

1 Flattening the curve - How to get better results with 2 small deep-mutational-scanning datasets

3 Gregor Wirnsberger¹, Iva Pritišanac^{2,4},
4 Gustav Oberdorfer^{3,4} and Karl Gruber^{1,4,5*}

4 October 31, 2023

5 ¹Institute of Molecular Biosciences, University of Graz, Graz, Austria

6 ²Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria

7 ³Institute of Biochemistry, Graz University of Technology, Graz, Austria

8 ⁴BioTechMed-Graz, Austria

9 ⁵Field of Excellence BioHealth, University of Graz, Graz, Austria

10 1 Abstract

11 Proteins are utilized in various biotechnological applications, often requiring the optimization
12 of protein properties by introducing specific amino acid exchanges. Deep mutational scanning
13 (DMS) is an effective high-throughput method for evaluating the effects of these exchanges on
14 protein function. DMS data can then inform the training of a neural network to predict the
15 impact of mutations. Most approaches employ some representation of the protein sequence
16 for training and prediction. As proteins are characterized by complex structures and intricate
17 residue interaction networks, directly providing structural information as input reduces the
18 need to learn these features from the data.

19 We introduce a method for encoding protein structures as stacked 2D contact maps, which
20 capture residue interactions, their evolutionary conservation, and mutation-induced interaction
21 changes. Furthermore, we explored techniques to augment neural network training perfor-
22 mance on smaller DMS datasets. To validate our approach, we trained three neural network
23 architectures originally used for image analysis on three DMS datasets, and we compared their
24 performances with networks trained solely on protein sequences. The results confirm the ef-
25 fectiveness of the protein structure encoding in machine learning efforts on DMS data. Using
26 structural representations as direct input to the networks, along with data augmentation and
27 pre-training, significantly reduced demands on training data size and improved prediction per-
28 formance, especially on smaller datasets, while performance on large datasets was on par with
29 state-of-the-art sequence convolutional neural networks.

30 The methods presented here have the potential to provide the same workflow as DMS

31 without the experimental and financial burden of testing thousands of mutants. Additionally,
32 we present an open-source, user-friendly software tool to make these data analysis techniques
33 accessible, particularly to biotechnology and protein engineering researchers who wish to apply
34 them to their mutagenesis data.

35 **2 Keywords:**

36 deep mutational scanning, protein structure, structure encoding, machine learning, pre-training,
37 data augmentation

38 **3 Introduction**

39 Proteins are found in viruses, bacteria, plants, and humans and fulfill a huge number of differ-
40 ent functions and tasks in living organisms. Given their enormous functional diversity, proteins
41 also present an attractive platform for various applications in biotechnology and bioengineering.
42 However, naturally occurring proteins often require optimization for non-native uses. One com-
43 mon method of protein optimization involves the substitution of specific amino acids, which can
44 significantly enhance or alter the protein’s function as, for instance, observed in the increased
45 brightness of fluorescent proteins [1], or in antibody binding target modifications [2].

46 Amino acid substitutions can profoundly affect the properties of proteins, with mutagenesis
47 providing a potent tool for evaluating these effects. A powerful technique for gaining compre-
48 hensive insights into genotype-phenotype relationships is deep mutational scanning (DMS) [3].
49 This approach enables the creation of expansive datasets depicting the effects of mutations on
50 a given protein. DMS combines some type of protein display, which provides a physical link
51 between a protein and its encoding nucleic acid sequence, with high-throughput sequencing,
52 allowing for the characterization of up to 10^5 protein variants. The methodology involves ap-
53 plying selective pressure based on the protein’s function to a diverse library of protein variants,
54 which are sequenced before and after selection. High-throughput sequencing then quantifies the
55 abundance of each variant. Throughout selection, variants with beneficial mutations become
56 enriched, while those with deleterious mutations become depleted, offering a means to quantify
57 the fitness of a vast sequence diversity for a protein of interest [4]. The broad applicability
58 of DMS is demonstrated in its diverse uses, such as investigating the sequence determinants
59 of $\text{A}\beta$ aggregation in Alzheimer’s disease [5], probing protein binding behavior [6], forecasting
60 the evolutionary trajectories of human H3N2 influenza variants [7], optimizing antimicrobial
61 peptides [8], and elucidating the effects of mutations in SARS-CoV-2 proteins [9] [10].

62 DMS experiments have increasingly become the method of choice for many projects aim-
63 ing to achieve specific engineering goals. As these experiments grow, there is an increasing
64 demand for user-friendly predictive methods tailored to this kind of data. Consequently, var-
65 ious methods have been developed to predict the effects of amino acid exchanges in proteins.
66 Some of these methods rely solely on evolutionary data and omit experimentally determined

67 data to predict the functional consequences of amino acid substitutions. These approaches
68 include, for example, the use of Hidden-Markov models [11], Potts models (EVmutation [12]),
69 and variational autoencoders (DeepSequence [13]). Others are natural language processing mod-
70 els, which are strongly influenced by the training approaches used in their field of origin. They
71 get pre-trained in an unsupervised manner on a large amount of data and then fine-tuned on
72 the prediction task. Here, models like LSTMs [14] and transformer [15] are used.

73 Additionally, some models employ decision tree ensembles (like Envision [16]) trained on
74 deep mutational scanning data or use Gaussian processes [17] for predictions. These mod-
75 els, particularly those grounded in natural language processing (NLP), often take only the
76 protein sequence as input. Other models, such as Envision, integrate structural features into
77 their framework but tend to utilize more general features like secondary structures and solvent
78 accessibility instead of harnessing the unique information that each amino acid can offer.

79 Another important aspect in training ML models is training efficient encoding of the un-
80 derlying data. In the case of proteins, this can be the amino acid sequence alone without any
81 3D information [18], a graph representation of the protein structure [18], or voxel-based spatial
82 structural encoding [19]. In recent years, models used in natural language processing have in-
83 creasingly been applied to problems with proteins. Although these models are compelling and
84 can produce great results, they tend to need a massive number of parameters, leading to high
85 memory and computation requirements [20].

86 Since protein structure is more conserved than sequence [21], we created a - to our knowledge
87 - new encoding for protein structures to take advantage of the information contained in the 3D
88 structure. The encoding consists of 2D contact maps representing different physico-chemical
89 properties of amino acids and their accompanying interaction, as well as the evolutionary con-
90 servation of each interacting residue in the structure (Section 4.2). In addition, this encoding
91 allows the use of standard architectures for image classification networks, thus giving access to
92 a large number of different architectures that can be used to solve this problem. Furthermore,
93 we create a helpful pre-training and data augmentation protocol that helps to improve results
94 when only a small amount of data is available (Fig. 1).

95 In order to determine the effectiveness of our approach when training data is scarce, we
96 trained different architectures using datasets containing between 50 and 6000 samples. To
97 ensure the accuracy of our analysis, we used sub-datasets that accurately reflect the distribution
98 of fitness scores present in the complete datasets. This allowed us to determine the number
99 of lab-tested variants required as training data to reliably model the underlying fitness score
100 distribution of a protein's fitness landscape. Additionally, we tested the ability of the networks
101 to predict the effect of amino acid exchange on protein sequence positions that were not included
102 in the training data. To further evaluate how the networks can cope with limited data from
103 traditional mutation experiments, we trained models using data from a simulated extended
104 alanine scan.

105 We assessed the performance of the same architecture with both sequence input and our
106 structure representation, as well as the impact of pre-training and data augmentation. For this

107 purpose, we relied on a recently published study by Gelman *et al.* [18]. Their work offers a
108 comprehensive analysis of DMS datasets and evaluates the applicability of networks trained
109 with sequence input on large datasets. Since these authors employed a simpler convolutional
110 neural network architecture (CNN), we were able to use the same network architecture for our
111 approach, enabling comparisons that are not influenced by architecture complexity or the use
112 of distinct neural network architectures. This also facilitated comparisons with more complex
113 CNN architectures and their potential benefits.

114 We further examined the performance of architectures with fewer parameters, revealing
115 that while our representation provides an advantage, data augmentation and pre-training are
116 crucial for optimal performance. Our workflow also demonstrated robust performance with an
117 architecture that significantly reduces the number of parameters.

118 To promote the utilization of these methods in biotechnology and protein engineering, we
119 provide open-source software featuring a user-friendly command line interface designed to be
120 accessible to non-ML experts. Executing the program with new DMS data requires minimal
121 input, but the software also provides numerous advanced settings if needed in specific cases.

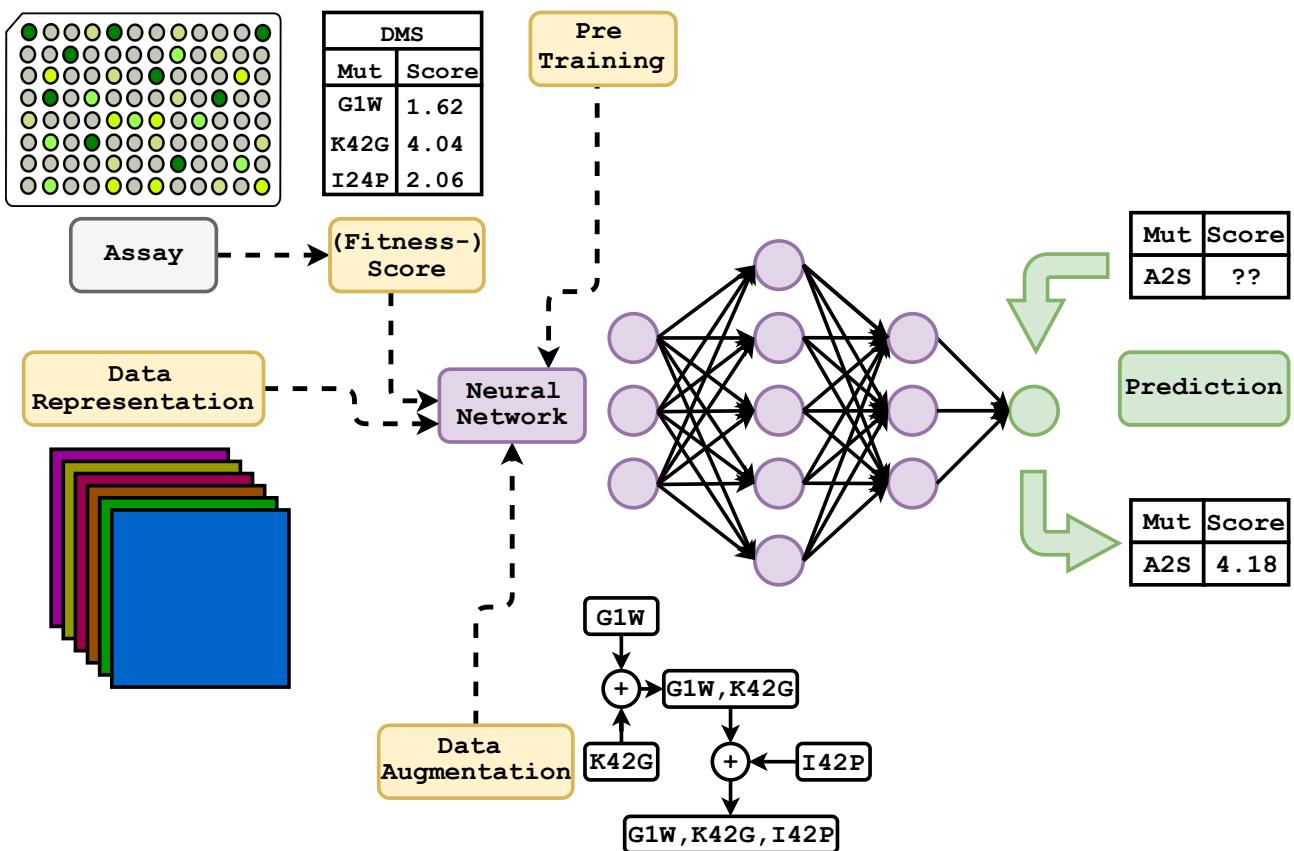


Figure 1: Overview of the training and prediction workflow. Initially, models are pre-trained on predicting a pseudo score that arises from the data representation (consisting of stacked 2D contact maps representing different physico-chemical properties and evolutionary information). This helps the model adjust its weights to the kind of prediction it will later be used for while not requiring additional data acquisition. Data augmentation is applied to up-size the training data to improve the prediction quality further. This is then used to train the network on experimentally determined (fitness-) scores of the protein of interest. In the end, the trained model can be used to predict these scores and, therefore, the effects of amino acid exchanges in the protein that were not experimentally determined. It is also possible to omit pre-training and data augmentation and train the network solely on experimentally determined data. Three different network architectures were used in this study, but they can be easily changed to any architecture of choice that accepts the input in the form of the data representation.

122 4 Materials and methods

123 4.1 Data

124 In our study, we utilized DMS data previously prepared and used in the study by Gelman *et*
 125 *al.* [18]. We specifically chose data from avGFP, Pab1, and GB1, as these proteins demonstrated
 126 the best results in their study, making them ideal for comparison as the data set quality does
 127 not influence the results. As Gelman *et al.* [18] already explored the influence of data quality

128 on learning performance, finding a strong correlation between predictive performance and data
129 quality, we opted to use these three high-quality datasets and then tested the influence of
130 dataset size, pre-training, data augmentation, encoding, and network architecture. A limited
131 analysis, which included only the optimal settings and the biggest and smallest of the three
132 architectures used, was performed on two lower-quality datasets (Bgl3 and Ube4b) also used
133 in [18], where they exhibited poorer performance. Regarding protein structures, we also relied
134 on data used in [18] to ensure the sequence, and consequently, the structure matched the DMS
135 data. Therefore, we used the PDB files of these structures provided in the corresponding
136 GitHub repository [22].

137 The DMS datasets also contain nonsense mutations. We chose not to use assay scores for
138 proteins featuring one or more nonsense mutations since these scores would represent protein
139 fragments and thus would not reflect the properties of the wild-type protein containing a par-
140 ticular mutation. We, therefore, modified the datasets to exclude all nonsense mutations during
141 training, validation, and testing.

142 4.2 Interactions and their encoding

143 To emulate the effect of different mutations in a protein, we created interaction matrices that
144 used a set of different amino acid properties to describe the interactions between residues in a
145 protein and their changes due to amino acid exchanges. Additionally, a matrix that encoded
146 the evolutionary conservation of interacting residues and an index matrix were used. Visual
147 representations of the individual matrices, using Pab1 as an example, can be found in Fig. S4.
148 This encoding method relies on the availability of the complete structure of the protein. In
149 real-world scenarios, experimental structural data might not always be available or complete.
150 However, there are a variety of approaches to address this issue, such as filling missing loops or
151 even using advanced protein structure prediction tools like AlphaFold [23] to model the entire
152 protein structure. In a worst-case scenario, in which only incomplete structures are available,
153 the encoding can still work but would require dataset modifications (e.g., index adjustments
154 based on the missing residues).

155 4.2.1 Distance Matrix

156 To classify pairs of residues as interacting, we used Euclidean distances (d_{ij}) calculated from
157 Cartesian coordinates of all protein atoms stored in the corresponding PDB file [24]. Interact-
158 ing residues were identified by checking the closest distance between side chain atoms of two
159 residues, i and j . Using this approach, the smallest distances between all residues were calcu-
160 lated, and a symmetric $n \times n$ distance matrix (D), where n denotes the sequence length, was
161 generated. Using equation 1, this matrix was then used to generate a so-called factor matrix
162 (F).

$$F_{ij} = 1 - \frac{d_{ij}}{\max(D)} \quad (1)$$

163 In Eq: 1 d_{ij} denotes the distance between two residues and $\max(D)$ the biggest distance seen
164 in the structure.

165 This factor matrix was used to scale the "strength" of the interactions in all subsequent ma-
166 trices (apart from the position matrix (P)) by calculating the Hadamard product (element-wise
167 product) of F with each interaction matrix. Elements in F corresponding to distances larger
168 than 20 Å were set to zero. This led to higher values for close interactions and smaller ones for
169 interactions of residues that are further apart. In addition, it masked interactions originating
170 from residues further apart than 20 Å.

171

172 4.2.2 Index Matrix

173 Convolution neural networks (CNN) are translation invariant. This is one of the features that
174 make them powerful in image recognition tasks since they can find patterns they have learned
175 anywhere in an image and not rely on their position. In our case, this translation invariance
176 was an undesirable feature because the positions of the interactions matter. To address this
177 issue, we introduced a simple position matrix (P). It describes the position of each interaction
178 in the matrices based on the index matrix I (Eq: 2). To calculate P, the Hadamard product
179 of D and I is formed where D is set to 1 for distances smaller than dist_{th} and to 0 for bigger
180 distances.

$$I = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 6 & 7 \\ 2 & 6 & 0 & 11 \\ 3 & 7 & 11 & 0 \end{bmatrix} \quad (2)$$

181 4.2.3 Hydrogen Bonding

182 The number of hydrogen bonds is one of the factors that determine the stability of a protein.
183 Therefore it is a crucial kind of interaction since amino acid exchanges that introduce hydrogen
184 bonding capabilities or remove them will thus alter this property. Not all amino acids have the
185 same capability of forming hydrogen bonds with their side chain. Some can only act as a donor
186 (K, R, W), some as an acceptor (D, E), some as donors or acceptors (H, N, Q, S, T, Y), and
187 some are not able to form hydrogen bonds with their side chain at all (A, C, F, G, I, L, M, P,
188 V). The hydrogen bonding matrix B features a value of 1 for interactions formed by a donor
189 and an acceptor, by a donor and an acceptor/donor, by an acceptor acceptor/donor or by an
190 acceptor/donor acceptor/donor pair, or a value of 0 otherwise.

191 4.2.4 Hydrophobicity

192 Proteins often contain a hydrophobic core and a hydrophilic outside that interacts with its
193 surroundings. The hydrophobic core plays an important role in the folding process of a protein.
194 Therefore, mutations that change the hydrophobicity in certain areas of a protein can have

195 positive and negative effects. The hydrophobicity values used were obtained from Parrot [25].
196 These hydrophobicity values range from -4.5 for arginine to 4.5 for isoleucine.

$$H_{ij} = 1 - \frac{|h_i - h_j|}{9} \quad (3)$$

197 In Eq: 3 h denotes the hydrophobicity of a certain residue, and 9 is the maximum possible hy-
198 drophobicity difference. The hydrophobicity matrix (H) describes how well-interacting residues
199 match in terms of their hydrophobicity.

200 4.2.5 Charge

201 There are three main types of amino acids categorized according to their charge: neutral (A, C,
202 F, G, I, L, M, N, P, Q, S, T, W, Y), positively charged (R, H, K), and negatively charged (D,
203 E). Salt bridges, which are interactions of residues of opposite charge, are, besides hydrogen
204 bonds, another type of interaction that is important for the stability of a protein. On the
205 other hand, amino acids that carry the same charge can repel each other, which can lead to
206 instability in the protein's structure. To calculate the charge matrix (C) (where we multiply the
207 amino acids charge value and this result by -1), we assigned a value of 1 to interactions between
208 positively charged amino acids, a value of -1 to interactions between amino acids carrying the
209 same charge, and a value of 0 to all other interactions.

210 4.2.6 Surface accessible side chain area

211 Amino acids feature a variety of different sizes of their side chain. This is reflected in the
212 difference in their surface accessible side chain area (SASA). The bigger the SASA, the higher
213 the possibility for a (strong) interaction. Therefore a mutation that changes the interaction area
214 between two interacting residues can have an influence on their interaction strength. The SASA
215 values were obtained from Parrot [25], ranging from 0 Å² for glycine to 254 Å² for tryptophan.

$$A_{ij} = \frac{a_i + a_j}{max_{SASA} \times 2} \quad (4)$$

216 In Eq: 4.2 a denotes the interaction area of a certain residue and max_{SASA} the maximum SASA
217 value for an amino acid. The interaction area matrix (A) describes the interaction area between
218 residues.

219 4.2.7 Clashes

220 Amino acids also differ in the length of their side chains. That means certain mutations can
221 lead to potential "holes" in a protein if the side chains get shorter or potential clashes because
222 the side chains are too long for the space between them.

$$X_{ij} = \frac{\Delta l_i + \Delta l_j + d_{ij}}{2 \times max_l + dist_{th}} \quad (5)$$

223 In Eq: 5 Δl denotes the change in the side chain length at a certain residue position from
224 wild-type to the variant, max_1 the maximum side chain length and $dist_{th}$ the maximum allowed
225 distance between two residues to count as interacting. Side chain lengths range from 0 Å for
226 glycine to 8.28 Å for arginine. To obtain the values of the side chain length, we used Pymol [26]
227 to measure the maximum distances between the $C\alpha$ and side chain atoms in different residue
228 types. The resulting clash matrix (X), represented by Eq: 5, shows the distances between
229 interacting side chain residues. If a mutation leads to a distance between two residues that is
230 closer than the distance between them in the wild-type, a negative length value is recorded.
231 This means that the values in this matrix, along with the charge matrix C, are the only ones
232 that fall within the range of [-1, 1] instead of [0, 1].

233 4.2.8 Evolution

234 To make use of the evolutionary information that can be obtained through a Blast search [27],
235 we create a matrix (E) based on the conservation of amino acids at each sequence position.
236 Therefore we used the result of a blastp search against the wild-type protein sequence with
237 its default settings against the experimental clustered non-redundant database and aligned the
238 obtained sequences as well as the wild-type sequence using the multiple sequence alignment tool
239 Clustal omega [28]. Duplicated sequences were removed from the alignment. To calculate a
240 conservation score at each wild-type sequence position, all present amino acids were counted at
241 this position, and their counts were divided by the total number of amino acids present at that
242 position. Amino acids that were not present at this position got a value of zero assigned. To
243 evaluate the conservation of an interaction, the conservation scores of the interacting residues
244 were multiplied. Evolutionary information could also be integrated via, e.g., a separate branch
245 of the neural network, but we chose this representation because it was easier to incorporate
246 into the existing network structure. Additionally, this representation encodes the change in the
247 conservation of an interaction based on the exchanged amino acid(s).

248 Figure S4 shows an example of all interaction matrices (B, H, C, A, X) for Pab1 containing
249 the mutation "N127R, A178H, G177S, A178G, G188H, E195K, L133M, P125S" as well as the
250 position matrix (P), the interaction matrix (M) which describes which residues interact with
251 each other and the distance matrix (D).

252 4.3 Network architectures

253 4.3.1 Simple CNN

254 Since we wanted to compare our structure representation to the sequence convolution approach
255 (Section: 4.3.4), a LeNet5 [29] - like convolutional neural network (Fig. S5) was used. It
256 contains a feature extraction part containing three 2D convolution layers with 16, 32, and 64
257 filters and a kernel size of 3×3 , each followed by a max pooling layer. After that comes a
258 flatten layer and a classifier part consisting of 4 fully connected layers with 128, 256, 256, and

259 64 nodes and a single output node. We used the leaky rectified linear unit (leaky RELU) as the
260 activation function for all layers in the model. Zero-padding was used throughout the whole
261 network. This model is referred to as "simple CNN".

262 **4.3.2 DenseNet**

263 To compare the performance to a more recently described architecture, we chose to use a
264 DenseNet [30] - like architecture (Fig. S6), which will be referred to as "DenseNet". Here the
265 core building block consists of a 2D convolution layer with 128 filters and a kernel size of 1×1 ,
266 followed by a 2D convolution layer with 12 filters and a kernel size of 3×3 . Zero-padding is used
267 throughout the whole network to keep each layer's input and output dimensions the same. The
268 input into the first 2D convolution layer and the output of the second get concatenated. This is
269 repeated 4 (*block depth*) times and is then followed by a 2D average pooling layer with a kernel
270 size of 2×2 . All this combined is one block, and this is repeated 4 (*block number*) times. In the
271 end, a 2D global average pooling layer is followed by a fully connected network with 128, 128,
272 and 64 nodes per layer leading into one output node. Additionally, we used an "intro layer"
273 for avGFP, which consists of a 2D convolution layer with 128 filters, a kernel size of 3×3 , and
274 a stride of 2 followed by a 2D max pooling layer with a kernel size of 3 and a stride of 2 at the
275 beginning of the network. This reduces the size of the input and thereby reduces the number
276 of computations needed in the rest of the network. In contrast to the original DenseNet, we
277 omitted batch normalization because it led to worse performance and used the leaky RELU
278 instead of RELU as the activation function.

279 **4.3.3 SepConvMixer**

280 To test the performance of a network with as few parameters as possible, we implemented
281 an architecture (Fig. S7) similar to ConvMixer [31]. Sequence convolution requires up to 82
282 times, simple CNN up 185 times, and DenseNet up to 21 times the number of parameters in our
283 settings (Table 4). The two main contributors to the reduction of the number of parameters
284 were the possibility of using a smaller fully connected classifier network as well as the use of 2D
285 separable convolution layers. The latter first performs a depth-wise spatial convolution, which
286 acts separately on each input channel and is followed by a point-wise convolution to mix the
287 resulting output channels. The network starts with one 2D separable convolution layer with 32
288 filters where we used a kernel size of 3×3 and a stride of 1 for smaller proteins (like Pab1 and
289 GB1) and a kernel size of 9×9 and a stride of 9 for bigger proteins (avGFP). This is followed
290 by a variable number of blocks (determined by the parameter *depth*) each consisting of 2 2D
291 separable convolution layers with 32 filters and a kernel size of 3×3 . The input into the first,
292 the output of the first, and the output of the second layer get added at the end of the block.
293 We used a *depth* of 9 in this study. These blocks are followed by a 2D global max pooling layer
294 and a fully connected network consisting of 128- and 64-node layers followed by a single-node
295 output layer. We used the leaky RELU as well as zero-padding to keep the dimensions the
296 same throughout the whole network.

297 A "down-sampling" (a kernel size of 9×9 with a stride of 9 in the first layer) for bigger
298 proteins slightly reduces the performance but is a worthy trade-off to reduce the computational
299 cost.

300 **4.3.4 Sequence convolution**

301 For comparison, we used the network architectures of [18] as specified in their main experiments
302 (/pub/regression_args/PROTEIN_main_cnn.txt [22]). Apart from enabling early stopping and
303 restricting the length of the training to 100 epochs, we chose the default parameters when using
304 the /code/regression.py. This is referred to as "sequence convolution" throughout the paper.

305 **4.3.5 Implementation**

306 Our models were implemented using Python v3.10, TensorFlow v2.9.1, and Keras v2.9.0

307 **4.4 Training**

308 Training of simple CNN, DenseNet, and SepConvMixer architectures was performed using the
309 mean absolute error as the metric, Adam as optimizer with a learning rate of 0.001 and a
310 maximum number of epochs of 100. Furthermore, we stopped the training if the mean absolute
311 error did not improve by at least 0.01 over 20 epochs. The batch size for the training was 32 and
312 parallelized by using 12 central processing unit (CPU) cores of an AMD Ryzen Threadripper
313 3960X. The training was performed on an Nvidia RTX A5000 graphics processing unit (GPU).
314 For training the networks on the ANH-Scan data, an Nvidia GeForce RTX 3070 and an Intel
315 Xeon Gold 6230R CPU were used. For pre-training, we limited the maximum number of epochs
316 to 70. The training of the sequence convolution network was done using an Intel Xeon Gold
317 6230R CPU.

318 **4.5 Experiment setup**

319 **4.5.1 Dataset size effect**

320 Data and dataset selection can have an impact on the performance of the neural network. To
321 avoid any advantage or bias through the use of only specific subsections of the data, *e.g.*, only
322 low DMS scores, we selected the training, validation, and test dataset in the following way: The
323 whole dataset was randomly shuffled. The first n data points were used as training data, the
324 following $n \times 0.2$ samples were used as validation data during the training, and the next 5000
325 data points were used as test dataset after the training, where n is the training data size. This
326 ensures that the training-, validation- and test datasets are entirely disjoint and do not feature
327 overlapping data. Since the artificially created pre-training data has a Pearson correlation of
328 around -0.5 to the DMS data, the pre-training datasets were created so that the data points
329 in the pre-training dataset do not feature mutations that are in the test dataset to ensure no
330 knowledge leak and an unbiased test result.

331 This led to training- and test datasets that featured a similar DMS score distribution as the
332 whole dataset and, therefore, built a representative sample (Figure: S1 - S3). For each training
333 run, we used three different data sets, which were all obtained from the original data sets of
334 the proteins: a train, a tune, and a test set. The test set always consisted of 5000 randomly
335 chosen unique entries each. The tune set had one-fifth of the size of the training data set for our
336 architectures and always 5000 entries for sequence convolution. The train datasets contained
337 50, 100, 250, 500, 1000, 2000, or 6000 entries for all training runs. The train data set was used
338 to train the network, the tune set was used to calculate the validation statistics during training,
339 and the test set was used to calculate the statistics of the performance of the network after
340 training. Training simple CNN, SepConvMixer, DenseNet, and sequence convolution was done
341 on three randomly chosen subsets of the whole protein data sets to construct the train, tune,
342 and test sets to avoid picking one that suits one architecture better by chance.

343 For the training of simple CNN, SepConvMixer, and DenseNet, we used data augmentation
344 (Section: 4.5.1) as described below, as well as pre-training (Section: 4.5.1). For sequence
345 convolution, we used the same train, tune, and test sets as for the training of simple CNN,
346 SepConvMixer, and DenseNet; however, we did not use data augmentation and transfer learning
347 during its training process. Three main performance metrics are used: mean squared error
348 (MSE), Pearson's correlation coefficient, and Spearman's correlation coefficient, with the main
349 focus on Pearson's correlation coefficient. No dedicated hyper-parameter tuning was done, but
350 those that had proven to be the best after some initial testing were used. To test the impact
351 of an "intro layer" like in the original DenseNet, which is a normal 2D convolution layer with
352 a kernel size of 3×3 and a stride of 2 followed by a 2D max pooling layer with a kernel size of
353 3×3 and a stride of 2, we chose to include this in the training of avGFP but not for Pab1 and
354 GB1. The same was done for SepConvMixer, where the first separable convolution layer has
355 either a kernel size of 3 and a stride of 1 or, for avGFP, a kernel size of 9 and a stride of 9.
356 The use of an "intro layer" reduced the performance for smaller proteins like Pab1 and GB1
357 slightly but is needed and a good trade-off to be computationally efficient for proteins of the
358 size of avGFP and bigger.

359 **Data augmentation** Since neural networks learn better with more data, we used a simple
360 data augmentation method to obtain more training data from small data sets. This method
361 uses the given experimental data, e.g., Table 1, shuffles it, and adds it to the original not
362 shuffled data to create new augmented variants like shown in Table 2.

Table 1: Sample data for augmentation

variant	number mutations	score
K1L,S3A	2	-0.3
R23H,W19F	2	0.1
C5G,A7L	2	-1.0

Shows data samples later used for an example of data augmentation.

Table 2: Sample augmentation

augmented variant	number mutations	augmented score
K1L,S3A,R23H,W19F	4	-0.2
R23H,W19F,C5G,A7L	4	-0.9
C5G,A7L,K1L,S3A	4	-1.3

Shows how data points of Table 1 are added during data augmentation.

363 This is done four times, and the newly created data is stored. This data is then used as
364 input data to perform the same action three times where, after each round, the newly created
365 data is used as the new input data in the next round. From this newly created augmented
366 data, as many samples are drawn as needed to get a maximum of 20000 training samples when
367 the original data is added ($aug_{used} = 20000 - n_{original}$ where aug_{used} is the number of augmented
368 samples used and $n_{original}$ the number of original data). If the augmentation does not produce
369 enough data to reach a combined number of 20000 samples after the original data is added,
370 the whole augmented data is used. It did not show good results when increasing the number
371 of runs to produce +20000 samples when the original data set is not big enough to reach the
372 number of samples with the number of runs described above. This kind of data augmentation
373 produces pseudo labels for data and assumes an additive effect of mutations. Even though there
374 are more intricate models to describe the relationship between different mutations in a protein,
375 this method provides a simple and effective way to quickly generate more data that helps the
376 model produce better results. In addition, the assumption of simple additivity does not rely
377 on another model, such as DeepSequence [13], to be added to the training procedure. We also
378 tried training the networks only on augmented data and fine-tuning them on the original small
379 data sets. This showed worse performance than training them with the original and augmented
380 data combined.

381 **Pre-training** To overcome the need for big data sets, we used pre-training to obtain better
382 results while training on small data sets. The transfer of weights of the feature extraction
383 part of a network trained on a whole dataset of another protein yields better performance
384 than starting from a completely untrained network. However, to pre-train a network on data
385 that is more closely correlated to the protein of interest, we created a pseudo-score that can
386 be calculated without the need for experimental data (section: 4.5.1). Since the pre-training
387 is based on our encoding, we used it for simple CNN, SepConvMixer, and DenseNet. After
388 training the model on the pseudo data, the weights of the feature extractor were transferred
389 to an untrained network, frozen, and a new classifier was trained. The same was done with
390 a trainable feature extractor. During initial tests, the reduction of the learning rate did not
391 improve the performance. Therefore we omitted it in further studies. Transferring the weights
392 of the whole pre-trained model, including the classifier, showed worse performance. We also
393 tested networks pre-trained on other proteins, e.g., pre-trained on avGFP and trained on Pab1,
394 but our pre-training method proved to be more effective.

395 **Pseudo Score** In order to calculate the pseudo score for the pre-training, the wild-type of
396 the protein gets encoded in the same way as for training the network. The same is done for all
397 possible single and double mutants of the protein. To calculate the pseudo score of a variant,
398 the encoded wild type gets element-wise subtracted from the encoded variant matrix. Of all
399 these values, the absolute value is taken and summed up over all matrices. This gets divided
400 by 100 to shift the values into the range of the real fitness scores. 40000 of these created data
401 points are randomly chosen and used to pre-train the models. These pseudo scores show a
402 Pearson's R of around -0.5 to the original DMS data for the different datasets.

403 4.5.2 Positional extrapolation

404 To evaluate the networks' capabilities to predict mutational effects of positions not seen during
405 training, the protein sequence was divided into training and validation sets, comprising 85% of
406 the positions, and a test set of the remaining 15%. This was done three times with randomly
407 selected sequence positions. Multi-mutation variants with some positions in the test set and
408 others in the training set were eliminated from this analysis. To test this, we used the pre-
409 trained networks (simple CNN and SepConvMixer) on our pseudo score from 4.5 and trained
410 them on the data described above. To compare their performance, we also trained sequence
411 convolution on the same data. We did this analysis for GB1, Pab1, and avGFP. The training
412 dataset size for GB1 was 351000 data points, 23000 for Pab1, and 26000 for avGFP.

413 4.5.3 ANH scan

414 An often method for assessing mutational effects in proteins is an alanine scan, where each
415 amino acid is replaced with alanine and the property of interest is evaluated. This approach
416 generates a limited dataset of the size equivalent to the length of the protein sequence. Recently,
417 it has been discovered that the amino acid exchanges to alanine, asparagine, and histidine are
418 the most correlated with all other single amino acid exchanges [32]. Therefore, to increase the
419 amount of data and provide the neural network with a good starting point, an extension of
420 the alanine scan was proposed, an ANH-scan [33]. In this regard, we selected from the DMS
421 datasets all single variants that contain either an exchange to alanine, asparagine, or histidine
422 as a training and validation dataset. 85% of these were used as training data, and 15% were
423 used as validation data during training. The remaining single mutants of the datasets were used
424 as test data. To test this approach, we used the networks (simple CNN and SepConvMixer)
425 pre-trained on our pseudo score from 4.5.1 and trained them on the data described above. To
426 compare their performance, we also trained the sequence convolution model on the same data.
427 This approach yielded a combined train and tune dataset size of 159 for GB1, 132 for Pab1,
428 and 169 for avGFP, which indicates that only for GB1 almost all positions were mutated to
429 either A, N, or H and that the other data sets are missing some of these.

430 4.5.4 Generalization

431 To test the models' capabilities in predicting mutants with a higher number of mutations than
432 they were trained on, the avGFP dataset was used. This dataset is the only one containing
433 variants with up to 14 mutations. Therefore, the training and tune sets consisted of 10,221
434 and 2,556 data points, respectively, featuring only single and double mutants. The test set
435 consisted of 38,937 variants containing three to 14 mutations. The models were trained under
436 four different settings: from scratch, meaning no pre-training or data augmentation; only with
437 pre-training on our pseudo-score, which contains only scores for single and double mutants; only
438 with data augmentation; and lastly with pre-training and data augmentation combined. The
439 training was done three times with different random seeds to check the prediction consistency.
440 Pearson's R values between the true and the predicted scores of the test set mutants were
441 computed to evaluate the performance.

442 4.5.5 Single Mutation Effect Prediction

443 To test how many training samples a network needs to get an idea of the effect of single
444 mutations, all single mutations of the DMS dataset of GB1 were used as ground truth. Then
445 pre-trained SepConvMixer models were trained on different numbers of training samples of the
446 original datasets (50 - 6000 data points). These models, as well as only the pre-trained model
447 of SepConvMixer, were asked to predict the score of every single mutation present. This was
448 done for GB1 because this dataset consists of all possible single mutations, whereas the Pab1
449 and avGFP datasets would not yield a comparable ground truth due to missing single-point
450 mutations.

451 4.5.6 Recall Performance

452 To access the recall performance of simple CNN, SepConvMixer, and DenseNet when trained
453 on different-sized training datasets (Section: 4.5), we used the pre-trained models without data
454 augmentation since this is one of the best-performing settings. The models were trained on
455 different-sized training datasets (50 - 6000 data points) or 80% of the whole datasets. Then the
456 test data set, which consists of only variants that the models have never seen before, was used to
457 access the recall performance by letting the models predict the scores and checking how many
458 of the predicted top-scoring variants were actually part of the actual top scoring 100 variants of
459 the test dataset, given a certain budget (Fig. 6 & S8). The recall performance was computed
460 as described in [18]. If one ranks all variants according to their predicted (fitness-) score, the
461 budget refers to the number of best variants predicted by the network from all variants, which
462 are examined to see whether they occur in the actual 100 best variants. The term "best case"
463 refers to the theoretical optimal outcome. For instance, if we were to select 20 variants from a
464 goal set of the top 100 variants, the best possible outcome would be that all 20 chosen variants
465 are within the true top 100. Thus, the "best case" would reflect a recall score of 0.2. If the
466 budget would be 150 variants, the best case would be that all top 100 variants are contained

467 in the 150 predicted best variants and would therefore result in a recall score of 1.0. The best
468 case is meant as a comparison for what could be the maximum achieved recall score.

469 5 Results

470 We tested a new way of encoding protein structure and improving the training on deep mu-
471 tational scanning (DMS) datasets. To this end, a simple convolutional neural network with
472 a LeNet5 [29] -like architecture (simple CNN, Section: 4.3.1), a DenseNet [30] -like Network
473 (DenseNet, Section: 4.3.2) and a network heavily inspired by ConvMixer [31] (SepConvMixer,
474 Section: 4.3.3) were used. Furthermore, two methods, data augmentation and pre-training,
475 were tested for their applicability to DMS data. To assess their performance, a state-of-the-art
476 sequence convolution model [18] (sequence convolution) was trained with the same data sets,
477 and the results were compared. In order to test these models and approaches as well as their
478 real-world applicability, we conducted a series of different experiments to test the following
479 properties:

- 480 • the effect of the number of randomly selected training samples as well as of pre-training
481 and data augmentation on the predictive performance (Section: 5.1)
- 482 • the ability to extrapolate to unseen sequence positions (Section: 5.2)
- 483 • the extent to which the models can predict all single variant effects when trained on an
484 extended alanine scan (ANH-Scan) (Section: 5.3)
- 485 • the ability to generalize from training on mutants containing a maximum of two amino
486 acid exchanges to variants carrying up to 14 mutations (Section: 5.5)
- 487 • the number of randomly selected data needed to predict the effect of all single mutations
488 (Section: 5.6)
- 489 • the recall performance for the best 100 variants in the dataset given a certain budget for
490 networks trained on differently sized datasets (Section: 5.7)

491 5.1 Dataset size effect

492 Neural networks are known to need a lot of data to perform well. Here we test different network
493 architectures and supplementing methods to reduce the needed data size and its influence on
494 predictive performance. In order to evaluate the performance of the three different architec-
495 tures and compare it to the original sequence convolution method, each model was trained on
496 three different data sets from [18] (avGFP, Pab1, and GB1), including a limited analysis of the
497 datasets Ube4b and Bgl3. Our study showed improved performance of all three architectures
498 over sequence convolution for smaller datasets and the positive impact of pre-training and data
499 augmentation on their predictive performance. For larger datasets, all models performed almost
500 equally. In order to improve predictions on small data sets, two methods were applied: data

501 augmentation and pre-training. Data augmentation has already been shown to be important
502 when the data set size is small [34]. Since the proposed data representation is not translation
503 and rotation invariant, it was not possible to use the same data augmentation methods (*e.g.*,
504 rotation, crop, flip, transpose, etc.) as used in image processing. Hence, a simpler data aug-
505mentation method was used that sums up scores of existing data (Section: 4.5.1). Another
506 method to improve a model’s performance is pre-training. Here a model can be pre-trained
507 unsupervised if a lot of unlabelled data is available [35] or supervised on a big labeled data
508 set with similar content to the data one is interested in and then fine-tuned on the data set
509 of interest [36]. Since the proposed data representation already captures some variation due
510 to mutations in a protein, we created a simple pre-training procedure, where the models were
511 pre-trained on a pseudo-score that arises from the representations itself (Section 4.5.1).

512 In the figures 2 and S9 - S13, the median of the three training runs for each data point
513 is shown. The graphs in the top row show either the Pearson-, the Spearman correlation
514 coefficient, or the MSE for the predictions on the test set made by the models. The bottom
515 row shows the relative performance compared to the sequence convolution. The data set size
516 always refers to the amount of data from the original split and is not related to the data
517 set size after data augmentation. For the MSE, the relative performance was calculated with
518 $p_{\text{MSE}} = 2 - (MSE_i / MSE_{\text{seqconv}})$ where p_{MSE} is the relative performance, the MSE_i the MSE
519 of a model to compare to and MSE_{seqconv} the MSE of the sequence convolution. The relative
520 performance of the correlation coefficients was calculated $p_R = R_i / R_{\text{seqconv}}$ where p_R is the
521 relative performance, R_i the correlation coefficient for the model to compare to and R_{seqconv} the
522 correlation coefficient of the sequence convolution model.

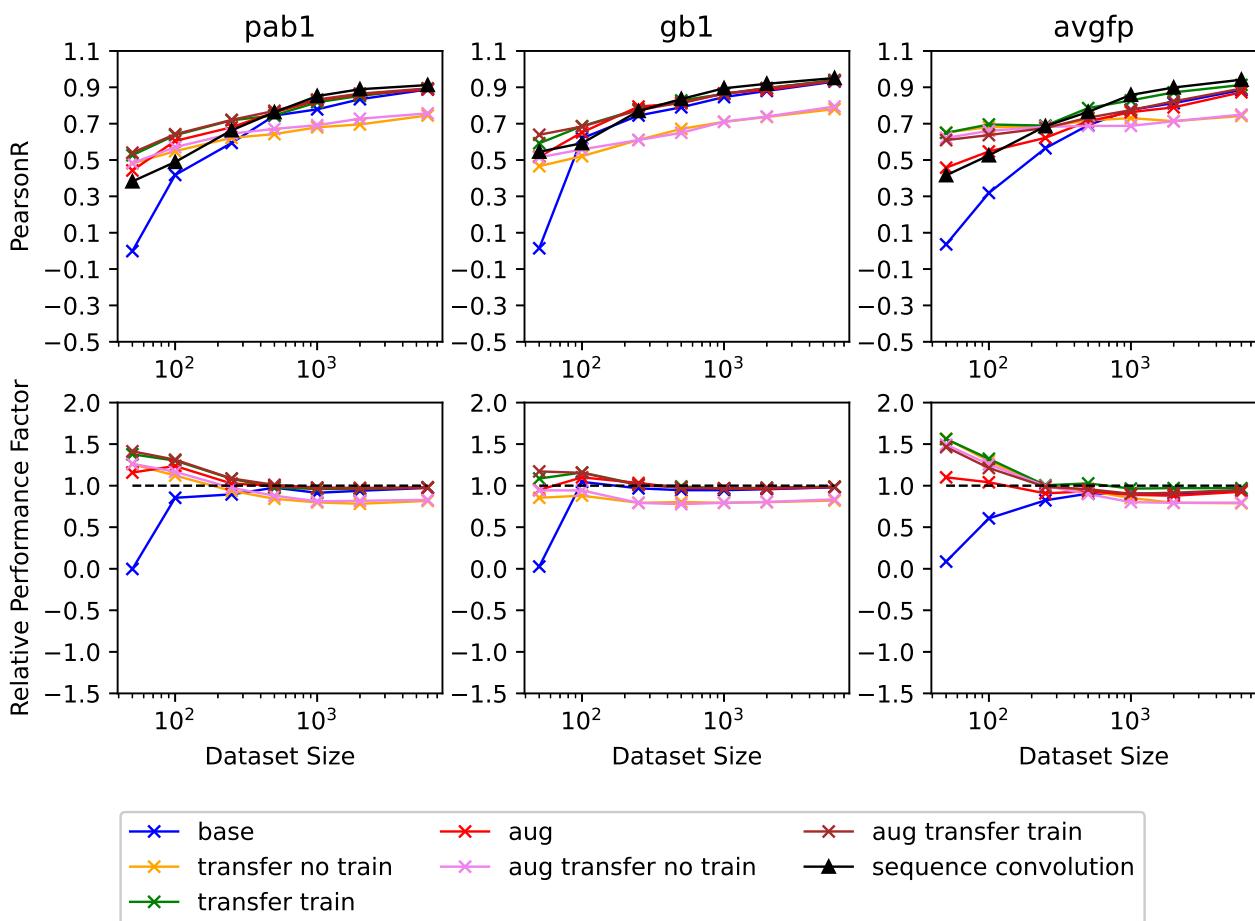


Figure 2: Pearson's R for predictions of the test data set of SepConvMixer for all three proteins in the upper row, as well as the relative performance compared to sequence convolution in the lower row. Here sequence convolution is indicated as a black dashed line at $1\times$ of its own performance. Label descriptions can be found in Table 3

Table 3: Label description for result plots.

label	augmentation	transfer	train CL
sequence convolution	No	No	Yes
base	No	No	No
transfer no train conv	No	Yes	No
transfer train conv	No	Yes	Yes
aug	Yes	No	No
aug transfer no train conv	Yes	Yes	No
aug transfer train conv	Yes	Yes	Yes

Augmentation specifies whether data augmentation was used, transfer whether pre-training was used, and train CL whether the convolution layers were trainable or not when pre-training was used.

523 In general, the more data the networks got to train, the better they performed, and the less
524 important the approach became since they performed almost equivalently (≥ 2000 training
525 samples). Another trend that could be observed is that the more original data the networks
526 got, the less important augmentation and pre-training became to achieve the same training
527 results. In general, the best performances were obtained when the networks were pre-trained,
528 and the weights of the convolutional layer were not frozen in the subsequent training runs.
529 Data augmentation had an additional positive effect. On smaller datasets (≤ 500 training
530 samples), the difference in the performance of a chosen method was more pronounced. For
531 example, for Pab1 and avGFP, using data augmentation and freezing the convolutional layers
532 showed a better performance in simple CNN (Fig. S15) but showed a worse performance when
533 the training dataset got bigger. In contrast, this method led to an overall worse performance
534 in DenseNet (Fig. S16) and SepConvMixer. This was especially true for SeqConvMixer and
535 could be caused by the low number of trainable parameters (13k) for the network under this
536 setting (Fig. 2). Looking at the method that produced the best results, training a pre-trained
537 network and using data augmentation, DenseNet had a similar performance overall to simple
538 CNN and SepConvMixer. A performance improvement from DenseNet could be seen in small
539 datasets (Fig. S17).

540 When the number of training samples gets over 500, the performances of all architectures
541 are almost identical. One fact that stood out about DenseNet was that it took at least 6000
542 samples to show the same performance as sequence convolution when no pre-training and data
543 augmentation were used. In contrast, simple CNN without pre-training and data augmentations
544 needed 250 to 500 training samples to show the same performance as sequence convolution. In
545 general, the difference in performance for different methods was less pronounced in simple CNN
546 than in DenseNet and SepConvMixer. Looking at the difference in performance between simple
547 CNN, SepConvMixer, and DenseNet, one can see that DenseNet could improve the performance
548 for smaller datasets when pre-training and/or data augmentation was used. On the other hand,

when none of these methods were used, DenseNet showed a strongly reduced performance and higher variability in its results (Figs. S19 - S21). Data augmentation worked well for data sets that feature only single and double mutants, such as Pab1 and GB1. When the dataset already consisted of variants with more than two mutations (up to 14 in the case of avGFP), the approach did not work as well when the training data size surpassed 250 entries. This might be caused by the additive nature of the data augmentation used in our pipeline. Since adding two single mutants is more likely to be additive in real life compared to adding two variants, both carrying 12 mutations on their own, because a higher number of variants increases the likelihood that two mutations interfere with each other and, therefore, corrupt the additivity of their scores when they occur on their own.

For the lower-quality datasets of Ube4b and Bgl3, we performed a limited analysis with only our biggest and smallest architecture, simple CNN and SepConvMixer, and only two training settings, without pre-training and data augmentation, and with pre-training. We could see an increase in performance when pre-training was used, but as already shown in [18], we could observe the same trend with a reduced performance compared to the other three datasets (Fig: S18).

Table 4: **Number of parameters of each network.**

architecture	protein	trainable parameter
sequence convolution	Pab1	990k
simple CNN	Pab1	803k
DenseNet	Pab1	714k
SepConvMixer	Pab1	37k
sequence convolution	avGFP	3.118k
simple CNN	avGFP	7.029k
DenseNet	avGFP	799k
SepConvMixer	avGFP	38k

Number of trainable parameters of the three different architectures for two different proteins: Pab1 (75 amino acids) and avGFP (237 amino acids).

5.2 Positional Exploration

Since training on a randomly chosen subset of data points can be biased by the fact that it already learned that a mutation at a particular position will produce a bad result, we trained our smallest and biggest network architecture on data of different sequence positions than they were asked to predict (Figure 3 and Figure S23). Even though the networks were trained on bigger datasets than in Section 5.1 (23000 Pab1, 26000 avGFP, and up to 351000 for GB1), they showed a worse performance compared to substantially smaller training data that did not exclude specific positions. Here, simple CNN and SepConvMixer show comparable performance. Both approaches manage to improve over the predictions made when trained on the protein

574 sequences with sequence convolution.

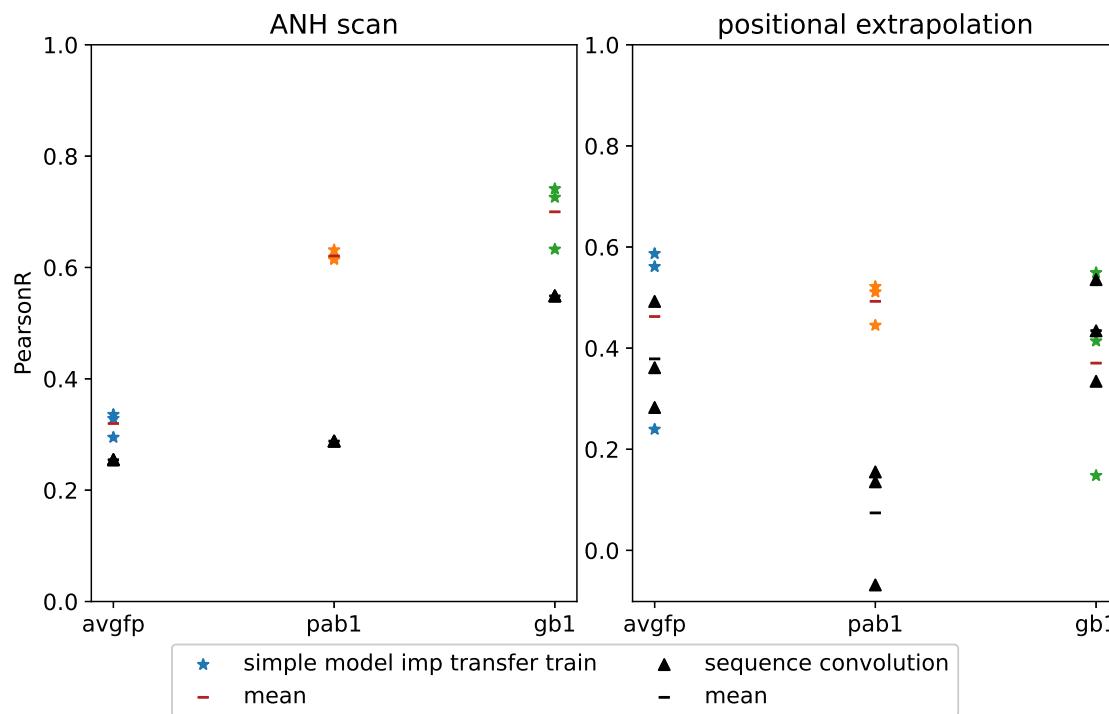


Figure 3: PearsonR for predictions on an ANH-Scan as well as on positions the networks (simple CNN and sequence convolution) have not seen before in training

575 Since the size of the training dataset was big enough, there were no big differences in
576 performance between pre-trained and not pre-trained networks (Fig. S23 & S25).

577 5.3 ANH-Scan

578 Performing an alanine scan on a protein will only yield a small number of data points. There-
579 fore, an extension to systematically replace each amino acid with alanine, as well as asparagine
580 and histidine, was tested to see how well the networks could predict individual amino acid re-
581 placements with the remaining amino acids (Figure 3 and Figure S23). We tested this approach
582 with simple CNN, SepConvMixer, as well as with sequence convolution. This approach showed
583 similar results to the randomly chosen single- and multi-mutation variants in Section 5.1 for
584 simple CNN and SepConvMixer and a slight performance degradation for sequence convolution
585 for similar-sized train datasets. Here the reduced performance on not pre-trained networks,
586 again, shows its importance when training data is limited.

587 5.4 Comparison - Sequence vs Structure

588 In general, comparing the correlations of all three networks to sequence convolution for pre-
589 predictions when trained on randomly chosen positions (Section 5.1), the best combination of
590 methods (using pre-training with and without data augmentation) performed at worst $0.9 \times$ of
591 sequence convolution and the best $1.6 \times$. Using a more complex architecture (DenseNet) could
592 improve the performance on smaller dataset sizes (≤ 250) but needed at least pre-training to
593 reach that level of performance (Fig. S17). When comparing the number of parameters (Table:
594 4) for sequence convolution and simple CNN, the protein sequence length is the determining
595 factor. The bigger the protein, the more will the simple CNN exceed the sequence convolution
596 in terms of the number of parameters. For DenseNet and SepConvMixer, the number of pa-
597 rameters stayed constant and only changed due to the use or absence of the first introduction
598 layer. This difference was due to the use of a flatten layer in the sequence convolution and
599 simple CNN after their feature extraction part, whereas DenseNet and SepConvMixer both use
600 a global pooling layer instead that always has the same size, regardless of the input data.

601 Comparing the ability to correctly predict the effect of amino acid exchanges at positions
602 that were not present in the training data, sequence convolution, as well as our models, decrease
603 in performance, especially considering the overall larger training data set. Our combination
604 of structure encoding and pre-training managed to slightly improve predictions on avGFP,
605 improve predictions on Pab1, and perform slightly worse on GB1 in comparison. Simple CNN
606 managed to perform the same or with a 0.45 higher PearsonR compared to sequence convolution
607 without pre-training. SepConvMixer achieves, at worst, a 0.12 lower PearsonR or, at best, a
608 0.49 higher PearsonR (Fig. S24 & S25)

609 When the training data came from a simulated ANH scan, sequence convolution lagged
610 behind both of our models in terms of predicting the single mutation effect of the remaining
611 amino acids when they were pre-trained but outperformed them when they were not pre-trained.

612 5.5 Generalization

613 Examining the performance of models trained on only single and double mutants in predict-
614 ing mutants that have more than two amino acid exchanges again showed the advantage of
615 pre-training and data augmentation. The various networks (simple CNN, DenseNet, Sep-
616 ConvMixer) were trained on 10,221 single and double mutants of avGFP, with and without
617 pre-training and/or data augmentation. Then they were asked to predict the test dataset that
618 contains variants featuring a minimum of three and a maximum of 14 mutations. This led to a
619 maximum performance in terms of Pearson's R of 0.835 (Fig. 4). Over all settings and methods,
620 simple CNN showed the best results, followed by SepConvMixer, whereas DenseNet showed the
621 worst performance. Looking at the consistency of the results, SepConvMixer outperforms the
622 other two networks. In accordance with previous results, the models can improve their pre-
623 dictions when pre-training and data augmentation are used. Also in line with our previous
624 experiments, the best setting combination was pre-training combined with data augmentation.

625 Under these settings, all models performed the best and delivered the same performance.

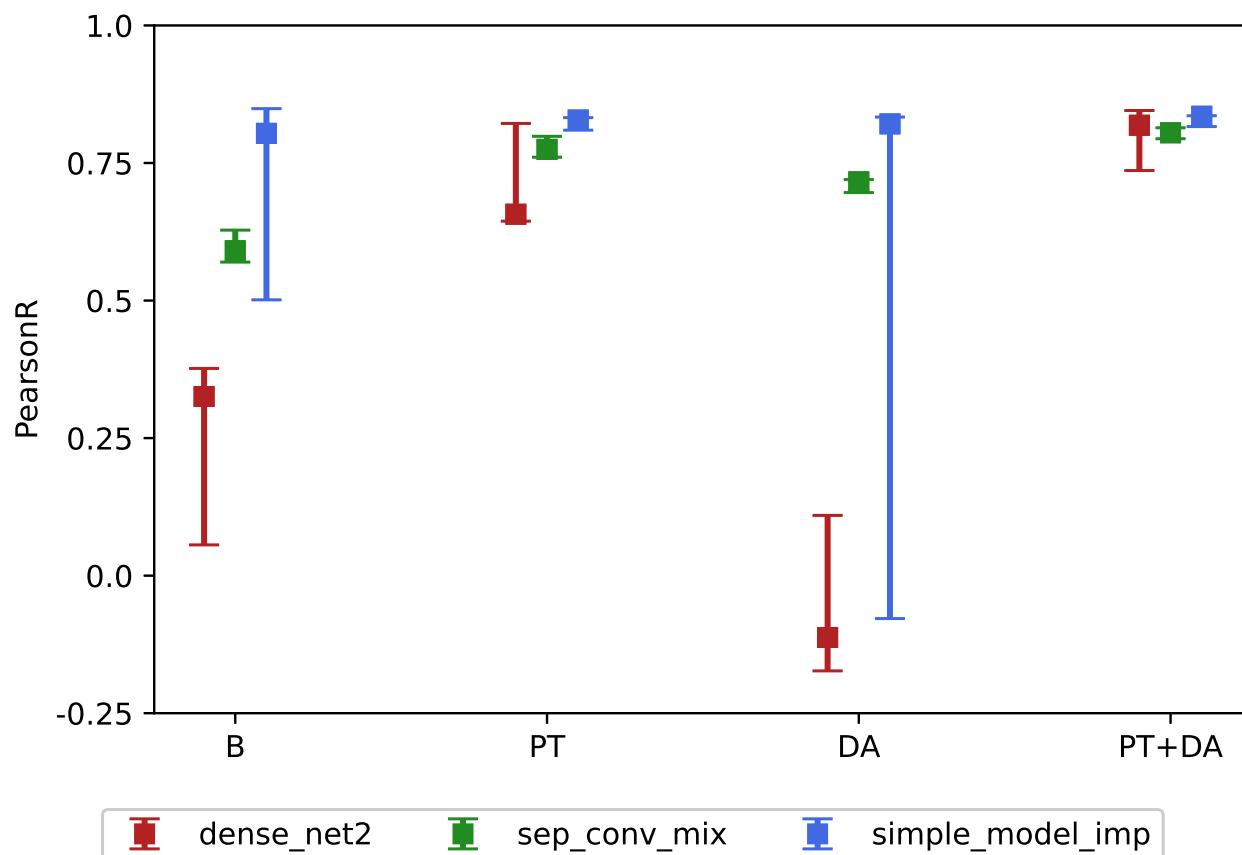


Figure 4: Pearson's R of predictions for variants of avGFP containing three to 14 mutations when the networks were only trained on single and double mutants (B: no pre-training and no data augmentation, PT: with pre-training, DA: with data augmentation, PT+DA: with pre-training and data augmentation)

626 **5.6 Single Mutation Effect Prediction**

627 Testing the performance on predicting the effects of single mutations of pre-trained SepCon-
628 vMixer networks trained on reduced dataset sizes (Section: 4.5) showed under visual comparison
629 that for GB1, a protein with a sequence length of 56 amino acids, models trained on 250 train-
630 ing samples started to have a good idea of which single mutations had a positive and which
631 had a negative effect (Fig. 5). This comparison was only possible for GB1 since its data set
632 contained possible single mutants.

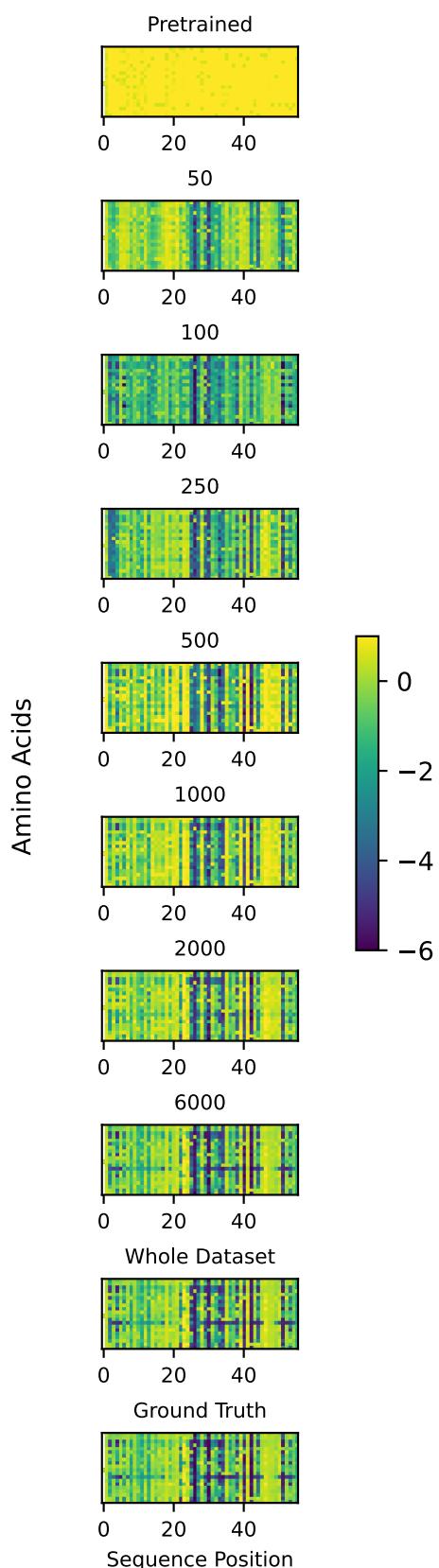


Figure 5: Prediction of the mutational effect of each single mutation at each sequence position using SepConvMixer on the example of GB1. The pre-trained models were trained on training data sets consisting of 50 to 6000 or 80% of the whole GB1 dataset and asked to predict the score of every possible single mutation of GB1. For comparison, the actual measured data are shown as ground truth and the result of a model that was only pre-trained. Figure S22 shows the difference of all predictions to the ground truth. On the y-axis, the amino acids are alphabetically ordered.

633 5.7 Recall Performance

634 Asking networks to recall the top 100 variants given a certain budget showed some differences for
 635 the different datasets but smaller differences in performance between all network architectures

636 (Fig. S8). The recall performance on Pab1 and avGFP showed similar results, whereas the
637 recall for GB1 showed better recall results when trained with the same train dataset size. The
638 overall trend showed that it is advantageous to invest in more training data to then be able
639 to better recall the true top variants. For Pab1 and avGFP, a bigger increase in performance
640 could be seen when changing from 6000 training samples to the whole (80% of the whole data
641 set) dataset, whereas, for GB1, no performance increase between 6000 training samples and the
642 whole dataset could be seen. Comparing the results for when trained with different amounts of
643 training data, SepConvMix trained on 6000 training samples, needed a budget size between 70
644 to 1040 samples to recall 60 % of the top 100 variants. When trained on 500 training samples,
645 it needed between 500 to 1270 samples to match this performance, and when trained on 50
646 training samples, 1390 up to 1700 samples were required to reach this performance (Fig. 6).

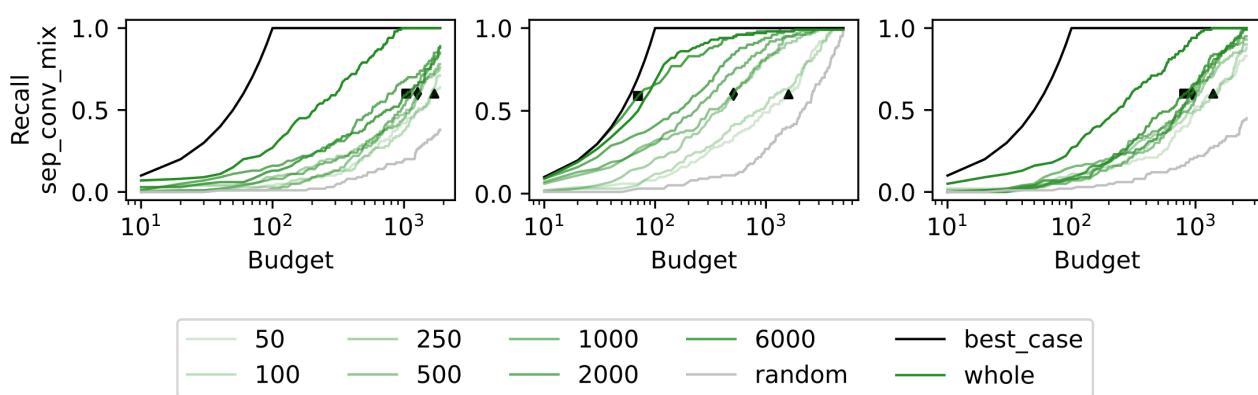


Figure 6: Recall of the top 100 test set mutations given a certain budget (number of predictions that may contain the true Top 100) for SepConvMixer. The models were trained on train data sets containing 50 - 6000 data points or on 80% of the whole data set, which is labeled "whole". The 60% recall performances when trained on 6000 data points are shown as ■, as ♦ when trained on 500 data points, and as ▲ when trained on 50 data points. The term "best case" refers to the theoretical optimal outcome. (For a detailed description, see Section 4.5.6)

647 6 Discussion

648 It has previously been shown that incorporating the structure in the form of a graph and
649 training a graph neural network to predict deep mutational scanning results achieves the same
650 performance as sequence convolution [18]. By introducing our new protein structure repre-
651 sentation, we could show that it contains valuable information, can create pre-training data
652 without any experimental data needed, and can improve predictive performance when positions
653 were not seen during training. We could show that the predictive performance could be greatly
654 improved by two straightforward but effective methods, pre-training and data augmentation.
655 Even though the pre-training is very effective, it is not enough to freeze the convolution layers
656 and only let the fully connected layers be trainable. This showed already worse performance

657 after the train sample size exceeded 500 samples, even though simple CNN was able to compensate
658 better because the major part of its architecture consists of fully connected layers (Section:
659 5.1).

660 When deciding how to generate a dataset for the optimal outcome of training a neural
661 network, the comparison between ANH-Scan and positional extrapolation (Section: 5.2 & 5.3)
662 showed that a comparable result to a big dataset (positional extrapolation) can be achieved
663 with only a fraction of the data needed (ANH-Scan) when all positions are present in the
664 training data. Even better results can be achieved, also with a fraction of the dataset needed
665 when randomly chosen single- and multi-mutational variants are used (Section: 5.1). By testing
666 the recall performance, it became clear that it is advantageous to invest in more training data
667 because the networks will then be better at predicting the true best variants (Section 5.7).

668 Data augmentation can be advantageous when used with datasets containing only single
669 and double mutants and network architectures with a smaller number of parameters. When the
670 network architecture with the highest number of parameters was used (Simple CNN for avGFP),
671 one can see that this network, when no pre-training is used, over-fitted the augmented data.
672 Since this data resembles synthetically generated fitness scores that are not always correct, it
673 has to be used with architectures that use fewer parameters. In contrast, the smallest network
674 (SepConvMixer) still managed to perform decently when only data augmentation was used
675 (Section 5.5).

676 When comparing the performances on predictions on unseen positions, one can see that our
677 encoding either performs the same without pre-training or shows improved performance over a
678 sequence input, suggesting that the encoding enables better extrapolation due to the encoded
679 interactions between amino acids.

680 Interestingly, SepConvMixer performed almost the same as the other architectures despite
681 its much smaller number of parameters. This is promising since fewer parameters reduce the
682 risk of over-fitting. Therefore, the network should be better able to generalize to unseen data.
683 Furthermore, this network will need fewer computational resources. We also showed that more
684 modern network architectures compared to simple CNN, could improve the performance when
685 the training sample size is small. Since no dedicated hyper-parameter tuning was performed,
686 an increase in the performance of the models is still possible.

687 The current way our contact maps are generated is used as a fast and simple approximation
688 of the changes happening in the structure of a protein due to amino acid substitutions. The
689 matrix representing the charge interactions does not take into account the protonation state of
690 the amino acids, and the hydrophobicity matrix is only a simple scale and does not take the
691 side chain surroundings into account. These are just two examples where improvements in the
692 protein structure representation can still be made. This might, in turn, help the network to
693 predict mutational effects even better due to a more realistic representation. Using different
694 protein sequence alignment databases (non-redundant and experimental, which is a 90% clus-
695 tered version of the non-redundant database) did not change the training results significantly.
696 An advantage of our encoding is the possibility to encode "average" structures derived from

697 molecular dynamics simulations or structures with optimized rotamer positions which leads to
698 an even more natural representation of the protein structure and could potentially create an
699 even better encoding through the interaction matrices.

700 With the advancement of programs like AlphaFold [23] and RoseTTAFold [37], we can
701 assume that there is a trustworthy structure for most proteins. Even homology modeling might
702 be sufficient to supply a decent protein structure that can be used to create the structure
703 representation.

704 Besides the advantage of being able to use a large number of different architectures derived
705 from the computer vision field, our encoding has the additional advantage of being computa-
706 tionally efficient while representing the biophysical-, interaction- and structural change that
707 occurs due to amino acid substitutions. This makes a more structure-related workflow feasible
708 for researchers without access to high-performance (computing) clusters.

709 Regarding experimental protein engineering in the lab, minimizing the data size required
710 to achieve comparable or superior prediction results is crucial in reducing time, cost, and
711 resources. Our analysis indicates that these models already perform reasonably well in that
712 respect. They could also be utilized for datasets that do not originate from DMS but rather
713 from a conventional "low throughput" experiment like ANH-Scans, thus providing well-trained
714 mutation effect oracles to more laboratories.

715 The ultimate goal would be to transfer "learnings" from one DMS dataset to train a universal
716 network capable of predicting the fitness of proteins for which no experimental data exists is very
717 intriguing but currently most likely restricted to proteins with sufficiently similar structures.

718 **Conflict of Interest Statement**

719 The authors declare that the research was conducted in the absence of any commercial or
720 financial relationships that could be construed as a potential conflict of interest.

721 **Author Contributions**

722 GW: Conceptualization, Data curation, Investigation, Methodology, Software, Validation, Vi-
723 sualization, Writing – original draft, Writing – review & editing, Project administration IP:
724 Conceptualization, Methodology, Writing – original draft GO: Conceptualization, Methodol-
725 ogy, Writing – original draft, Writing – review & editing KG: Conceptualization, Methodology,
726 Writing – original draft, Writing – review & editing, Funding acquisition, Project administra-
727 tion, Resources, Supervision, Validation

728 **Funding**

729 Funding was provided by the Austrian Science Fund (FWF) through project DOC-130 (doc.funds
730 BioMolStruct - Biomolecular Structures and Interactions) and by the Doctoral Academy Graz

731 of the University of Graz.

732 Acknowledgement

733 The authors thank Prof. Thomas Pock and Prof. Robert Kourist for fruitful discussions.

734 Data Availability

735 The data used to train all networks and the code can be found on GitHub (<https://github.com/ugSUBMARINE/image-dms>) and is licensed under the MIT license. The code is set up so that
736 it can easily be used to reproduce the results of this publication. It can also be easily adapted
737 to pre-train and train our networks (or any other network of interest) on a new dataset.
738

739 References

- 740 [1] Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer
741 wavelengths and fluorescence resonance energy transfer. *Current Biology*. 1996;6(2):178–
742 182. doi:[https://doi.org/10.1016/S0960-9822\(02\)00450-5](https://doi.org/10.1016/S0960-9822(02)00450-5).
- 743 [2] Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins
744 from nonimmunoglobulin domains. *Nature Biotechnology*. 2005;23(10):1257–1268.
745 doi:[10.1038/nbt1127](https://doi.org/10.1038/nbt1127).
- 746 [3] Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. *Nature
747 Methods*. 2014;11:801–807. doi:<https://doi.org/10.1038/nmeth.3027>.
- 748 [4] Araya CL, Fowler DM. Deep mutational scanning: assessing protein func-
749 tion on a massive scale. *Trends in Biotechnology*. 2011;29(9):435–442.
750 doi:<https://doi.org/10.1016/j.tibtech.2011.04.003>.
- 751 [5] Gray VE, Sitko K, Kameni FZN, Williamson M, Stephany JJ, Hasle N, et al. Elucidating
752 the Molecular Determinants of A beta Aggregation with Deep Mutational Scanning. *G3
753 Genes—Genomes—Genetics*. 2019;9(11):3683–3689. doi:[10.1534/g3.119.400535](https://doi.org/10.1534/g3.119.400535).
- 754 [6] Fowler DM, Araya CL, Fleischman SJ, Kellogg EH, Stephany JJ, Baker D, et al.
755 High-resolution mapping of protein sequence-function relationships. *Nature Methods*.
756 2010;7:741–746. doi:<https://doi.org/10.1038/nmeth.1492>.
- 757 [7] Lee JM, Huddleston J, Doud MB, Hooper KA, Wu NC, Bedford T, et al. Deep muta-
758 tional scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza
759 variants. *Proceedings of the National Academy of Sciences*. 2018;115(35):E8276–E8285.
760 doi:[10.1073/pnas.1806133115](https://doi.org/10.1073/pnas.1806133115).

761 [8] Koch P, Schmitt S, Heynisch A, Gumpinger A, Wüthrich I, Gysin M, et al. Optimization of
762 the antimicrobial peptide Bac7 by deep mutational scanning. *BMC Biology*. 2022;20:114.
763 doi:<https://doi.org/10.1186/s12915-022-01304-4>.

764 [9] Starr TN, Greaney AJ, Hilton SK, Crawford KHD, Navarro MJ, Bowen JE, et al. Deep
765 mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding
766 and ACE2 binding. *bioRxiv*. 2020;doi:10.1101/2020.06.17.157982.

767 [10] Frank F, Keen MM, Rao A, Bassit L, Liu X, Bowers HB, et al. Deep mutational scanning
768 identifies SARS-CoV-2 Nucleocapsid escape mutations of currently available rapid antigen
769 tests. *Cell*. 2022;185(19):3603–3616.e13. doi:<https://doi.org/10.1016/j.cell.2022.08.010>.

770 [11] Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, et al. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid
771 Substitutions using Hidden Markov Models. *Human Mutation*. 2013;34(1):57–65.
772 doi:<https://doi.org/10.1002/humu.22225>.

774 [12] Hopf TA, Ingraham JB, Poelwijk FJ, Schärfe CPI, Springer M, Sander C, et al. Mutation
775 effects predicted from sequence co-variation. *Nature Biotechnology*. 2017;35(2):128–135.
776 doi:10.1038/nbt.3769.

777 [13] Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation cap-
778 ture the effects of mutations. *Nature Methods*. 2018;15(10):816–822. doi:10.1038/s41592-
779 018-0138-4.

780 [14] Biswas S, Khimulya G, Alley EC, Esveld KM, Church GM. Low-N protein engineering with
781 data-efficient deep learning. *Nature Methods*. 2021;18(4):389–396. doi:10.1038/s41592-021-
782 01100-y.

783 [15] Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, et al. Biological structure
784 and function emerge from scaling unsupervised learning to 250 million protein se-
785 quences. *Proceedings of the National Academy of Sciences*. 2021;118(15):e2016239118.
786 doi:10.1073/pnas.2016239118.

787 [16] Gray VE, Hause RJ, Luebeck J, Shendure J, Fowler DM. Quantitative Missense Variant
788 Effect Prediction Using Large-Scale Mutagenesis Data. *Cell Systems*. 2018;6(1):116–124.e3.
789 doi:<https://doi.org/10.1016/j.cels.2017.11.003>.

790 [17] Romero PA, Krause A, Arnold FH. Navigating the protein fitness landscape with Gaus-
791 sian processes. *Proceedings of the National Academy of Sciences*. 2013;110(3):E193–E201.
792 doi:10.1073/pnas.1215251110.

793 [18] Gelman S, Fahlberg SA, Heinzelman P, Romero PA, Gitter A. Neural net-
794 works to learn protein sequence-function relationships from deep mutational scanning
795 data. *Proceedings of the National Academy of Sciences*. 2021;118(48):e2104878118.
796 doi:10.1073/pnas.2104878118.

797 [19] Amidi A, Amidi S, Vlachakis D, Megalooikonomou V, Paragios N, Zacharaki E. EnzyNet:
798 enzyme classification using 3D convolutional neural networks on spatial representation.
799 PeerJ. 2018;doi:10.7717/peerj.4750.

800 [20] Ofer D, Brandes N, Linial M. The language of proteins: NLP, machine learning & pro-
801 tein sequences. Computational and Structural Biotechnology Journal. 2021;19:1750–1758.
802 doi:<https://doi.org/10.1016/j.csbj.2021.03.022>.

803 [21] Illergård K, Ardell DH, Elofsson A. Structure is three to ten times more conserved than
804 sequence—A study of structural response in protein cores. Proteins: Structure, Function,
805 and Bioinformatics. 2009;77(3):499–508. doi:<https://doi.org/10.1002/prot.22458>.

806 [22] Gelman S, Fahlberg SA, Heinzelman P, Romero PA, Gitter A. Neural networks for deep mu-
807 tational scanning data; 2021. Available from: <https://github.com/gitter-lab/nn4dms>.

808 [23] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly
809 accurate protein structure prediction with AlphaFold. nature. 2021;589:583–589.
810 doi:10.1038/s41586-021-03819-2.

811 [24] Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank.
812 Nature Structural & Molecular Biology. 2003;10(12):980–980. doi:10.1038/nsb1203-980.

813 [25] Griffith D. PARROT: Protein Analysis using Recurrent Neural Networks On Training data;
814 2020. Available from: https://github.com/idptools/parrot/blob/master/parrot/encode_sequence.py.

816 [26] Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 2.5.5; 2023.

817 [27] Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI
818 BLAST: a better web interface. Nucleic Acids Research. 2008;.

819 [28] McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis Tool Web
820 Services from the EMBL-EBI. Nucleic Acids Research. 2013;.

821 [29] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
822 recognition. Proceedings of the IEEE. 1998;86(11):2278–2324. doi:10.1109/5.726791.

823 [30] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolu-
824 tional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
825 (CVPR); 2017. p. 2261–2269.

826 [31] Trockman A, Kolter JZ. Patches Are All You Need? 2022;2201.09792
827 doi:10.48550/arXiv.2201.09792

828 [32] Gray VE, Hause RJ, Fowler DM. Analysis of Large-Scale Mutagenesis Data To As-
829 sess the Impact of Single Amino Acid Substitutions. Genetics. 2017 Sep;207(1):53–61
830 doi:10.1534/genetics.117.300064

831 [33] Sruthi CK, Prakash M. Deep2Full: Evaluating strategies for selecting the minimal mu-
832 tational experiments for optimal computational predictions of deep mutational scan out-
833 comes. PLoS One. 2020 Jan;15(1) doi:10.1371/journal.pone.0227621

834 [34] Moreno-Barea FJ, Jerez JM, Franco L. Improving classification accuracy using data
835 augmentation on small data sets. Expert Systems with Applications. 2020;161:113696.
836 doi:<https://doi.org/10.1016/j.eswa.2020.113696>.

837 [35] Caron M, Bojanowski P, Mairal J, Joulin A. Unsupervised Pre-Training of Image Features
838 on Non-Curated Data. In: Proceedings of the IEEE/CVF International Conference on
839 Computer Vision (ICCV); 2019.

840 [36] Iorga C, Neagoe VE. A Deep CNN Approach with Transfer Learning for Image Recog-
841 nition. In: 2019 11th International Conference on Electronics, Computers and Artificial
842 Intelligence (ECAI); 2019. p. 1–6.

843 [37] Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accu-
844 rate prediction of protein structures and interactions using a three-track neural network.
845 Science. 2021;373(6557):871–876. doi:10.1126/science.abj8754.