10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Flattening the curve - How to get better results with

small deep-mutational-scanning datasets

Gregor Wirnsberger !, Iva Pritisanac 24,

Gustav Oberdorfer 34 and Karl Gruber 45+

October 31, 2023

nstitute of Molecular Biosciences, University of Graz, Graz, Austria
Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
SInstitute of Biochemistry, Graz University of Technology, Graz, Austria
4BioTechMed-Graz, Austria
°Field of Excellence BioHealth, University of Graz, Graz, Austria

1 Abstract

Proteins are utilized in various biotechnological applications, often requiring the optimization
of protein properties by introducing specific amino acid exchanges. Deep mutational scanning
(DMS) is an effective high-throughput method for evaluating the effects of these exchanges on
protein function. DMS data can then inform the training of a neural network to predict the
impact of mutations. Most approaches employ some representation of the protein sequence
for training and prediction. As proteins are characterized by complex structures and intricate
residue interaction networks, directly providing structural information as input reduces the
need to learn these features from the data.

We introduce a method for encoding protein structures as stacked 2D contact maps, which
capture residue interactions, their evolutionary conservation, and mutation-induced interaction
changes. Furthermore, we explored techniques to augment neural network training perfor-
mance on smaller DMS datasets. To validate our approach, we trained three neural network
architectures originally used for image analysis on three DMS datasets, and we compared their
performances with networks trained solely on protein sequences. The results confirm the ef-
fectiveness of the protein structure encoding in machine learning efforts on DMS data. Using
structural representations as direct input to the networks, along with data augmentation and
pre-training, significantly reduced demands on training data size and improved prediction per-
formance, especially on smaller datasets, while performance on large datasets was on par with
state-of-the-art sequence convolutional neural networks.

The methods presented here have the potential to provide the same workflow as DMS

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

without the experimental and financial burden of testing thousands of mutants. Additionally,
we present an open-source, user-friendly software tool to make these data analysis techniques
accessible, particularly to biotechnology and protein engineering researchers who wish to apply

them to their mutagenesis data.

2 Keywords:

deep mutational scanning, protein structure, structure encoding, machine learning, pre-training,

data augmentation

3 Introduction

Proteins are found in viruses, bacteria, plants, and humans and fulfill a huge number of differ-
ent functions and tasks in living organisms. Given their enormous functional diversity, proteins
also present an attractive platform for various applications in biotechnology and bioengineering.
However, naturally occurring proteins often require optimization for non-native uses. One com-
mon method of protein optimization involves the substitution of specific amino acids, which can
significantly enhance or alter the protein’s function as, for instance, observed in the increased
brightness of fluorescent proteins [1], or in antibody binding target modifications [2].

Amino acid substitutions can profoundly affect the properties of proteins, with mutagenesis
providing a potent tool for evaluating these effects. A powerful technique for gaining compre-
hensive insights into genotype-phenotype relationships is deep mutational scanning (DMS) [3].
This approach enables the creation of expansive datasets depicting the effects of mutations on
a given protein. DMS combines some type of protein display, which provides a physical link
between a protein and its encoding nucleic acid sequence, with high-throughput sequencing,
allowing for the characterization of up to 10° protein variants. The methodology involves ap-
plying selective pressure based on the protein’s function to a diverse library of protein variants,
which are sequenced before and after selection. High-throughput sequencing then quantifies the
abundance of each variant. Throughout selection, variants with beneficial mutations become
enriched, while those with deleterious mutations become depleted, offering a means to quantify
the fitness of a vast sequence diversity for a protein of interest [4]. The broad applicability
of DMS is demonstrated in its diverse uses, such as investigating the sequence determinants
of AB aggregation in Alzheimer’s disease [5], probing protein binding behavior [6], forecasting
the evolutionary trajectories of human H3N2 influenza variants [7], optimizing antimicrobial
peptides [8], and elucidating the effects of mutations in SARS-CoV-2 proteins [9] |10].

DMS experiments have increasingly become the method of choice for many projects aim-
ing to achieve specific engineering goals. As these experiments grow, there is an increasing
demand for user-friendly predictive methods tailored to this kind of data. Consequently, var-
ious methods have been developed to predict the effects of amino acid exchanges in proteins.

Some of these methods rely solely on evolutionary data and omit experimentally determined

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

data to predict the functional consequences of amino acid substitutions. These approaches
include, for example, the use of Hidden-Markov models [11], Potts models (EVmutation [12]),
and variational autocoders (DeepSequence [13]). Others are natural language processing mod-
els, which are strongly influenced by the training approaches used in their field of origin. They
get pre-trained in an unsupervised manner on a large amount of data and then fine-tuned on
the prediction task. Here, models like LSTMs [14] and transformer [15] are used.

Additionally, some models employ decision tree ensembles (like Envision [16]) trained on
deep mutational scanning data or use Gaussian processes [17] for predictions. These mod-
els, particularly those grounded in natural language processing (NLP), often take only the
protein sequence as input. Other models, such as Envision, integrate structural features into
their framework but tend to utilize more general features like secondary structures and solvent
accessibility instead of harnessing the unique information that each amino acid can offer.

Another important aspect in training ML models is training efficient encoding of the un-
derlying data. In the case of proteins, this can be the amino acid sequence alone without any
3D information [18], a graph representation of the protein structure [18|, or voxel-based spatial
structural encoding [19]. In recent years, models used in natural language processing have in-
creasingly been applied to problems with proteins. Although these models are compelling and
can produce great results, they tend to need a massive number of parameters, leading to high
memory and computation requirements [20].

Since protein structure is more conserved than sequence |21], we created a - to our knowledge
- new encoding for protein structures to take advantage of the information contained in the 3D
structure. The encoding consists of 2D contact maps representing different physico-chemical
properties of amino acids and their accompanying interaction, as well as the evolutionary con-
servation of each interacting residue in the structure (Section [4.2)). In addition, this encoding
allows the use of standard architectures for image classification networks, thus giving access to
a large number of different architectures that can be used to solve this problem. Furthermore,
we create a helpful pre-training and data augmentation protocol that helps to improve results
when only a small amount of data is available (Fig. .

In order to determine the effectiveness of our approach when training data is scarce, we
trained different architectures using datasets containing between 50 and 6000 samples. To
ensure the accuracy of our analysis, we used sub-datasets that accurately reflect the distribution
of fitness scores present in the complete datasets. This allowed us to determine the number
of lab-tested variants required as training data to reliably model the underlying fitness score
distribution of a protein’s fitness landscape. Additionally, we tested the ability of the networks
to predict the effect of amino acid exchange on protein sequence positions that were not included
in the training data. To further evaluate how the networks can cope with limited data from
traditional mutation experiments, we trained models using data from a simulated extended
alanine scan.

We assessed the performance of the same architecture with both sequence input and our

structure representation, as well as the impact of pre-training and data augmentation. For this

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

purpose, we relied on a recently published study by Gelman et al. [1§]. Their work offers a
comprehensive analysis of DMS datasets and evaluates the applicability of networks trained
with sequence input on large datasets. Since these authors employed a simpler convolutional
neural network architecture (CNN), we were able to use the same network architecture for our
approach, enabling comparisons that are not influenced by architecture complexity or the use
of distinct neural network architectures. This also facilitated comparisons with more complex
CNN architectures and their potential benefits.

We further examined the performance of architectures with fewer parameters, revealing
that while our representation provides an advantage, data augmentation and pre-training are
crucial for optimal performance. Our workflow also demonstrated robust performance with an
architecture that significantly reduces the number of parameters.

To promote the utilization of these methods in biotechnology and protein engineering, we
provide open-source software featuring a user-friendly command line interface designed to be
accessible to non-ML experts. Executing the program with new DMS data requires minimal

input, but the software also provides numerous advanced settings if needed in specific cases.

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

122

123

124

125

126

127

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

00000000000 DMS Pre
838833983883 [t [score| Training
000000000000 GlW |1.62 .
000000000000)
000000000000 K42G|4.04
000000000000

000000000000 I24P)2.06

i = Mut [Score
Assay - - }(Fltness)
Score A2S ??
Data . .
Representation ~ Prediction
Mut |Score
A2S|4.18

(61w, k42G,142p)

Figure 1: Overview of the training and prediction workflow. Initially, models are pre-trained
on predicting a pseudo score that arises from the data representation (consisting of stacked 2D
contact maps representing different physico-chemical properties and evolutionary information).
This helps the model adjust its weights to the kind of prediction it will later be used for while
not requiring additional data acquisition. Data augmentation is applied to up-size the training
data to improve the prediction quality further. This is then used to train the network on
experimentally determined (fitness-) scores of the protein of interest. In the end, the trained
model can be used to predict these scores and, therefore, the effects of amino acid exchanges
in the protein that were not experimentally determined. It is also possible to omit pre-training
and data augmentation and train the network solely on experimentally determined data. Three
different network architectures were used in this study, but they can be easily changed to any

architecture of choice that accepts the input in the form of the data representation.

4 Materials and methods

4.1 Data

In our study, we utilized DMS data previously prepared and used in the study by Gelman et
al. [18]. We specifically chose data from avGFP, Pabl, and GB1, as these proteins demonstrated
the best results in their study, making them ideal for comparison as the data set quality does

not influence the results. As Gelman et al. [18] already explored the influence of data quality

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

158

159

160

161

162

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

on learning performance, finding a strong correlation between predictive performance and data
quality, we opted to use these three high-quality datasets and then tested the influence of
dataset size, pre-training, data augmentation, encoding, and network architecture. A limited
analysis, which included only the optimal settings and the biggest and smallest of the three
architectures used, was performed on two lower-quality datasets (Bgl3 and Ube4b) also used
in [18], where they exhibited poorer performance. Regarding protein structures, we also relied
on data used in |1§] to ensure the sequence, and consequently, the structure matched the DMS
data. Therefore, we used the PDB files of these structures provided in the corresponding
GitHub repository [22].

The DMS datasets also contain nonsense mutations. We chose not to use assay scores for
proteins featuring one or more nonsense mutations since these scores would represent protein
fragments and thus would not reflect the properties of the wild-type protein containing a par-
ticular mutation. We, therefore, modified the datasets to exclude all nonsense mutations during

training, validation, and testing.

4.2 Interactions and their encoding

To emulate the effect of different mutations in a protein, we created interaction matrices that
used a set of different amino acid properties to describe the interactions between residues in a
protein and their changes due to amino acid exchanges. Additionally, a matrix that encoded
the evolutionary conservation of interacting residues and an index matrix were used. Visual
representations of the individual matrices, using Pabl as an example, can be found in Fig. [S4]
This encoding method relies on the availability of the complete structure of the protein. In
real-world scenarios, experimental structural data might not always be available or complete.
However, there are a variety of approaches to address this issue, such as filling missing loops or
even using advanced protein structure prediction tools like AlphaFold [23] to model the entire
protein structure. In a worst-case scenario, in which only incomplete structures are available,
the encoding can still work but would require dataset modifications (e.g., index adjustments

based on the missing residues).

4.2.1 Distance Matrix

To classify pairs of residues as interacting, we used Euclidean distances (d;;) calculated from
Cartesian coordinates of all protein atoms stored in the corresponding PDB file [24]. Interact-
ing residues were identified by checking the closest distance between side chain atoms of two
residues, ¢ and j. Using this approach, the smallest distances between all residues were calcu-
lated, and a symmetric n x n distance matrix (D), where n denotes the sequence length, was

generated. Using equation [I] this matrix was then used to generate a so-called factor matrix

(F).

maa:lJ(D) (1)

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

163

164

165

166

167

168

170

171

172

173

174

175

176

177

179

180

181

182

183

184

185

186

189

190

191

192

193

194

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

In Eq: [1| d;; denotes the distance between two residues and maz(D) the biggest distance seen
in the structure.

This factor matrix was used to scale the ”strength” of the interactions in all subsequent ma-
trices (apart from the position matrix (P)) by calculating the Hadamard product (element-wise
product) of F with each interaction matrix. Elements in F' corresponding to distances larger
than 20 A were set to zero. This led to higher values for close interactions and smaller ones for
interactions of residues that are further apart. In addition, it masked interactions originating

from residues further apart than 20 A.

4.2.2 Index Matrix

Convolution neural networks (CNN) are translation invariant. This is one of the features that
make them powerful in image recognition tasks since they can find patterns they have learned
anywhere in an image and not rely on their position. In our case, this translation invariance
was an undesirable feature because the positions of the interactions matter. To address this
issue, we introduced a simple position matrix (P). It describes the position of each interaction
in the matrices based on the index matrix I (Eq: . To calculate P, the Hadamard product
of D and I is formed where D is set to 1 for distances smaller than disty, and to 0 for bigger

distances.

11
11 0

W N = O
N o O

4.2.3 Hydrogen Bonding

The number of hydrogen bonds is one of the factors that determine the stability of a protein.
Therefore it is a crucial kind of interaction since amino acid exchanges that introduce hydrogen
bonding capabilities or remove them will thus alter this property. Not all amino acids have the
same capability of forming hydrogen bonds with their side chain. Some can only act as a donor
(K, R, W), some as an acceptor (D, E), some as donors or acceptors (H, N, Q, S, T, Y), and
some are not able to form hydrogen bonds with their side chain at all (A, C, F, G, I, L, M, P,
V). The hydrogen bonding matrix B features a value of 1 for interactions formed by a donor
and an acceptor, by a donor and an acceptor/donor, by an acceptor acceptor/donor or by an

acceptor/donor acceptor/donor pair, or a value of 0 otherwise.

4.2.4 Hydrophobicity

Proteins often contain a hydrophobic core and a hydrophilic outside that interacts with its
surroundings. The hydrophobic core plays an important role in the folding process of a protein.

Therefore, mutations that change the hydrophobicity in certain areas of a protein can have

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

195

196

197

198

199

200

201

202

203

204

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

positive and negative effects. The hydrophobicity values used were obtained from Parrot [25].
These hydrophobicity values range from -4.5 for arginine to 4.5 for isoleucine.
h; — h;
Hy=1- % (3)
In Eq: 3| A denotes the hydrophobicity of a certain residue, and 9 is the maximum possible hy-
drophobicity difference. The hydrophobicity matrix (H) describes how well-interacting residues
match in terms of their hydrophobicity.

4.2.5 Charge

There are three main types of amino acids categorized according to their charge: neutral (A, C,
F,G L L MN, P, Q,S, T, W, Y), positively charged (R, H, K), and negatively charged (D,
E). Salt bridges, which are interactions of residues of opposite charge, are, besides hydrogen
bonds, another type of interaction that is important for the stability of a protein. On the
other hand, amino acids that carry the same charge can repel each other, which can lead to
instability in the protein’s structure. To calculate the charge matrix (C) (where we multiply the
amino acids charge value and this result by -1), we assigned a value of 1 to interactions between
positively charged amino acids, a value of -1 to interactions between amino acids carrying the

same charge, and a value of 0 to all other interactions.

4.2.6 Surface accessible side chain area

Amino acids feature a variety of different sizes of their side chain. This is reflected in the
difference in their surface accessible side chain area (SASA). The bigger the SASA, the higher
the possibility for a (strong) interaction. Therefore a mutation that changes the interaction area
between two interacting residues can have an influence on their interaction strength. The SASA
values were obtained from Parrot [25], ranging from 0 A? for glycine to 254 A2 for tryptophan.
a;i + a;
L L (4)
MATSASA X 2

In Eq: a denotes the interaction area of a certain residue and maxrgaga the maximum SASA
value for an amino acid. The interaction area matrix (A) describes the interaction area between

residues.

4.2.7 Clashes

Amino acids also differ in the length of their side chains. That means certain mutations can
lead to potential "holes” in a protein if the side chains get shorter or potential clashes because

the side chains are too long for the space between them.

Al; + Al + dy

X =
V2 X maxy + disty,

(5)

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

240

241

242

243

244

245

246

247

248

249

251

252

253

254

255

256

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

In Eq: [5| Al denotes the change in the side chain length at a certain residue position from
wild-type to the variant, maz; the maximum side chain length and dist;, the maximum allowed
distance between two residues to count as interacting. Side chain lengths range from 0 A for
glycine to 8.28 A for arginine. To obtain the values of the side chain length, we used Pymol [26]
to measure the maximum distances between the Ca and side chain atoms in different residue
types. The resulting clash matrix (X), represented by Eq: , shows the distances between
interacting side chain residues. If a mutation leads to a distance between two residues that is
closer than the distance between them in the wild-type, a negative length value is recorded.
This means that the values in this matrix, along with the charge matrix C, are the only ones
that fall within the range of [-1, 1] instead of [0, 1].

4.2.8 Evolution

To make use of the evolutionary information that can be obtained through a Blast search [27],
we create a matrix (E) based on the conservation of amino acids at each sequence position.
Therefore we used the result of a blastp search against the wild-type protein sequence with
its default settings against the experimental clustered non-redundant database and aligned the
obtained sequences as well as the wild-type sequence using the multiple sequence alignment tool
Clustal omega [28]. Duplicated sequences were removed from the alignment. To calculate a
conservation score at each wild-type sequence position, all present amino acids were counted at
this position, and their counts were divided by the total number of amino acids present at that
position. Amino acids that were not present at this position got a value of zero assigned. To
evaluate the conservation of an interaction, the conservation scores of the interacting residues
were multiplied. Evolutionary information could also be integrated via, e.g., a separate branch
of the neural network, but we chose this representation because it was easier to incorporate
into the existing network structure. Additionally, this representation encodes the change in the

conservation of an interaction based on the exchanged amino acid(s).

Figure [S4] shows an example of all interaction matrices (B, H, C, A, X) for Pabl containing
the mutation "N127R, A178H, G177S, A178G, G188H, E195K, L133M, P125S” as well as the
position matrix (P), the interaction matrix (M) which describes which residues interact with

each other and the distance matrix (D).

4.3 Network architectures
4.3.1 Simple CNN

Since we wanted to compare our structure representation to the sequence convolution approach
(Section: [4.3.4)), a LeNet5 [29] - like convolutional neural network (Fig. was used. It
contains a feature extraction part containing three 2D convolution layers with 16, 32, and 64
filters and a kernel size of 3x3, each followed by a max pooling layer. After that comes a

flatten layer and a classifier part consisting of 4 fully connected layers with 128, 256, 256, and

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

259

260

261

262

263

264

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

203

294

295

296

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

64 nodes and a single output node. We used the leaky rectified linear unit (leaky RELU) as the
activation function for all layers in the model. Zero-padding was used throughout the whole

network. This model is referred to as ”simple CNN”.

4.3.2 DenseNet

To compare the performance to a more recently described architecture, we chose to use a
DenseNet [30] - like architecture (Fig. [S6), which will be referred to as "DenseNet”. Here the
core building block consists of a 2D convolution layer with 128 filters and a kernel size of 1x1,
followed by a 2D convolution layer with 12 filters and a kernel size of 3x3. Zero-padding is used
throughout the whole network to keep each layer’s input and output dimensions the same. The
input into the first 2D convolution layer and the output of the second get concatenated. This is
repeated 4 (block depth) times and is then followed by a 2D average pooling layer with a kernel
size of 2x2. All this combined is one block, and this is repeated 4 (block number) times. In the
end, a 2D global average pooling layer is followed by a fully connected network with 128, 128,
and 64 nodes per layer leading into one output node. Additionally, we used an ”intro layer”
for avGFP, which consists of a 2D convolution layer with 128 filters, a kernel size of 3x3, and
a stride of 2 followed by a 2D max pooling layer with a kernel size of 3 and a stride of 2 at the
beginning of the network. This reduces the size of the input and thereby reduces the number
of computations needed in the rest of the network. In contrast to the original DenseNet, we
omitted batch normalization because it led to worse performance and used the leaky RELU

instead of RELU as the activation function.

4.3.3 SepConvMixer

To test the performance of a network with as few parameters as possible, we implemented
an architecture (Fig. similar to ConvMixer [31]. Sequence convolution requires up to 82
times, simple CNN up 185 times, and DenseNet up to 21 times the number of parameters in our
settings (Table [4]). The two main contributors to the reduction of the number of parameters
were the possibility of using a smaller fully connected classifier network as well as the use of 2D
separable convolution layers. The latter first performs a depth-wise spatial convolution, which
acts separately on each input channel and is followed by a point-wise convolution to mix the
resulting output channels. The network starts with one 2D separable convolution layer with 32
filters where we used a kernel size of 3x3 and a stride of 1 for smaller proteins (like Pabl and
GB1) and a kernel size of 9x9 and a stride of 9 for bigger proteins (avGFP). This is followed
by a variable number of blocks (determined by the parameter depth) each consisting of 2 2D
separable convolution layers with 32 filters and a kernel size of 3x3. The input into the first,
the output of the first, and the output of the second layer get added at the end of the block.
We used a depth of 9 in this study. These blocks are followed by a 2D global max pooling layer
and a fully connected network consisting of 128- and 64-node layers followed by a single-node
output layer. We used the leaky RELU as well as zero-padding to keep the dimensions the

same throughout the whole network.

10

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

A 7down-sampling” (a kernel size of 9x9 with a stride of 9 in the first layer) for bigger
proteins slightly reduces the performance but is a worthy trade-off to reduce the computational

cost.

4.3.4 Sequence convolution

For comparison, we used the network architectures of [18] as specified in their main experiments
(/pub/regression_args/PROTEIN _main_cnn.txt [22]). Apart from enabling early stopping and
restricting the length of the training to 100 epochs, we chose the default parameters when using

the /code/regression.py. This is referred to as ”sequence convolution” throughout the paper.

4.3.5 Implementation

Our models were implemented using Python v3.10, TensorFlow v2.9.1, and Keras v2.9.0

4.4 Training

Training of simple CNN, DenseNet, and SepConvMixer architectures was performed using the
mean absolute error as the metric, Adam as optimizer with a learning rate of 0.001 and a
maximum number of epochs of 100. Furthermore, we stopped the training if the mean absolute
error did not improve by at least 0.01 over 20 epochs. The batch size for the training was 32 and
parallelized by using 12 central processing unit (CPU) cores of an AMD Ryzen Threadripper
3960X. The training was performed on an Nvidia RTX A5000 graphics processing unit (GPU).
For training the networks on the ANH-Scan data, an Nvidia GeForce RTX 3070 and an Intel
Xeon Gold 6230R CPU were used. For pre-training, we limited the maximum number of epochs

to 70. The training of the sequence convolution network was done using an Intel Xeon Gold

6230R CPU.

4.5 Experiment setup
4.5.1 Dataset size effect

Data and dataset selection can have an impact on the performance of the neural network. To
avoid any advantage or bias through the use of only specific subsections of the data, e.g., only
low DMS scores, we selected the training, validation, and test dataset in the following way: The
whole dataset was randomly shuffled. The first n data points were used as training data, the
following n x 0.2 samples were used as validation data during the training, and the next 5000
data points were used as test dataset after the training, where n is the training data size. This
ensures that the training-, validation- and test datasets are entirely disjoint and do not feature
overlapping data. Since the artificially created pre-training data has a Pearson correlation of
around -0.5 to the DMS data, the pre-training datasets were created so that the data points
in the pre-training dataset do not feature mutations that are in the test dataset to ensure no

knowledge leak and an unbiased test result.

11

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

This led to training- and test datasets that featured a similar DMS score distribution as the
whole dataset and, therefore, built a representative sample (Figure: - . For each training
run, we used three different data sets, which were all obtained from the original data sets of
the proteins: a train, a tune, and a test set. The test set always consisted of 5000 randomly
chosen unique entries each. The tune set had one-fifth of the size of the training data set for our
architectures and always 5000 entries for sequence convolution. The train datasets contained
50, 100, 250, 500, 1000, 2000, or 6000 entries for all training runs. The train data set was used
to train the network, the tune set was used to calculate the validation statistics during training,
and the test set was used to calculate the statistics of the performance of the network after
training. Training simple CNN, SepConvMixer, DenseNet, and sequence convolution was done
on three randomly chosen subsets of the whole protein data sets to construct the train, tune,
and test sets to avoid picking one that suits one architecture better by chance.

For the training of simple CNN, SepConvMixer, and DenseNet, we used data augmentation
(Section: as described below, as well as pre-training (Section: . For sequence
convolution, we used the same train, tune, and test sets as for the training of simple CNN,
SepConvMixer, and DenseNet; however, we did not use data augmentation and transfer learning
during its training process. Three main performance metrics are used: mean squared error
(MSE), Pearson’s correlation coefficient, and Spearman’s correlation coefficient, with the main
focus on Pearson’s correlation coefficient. No dedicated hyper-parameter tuning was done, but
those that had proven to be the best after some initial testing were used. To test the impact
of an ”intro layer” like in the original DenseNet, which is a normal 2D convolution layer with
a kernel size of 3x3 and a stride of 2 followed by a 2D max pooling layer with a kernel size of
3x3 and a stride of 2, we chose to include this in the training of avGFP but not for Pabl and
GB1. The same was done for SepConvMixer, where the first separable convolution layer has
either a kernel size of 3 and a stride of 1 or, for avGFP, a kernel size of 9 and a stride of 9.
The use of an ”intro layer” reduced the performance for smaller proteins like Pabl and GB1
slightly but is needed and a good trade-off to be computationally efficient for proteins of the
size of avGFP and bigger.

Data augmentation Since neural networks learn better with more data, we used a simple
data augmentation method to obtain more training data from small data sets. This method
uses the given experimental data, e.g., Table [1] shuffles it, and adds it to the original not

shuffled data to create new augmented variants like shown in Table [2|

Table 1: Sample data for augmentation

variant number mutations | score
K1L,S3A 2 -0.3
R23H,W19F | 2 0.1
C5G,ATL 2 -1.0

Shows data samples later used for an example of data augmentation.

12

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Table 2: Sample augmentation

augmented variant | number mutations | augmented score
K1L,S3A,R23H,W19F | 4 -0.2
R23H,W19F ,C5G,A7L | 4 -0.9
C5HG,ATL,K1L,S3A 4 -1.3

Shows how data points of Table [1] are added during data augmentation.

This is done four times, and the newly created data is stored. This data is then used as
input data to perform the same action three times where, after each round, the newly created
data is used as the new input data in the next round. From this newly created augmented
data, as many samples are drawn as needed to get a maximum of 20000 training samples when
the original data is added (augused = 20000 — Ngyiginal Where augyseq is the number of augmented
samples used and Ngyigina the number of original data). If the augmentation does not produce
enough data to reach a combined number of 20000 samples after the original data is added,
the whole augmented data is used. It did not show good results when increasing the number
of runs to produce 420000 samples when the original data set is not big enough to reach the
number of samples with the number of runs described above. This kind of data augmentation
produces pseudo labels for data and assumes an additive effect of mutations. Even though there
are more intricate models to describe the relationship between different mutations in a protein,
this method provides a simple and effective way to quickly generate more data that helps the
model produce better results. In addition, the assumption of simple additivity does not rely
on another model, such as DeepSequence [13], to be added to the training procedure. We also
tried training the networks only on augmented data and fine-tuning them on the original small
data sets. This showed worse performance than training them with the original and augmented

data combined.

Pre-training To overcome the need for big data sets, we used pre-training to obtain better
results while training on small data sets. The transfer of weights of the feature extraction
part of a network trained on a whole dataset of another protein yields better performance
than starting from a completely untrained network. However, to pre-train a network on data
that is more closely correlated to the protein of interest, we created a pseudo-score that can
be calculated without the need for experimental data (section: [£.5.1]). Since the pre-training
is based on our encoding, we used it for simple CNN, SepConvMixer, and DenseNet. After
training the model on the pseudo data, the weights of the feature extractor were transferred
to an untrained network, frozen, and a new classifier was trained. The same was done with
a trainable feature extractor. During initial tests, the reduction of the learning rate did not
improve the performance. Therefore we omitted it in further studies. Transferring the weights
of the whole pre-trained model, including the classifier, showed worse performance. We also
tested networks pre-trained on other proteins, e.g., pre-trained on avGFP and trained on Pabl,

but our pre-training method proved to be more effective.

13

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

395

396

397

398

399

400

401

402

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Pseudo Score In order to calculate the pseudo score for the pre-training, the wild-type of
the protein gets encoded in the same way as for training the network. The same is done for all
possible single and double mutants of the protein. To calculate the pseudo score of a variant,
the encoded wild type gets element-wise subtracted from the encoded variant matrix. Of all
these values, the absolute value is taken and summed up over all matrices. This gets divided
by 100 to shift the values into the range of the real fitness scores. 40000 of these created data
points are randomly chosen and used to pre-train the models. These pseudo scores show a
Pearson’s R of around -0.5 to the original DMS data for the different datasets.

4.5.2 Positional extrapolation

To evaluate the networks’ capabilities to predict mutational effects of positions not seen during
training, the protein sequence was divided into training and validation sets, comprising 85% of
the positions, and a test set of the remaining 15%. This was done three times with randomly
selected sequence positions. Multi-mutation variants with some positions in the test set and
others in the training set were eliminated from this analysis. To test this, we used the pre-
trained networks (simple CNN and SepConvMixer) on our pseudo score from and trained
them on the data described above. To compare their performance, we also trained sequence
convolution on the same data. We did this analysis for GB1, Pabl, and avGFP. The training
dataset size for GB1 was 351000 data points, 23000 for Pabl, and 26000 for avGFP.

4.5.3 ANH scan

An often method for assessing mutational effects in proteins is an alanine scan, where each
amino acid is replaced with alanine and the property of interest is evaluated. This approach
generates a limited dataset of the size equivalent to the length of the protein sequence. Recently,
it has been discovered that the amino acid exchanges to alanine, asparagine, and histidine are
the most correlated with all other single amino acid exchanges [32]. Therefore, to increase the
amount of data and provide the neural network with a good starting point, an extension of
the alanine scan was proposed, an ANH-scan [33]. In this regard, we selected from the DMS
datasets all single variants that contain either an exchange to alanine, asparagine, or histidine
as a training and validation dataset. 85% of these were used as training data, and 15% were
used as validation data during training. The remaining single mutants of the datasets were used
as test data. To test this approach, we used the networks (simple CNN and SepConvMixer)
pre-trained on our pseudo score from [£.5.1] and trained them on the data described above. To
compare their performance, we also trained the sequence convolution model on the same data.
This approach yielded a combined train and tune dataset size of 159 for GB1, 132 for Pabl,
and 169 for avGFP, which indicates that only for GB1 almost all positions were mutated to

either A, N, or H and that the other data sets are missing some of these.

14

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

430

431

432

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

454

455

456

457

458

459

460

461

462

463

464

465

466

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

4.5.4 Generalization

To test the models’ capabilities in predicting mutants with a higher number of mutations than
they were trained on, the avGFP dataset was used. This dataset is the only one containing
variants with up to 14 mutations. Therefore, the training and tune sets consisted of 10,221
and 2,556 data points, respectively, featuring only single and double mutants. The test set
consisted of 38,937 variants containing three to 14 mutations. The models were trained under
four different settings: from scratch, meaning no pre-training or data augmentation; only with
pre-training on our pseudo-score, which contains only scores for single and double mutants; only
with data augmentation; and lastly with pre-training and data augmentation combined. The
training was done three times with different random seeds to check the prediction consistency.
Pearson’s R values between the true and the predicted scores of the test set mutants were

computed to evaluate the performance.

4.5.5 Single Mutation Effect Prediction

To test how many training samples a network needs to get an idea of the effect of single
mutations, all single mutations of the DMS dataset of GB1 were used as ground truth. Then
pre-trained SepConvMixer models were trained on different numbers of training samples of the
original datasets (50 -6000 data points). These models, as well as only the pre-trained model
of SepConvMixer, were asked to predict the score of every single mutation present. This was
done for GB1 because this dataset consists of all possible single mutations, whereas the Pabl
and avGFP datasets would not yield a comparable ground truth due to missing single-point

mutations.

4.5.6 Recall Performance

To access the recall performance of simple CNN, SepConvMixer, and DenseNet when trained
on different-sized training datasets (Section: , we used the pre-trained models without data
augmentation since this is one of the best-performing settings. The models were trained on
different-sized training datasets (50 - 6000 data points) or 80% of the whole datasets. Then the
test data set, which consists of only variants that the models have never seen before, was used to
access the recall performance by letting the models predict the scores and checking how many
of the predicted top-scoring variants were actually part of the actual top scoring 100 variants of
the test dataset, given a certain budget (Fig. |§] & . The recall performance was computed
as described in [18]. If one ranks all variants according to their predicted (fitness-) score, the
budget refers to the number of best variants predicted by the network from all variants, which
are examined to see whether they occur in the actual 100 best variants. The term ”best case”
refers to the theoretical optimal outcome. For instance, if we were to select 20 variants from a
goal set of the top 100 variants, the best possible outcome would be that all 20 chosen variants
are within the true top 100. Thus, the "best case” would reflect a recall score of 0.2. If the

budget would be 150 variants, the best case would be that all top 100 variants are contained

15

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

491

492

493

494

495

496

497

499

500

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

in the 150 predicted best variants and would therefore result in a recall score of 1.0. The best

case is meant as a comparison for what could be the maximum achieved recall score.

5 Results

We tested a new way of encoding protein structure and improving the training on deep mu-
tational scanning (DMS) datasets. To this end, a simple convolutional neural network with
a LeNet5 [29] -like architecture (simple CNN, Section: [£.3.1)), a DenseNet [30] -like Network
(DenseNet, Section: and a network heavily inspired by ConvMixer [31] (SepConvMixer,
Section: were used. Furthermore, two methods, data augmentation and pre-training,
were tested for their applicability to DMS data. To assess their performance, a state-of-the-art
sequence convolution model [18] (sequence convolution) was trained with the same data sets,
and the results were compared. In order to test these models and approaches as well as their
real-world applicability, we conducted a series of different experiments to test the following

properties:

e the effect of the number of randomly selected training samples as well as of pre-training

and data augmentation on the predictive performance (Section: [5.1))
e the ability to extrapolate to unseen sequence positions (Section: [5.2))

e the extent to which the models can predict all single variant effects when trained on an

extended alanine scan (ANH-Scan) (Section:

e the ability to generalize from training on mutants containing a maximum of two amino

acid exchanges to variants carrying up to 14 mutations (Section:

e the number of randomly selected data needed to predict the effect of all single mutations

(Section:

e the recall performance for the best 100 variants in the dataset given a certain budget for
networks trained on differently sized datasets (Section: [5.7)

5.1 Dataset size effect

Neural networks are known to need a lot of data to perform well. Here we test different network
architectures and supplementing methods to reduce the needed data size and its influence on
predictive performance. In order to evaluate the performance of the three different architec-
tures and compare it to the original sequence convolution method, each model was trained on
three different data sets from [18] (avGFP, Pabl, and GB1), including a limited analysis of the
datasets Ubedb and Bgl3. Our study showed improved performance of all three architectures
over sequence convolution for smaller datasets and the positive impact of pre-training and data
augmentation on their predictive performance. For larger datasets, all models performed almost

equally. In order to improve predictions on small data sets, two methods were applied: data

16

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

augmentation and pre-training. Data augmentation has already been shown to be important
when the data set size is small [34]. Since the proposed data representation is not translation
and rotation invariant, it was not possible to use the same data augmentation methods (e.g.,
rotation, crop, flip, transpose, etc.) as used in image processing. Hence, a simpler data aug-
mentation method was used that sums up scores of existing data (Section: . Another
method to improve a model’s performance is pre-training. Here a model can be pre-trained
unsupervised if a lot of unlabelled data is available [35] or supervised on a big labeled data
set with similar content to the data one is interested in and then fine-tuned on the data set
of interest [36]. Since the proposed data representation already captures some variation due
to mutations in a protein, we created a simple pre-training procedure, where the models were
pre-trained on a pseudo-score that arises from the representations itself (Section .

In the figures [2] and [S9 - [S13] the median of the three training runs for each data point
is shown. The graphs in the top row show either the Pearson-, the Spearman correlation
coefficient, or the MSE for the predictions on the test set made by the models. The bottom
row shows the relative performance compared to the sequence convolution. The data set size
always refers to the amount of data from the original split and is not related to the data
set size after data augmentation. For the MSE, the relative performance was calculated with
puse = 2 — (MSE;/M S Egeqeony) Where pysg is the relative performance, the MSE; the MSE
of a model to compare to and MSE¢qcony the MSE of the sequence convolution. The relative
performance of the correlation coefficients was calculated pr = Ri/Rseqcony Where pg is the
relative performance, R; the correlation coefficient for the model to compare to and Rsegeony the

correlation coefficient of the sequence convolution model.

17

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

pabl gbl avgfp

PearsonR

Relative Performance Factor

-15+————r———" - —1.5 +——r————r - —1.5 =
102 103 102 103 102 103
Dataset Size Dataset Size Dataset Size
—%— base —%— aug —*— aug transfer train
transfer no train aug transfer no train —A— sequence convolution

—%— transfer train

Figure 2: Pearson’s R for predictions of the test data set of SepConvMixer for all three proteins
in the upper row, as well as the relative performance compared to sequence convolution in
the lower row. Here sequence convolution is indicated as a black dashed line at 1xof its own

performance. Label descriptions can be found in Table

18

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Table 3: Label description for result plots.

label augmentation | transfer | train CL
sequence convolution No No Yes
base No No No
transfer no train conv No Yes No
transfer train conv No Yes Yes
aug Yes No No
aug transfer no train conv | Yes Yes No
aug transfer train conv Yes Yes Yes

Augmentation specifies whether data augmentation was used, transfer whether pre-training
was used, and train CL whether the convolution layers were trainable or not when

pre-training was used.

In general, the more data the networks got to train, the better they performed, and the less
important the approach became since they performed almost equivalently (>= 2000 training
samples). Another trend that could be observed is that the more original data the networks
got, the less important augmentation and pre-training became to achieve the same training
results. In general, the best performances were obtained when the networks were pre-trained,
and the weights of the convolutional layer were not frozen in the subsequent training runs.
Data augmentation had an additional positive effect. On smaller datasets (<= 500 training
samples), the difference in the performance of a chosen method was more pronounced. For
example, for Pabl and avGFP, using data augmentation and freezing the convolutional layers
showed a better performance in simple CNN (Fig. but showed a worse performance when
the training dataset got bigger. In contrast, this method led to an overall worse performance
in DenseNet (Fig. and SepConvMixer. This was especially true for SeqConvMixer and
could be caused by the low number of trainable parameters (13k) for the network under this
setting (Fig. . Looking at the method that produced the best results, training a pre-trained
network and using data augmentation, DenseNet had a similar performance overall to simple
CNN and SepConvMixer. A performance improvement from DenseNet could be seen in small
datasets (Fig. [S17)).

When the number of training samples gets over 500, the performances of all architectures
are almost identical. One fact that stood out about DenseNet was that it took at least 6000
samples to show the same performance as sequence convolution when no pre-training and data
augmentation were used. In contrast, simple CNN without pre-training and data augmentations
needed 250 to 500 training samples to show the same performance as sequence convolution. In
general, the difference in performance for different methods was less pronounced in simple CNN
than in DenseNet and SepConvMixer. Looking at the difference in performance between simple
CNN, SepConvMixer, and DenseNet, one can see that DenseNet could improve the performance

for smaller datasets when pre-training and/or data augmentation was used. On the other hand,

19

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

when none of these methods were used, DenseNet showed a strongly reduced performance and
higher variability in its results (Figs. - [S21). Data augmentation worked well for data
sets that feature only single and double mutants, such as Pabl and GB1. When the dataset
already consisted of variants with more than two mutations (up to 14 in the case of avGFP),
the approach did not work as well when the training data size surpassed 250 entries. This might
be caused by the additive nature of the data augmentation used in our pipeline. Since adding
two single mutants is more likely to be additive in real life compared to adding two variants,
both carrying 12 mutations on their own, because a higher number of variants increases the
likelihood that two mutations interfere with each other and, therefore, corrupt the additivity
of their scores when they occur on their own.

For the lower-quality datasets of Ube4b and Bgl3, we performed a limited analysis with only
our biggest and smallest architecture, simple CNN and SepConvMixer, and only two training
settings, without pre-training and data augmentation, and with pre-training. We could see an
increase in performance when pre-training was used, but as already shown in [18], we could

observe the same trend with a reduced performance compared to the other three datasets (Fig:

518]).

Table 4: Number of parameters of each network.

architecture protein | trainable parameter
sequence convolution | Pabl 990k

simple CNN Pabl 803k

DenseNet Pabl 714k

SepConvMixer Pabl 37k

sequence convolution | avGFP | 3.118k

simple CNN avGFP | 7.029k

DenseNet avGFP | 799k

SepConvMixer avGFP | 38k

Number of trainable parameters of the three different architectures for two different proteins:
Pabl (75 amino acids) and avGFP (237 amino acids).

5.2 Positional Exploration

Since training on a randomly chosen subset of data points can be biased by the fact that it
already learned that a mutation at a particular position will produce a bad result, we trained
our smallest and biggest network architecture on data of different sequence positions than they
were asked to predict (Figure |3| and Figure . Even though the networks were trained on
bigger datasets than in Section (23000 Pab1, 26000 avGFP, and up to 351000 for GB1),
they showed a worse performance compared to substantially smaller training data that did not
exclude specific positions. Here, simple CNN and SepConvMixer show comparable performance.

Both approaches manage to improve over the predictions made when trained on the protein

20

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

st sequences with sequence convolution.

575

576

577

578

579

580

581

582

583

584

585

586

ANH scan positional extrapolation
1.0 1.0
0.81 0.81
¥
x * (0.6 *
o 0.6 * i
§ & 5 =
5 0.41 . *
0.4 A
A
A - 021"
4 *
0.2 1
0.0 1
A
0.0 — T T T T T
avgfp pabl gbl avgfp pabl gbl
* simple model imp transfer train A sequence convolution
- mean - mean

Figure 3: PearsonR for predictions on an ANH-Scan as well as on positions the networks (simple

CNN and sequence convolution) have not seen before in training

Since the size of the training dataset was big enough, there were no big differences in
performance between pre-trained and not pre-trained networks(Fig. & [S525)).

5.3 ANH-Scan

Performing an alanine scan on a protein will only yield a small number of data points. There-
fore, an extension to systematically replace each amino acid with alanine, as well as asparagine
and histidine, was tested to see how well the networks could predict individual amino acid re-
placements with the remaining amino acids (Figure [3|and Figure . We tested this approach
with simple CNN, SepConvMixer, as well as with sequence convolution. This approach showed
similar results to the randomly chosen single- and multi-mutation variants in Section for
simple CNN and SepConvMixer and a slight performance degradation for sequence convolution
for similar-sized train datasets. Here the reduced performance on not pre-trained networks,

again, shows its importance when training data is limited.

21

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

5.4 Comparison - Sequence vs Structure

In general, comparing the correlations of all three networks to sequence convolution for pre-
dictions when trained on randomly chosen positions (Section , the best combination of
methods (using pre-training with and without data augmentation) performed at worst 0.9xof
sequence convolution and the best 1.6x. Using a more complex architecture (DenseNet) could
improve the performance on smaller dataset sizes (<= 250) but needed at least pre-training to
reach that level of performance (Fig. . When comparing the number of parameters (Table:
for sequence convolution and simple CNN, the protein sequence length is the determining
factor. The bigger the protein, the more will the simple CNN exceed the sequence convolution
in terms of the number of parameters. For DenseNet and SepConvMixer, the number of pa-
rameters stayed constant and only changed due to the use or absence of the first introduction
layer. This difference was due to the use of a flatten layer in the sequence convolution and
simple CNN after their feature extraction part, whereas DenseNet and SepConvMixer both use
a global pooling layer instead that always has the same size, regardless of the input data.

Comparing the ability to correctly predict the effect of amino acid exchanges at positions
that were not present in the training data, sequence convolution, as well as our models, decrease
in performance, especially considering the overall larger training data set. Our combination
of structure encoding and pre-training managed to slightly improve predictions on avGFP,
improve predictions on Pabl, and perform slightly worse on GB1 in comparison. Simple CNN
managed to perform the same or with a 0.45 higher PearsonR compared to sequence convolution
without pre-training. SepConvMixer achieves, at worst, a 0.12 lower PearsonR or, at best, a
0.49 higher PearsonR (Fig. &

When the training data came from a simulated ANH scan, sequence convolution lagged
behind both of our models in terms of predicting the single mutation effect of the remaining

amino acids when they were pre-trained but outperformed them when they were not pre-trained.

5.5 Generalization

Examining the performance of models trained on only single and double mutants in predict-
ing mutants that have more than two amino acid exchanges again showed the advantage of
pre-training and data augmentation. The various networks (simple CNN, DenseNet, Sep-
ConvMixer) were trained on 10.221 single and double mutants of avGFP, with and without
pre-training and/or data augmentation. Then they were asked to predict the test dataset that
contains variants featuring a minimum of three and a maximum of 14 mutations. This led to a
maximum performance in terms of Pearson’s R of 0.835 (Fig. [4]). Over all settings and methods,
simple CNN showed the best results, followed by SepConvMixer, whereas DenseNet showed the
worst performance. Looking at the consistency of the results, SepConvMixer outperforms the
other two networks. In accordance with previous results, the models can improve their pre-
dictions when pre-training and data augmentation are used. Also in line with our previous

experiments, the best setting combination was pre-training combined with data augmentation.

22

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

es Under these settings, all models performed the best and delivered the same performance.

626

627

628

629

630

631

632

1.0

. w Ill
0.75 - I

0.5 A

PearsonR

0.25 A

0.0 A

'025 T T T T
B PT DA PT+DA

W dense net2 B sep_conv_mix B simple_model_imp

Figure 4: Pearson’s R of predictions for variants of avGFP containing three to 14 mutations
when the networks were only trained on single and double mutants (B: no pre-training and
no data augmentation, PT: with pre-training, DA: with data augmentation, PT+DA: with

pre-training and data augmentation)

5.6 Single Mutation Effect Prediction

Testing the performance on predicting the effects of single mutations of pre-trained SepCon-
vMixer networks trained on reduced dataset sizes (Section: showed under visual comparison
that for GB1, a protein with a sequence length of 56 amino acids, models trained on 250 train-
ing samples started to have a good idea of which single mutations had a positive and which
had a negative effect (Fig. [5). This comparison was only possible for GB1 since its data set

contained possible single mutants.

23

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Pretrained

Figure 5: Prediction of the mutational effect of

each single mutation at each sequence position

using SepConvMixer on the example of GBI1.

h-':ll:l!!l 0 The pre-trained models were trained on train-
35 |Ii|‘|!!|:| | ing data sets consisting of 50 to 6000 or 80% of
§ I _> the whole GB1 dataset and asked to predict the
g score of every possible single mutation of GB1.
< _4 For comparison, the actual measured data are

shown as ground truth and the result of a model
_6 that was only pre-trained. Figure[S22shows the

difference of all predictions to the ground truth.

On the y-axis, the amino acids are alphabeti-

cally ordered.

oot ik

i
0 20 40

Sequence Position

9.7 Recall Performance

e3¢« Asking networks to recall the top 100 variants given a certain budget showed some differences for

35 the different datasets but smaller differences in performance between all network architectures

24

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

(Fig. [S8). The recall performance on Pabl and avGFP showed similar results, whereas the
recall for GB1 showed better recall results when trained with the same train dataset size. The
overall trend showed that it is advantageous to invest in more training data to then be able
to better recall the true top variants. For Pabl and avGFP, a bigger increase in performance
could be seen when changing from 6000 training samples to the whole (80% of the whole data
set) dataset, whereas, for GB1, no performance increase between 6000 training samples and the
whole dataset could be seen. Comparing the results for when trained with different amounts of
training data, SepConvMix trained on 6000 training samples, needed a budget size between 70
to 1040 samples to recall 60 % of the top 100 variants. When trained on 500 training samples,
it needed between 500 to 1270 samples to match this performance, and when trained on 50

training samples, 1390 up to 1700 samples were required to reach this performance (Fig. @

x 1.0 1.0 A 1.0 A
S
Tz
9 S 0.5 0.5 A 0.5 A
9,
8 P .
v 0.0 0.0 t—————rrrr—r—rd 0.0 t——m—m e ——————
10! 102 103 10! 102 103
Budget Budget
50 250 1000 — 6000 —— best_case
100 500 —— 2000 random —— whole

Figure 6: Recall of the top 100 test set mutations given a certain budget (number of predictions
that may contain the true Top 100) for SepConvMixer. The models were trained on train data
sets containing 50 - 6000 data points or on 80% of the whole data set, which is labeled ”whole”.
The 60% recall performances when trained on 6000 data points are shown as B, as ¢ when
trained on 500 data points, and as A when trained on 50 data points. The term ”best case”
refers to the theoretical optimal outcome. (For a detailed description, see Section

6 Discussion

It has previously been shown that incorporating the structure in the form of a graph and
training a graph neural network to predict deep mutational scanning results achieves the same
performance as sequence convolution [18]. By introducing our new protein structure repre-
sentation, we could show that it contains valuable information, can create pre-training data
without any experimental data needed, and can improve predictive performance when positions
were not seen during training. We could show that the predictive performance could be greatly
improved by two straightforward but effective methods, pre-training and data augmentation.
Even though the pre-training is very effective, it is not enough to freeze the convolution layers

and only let the fully connected layers be trainable. This showed already worse performance

25

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

after the train sample size exceeded 500 samples, even though simple CNN was able to compen-
sate better because the major part of its architecture consists of fully connected layers (Section:
51).

When deciding how to generate a dataset for the optimal outcome of training a neural
network, the comparison between ANH-Scan and positional extrapolation (Section: &
showed that a comparable result to a big dataset (positional extrapolation) can be achieved
with only a fraction of the data needed (ANH-Scan) when all positions are present in the
training data. Even better results can be achieved, also with a fraction of the dataset needed
when randomly chosen single- and multi-mutational variants are used (Section: . By testing
the recall performance, it became clear that it is advantageous to invest in more training data
because the networks will then be better at predicting the true best variants (Section .

Data augmentation can be advantageous when used with datasets containing only single
and double mutants and network architectures with a smaller number of parameters. When the
network architecture with the highest number of parameters was used (Simple CNN for avGFP),
one can see that this network, when no pre-training is used, over-fitted the augmented data.
Since this data resembles synthetically generated fitness scores that are not always correct, it
has to be used with architectures that use fewer parameters. In contrast, the smallest network
(SepConvMixer) still managed to perform decently when only data augmentation was used
(Section [5.5)).

When comparing the performances on predictions on unseen positions, one can see that our
encoding either performs the same without pre-training or shows improved performance over a
sequence input, suggesting that the encoding enables better extrapolation due to the encoded
interactions between amino acids.

Interestingly, SepConvMixer performed almost the same as the other architectures despite
its much smaller number of parameters. This is promising since fewer parameters reduce the
risk of over-fitting. Therefore, the network should be better able to generalize to unseen data.
Furthermore, this network will need fewer computational resources. We also showed that more
modern network architectures compared to simple CNN, could improve the performance when
the training sample size is small. Since no dedicated hyper-parameter tuning was performed,
an increase in the performance of the models is still possible.

The current way our contact maps are generated is used as a fast and simple approximation
of the changes happening in the structure of a protein due to amino acid substitutions. The
matrix representing the charge interactions does not take into account the protonation state of
the amino acids, and the hydrophobicity matrix is only a simple scale and does not take the
side chain surroundings into account. These are just two examples where improvements in the
protein structure representation can still be made. This might, in turn, help the network to
predict mutational effects even better due to a more realistic representation. Using different
protein sequence alignment databases (non-redundant and experimental, which is a 90% clus-
tered version of the non-redundant database) did not change the training results significantly.

An advantage of our encoding is the possibility to encode "average” structures derived from

26

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

molecular dynamics simulations or structures with optimized rotamer positions which leads to
an even more natural representation of the protein structure and could potentially create an
even better encoding through the interaction matrices.

With the advancement of programs like AlphaFold [23] and RoseTTAFold [37], we can
assume that there is a trustworthy structure for most proteins. Even homology modeling might
be sufficient to supply a decent protein structure that can be used to create the structure
representation.

Besides the advantage of being able to use a large number of different architectures derived
from the computer vision field, our encoding has the additional advantage of being computa-
tionally efficient while representing the biophysical-, interaction- and structural change that
occurs due to amino acid substitutions. This makes a more structure-related workflow feasible
for researchers without access to high-performance (computing) clusters.

Regarding experimental protein engineering in the lab, minimizing the data size required
to achieve comparable or superior prediction results is crucial in reducing time, cost, and
resources. Our analysis indicates that these models already perform reasonably well in that
respect. They could also be utilized for datasets that do not originate from DMS but rather
from a conventional "low throughput” experiment like ANH-Scans, thus providing well-trained
mutation effect oracles to more laboratories.

The ultimate goal would be to transfer ”learnings” from one DMS dataset to train a universal
network capable of predicting the fitness of proteins for which no experimental data exists is very

intriguing but currently most likely restricted to proteins with sufficiently similar structures.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or

financial relationships that could be construed as a potential conflict of interest.

Author Contributions

GW: Conceptualization, Data curation, Investigation, Methodology, Software, Validation, Vi-
sualization, Writing — original draft, Writing — review & editing, Project administration IP:
Conceptualization, Methodology, Writing — original draft GO: Conceptualization, Methodol-
ogy, Writing — original draft, Writing — review & editing KG: Conceptualization, Methodology,
Writing — original draft, Writing — review & editing, Funding acquisition, Project administra-

tion, Resources, Supervision, Validation

Funding

Funding was provided by the Austrian Science Fund (FWF) through project DOC-130 (doc.funds

BioMolStruct - Biomolecular Structures and Interactions) and by the Doctoral Academy Graz

27

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

759

760

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

of the University of Graz.

Acknowledgement

The authors thank Prof. Thomas Pock and Prof. Robert Kourist for fruitful discussions.

Data Availability

The data used to train all networks and the code can be found on GitHub (https://github.
com/ugSUBMARINE/image-dms) and is licensed under the MIT license. The code is set up so that

it can easily be used to reproduce the results of this publication. It can also be easily adapted

to pre-train and train our networks (or any other network of interest) on a new dataset.

References

[1] Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer

wavelengths and fluorescence resonance energy transfer. Current Biology. 1996;6(2):178—

182. doi:https://doi.org/10.1016,/S0960-9822(02)00450-5.

[2] Binz HK, Amstutz P, Plickthun A. Engineering novel binding proteins
from nonimmunoglobulin domains. Nature Biotechnology. 2005;23(10):1257-1268.

d0i:10.1038 /nbt1127.

[3] Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nature

Methods. 2014;11:801-807. doi:https://doi.org/10.1038 /nmeth.3027.

[4] Araya CL, Fowler DM. Deep mutational scanning: assessing protein func-
tion on a massive scale. Trends in Biotechnology. 2011;29(9):435-442.

doi:https://doi.org/10.1016/j.tibtech.2011.04.003.

[5] Gray VE, Sitko K, Kameni FZN, Williamson M, Stephany JJ, Hasle N, et al. Elucidating
the Molecular Determinants of A beta Aggregation with Deep Mutational Scanning. G3

Genes—Genomes—Genetics. 2019;9(11):3683-3689. doi:10.1534/3.119.400535.

[6] Fowler DM, Araya CL, Fleischman SJ, Kellog EH, Stephany JJ, Baker D, et al.

High-resolution mapping of protein sequence-function relationships. Nature Methods.

2010;7:741-746. doi:https://doi.org/10.1038 /nmeth.1492.

[7] Lee JM, Huddleston J, Doud MB, Hooper KA, Wu NC, Bedford T, et al. Deep muta-
tional scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza
variants. Proceedings of the National Academy of Sciences. 2018;115(35):E8276-E8285.

d0i:10.1073 /pnas.1806133115.

28

https://github.com/ugSUBMARINE/image-dms
https://github.com/ugSUBMARINE/image-dms
https://github.com/ugSUBMARINE/image-dms
https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

796

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

[8] Koch P, Schmitt S, Heynisch A, Gumpinger A, Wiithrich I, Gysin M, et al. Optimization of
the antimicrobial peptide Bac7 by deep mutational scanning. BMC Biology. 2022;20:114.
doi:https://doi.org/10.1186/s12915-022-01304-4.

[9] Starr TN, Greaney AJ, Hilton SK, Crawford KHD, Navarro MJ, Bowen JE, et al. Deep
mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding

and ACE2 binding. bioRxiv. 2020;doi:10.1101/2020.06.17.157982.

[10] Frank F, Keen MM, Rao A, Bassit L, Liu X, Bowers HB, et al. Deep mutational scanning
identifies SARS-CoV-2 Nucleocapsid escape mutations of currently available rapid antigen
tests. Cell. 2022;185(19):3603-3616.e13. doi:https://doi.org/10.1016/j.cell.2022.08.010.

[11] Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, et al.
Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid
Substitutions using Hidden Markov Models. Human Mutation. 2013;34(1):57-65.
doi:https://doi.org/10.1002/humu.22225.

[12] Hopf TA, Ingraham JB, Poelwijk FJ, Schiarfe CPI, Springer M, Sander C, et al. Mutation
effects predicted from sequence co-variation. Nature Biotechnology. 2017;35(2):128-135.
doi:10.1038 /nbt.3769.

[13] Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation cap-
ture the effects of mutations. Nature Methods. 2018;15(10):816-822. doi:10.1038/s41592-
018-0138-4.

[14] Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM. Low-N protein engineering with
data-efficient deep learning. Nature Methods. 2021;18(4):389-396. doi:10.1038/s41592-021-
01100-y.

[15] Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, et al. Biological structure
and function emerge from scaling unsupervised learning to 250 million protein se-
quences. Proceedings of the National Academy of Sciences. 2021;118(15):2016239118.
d0i:10.1073 /pnas.2016239118.

[16] Gray VE, Hause RJ, Luebeck J, Shendure J, Fowler DM. Quantitative Missense Variant
Effect Prediction Using Large-Scale Mutagenesis Data. Cell Systems. 2018;6(1):116-124.e3.
doi:https://doi.org/10.1016/j.cels.2017.11.003.

[17] Romero PA, Krause A, Arnold FH. Navigating the protein fitness landscape with Gaus-
sian processes. Proceedings of the National Academy of Sciences. 2013;110(3):E193-E201.
d0i:10.1073 /pnas.1215251110.

[18] Gelman S, Fahlberg SA, Heinzelman P, Romero PA, Gitter A. Neural net-
works to learn protein sequence-function relationships from deep mutational scanning
data. Proceedings of the National Academy of Sciences. 2021;118(48):2104878118.
doi:10.1073 /pnas.2104878118.

29

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

[20]

[21]

[27]

[28]

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

[19] Amidi A, Amidi S, Vlachakis D, Megalooikonomou V, Paragios N, Zacharaki E. EnzyNet:

enzyme classification using 3D convolutional neural networks on spatial representation.
PeerJ. 2018;d0i:10.7717 /peerj.4750.

Ofer D, Brandes N, Linial M. The language of proteins: NLP, machine learning & pro-
tein sequences. Computational and Structural Biotechnology Journal. 2021;19:1750-1758.
doi:https://doi.org/10.1016/j.csbj.2021.03.022.

Mlergard K, Ardell DH, Elofsson A. Structure is three to ten times more conserved than
sequence—A study of structural response in protein cores. Proteins: Structure, Function,
and Bioinformatics. 2009;77(3):499-508. doi:https://doi.org/10.1002/prot.22458.

Gelman S, Fahlberg SA, Heinzelman P, Romero PA, Gitter A. Neural networks for deep mu-
tational scanning data; 2021. Available from: https://github.com/gitter-lab/nn4dms.

[23] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly

accurate protein structure prediction with AlphaFold. nature. 2021;589:583-589.
d0i:10.1038 /s41586-021-03819-2.

Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank.
Nature Structural & Molecular Biology. 2003;10(12):980-980. doi:10.1038/nsb1203-980.

Griffith D. PARROT: Protein Analysis using Recurrent Neural Networks On Training data;
2020. Available from: https://github.com/idptools/parrot/blob/master/parrot/

encode_sequence. py.

[26] Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 2.5.5; 2023.

Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI
BLAST: a better web interface. Nucleic Acids Research. 2008;.

McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis Tool Web
Services from the EMBL-EBI. Nucleic Acids Research. 2013;.

Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE. 1998;86(11):2278-2324. doi:10.1109/5.726791.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolu-
tional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR); 2017. p. 2261-2269.

[31] Trockman A, Kolter JZ. Patches Are All You Need? 2022;2201.09792

d0i:10.48550/arXiv.2201.09792

Gray VE, Hause RJ, Fowler DM. Analysis of Large-Scale Mutagenesis Data To As-
sess the Impact of Single Amino Acid Substitutions. Genetics. 2017 Sep;207(1):53-61
doi:10.1534/genetics.117.300064

30

https://github.com/gitter-lab/nn4dms
https://github.com/idptools/parrot/blob/master/parrot/encode_sequence.py
https://github.com/idptools/parrot/blob/master/parrot/encode_sequence.py
https://github.com/idptools/parrot/blob/master/parrot/encode_sequence.py
https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534314; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

[33]

[34]

[35]

[36]

perpetuity. It is made available under aCC-BY 4.0 International license.

Sruthi CK, Prakash M. Deep2Full: Evaluating strategies for selecting the minimal mu-
tational experiments for optimal computational predictions of deep mutational scan out-
comes. PLoS One. 2020 Jan;15(1) doi:10.1371/journal.pone.0227621

Moreno-Barea FJ, Jerez JM, Franco L. Improving classification accuracy using data
augmentation on small data sets. Expert Systems with Applications. 2020;161:113696.
doi:https://doi.org/10.1016/j.eswa.2020.113696.

Caron M, Bojanowski P, Mairal J, Joulin A. Unsupervised Pre-Training of Image Features
on Non-Curated Data. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV); 2019.

lorga C, Neagoe VE. A Deep CNN Approach with Transfer Learning for Image Recog-
nition. In: 2019 11th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI); 2019. p. 1-6.

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accu-
rate prediction of protein structures and interactions using a three-track neural network.
Science. 2021;373(6557):871-876. doi:10.1126/science.abj8754.

31

https://doi.org/10.1101/2023.03.27.534314
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Keywords:
	Introduction
	Materials and methods
	Data
	Interactions and their encoding
	Distance Matrix
	Index Matrix
	Hydrogen Bonding
	Hydrophobicity
	Charge
	Surface accessible side chain area
	Clashes
	Evolution

	Network architectures
	Simple CNN
	DenseNet
	SepConvMixer
	Sequence convolution
	Implementation

	Training
	Experiment setup
	Dataset size effect
	Positional extrapolation
	ANH scan
	Generalization
	Single Mutation Effect Prediction
	Recall Performance

	Results
	Dataset size effect
	Positional Exploration
	ANH-Scan
	Comparison - Sequence vs Structure
	Generalization
	Single Mutation Effect Prediction
	Recall Performance

	Discussion

