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1 Abstract10

Proteins are utilized in various biotechnological applications, often requiring the optimization11

of protein properties by introducing specific amino acid exchanges. Deep mutational scanning12

(DMS) is an effective high-throughput method for evaluating the effects of these exchanges on13

protein function. DMS data can then inform the training of a neural network to predict the14

impact of mutations. Most approaches employ some representation of the protein sequence15

for training and prediction. As proteins are characterized by complex structures and intricate16

residue interaction networks, directly providing structural information as input reduces the17

need to learn these features from the data.18

We introduce a method for encoding protein structures as stacked 2D contact maps, which19

capture residue interactions, their evolutionary conservation, and mutation-induced interaction20

changes. Furthermore, we explored techniques to augment neural network training perfor-21

mance on smaller DMS datasets. To validate our approach, we trained three neural network22

architectures originally used for image analysis on three DMS datasets, and we compared their23

performances with networks trained solely on protein sequences. The results confirm the ef-24

fectiveness of the protein structure encoding in machine learning efforts on DMS data. Using25

structural representations as direct input to the networks, along with data augmentation and26

pre-training, significantly reduced demands on training data size and improved prediction per-27

formance, especially on smaller datasets, while performance on large datasets was on par with28

state-of-the-art sequence convolutional neural networks.29

The methods presented here have the potential to provide the same workflow as DMS30
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without the experimental and financial burden of testing thousands of mutants. Additionally,31

we present an open-source, user-friendly software tool to make these data analysis techniques32

accessible, particularly to biotechnology and protein engineering researchers who wish to apply33

them to their mutagenesis data.34

2 Keywords:35

deep mutational scanning, protein structure, structure encoding, machine learning, pre-training,36

data augmentation37

3 Introduction38

Proteins are found in viruses, bacteria, plants, and humans and fulfill a huge number of differ-39

ent functions and tasks in living organisms. Given their enormous functional diversity, proteins40

also present an attractive platform for various applications in biotechnology and bioengineering.41

However, naturally occurring proteins often require optimization for non-native uses. One com-42

mon method of protein optimization involves the substitution of specific amino acids, which can43

significantly enhance or alter the protein’s function as, for instance, observed in the increased44

brightness of fluorescent proteins [1], or in antibody binding target modifications [2].45

Amino acid substitutions can profoundly affect the properties of proteins, with mutagenesis46

providing a potent tool for evaluating these effects. A powerful technique for gaining compre-47

hensive insights into genotype-phenotype relationships is deep mutational scanning (DMS) [3].48

This approach enables the creation of expansive datasets depicting the effects of mutations on49

a given protein. DMS combines some type of protein display, which provides a physical link50

between a protein and its encoding nucleic acid sequence, with high-throughput sequencing,51

allowing for the characterization of up to 105 protein variants. The methodology involves ap-52

plying selective pressure based on the protein’s function to a diverse library of protein variants,53

which are sequenced before and after selection. High-throughput sequencing then quantifies the54

abundance of each variant. Throughout selection, variants with beneficial mutations become55

enriched, while those with deleterious mutations become depleted, offering a means to quantify56

the fitness of a vast sequence diversity for a protein of interest [4]. The broad applicability57

of DMS is demonstrated in its diverse uses, such as investigating the sequence determinants58

of Aβ aggregation in Alzheimer’s disease [5], probing protein binding behavior [6], forecasting59

the evolutionary trajectories of human H3N2 influenza variants [7], optimizing antimicrobial60

peptides [8], and elucidating the effects of mutations in SARS-CoV-2 proteins [9] [10].61

DMS experiments have increasingly become the method of choice for many projects aim-62

ing to achieve specific engineering goals. As these experiments grow, there is an increasing63

demand for user-friendly predictive methods tailored to this kind of data. Consequently, var-64

ious methods have been developed to predict the effects of amino acid exchanges in proteins.65

Some of these methods rely solely on evolutionary data and omit experimentally determined66
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data to predict the functional consequences of amino acid substitutions. These approaches67

include, for example, the use of Hidden-Markov models [11], Potts models (EVmutation [12]),68

and variational autocoders (DeepSequence [13]). Others are natural language processing mod-69

els, which are strongly influenced by the training approaches used in their field of origin. They70

get pre-trained in an unsupervised manner on a large amount of data and then fine-tuned on71

the prediction task. Here, models like LSTMs [14] and transformer [15] are used.72

Additionally, some models employ decision tree ensembles (like Envision [16]) trained on73

deep mutational scanning data or use Gaussian processes [17] for predictions. These mod-74

els, particularly those grounded in natural language processing (NLP), often take only the75

protein sequence as input. Other models, such as Envision, integrate structural features into76

their framework but tend to utilize more general features like secondary structures and solvent77

accessibility instead of harnessing the unique information that each amino acid can offer.78

Another important aspect in training ML models is training efficient encoding of the un-79

derlying data. In the case of proteins, this can be the amino acid sequence alone without any80

3D information [18], a graph representation of the protein structure [18], or voxel-based spatial81

structural encoding [19]. In recent years, models used in natural language processing have in-82

creasingly been applied to problems with proteins. Although these models are compelling and83

can produce great results, they tend to need a massive number of parameters, leading to high84

memory and computation requirements [20].85

Since protein structure is more conserved than sequence [21], we created a - to our knowledge86

- new encoding for protein structures to take advantage of the information contained in the 3D87

structure. The encoding consists of 2D contact maps representing different physico-chemical88

properties of amino acids and their accompanying interaction, as well as the evolutionary con-89

servation of each interacting residue in the structure (Section 4.2). In addition, this encoding90

allows the use of standard architectures for image classification networks, thus giving access to91

a large number of different architectures that can be used to solve this problem. Furthermore,92

we create a helpful pre-training and data augmentation protocol that helps to improve results93

when only a small amount of data is available (Fig. 1).94

In order to determine the effectiveness of our approach when training data is scarce, we95

trained different architectures using datasets containing between 50 and 6000 samples. To96

ensure the accuracy of our analysis, we used sub-datasets that accurately reflect the distribution97

of fitness scores present in the complete datasets. This allowed us to determine the number98

of lab-tested variants required as training data to reliably model the underlying fitness score99

distribution of a protein’s fitness landscape. Additionally, we tested the ability of the networks100

to predict the effect of amino acid exchange on protein sequence positions that were not included101

in the training data. To further evaluate how the networks can cope with limited data from102

traditional mutation experiments, we trained models using data from a simulated extended103

alanine scan.104

We assessed the performance of the same architecture with both sequence input and our105

structure representation, as well as the impact of pre-training and data augmentation. For this106
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purpose, we relied on a recently published study by Gelman et al. [18]. Their work offers a107

comprehensive analysis of DMS datasets and evaluates the applicability of networks trained108

with sequence input on large datasets. Since these authors employed a simpler convolutional109

neural network architecture (CNN), we were able to use the same network architecture for our110

approach, enabling comparisons that are not influenced by architecture complexity or the use111

of distinct neural network architectures. This also facilitated comparisons with more complex112

CNN architectures and their potential benefits.113

We further examined the performance of architectures with fewer parameters, revealing114

that while our representation provides an advantage, data augmentation and pre-training are115

crucial for optimal performance. Our workflow also demonstrated robust performance with an116

architecture that significantly reduces the number of parameters.117

To promote the utilization of these methods in biotechnology and protein engineering, we118

provide open-source software featuring a user-friendly command line interface designed to be119

accessible to non-ML experts. Executing the program with new DMS data requires minimal120

input, but the software also provides numerous advanced settings if needed in specific cases.121
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Figure 1: Overview of the training and prediction workflow. Initially, models are pre-trained

on predicting a pseudo score that arises from the data representation (consisting of stacked 2D

contact maps representing different physico-chemical properties and evolutionary information).

This helps the model adjust its weights to the kind of prediction it will later be used for while

not requiring additional data acquisition. Data augmentation is applied to up-size the training

data to improve the prediction quality further. This is then used to train the network on

experimentally determined (fitness-) scores of the protein of interest. In the end, the trained

model can be used to predict these scores and, therefore, the effects of amino acid exchanges

in the protein that were not experimentally determined. It is also possible to omit pre-training

and data augmentation and train the network solely on experimentally determined data. Three

different network architectures were used in this study, but they can be easily changed to any

architecture of choice that accepts the input in the form of the data representation.

4 Materials and methods122

4.1 Data123

In our study, we utilized DMS data previously prepared and used in the study by Gelman et124

al. [18]. We specifically chose data from avGFP, Pab1, and GB1, as these proteins demonstrated125

the best results in their study, making them ideal for comparison as the data set quality does126

not influence the results. As Gelman et al. [18] already explored the influence of data quality127
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on learning performance, finding a strong correlation between predictive performance and data128

quality, we opted to use these three high-quality datasets and then tested the influence of129

dataset size, pre-training, data augmentation, encoding, and network architecture. A limited130

analysis, which included only the optimal settings and the biggest and smallest of the three131

architectures used, was performed on two lower-quality datasets (Bgl3 and Ube4b) also used132

in [18], where they exhibited poorer performance. Regarding protein structures, we also relied133

on data used in [18] to ensure the sequence, and consequently, the structure matched the DMS134

data. Therefore, we used the PDB files of these structures provided in the corresponding135

GitHub repository [22].136

The DMS datasets also contain nonsense mutations. We chose not to use assay scores for137

proteins featuring one or more nonsense mutations since these scores would represent protein138

fragments and thus would not reflect the properties of the wild-type protein containing a par-139

ticular mutation. We, therefore, modified the datasets to exclude all nonsense mutations during140

training, validation, and testing.141

4.2 Interactions and their encoding142

To emulate the effect of different mutations in a protein, we created interaction matrices that143

used a set of different amino acid properties to describe the interactions between residues in a144

protein and their changes due to amino acid exchanges. Additionally, a matrix that encoded145

the evolutionary conservation of interacting residues and an index matrix were used. Visual146

representations of the individual matrices, using Pab1 as an example, can be found in Fig. S4.147

This encoding method relies on the availability of the complete structure of the protein. In148

real-world scenarios, experimental structural data might not always be available or complete.149

However, there are a variety of approaches to address this issue, such as filling missing loops or150

even using advanced protein structure prediction tools like AlphaFold [23] to model the entire151

protein structure. In a worst-case scenario, in which only incomplete structures are available,152

the encoding can still work but would require dataset modifications (e.g., index adjustments153

based on the missing residues).154

4.2.1 Distance Matrix155

To classify pairs of residues as interacting, we used Euclidean distances (dij) calculated from156

Cartesian coordinates of all protein atoms stored in the corresponding PDB file [24]. Interact-157

ing residues were identified by checking the closest distance between side chain atoms of two158

residues, i and j. Using this approach, the smallest distances between all residues were calcu-159

lated, and a symmetric n × n distance matrix (D), where n denotes the sequence length, was160

generated. Using equation 1, this matrix was then used to generate a so-called factor matrix161

(F).162

F ij = 1− dij
max(D)

(1)
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In Eq: 1 d ij denotes the distance between two residues and max(D) the biggest distance seen163

in the structure.164

This factor matrix was used to scale the ”strength” of the interactions in all subsequent ma-165

trices (apart from the position matrix (P)) by calculating the Hadamard product (element-wise166

product) of F with each interaction matrix. Elements in F corresponding to distances larger167

than 20 Å were set to zero. This led to higher values for close interactions and smaller ones for168

interactions of residues that are further apart. In addition, it masked interactions originating169

from residues further apart than 20 Å.170

171

4.2.2 Index Matrix172

Convolution neural networks (CNN) are translation invariant. This is one of the features that173

make them powerful in image recognition tasks since they can find patterns they have learned174

anywhere in an image and not rely on their position. In our case, this translation invariance175

was an undesirable feature because the positions of the interactions matter. To address this176

issue, we introduced a simple position matrix (P). It describes the position of each interaction177

in the matrices based on the index matrix I (Eq: 2). To calculate P, the Hadamard product178

of D and I is formed where D is set to 1 for distances smaller than distth and to 0 for bigger179

distances.180

I =


0 1 2 3

1 0 6 7

2 6 0 11

3 7 11 0

 (2)

4.2.3 Hydrogen Bonding181

The number of hydrogen bonds is one of the factors that determine the stability of a protein.182

Therefore it is a crucial kind of interaction since amino acid exchanges that introduce hydrogen183

bonding capabilities or remove them will thus alter this property. Not all amino acids have the184

same capability of forming hydrogen bonds with their side chain. Some can only act as a donor185

(K, R, W), some as an acceptor (D, E), some as donors or acceptors (H, N, Q, S, T, Y), and186

some are not able to form hydrogen bonds with their side chain at all (A, C, F, G, I, L, M, P,187

V). The hydrogen bonding matrix B features a value of 1 for interactions formed by a donor188

and an acceptor, by a donor and an acceptor/donor, by an acceptor acceptor/donor or by an189

acceptor/donor acceptor/donor pair, or a value of 0 otherwise.190

4.2.4 Hydrophobicity191

Proteins often contain a hydrophobic core and a hydrophilic outside that interacts with its192

surroundings. The hydrophobic core plays an important role in the folding process of a protein.193

Therefore, mutations that change the hydrophobicity in certain areas of a protein can have194
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positive and negative effects. The hydrophobicity values used were obtained from Parrot [25].195

These hydrophobicity values range from -4.5 for arginine to 4.5 for isoleucine.196

H ij = 1− |hi − hj|
9

(3)

In Eq: 3 h denotes the hydrophobicity of a certain residue, and 9 is the maximum possible hy-197

drophobicity difference. The hydrophobicity matrix (H) describes how well-interacting residues198

match in terms of their hydrophobicity.199

4.2.5 Charge200

There are three main types of amino acids categorized according to their charge: neutral (A, C,201

F, G, I, L, M, N, P, Q, S, T, W, Y), positively charged (R, H, K), and negatively charged (D,202

E). Salt bridges, which are interactions of residues of opposite charge, are, besides hydrogen203

bonds, another type of interaction that is important for the stability of a protein. On the204

other hand, amino acids that carry the same charge can repel each other, which can lead to205

instability in the protein’s structure. To calculate the charge matrix (C) (where we multiply the206

amino acids charge value and this result by -1), we assigned a value of 1 to interactions between207

positively charged amino acids, a value of -1 to interactions between amino acids carrying the208

same charge, and a value of 0 to all other interactions.209

4.2.6 Surface accessible side chain area210

Amino acids feature a variety of different sizes of their side chain. This is reflected in the211

difference in their surface accessible side chain area (SASA). The bigger the SASA, the higher212

the possibility for a (strong) interaction. Therefore a mutation that changes the interaction area213

between two interacting residues can have an influence on their interaction strength. The SASA214

values were obtained from Parrot [25], ranging from 0 Å2 for glycine to 254 Å2 for tryptophan.215

Aij =
ai + aj

maxSASA × 2
(4)

In Eq: 4.2 a denotes the interaction area of a certain residue and max SASA the maximum SASA216

value for an amino acid. The interaction area matrix (A) describes the interaction area between217

residues.218

4.2.7 Clashes219

Amino acids also differ in the length of their side chains. That means certain mutations can220

lead to potential ”holes” in a protein if the side chains get shorter or potential clashes because221

the side chains are too long for the space between them.222

X ij =
∆li +∆lj + dij

2×maxl + distth
(5)
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In Eq: 5 ∆l denotes the change in the side chain length at a certain residue position from223

wild-type to the variant, max l the maximum side chain length and distth the maximum allowed224

distance between two residues to count as interacting. Side chain lengths range from 0 Å for225

glycine to 8.28 Å for arginine. To obtain the values of the side chain length, we used Pymol [26]226

to measure the maximum distances between the Cα and side chain atoms in different residue227

types. The resulting clash matrix (X), represented by Eq: 5, shows the distances between228

interacting side chain residues. If a mutation leads to a distance between two residues that is229

closer than the distance between them in the wild-type, a negative length value is recorded.230

This means that the values in this matrix, along with the charge matrix C, are the only ones231

that fall within the range of [-1, 1] instead of [0, 1].232

4.2.8 Evolution233

To make use of the evolutionary information that can be obtained through a Blast search [27],234

we create a matrix (E) based on the conservation of amino acids at each sequence position.235

Therefore we used the result of a blastp search against the wild-type protein sequence with236

its default settings against the experimental clustered non-redundant database and aligned the237

obtained sequences as well as the wild-type sequence using the multiple sequence alignment tool238

Clustal omega [28]. Duplicated sequences were removed from the alignment. To calculate a239

conservation score at each wild-type sequence position, all present amino acids were counted at240

this position, and their counts were divided by the total number of amino acids present at that241

position. Amino acids that were not present at this position got a value of zero assigned. To242

evaluate the conservation of an interaction, the conservation scores of the interacting residues243

were multiplied. Evolutionary information could also be integrated via, e.g., a separate branch244

of the neural network, but we chose this representation because it was easier to incorporate245

into the existing network structure. Additionally, this representation encodes the change in the246

conservation of an interaction based on the exchanged amino acid(s).247

Figure S4 shows an example of all interaction matrices (B, H, C, A, X) for Pab1 containing248

the mutation ”N127R, A178H, G177S, A178G, G188H, E195K, L133M, P125S” as well as the249

position matrix (P), the interaction matrix (M) which describes which residues interact with250

each other and the distance matrix (D).251

4.3 Network architectures252

4.3.1 Simple CNN253

Since we wanted to compare our structure representation to the sequence convolution approach254

(Section: 4.3.4), a LeNet5 [29] - like convolutional neural network (Fig. S5) was used. It255

contains a feature extraction part containing three 2D convolution layers with 16, 32, and 64256

filters and a kernel size of 3×3, each followed by a max pooling layer. After that comes a257

flatten layer and a classifier part consisting of 4 fully connected layers with 128, 256, 256, and258
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64 nodes and a single output node. We used the leaky rectified linear unit (leaky RELU) as the259

activation function for all layers in the model. Zero-padding was used throughout the whole260

network. This model is referred to as ”simple CNN”.261

4.3.2 DenseNet262

To compare the performance to a more recently described architecture, we chose to use a263

DenseNet [30] - like architecture (Fig. S6), which will be referred to as ”DenseNet”. Here the264

core building block consists of a 2D convolution layer with 128 filters and a kernel size of 1×1,265

followed by a 2D convolution layer with 12 filters and a kernel size of 3×3. Zero-padding is used266

throughout the whole network to keep each layer’s input and output dimensions the same. The267

input into the first 2D convolution layer and the output of the second get concatenated. This is268

repeated 4 (block depth) times and is then followed by a 2D average pooling layer with a kernel269

size of 2×2. All this combined is one block, and this is repeated 4 (block number) times. In the270

end, a 2D global average pooling layer is followed by a fully connected network with 128, 128,271

and 64 nodes per layer leading into one output node. Additionally, we used an ”intro layer”272

for avGFP, which consists of a 2D convolution layer with 128 filters, a kernel size of 3×3, and273

a stride of 2 followed by a 2D max pooling layer with a kernel size of 3 and a stride of 2 at the274

beginning of the network. This reduces the size of the input and thereby reduces the number275

of computations needed in the rest of the network. In contrast to the original DenseNet, we276

omitted batch normalization because it led to worse performance and used the leaky RELU277

instead of RELU as the activation function.278

4.3.3 SepConvMixer279

To test the performance of a network with as few parameters as possible, we implemented280

an architecture (Fig. S7) similar to ConvMixer [31]. Sequence convolution requires up to 82281

times, simple CNN up 185 times, and DenseNet up to 21 times the number of parameters in our282

settings (Table 4). The two main contributors to the reduction of the number of parameters283

were the possibility of using a smaller fully connected classifier network as well as the use of 2D284

separable convolution layers. The latter first performs a depth-wise spatial convolution, which285

acts separately on each input channel and is followed by a point-wise convolution to mix the286

resulting output channels. The network starts with one 2D separable convolution layer with 32287

filters where we used a kernel size of 3×3 and a stride of 1 for smaller proteins (like Pab1 and288

GB1) and a kernel size of 9×9 and a stride of 9 for bigger proteins (avGFP). This is followed289

by a variable number of blocks (determined by the parameter depth) each consisting of 2 2D290

separable convolution layers with 32 filters and a kernel size of 3×3. The input into the first,291

the output of the first, and the output of the second layer get added at the end of the block.292

We used a depth of 9 in this study. These blocks are followed by a 2D global max pooling layer293

and a fully connected network consisting of 128- and 64-node layers followed by a single-node294

output layer. We used the leaky RELU as well as zero-padding to keep the dimensions the295

same throughout the whole network.296
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A ”down-sampling” (a kernel size of 9×9 with a stride of 9 in the first layer) for bigger297

proteins slightly reduces the performance but is a worthy trade-off to reduce the computational298

cost.299

4.3.4 Sequence convolution300

For comparison, we used the network architectures of [18] as specified in their main experiments301

(/pub/regression args/PROTEIN main cnn.txt [22]). Apart from enabling early stopping and302

restricting the length of the training to 100 epochs, we chose the default parameters when using303

the /code/regression.py. This is referred to as ”sequence convolution” throughout the paper.304

4.3.5 Implementation305

Our models were implemented using Python v3.10, TensorFlow v2.9.1, and Keras v2.9.0306

4.4 Training307

Training of simple CNN, DenseNet, and SepConvMixer architectures was performed using the308

mean absolute error as the metric, Adam as optimizer with a learning rate of 0.001 and a309

maximum number of epochs of 100. Furthermore, we stopped the training if the mean absolute310

error did not improve by at least 0.01 over 20 epochs. The batch size for the training was 32 and311

parallelized by using 12 central processing unit (CPU) cores of an AMD Ryzen Threadripper312

3960X. The training was performed on an Nvidia RTX A5000 graphics processing unit (GPU).313

For training the networks on the ANH-Scan data, an Nvidia GeForce RTX 3070 and an Intel314

Xeon Gold 6230R CPU were used. For pre-training, we limited the maximum number of epochs315

to 70. The training of the sequence convolution network was done using an Intel Xeon Gold316

6230R CPU.317

4.5 Experiment setup318

4.5.1 Dataset size effect319

Data and dataset selection can have an impact on the performance of the neural network. To320

avoid any advantage or bias through the use of only specific subsections of the data, e.g., only321

low DMS scores, we selected the training, validation, and test dataset in the following way: The322

whole dataset was randomly shuffled. The first n data points were used as training data, the323

following n× 0.2 samples were used as validation data during the training, and the next 5000324

data points were used as test dataset after the training, where n is the training data size. This325

ensures that the training-, validation- and test datasets are entirely disjoint and do not feature326

overlapping data. Since the artificially created pre-training data has a Pearson correlation of327

around -0.5 to the DMS data, the pre-training datasets were created so that the data points328

in the pre-training dataset do not feature mutations that are in the test dataset to ensure no329

knowledge leak and an unbiased test result.330
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This led to training- and test datasets that featured a similar DMS score distribution as the331

whole dataset and, therefore, built a representative sample (Figure: S1 - S3). For each training332

run, we used three different data sets, which were all obtained from the original data sets of333

the proteins: a train, a tune, and a test set. The test set always consisted of 5000 randomly334

chosen unique entries each. The tune set had one-fifth of the size of the training data set for our335

architectures and always 5000 entries for sequence convolution. The train datasets contained336

50, 100, 250, 500, 1000, 2000, or 6000 entries for all training runs. The train data set was used337

to train the network, the tune set was used to calculate the validation statistics during training,338

and the test set was used to calculate the statistics of the performance of the network after339

training. Training simple CNN, SepConvMixer, DenseNet, and sequence convolution was done340

on three randomly chosen subsets of the whole protein data sets to construct the train, tune,341

and test sets to avoid picking one that suits one architecture better by chance.342

For the training of simple CNN, SepConvMixer, and DenseNet, we used data augmentation343

(Section: 4.5.1) as described below, as well as pre-training (Section: 4.5.1). For sequence344

convolution, we used the same train, tune, and test sets as for the training of simple CNN,345

SepConvMixer, and DenseNet; however, we did not use data augmentation and transfer learning346

during its training process. Three main performance metrics are used: mean squared error347

(MSE), Pearson’s correlation coefficient, and Spearman’s correlation coefficient, with the main348

focus on Pearson’s correlation coefficient. No dedicated hyper-parameter tuning was done, but349

those that had proven to be the best after some initial testing were used. To test the impact350

of an ”intro layer” like in the original DenseNet, which is a normal 2D convolution layer with351

a kernel size of 3×3 and a stride of 2 followed by a 2D max pooling layer with a kernel size of352

3×3 and a stride of 2, we chose to include this in the training of avGFP but not for Pab1 and353

GB1. The same was done for SepConvMixer, where the first separable convolution layer has354

either a kernel size of 3 and a stride of 1 or, for avGFP, a kernel size of 9 and a stride of 9.355

The use of an ”intro layer” reduced the performance for smaller proteins like Pab1 and GB1356

slightly but is needed and a good trade-off to be computationally efficient for proteins of the357

size of avGFP and bigger.358

Data augmentation Since neural networks learn better with more data, we used a simple359

data augmentation method to obtain more training data from small data sets. This method360

uses the given experimental data, e.g., Table 1, shuffles it, and adds it to the original not361

shuffled data to create new augmented variants like shown in Table 2.362

Table 1: Sample data for augmentation

variant number mutations score

K1L,S3A 2 -0.3

R23H,W19F 2 0.1

C5G,A7L 2 -1.0

Shows data samples later used for an example of data augmentation.
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Table 2: Sample augmentation

augmented variant number mutations augmented score

K1L,S3A,R23H,W19F 4 -0.2

R23H,W19F,C5G,A7L 4 -0.9

C5G,A7L,K1L,S3A 4 -1.3

Shows how data points of Table 1 are added during data augmentation.

This is done four times, and the newly created data is stored. This data is then used as363

input data to perform the same action three times where, after each round, the newly created364

data is used as the new input data in the next round. From this newly created augmented365

data, as many samples are drawn as needed to get a maximum of 20000 training samples when366

the original data is added (augused = 20000−noriginal where augused is the number of augmented367

samples used and noriginal the number of original data). If the augmentation does not produce368

enough data to reach a combined number of 20000 samples after the original data is added,369

the whole augmented data is used. It did not show good results when increasing the number370

of runs to produce +20000 samples when the original data set is not big enough to reach the371

number of samples with the number of runs described above. This kind of data augmentation372

produces pseudo labels for data and assumes an additive effect of mutations. Even though there373

are more intricate models to describe the relationship between different mutations in a protein,374

this method provides a simple and effective way to quickly generate more data that helps the375

model produce better results. In addition, the assumption of simple additivity does not rely376

on another model, such as DeepSequence [13], to be added to the training procedure. We also377

tried training the networks only on augmented data and fine-tuning them on the original small378

data sets. This showed worse performance than training them with the original and augmented379

data combined.380

Pre-training To overcome the need for big data sets, we used pre-training to obtain better381

results while training on small data sets. The transfer of weights of the feature extraction382

part of a network trained on a whole dataset of another protein yields better performance383

than starting from a completely untrained network. However, to pre-train a network on data384

that is more closely correlated to the protein of interest, we created a pseudo-score that can385

be calculated without the need for experimental data (section: 4.5.1). Since the pre-training386

is based on our encoding, we used it for simple CNN, SepConvMixer, and DenseNet. After387

training the model on the pseudo data, the weights of the feature extractor were transferred388

to an untrained network, frozen, and a new classifier was trained. The same was done with389

a trainable feature extractor. During initial tests, the reduction of the learning rate did not390

improve the performance. Therefore we omitted it in further studies. Transferring the weights391

of the whole pre-trained model, including the classifier, showed worse performance. We also392

tested networks pre-trained on other proteins, e.g., pre-trained on avGFP and trained on Pab1,393

but our pre-training method proved to be more effective.394
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Pseudo Score In order to calculate the pseudo score for the pre-training, the wild-type of395

the protein gets encoded in the same way as for training the network. The same is done for all396

possible single and double mutants of the protein. To calculate the pseudo score of a variant,397

the encoded wild type gets element-wise subtracted from the encoded variant matrix. Of all398

these values, the absolute value is taken and summed up over all matrices. This gets divided399

by 100 to shift the values into the range of the real fitness scores. 40000 of these created data400

points are randomly chosen and used to pre-train the models. These pseudo scores show a401

Pearson’s R of around -0.5 to the original DMS data for the different datasets.402

4.5.2 Positional extrapolation403

To evaluate the networks’ capabilities to predict mutational effects of positions not seen during404

training, the protein sequence was divided into training and validation sets, comprising 85% of405

the positions, and a test set of the remaining 15%. This was done three times with randomly406

selected sequence positions. Multi-mutation variants with some positions in the test set and407

others in the training set were eliminated from this analysis. To test this, we used the pre-408

trained networks (simple CNN and SepConvMixer) on our pseudo score from 4.5 and trained409

them on the data described above. To compare their performance, we also trained sequence410

convolution on the same data. We did this analysis for GB1, Pab1, and avGFP. The training411

dataset size for GB1 was 351000 data points, 23000 for Pab1, and 26000 for avGFP.412

4.5.3 ANH scan413

An often method for assessing mutational effects in proteins is an alanine scan, where each414

amino acid is replaced with alanine and the property of interest is evaluated. This approach415

generates a limited dataset of the size equivalent to the length of the protein sequence. Recently,416

it has been discovered that the amino acid exchanges to alanine, asparagine, and histidine are417

the most correlated with all other single amino acid exchanges [32]. Therefore, to increase the418

amount of data and provide the neural network with a good starting point, an extension of419

the alanine scan was proposed, an ANH-scan [33]. In this regard, we selected from the DMS420

datasets all single variants that contain either an exchange to alanine, asparagine, or histidine421

as a training and validation dataset. 85% of these were used as training data, and 15% were422

used as validation data during training. The remaining single mutants of the datasets were used423

as test data. To test this approach, we used the networks (simple CNN and SepConvMixer)424

pre-trained on our pseudo score from 4.5.1 and trained them on the data described above. To425

compare their performance, we also trained the sequence convolution model on the same data.426

This approach yielded a combined train and tune dataset size of 159 for GB1, 132 for Pab1,427

and 169 for avGFP, which indicates that only for GB1 almost all positions were mutated to428

either A, N, or H and that the other data sets are missing some of these.429
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4.5.4 Generalization430

To test the models’ capabilities in predicting mutants with a higher number of mutations than431

they were trained on, the avGFP dataset was used. This dataset is the only one containing432

variants with up to 14 mutations. Therefore, the training and tune sets consisted of 10,221433

and 2,556 data points, respectively, featuring only single and double mutants. The test set434

consisted of 38,937 variants containing three to 14 mutations. The models were trained under435

four different settings: from scratch, meaning no pre-training or data augmentation; only with436

pre-training on our pseudo-score, which contains only scores for single and double mutants; only437

with data augmentation; and lastly with pre-training and data augmentation combined. The438

training was done three times with different random seeds to check the prediction consistency.439

Pearson’s R values between the true and the predicted scores of the test set mutants were440

computed to evaluate the performance.441

4.5.5 Single Mutation Effect Prediction442

To test how many training samples a network needs to get an idea of the effect of single443

mutations, all single mutations of the DMS dataset of GB1 were used as ground truth. Then444

pre-trained SepConvMixer models were trained on different numbers of training samples of the445

original datasets (50 -6000 data points). These models, as well as only the pre-trained model446

of SepConvMixer, were asked to predict the score of every single mutation present. This was447

done for GB1 because this dataset consists of all possible single mutations, whereas the Pab1448

and avGFP datasets would not yield a comparable ground truth due to missing single-point449

mutations.450

4.5.6 Recall Performance451

To access the recall performance of simple CNN, SepConvMixer, and DenseNet when trained452

on different-sized training datasets (Section: 4.5), we used the pre-trained models without data453

augmentation since this is one of the best-performing settings. The models were trained on454

different-sized training datasets (50 - 6000 data points) or 80% of the whole datasets. Then the455

test data set, which consists of only variants that the models have never seen before, was used to456

access the recall performance by letting the models predict the scores and checking how many457

of the predicted top-scoring variants were actually part of the actual top scoring 100 variants of458

the test dataset, given a certain budget (Fig. 6 & S8). The recall performance was computed459

as described in [18]. If one ranks all variants according to their predicted (fitness-) score, the460

budget refers to the number of best variants predicted by the network from all variants, which461

are examined to see whether they occur in the actual 100 best variants. The term ”best case”462

refers to the theoretical optimal outcome. For instance, if we were to select 20 variants from a463

goal set of the top 100 variants, the best possible outcome would be that all 20 chosen variants464

are within the true top 100. Thus, the ”best case” would reflect a recall score of 0.2. If the465

budget would be 150 variants, the best case would be that all top 100 variants are contained466
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in the 150 predicted best variants and would therefore result in a recall score of 1.0. The best467

case is meant as a comparison for what could be the maximum achieved recall score.468

5 Results469

We tested a new way of encoding protein structure and improving the training on deep mu-470

tational scanning (DMS) datasets. To this end, a simple convolutional neural network with471

a LeNet5 [29] -like architecture (simple CNN, Section: 4.3.1), a DenseNet [30] -like Network472

(DenseNet, Section: 4.3.2) and a network heavily inspired by ConvMixer [31] (SepConvMixer,473

Section: 4.3.3) were used. Furthermore, two methods, data augmentation and pre-training,474

were tested for their applicability to DMS data. To assess their performance, a state-of-the-art475

sequence convolution model [18] (sequence convolution) was trained with the same data sets,476

and the results were compared. In order to test these models and approaches as well as their477

real-world applicability, we conducted a series of different experiments to test the following478

properties:479

• the effect of the number of randomly selected training samples as well as of pre-training480

and data augmentation on the predictive performance (Section: 5.1)481

• the ability to extrapolate to unseen sequence positions (Section: 5.2)482

• the extent to which the models can predict all single variant effects when trained on an483

extended alanine scan (ANH-Scan) (Section: 5.3)484

• the ability to generalize from training on mutants containing a maximum of two amino485

acid exchanges to variants carrying up to 14 mutations (Section: 5.5)486

• the number of randomly selected data needed to predict the effect of all single mutations487

(Section: 5.6)488

• the recall performance for the best 100 variants in the dataset given a certain budget for489

networks trained on differently sized datasets (Section: 5.7)490

5.1 Dataset size effect491

Neural networks are known to need a lot of data to perform well. Here we test different network492

architectures and supplementing methods to reduce the needed data size and its influence on493

predictive performance. In order to evaluate the performance of the three different architec-494

tures and compare it to the original sequence convolution method, each model was trained on495

three different data sets from [18] (avGFP, Pab1, and GB1), including a limited analysis of the496

datasets Ube4b and Bgl3. Our study showed improved performance of all three architectures497

over sequence convolution for smaller datasets and the positive impact of pre-training and data498

augmentation on their predictive performance. For larger datasets, all models performed almost499

equally. In order to improve predictions on small data sets, two methods were applied: data500
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augmentation and pre-training. Data augmentation has already been shown to be important501

when the data set size is small [34]. Since the proposed data representation is not translation502

and rotation invariant, it was not possible to use the same data augmentation methods (e.g.,503

rotation, crop, flip, transpose, etc.) as used in image processing. Hence, a simpler data aug-504

mentation method was used that sums up scores of existing data (Section: 4.5.1). Another505

method to improve a model’s performance is pre-training. Here a model can be pre-trained506

unsupervised if a lot of unlabelled data is available [35] or supervised on a big labeled data507

set with similar content to the data one is interested in and then fine-tuned on the data set508

of interest [36]. Since the proposed data representation already captures some variation due509

to mutations in a protein, we created a simple pre-training procedure, where the models were510

pre-trained on a pseudo-score that arises from the representations itself (Section 4.5.1).511

In the figures 2 and S9 - S13, the median of the three training runs for each data point512

is shown. The graphs in the top row show either the Pearson-, the Spearman correlation513

coefficient, or the MSE for the predictions on the test set made by the models. The bottom514

row shows the relative performance compared to the sequence convolution. The data set size515

always refers to the amount of data from the original split and is not related to the data516

set size after data augmentation. For the MSE, the relative performance was calculated with517

pMSE = 2 − (MSEi/MSEseqconv) where pMSE is the relative performance, the MSE i the MSE518

of a model to compare to and MSE seqconv the MSE of the sequence convolution. The relative519

performance of the correlation coefficients was calculated pR = Ri/Rseqconv where pR is the520

relative performance, Ri the correlation coefficient for the model to compare to and Rseqconv the521

correlation coefficient of the sequence convolution model.522
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Figure 2: Pearson’s R for predictions of the test data set of SepConvMixer for all three proteins

in the upper row, as well as the relative performance compared to sequence convolution in

the lower row. Here sequence convolution is indicated as a black dashed line at 1×of its own

performance. Label descriptions can be found in Table 3

.
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Table 3: Label description for result plots.

label augmentation transfer train CL

sequence convolution No No Yes

base No No No

transfer no train conv No Yes No

transfer train conv No Yes Yes

aug Yes No No

aug transfer no train conv Yes Yes No

aug transfer train conv Yes Yes Yes

Augmentation specifies whether data augmentation was used, transfer whether pre-training

was used, and train CL whether the convolution layers were trainable or not when

pre-training was used.

In general, the more data the networks got to train, the better they performed, and the less523

important the approach became since they performed almost equivalently (>= 2000 training524

samples). Another trend that could be observed is that the more original data the networks525

got, the less important augmentation and pre-training became to achieve the same training526

results. In general, the best performances were obtained when the networks were pre-trained,527

and the weights of the convolutional layer were not frozen in the subsequent training runs.528

Data augmentation had an additional positive effect. On smaller datasets (<= 500 training529

samples), the difference in the performance of a chosen method was more pronounced. For530

example, for Pab1 and avGFP, using data augmentation and freezing the convolutional layers531

showed a better performance in simple CNN (Fig. S15) but showed a worse performance when532

the training dataset got bigger. In contrast, this method led to an overall worse performance533

in DenseNet (Fig. S16) and SepConvMixer. This was especially true for SeqConvMixer and534

could be caused by the low number of trainable parameters (13k) for the network under this535

setting (Fig. 2). Looking at the method that produced the best results, training a pre-trained536

network and using data augmentation, DenseNet had a similar performance overall to simple537

CNN and SepConvMixer. A performance improvement from DenseNet could be seen in small538

datasets (Fig. S17).539

When the number of training samples gets over 500, the performances of all architectures540

are almost identical. One fact that stood out about DenseNet was that it took at least 6000541

samples to show the same performance as sequence convolution when no pre-training and data542

augmentation were used. In contrast, simple CNN without pre-training and data augmentations543

needed 250 to 500 training samples to show the same performance as sequence convolution. In544

general, the difference in performance for different methods was less pronounced in simple CNN545

than in DenseNet and SepConvMixer. Looking at the difference in performance between simple546

CNN, SepConvMixer, and DenseNet, one can see that DenseNet could improve the performance547

for smaller datasets when pre-training and/or data augmentation was used. On the other hand,548
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when none of these methods were used, DenseNet showed a strongly reduced performance and549

higher variability in its results (Figs. S19 - S21). Data augmentation worked well for data550

sets that feature only single and double mutants, such as Pab1 and GB1. When the dataset551

already consisted of variants with more than two mutations (up to 14 in the case of avGFP),552

the approach did not work as well when the training data size surpassed 250 entries. This might553

be caused by the additive nature of the data augmentation used in our pipeline. Since adding554

two single mutants is more likely to be additive in real life compared to adding two variants,555

both carrying 12 mutations on their own, because a higher number of variants increases the556

likelihood that two mutations interfere with each other and, therefore, corrupt the additivity557

of their scores when they occur on their own.558

For the lower-quality datasets of Ube4b and Bgl3, we performed a limited analysis with only559

our biggest and smallest architecture, simple CNN and SepConvMixer, and only two training560

settings, without pre-training and data augmentation, and with pre-training. We could see an561

increase in performance when pre-training was used, but as already shown in [18], we could562

observe the same trend with a reduced performance compared to the other three datasets (Fig:563

S18).564

Table 4: Number of parameters of each network.

architecture protein trainable parameter

sequence convolution Pab1 990k

simple CNN Pab1 803k

DenseNet Pab1 714k

SepConvMixer Pab1 37k

sequence convolution avGFP 3.118k

simple CNN avGFP 7.029k

DenseNet avGFP 799k

SepConvMixer avGFP 38k

Number of trainable parameters of the three different architectures for two different proteins:

Pab1 (75 amino acids) and avGFP (237 amino acids).

5.2 Positional Exploration565

Since training on a randomly chosen subset of data points can be biased by the fact that it566

already learned that a mutation at a particular position will produce a bad result, we trained567

our smallest and biggest network architecture on data of different sequence positions than they568

were asked to predict (Figure 3 and Figure S23). Even though the networks were trained on569

bigger datasets than in Section 5.1 (23000 Pab1, 26000 avGFP, and up to 351000 for GB1),570

they showed a worse performance compared to substantially smaller training data that did not571

exclude specific positions. Here, simple CNN and SepConvMixer show comparable performance.572

Both approaches manage to improve over the predictions made when trained on the protein573
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sequences with sequence convolution.574
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Figure 3: PearsonR for predictions on an ANH-Scan as well as on positions the networks (simple

CNN and sequence convolution) have not seen before in training

.

Since the size of the training dataset was big enough, there were no big differences in575

performance between pre-trained and not pre-trained networks(Fig. S23 & S25).576

5.3 ANH-Scan577

Performing an alanine scan on a protein will only yield a small number of data points. There-578

fore, an extension to systematically replace each amino acid with alanine, as well as asparagine579

and histidine, was tested to see how well the networks could predict individual amino acid re-580

placements with the remaining amino acids (Figure 3 and Figure S23). We tested this approach581

with simple CNN, SepConvMixer, as well as with sequence convolution. This approach showed582

similar results to the randomly chosen single- and multi-mutation variants in Section 5.1 for583

simple CNN and SepConvMixer and a slight performance degradation for sequence convolution584

for similar-sized train datasets. Here the reduced performance on not pre-trained networks,585

again, shows its importance when training data is limited.586
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5.4 Comparison - Sequence vs Structure587

In general, comparing the correlations of all three networks to sequence convolution for pre-588

dictions when trained on randomly chosen positions (Section 5.1), the best combination of589

methods (using pre-training with and without data augmentation) performed at worst 0.9×of590

sequence convolution and the best 1.6×. Using a more complex architecture (DenseNet) could591

improve the performance on smaller dataset sizes (<= 250) but needed at least pre-training to592

reach that level of performance (Fig. S17). When comparing the number of parameters (Table:593

4) for sequence convolution and simple CNN, the protein sequence length is the determining594

factor. The bigger the protein, the more will the simple CNN exceed the sequence convolution595

in terms of the number of parameters. For DenseNet and SepConvMixer, the number of pa-596

rameters stayed constant and only changed due to the use or absence of the first introduction597

layer. This difference was due to the use of a flatten layer in the sequence convolution and598

simple CNN after their feature extraction part, whereas DenseNet and SepConvMixer both use599

a global pooling layer instead that always has the same size, regardless of the input data.600

Comparing the ability to correctly predict the effect of amino acid exchanges at positions601

that were not present in the training data, sequence convolution, as well as our models, decrease602

in performance, especially considering the overall larger training data set. Our combination603

of structure encoding and pre-training managed to slightly improve predictions on avGFP,604

improve predictions on Pab1, and perform slightly worse on GB1 in comparison. Simple CNN605

managed to perform the same or with a 0.45 higher PearsonR compared to sequence convolution606

without pre-training. SepConvMixer achieves, at worst, a 0.12 lower PearsonR or, at best, a607

0.49 higher PearsonR (Fig. S24 & S25)608

When the training data came from a simulated ANH scan, sequence convolution lagged609

behind both of our models in terms of predicting the single mutation effect of the remaining610

amino acids when they were pre-trained but outperformed them when they were not pre-trained.611

5.5 Generalization612

Examining the performance of models trained on only single and double mutants in predict-613

ing mutants that have more than two amino acid exchanges again showed the advantage of614

pre-training and data augmentation. The various networks (simple CNN, DenseNet, Sep-615

ConvMixer) were trained on 10.221 single and double mutants of avGFP, with and without616

pre-training and/or data augmentation. Then they were asked to predict the test dataset that617

contains variants featuring a minimum of three and a maximum of 14 mutations. This led to a618

maximum performance in terms of Pearson’s R of 0.835 (Fig. 4). Over all settings and methods,619

simple CNN showed the best results, followed by SepConvMixer, whereas DenseNet showed the620

worst performance. Looking at the consistency of the results, SepConvMixer outperforms the621

other two networks. In accordance with previous results, the models can improve their pre-622

dictions when pre-training and data augmentation are used. Also in line with our previous623

experiments, the best setting combination was pre-training combined with data augmentation.624
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Under these settings, all models performed the best and delivered the same performance.625
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Figure 4: Pearson’s R of predictions for variants of avGFP containing three to 14 mutations

when the networks were only trained on single and double mutants (B: no pre-training and

no data augmentation, PT: with pre-training, DA: with data augmentation, PT+DA: with

pre-training and data augmentation)

5.6 Single Mutation Effect Prediction626

Testing the performance on predicting the effects of single mutations of pre-trained SepCon-627

vMixer networks trained on reduced dataset sizes (Section: 4.5) showed under visual comparison628

that for GB1, a protein with a sequence length of 56 amino acids, models trained on 250 train-629

ing samples started to have a good idea of which single mutations had a positive and which630

had a negative effect (Fig. 5). This comparison was only possible for GB1 since its data set631

contained possible single mutants.632
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Figure 5: Prediction of the mutational effect of

each single mutation at each sequence position

using SepConvMixer on the example of GB1.

The pre-trained models were trained on train-

ing data sets consisting of 50 to 6000 or 80% of

the whole GB1 dataset and asked to predict the

score of every possible single mutation of GB1.

For comparison, the actual measured data are

shown as ground truth and the result of a model

that was only pre-trained. Figure S22 shows the

difference of all predictions to the ground truth.

On the y-axis, the amino acids are alphabeti-

cally ordered.

5.7 Recall Performance633

Asking networks to recall the top 100 variants given a certain budget showed some differences for634

the different datasets but smaller differences in performance between all network architectures635
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(Fig. S8). The recall performance on Pab1 and avGFP showed similar results, whereas the636

recall for GB1 showed better recall results when trained with the same train dataset size. The637

overall trend showed that it is advantageous to invest in more training data to then be able638

to better recall the true top variants. For Pab1 and avGFP, a bigger increase in performance639

could be seen when changing from 6000 training samples to the whole (80% of the whole data640

set) dataset, whereas, for GB1, no performance increase between 6000 training samples and the641

whole dataset could be seen. Comparing the results for when trained with different amounts of642

training data, SepConvMix trained on 6000 training samples, needed a budget size between 70643

to 1040 samples to recall 60 % of the top 100 variants. When trained on 500 training samples,644

it needed between 500 to 1270 samples to match this performance, and when trained on 50645

training samples, 1390 up to 1700 samples were required to reach this performance (Fig. 6).646

Figure 6: Recall of the top 100 test set mutations given a certain budget (number of predictions

that may contain the true Top 100) for SepConvMixer. The models were trained on train data

sets containing 50 - 6000 data points or on 80% of the whole data set, which is labeled ”whole”.

The 60% recall performances when trained on 6000 data points are shown as ■, as ♦ when

trained on 500 data points, and as ▲ when trained on 50 data points. The term ”best case”

refers to the theoretical optimal outcome. (For a detailed description, see Section 4.5.6)

6 Discussion647

It has previously been shown that incorporating the structure in the form of a graph and648

training a graph neural network to predict deep mutational scanning results achieves the same649

performance as sequence convolution [18]. By introducing our new protein structure repre-650

sentation, we could show that it contains valuable information, can create pre-training data651

without any experimental data needed, and can improve predictive performance when positions652

were not seen during training. We could show that the predictive performance could be greatly653

improved by two straightforward but effective methods, pre-training and data augmentation.654

Even though the pre-training is very effective, it is not enough to freeze the convolution layers655

and only let the fully connected layers be trainable. This showed already worse performance656
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after the train sample size exceeded 500 samples, even though simple CNN was able to compen-657

sate better because the major part of its architecture consists of fully connected layers (Section:658

5.1).659

When deciding how to generate a dataset for the optimal outcome of training a neural660

network, the comparison between ANH-Scan and positional extrapolation (Section: 5.2 & 5.3)661

showed that a comparable result to a big dataset (positional extrapolation) can be achieved662

with only a fraction of the data needed (ANH-Scan) when all positions are present in the663

training data. Even better results can be achieved, also with a fraction of the dataset needed664

when randomly chosen single- and multi-mutational variants are used (Section: 5.1). By testing665

the recall performance, it became clear that it is advantageous to invest in more training data666

because the networks will then be better at predicting the true best variants (Section 5.7).667

Data augmentation can be advantageous when used with datasets containing only single668

and double mutants and network architectures with a smaller number of parameters. When the669

network architecture with the highest number of parameters was used (Simple CNN for avGFP),670

one can see that this network, when no pre-training is used, over-fitted the augmented data.671

Since this data resembles synthetically generated fitness scores that are not always correct, it672

has to be used with architectures that use fewer parameters. In contrast, the smallest network673

(SepConvMixer) still managed to perform decently when only data augmentation was used674

(Section 5.5).675

When comparing the performances on predictions on unseen positions, one can see that our676

encoding either performs the same without pre-training or shows improved performance over a677

sequence input, suggesting that the encoding enables better extrapolation due to the encoded678

interactions between amino acids.679

Interestingly, SepConvMixer performed almost the same as the other architectures despite680

its much smaller number of parameters. This is promising since fewer parameters reduce the681

risk of over-fitting. Therefore, the network should be better able to generalize to unseen data.682

Furthermore, this network will need fewer computational resources. We also showed that more683

modern network architectures compared to simple CNN, could improve the performance when684

the training sample size is small. Since no dedicated hyper-parameter tuning was performed,685

an increase in the performance of the models is still possible.686

The current way our contact maps are generated is used as a fast and simple approximation687

of the changes happening in the structure of a protein due to amino acid substitutions. The688

matrix representing the charge interactions does not take into account the protonation state of689

the amino acids, and the hydrophobicity matrix is only a simple scale and does not take the690

side chain surroundings into account. These are just two examples where improvements in the691

protein structure representation can still be made. This might, in turn, help the network to692

predict mutational effects even better due to a more realistic representation. Using different693

protein sequence alignment databases (non-redundant and experimental, which is a 90% clus-694

tered version of the non-redundant database) did not change the training results significantly.695

An advantage of our encoding is the possibility to encode ”average” structures derived from696
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molecular dynamics simulations or structures with optimized rotamer positions which leads to697

an even more natural representation of the protein structure and could potentially create an698

even better encoding through the interaction matrices.699

With the advancement of programs like AlphaFold [23] and RoseTTAFold [37], we can700

assume that there is a trustworthy structure for most proteins. Even homology modeling might701

be sufficient to supply a decent protein structure that can be used to create the structure702

representation.703

Besides the advantage of being able to use a large number of different architectures derived704

from the computer vision field, our encoding has the additional advantage of being computa-705

tionally efficient while representing the biophysical-, interaction- and structural change that706

occurs due to amino acid substitutions. This makes a more structure-related workflow feasible707

for researchers without access to high-performance (computing) clusters.708

Regarding experimental protein engineering in the lab, minimizing the data size required709

to achieve comparable or superior prediction results is crucial in reducing time, cost, and710

resources. Our analysis indicates that these models already perform reasonably well in that711

respect. They could also be utilized for datasets that do not originate from DMS but rather712

from a conventional ”low throughput” experiment like ANH-Scans, thus providing well-trained713

mutation effect oracles to more laboratories.714

The ultimate goal would be to transfer ”learnings” from one DMS dataset to train a universal715

network capable of predicting the fitness of proteins for which no experimental data exists is very716

intriguing but currently most likely restricted to proteins with sufficiently similar structures.717
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