Information.

334

335 **References**

336

337 1. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. *Biol. Rev.*

338 1966 Aug 1 [cited 2022 Jul 19];41(3):445–502. Available from: <https://doi.org/10.1111/j.1469->

339 185X.1966.tb01501.x

340 2. Rubinstein JL. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. *EMBO J.*

341 2003 Dec 1;22(23):6182–92.

342 3. Lau WCY, Baker LA, Rubinstein JL. Cryo-EM Structure of the Yeast ATP Synthase. *J Mol Biol.*

343 2008 Oct 24 [cited 2021 Jan 29];382(5):1256–64. Available from:

344 <https://doi.org/10.1016/j.jmb.2008.08.014>

345 4. Sobti M, Smits C, Wong ASW, Ishmukhametov R, Stock D, Sandin S, et al. Cryo-EM structures of

346 the autoinhibited *E. coli* ATP synthase in three rotational states. *Elife.* 2016 Dec 21;5:e21598.

347 Available from: <https://doi.org/10.7554/elife.21598>

348 5. He J, Ford HC, Carroll J, Douglas C, Gonzales E, Ding S, et al. Assembly of the membrane domain

349 of ATP synthase in human mitochondria. *Proc. Natl. Acad. Sci. USA.* 2018 Mar 20 [cited 2022 Jul

350 25];115(12):2988–93. Available from: <https://doi.org/10.1073/pnas.1722086115>

351 6. Song J, Pfanner N, Becker T. Assembling the mitochondrial ATP synthase. *Proc. Natl. Acad. Sci.*

352 USA. 2018 Mar 20 [cited 2022 Nov 16];115(12):2850–2. Available from:

353 <https://doi.org/10.1073/pnas.1801697115>

354 7. Arnold I. Yeast mitochondrial F<sub>1</sub>F<sub>0</sub>-ATP synthase exists as a dimer: identification of three dimer-

355 specific subunits. *EMBO J.* 1998 Dec 15;17(24):7170–8. Available from:

356 <https://doi.org/10.1093/emboj/17.24.7170>

357 8. Kühlbrandt W. Structure and Mechanisms of F-Type ATP Synthases. *Annu Rev Biochem.* 2019

358 Jun 20 [cited 2021 Feb 24];88(1):515–49. Available from: <https://doi.org/10.1146/annurev->

359 biochem-013118-110903

360 9. Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W. Dimer ribbons of ATP synthase shape the  
361 inner mitochondrial membrane. *EMBO J.* 2008 Apr 9 [cited 2022 Mar 25];27(7):1154–60. Available  
362 from: <https://doi.org/10.1038/emboj.2008.35>

363 10. Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, et al. Macromolecular  
364 organization of ATP synthase and complex I in whole mitochondria. *Proc. Natl. Acad. Sci.* 2011  
365 Aug 23 [cited 2020 Feb 6];108(34):14121–6. Available from:  
366 <https://doi.org/10.1073/pnas.1103621108>

367 11. Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, Kühlbrandt W. Structure of the yeast F<sub>1</sub> F<sub>0</sub> -  
368 ATP synthase dimer and its role in shaping the mitochondrial cristae. *Proc. Natl. Acad. Sci. USA.*  
369 2012 Aug 21 [cited 2020 Feb 6];109(34):13602–7. Available from:  
370 <https://doi.org/10.1073/pnas.1204593109>

371 12. Daum B, Walter A, Horst A, Osiewacz HD, Kühlbrandt W. Age-dependent dissociation of ATP  
372 synthase dimers and loss of inner-membrane cristae in mitochondria. *Proc. Natl. Acad. Sci. USA..*  
373 2013 Sep 17 [cited 2021 Nov 19];110(38):15301–6. Available from:  
374 <https://doi.org/10.1073/pnas.1305462110>

375 13. Vázquez-Acevedo M, Vega-deLuna F, Sánchez-Vásquez L, Colina-Tenorio L, Remacle C, Cardol  
376 P, et al. Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae.  
377 *Biochim Biophys Acta Bioenerg.* 2016 Aug 1 [cited 2022 Jul 29];1857(8):1183–90. Available from:  
378 <https://doi.org/10.1016/j.bbabi.2016.02.003>

379 14. Mühlleip AW, Joos F, Wigge C, Frangakis AS, Kühlbrandt W, Davies KM. Helical arrays of U-  
380 shaped ATP synthase dimers form tubular cristae in ciliate mitochondria. *Proc. Natl. Acad. Sci.*  
381 USA. 2016 Jul 26 [cited 2022 Jul 29];113(30):8442–7. Available from:  
382 <https://doi.org/10.1073/pnas.1525430113>

383 15. Mühlleip AW, Dewar CE, Schnaufer A, Kühlbrandt W, Davies KM. *In situ* structure of trypanosomal  
384 ATP synthase dimer reveals a unique arrangement of catalytic subunits. *Proc. Natl. Acad. Sci.*

385 USA. 2017 Jan 31 [cited 2022 Jul 29];114(5):992–7. Available from:  
386 <https://doi.org/10.1073/pnas.1612386114>

387 16. Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. ATP synthase from *Trypanosoma*  
388 *brucei* has an elaborated canonical F<sub>1</sub>-domain and conventional catalytic sites. Proc. Natl. Acad.  
389 Sci. USA. 2018 Feb 27 [cited 2022 Jul 29];115(9):2102–7. Available from:  
390 <https://doi.org/10.1073/pnas.172094011>

391 17. Davies KM, Kühlbrandt W. Structure of the catalytic F<sub>1</sub> head of the F<sub>1</sub>-F<sub>0</sub> ATP synthase from  
392 *Trypanosoma brucei*. Proc. Natl. Acad. Sci. USA. 2018 Mar 27 [cited 2022 Jul 29];115(13):E2906–  
393 7. Available from: <https://doi.org/10.1073/pnas.1801103115>

394 18. Murphy BJ, Klusch N, Langer J, Mills DJ, Yıldız Ö, Kühlbrandt W. Rotary substates of mitochondrial  
395 ATP synthase reveal the basis of flexible F<sub>1</sub> -F<sub>0</sub> coupling. Science. 1979. 2019 Jun 21 [cited 2022  
396 Dec 2];364(6446):eaaw9128. Available from: <https://doi.org/10.1126/science.aaw9128>

397 19. Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H. ATP Synthase of Yeast Mitochondria. J.  
398 Biol. Chem. 1999 Jan 1;274(1):36–40. Available from: <https://doi.org/10.1074/jbc.274.1.36>

399 20. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, et al. The ATP synthase  
400 is involved in generating mitochondrial cristae morphology. EMBO J. 2002 Feb 1;21(3):221–30.  
401 Available from: <https://doi.org/10.1093/emboj/21.3.221>

402 21. Gahura O, Mühleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, et al. An ancestral interaction  
403 module promotes oligomerization in divergent mitochondrial ATP synthases. Nat Commun. 2022  
404 Oct 11;13(1):5989. Available from: <https://doi.org/10.1038/s41467-022-33588-z>

405 22. Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, et al. Structure of a Complete ATP  
406 Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol  
407 Cell. 2016 Aug 4 [cited 2021 Feb 2];63(3):445–56. Available from:  
408 <https://doi.org/10.1016/j.molcel.2016.05.037>

409 23. Spikes TE, Montgomery MG, Walker JE. Structure of the dimeric ATP synthase from bovine  
410 mitochondria. *Proc. Natl. Acad. Sci. USA.* 2020 Sep 22 [cited 2021 Jan 29];117(38):23519–26.  
411 Available from: <https://doi.org/10.1073/pnas.2013998117>

412 24. He J, Carroll J, Ding S, Fearnley IM, Montgomery MG, Walker JE. Assembly of the peripheral stalk  
413 of ATP synthase in human mitochondria. *Proc. Natl. Acad. Sci. USA.* 2020 Nov 24;117(47):29602–  
414 8. Available from: <https://doi.org/10.1073/pnas.2017987117>

415 25. Anselmi C, Davies KM, Faraldo-Gómez JD. Mitochondrial ATP synthase dimers spontaneously  
416 associate due to a long-range membrane-induced force. *J. Gen. Physiol.* 2018 May 7 [cited 2022  
417 Jul 25];150(5):763–70. Available from: <https://doi.org/10.1085/jgp.201812033>

418 26. Blum TB, Hahn A, Meier T, Davies KM, Kühlbrandt W. Dimers of mitochondrial ATP synthase  
419 induce membrane curvature and self-assemble into rows. *Proc. Natl. Acad. Sci.* 2019 Mar 5 [cited  
420 2022 Jul 18];116(10):4250–5. Available from: <https://doi.org/10.1073/pnas.1816556116>

421 27. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. *BMC Biol.*  
422 2015 Dec 29 [cited 2019 Oct 3];13(1):89. Available from: [https://doi.org/10.1186/s12915-015-0201-  
423 x](https://doi.org/10.1186/s12915-015-0201-)

424 28. Spikes TE, Montgomery MG, Walker JE. Interface mobility between monomers in dimeric bovine  
425 ATP synthase participates in the ultrastructure of inner mitochondrial membranes. *Proc. Natl. Acad.*  
426 *Sci.* 2021 Feb 23 [cited 2021 Apr 1];118(8):e2021012118. Available from:  
427 <https://doi.org/10.1073/pnas.2021012118>

428 29. Guo H, Bueler SA, Rubinstein JL. Atomic model for the dimeric  $F_0$  region of mitochondrial ATP  
429 synthase. *Science.* 2017 Nov 17 [cited 2022 Jul 19];358(6365):936–40. Available from:  
430 <https://doi.org/10.1126/science.aoa4815>

431 30. Markaki M, Tavernarakis N. Modeling human diseases in *Caenorhabditis elegans*. *Biotechnol J.*  
432 2010 Dec;5(12):1261–76. Available from: <https://doi.org/10.1002/biot.201000183>

433 31. Yasuda K, Ishii T, Suda H, Akatsuka A, Hartman PS, Goto S, et al. Age-related changes of  
434 mitochondrial structure and function in *Caenorhabditis elegans*. *Mech Ageing Dev*. 2006 Oct  
435 1;127(10):763–70. Available from: <https://doi.org/10.1016/j.mad.2006.07.002>

436 32. Grad LI, Sayles LC, Lemire BD. Isolation and Functional Analysis of Mitochondria From the  
437 Nematode *Caenorhabditis elegans*. In: Leister D, Herrmann J M. *Methods in molecular biology*  
438 (Clifton, NJ). Humana Press; 2007 [cited 2022 Jul 20]. p. 51–66. Available from:  
439 [https://doi.org/10.1007/978-1-59745-365-3\\_4](https://doi.org/10.1007/978-1-59745-365-3_4)

440 33. Knapp-Wilson A, Pereira GC, Buzzard E, Ford HC, Richardson A, Corey RA, et al. Maintenance of  
441 complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function  
442 and health. *J Cell Sci*. 2021 Jul 1;134(13):jcs258399. Available from:  
443 <https://doi.org/10.1242/jcs.258399>

444 34. Murfitt RR, Vogel K, Sanadi DR. Characterization of the mitochondria of the free-living nematode,  
445 *Caenorhabditis elegans*. *Comp. Biochem. Physiol. B*. 1976 Jan 1 [cited 2022 Jul 20];53B(4):423–  
446 30. Available from: [https://doi.org/10.1016/0305-0491\(76\)90191-7](https://doi.org/10.1016/0305-0491(76)90191-7)

447 35. Tsang WY, Lemire BD. The role of mitochondria in the life of the nematode, *Caenorhabditis*  
448 *elegans*. Vol. 1638, *Biochim. Biophys. Acta, Mol. Basis Dis.* Elsevier; 2003. p. 91–105. Available  
449 from: [https://doi.org/10.1016/S0925-4439\(03\)00079-6](https://doi.org/10.1016/S0925-4439(03)00079-6)

450 36. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR. The mitochondrial genomes of two  
451 nematodes, *Caenorhabditis elegans* and *Ascaris suum*. *Genetics*. 1992 Mar 1;130(3):471–98.  
452 Available from: <https://doi.org/10.1093/genetics/130.3.471>

453 37. Fearnley IM, Walker JE. Two overlapping genes in bovine mitochondrial DNA encode membrane  
454 components of ATP synthase. *EMBO J*. 1986 Aug;5(8):2003–8. Available from:  
455 <https://doi.org/10.1002/j.1460-2075.1986.tb04456.x>

456 38. Shen J, Khan N, Lewis LD, Armand R, Grinberg O, Demidenko E, et al. Oxygen Consumption  
457 Rates and Oxygen Concentration in Molt-4 Cells and Their mtDNA Depleted (p0) Mutants. *Biophys  
458 J*. 2003 Feb 1;84(2):1291–8. Available from: [https://doi.org/10.1016/S0006-3495\(03\)74944-3](https://doi.org/10.1016/S0006-3495(03)74944-3)

459 39. Stuart JA, Brown MF. Mitochondrial DNA maintenance and bioenergetics. *Biochim. Biophys. Acta – Bioenerg.* 2006 Feb;1757(2):79–89. Available from: <https://doi.org/10.1016/j.bbabi.2006.01.003>

460

461 40. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein  
462 structure prediction with AlphaFold. *Nature.* 2021 Aug 26;596(7873):583–9. Available from:  
463 <https://doi.org/10.1038/s41586-021-03819-2>

464 41. Evans R, O'Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex prediction  
465 with AlphaFold-Multimer. *bioRxiv.* 2021 [cited 2021 Nov 30]; Available from:  
466 <https://doi.org/10.1101/2021.10.04.463034>

467 42. Davies KM, Daum B, Gold VAM, Mühlip AW, Brandt T, Blum TB, et al. Visualization of ATP  
468 Synthase Dimers in Mitochondria by Electron Cryo-tomography. *J. Vis. Exp.* 2014 Sep  
469 14;(91):e51228. Available from: <https://doi.org/10.3791/51228>

470 43. Mannella CA. Structure and dynamics of the mitochondrial inner membrane cristae. *Biochim.  
471 Biophys. Acta, Mol. Cell Res.* 2006 May 1;1763(5–6):542–8. Available from:  
472 <https://doi.org/10.1016/j.bbamcr.2006.04.006>

473 44. Pereira GC, Lee L, Rawlings N, Ouwendijk J, Parker JE, Andrienko TN, et al. Hexokinase II  
474 dissociation alone cannot account for changes in heart mitochondrial function, morphology and  
475 sensitivity to permeability transition pore opening following ischemia. Lesnfsky EJ, editor. *PLoS  
476 One.* 2020 Jun 24;15(6):e0234653. Available from: <https://doi.org/10.1371/journal.pone.0234653>

477 45. Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria  
478 I. Reversible Ultrastructural Changes with Change in Metabolic Steady State in Isolated Liver  
479 Mitochondria. *J. Cell Biol.* 1966 Aug 1;30(2):269–97. Available from:  
480 <https://doi.org/10.1083/jcb.30.2.269>

481 46. Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J, et al. Cryo-EM structure of the mammalian ATP synthase  
482 tetramer bound with inhibitory protein IF1. *Science.* 2019 Jun 14;364(6445):1068–75. Available  
483 from: <https://doi.org/10.1126/science.aaw4852>

484 47. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-  
485 quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol.* 2011 Jan  
486 11;7(1):539. Available from: <https://doi.org/10.1038/msb.2011.75>

487 48. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, et al. A new bioinformatics analysis  
488 tools framework at EMBL-EBI. *Nucleic Acids Res.* 2010 Jul 38;2:W695–9. Available from:  
489 <https://doi.org/10.1093/nar/gkq313>

490 49. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis Tool Web Services  
491 from the EMBL-EBI. *Nucleic Acids Res.* 2013 Jul 41;W1:W597–600. Available from:  
492 <https://doi.org/10.1093/nar/gkt376>

493 50. Bryant P, Pozzati G, Zhu W, Shenoy A, Kundrotas P, Elofsson A. Predicting the structure of large  
494 protein complexes using AlphaFold and Monte Carlo tree search. *Nat. Commun.* 2022 13:1. 2022  
495 Oct 12 [cited 2023 Oct 16];13(1):1–14. Available from: <https://doi.org/10.1038/s41467-022-33729-4>

497 51. Yoshida M, Muneyuki E, Hisabori T. ATP synthase — a marvellous rotary engine of the cell. *Nat  
498 Rev Mol Cell Biol.* 2001 Sep;2(9):669–77. Available from: <https://doi.org/10.1038/35089509>

499 52. Courbon GM, Rubinstein JL. CryoEM Reveals the Complexity and Diversity of ATP Synthases.  
500 *Front Microbiol.* 2022 Jun 16;13:864006. Available from:  
501 <https://doi.org/10.3389/fmicb.2022.864006>

502 53. Lane N, Martin W. The energetics of genome complexity. *Nature.* 2010 Oct 20;467(7318):929–34.  
503 Available from: <https://doi.org/10.1038/nature09486>

504 54. Moreno E, McGaughan A, Rödelsperger C, Zimmer M, Sommer RJ. Oxygen-induced social  
505 behaviours in *Pristionchus pacificus* have a distinct evolutionary history and genetic regulation from  
506 *Caenorhabditis elegans*. *Proc. R. Soc. B.* 2016 Feb 24;283(1825):20152263. Available from:  
507 <https://doi.org/10.1098/rspb.2015.2263>

508 55. Tan KH. Principles of soil chemistry. 4th ed. New York: CRC Press; 2011. 362 p. Available from:  
509 <https://doi.org/10.1201/9781439894606>

510 56. Wang W, Wang X, Liu J, Ishii M, Igarashi Y, Cui Z. Effect of Oxygen Concentration on the  
511 Composting Process and Maturity. *Compost Sci Util.* 2007 Jun;15(3):184–90. Available from:  
512 <https://doi.org/10.1080/1065657X.2007.10702331>

513 57. Fielensbach N, Antebi A. *C. elegans* dauer formation and the molecular basis of plasticity. *Genes*  
514 *Dev.* 2008 Aug 15;22(16):2149–65. Available from: <https://doi.org/10.1101/gad.1701508>

515 58. Karp X. Working with dauer larvae [Internet]. WormBook, ed. The *C. elegans* Research Community,  
516 WormBook; [2018 August 9; cited 2022 Sep 5]. Available from:  
517 <https://doi.org/10.1895/wormbook.1.180.1>

518 59. Stiernagle, T. Maintenance of *C. elegans* [Internet]. WormBook, ed. The *C. elegans* Research  
519 Community, WormBook; [2006 Feb 11; cited 2022 Sep 5]. Available from:  
520 <https://doi.org/10.1895/wormbook.1.101.1>

521 60. Gold VA, Chroscicki P, Bragoszewski P, Chacinska A. Visualization of cytosolic ribosomes on the  
522 surface of mitochondria by electron cryo-tomography. *EMBO Rep.* 2017 Oct 21;18(10):1786–800.  
523 Available from: <https://doi.org/10.15252/embr.201744261>

524 61. Kremer JR, Mastronarde DN, McIntosh JR. Computer Visualization of Three-Dimensional Image  
525 Data Using IMOD. *J Struct Biol.* 1996 Jan;116(1):71–6. Available from:  
526 <https://doi.org/10.1006/jsbi.1996.0013>

527 62. Frangakis AS, Hegerl R. Noise Reduction in Electron Tomographic Reconstructions Using  
528 Nonlinear Anisotropic Diffusion. *J Struct Biol.* 2001 Sep [cited 2020 Jan 27];135(3):239–50.  
529 Available from: <https://doi.org/10.1006/jsbi.2001.4406>

530 63. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. *Nat*  
531 *Methods.* 2012 Jul 28;9(7):671–5. Available from: <https://doi.org/10.1038/nmeth.2089>

532 64. Scheres SHW. Amyloid structure determination in RELION -3.1. *Acta Crystallogr D Struct Biol.*  
533 2020 Feb 1;76(2):94–101. Available from: <https://doi.org/10.1107/S2059798319016577>

534 65. Bharat TAM, Scheres SHW. Resolving macromolecular structures from electron cryo-Tomography  
535 data using subtomogram averaging in RELION. *Nat Protoc.* 2016;11(11):2054–65. Available from:  
536 <https://doi.org/10.1038/nprot.2016.124>

537 66. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. MitoFates: Improved Prediction of  
538 Mitochondrial Targeting Sequences and Their Cleavage Sites. *Mol. Cell. Proteomics.* 2015 Apr  
539 1;14(4):1113–26. Available from: <https://doi.org/10.1074/mcp.M114.043083>

540 67. Armenteros JJA, Salvatore M, Emanuelsson O, Winther O, Von Heijne G, Elofsson A, et al.  
541 Detecting sequence signals in targeting peptides using deep learning. *Life Sci Alliance.*  
542 2019;2(5):e201900429. Available from: <https://doi.org/10.26508/lsa.201900429>

543 68. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX:  
544 Structure visualization for researchers, educators, and developers. *Protein Science.* 2021 Jan 22  
545 [cited 2022 Aug 15];30(1):70–82. Available from: <https://doi.org/10.1002/pro.3943>

546 69. Kawasaki I, Hanazawa M, Gengyo-Ando K, Mitani S, Maruyama I, Iino Y. ASB-1, a germline-  
547 specific isoform of mitochondrial ATP synthase b subunit, is required to maintain the rate of  
548 germline development in *Caenorhabditis elegans*. *Mech Dev.* 2007 Mar 1 [cited 2020 Jul  
549 15];124(3):237–51. Available from: <https://doi.org/10.1016/j.mod.2006.11.004>

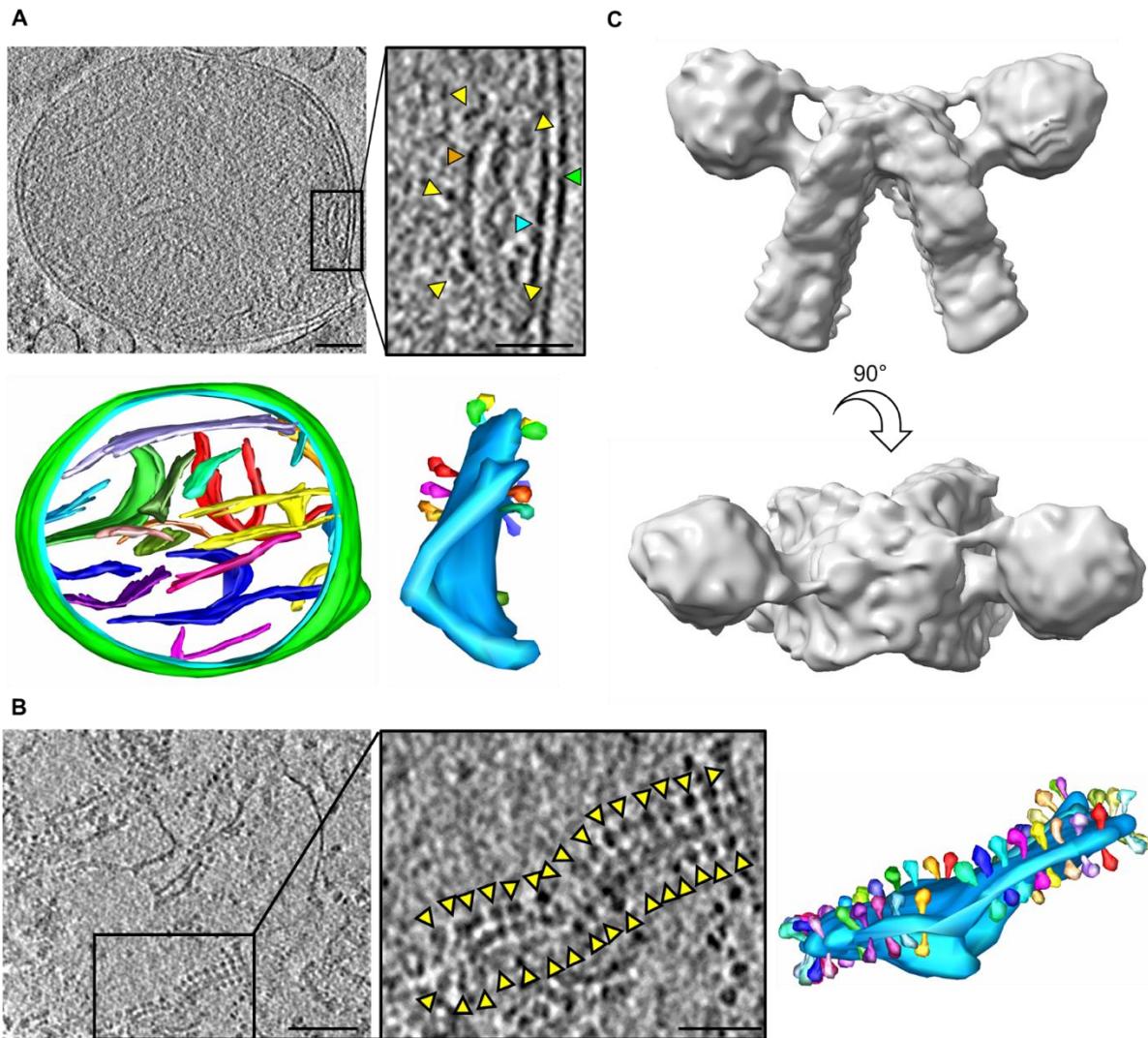
550 70. Srivastava AP, Luo M, Zhou W, Symersky J, Bai D, Chambers MG, et al. High-resolution cryo-EM  
551 analysis of the yeast ATP synthase in a lipid membrane. *Science.* 2018 May  
552 11;360(6389):eaas9699. Available from: <https://doi.org/10.1126/science.aas9699>

553 71. Spikes TE. Structural studies of the mitochondrial F-ATPase. PhD thesis. The University of  
554 Cambridge; 2017.

555 72. Runswick MJ, Bason J V., Montgomery MG, Robinson GC, Fearnley IM, Walker JE. The affinity  
556 purification and characterization of ATP synthase complexes from mitochondria. *Open Biol.* 2012  
557 Oct 29;3(2). Available from: <https://doi.org/10.1098/rsob.120160>

558 **Data Availability**

559 The sub-tomogram averaging maps generated in this study have been deposited in the Electron Microscopy  
560 Data Bank (EMDB) under accession code EMD-XXXX. The source image data have been deposited to the  
561 Electron Microscopy Public Image Archive (EMPIAR) under accession number [XXXX]. The Source Data  
562 accompanying Fig. 3B & E can be found in the accompanying Source Data file.


563

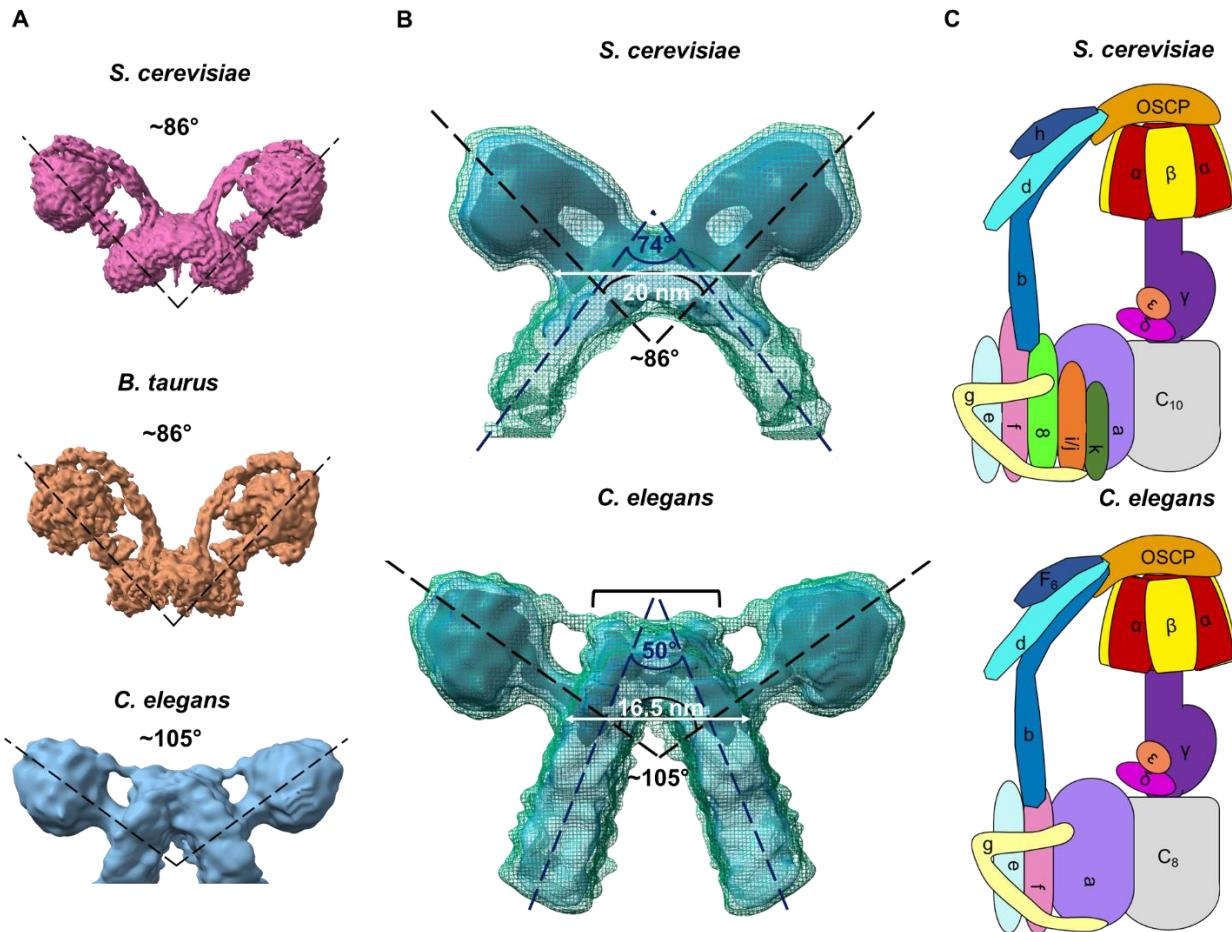
564 **Acknowledgments**

565

566 We thank Rebekah White in the lab of Cameron Weadick for sharing equipment, resources and knowledge  
567 for ongoing nematode maintenance. We acknowledge Werner Kühlbrandt at the Max-Planck Institute of  
568 Biophysics, Frankfurt, Germany, where the *S. cerevisiae* data were collected. We thank Agnieszka  
569 Chacinska at IMol Polish Academy of Sciences, Warsaw, Poland, for supporting the *S. cerevisiae* based  
570 experiments. We acknowledge access and support of the GW4 Facility for High-Resolution Electron Cryo-  
571 Microscopy, funded by the Wellcome Trust (202904/Z/16/Z and 206181/Z/17/Z) and BBSRC  
572 (BB/R000484/1), and are grateful to Ufuk Borucu of the GW4 Regional Facility for High-Resolution Electron  
573 Cryo-Microscopy for help with screening and data collection. We thank Kate Heesom from the Bristol  
574 Proteomics Facility for collecting and analysing mass spectrometry data. EB was supported by the  
575 Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral  
576 Training Partnership [DTP2: BB/M009122/1] awarded to VG. MM was supported by a BBSRC responsive  
577 mode grant (BB/R008639/1) grant awarded to VG. PB was supported by the Foundation for Polish Science  
578 First TEAM Programme co-financed by the European Union under the European Regional Development  
579 Fund (POIR.04.04.00-00-3F36/17). BD received funding from the European Research Council (ERC) under  
580 the European Union's Horizon 2020 research and innovation programme (grant agreement No 803894).  
581 This work was also funded by the Wellcome Trust (a Wellcome Investigator award (104632) to IC, which  
582 supported HF. The funders had no role in study design, data collection and interpretation, or the decision  
583 to submit the work for publication. For the purpose of Open Access, the authors have applied a CC BY  
584 public copyright license to any Author Accepted Manuscript version arising from this submission.

585 **Figures**



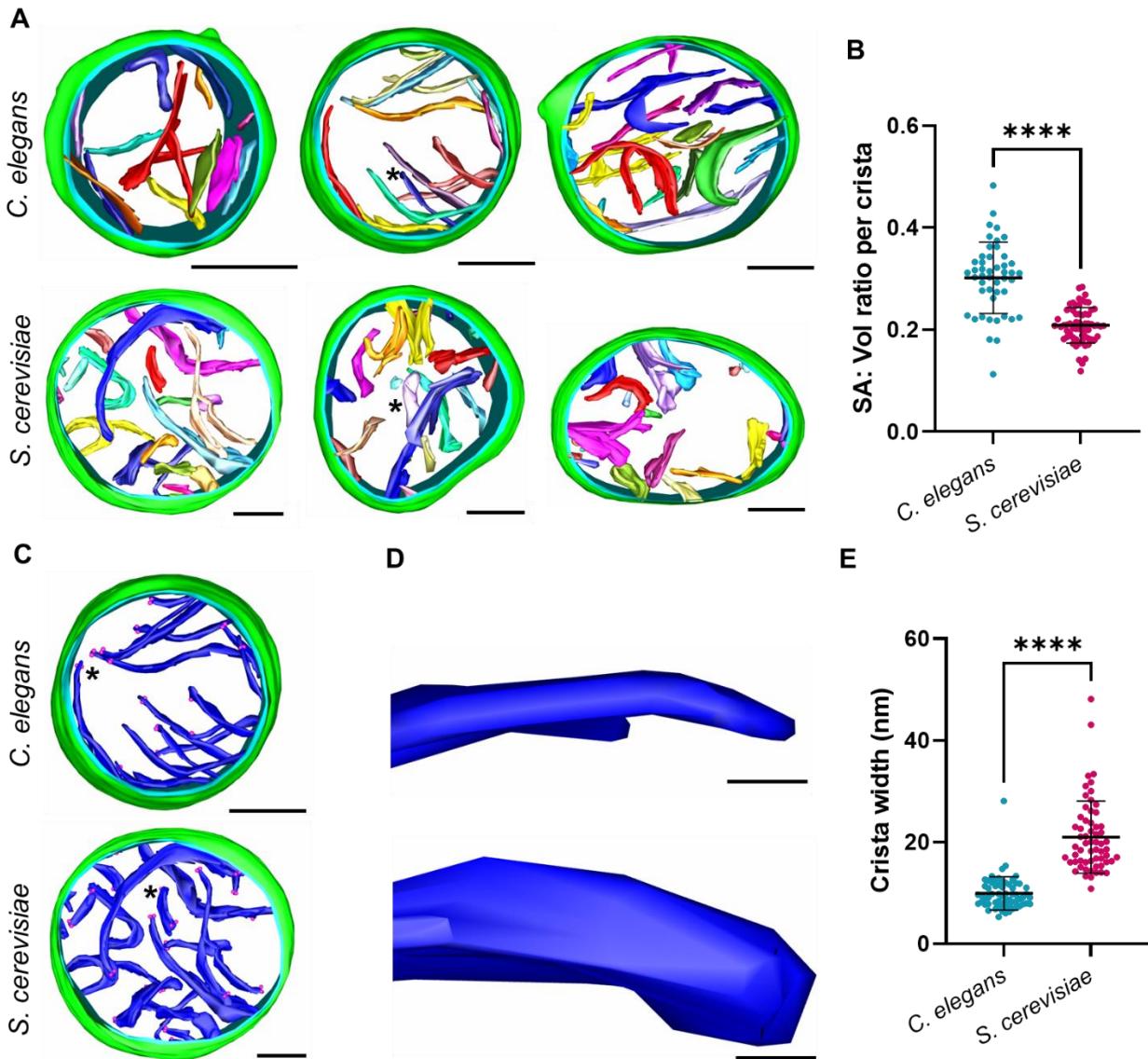

586

587 **Figure 1. ATP synthase dimer rows, and sub-tomogram average of the ATP synthase dimer from C.**

588 *elegans*.

589 **(A)** Tomographic slice through a whole *C. elegans* mitochondrion (top) and corresponding segmentation  
590 (bottom; outer membrane green, inner membrane light blue, and a different colour for each crista  
591 membrane). The boxed region shows an enlarged image of a single crista membrane, with green, blue and  
592 orange arrowheads indicating the outer, inner and crista membranes respectively, and yellow arrowheads  
593 indicating ATP synthase F<sub>1</sub> heads. The crista membrane is coloured light blue in the corresponding  
594 segmentation; each ATP synthase dimer pair is coloured differently. **(B)** Tomographic slice through *C.*  
595 *elegans* isolated crista membranes (left, yellow arrowheads indicating ATP synthase F<sub>1</sub> heads) and

596 corresponding segmentation (right). The boxed region shows an enlarged image of a single crista  
597 membrane, with the corresponding segmentation coloured as in panel A. Scale bars, 100 nm for  
598 tomograms, and 50 nm for enlarged views of crista membranes. **(C)** Sub-tomogram average of the *C.*  
599 *elegans* ATP synthase dimer. Upper panel shows side view, lower panel shows top-down view.



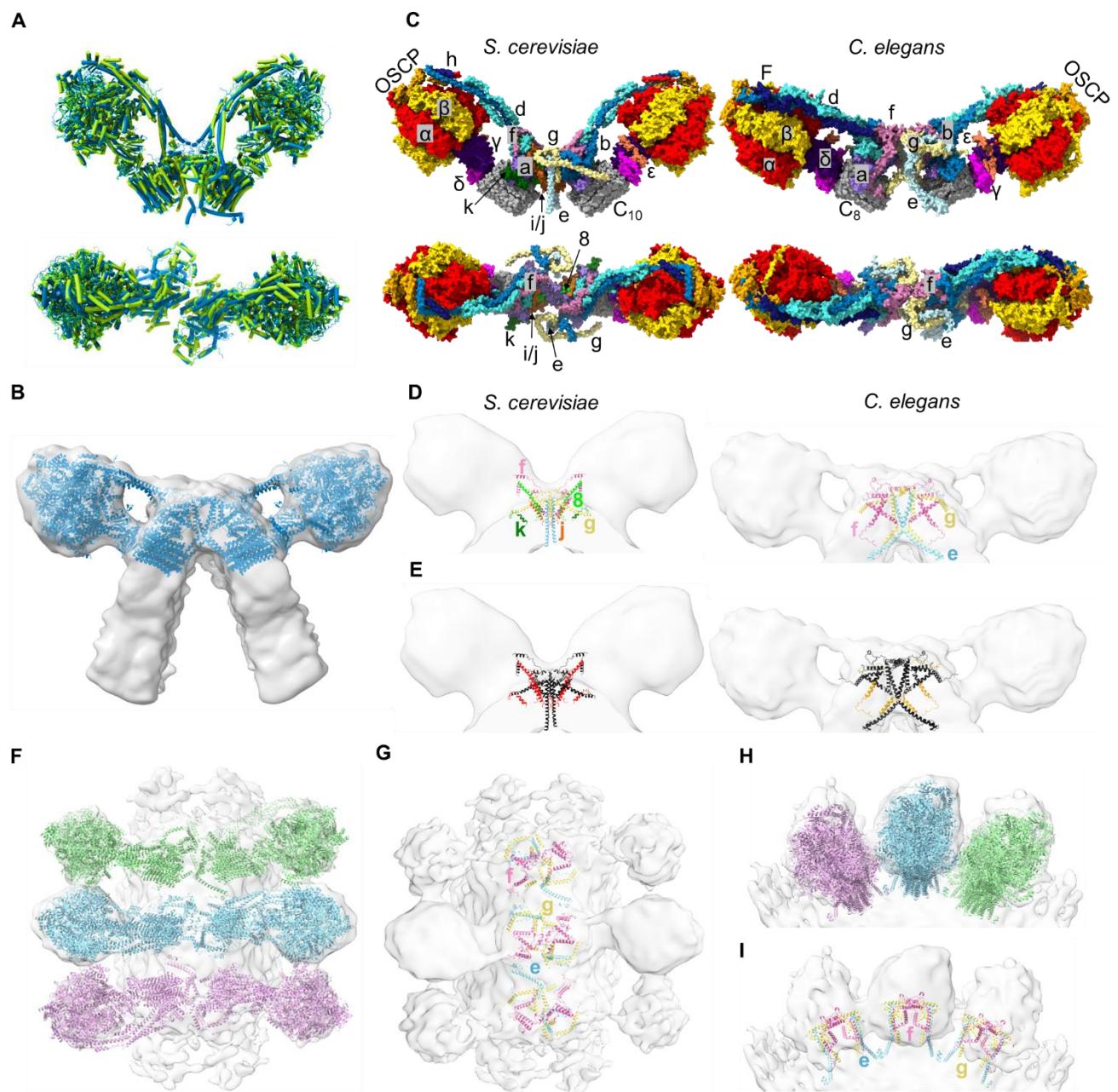

600

601 **Figure 2. The *C. elegans* ATP synthase compared to other species.**

602 **(A)** Structures depicting the range of average dimer angles observed in *S. cerevisiae* [EMD-7067] (29),  
603 bovine heart [EMD-11436] (28), and *C. elegans* (this work, [EMD-XXX]), using the highest resolution  
604 structures available. **(B)** Direct comparison between *S. cerevisiae* [EMD-2161] (11) and *C. elegans* ATP  
605 synthase sub-tomogram averages, with the angle between  $F_1$  dimer heads, the angle of crista membrane  
606 curvature, and distance between the central stalks for each monomer indicated. A bracket highlights the  
607 extra mass at the *C. elegans* dimer interface not apparent in *S. cerevisiae*. Black, transparent blue and dark  
608 green mesh represent decreasing threshold levels for the averages. **(C)** Cartoon detailing occurrence of  
609 ATP synthase subunits in *S. cerevisiae* and *C. elegans*, each labelled with corresponding nomenclature for  
610 the species (details in Table S1).

611




612

613 **Figure 3. Morphology of mitochondria isolated from *C. elegans* and *S. cerevisiae*.**

614 **(A)** Tomographic segmentations of *C. elegans* and *S. cerevisiae* mitochondria are displayed (green, outer  
615 mitochondrial membrane; blue, inner mitochondrial membrane; multi-colour, crista membranes). See Movie  
616 S1 (*C. elegans*) and Movie S2 (*S. cerevisiae*). **(B)** The mean surface area to volume ratio per crista ( $n = 3$   
617 mitochondria for each organism, with  $n=47$  cristae for *C. elegans* and  $n=63$  cristae for *S. cerevisiae*) was  
618 calculated from the segmentations shown in (A). **(C)** A single tomographic segmentation from each  
619 organism is shown with all crista coloured blue. Pink dots indicate distances used to measure width. **(D)**  
620 Close up of a single crista membrane from each organism (location indicated by asterisks in D to highlight

621 the flatter and thinner crista morphology in *C. elegans* mitochondria compared to *S. cerevisiae*. **(E)** The  
622 mean crista width (n= 63 crista tips for *C. elegans* and n= 61 for *S. cerevisiae*) was calculated from the  
623 segmentations shown in (A). Error bars in B and E show standard deviation of the mean and significance  
624 values were calculated using Welch's t-test for panel B or using the Mann-Whitney U-test for panel E. \*\*\*\*  
625  $p \leq 0.0001$ . Scale bars in A & C, 200 nm; in D, 20nm.

626



627

628 **Figure 4. AlphaFold homology model of the *C. elegans* ATP synthase dimer.**

629 **(A)** AlphaFold predictions for *C. elegans* ATP synthase subunits (blue) overlaid with the atomic model of  
630 the bovine ATP synthase dimer ([PDB 7AJB] (29), green) that was used as a scaffold, using cylinder  
631 representation. Predicted models were fitted onto 7AJB using MatchMaker in ChimeraX. **(B)** Two  
632 monomers from the *C. elegans* ATP synthase homology model (helical representation) fitted into the sub-  
633 tomogram average of the *C. elegans* ATP synthase dimer. **(C)** Surface view of *S. cerevisiae* and *C. elegans*

634 ATP synthase dimer models coloured by chain in side (top) and top-down (bottom) views. Subunits are  
635 annotated and shown as  $\alpha$ , red;  $\beta$ , gold;  $\gamma$ , indigo;  $\delta$ , magenta;  $\epsilon$ , coral;  $\text{c}$ , grey;  $\text{a}$ , purple;  $\text{b}$ , blue;  $\text{d}$ ,  
636 turquoise;  $\text{F}_6$ , navy; OSCP, orange;  $\text{e}$ , pale blue;  $\text{f}$ , pink;  $\text{g}$ , yellow;  $\text{j}$ , brown;  $\text{k}$ , dark green;  $\text{l}$ , lime. All  
637 subunits are labelled in the side views apart from subunit 8 which is buried. Only the dimer interface subunits  
638 are labelled in the top-down views. **(D)** Left, dimer interface subunits in the *S. cerevisiae* atomic model  
639 [6B8H] (29) coloured by chain and fitted into an *S. cerevisiae* sub-tomogram average [EMD-2161] (11).  
640 Right, dimer interface subunits in the *C. elegans* homology model coloured by chain fitted to the *C. elegans*  
641 sub-tomogram average. Subunits are annotated with the same colours as panel C. **(E)** As per (D), but with  
642 all subunits colored black, highlighting subunits missing in *C. elegans* relative to *S. cerevisiae* ( $\text{j}$ ,  $\text{k}$  and  $\text{l}$ )  
643 in red (left) and extensions in *C. elegans* subunits  $\text{e}$ ,  $\text{f}$  and  $\text{g}$  relative to *S. cerevisiae* in orange (right). **(F)**  
644 Top-down view of the *C. elegans* ATP synthase dimer homology model fitted to the sub-tomogram average  
645 showing sequential dimer pairs in a row. **(G)** As per (F), but exclusively showing dimer interface subunits  
646  $\text{e}$ ,  $\text{f}$  and  $\text{g}$  coloured by chain as per panels C and D. **(H)** and **(I)** show the same interactions as in (F) and  
647 (G) respectively but viewed from the side of a dimer row.

648 **Supporting Information for**

649 The consequence of ATP synthase dimer angle on mitochondrial  
650 morphology studied by cryo-electron tomography

651

652 Emma Buzzard, Mathew McLaren, Piotr Bragoszewski, Andrea Brancaccio, Holly Ford, Bertram  
653 Daum, Patricia Kuwabara, Ian Collinson & Vicki A.M. Gold.

654

655

656 **This PDF file includes:**

657 Supporting text

658 Figures S1 to S12

659 Tables S1 to S3

660 Legends for Movies S1 to S2

661 SI References

662

663 **Other supporting materials for this manuscript include the following:**

664 Movies S1 to S2

665

666 **Supporting Information Text**

667 **Extended methods**

668

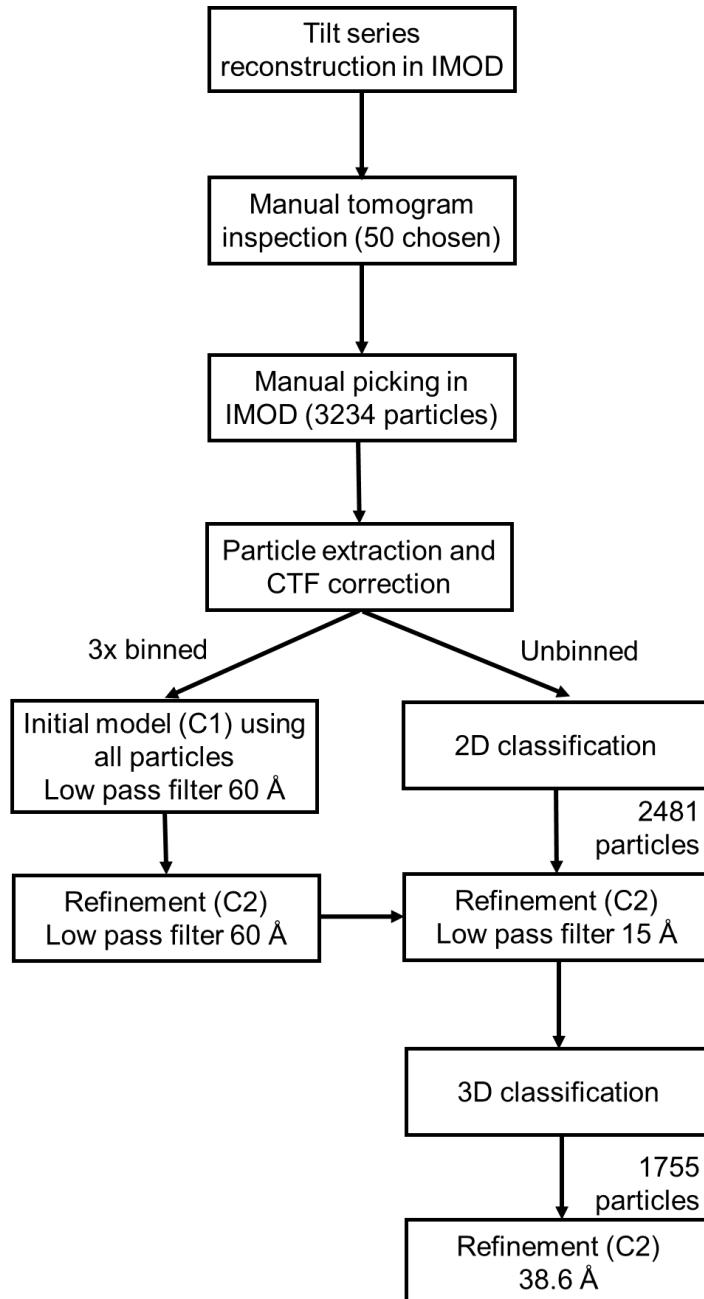
669 **ATP synthase purification from *C. elegans* mitochondria**

670 *C. elegans* ATP synthase was purified using a His-tagged IF<sub>1</sub> as bait, following a scaled-down  
671 protocol designed for purification of bovine dimers (71,72). Residues 1-60 of the *C. elegans* F-  
672 ATPase inhibitor protein IF<sub>1</sub> fused to a hexa-histidine tag (cel1-60His), were overexpressed from  
673 a pRSFDuet plasmid in *E. coli* BL21 (DE3), and purified by affinity chromatography on a 5 mL  
674 Nickel-Sepharose column (Cytiva) attached to an ÄKTA purification system (Cytiva). Fractions  
675 enriched in IF<sub>1</sub> were concentrated to ~50 mg/mL with a VivaSpin concentrator (molecular weight  
676 cut-off 3 kDa; Sartorius).

677

678 *C. elegans* mitochondria were washed in a phosphate buffer (50 mM sodium hydrogen phosphate,  
679 100 mM sucrose and 0.5 mM EDTA) and then centrifuged at 13,700 x g for 45 minutes at 4°C. This  
680 wash step was repeated twice to remove endogenous *C. elegans* IF<sub>1</sub>. Phosphate-washed  
681 mitochondria (~16 mg) were solubilised for 30 minutes at 18°C at 7.65 mg/ml with digitonin (0.92%  
682 w/v) and DDM (0.76% w/v). The resulting extract was centrifuged at 24,000 x g for 20 minutes at  
683 4°C, and cel1-60His was added to the supernatant at 2.7 µg per 1 mg mitochondria to form  
684 ATPase:cel1-60His complexes. A solution of 200 mM ATP, 200 mM MgSO<sub>4</sub>, and 400 mM Trizma  
685 (pH 8.0) was also added at 15 µl/ml before incubating for 15 minutes at 37°C, with further additions  
686 of this solution being added at 5 minute intervals. Precipitate was removed by centrifugation at  
687 24,000 x g for 10 minutes at 4°C. NaCl and imidazole were added to the clarified sample to reach  
688 final concentrations of 150 mM and 25 mM respectively. This final extract was applied to a 1 mL  
689 HisTrap FF Nickel Column (Cytiva) installed on an ÄKTA purification system (Cytiva) and  
690 equilibrated in a buffer containing 20 mM Tris, pH7.4, 150 mM NaCl, 2 mM ATP, 2 mM MgSO<sub>4</sub>,  
691 10% (v/v) glycerol, 0.1% (w/v) glyco-diosgenin (GDN) and a 0.1 mg/mL phospholipid mix. The  
692 ATPase:cel1-60His complexes were eluted from the column by addition of a linear gradient of  
693 imidazole up to 500 mM over 10 mL. 0.5mL fractions were collected and run on an SDS-PAGE gel  
694 to confirm which fractions contained the ATPase:1-60His.

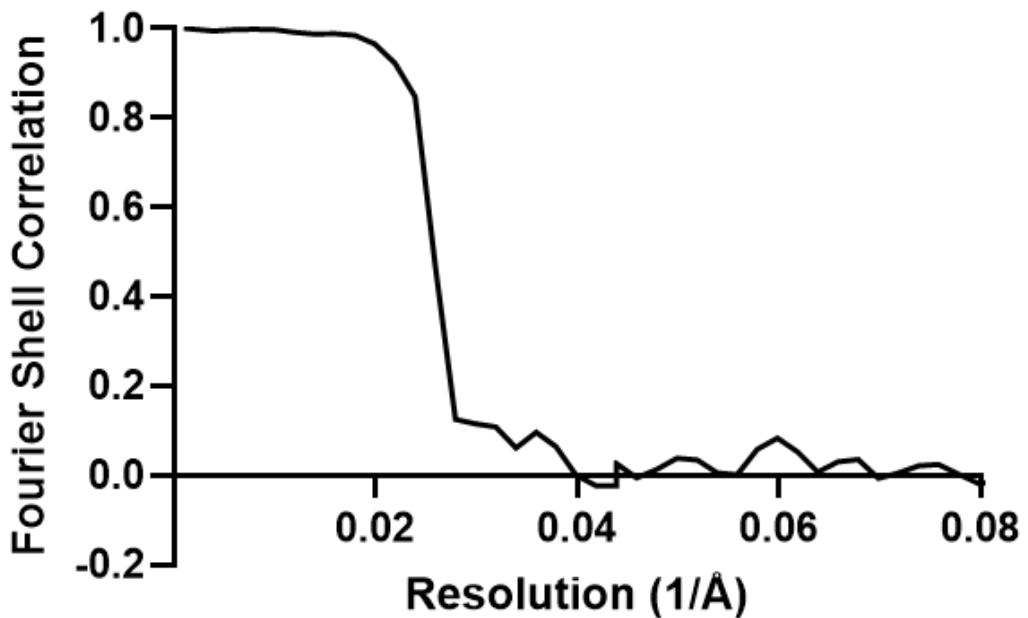
695


696 **Nano-LC Mass Spectrometry**

697 The sample of ATP synthase was run on a 10% SDS-PAGE gel until the dye front had migrated  
698 approximately 1cm into the separating gel. The gel lane was then excised as a single slice and  
699 subjected to in-gel tryptic digestion using a DigestPro automated digestion unit (Intavis Ltd.). The  
700 resulting peptides were fractionated using an Ultimate 3000 nano-LC system in line with an Orbitrap  
701 Fusion Lumos mass spectrometer (Thermo Scientific). Spectra were acquired with Xcalibur 3.0  
702 software (Thermo Scientific).

703

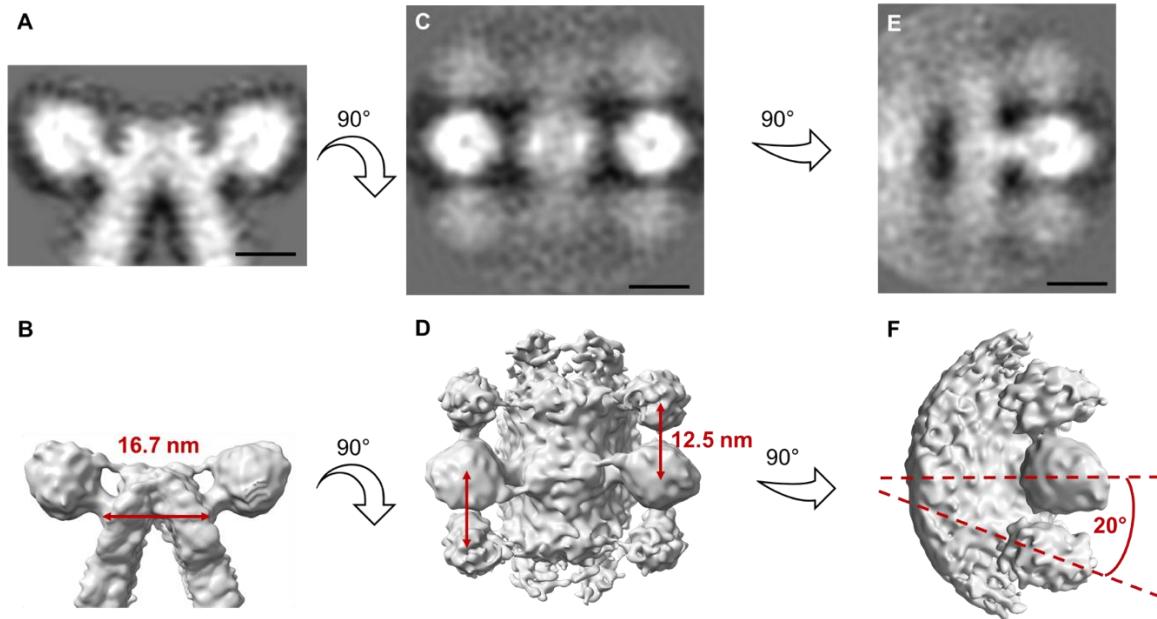
704 The raw data files were processed and quantified using Proteome Discoverer software v2.1  
705 (Thermo Scientific) and searched against the UniProt *Caenorhabditis elegans* database  
706 (downloaded October 2022; 26728 sequences) using the SEQUEST HT algorithm. Search criteria  
707 included oxidation of methionine (+15.995Da), acetylation of the protein N-terminus (+42.011Da)  
708 and methionine loss plus acetylation of the protein N-terminus (-89.03Da) as variable modifications  
709 and carbamidomethylation of cysteine (+57.021Da) as a fixed modification. Searches were  
710 performed with full tryptic digestion and a maximum of 2 missed cleavages were allowed. The  
711 reverse database search option was enabled and all data was filtered to satisfy false discovery rate  
712 (FDR) of 5%.


713



714

715 **Figure S1. Flow chart of tomogram processing and sub-tomogram averaging using IMOD**  
716 **and Relion.**


717



718

719 **Figure S2. Fourier Shell Correlation (FSC) for the *C. elegans* ATP synthase sub-tomogram**  
720 **averaging map.** The corrected FSC curve is an output from Relion 3.1 with a reported resolution  
721 of 38.6 Å.

722



723

724 **Figure S3. Inter-dimer distance and angle between consecutive dimer heads in oligomeric**  
725 **rows of *C. elegans* ATP synthase dimers. (A)** 2D projection showing side view of a masked map  
726 of the *C. elegans* ATP Synthase dimer. **(B)** Side view shown in 3D, with distance between central  
727 stalks indicated. **(C)** 2D projection showing top-down view of an unmasked map of the *C. elegans*  
728 ATP synthase dimer. **(D)** Top-down view in 3D with inter-dimer distance indicated. **(E)** 2D projection  
729 showing side view (rotated 90° compared to A) of an unmasked map of the *C. elegans* ATP  
730 Synthase dimer. **(F)** Side view in 3D, with inter-dimer angle indicated. All indicated measurements  
731 were made in IMOD. Scale bars, 10 nm.

732

733 Subunit e

734

735

736 Subunit f

737

738

## 739 Subunit g (isoform 2)

740

741

742

743 **Subunit b (isoform 2)**

|                       |                                                               |               |    |
|-----------------------|---------------------------------------------------------------|---------------|----|
| sp Q19126 AT5F2_CAEEL | MSLSRCLPLGQNARVIIIPARLAHAASTQAAAATDDAPNFFQKLAHRFQGVPLKGEAHAP  | 60            |    |
| sp P05626 ATPF_YEAST  | MSM-----SM-----                                               | GVRGLALR--SVS | 16 |
| sp P13619 AT5F1_BOVIN | MLS-----RV-----                                               | VLS-AAA-AAA   | 14 |
|                       | *                                                             | :             |    |
| sp Q19126 AT5F2_CAEEL | KSMFEDCNKEWSAPEPLPAIPKDFKEHPDRDLVNPYPARPMYPPKSRLLMMPSWTPF     | 120           |    |
| sp P05626 ATPF_YEAST  | KTLFSQG---VRCPSMVIGA---RYM-SSTPEKQT---DPKAKANSIINAIPGN---NI   | 62            |    |
| sp P13619 AT5F1_BOVIN | PSLKNAA---LLGPGVLQAT---RIFHTGQPSLAPVPLPEHGGKVRFLGIPEEFFQFL    | 67            |    |
|                       | ⋮                                                             | ⋮             | ⋮  |
| sp Q19126 AT5F2_CAEEL | QKVTVGSGPYLFFGGLFAFLVNVKELWVFEQGHMTVGVWILFYLLVTRTAGYKIDQGLYNG | 180           |    |
| sp P05626 ATPF_YEAST  | LTKTGVLG---TSAAAVIYAIISNELVINDESILLTFLGFTGLVAKYLAPAYK-----D   | 114           |    |
| sp P13619 AT5F1_BOVIN | YPKTGTGVPYVLGTLILYLLSKEIYVITPETFSAISTIGFLVYIVKKYGASVG-----E   | 122           |    |
|                       | ***                                                           | ⋮             | ⋮  |
| sp Q19126 AT5F2_CAEEL | YQERVNFD-----FKGLIQEDLKEAVEFKKTSAKQTESLNSIKESYPTALKESMALQL    | 232           |    |
| sp P05626 ATPF_YEAST  | FADARMKKVSDVLNASRNKHVEAVKDRID---SVSQLQNVATEKVLFDVSKETVELES    | 170           |    |
| sp P13619 AT5F1_BOVIN | FADKLNEQKIAQLEEVKQASIKQIQAID---MEKSQQALVQKRHYLFDVQRNNIAMAL    | 178           |    |
|                       | ⋮                                                             | ⋮             | ⋮  |
| sp Q19126 AT5F2_CAEEL | EATYRKNVQSVATELKRRIDYLKETEESKARVEREQLLKLINSEVDKEFSDRSFKDKYLQ  | 292           |    |
| sp P05626 ATPF_YEAST  | EAFLKQKVLEAHEAKAVLDSWVRYEASLRQLEQRQLAKSVISRVQSELGNPKFQEKVQLQ  | 230           |    |
| sp P13619 AT5F1_BOVIN | EVTYRERLHRVYREVKNRLDYHISVQNMMRQKEHMINWVEKRVVQSISAAQQE-KETIA   | 237           |    |
|                       | ⋮                                                             | ⋮             | ⋮  |
| sp Q19126 AT5F2_CAEEL | NAIQQLKGLNVQL-----                                            | 305           |    |
| sp P05626 ATPF_YEAST  | QSISEIEQLLSKL-----                                            | 244           |    |
| sp P13619 AT5F1_BOVIN | KCIADLKLLSKKAQAQPV-----                                       | 256           |    |
|                       | ⋮                                                             | ⋮             | ⋮  |

744

745

746 **Subunit d**

|                        |                                                                |     |
|------------------------|----------------------------------------------------------------|-----|
| tr Q17763 Q17763_CAEEL | MSGAAKRVATSSVNWSKLAER--LVPEHAAELTRVKGVSGTFQSAVSQLPADLPKIDFAA   | 58  |
| sp P30902 ATP7_YEAST   | --MSLAKSAANKLDWAKVISSLRITGSTATQLSSFKKRNDEARRQLLELQSQPTEVDFSH   | 58  |
| sp P13620 ATP5H_BOVIN  | --MAGRKLALKTIDWVAFGEI--IPRNQKAVANSLKSWNLTSLRATLPKPPAIDWAY      | 56  |
|                        | ⋮                                                              | ⋮   |
| tr Q17763 Q17763_CAEEL | LKKALPAHSA--VLDSLQKQYESVKIPIYGEVPAEYL-----KEVDQWVDYNNARIK      | 107 |
| sp P30902 ATP7_YEAST   | YRSVLKNTSVIDKIESYVKQYKPVKIDASKQLQ-----VIESFEKHMTNAK            | 105 |
| sp P13620 ATP5H_BOVIN  | YKANV-AKAG--LVDDFEKKFNALKVPIPEDIKYTAQVDAEKEVKSCAEFLTQSCTR----- | 112 |
|                        | ⋮                                                              | ⋮   |
| tr Q17763 Q17763_CAEEL | LHEVKVADGLQEAKKVEEKWAKAPPVEHFDRQHFVEYFPAHYDLRYQNRIPDPCNIGLN    | 167 |
| sp P30902 ATP7_YEAST   | ETESLVSKELKDLQSTLDNIQSARPFDELTVDDLTKIKPEIDAKVEE-----MVKKGKW    | 159 |
| sp P13620 ATP5H_BOVIN  | -----QEYEKELEKMRNIIIPFDQMTIEDLNEVFPEVKLDKKKYPYWHRPIETL-----    | 161 |
|                        | ⋮                                                              | ⋮   |
| tr Q17763 Q17763_CAEEL | ETPEIENRFKDYKVLRRADKVDDH                                       | 191 |
| sp P30902 ATP7_YEAST   | DVPGYKDRFGNLNV-----                                            | 174 |
| sp P13620 ATP5H_BOVIN  | -----                                                          | 161 |

747

748 **Subunit F<sub>6</sub>**

|                        |                                                             |     |
|------------------------|-------------------------------------------------------------|-----|
| tr 016517 016517_CAEEL | -----MFRAVQSV---RS---L-----ST---TAAACRQDLIQQTFTVKIREIAK---  | 35  |
| sp Q12349 ATP14_YEAST  | -----MFPIASRRILLNASVPLRLCNRNFTTTRISY---NVIQDLYLRELKDTKLAPS  | 51  |
| sp P02721 ATP5J_BOVIN  | MILQRLFRLSSAV---QS AISV-SWRRNIGITAVAFNKELDPVQKLFDKIREYRTK-- | 53  |
|                        | : * . * : : : : * : : : : :                                 |     |
| tr 016517 016517_CAEEL | ---NAGNLANSDPAVKKALQEELNRLATKFQLANADVVSKLPTNFEAAKVDSAVQSALE | 91  |
| sp Q12349 ATP14_YEAST  | TLQDAEGNVKPWNPPQKPNLPELELQ-----GPEALKAYTE--QNVETAHVA--KESEE | 101 |
| sp P02721 ATP5J_BOVIN  | -RQTSGGPVDAGPEYQQDLDRELFLKLQMYGKADMNTFPN--FTFEDPKFEVVE      | 104 |
|                        | * . * : * . : . : . : . * : .                               |     |
| tr 016517 016517_CAEEL | QQT LASLLEGVKKD-HSEYVASRDAKKAEQAAARNAALKQ                   | 129 |
| sp Q12349 ATP14_YEAST  | GESEPIEEDWLVLDDAEETKESH-----                                | 124 |
| sp P02721 ATP5J_BOVIN  | -KP-QS-----                                                 | 108 |
|                        | : ..                                                        |     |

749

750

751 **Subunit OSCP**

|                        |                                                               |     |
|------------------------|---------------------------------------------------------------|-----|
| tr P91283 P91283_CAEEL | MAQ-----LMKRGFSTS--AALAKAQLVKTPIQVHGVEGRYAAALYSAGHKQNKLQI     | 51  |
| sp P05626 ATPF_YEAST   | -----MSMSMGVRGLALRSVSKTLFSQGVRCPMSMIGA--RVMSS-----PEKQT-----  | 44  |
| sp P13621 ATPO_BOVIN   | MAALAVSGLSQQVRCFSTS--VVRPFAKLVRPPVQIYIGIEGRYATALYSAASKQNKLQEV | 58  |
|                        | * :: : : * : * : * ** :: ** .                                 |     |
| tr P91283 P91283_CAEEL | STDLNNSRSVYKDNKKFQEFLDPTLKANKK-----KTAIEAI-----               | 89  |
| sp P05626 ATPF_YEAST   | -----DPKAKANSIIINAIPGNNI LTGTGVLGTSAAAVIYAIISNELYVINDEXI      | 92  |
| sp P13621 ATPO_BOVIN   | EKELLRVGQILKEPKM-AASLLNPYVKRSVK-----VKSLSDM-----              | 95  |
|                        | : * : : : . : : : . : :                                       |     |
| tr P91283 P91283_CAEEL | --STKLGTLKETGNFLGLLA---ENGRNLNKLESVV-----SSFESI--MRAH         | 129 |
| sp P05626 ATPF_YEAST   | LLLTFGLFTGLVAKYLAPAYKDFADARMKKVSDVLNASRNKHVEAVKDRIDSVSQQLQNV  | 152 |
| sp P13621 ATPO_BOVIN   | --TAKEKFSPLTSNLINLLA---ENGRLTNTPAVI-----SAFSTM--MSVH          | 135 |
|                        | : : : : . : : . * : : * : . : : . .                           |     |
| tr P91283 P91283_CAEEL | -RGELFVQVTS-AEELSSS---NQK---ALSDALS KIGKSGQKLT-V-TYAVKPSIL    | 176 |
| sp P05626 ATPF_YEAST   | ETTKVLFDSKETVELESEA FELKQKV LAHEAKAVLDLSWRYEASLRQLEQRQLAKSVI  | 212 |
| sp P13621 ATPO_BOVIN   | -RGEVPCVTTT-ASALDEA---TLT---ELKTVLKSFLSKGQVLK-L-EVKIDPSIM     | 182 |
|                        | : : * : : * .. : * . * .. * : : * : : * : .                   |     |
| tr P91283 P91283_CAEEL | GGLVVTTIGD-----KYVDSL SIASRVKKYKDALATAI                       | 207 |
| sp P05626 ATPF_YEAST   | SRVQSELGNPKFQE KV LQQSIS-EIEQLLS KLK---                       | 244 |
| sp P13621 ATPO_BOVIN   | GGMIVRIGE-----KYVDMASAKTKI QKLSRAMREIL                        | 213 |
|                        | . : : * : * : : * . : : . : :                                 |     |

752

753 **Figure S4. Multiple sequence alignment for dimer interface and peripheral stalk subunits.**

754 Comparisons were made between *C. elegans*, *S. cerevisiae* (Baker's yeast strain ATCC 204508 /  
755 S288c) and *B. taurus* using Clustal Omega at EMBL-EBI (47–49). In the alignment output, an  
756 asterisk (\*) indicates a perfect alignment, a colon (:) indicates a site belonging to a group exhibiting  
757 strong similarity, and full stop (.) indicates a site belonging to a group exhibiting weak similarity.  
758 Residues are coloured according to their biophysical properties. Small and hydrophobic residues

759 are coloured red, acidic residues are coloured blue, basic residues are coloured magenta, and  
760 hydroxyl, sulfhydryl, amine and glycine residues are coloured green. Extensions in *C. elegans*  
761 subunits relative to both the *S. cerevisiae* and *B. taurus* homologues are underlined in black,  
762 deletions are underlined in maroon. Where subunits have multiple isomers, the isomer used in the  
763 homology model is used for alignment.

764 **Subunit e (Q21732)**

765 MSAPLKHPNAVVLQPPTVTISPLIRFGRYAALSLGVVYGFRLRQIREYHADIREWDHEKAVAAE

766 EAAKKKKWLAKDEMRYLMQVVNIPFEEGVKQFGVADLYKED

767

768 **Subunit f (Q22021)**

769 MAWFRPPPPHTQLRPWVPDAIFIPISRAVERGVFFYNRVLNKTEVGLFDKRWNKNVHGPYCH

770 WRYYGKLDTKFMDVKLGDLPAWMARREKTPSAFYNEFMRNIWRVHNLYSGPVYNNTVKVIFR

771 FIFAYSFLNWLVKSHRYVDFQKTMYHW

772

773 **Subunit g (isoform 2) (Q18803)**

774 MAAPKLGFFEKIANLTGALYRHQHAQFPRRFAILKAVGKHELAPPRQADWPAIKADWAKVQSFQ

775 TGGYKNLSIREGLVYTAVTLEVVFWFFVGEMIGRRYIFGYLVPADYVSKSTKKTVKEQEALAALE

776 N

777

778 **Subunit b (isoform 2) (Q19126)**

779 MSLSRCLPLGQNARVIIIPARLAHAASTQAAAATDDAPNFFQKLAHRFQGVPLKGEAHAPKSMFE

780 DCNKEWSAPEPLPAIPKDFKEHPDRDLVNYPYPARPMYPPKSRLMMMPDSWFTPQKVTVGSG

781 PYLFFGGLFAFLVNKEWLWFEEQGHMTVGWILFYLLVTRTAGYKIDQGLYNGYQERVNFFKGLIQ

782 EDLKEAVEFKKTSAKQTESLNSIKESYPTALKESMALQLEATYRKNVQSVATELKRRIDYLKETEE

783 SKARVEREQLLKLINSEVDKEFSDRSFKDKYLQNAIQQLKGKLNQVL

784

785 **Subunit d (Q17763)**

786 MSGAAKRVATSSVNWSKLAERLVPEHAAELTRVKGVSGTFQSAVSQLPADLPKIDFAALKKALP

787 AHSAVLDSLQKQYESVKIPYGEVPAEYLKEVDQWVDYNNARIKLHEVKVADGLQEAKKVEEKWA

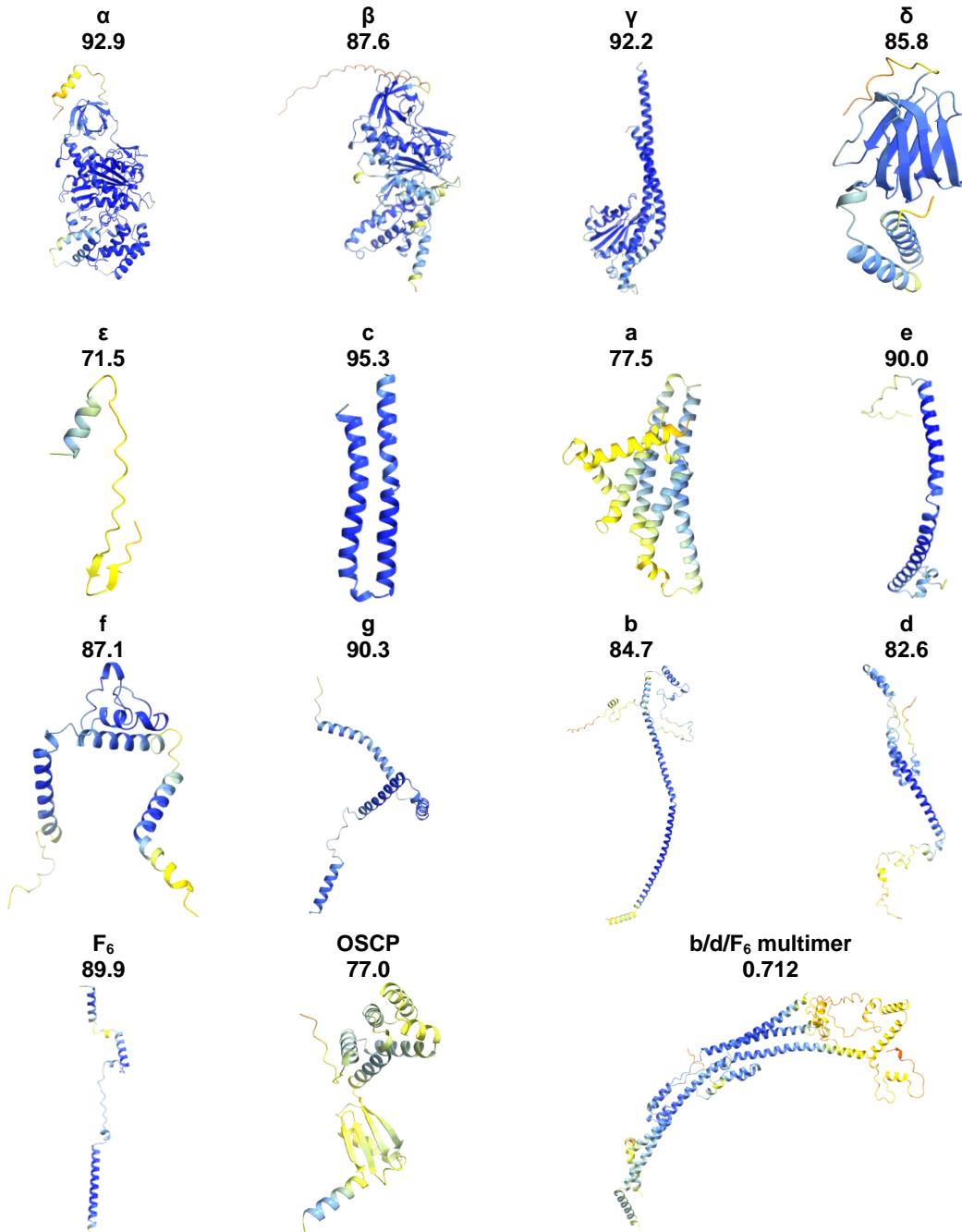
788 KAPPVEHFDRQHFVEYFPAHFYDLRYQNRIPDPCNIGLNETPEIENRFKDYKVLRRADKVDDH

789

790 **Subunit F<sub>6</sub> (O16517)**

791 MFRAVQSVRSLSTTAACRQDLIQQTFTKIREIAKNAGNLANSDPAVKKALQEELNRLATKFQLA

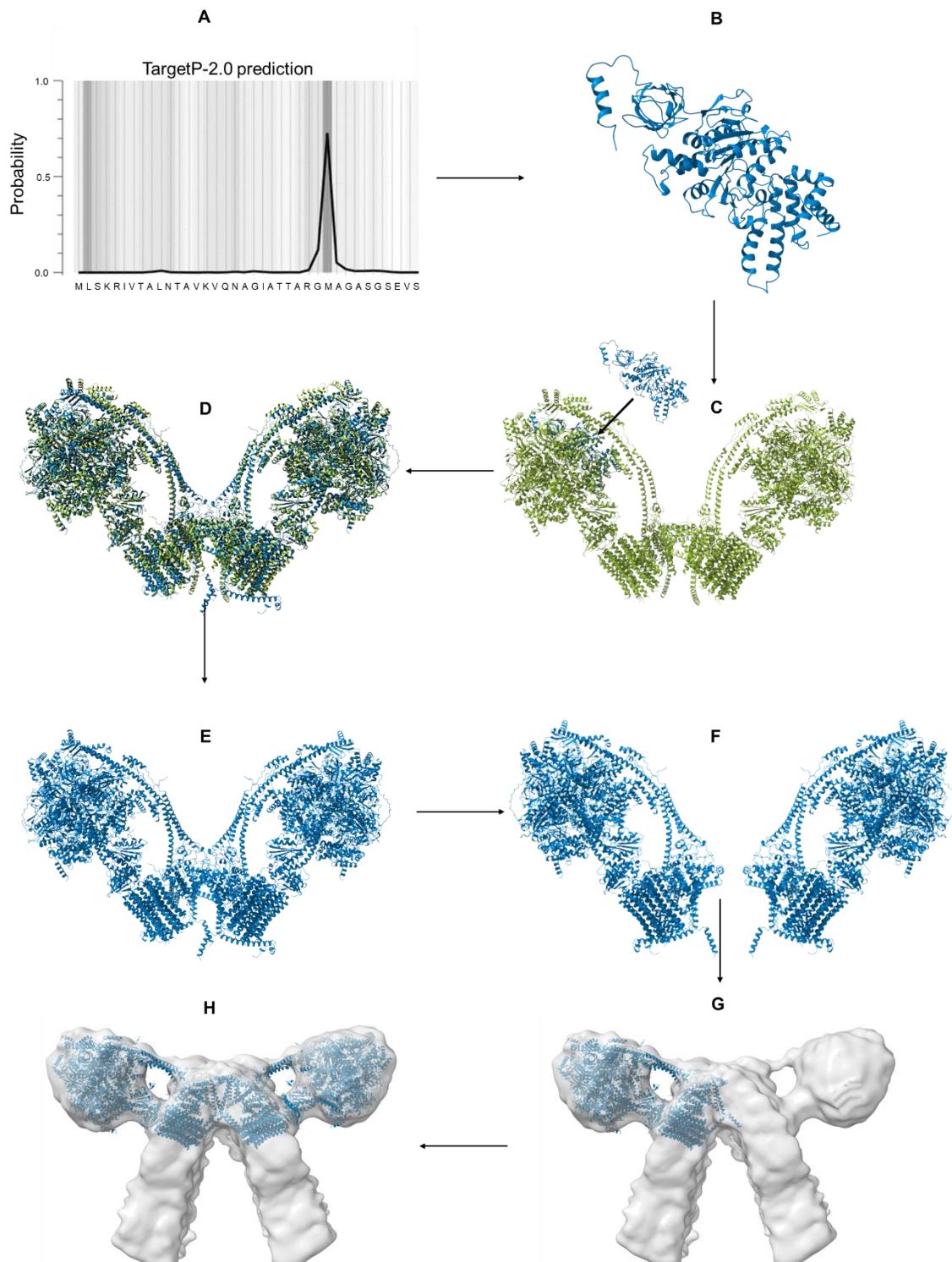
792 NADVVKLPTNFEAAKVDSAVQSALEGQTLASLLEGVKKDHSEYVASRDAKKAEQAARNAALKQ


793

794 **Figure S5. Mass spectrometry data for *C. elegans* ATP synthase subunits with significant**  
795 **extensions.** The sequence for each subunit of interest is shown and identified with a Uniprot code.  
796 The predicted mitochondrial targeting sequences are coloured red. The *C. elegans* specific  
797 extensions (revealed in sequence alignments from Fig. S4) are highlighted in yellow. Peptides  
798 identified by mass spectrometry are underlined. Where subunits have multiple isomers, the isomer  
799 used in the homology model is shown.

800

### AlphaFold predictions gallery


#### Model confidence

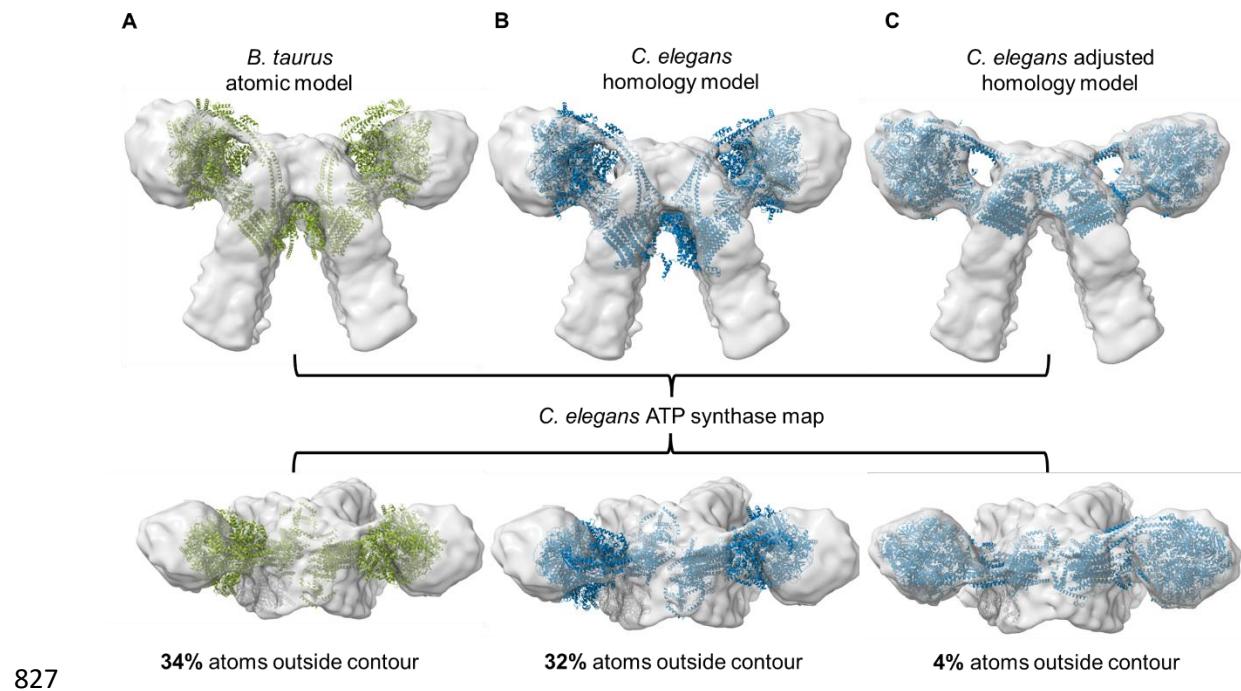


802 **Figure S6. AlphaFold predictions gallery**

803 AlphaFold predictions (40) for each *C. elegans* ATP synthase subunit, coloured by pLDDT score  
804 per residue. The pLDDT score is a per-residue measure of local confidence on a scale from 0 –  
805 100. The structure of subunits b d and F<sub>6</sub> were predicted as a multimer. The confidence measure  
806 for predictions made using AlphaFold multimer (41) is similar, but modified to score interactions  
807 between residues of different chains. It is calculated using a weighted combination of predicted-TM  
808 score (pTM) and interface predicted-TM score (ipTM), and has a scale from 0-1. The appropriate  
809 mean confidence score for each AlphaFold / multimer prediction is shown beneath each subunit  
810 name.

811



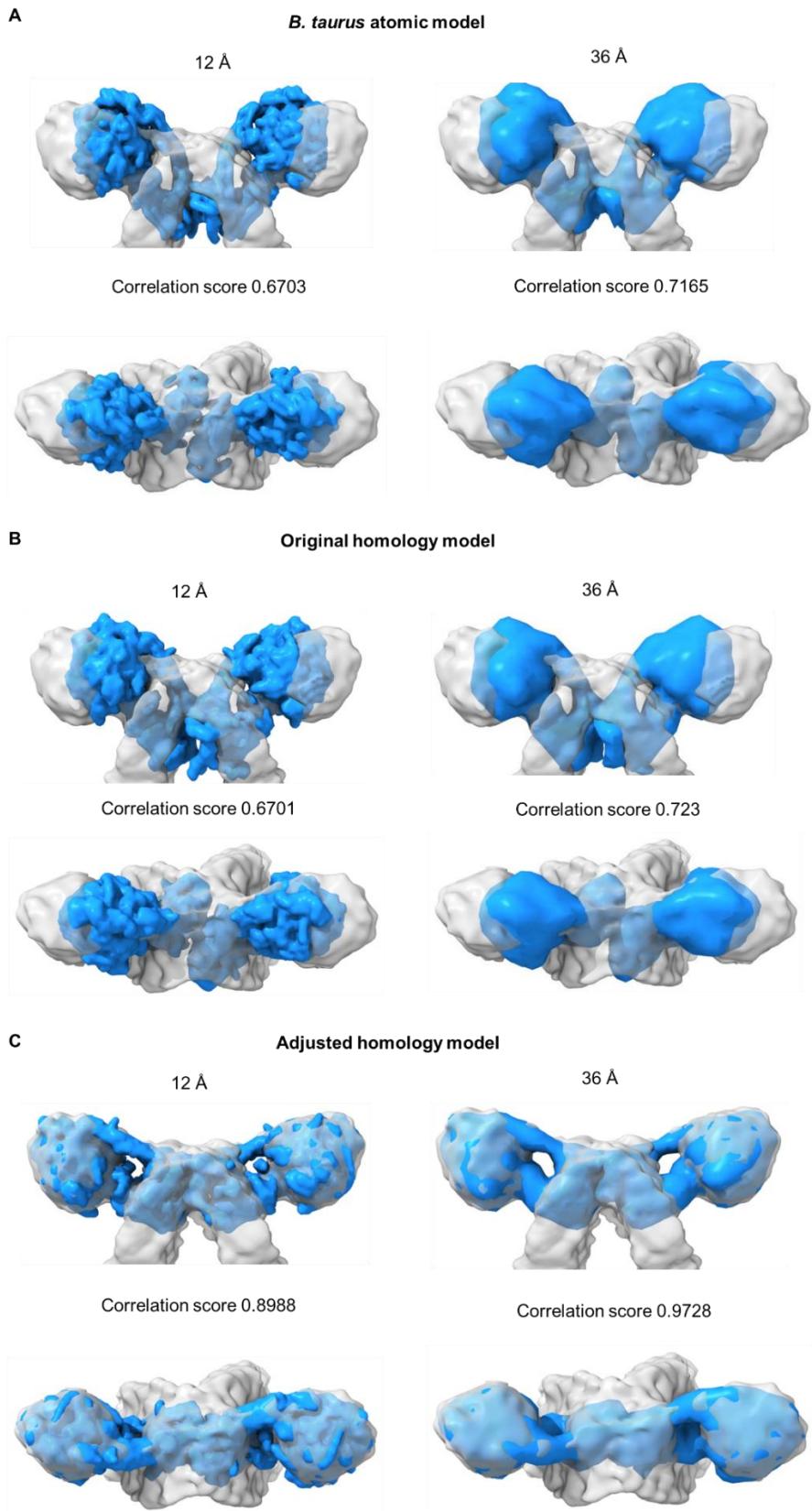

812

813 **Figure S7. *C. elegans* ATP synthase homology model workflow**

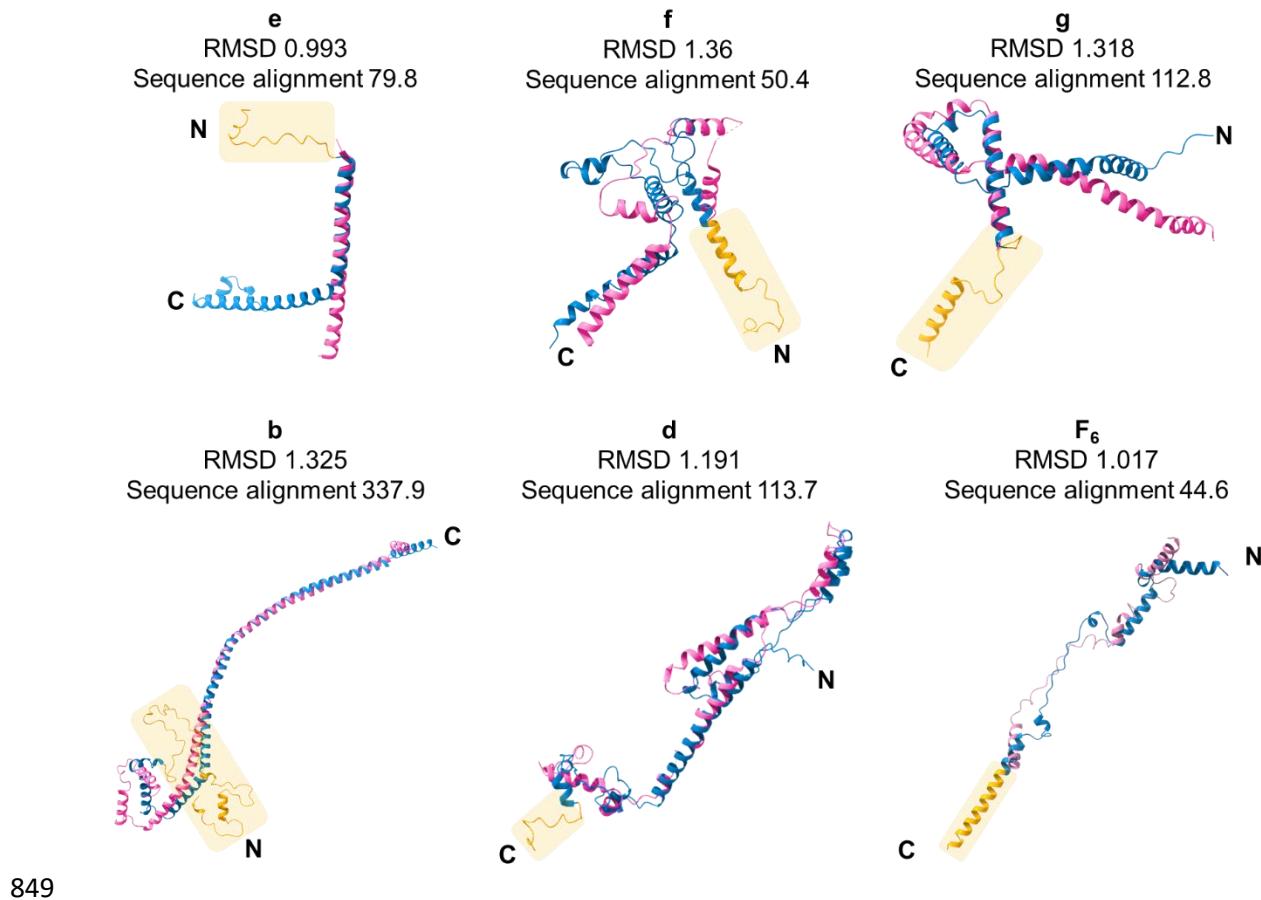
814 **(A)** MitoFates (66) or TargetP-2.0 (67) were used to predict the mitochondrial targeting sequence

815 of individual proteins of the ATP synthase, so that the mature protein sequence could be identified.  
816 The example shown is the TargetP-2.0 prediction for subunit  $\alpha$ . **(B)** AlphaFold was used to predict  
817 structures of all mature *C. elegans* ATP synthase subunits; again the example shown is the  
818 prediction for subunit  $\alpha$ . **(C)** Predicted models were sequentially fitted into the *B. taurus* ATP  
819 synthase model [PDB 7AJB] (29) used as a scaffold using MatchMaker in ChimeraX. **(D)** The  
820 resulting homology model (blue) after all subunits have been fitted to the scaffold provided by 7AJB  
821 (green). **(E)** The homology model without the *B. taurus* scaffolding. **(F)** The *C. elegans* ATP  
822 synthase dimer was split into separate monomers. **(G)** The monomers were fitted sequentially into  
823 the sub-tomogram average of the *C. elegans* ATP synthase using matchmaker in ChimeraX to  
824 obtain the correct dimer angle. **(H)** The final homology model of the *C. elegans* ATP synthase dimer  
825 fitted into the sub-tomogram average.

826

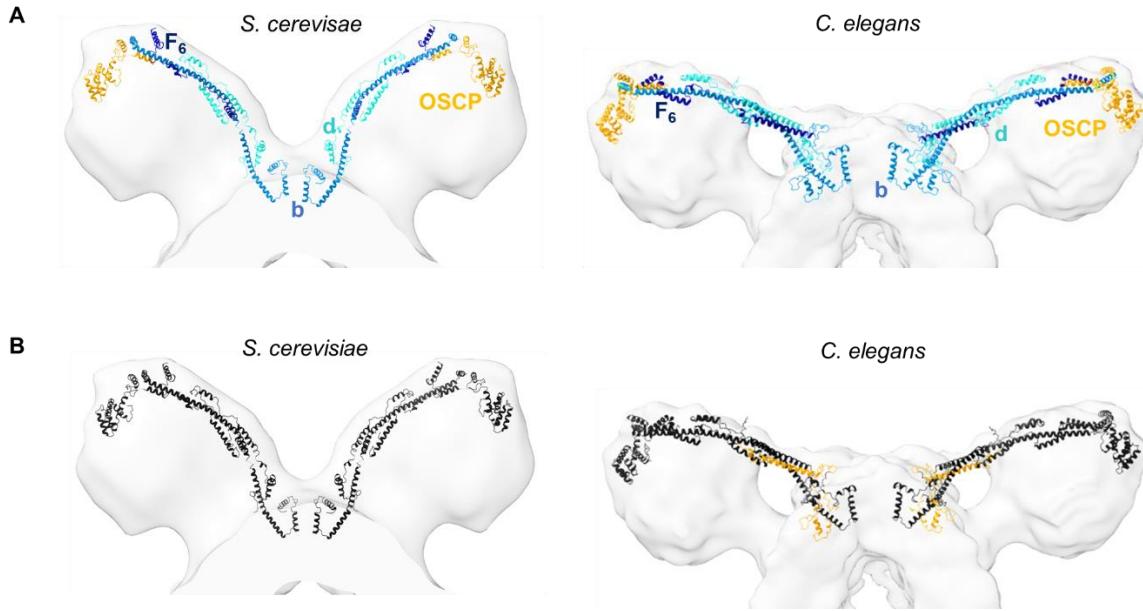



827


828 **Figure S8. Comparison of different models fitted to the *C. elegans* ATP synthase dimer map.**

829 Different ATP synthase dimer models were fitted into the *C. elegans* ATP synthase *in situ* map. All  
830 models were fitted into the map at threshold 0.0429 in ChimeraX, and the percentage of atoms  
831 outside the contour is shown for each model. **(A)** The purified *B. taurus* ATP synthase dimer atomic  
832 model [PDB 7AJB] (29) used as a scaffold shows a poor fit, with 34% of atoms outside the contour.  
833 **(B)** The *C. elegans* ATP synthase dimer homology model following scaffolding to the *B. taurus*  
834 model also shows a poor fit, with 32% of atoms outside the contour. **(C)** Sequential fitting of  
835 monomers from the *C. elegans* homology model shows an improved fit, with only 4% of atoms  
836 outside the contour.

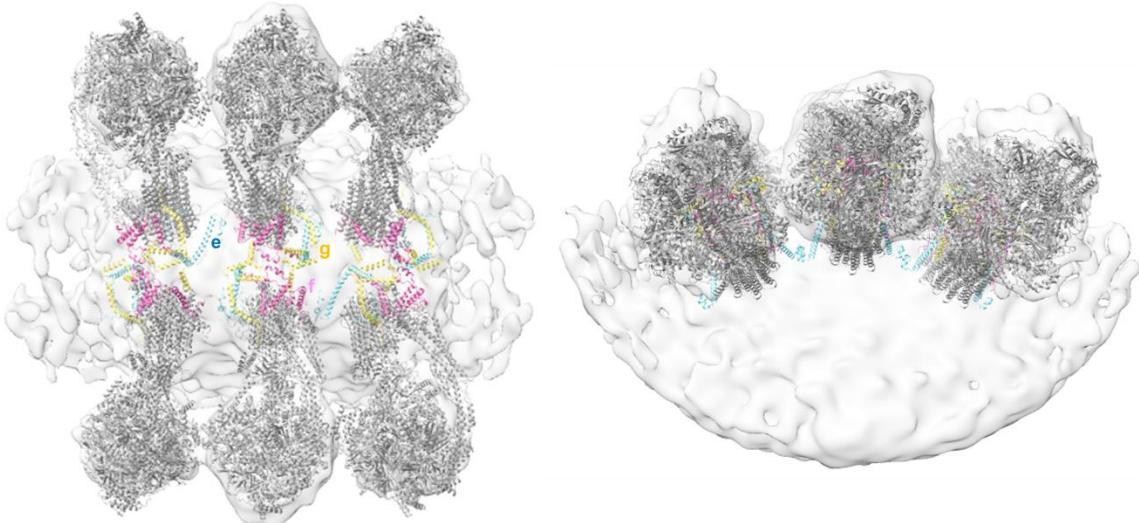
837




839 **Figure S9. The *C. elegans* homology model fitted to the *C. elegans* ATP synthase dimer sub-**  
840 **tomogram averaging map.** Using the molmap command in Chimera X (68), the PDB of the *C.*  
841 *elegans* homology model was converted into an MRC map at both 12 Å and 36 Å resolution.  
842 Converted molmap maps (blue) were then fitted to the sub-tomogram averaging map of the *C.*  
843 *elegans* dimer (grey) at equivalent threshold levels. Correlation scores between the homology  
844 model and sub-tomogram averaging maps are displayed. **(A)** Maps of the 7AJB *B. taurus* ATP  
845 synthase atomic model (29) used as a scaffold fitted to the sub-tomogram average for reference.  
846 **(B)** Maps of the *C. elegans* original homology model (without adjusting for dimer angle) fitted to the  
847 sub-tomogram average. **(C)** Maps of the dimer angle adjusted *C. elegans* homology model fitted to  
848 the sub-tomogram average.



849


850 **Figure S10. Overlays of individual subunits at the dimer interface and peripheral stalk, where**  
851 **there are extensions in *C. elegans* subunits compared with *S. cerevisiae*. *C. elegans***  
852 **AlphaFold predictions (blue) are overlaid with their *S. cerevisiae* counterparts from the dimeric**  
853 **yeast ATP synthase atomic model ([PDB 6B8H], pink) (29). *C. elegans* subunit extensions are**  
854 **highlighted in orange. RMSD values (for pruned atom pairs) and sequence alignment scores output**  
855 **by ChimeraX when using the “fit to model” tool are shown for each overlay. Since the *S. cerevisiae***  
856 **atomic model for the ATP synthase dimer [PDB 6B8H] does not contain complete density for**  
857 **subunit F<sub>6</sub>, the *S. cerevisiae* monomeric atomic model [PDB 6CP6] (70) was used to display a more**  
858 **complete *S. cerevisiae* chain for the overlay.**



859

860 **Figure S11. Comparison of peripheral stalk subunit arrangement in *S. cerevisiae* vs *C.***  
861 ***elegans* ATP synthase dimers. (A)** *S. cerevisiae* and *C. elegans* peripheral stalk subunits  
862 coloured by chain. Subunits are annotated and shown as b, blue; d, turquoise; F<sub>6</sub>, dark navy; and  
863 OSCP, orange. Left, peripheral stalk subunits b, d and OSCP in the 6B8H *S. cerevisiae* atomic  
864 model [PDB 6B8H] (29), and F<sub>6</sub> from the monomeric atomic model [PDB 6CP6] (70), fitted to the  
865 *S. cerevisiae* sub-tomogram average [EMD-2161] (11). The chain for F<sub>6</sub> was taken from 6CP6 (see  
866 Fig. S10B) as a large amount of density is missing from F<sub>6</sub> in 6B8H (70). Right, *C. elegans*  
867 homology model fitted to the *C. elegans* sub-tomogram average. **(B)** As per (A), but with all subunits  
868 colored black, highlighting extensions in *C. elegans* subunits b, d and F<sub>6</sub> relative to *S. cerevisiae* in  
869 orange.

870



871

872 **Figure S12. Inter-dimer interactions mediated by subunits e and g in *C. elegans* ATP**  
873 **synthase dimer rows.** Top-down view (left) and side view (right) of the *C. elegans* ATP synthase  
874 homology model (grey) fitted to each dimer pair in the unmasked sub-tomogram average of the *C.*  
875 *elegans* dimer. Dimer interface subunits are colored (e, pale blue; f, pink; g, yellow) to highlight  
876 inter-dimer interactions mediated by subunits e and g.

877

878 **Table S1. Nomenclature for homologues of ATP Synthase subunits**

| <i>C. elegans</i>                     | <i>S. cerevisiae</i> | <i>B. taurus</i> |
|---------------------------------------|----------------------|------------------|
| <b>F<sub>1</sub> head</b>             |                      |                  |
| α                                     | α/Atp1               | α                |
| β                                     | β/Atp2               | β                |
| <b>F<sub>0</sub> head</b>             |                      |                  |
| γ                                     | γ/Atp3               | γ                |
| δ                                     | δ/Atp16              | δ                |
| ε                                     | ε/Atp15              | ε                |
| <b>Peripheral stalk</b>               |                      |                  |
| b                                     | b/Atp4               | b                |
| d                                     | d/Atp7               | d                |
| F <sub>6</sub>                        | h/Atp14              | F <sub>6</sub>   |
| OSCP                                  | OSCP/Atp5            | OSCP             |
| <b>F<sub>0</sub> motor</b>            |                      |                  |
| a                                     | a/Atp6               | a                |
| c                                     | c/Atp9               | c                |
| <b>Type I dimer-specific subunits</b> |                      |                  |
| e                                     | e/Atp21              | e                |
| f                                     | f/Atp17              | f                |
| g                                     | g/Atp20              | g                |
| -                                     | i/j/Atp18            | 6.8PL/ j         |
| -                                     | k/Atp19              | DAPIT/ k         |
| -                                     | 8/Atp8               | A6L/ATP8         |

879 Nomenclature for yeast and mammalian species are described as detailed by Song and Pfanner  
880 (6). In this work, we use primarily the mammalian nomenclature, which is also the standard used  
881 to describe *C. elegans* subunits. Exceptions to this are in our comparisons between *C. elegans* and  
882 *S. cerevisiae* dimers, where we use the *S. cerevisiae* naming system to describe subunits missing  
883 in worms.

884 **Table S2. Metrics to assess confidence and fit of AlphaFold predicted structures**

| Subunit name                | C. elegans Uniprot Accession Number | Mean pLDDT (or weighted pTM & ipTM) <sup>1</sup> | RMSD between pruned atom pairs <sup>2</sup> | RMSD across all atom pairs | Sequence alignment score <sup>3</sup> |
|-----------------------------|-------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------|---------------------------------------|
| α                           | Q9XXK1                              | 92.9066444                                       | 0.586                                       | 1.009                      | 2171.8                                |
| β                           | P46561                              | 87.5983733                                       | 1.161                                       | 3.202                      | 2050.1                                |
| γ                           | Q95XJ0                              | 92.17635904                                      | 0.743                                       | 1.764                      | 978.4                                 |
| δ                           | Q09544                              | 85.82596715                                      | 0.901                                       | 0.941                      | 368.7                                 |
| ε <sup>4</sup>              | O16298                              | 65.4116052                                       |                                             |                            |                                       |
|                             | P34539                              | 71.51756013                                      | 0.631                                       | 6.924                      | 39                                    |
| c                           | Q9BKS0                              | 95.27668763                                      | 0.558                                       | 0.62                       | 332.8                                 |
| e                           | Q21732                              | 89.96603434                                      | 0.609                                       | 10.661                     | 143.9                                 |
| f                           | Q22021                              | 87.12810426                                      | 1.231                                       | 6.257                      | 167.2                                 |
| g                           | Q18803                              | 90.2590889                                       | 1.346                                       | 2.598                      | 207.2                                 |
| a                           | P24888                              | 77.54888203                                      | 1.073                                       | 4.582                      | 322.9                                 |
| b                           | Q20053                              | 84.43326886                                      |                                             |                            |                                       |
|                             | Q19126                              | 84.74422485                                      | 1.076                                       | 8.068                      | 441.4                                 |
| d                           | Q17763                              | 82.60642993                                      | 1.175                                       | 4.902                      | 296.7                                 |
| F <sub>6</sub>              | O16517                              | 89.9038886                                       | 0.79                                        | 6.717                      | 76.2                                  |
| OSCP                        | P91283                              | 76.95722866                                      | 1.09                                        | 1.557                      | 517.7                                 |
|                             | Q7JNG1                              | 76.43462181                                      |                                             |                            |                                       |
| b,d,F <sub>6</sub> multimer | Q19126, Q17763, O16517              | 0.712090029                                      | 1.076                                       | 8.068                      | 441.4                                 |

<sup>1</sup> pLDDT scores are shown for subunits where structure was predicted individually, a weighted pTM and iPTM score is shown for a complex of subunits predicted using AlphaFold multimer. The pLDDT score is a per-residue measure of local confidence on a scale from 0 – 100. The predicted-TM score (pTM) and interface predicted-TM score (ipTM), and has a scale from 0-1.

<sup>2</sup> RMSD (Root Mean Square Deviation) is a measure of the similarity between two superimposed atomic coordinates, in this case for the predicted *C. elegans* subunits and the model of the *B. taurus* ATP synthase dimer.

<sup>3</sup> Sequence alignment score between *C. elegans* and *B. taurus*.

<sup>4</sup> Where a subunit has more than one isoform, the version with the highest pLDDT score was used to build the homology model. RMSD and sequence alignment scores are only shown for the selected protein. In the case of subunit b, the isoform with the highest pLDDT score is also the only isoform expressed in somatic tissues (69).

885 **Table S3. Metrics to assess fit of atomic detail models to *C. elegans* ATP synthase dimer**  
886 **sub-tomogram averaging map.**

|                                          | <i>B. taurus</i> atomic model [PDB 7AJB] | Original <sup>5</sup> <i>C. elegans</i> homology model | Adjusted <sup>6</sup> <i>C. elegans</i> homology model |
|------------------------------------------|------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| PDB % atoms outside contour <sup>7</sup> | 34                                       | 32                                                     | 4                                                      |
| MRC map <sup>8</sup> correlation score   | 0.7165                                   | 0.723                                                  | 0.9728                                                 |

887

---

<sup>5</sup> Homology model following scaffolding of AlphaFold predicted *C. elegans* subunits onto the *B. taurus* atomic model without adjusting for dimer angle.

<sup>6</sup> Homology model following fitting of dimer angle adjusted *C. elegans* ATP synthase monomers to the *C. elegans* ATP synthase sub-tomogram averaging map.

<sup>7</sup> This value is given by Chimera when fitting a PDB model to a map using the “fit in map” command.

<sup>8</sup> MRC map generated from PDB’s using molmap command in ChimeraX (68). This metric shows level of correlation between molmap map and our sub-tomogram average at the same resolution (38.6 Å).

888 **Movie S1 (separate file).** Movie showing a 360° rotation about the y-axis of a single segmented  
889 *C. elegans* mitochondrion from the upper panel of Fig. 3A. An image sequence of 100 PNG files  
890 was collected in IMOD, and the sequence montaged into a10fps AVI file in Image J (63).

891

892 **Movie S2 (separate file).** Movie showing a 360° rotation about the y-axis of a single segmented  
893 *S. cerevisiae* mitochondrion from the lower panel of Fig. 3A. An image sequence of 100 PNG files  
894 was collected in IMOD, and the sequence montaged into a10fps AVI file in Image J (63).

895 **SI References**

896 6. Song J, Pfanner N, Becker T. Assembling the mitochondrial ATP synthase. *Proc. Natl. Acad. Sci. USA.* 2018 Mar 20 [cited 2022 Nov 16];115(12):2850–2. Available from: <https://doi.org/10.1073/pnas.1801697115>

897 11. K. M. Davies, C. Anselmi, I. Wittig, J. D. Faraldo-Gómez, W. Kühlbrandt, Structure of the yeast F<sub>1</sub> F<sub>0</sub>-ATP synthase dimer and its role in shaping the mitochondrial cristae. *Proc. Natl. Acad. Sci. USA.* **109**, 13602–13607 (2012).

898 29. Guo H, Bueler SA, Rubinstein JL. Atomic model for the dimeric F<sub>0</sub> region of mitochondrial ATP synthase. *Science.* 2017 Nov 17 [cited 2022 Jul 19];358(6365):936–40. Available from: <https://doi.org/10.1126/science.aoa4815>

899 40. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. *Nature.* 2021 Aug 26;596(7873):583–9. Available from: <https://doi.org/10.1038/s41586-021-03819-2>

900 47. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol.* 2011 Jan 11;7(1):539. Available from: <https://doi.org/10.1038/msb.2011.75>

901 48. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, et al. A new bioinformatics analysis tools framework at EMBL-EBI. *Nucleic Acids Res.* 2010 Jul 38;2:W695–9. Available from: <https://doi.org/10.1093/nar/gkq313>

902 49. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis Tool Web Services from the EMBL-EBI. *Nucleic Acids Res.* 2013 Jul 41;W1:W597–600. Available from: <https://doi.org/10.1093/nar/gkt376>

903 41. Evans R, O'Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex prediction with AlphaFold-Multimer. *bioRxiv.* 2021 [cited 2021 Nov 30]; Available from: <https://doi.org/10.1101/2021.10.04.46303464>

920 63. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image  
921 analysis. *Nat Methods*. 2012 Jul 28;9(7):671–5. Available from:  
922 <https://doi.org/10.1038/nmeth.208967>

923 66. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. MitoFates: Improved Prediction of  
924 Mitochondrial Targeting Sequences and Their Cleavage Sites. *Mol. Cell. Proteomics*. 2015  
925 Apr 1;14(4):1113–26. Available from: <https://doi.org/10.1074/mcp.M114.04308368>.  
926 J. J. A. Armenteros, *et al.*, Detecting sequence signals in targeting peptides using deep  
927 learning. *Life Sci. Alliance* 2, e201900429 (2019).

928 68. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, *et al.* UCSF  
929 ChimeraX: Structure visualization for researchers, educators, and developers. *Protein*  
930 *Science*. 2021 Jan 22 [cited 2022 Aug 15];30(1):70–82. Available from:  
931 <https://doi.org/10.1101/2021.01.22.514394>

932 69. Kawasaki I, Hanazawa M, Gengyo-Ando K, Mitani S, Maruyama I, Iino Y. ASB-1, a  
933 germline-specific isoform of mitochondrial ATP synthase b subunit, is required to maintain  
934 the rate of germline development in *Caenorhabditis elegans*. *Mech Dev*. 2007 Mar 1 [cited  
935 2020 Jul 15];124(3):237–51. Available from: <https://doi.org/10.1016/j.mod.2006.11.004>

936 71. Spikes TE. Structural studies of the mitochondrial F-ATPase. PhD thesis. The University  
937 of Cambridge; 2017.

938 72. Runswick MJ, Bason J V., Montgomery MG, Robinson GC, Fearnley IM, Walker JE. The  
939 affinity purification and characterization of ATP synthase complexes from mitochondria.  
940 *Open Biol*. 2012 Oct 29;3(2). Available from: <https://doi.org/10.1098/rsob.120160>