

1 **Control of a type III-Dv CRISPR–Cas system by the transcription factor RpaB**
2 **and interaction of its leader transcript with the DEAD-box RNA helicase CrhR**

3

4 Raphael Bilger¹, Angela Migur^{1†}, Alexander Wulf^{2,3}, Claudia Steglich¹, Henning
5 Urlaub^{2,3} and Wolfgang R. Hess^{1*}

6

7 ¹University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics,
8 Schänzlestr. 1, D-79104 Freiburg, Germany

9 ²Bioanalytics Research Group, Department of Clinical Chemistry, University Medical
10 Centre, D-37075, Göttingen, Germany;

11 ³Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical
12 Chemistry, D-37077 Göttingen, Germany;

13 [†]Present address: RNA Synthetic Biology Group, Helmholtz Institute for RNA-based
14 Infection Research (HIRI), Würzburg, Germany

15

16 *Corresponding author: Wolfgang R. Hess; Tel: 0049-761-2032796; Fax: 0049-761-
17 2032745; Email: wolfgang.hess@biologie.uni-freiburg.de

18

19 **Keywords:** CRISPR–Cas systems, CrhR DEAD-box RNA helicase, CRISPR leader,
20 cyanobacteria, regulation of CRISPR–Cas gene expression; RNA structure,
21 transcription factor RpaB

22

23

24 ABSTRACT

25 CRISPR–Cas systems in bacteria and archaea provide powerful defense against
26 phages and other foreign genetic elements. The principles of CRISPR–Cas activity
27 are well understood, but less is known about how their expression is regulated. The
28 cyanobacterium *Synechocystis* sp. PCC 6803 encodes three different CRISPR–Cas
29 systems. The expression of one of these, a type III-Dv system, responds to changes
30 in environmental conditions, such as nitrogen starvation or varying light intensities.
31 Here, we found that the promoter of the six-gene *cas* operon for the type III-Dv system
32 is controlled by the light- and redox-responsive transcription factor RpaB. RpaB binds
33 to an HLR1 motif located 53 to 70 nt upstream of the transcription start site, resulting
34 in transcriptional activation at low light intensities. However, the strong promoter that
35 drives transcription of the cognate repeat-spacer array is not controlled by RpaB.
36 Instead, we found that the 125 nt leader transcript is bound by the redox-sensitive
37 RNA helicase CrhR. Crosslinking coupled to mass spectrometry analysis revealed six
38 residues involved in the CrhR-RNA interaction. Of these, L103, F104, H225, and C371
39 were predicted to be on the surface of a dimeric CrhR model, while C184 was not on
40 the surface, and P443 could not be assigned to a structural element. These results
41 showed that the expression of the CRISPR–Cas system is linked to the redox status
42 of the photosynthetic cyanobacterial cell at two different levels. While RpaB affects
43 transcription, CrhR interacts with the leader transcript posttranscription. These results
44 highlight the complex interplay between a CRISPR–Cas system and its host cell.

45 **Introduction**

46 CRISPR–Cas systems encode RNA-based adaptive and inheritable immune systems
47 in many archaea and bacteria^{1,2}; these systems are highly diverse and were classified
48 into two classes, six types and 33 subtypes³; however, new subtypes are still being
49 discovered. Type III CRISPR–Cas systems, characterized by the presence of the
50 signature gene *cas10*, exist in 34% and 25% of archaeal and bacterial genomes that
51 encode CRISPR–Cas loci, respectively⁴. Type III systems are further classified into
52 five subtypes, A to E^{3,5,6}. Although detailed insights have been obtained regarding the
53 molecular mechanisms and peculiarities of the different types of CRISPR–Cas
54 systems, knowledge about how their expression is regulated has remained
55 incomplete.

56 In the subtype I-E system of *E. coli*, regulation by transcription factors has been
57 demonstrated. The DNA-binding protein HNS (Histone-like Nucleoid Structuring
58 Protein) acts as a repressor by inhibiting the expression of crRNA and *cas* genes⁷. As
59 an antagonist of HNS, LeuO activates the expression of *cas* genes, thereby enhancing
60 resistance against invading DNA⁸. Finally, a signaling cascade involving the BaeSR
61 two-component regulatory system, which senses envelope stress (e.g., phage attack)
62 via the membrane-localized kinase BaeS, was identified. Once activated, BaeS
63 phosphorylates the cytoplasmic transcription factor BaeR⁹, which, among other genes,
64 activates the expression of *cas* genes¹⁰.

65 In the thermophilic archaeon *Sulfolobus islandicus*, the expression of the type I-A
66 CRISPR locus is regulated by Csa3a and Csa3b, two transcriptional regulators
67 containing CARF and HTH domains. While Csa3a activates the expression of
68 adaptation genes and the CRISPR array¹¹, interference genes are repressed by

69 Csa3b. Repression is achieved in the absence of viral infection by cobinding of the
70 cascade complex¹². In *Serratia*, the LysR-type transcriptional regulator PigU co-
71 ordinately controls the expression of a type III-A and a type I-F system¹³. Further
72 regulatory mechanisms have been described for CRISPR-Cas systems in
73 *Pectobacterium atrosepticum*¹⁴ and *Pseudomonas aeruginosa*^{15,16}.

74 Cyanobacteria are the only prokaryotes whose physiology is based on oxygenic
75 photosynthesis, making them immensely important primary producers. Field studies
76 have shown that both cyanobacterial cell counts and the number of coinfecting
77 bacteriophages (cyanophages) can be very high, with up to 50% of all cyanobacteria
78 estimated to be infected at any one time¹⁷, and likely affect cyanobacterial
79 biogeography and biogeochemistry at the scale of oceanic subregions¹⁸. Accordingly,
80 active defense mechanisms can be expected in cyanobacteria.

81 The unicellular cyanobacterium *Synechocystis* sp. PCC 6803 (from here:
82 *Synechocystis* 6803) is a model for the CRISPR biology of cyanobacteria. It possesses
83 three separate and complete CRISPR–Cas systems, a type I-D (CRISPR1), III-Dv
84 (CRISPR2), and III-Bv (CRISPR3) system, which are highly expressed under a variety
85 of conditions and active in interference assays^{3,19–25}. The CRISPR2 system is of
86 particular interest because it has recently been suggested to function as a protein-
87 assisted ribozyme²⁵.

88 Each of the three CRISPR–Cas loci in *Synechocystis* 6803 is associated with one
89 gene that has been suggested to be a regulator (genes *sll7009*, *sll7062* and *sll7078*¹⁹).
90 Indeed, deletion of *sll7009*, which encodes a putative WYL domain protein, led to
91 increased accumulation of crRNAs in the CRISPR1 system but did not change the
92 crRNA levels in the other two systems²⁶. This result was consistent with the
93 observation that CARF and WYL domain regulatory proteins are widely distributed

94 ligand-binding specific regulators of CRISPR–Cas systems²⁷. Slr7062 differs from the
95 other two possible regulators by the presence of an N-terminal CARF7 family domain
96 fused to a RelE RNase domain, a setup characteristic of Csm6 proteins. Csm6
97 proteins are not transcription factors but rather CRISPR-associated RNases that are
98 activated by cyclic oligoadenylate (cOA)-mediated signaling²⁸. Accordingly, Slr7062
99 was renamed SyCsm6 when its activity was tested upon production as a recombinant
100 protein, together with the CARF-HEPN domain protein SyCsx1 (Slr7061)²⁹. Therefore,
101 the CRISPR2 system lacks an obvious candidate regulatory gene in its vicinity.
102 However, when we characterized the regulon controlled by the transcription factor
103 RpaB, we noted the possible involvement of a host genome-encoded factor in
104 CRISPR2 regulation³⁰. RpaB (“regulator of phycobilisome association B”, Slr0947) is
105 an OmpR-type transcription factor that is predicted to control more than 150 promoters
106 by binding to the HLR1 (“high light regulatory 1”) motif, a pair of imperfect 8-nt long
107 direct repeats (G/T)TTACA(T/A) (T/A) separated by two random nucleotides. RpaB
108 mediates transcriptional activation when the HLR1 motif is located 45 to 66 nt
109 upstream of the transcription start site (TSS), whereas all other locations mediate
110 repression³⁰. The results showed that RpaB is a transcription factor of central
111 importance for light- and redox-dependent remodeling of the photosynthetic apparatus
112 and many associated pathways. Surprisingly, there was also a predicted binding site
113 in the promoter that drives the transcription of the *cas* gene operon of CRISPR2, the
114 III-D system in *Synechocystis* 6803, but this was not investigated further.
115 Another protein with a central role in light- and redox-dependent responses in
116 *Synechocystis* 6803 is the cyanobacterial RNA helicase Redox (CrhR)³¹. CrhR
117 (Slr0083) is the single DEAD-box RNA helicase in *Synechocystis* 6803 that is capable
118 of altering RNA secondary structures by catalyzing double-stranded RNA unwinding

119 as well as annealing³². The molecular effects of *crhR* deletion or inactivation have
120 been studied at the transcriptome^{33,34} and proteome levels³⁵, and several attempts
121 have been made to identify the RNA targets of CrhR directly³⁶.
122 Here, we applied a further approach to pull down RNA that interacts with CrhR, which
123 is expressed as a recombinant protein, and found that the transcribed leader of the
124 type III-Dv CRISPR–Cas system was copurified. Therefore, we investigated the
125 possible regulatory impact of the host genome-encoded transcription factor RpaB on
126 the expression of the CRISPR2 system and described and validated the interaction of
127 CrhR with the leader transcript of the repeat-spacer array of the same system.

128

129 **Results**

130 ***The expression of the type III-Dv CRISPR2 system in *Synechocystis* 6803 is
131 affected by environmental conditions***

132 In our previous analysis of the distribution of putative HLR1 binding sites for the
133 transcription factor RpaB in *Synechocystis* 6803, one site was predicted in the
134 CRISPR2 cas gene promoter; however, this site has not been studied further³⁰. This
135 promoter drives the transcription of six genes, *sll7067* to *sll7062*, into a single
136 transcriptional unit (TU)³⁷. Therefore, these six genes constitute an operon. These
137 genes encode Cas10, a Cas7-Cas5-Cas11 fusion, Cas7-2x, Csx19, Cas7 with an
138 insertion, and the SyCsm6 protein (**Figure 1A**). Technically, two TUs, TU7058 and
139 TU7063, were defined for the CRISPR2 *cas10* promoter because they contain two
140 TSSs (at positions 62704 and 62807 on the reverse strand)³⁷. Our previous genome-
141 wide mapping of TSSs using differential RNA-Seq indicated the regulated expression
142 of this operon. High numbers of reads were found for TU7058 under most of the tested

143 growth conditions, but relatively lower numbers were recorded after the cultures were
144 transferred to high light (470 μmol photons m^{-2} s^{-1} for 30 min), and no reads were
145 detected at all if the cultures were incubated in the dark for 12 h³⁷.

146 The respective repeat spacer array is transcribed on the forward strand, starting from
147 a single TSS approximately 6 kb away from the *cas* gene operon (**Figure 1A**). To
148 explore the possible differential accumulation of leader and CRISPR RNAs (crRNAs),
149 total RNA samples obtained from cultures grown under the same ten conditions as
150 those previously used for differential RNA-Seq were analyzed via Northern
151 hybridization. We used two probes, complementary to the CRISPR leader RNA and
152 the first two spacers and repeats or to spacers 1 to 4. The first probe produced a major
153 signal of approximately 150 nt (**Figure 1B**, left panel), which matches the length of the
154 leader (125 nt;¹⁹) plus the length of the cleavage site within the first repeat (27 nt;²⁰),
155 and two weaker signals matching the lengths of a repeat-spacer unit of ~72 nt and the
156 final processed spacer 1 of 44 nt. The second probe detected the same ~150 nt
157 precursor transcript due to overlap in the repeat but revealed the strongest signals for
158 repeat spacer units 2 and 3, which are somewhat longer (~75 to 77 nt) than other
159 units. Their accumulation was highly dependent on the conditions. The strongest
160 signals were obtained with the samples from cultures exposed to cold stress,
161 stationary phase, N, and C starvation, whereas the signals were weaker in samples
162 from cultures exposed to heat shock or high light and were not detected in samples
163 from cultures incubated in the dark for 12 h (**Figure 1B**, right panel). These results
164 matched the differential transcript accumulation observed for the CRISPR2 *cas10*
165 operon via differential RNA-Seq.

166

167 ***Transcriptional regulation of the CRISPR2 cas 10 promoter***

168 The observed differential accumulation of *cas* gene operon-mRNAs and crRNAs may
169 be due to differential transcription, posttranscriptional regulation, or both. The
170 prediction of a putative HLR1 motif in the CRISPR2 *cas10* promoter indicated possible
171 transcriptional regulation. This HLR1 motif is located -70 nt to -53 nt from the TSS of
172 TU7063 and -172 to -155 nt from the TSS of TU7058. To examine its possible
173 relevance, we cloned the 5'UTR of the CRISPR2 *cas* gene and the promoter region
174 (+122 to -203 with regard to the TSS of TU7058), which included the HLR1 motif
175 (native promoter, P_{nat}) upstream of the *luxAB* reporter gene in the vector pILA³⁸. As a
176 control, we mutated the HLR1 motif by substituting four nucleotides with guanosines
177 (mutated promoter, P_{mut}). Initial P_{nat} activity was measured under low-light conditions.
178 Promoter activity was measured again after a 4-hour incubation under high light,
179 where we observed a decrease in the activity to the level of the no-promoter control
180 (P_{less}). After transfer back to low light, P_{nat} activity increased significantly over time,
181 reaching an approximately tenfold increase in luminescence after 120 min (**Figure 2A**). In contrast, the P_{mut} promoter harboring the mutated HLR1 motif exhibited a basal
182 level of bioluminescence, similar to that of the control strain harboring promoterless
183 (P_{less}) *luxAB* genes, even after the P_{mut} strain was transferred back to low light. This
184 finding indicates the importance of mutated nucleotides in the recognition and binding
185 of RpaB to the promoter. When we exposed the cells after the initial 4 h continuously
186 to high light (**Figure 2B**) or added the electron transfer inhibitor DCMU (**Figure 2C**),
187 bioluminescence remained at a basal level with P_{nat} , P_{mut} , and P_{less} for the duration of
188 the experiment. This effect might be specifically related to RpaB and a change in redox

190 status, as the P_{syr9} promoter used for control had modest activity under high light
191 conditions and was not negatively influenced by the added DCMU.

192 These results showed that the CRISPR2 *cas10* promoter is regulated by a redox-
193 dependent mechanism involving the HLR1 motif. Furthermore, these results are
194 consistent with the prediction that RpaB positively regulates this promoter because it
195 is known to dissociate from its HLR1 binding motif under high light³⁹.

196

197 ***RpaB binds to the native CRISPR2 cas10 promoter but not to the mutated HLR1***
198 ***site***

199 We then validated the prediction that RpaB regulates the transcription of the CRISPR2
200 effector complex. Therefore, RpaB from *Synechocystis* 6803, fused to a C-terminal
201 6xhistidine tag, was expressed in *E. coli* DE3³⁹ and purified using nickel
202 chromatography (**Figure S1**). For the electrophoretic mobility shift assay (EMSA),
203 increasing amounts of purified RpaB were incubated with 0.5 pmol of Cy3-labeled
204 DNA probes harboring either the wild-type or the mutated HLR1 motif (P_{nat} and P_{mut}).
205 As a positive control, we used the *psbA2* promoter P_{psbA2} , which was previously
206 characterized and shown to contain a functional HLR1 motif⁴⁰.

207 For the P_{nat} and P_{psbA2} fragments, a band shift was observed with 50 pmol of
208 recombinant 6xHis-RpaB. For the P_{mut} fragment with four substituted bases within the
209 HLR1 motif, the highest amount of added 6xHis-RpaB (250 pmol) was not sufficient
210 to induce a band shift (**Figure 2D**).

211 Taken together, these results strongly suggested that the redox-dependent
212 transcription factor RpaB positively regulates the transcription of the CRISPR2 effector
213 complex under low light conditions by binding to the HLR1 site. This finding implied

214 that the expression of the CRISPR2 *cas10* complex is activated under low-light
215 conditions by RpaB and deactivated under high light conditions when RpaB binding is
216 lost. We wondered what this would mean to the accumulation of crRNAs. Moreover,
217 upon acclimation to high light, RpaB regains DNA-binding activity³⁰. Therefore, we
218 performed another experiment in which we extended the time at high light to 6 h,
219 transferred the cells to nitrogen starvation conditions, added the electron transport
220 inhibitors DCMU or DBMIB to the cultures, and analyzed the accumulation of the
221 CRISPR2 leader and crRNAs. Northern hybridization against spacers 1-4 produced
222 several bands ranging from approximately 250 nt (pre-crRNA) to 72 nt (**Figure 3A**),
223 which corresponded to a single-unit crRNA precursor¹⁹. At approximately 150 nt, we
224 observed a double band corresponding to the partially processed pre-crRNAs, as also
225 found in **Figure 1B**. Because the spacers differ in sequence and length, the
226 intermediate cleavage products are slightly different in size. Contrary to the results in
227 **Figure 1B**, we observed no decrease but a slight increase in the accumulation of pre-
228 crRNA after six hours of exposure to high light, which indicated that the cells had
229 acclimated to the new environmental conditions (**Figure 3A**). In nitrogen-depleted
230 medium, we observed a decrease in pre-crRNA accumulation after six hours,
231 consistent with the findings in **Figure 1B** and previous transcriptome analysis results³⁷.
232 To test the impact of changes in redox conditions on pre-crRNA accumulation, we
233 added the photosynthesis inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea)
234 or the cytochrome b₆f complex inhibitor DBMIB (2,5-dibromo-3methyl-6-
235 isopropylbenzoquinone) to our cultures. Here, we observed a weaker accumulation of
236 the lower double bands at 150 nt. Furthermore, in the presence of DBMIB, mature
237 crRNAs (< 80 nt) vanished almost completely, which is consistent with the overall
238 decrease in spacer transcript accumulation in the presence of the inhibitors. To test

239 whether spacer and leader accumulation differed, we hybridized the same membrane
240 against the leader transcript (**Figure 3B**). The signal ran at approximately 150 nt,
241 matching the previously estimated length of 125 nt for the leader transcript plus the
242 length of the first repeat up to the first Cas6 cleavage site of 29 nt¹⁹. The accumulation
243 of the leader was similar to that of spacer repeats under high light and nitrogen
244 depletion conditions (**Figure 3A**). The addition of DCMU greatly reduced the
245 accumulation of the leader compared to the standard (low light) conditions, and the
246 addition of DBMIB resulted in the loss of the leader transcript signal. The observed
247 effects of DCMU and DBMIB could be explained by a general inhibitory effect on RNA
248 synthesis. To test this possibility, we hybridized a probe for *atpT* mRNA, which was
249 previously found to be strongly induced by the addition of DCMU or DBMIB^{41,42}. Both
250 inhibitors upregulated the accumulation of *atpT* mRNA, demonstrating that
251 transcription was not inhibited globally (**Figure 3C**).

252 These results suggest that the stability of the CRISPR2 leader transcript is linked to
253 the redox status of the plastoquinone pool.

254

255 ***The CRISPR2 array promoter is highly active***

256 We observed a decreased accumulation of the spacer-repeat and leader transcripts
257 when the cells were exposed to high light (470 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$) for 30 min (**Figure**
258 **1B**). To determine whether the promoter itself might be regulated, similar to the
259 promoter of the *cas* gene operon, we cloned the region -1 nt to -100 nt from its TSS,
260 fused it to a synthetic ribosome binding site in the pILA vector, and integrated the
261 construct in *Synechocystis 6803* as for the CRISPR2 *cas10* promoter constructs.

262 **Figure 3D** shows the *luxAB* reporter assay with the CRISPR2 array promoter. The

263 cultures were exposed to high light for 30 min before being returned to low light to
264 avoid acclimation to the increased light intensity. The measured bioluminescence was
265 extremely high, reaching 18,000 units, the highest measured activity in a comparison
266 of five different promoters (**Figure S2**).

267 Moreover, we did not observe a decrease in the bioluminescence signal after exposing
268 the cultures to high light for 30 min but rather a further increase in bioluminescence.
269 These results suggested that the CRISPR2 array promoter is not influenced by
270 environmental light conditions and that the observed changes in leader and crRNA
271 transcript levels were caused by another mechanism.

272

273 ***The CRISPR2 leader RNA interacts with CrhR***

274 Because we found no evidence for RpaB controlling the crRNA promoter, we
275 considered preliminary results that indicated the involvement of the DEAD-box RNA
276 helicase CrhR as another possible factor. CrhR mediates light- and redox-dependent
277 responses in *Synechocystis* 6803³¹. We used CrhR produced as a recombinant
278 protein in *E. coli*. Two *E. coli* strains expressing recombinant His-tagged native CrhR
279 or CrhR_{K57A} with enhanced RNA binding due to the K57A substitution within the ATP-
280 binding motif were utilized. The ~55 kDa proteins corresponding to His-tagged CrhR
281 and CrhR_{K57A} were detected three hours after induction with 1 mM IPTG, purified via
282 HiTrap Talon crude column (Cytiva) chromatography, and eluted with a step gradient
283 of imidazole concentrations (**Figure S3**).

284 The recombinant proteins were incubated with *Synechocystis* 6803 total RNA and
285 subjected to coimmunoprecipitation (co-IP), after which three cDNA libraries were
286 prepared from the bound RNA, representing RNA interacting with recombinant CrhR,

287 recombinant CrhR_{K57A}, and total RNA as a background control. The experiment was
288 performed in biological duplicates. The total numbers of reads obtained from the
289 single-end Illumina sequencing are listed in **Table S1**. The reads were trimmed, and
290 the adapter contaminants were filtered out with cutadapt and subsequently mapped to
291 the *Synechocystis* 6803 chromosome and plasmids using Bowtie2⁴³. Using the
292 PEAKachu peak caller⁴⁴, 39 peaks were identified in the CrhR library (**Figure 4, Table**
293 **1**), and 41 peaks were called with the RNA obtained from CrhR_{K57A} (**Figure 4, Table**
294 **2**), which met a $\log_2\text{FC} \geq 1$ and adjusted p value ≤ 0.05 . The peaks mapped to positions
295 on the chromosome and the plasmids pSYSA, pSYSM and pSYSX. Of these, 24
296 peaks were shared between the two proteins including the CRISPR2 leader RNA
297 (**Figure 4**). Both the RNA helicase CrhR and the CrhR_{K57A} mutant strongly interacted
298 with their own mRNAs, consistent with previous results on its autoregulatory
299 features⁴⁵. In addition to those of the leader, several crRNAs of the CRISPR2 array
300 were also enriched in the CrhR co-IP (**Table 1**).

301 The most highly enriched transcripts for CrhR_{K57A} were asRNAs to the genes *sll0169*,
302 *sll2000* and *sll1494*, which encode the DUF4101 and DnaJ-domain-containing protein
303 Sll0169, the S-layer homology domain-containing protein Sll2000 and an ABC
304 transporter subunit, respectively (**Table 2**).

305 Because the CRISPR2 leader RNA was enriched in co-IPs with both proteins, EMSA
306 was performed to validate the interactions. For this purpose, the CRISPR2 leader RNA
307 was synthesized by T7 RNA polymerase *in vitro* and used as an RNA substrate. For
308 transcript synthesis, a DNA fragment with coordinates 68373-68498 on pSYSA was
309 amplified using the primers EMSA_CCRISPR2LeadeR-T7_Fw (which carries a T7
310 promoter sequence followed by two Gs) and EMSA_CCRISPR2LeadeR-T7_Rv. The
311 resulting 128 nt transcript was labeled with Cy3. Binding of 2 pmol of Cy3-labeled

312 transcripts to various amounts of purified recombinant His-tagged CrhR or CrhR_{K57A},
313 ranging from 1 to 50 pmol, was performed in the presence of poly(dI-dC) in high molar
314 excess to the transcripts as a competitor to confirm the specificity of the RNA–protein
315 interaction. A gel shift of the CRISPR2 leader was observed upon the addition of only
316 1 pmol of CrhR (**Figure 5**). We concluded that the CRISPR2 leader transcript was
317 strongly bound by both CrhR and CrhR_{K57A}.

318

319 ***Effect of the ΔcrhR mutation and redox stress conditions on CRISPR2 leader***
320 ***and crRNA accumulation***

321 We next studied the effect of environmental stress conditions on *Synechocystis* 6803
322 wild type and the $\Delta crhR$ mutant. The cells were cultivated under standard growth
323 conditions (low light and 30 °C) and exposed to either 20 °C or high light, followed by
324 recovery under low light. Total RNA was extracted and hybridized with probes against
325 the CRISPR2 leader or spacers 1-4. When testing the wild type and the mutant under
326 standard and cold conditions (**Figure 6A**), we observed a lower level of CRISPR2
327 leader accumulation in $\Delta crhR$ than in the wild type. We analyzed the signal intensities
328 normalized to those of 5S rRNA and observed that in the wild-type strain, the leader
329 transcript intensity decreased by approximately 40% at 20 °C (**Figure 6B**). With
330 respect to $\Delta crhR$, we observed similar amounts of CRISPR2 leader transcripts under
331 both conditions but generally lower amounts than in the wild-type. The accumulation
332 of the CRISPR2 leader transcript did not seem to be affected by the change in
333 temperature in the $\Delta crhR$ strain. These results indicated that CrhR, on the one hand,
334 had a basal stabilizing effect on CRISPR2 leader transcript accumulation but that it
335 had a destabilizing effect during temperature downshifts.

336 When testing the influence of high light on CRISPR2 leader and repeat spacer array
337 transcript accumulation, we observed a rapid decrease in the accumulation of both
338 transcripts after exposure to high light for 5 min (**Figure 6C and D**). The same
339 observations were made after 30 min under high-light conditions. For recovery, the
340 cultures were again exposed to low light, and cultivation was continued for 2 h. After
341 the recovery phase, the number of leader and repeat-spacer transcripts was similar to
342 that before high light exposure. These results suggest rapid degradation of the leader
343 and spacer transcripts by an unknown mechanism and rapid adaptation to changes in
344 the redox status of the cell.

345

346 ***Determination of CrhR amino acid residues interacting with the CRISPR2 leader***
347 To confirm the interaction unambiguously and to identify the amino acid residues of
348 CrhR that interact with the CRISPR2 leader, CrhR was cross-linked to the CRISPR2
349 leader RNA *in vitro*. In total, we obtained 12 cross-linked peptide fragments for two
350 replicates using UV and CrhR_{K57A}, one for CrhR and 3 for CrhR_{K57A} using the chemical
351 cross-linker 1,2,3,4-diepoxybutane (**Figure 7A**). The amino acid residues cross-linked
352 to the RNA were determined as described previously⁴⁶ and are shown in **Figure 7B**.
353 None of the cross-linked amino acid residues were located within the known
354 conserved motifs of DEAD-box RNA helicases (**Figure S4**). We used AlphaFold 2^{47,48}
355 to predict the three-dimensional structure of CrhR. Consistent with recent reports that
356 CrhR exists in solution predominantly as a homodimer⁴⁹, AlphaFold modeled it as a
357 dimer and predicted alpha helices and beta folds in the most conserved part of the
358 protein. No structure was predicted for the C-terminal section of the protein, consistent
359 with a lack of sequence conservation (**Figure 7C**). The dimeric structure of these

360 proteins is consistent with the homodimeric structure of the *Geobacillus*
361 *stearothermophilus* RNA helicase CshA, the closest homolog of CrhR (43.57%
362 sequence identity), for which the structure has been resolved⁵⁰. By analyzing the
363 model, we found that the amino acid residues L103, F104, H225, and C371 were
364 located on the surface of CrhR, whereas the amino acid residue C184 was not. We
365 could not draw a conclusion about the possible location of the amino acid residue
366 P443 because the modeling failed for the 65 C-terminal residues.

367

368 **Discussion**

369 The main role of CRISPR/Cas systems is defense against encountered phages.
370 Therefore, their constitutive expression might be expected. However, there is
371 mounting evidence that some CRISPR/Cas systems, such as those in *E. coli*⁷⁻¹⁰ and
372 *Sulfolobus islandicus*^{11,12}, are regulated at the transcriptional level. When the risk of
373 phage infection is high, *Pseudomonas aeruginosa* is regulated by environmental
374 factors, such as temperature or high cell density; LasI/R and RhII/R, two autoinducer
375 pairs from the quorum sensing pathway, promote the expression of the type I-F
376 CRISPR/Cas system^{15,16}. Furthermore, resource availability can strongly influence cas
377 gene expression. The cAMP receptor protein (CRP) binds to DNA in the presence of
378 its co-factor cAMP, the level of which depends on the availability of glucose in the
379 environment. In the phytopathogen *Pectobacterium atrosepticum*, CRP increases the
380 expression of type I-F cas genes when glucose is scarce¹⁴, whereas cas transcription
381 is negatively regulated by the cAMP-CRP complex in the type I-E system of *E. coli*
382 when glucose is available⁵¹.

383 Here, we showed that RpaB, a DNA-binding response regulator, controls the
384 transcription of the type III-Dv *cas* operon in the cyanobacterium *Synechocystis* 6803.
385 RpaB is a redox-responsive transcription factor that is highly conserved in
386 cyanobacteria and is a key regulator of light acclimation⁵². RpaB controls a large panel
387 of genes relevant for photosynthesis, photoprotection, membrane transport³⁰. Analysis
388 of the distribution of the HLR1 binding motif of RpaB in *Synechocystis* 6803 showed
389 that RpaB functions as an activator under low-light conditions when the HLR1 motif is
390 located at positions -66 to -45 to the TSS and as a repressor if located elsewhere in
391 the promoter³⁰. The finding that the abundance of crRNAs for the III-Dv system in
392 *Synechocystis* 6803 varies greatly between different environmental conditions can
393 therefore be partially explained by the control of the *cas* gene promoter through the
394 binding of RpaB to HLR1 at an activating position. The availability of Cas proteins can
395 certainly limit the formation of Cas complexes and the protection of the crRNAs bound
396 to them. However, we were puzzled that the repeat-spacer array promoter, albeit very
397 strong, not only lacked an HLR1 motif but also exhibited slightly greater activity in
398 reporter gene assays under high light, contrary to the *cas* gene promoter.

399 This led us to consider the interaction between CrhR and the 125 nt leader transcript¹⁹.
400 The CRISPR leader is usually understood as a longer region containing the
401 promoter^{2,53}, regulatory sequence elements important for adaptation⁵⁴⁻⁵⁶ and the TSS
402 of the repeat-spacer array. CRISPR leaders have mostly been studied for their roles
403 in spacer acquisition in the genome. However, they may also play an important role in
404 the posttranscriptional regulation of precrRNAs and affect crRNA maturation and
405 interference. The sRNA-dependent posttranscriptional regulation of a CRISPR array
406 was identified in *P. aeruginosa*, where binding of the sRNA PhrS to the leader of a

407 type I-F system repressed the Rho-dependent termination of CRISPR array
408 transcription⁵⁷.

409 We showed that the CRISPR2 leader transcript also exists as a distinct sRNA in the
410 cell and that the accumulation of the CRISPR2 leader and crRNAs is strongly affected
411 by the cellular redox status. We found that this leader RNA was highly enriched in *in*
412 *vitro* co-IPs with recombinant CrhR and CrhR_{K57A}. We confirmed the leader-CrhR (and
413 leader-CrhR_{K57A}) interaction by EMSA and identified the interacting amino acid
414 residues by protein–RNA cross-linking coupled to mass spectrometry analysis^{46,58}.
415 The cross-linked residues L103/F104, H225, C371, C184 and P443 do not match
416 positions previously described to be involved in the interactions between DEAD-box
417 RNA helicases and their substrates⁵⁹. However, these residues are in line with
418 calculations of UV cross-linking efficiencies for different amino acids, which, among
419 others, included phenylalanine (F), histidine (H) and proline (P), which were found
420 here⁶⁰. Moreover, the systematic analysis of interactions between mutagenized RNA
421 and protein variants suggested that π-stacking interactions between aromatic amino
422 acids (such as Y, F or H) and guanosine or uridine residues are important for cross-
423 linking and for flanking amino acids⁶¹, whereas cysteine is prone to cross-linking due
424 to its high reactivity⁵⁸. Four of the 6 amino acids identified here matched these criteria,
425 and L103 was flanked by aromatic amino acids on both sides (**Figure S4**). Moreover,
426 with the exception of C184, these amino acids were all predicted to be on the surface
427 of a dimeric CrhR model (**Figure 7C**). Thus, both aspects are consistent with the
428 possible involvement of these residues in RNA recognition and binding and indicate
429 the potential for further analyses in the future.

430 RNA helicases are enzymes that can modify RNA structures. Therefore, they are
431 associated with all aspects of RNA metabolism, such as the regulation of gene

432 expression, RNA maturation and decay, transcription and the packaging of RNA into
433 ribonucleoprotein particles^{62,63}, processes that are also relevant for the formation of
434 CRISPR–Cas complexes. The expression of *crhR* is regulated by the redox status of
435 the electron transport chain³¹ and becomes strongly enhanced in response to a
436 decrease in temperature⁶⁴. CrhR plays a role in the modulation of multiple metabolic
437 pathways during cold acclimation³⁵ and is indispensable for energy redistribution and
438 the regulation of photosystem stoichiometry at low temperatures⁶⁵. Consistent with
439 these physiological functions, CrhR is localized to the thylakoid membrane but also
440 cosedimented with degradosome and polysome complexes⁶⁶. Our data showed
441 decreased leader and crRNA accumulation upon shifts to high light or low nitrogen,
442 which was most pronounced upon addition of the inhibitor DBMIB, suggesting that
443 these conditions constitute redox stress effects. A redox component involved in the
444 expression of CRISPR–Cas systems has not been previously shown. However, such
445 regulation is highly important for cyanobacteria, which are the only prokaryotes that
446 perform oxygenic photosynthesis. In fact, phage adsorption to the cyanobacterial host,
447 replication, modulation of host cell metabolism, and survival in the environment
448 following lysis all exhibited light-dependent components⁶⁷.
449 Indeed, the transcriptional control of *cas* gene transcription through RpaB and the
450 recruitment of the DEAD-box RNA helicase CrhR by the leader transcript are
451 consistent with this mode of regulation (**Figure 8**). The involvement of CrhR in this
452 process adds to recent reports on the connection between components of the
453 degradosome and the type III CRISPR–Cas machinery^{22,68}. Our results are
454 furthermore consistent with recent results of unbiased screens that multiple host genes
455 can affect CRISPR expression¹³. The here described parallel control of *cas* gene
456 transcription by the transcription factor RpaB and the effect of CrhR on CRISPR leader

457 and crRNA accumulation highlight the intriguing complexity of CRISPR–Cas
458 regulation in the context of the host cell.

459

460 **Materials and Methods**

461 ***Strains and growth conditions***

462 Cultures of the wild type and different mutant strains of *Synechocystis* 6803^{33,36} were
463 grown at 30 °C in liquid BG11 medium⁶⁹ supplemented with 20 mM TES (N-[Tris-
464 (hydroxymethyl)-methyl]-2-aminoethane sulfonic acid) under continuous illumination
465 with white light at 50 μmol photons m⁻² s⁻¹ without shaking unless otherwise mentioned.
466 The flasks were aerated with ambient air through a glass tube and a sterile filter for
467 constant and fast growth. To induce gene expression from the Cu²⁺-responsive
468 promoter P_{petE}⁷⁰, 2 μM CuSO₄ was added to exponentially growing cells in BG11
469 medium without Cu²⁺.

470 Mutant strains of *Synechocystis* 6803 were grown in the presence of the appropriate
471 antibiotics at the following concentrations: spectinomycin (sp) (20 μg/mL) and
472 kanamycin (km) (50 μg/mL) for the ΔcrhR/FLAG, ΔcrhR/FLAG-CrhR, and
473 ΔcrhR/FLAG-CrhR_{K57A} strains. For the cold and high light stress experiments,
474 *Synechocystis* 6803 strains were cultivated at 30 °C under continuous white light (30-
475 50 μmol m⁻² s⁻¹) and shaken until OD_{750nm} = 0.6 was reached. For cold stress, the
476 cultures were then split into two groups: one group was cultivated at 30 °C, and the
477 second group was placed in a water bath and kept at 20 °C with ice for 2 h. Under
478 high light conditions, if not otherwise indicated, the cells were exposed to 300 μmol m⁻
479 ² s⁻¹ for 5 or 30 min. For recovery, the cells were returned to low light conditions for 2
480 h. To construct *E. coli* strains for the expression of recombinant CrhR, the crhR_{WT} and

481 *crhR_{K57A}* reading frames were cloned from the respective *Synechocystis* 6803
482 strains^{33,36} and inserted into the pQE-70 vector upstream of a segment encoding a
483 6xHis-tag and subsequently transformed into *E. coli* M15. *E. coli* strains were grown
484 in liquid LB media (10 g l⁻¹ bacto-tryptone, 5 g l⁻¹ bacto-yeast extract, 10 g l⁻¹ NaCl)
485 with continuous agitation or on agar-solidified (1.5% [w/v] Bacto agar) LB
486 supplemented with appropriate antibiotics at 37 °C.

487

488 ***RNA isolation***

489 *Synechocystis* 6803 cells were collected by vacuum filtration through hydrophilic
490 polyethersulfone filters (Pall Supor®-800, 0.8 µm), transferred to a tube containing 1
491 mL of PGTX buffer⁷¹, snap-frozen in liquid nitrogen and stored at -80 °C until further
492 use. RNA was extracted as described previously³⁶, and the RNA concentration was
493 determined using a NanoDrop ND-1000 spectrophotometer (Peqlab).

494

495 ***Recombinant protein expression and purification***

496 *E. coli* M15 was transformed with the vectors pQE70:*crhR*-6xHis and
497 pQE70:*crhR_{K57A}*-6xHis for overexpression of the recombinant His-tagged proteins
498 CrhR and CrhR_{K57A}. Overnight cultures were diluted 1:100 in fresh LB medium
499 supplemented with ampicillin and kanamycin and grown to an OD₆₀₀ of 0.7. Protein
500 expression was induced by adding isopropyl-β-D-thiogalactopyranoside (IPTG; 1 mM
501 final concentration). Three hours after IPTG induction, the cells were harvested by
502 centrifugation at 6,000 × g for 10 min at room temperature. The cell pellets were
503 resuspended in lysis buffer (50 mM NaH₂PO₄ (pH 8), 1 M NaCl, 10% glycerol, 15 mM
504 imidazole, and cComplete™ Protease Inhibitor Cocktail (Roche)) and lysed using the

505 One Shot Constant Cell Disruption System (Constant Systems Limited, United
506 Kingdom) at 2.4 kbar. Cell debris was pelleted by centrifugation at 13,000 × g for
507 30 min at 4 °C, and the lysate was filtered through 0.45 µm Supor-450 filters (Pall).
508 Recombinant proteins were immobilized on a HiTrap Talon crude 1 mL column (GE
509 Healthcare), equilibrated with buffer A (50 mM NaH₂PO₄ (pH 8), 500 mM NaCl), and
510 eluted with elution buffer B (50 mM NaH₂PO₄ (pH 8), 500 mM imidazole, 500 mM
511 NaCl).

512 Recombinant 6×His-tagged RpaB in Rosetta (DE3)+pLysS was expressed as
513 described³⁹, using phosphate-buffered TB medium instead of 2 × YT medium. RpaB
514 was purified following the same protocol³⁹ using Precellys 24 (Bertin Technologies) to
515 disrupt the cells and 0.5 mL of bedded Ni-NTA agarose beads (Qiagen GmbH) to bind
516 6×His-tagged proteins. The protein concentration was calculated using the Bradford
517 assay. The protein samples were mixed with Coomassie Plus (Bradford) Assay
518 Reagent (Thermo Fisher Scientific) in a 96-well plate. The absorption at 595 nm was
519 measured using a Victor³ 1420 multilabel plate reader (Perkin Elmer). The protein
520 concentration was calculated based on a bovine serum albumin calibration curve.

521

522 ***In vitro His-tag affinity purification and RNA pulldown***

523 Recombinant proteins were isolated from *E. coli* M15 strains via precipitation on
524 Dynabeads™ magnetic beads (125 µl), which bind histidine-tagged proteins. To prove
525 the coupling of His-tagged proteins to the beads, an aliquot (5%) of a sample
526 containing beads was washed after protein pulldown from *E. coli* M15 and used for
527 SDS–PAGE analysis. The beads coupled with the His-tagged protein were further
528 incubated in 25 mM Tris-HCl RNA elution buffer containing 2 M NaCl to eliminate

529 contaminating RNA molecules from *E. coli*, washed in 1x TBS, and incubated in the
530 cell lysate of *Synechocystis* 6803 wild type for 20 min. RNA from wild-type
531 *Synechocystis* coprecipitated with the recombinant His-tagged proteins was eluted in
532 the same RNA elution buffer and further utilized for the generation of libraries for
533 Illumina sequencing.

534

535 ***CrhR-CRISPR2 leader RNA cross-linking and enrichment of cross-linked***
536 ***peptide-RNA heteroconjugates***

537 We used 10 min of UV irradiation at 254 nm to covalently cross-link approximately 1
538 nmol of the complex formed between CRISPR2 leader RNA and the CrhR protein in
539 a volume of 100 μ L in buffer containing 50 mM NaH₂PO₄, 300 mM NaCl, and 250 mM
540 imidazole (pH 8.0) as described previously²². Subsequently, cross-linked peptide–
541 RNA heteroconjugates were enriched according to our previously established
542 workflow^{46,58}. We ethanol-precipitated the samples and resuspended the pellet in
543 buffer containing 4 M urea and 50 mM Tris-HCl (pH 7.9). The urea concentration was
544 subsequently decreased to 1 M by adding 5 vol of 50 mM Tris-HCl (pH 7.9). The RNA
545 was hydrolyzed by adding 1 μ g of RNase A and T1 (Ambion, Applied Biosystems) at
546 52 °C for 2 h, followed by digestion with benzonase at 37 °C for 1 h and trypsin
547 (Promega) digestion overnight at the same temperature. To remove the non-cross-
548 linked RNA fragments and to desalt the sample, the sample was passed through a
549 C18 column (Dr. Maisch GmbH), followed by enrichment of the cross-linked peptides
550 over an in TiO₂ column (GL Sciences) according to existing protocols⁴⁶ but using 10
551 μ m TiO₂ beads as described previously²². The samples were subsequently dried,

552 resuspended in 5% v/v acetonitrile and 1% v/v formic acid, and subjected to liquid
553 chromatography and mass spectrometry analysis.

554

555 ***Analysis by mass spectrometry***

556 A nanoliquid chromatography system (Dionex, Ultimate 3000, Thermo Fisher
557 Scientific) coupled with a Q Exactive HF instrument (Thermo Fisher Scientific)⁴⁶ was
558 used for liquid chromatography and mass spectrometry analysis. Online ESI-MS was
559 performed in data-dependent mode using the TOP20 HCD method. All precursor and
560 fragment ions were scanned in the Orbitrap, and the resulting spectra were measured
561 with high accuracy (< 5 ppm) at both the MS and MS/MS levels. A dedicated database
562 search tool was used for data analysis⁵⁸.

563

564 ***Promoter activity assay***

565 The promoter region and 5'UTR of the CRISPR2 *cas* gene operon was PCR-amplified
566 with the primer pairs *prom_cas10_luxAB_fw* and *prom_cas10_luxAB_rev* to amplify
567 the wild-type promoter and the primer pairs *prom_cas10_mut_luxAB_fw* and
568 *prom_cas10_luxAB_rev* to substitute the ACAA motif in the conserved HLR1 site with
569 a GGGG motif. For the CRISPR2 array promoter, we cloned the 100 base pair region
570 upstream of the transcription start site (68274-68373) with the primers
571 *Prom_CRISPR2_fw* and *Prom_CRISPR2_RBS_rev* to fuse the promoter with an
572 artificial ribosome binding site⁷². The pILA backbone, containing a promoterless *luxAB*
573 gene³⁸, was amplified in three parts with the primer pairs *pILA_1_fw* (or
574 *pILA_1_RBS_fw* for the CRISPR2 array promoter)/*pILA_1_rev*,
575 *pILA_2_fw/pILA_2_rev*, and *pILA_3_fw/pILA_3_rev*. Primers were designed to

576 overlap adjacent fragments. PCR fragments were assembled using AQUA cloning⁷³
577 and transformed into *E. coli* DH5alpha. The resulting strains were named pILA-
578 P_{CRISPR2_cas10nat} and pILA-P_{CRISPR2_cas10mut}, respectively. The resulting constructs were
579 subsequently transformed into an engineered *Synechocystis* 6803 strain, which
580 carries the *luxCDE* operon encoding the enzymes for the synthesis of decanal⁷⁴.
581 Segregation of the constructs was achieved by transferring single clones to new
582 BG11-0.75% Kobe Agar plates containing increasing concentrations of kanamycin
583 (10-50 µg/mL). Full segregation was verified by PCR using the primers pIGA-fw and
584 pIGA_rev and sequencing. The clones with segregated pILA constructs were grown
585 in BG11 supplemented with 50 µg/µL kanamycin, 10 µg/µL chloramphenicol and 10
586 mM glucose under continuous light (30-50 µmol photons m⁻² s⁻¹) and shaken until they
587 reached the mid-logarithmic phase (OD_{750 nm} = 0.7 to 0.8). Cultures were diluted to
588 OD_{750 nm} = 0.4 prior to exposure to high light conditions (300 µmol photons m⁻² s⁻¹) for
589 four hours. Afterward, the cells were placed back in low light (40-50 µmol m⁻² s⁻¹). As
590 shown in **Figure 2C**, DCMU was added to the cells during the high-light phase (at a
591 final concentration of 50 µM). As shown in **Figure 3B**, the cells were kept under high
592 light after the initial 4 h of exposure and were not switched back to low light again.
593 Bioluminescence was measured *in vivo* by using a VICTOR³ multiplate reader
594 (PerkinElmer) at total light counts per second. Cell suspensions (100 µL) were
595 measured in a white 96-well plate (CulturePlateTM-96, PerkinElmer). Bioluminescence
596 was measured before and after exposure to high light and every 30-60 min during
597 recovery under low light. Next, we exposed the cells to both high and low light. On the
598 basis of the results of preliminary tests, we noticed that the cellular production of
599 decanal was not sufficient for monitoring bioluminescence *in vivo*. Therefore, we
600 added 2 µL of decanal prior to the measurements. A strain carrying the promotorless

601 *luxAB* gene served as a negative control. A strain carrying the *P_{Syr9}::luxAB* construct
602 was used as a control strain. Technical triplicates were measured. Statistical relevance
603 was calculated using a 2-tailed t test in Excel (Microsoft).

604

605 ***Electrophoretic mobility shift assay (EMSA)***

606 For the binding of RpaB to wild-type and mutated HLR1 motifs, regions of interest were
607 PCR-amplified from the pILA-PCRISPR2_cas10 construct using the primers
608 EMSA_Pcas10_HLR1_rev and EMSA_Pcas10_HLR1_rev, which were labeled with
609 Cyanine 3 (Cy3) at the 5' end. The HLR1 motif from the *psbA2* promoter was used as
610 a positive control and amplified using the primer pair EMSA_PpsbA2_fw and
611 EMSA_PpsbA2_rev. Different amounts of eluted 6xHis-tagged RpaB (0-250 pmol)
612 were mixed with 0.5 pmol of Cy3-labeled DNA target in binding buffer (20 mM HEPES-
613 NaOH, pH 7.6; 40 mM KCl; 0.05 mg/mL BSA; 5% glycerol; 0.1 mM MnCl₂; 1 mM DTT;
614 0.05 µg/µL poly(dIdC)). The reaction mixture was incubated for 30 min at room
615 temperature in the dark. Electrophoresis was performed in a 3% agarose-0.5 × TBE
616 gel. The gel was run for 60 min in the dark at 80 V and 4 °C. The signals were
617 visualized with a Laser Scanner Typhoon FLA 9500 (GE Healthcare) using a green-
618 light laser and Cy3 filter.

619 Binding of CrhR or CrhR_{K57A} to 0.2 pmol or 2 pmol of Cy3-labeled RNA was performed
620 in buffer containing 20 mM HEPES-KOH (pH 8.3), 3 mM MgCl₂, 1 mM DTT, and 500
621 µg/mL BSA. As a substrate competitor, 1 µg of LightShift poly(dIdC) (Thermo Fisher
622 Scientific) was added. The reactions were incubated at room temperature for 15 min
623 prior to loading on 2% agarose-TAE gels.

624

625 ***Library preparation for RNA-seq***

626 Total RNA was subjected to Turbo DNase (Thermo Fisher Scientific), purified, and
627 size separated using an RNA Clean & Concentrator-5 Kit (Zymo Research) and
628 treated with 5'-polyphosphatase (Epicenter) as described previously³⁶. The RNA was
629 phosphorylated at the 5' end by T4 polynucleotide kinase (NEB) and ligated to the 5'
630 adapter (**Table S2**). A ThermoScript Reverse Transcriptase Kit (Invitrogen) was used
631 for cDNA synthesis, and the cDNA was amplified with Phusion High-Fidelity DNA
632 polymerase (Thermo Fisher Scientific) using PCR primers 1 and 2 (**Table S2**). The
633 PCR conditions were 98 °C for 30 s, followed by 18 cycles of denaturation at 98 °C for
634 10 s, primer annealing at 60 °C for 30 s, and extension for 15 s at 72 °C, and a final
635 extension step at 72 °C for 2 min. The ExoSAP-IT PCR Product Cleanup Reagent
636 (Thermo Fisher Scientific) was used for primer removal, and the samples were further
637 purified with the NucleoSpin® Gel and PCR Clean-up Kit and eluted with 20 µL of NE
638 buffer. A 10 µL aliquot of each prepared DNA library was sequenced on an Illumina
639 sequencer.

640

641 ***RNA-seq data analysis***

642 RNA-seq data analysis was performed using tools installed in usegalaxy.eu. The
643 paired-end or single-end reads were trimmed, and adapters and reads shorter than 14
644 nt were filtered out by Cutadapt 1.16⁷⁵. Mapping was performed on the chromosome
645 and plasmids of *Synechocystis* 6803 by Bowtie2 2.3.4.3 with the parameters for
646 paired-end reads: -l 0 -X 500 --fr --no-mixed --no-discordant --very-sensitive⁴³.
647 Unmapped reads were filtered. Peak calling of the mapped reads was performed using

648 PEAKachu 0.1.0.2 with the parameters --pairwise_replicates --norm_method deseq -
649 -mad_multiplier 2.0 --fc_cutoff 1 --padj_threshold 0.05.

650

651 **Data availability**

652 The RNA-seq data have been deposited in the SRA database
653 <https://www.ncbi.nlm.nih.gov/sra/> and are openly available under the accession
654 numbers SRX6451369 to SRX6451374. All mass spectrometry proteomics datasets
655 analyzed during this study are available in the Proteomics Identifications Database
656 (PRIDE, at <https://www.ebi.ac.uk/pride/>) under the project accession number
657 PXD047440.

658

659 **Funding**

660 This work was supported by the German Research Foundation priority program
661 SPP2141 “Much more than Defence: The Multiple Functions and Facets of CRISPR–
662 Cas” (grants HE 2544/14-2 to WRH and UR225/7-2 to HU).

663

664 **Acknowledgments**

665 We thank Yukako Hihara, Saitama, Japan, and Jogadhenu S. S. Prakash, Hyderabad,
666 India, for the *E. coli* RpaB overexpression and *Synechocystis ΔcrhR* strains,
667 respectively. We thank Richard Reinhardt and his team, Cologne, Germany, for
668 sequence analyses. The support of Sergey Moshkovskiy and Olexandr Dybkov in
669 interpreting the mass spectrometry data is greatly appreciated. We thank Monika
670 Raabe, Göttingen, Ingeborg Scholz and Viktoria Reimann, Freiburg, Germany, for

671 their expert technical assistance and George Owttrim, Edmonton, Canada, for
672 discussions about CrhR.

673

674 **Conflict of interest**

675 The authors declare the absence of conflicts of interest.

676

677 **AUTHOR CONTRIBUTIONS**

678 W.R.H. designed the work. Protein–RNA cross-linking experiments and identification
679 of cross-linked peptide–RNA bonds were performed by A.W. and H.U. The analyses
680 of RpaB effects, CRISPR2 leader and repeat-spacer accumulation were performed by
681 R.B. All the other CrhR-related experiments were carried out by A.M. The construction
682 of cDNA libraries and the analysis of the pull-down results was performed by A.M. and
683 C.S. A.M., R.B. and W.R.H. wrote the paper with contributions from all the authors.

684

685 Tables

686 **Table 1.** RNA enriched from *Synechocystis* 6803 by *in vitro* pulldown using

687 recombinant CrhR as bait. The experiment was performed in biological duplicates.

688 Acronyms: asRNA, antisense RNA; Chr, chromosome.

Peak start	Peak end	S	log ₂ FC	p _{adj}	Annotation	Description
Plasmid pSYSA						
69586	69663	+	4.57	1.25E-07	CRISPR2 array	S15R16
68651	68827	+	2.66	9.90E-08	CRISPR2 array	R3S3R4S4R5
68370	68531	+	2.42	3.47E-09	CRISPR2 leader	Transcribed leader of subtype III-Dv CRISPR Cas system and R1
69040	69125	+	1.89	1.56E-04	CRISPR2 array	R7S7R8
68828	68996	+	1.44	3.08E-03	CRISPR2 array	S5R6S6R7
69207	69355	+	1.33	2.71E-02	CRISPR2 array	S10R11S11R12
Plasmid pSYSM						
28098	28318	+	2.38	1.42E-03	slr5026-as	asRNA to DNA phosphorothioation-associated putative methyltransferase
Plasmid pSYSX						
82429	82556	+	2.12	6.29E-05	ssr6089-gene	Small 72 aa hypothetical protein
27704	27866	+	1.36	1.58E-02	ssr6030-gene	ORF and 3' UTR of small 72 aa hypothetical protein
Chr						
2888522	2888828	+	5.99	9.24E-54	slr0083-gene	DEAD-box RNA helicase CrhR
2887947	2888283	+	5.90	2.20E-60	slr0083-gene	DEAD-box RNA helicase CrhR
2888829	2889112	+	5.22	3.52E-45	slr0083-gene	DEAD-box RNA helicase CrhR
1446281	1446359	-	5.11	1.26E-10	slr2000-as	asRNA to the gene of hypothetical protein
2887606	2887893	+	4.89	2.76E-42	slr0083-gene	DEAD-box RNA helicase CrhR
2347288	2347369	+	3.06	5.96E-17	ncr1160-ncRNA	Ncr1160 (SyR11)
1242318	1242389	-	3.02	4.28E-07	slr1757-5'UTR	asRNA to gene of hypothetical protein
467144	467292	+	2.75	8.07E-15	smr0005-5'UTR, gene	5'UTR and ORF of photosystem I subunit XII
2082308	2082609	+	2.34	6.55E-07	slr0442-gene	Hypothetical protein
1167431	1167719	+	2.09	2.10E-04	smr0009-gene	Photosystem II PsbN protein
3250506	3250676	+	2.07	2.25E-06	ncr1600-ncRNA	5'UTR of <i>rni</i> encoding RNase J
991513	991704	-	2.06	3.55E-05	slr1463-gene	ATP-dependent zinc metalloprotease FtsH4
342867	343104	+	1.83	3.15E-03	ncr0150-ncRNA; slr0974-gene	Nr0150; ORF of initiation factor IF-3 (<i>infC</i>)
1654914	1655020	+	1.78	9.43E-04	ssr2194-gene	Hypothetical protein

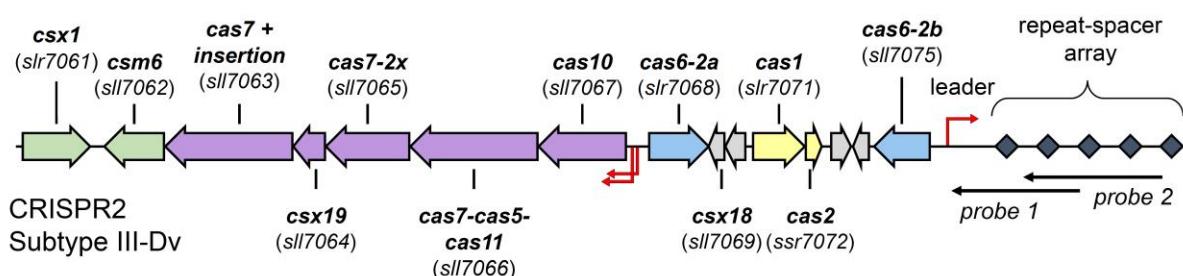
1997946	1998013	-	1.73	2.26E-02	slr0935-as-asRNA	asRNA to gene encoding hypothetical protein
2839588	2839742	+	1.70	2.20E-02	ssr1407-gene	Gene encoding hypothetical protein
1141835	1141991	-	1.62	1.69E-03	ssl1633-5'UTR, gene	5'UTR and ORF of high light-inducible polypeptide HliC
					ssl3769-gene; ncl0710-	
1558635	1558806	-	1.60	1.54E-02	ncRNA	Hypothetical protein; Ncl0710
2290635	2290796	+	1.56	6.75E-03	ssr0536-5'UTR, gene	5'UTR and ORF of hypothetical protein
3516172	3516339	-	1.56	4.78E-03	sll0430-gene	HtpG, heat shock protein 90, molecular chaperone
3204827	3204897	-	1.53	6.96E-03	sll0505-gene	Hypothetical protein
822850	822979	+	1.42	8.23E-03	slr1890-gene	ORF of bacterioferritin
2082626	2082803	+	1.39	1.59E-02	slr0442-gene	Hypothetical protein
631992	632169	-	1.33	9.24E-04	ssl1911-5'UTR, gene	5'UTR and ORF of glutamine synthetase inactivating factor IF7
1905897	1906083	-	1.31	3.45E-02	sll1434-5'UTR, gene	5'UTR and ORF of hypothetical protein
2028142	2028326	+	1.29	4.39E-02	sll0905-as-asRNA	asRNA to gene <i>maf</i>
1052427	1052589	+	1.24	3.21E-03	ssr2062-5'UTR, gene	5'UTR and ORF of hypothetical protein
2270222	2270394	-	1.14	2.26E-02	ncl1130-ncRNA	Ncl1130
117577	117740	-	1.12	2.65E-02	sll0704-5'UTR, gene	5'UTR and ORF of cysteine desulfurase

689

690

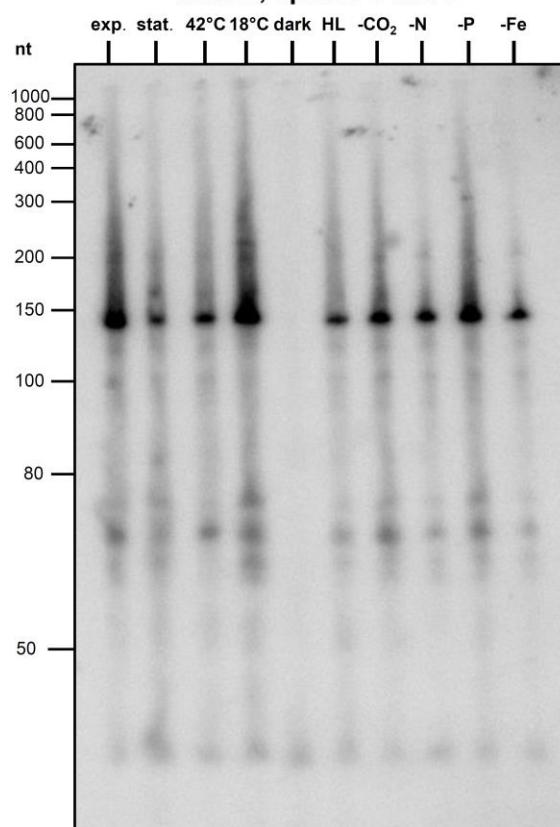
691 **Table 2.** RNA enriched from *Synechocystis* 6803 in an *in vitro* pulldown assay using
 692 recombinant His-CrhR_{K57A} as bait. The experiment was performed in biological
 693 duplicates.

Replicon	Peak start	Peak end	Strand	log2 FC	padj	Annotation	Description
Plasmid pSYSA							
pSYSA	68370	68525	+	1.66	5.47E-09	CRISPR2 leader	Transcribed leader of the subtype III-Dv CRISPR Cas system
pSYSA	100746	101032	+	1.07	0.045406	slr7104-gene	5'UTR and ORF of transposase
Plasmid pSYSM							
pSYSM	28097	28309	+	2.03	0.005485	slr5026-as	asRNA to DNA phosphorothioation-associated putative methyltransferase
pSYSM	81234	81442	+	1.33	0.006107	slr5082-gene	ORF of Rpn family recombination-promoting nuclease/putative transposase
pSYSM	108252	108558	+	1.21	0.032833	slr5118-gene	ORF of Rpn family recombination-promoting nuclease/putative transposase
pSYSM	112774	113051	+	1.16	0.033782	slr5124-gene	ORF of Rpn family recombination-promoting nuclease/putative transposase
Plasmid pSYSX							
pSYSX	82424	82546	+	1.47	0.000739	ssr6089	Small 72 aa hypothetical protein
Chr							
NC_000911	2888558	2888865	+	8.76	0	slr0083-gene	DEAD-box RNA helicase CrhR
NC_000911	2888152	2888426	+	8.22	0	slr0083-gene	DEAD-box RNA helicase CrhR
NC_000911	1796717	1796808	+	8.19	3.42E-06	slr1879-as	asRNA to the gene of two-component response regulator ycf55
NC_000911	2887878	2888146	+	7.96	0	slr0083-gene	DEAD-box RNA helicase CrhR
NC_000911	2888867	2889139	+	7.87	0	slr0083-gene, 3'UTR	ORF and 3'UTR of CrhR
NC_000911	2887594	2887822	+	6.78	0	slr0083-gene	DEAD-box RNA helicase CrhR
NC_000911	2315608	2315718	+	4.63	5.47E-09	slr0169-as	asRNA to the gene of cell division protein Ftn2 homolog
NC_000911	1446283	1446373	-	4.56	1.49E-12	slr2000-as	asRNA to gene of hypothetical protein
NC_000911	45835	46078	-	3.98	5.47E-09	slr1494-as	asRNA to the gene of putative multidrug resistance family ABC transporter
NC_000911	1242313	1242398	-	2.58	2.87E-08	slr1757-5'UTR	ORF of hypothetical protein
NC_000911	342865	343096	+	2.02	2.34E-05	ncr0150-ncRNA; slr0974-gene	Ncr0150; ORF of initiation factor IF-3 (InfC)
NC_000911	2732766	2732918	-	1.74	0.009472	slr0184-5'UTR, gene	5'UTR and ORF of group 2 RNA polymerase sigma factor SigC
NC_000911	1167395	1167724	+	1.71	0.000146	smr0009-gene	ORF of photosystem II PsbN protein
NC_000911	467114	467324	+	1.62	6.96E-22	smr0005-5'UTR, gene	5'UTR and ORF of photosystem I subunit XII
NC_000911	2082349	2082581	+	1.62	0.000109	slr0442-gene	ORF of hypothetical protein

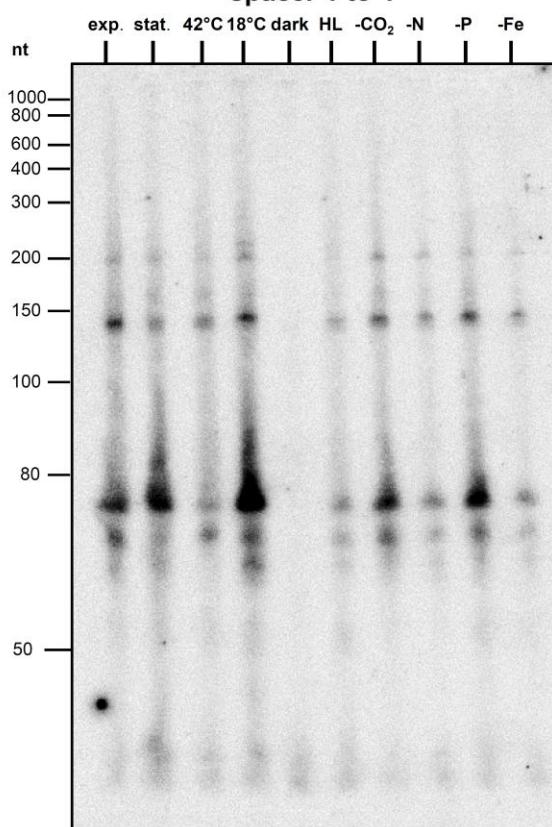

NC_000911	1807144	1807311	-	1.56	0.010578	sll1873-5'UTR, gene	5'UTR and ORF of hypothetical protein
NC_000911	117580	117742	-	1.42	1.54E-08	sll0704-5'UTR, gene	5'UTR and ORF of cysteine desulfurase
NC_000911	2347290	2347369	+	1.39	2.70E-06	ncr1160-ncRNA	Ncr1160
NC_000911	822850	823003	+	1.37	0.000606	slr1890-gene	ORF of bacterioferritin
NC_000911	2028141	2028320	+	1.36	0.005349	sll0905-as	asRNA to the gene maf
NC_000911	336220	336557	-	1.32	0.002837	sll0933-gene; sll1784-gene	ORF of hypothetical protein; ORF of 30S ribosomal protein S15
NC_000911	3204824	3204940	-	1.16	0.004903	sll0505-gene	ORF of hypothetical protein
NC_000911	1919637	1919895	-	1.13	0.004242	sll1096-5'UTR, gene	5'UTR and ORF of 30S ribosomal protein S12
NC_000911	3250459	3250679	+	1.11	0.001265	ncr1600-ncRNA	Ncr1600 (5'UTR of rnj)
NC_000911	2290587	2290787	+	1.09	0.041919	ssr0536-5'UTR, gene	5' UTR and ORF of hypothetical protein (84 aa)
NC_000911	1654915	1655063	+	1.06	0.039957	ssr2194-gene	Small 65 aa hypothetical protein
NC_000911	1052426	1052590	+	1.05	5.10E-08	ssr2062-5'UTR, gene	5'UTR and ORF of hypothetical protein
NC_000911	1211732	1211980	-	0.99	0.009472	sll1774-gene	ORF of 260 aa hypothetical protein
NC_000911	2224954	2225263	-	0.91	0.031283	sll1863-gene	ORF of 107 aa hypothetical protein
NC_000911	69119	69384	+	0.90	0.036436	slr1119-gene	ORF of 233 aa hypothetical protein
NC_000911	2644699	2644967	+	0.89	0.000729	slr0628-5'UTR, gene	5'UTR and ORF of <i>rpsN</i> , 30S ribosomal protein S14
NC_000911	632000	632168	-	0.83	9.03E-05	ssl1911-5'UTR, gene	5'UTR and ORF of glutamine synthetase inactivating factor IF7
NC_000911	862001	862259	-	0.81	0.011675	ssl2233-5'UTR, gene	5'UTR and ORF of <i>rpsT</i> , 30S ribosomal protein S20
NC_000911	458684	458969	-	0.57	0.014432	sll1515-gene	Orf of 149 aa hypothetical protein

694

695

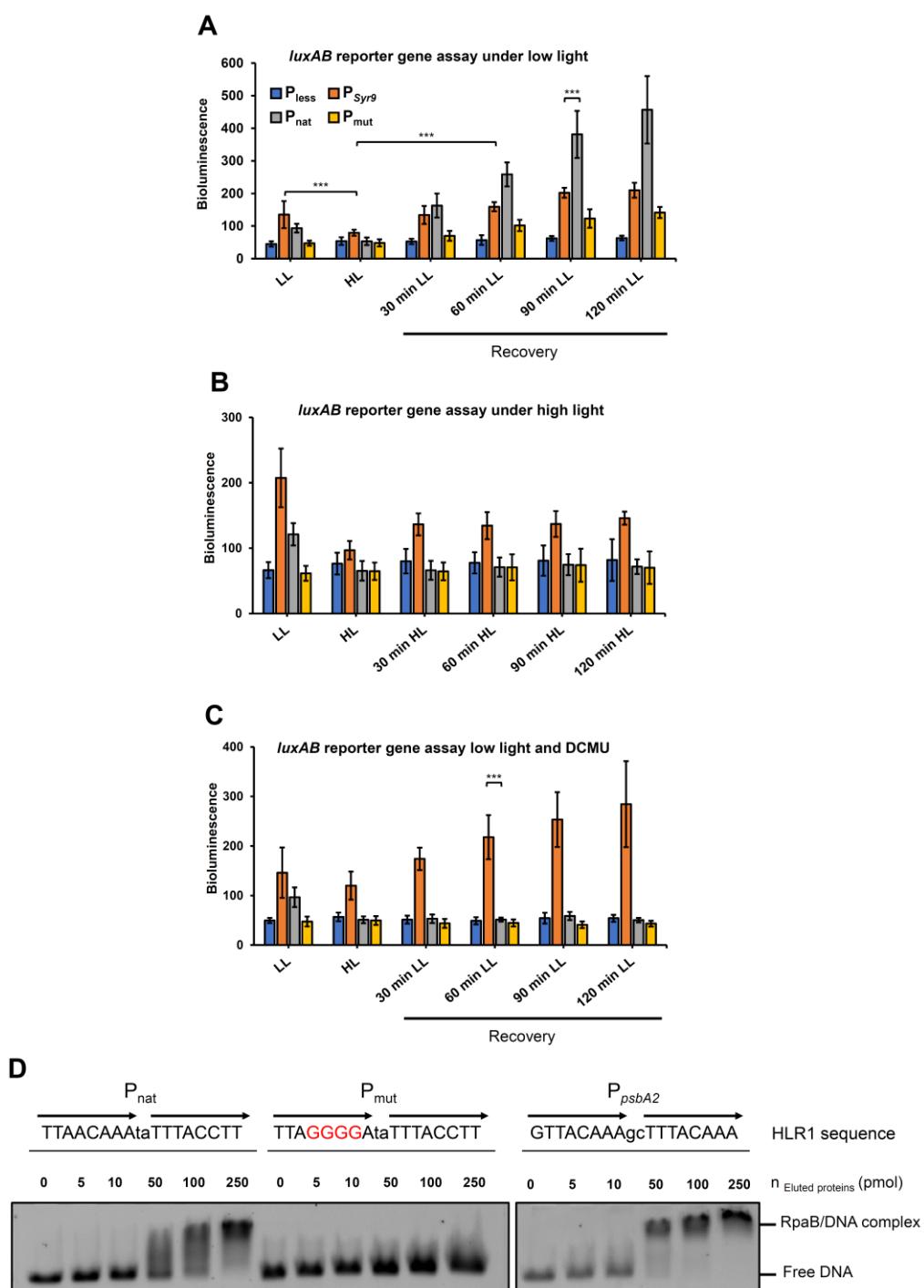

696

697 **Figures**



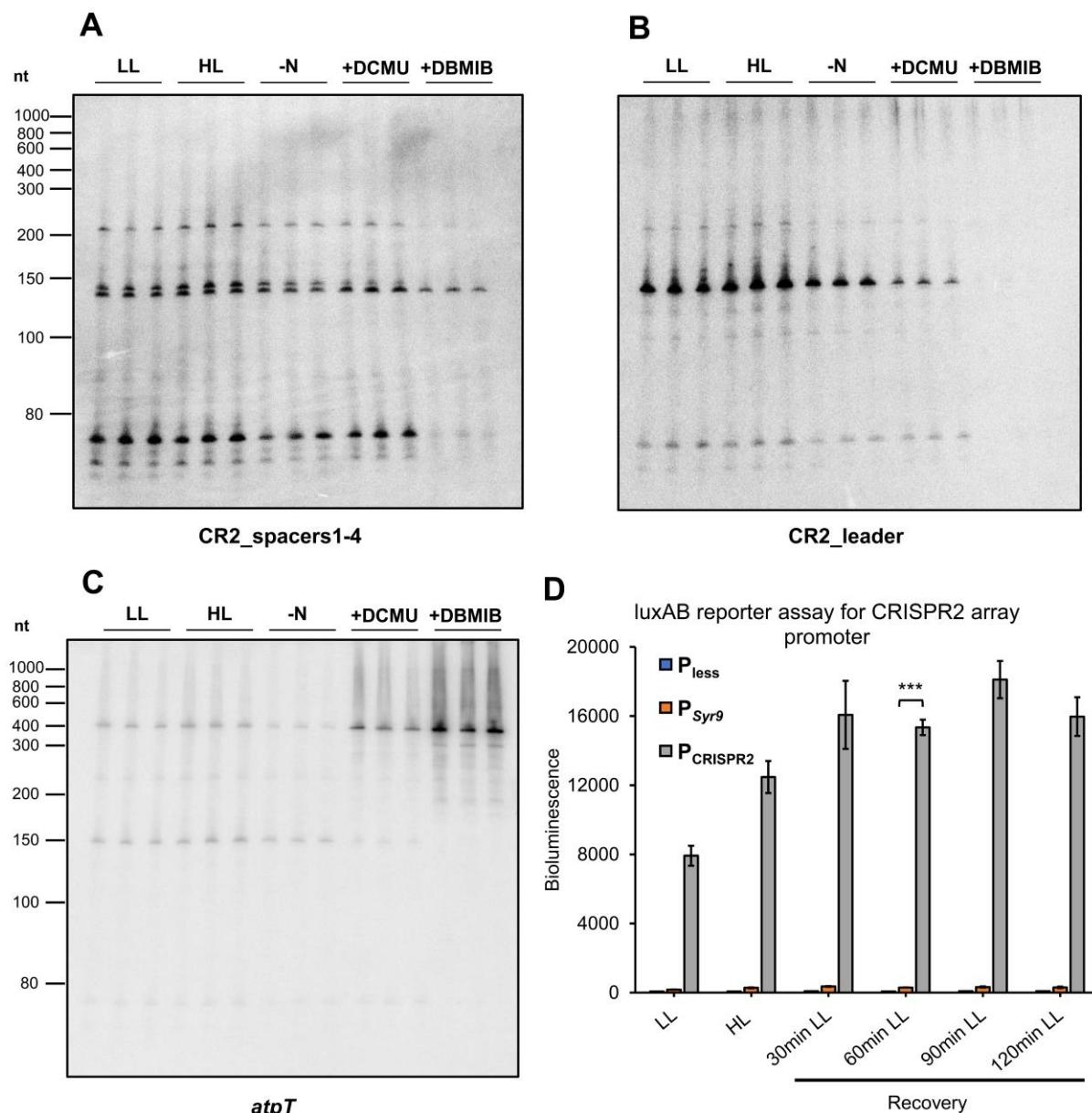
B

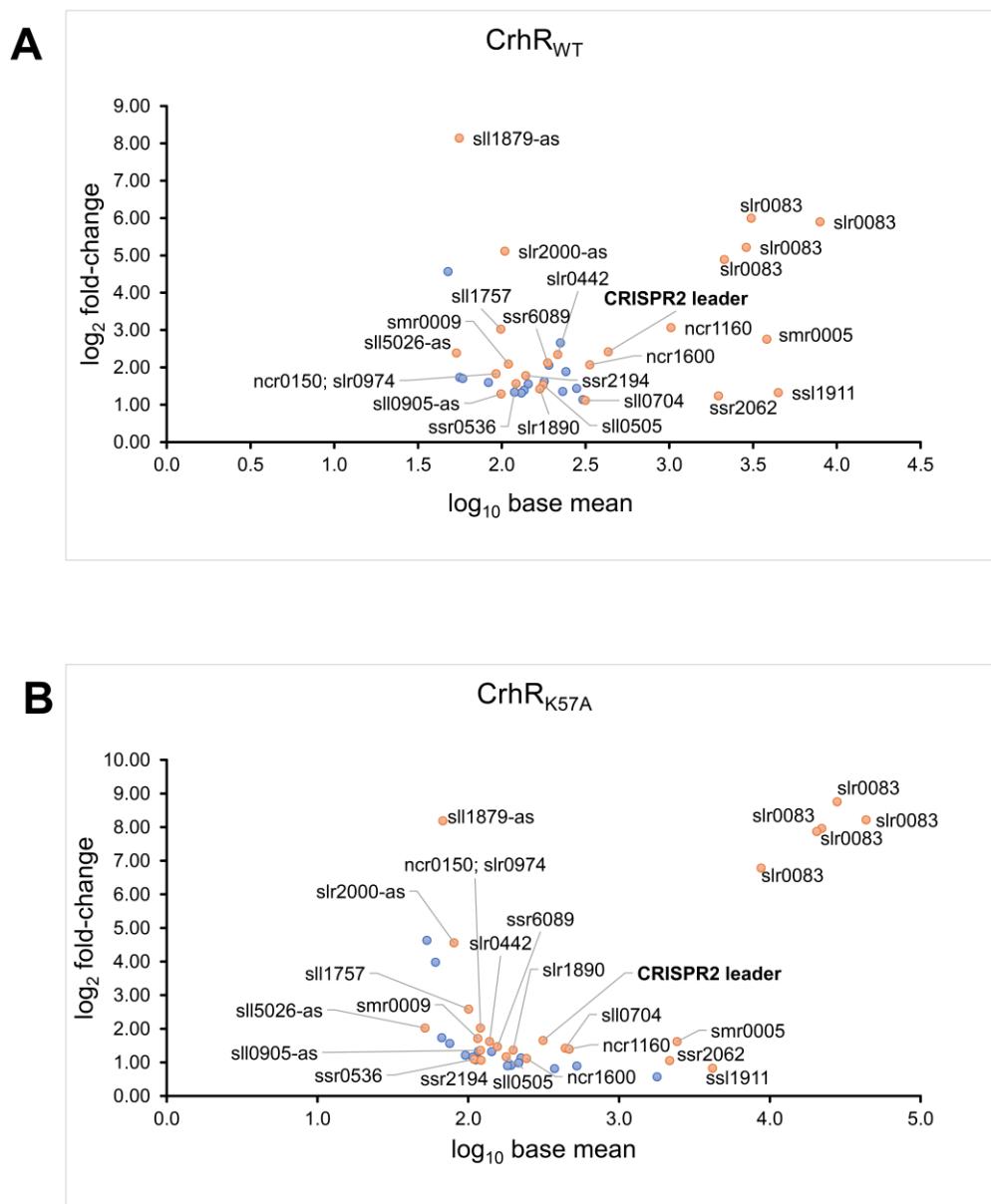
leader, spacer 1 and 2


spacer 1 to 4

698

699 **Figure 1. Organization of the type III-Dv (CRISPR2) locus in *Synechocystis* 6803**
700 **and the influence of environmental conditions. A.** The type III-Dv CRISPR–Cas
701 system is located on the pSYSA plasmid. Several cas genes are located upstream of
702 the CRISPR array, which consists of a 125 nt long leader and 56 spacers 34-46 nt in
703 length interspaced by 37 nt long repeats (gray squares). Arrows in yellow indicate cas
704 genes encoding proteins for the adaptation module; blue, cas6 genes; and purple,
705 genes encoding the effector complex. Accessory genes are indicated by green arrows,
706 and genes encoding hypothetical proteins are shown in light gray. The transcriptional

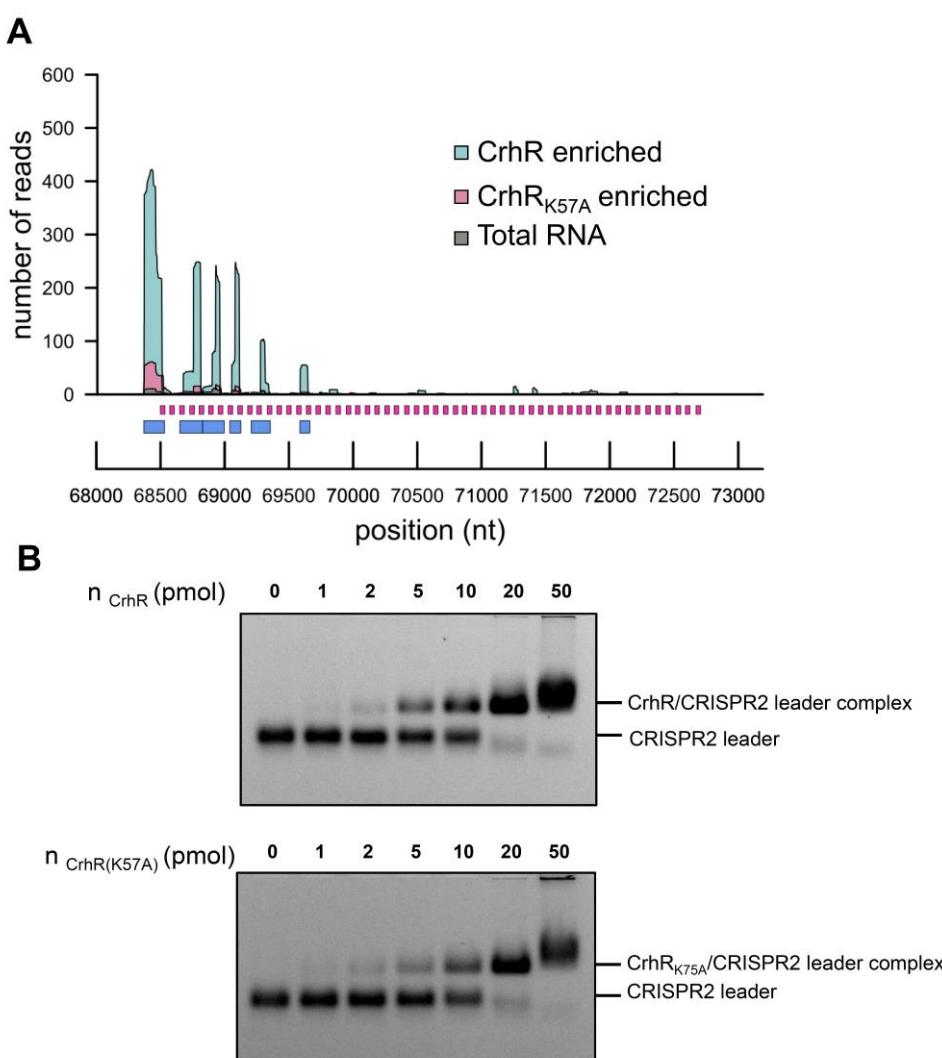

707 start sites of the CRISPR array and the effector complex operon are marked by bent
708 red arrows, and the locations of the antisense RNA probes used for Northern
709 hybridization are indicated by straight narrow arrows in black. **B.** Influence of different
710 environmental conditions on the accumulation of leader and crRNAs, including
711 spacers 1 and 2 (left panel) and spacers 1 to 4 (right panel). For Northern hybridization,
712 ^{32}P -labeled transcript probes, as indicated in panel (A), were used after separation of
713 12 μg of RNA each isolated from cultures grown under 10 different conditions on a
714 10% urea–polyacrylamide gel. Exp. (exponential phase), stat. (stationary phase), 42
715 °C (heat stress), 18 °C (cold stress), dark (darkness), HL, high light (470 μmol photons
716 $\text{m}^{-2} \text{s}^{-1}$ for 30 min), -CO₂ (limitation in inorganic carbon supply), -N (nitrogen limitation),
717 -P (phosphorus limitation) and -Fe (iron limitation). The membrane and 5S rRNA
718 hybridization to control equal loading are shown in Figure 2A of publication⁷⁶.
719


720
721

722 **Figure 2. RpaB control of the CRISPR2 *cas10* gene promoter. A.** Activity of the
723 CRISPR2 *cas10* promoter under continuous low light after exposure to high light. **B.**
724 Activity of the CRISPR2 *cas10* promoter after the shift to high light. **C.** Activity of the
725 CRISPR2 *cas10* promoter under continuous low light in the presence of DCMU after
726 exposure to high light. *Synechocystis* strains were transformed with pILA constructs

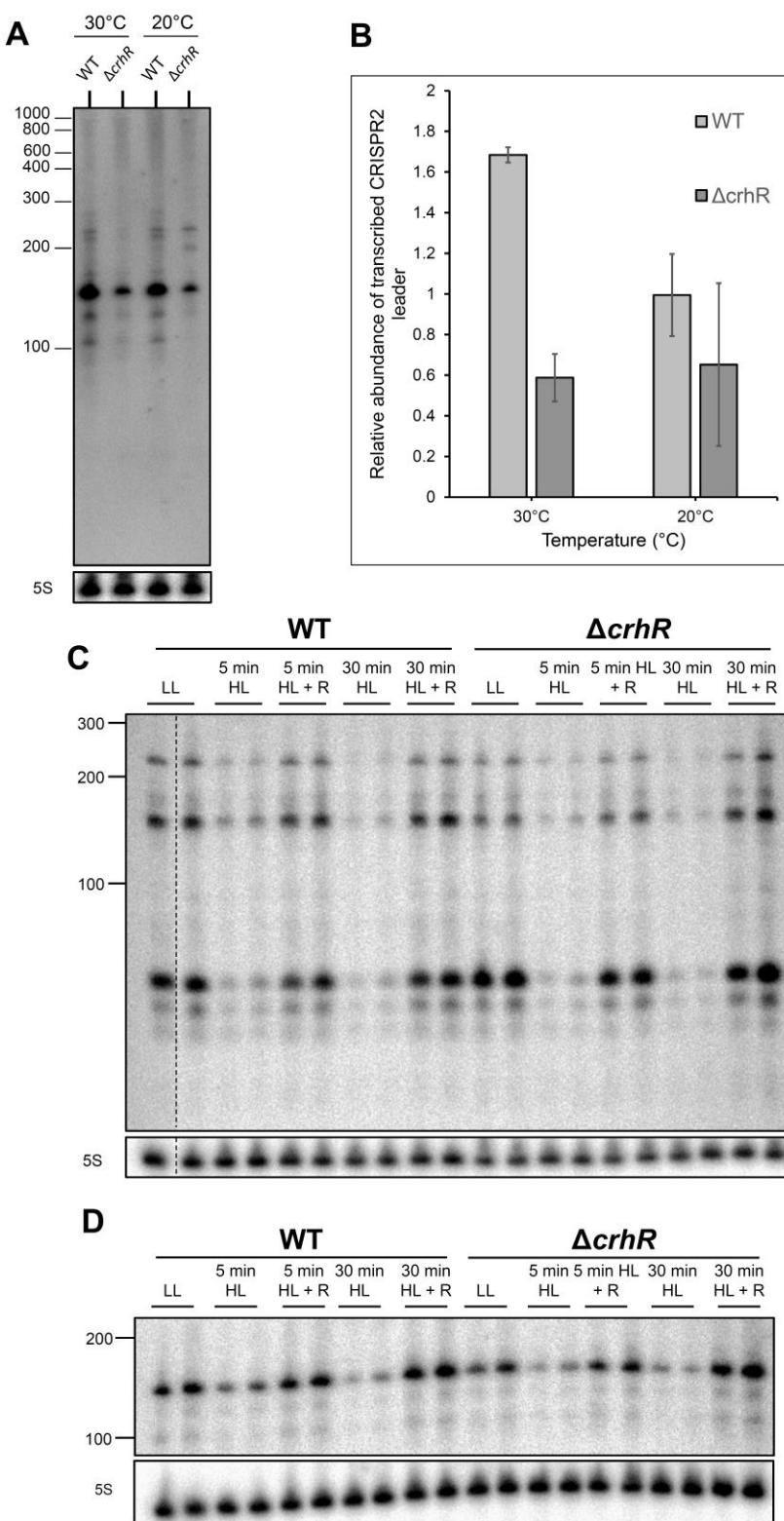
727 with a promoterless *luxAB* (P_{less}), the sRNA Syr9 promoter (P_{syr9}), the wild type (P_{wt})
728 and the modified *cas10* promoter mutated in its HLR1 site (P_{mut}). The bioluminescence
729 of 100 μL culture aliquots was measured using a Victor³ multiplate reader. The data
730 are presented as the means \pm SDs from three independent experiments. **D.**
731 Electrophoretic mobility shift assays (EMSA) were used to test the binding of purified
732 His-RpaB (**Figure S1**) to CRISPR2 *cas10* promoter fragments containing the native
733 (P_{nat}) or mutated HLR1 sequence (P_{mut}). The HLR1-containing *psbA2* promoter
734 fragment (P_{psbA2}) was used as a positive control. Substituted bases in the P_{mut}
735 fragment are highlighted in red. Then, 0.5 pmol Cy3-labeled DNA fragments 80 nt in
736 length were incubated for 15 min in the dark with His-RpaB at the indicated
737 concentrations. The samples were separated on 0.5x TBE and 3% agarose gels. The
738 arrows represent imperfect repeats at the HLR1 site. HL: high light; LL: low light.
739

740 **Figure 3. Effect of the addition of electron transport inhibitors on CRISPR leader**
741 **accumulation.** *Synechocystis* 6803 wild type was cultivated under low light (LL), high
742 light (HL), and nitrogen-depleted BG11 media (-N) and in the presence of the electron
743 transport inhibitors DCMU or DBMIB (50 μ M each). The cells were harvested after 6
744 h of incubation. Total RNA was extracted, and 10 μ g per lane was loaded onto an 8 M
745 urea-10% PAA gel. Single-stranded RNA probes were hybridized against spacers 1-
746 4 of CRISPR2 (A), the CRISPR2 leader (B), and *atpT*mRNA (C). The relative amounts
747 of CRISPR2 leader transcripts were normalized to the 5S rRNA intensity and
748 quantified. **D.** Activity of the CRISPR2 array promoter under continuous low-light
749 conditions or after exposure to high light.



751

752 **Figure 4 RNA target enrichment in the *in vitro* RNA pulldown from**
753 ***Synechocystis* 6803. A.** Recombinant His-tagged CrhR was used. **B.** The CrhR_{K57A}
754 RNA helicase mutant was used. The peaks identified with PEAKachu are shown in the
755 MA plot. Based on two biological replicates, 39 CrhR and 41 CrhR_{K57A} peaks were
756 identified as significantly enriched ($\text{padj} < 0.05$, $\log_2\text{FC} > 0$). Common peaks for CrhR
757 and CrhR_{K57A} are ivory-colored, and the unique peaks are shown in blue.


758

759

760

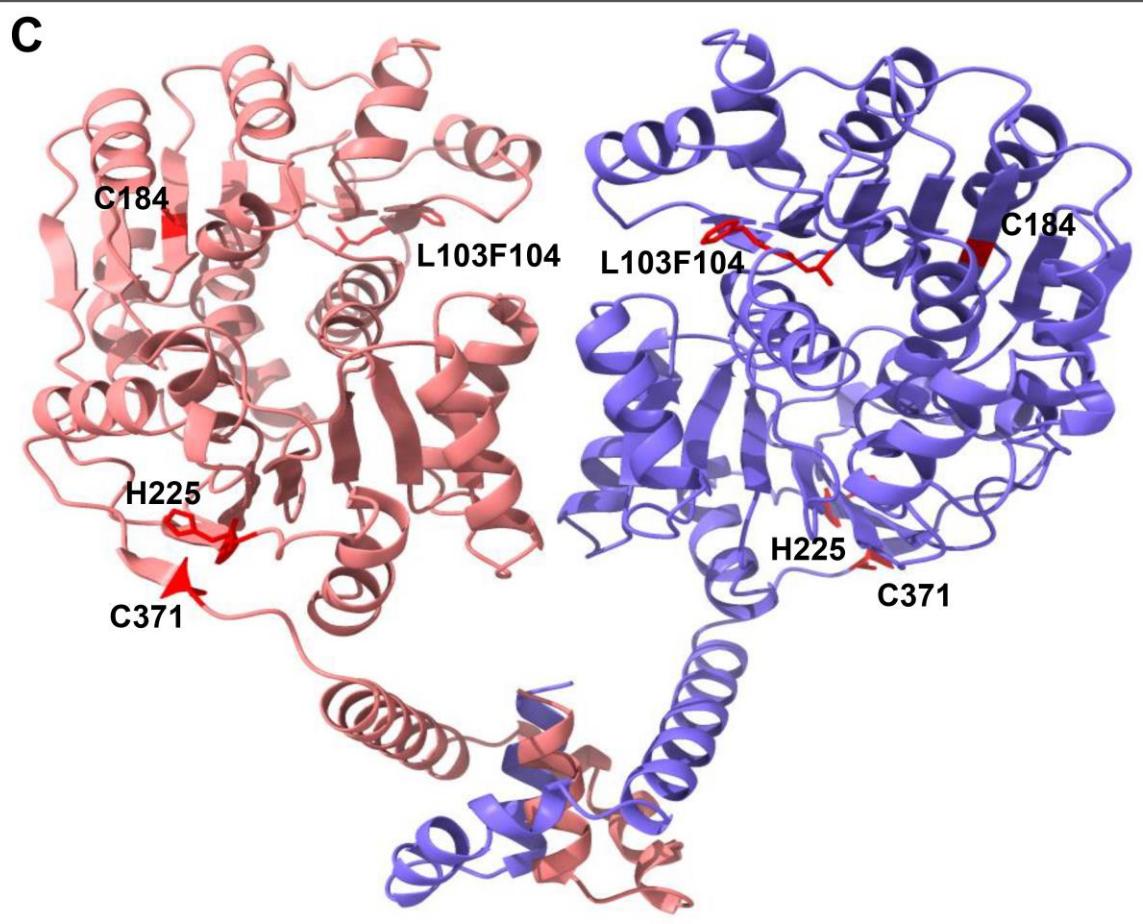
761 **Figure 5. Interaction of the CrhR wild type and K57A mutant with the CRISPR2**
762 **leader. A.** Enrichment of the CRISPR2 leader in the *in vitro* RNA pulldown from
763 *Synechocystis* 6803 using recombinant His-tagged CrhR and CrhR_{K57A}. Colored plots
764 show the read coverage of the enriched RNAs. The experiment was performed in two
765 biological replicates. CRISPR2 repeats and identified peaks are represented by
766 magenta and blue boxes, respectively. **B.** EMSA showing the binding of CrhR (upper
767 panel) and CrhR_{K57A} (lower panel) to the CRISPR2 leader RNA. EMSAs were
768 performed with 2 pmol (81 ng) Cy3-labeled CRISPR2 leader RNA and the indicated
769 amounts of purified His-tagged CrhR or CrhR_{K57A} in the presence of 1 μ g of the
770 competitor poly(dl-dC). Representative results from two independent experiments are
771 shown.

772

773 **Figure 6. CRISPR2 leader and repeat-spacer accumulation in**
774 ***Synechocystis* 6803 wild type and $\Delta crhR$ under cold and light stress conditions.**
775 **A.** Impact of $crhR$ deletion on CRISPR2 leader transcript accumulation. The wild-type
776 and $\Delta crhR$ were cultivated at 30 °C or incubated at 20 °C for 2 h. Total RNA was

777 extracted, and 10 µg was loaded per lane on an 8 M urea-10% PAA gel. The strains
778 were tested for accumulation of the CRISPR2 leader transcript by hybridization using
779 a transcript oligonucleotide. Hybridization of 5S rRNA is shown as the control for equal
780 loading. A representative of biological duplicates is shown. **B.** Relative amounts of
781 CRISPR2 leader transcripts were normalized to 5S rRNA intensity and quantified.
782 Ten µg of *Synechocystis* wild type and $\Delta crhR$ cultivated under low light (LL) or high
783 light (HL) conditions, with or without recovery (R), were separated on a 10%
784 denaturing polyacrylamide gel. A ^{32}P -labeled transcript probe specific to **C.** spacer1–
785 spacer4 or **D.** CRISPR2 leader was hybridized. Hybridization of 5S rRNA is shown for
786 the control of equal loading.

787

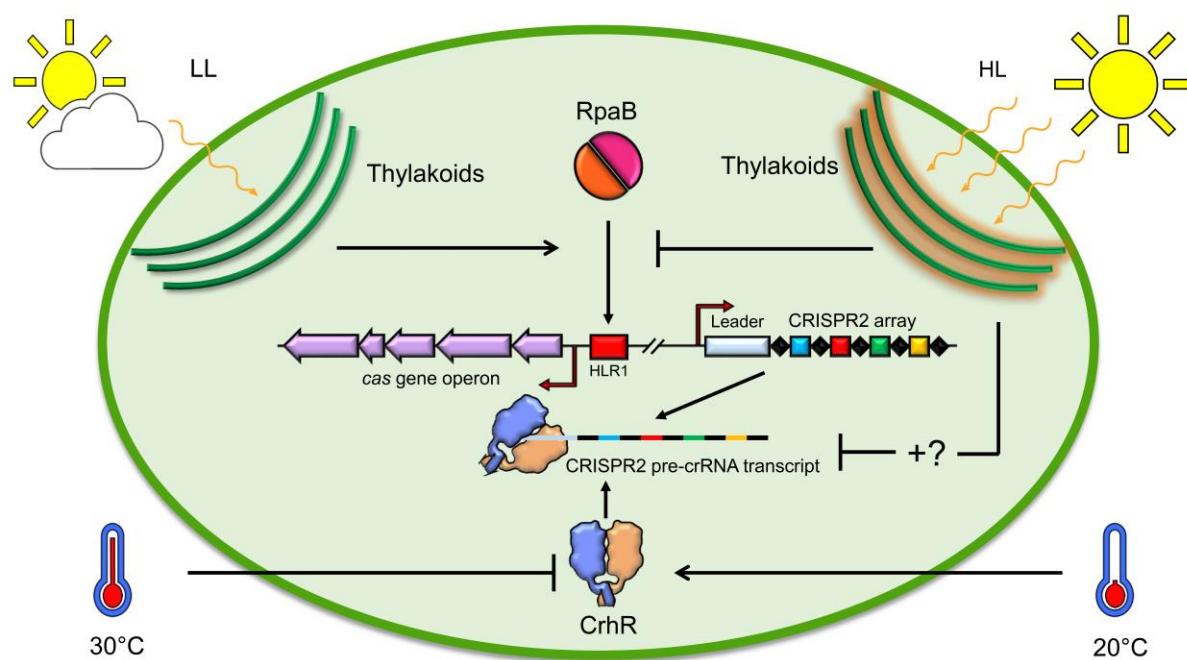

A

sample	XL_position	XL_method	RNA_adduct
mt_DEB_Rep1	QQIEV <u>C</u> TIPNR	DEB	U+C4H6O2
mt_DEB_Rep2	QQIEV <u>C</u> TIPNR	DEB	G+C4H6O2
mt_DEB_Rep2	QQIEV <u>C</u> TIPNR	DEB	U+C4H6O2
mt_UV_Rep1	Q <u>T</u> ACFSATM(Oxidation)PR	UV	U
mt_UV_Rep1	IEQQLY <u>H</u> VPR	UV	CU
mt_UV_Rep1	IEQQLY <u>H</u> VPR	UV	U
mt_UV_Rep1	QQIEV <u>C</u> TIPNR	UV	U
mt_UV_Rep1	SDWEV <u>P</u> EVDFNKPVLR	UV	U
mt_UV_Rep1	<u>L</u> FILNVYGGQSIER	UV	U
mt_UV_Rep2	IEQQLY <u>H</u> VPR	UV	U
mt_UV_Rep2	QQIEV <u>C</u> TIPNR	UV	U
mt_UV_Rep2	IEQQLY <u>H</u> VPR	UV	UU
mt_UV_Rep2	SDWEV <u>P</u> EVDFNKPVLR	UV	U
mt_UV_Rep2	<u>L</u> FILNVYGGQSIER	UV	U
mt_UV_Rep2	<u>L</u> FILNVYGGQSIER	UV	UU
wt_UV_Rep2	QQIEV <u>C</u> TIPNR	UV	U-H2O1-H1O3P1

B

MTNTLTSTFADLGLSEKRCQLLADIGFEAPTCIQTE
 AIPLLLSGRDMLAQSQTGKTAALFALPLMDRIDPE
 GDLQALILTPTRLEAQVAEAMKDFSHERR**LF****ILNV**
YGGQSIERQIRSLERGVQIVVGTGPRVIDLIDRKKL
 KLETIQWVVLDEADEMLSMGFIDDVKTILRKTPPTR
Q**TACFSATMP**REIKELVNQFLNDPALVTVKQTQSTP
T**RIEQOLYH****V****P**GWSKAKALQPILEMEDPESAIIFV
 RTKQTAADLTSRLQEAGHSVDEYHGMLSQSQRERLV
 HRFRDGKIKLIVVATDIAARGLDVNNLSHVVNFDPD
 NAETYIHRIGRTGRAGKTGKAIALVEPIDRRLRSI
 ENRLK**Q****QIEV****C****TIPNR**SQVEAKRIEKLQEQLKEALT
 GERMASFLPLVRELSDEYDAQAAIAAAALQMIYDQSC
 PHWMK**SDWEV****P****EVDFNKEPVLR**RGRNAGGGQNKSQGG
 YQGKPGKPRRSSGGRRPAYSDRQQ

C



788

789 **Figure 7. Crosslinking of CrhR to CRISPR2 leader RNA. A.** Overview of the peptide
 790 fragments and RNA adducts detected in two replicate samples harboring CrhR_{K57A}
 791 (mt) or CrhR (wt). **B.** Sequence of CrhR. The amino acid residues of CrhR_{K57A} cross-
 792 linked by UV treatment at 254 nm to the CRISPR2 leader are highlighted in red. The
 793 respective detected peptide fragments are underlined and in boldface letters. The
 794 QQIEVcTIPNR peptide was also detected for CrhR and in addition by chemical cross-

795 linking using 1,2,3,4-diepoxybutane⁷⁷ instead of UV treatment. **C.** Structure of a CrhR
796 homodimer (amino acids 9 to 427) predicted by AlphaFold2^{47,48}. The CrhR amino acid
797 residues cross-linked to the CRISPR2 leader transcript and identified by LC–MS are
798 highlighted in red. The cross-linked CrhR residues in the context of conserved
799 sequence segments and previously identified functionally relevant domains are given
800 in **Figure S4**.

801

802
803

804 **Figure 8. Multilevel redox control of CRISPR2 expression.** The transcription factor
805 RpaB binds to its HLR1 motif (red rectangle) under low light, initiating the expression
806 of the cas gene operon (purple arrow), which encodes the effector complex of the type
807 III-Dv system in *Synechocystis* 6803. Under high light conditions, the change in the
808 redox status of the photosystems, located in the thylakoid membrane (green arcs),
809 leads RpaB to dissociate from its HLR1 motif, resulting in repression of the
810 transcription of the cas gene operon (purple arrows). At the posttranscriptional level,
811 high light conditions lead to a decrease in the CRISPR2 leader and repeat-spacer
812 transcript accumulation by an unknown mechanism (question mark). The DEAD-box
813 RNA helicase CrhR recognizes the leader transcript. The attachment of helicase to
814 the CRISPR2 leader transcript is temperature-dependent. At low temperature (20 °C),
815 CrhR binds to the leader transcript, whereas at higher temperature (30 °C), it inhibits
816 this interaction. HL: high light; LL: low light; TM: thylakoid membrane.

817

818 **References**

- 819 1. Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., and Koonin, E.V. (2006).
820 A putative RNA-interference-based immune system in prokaryotes: computational
821 analysis of the predicted enzymatic machinery, functional analogies with
822 eukaryotic RNAi, and hypothetical mechanisms of action. *Biol. Direct* 1, 7.
- 823 2. Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders,
824 A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., and Oost, J. van der (2008).
825 Small CRISPR RNAs guide antiviral defense in prokaryotes. *Science* 321, 960–
826 964.
- 827 3. Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns,
828 S.J.J., Charpentier, E., Cheng, D., Haft, D.H., Horvath, P., et al. (2020).
829 Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived
830 variants. *Nat. Rev. Microbiol.* 18, 67–83.
- 831 4. Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders,
832 S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., et al. (2015). An
833 updated evolutionary classification of CRISPR-Cas systems. *Nat. Rev. Microbiol.*
834 13, 722–736.
- 835 5. Özcan, A., Krajeski, R., Ioannidi, E., Lee, B., Gardner, A., Makarova, K.S., Koonin,
836 E.V., Abudayyeh, O.O., and Gootenberg, J.S. (2021). Programmable RNA
837 targeting with the single-protein CRISPR effector Cas7-11. *Nature* 597, 720–725.
- 838 6. van Beljouw, S.P.B., Haagsma, A.C., Rodríguez-Molina, A., van den Berg, D.F.,
839 Vink, J.N.A., and Brouns, S.J.J. (2021). The gRAMP CRISPR-Cas effector is an
840 RNA endonuclease complexed with a caspase-like peptidase. *Science* 373, 1349–
841 1353.
- 842 7. Pul, Ü., Wurm, R., Arslan, Z., Geissen, R., Hofmann, N., and Wagner, R. (2010).
843 Identification and characterization of *E. coli* CRISPR-cas promoters and their
844 silencing by H-NS. *Mol. Microbiol.* 75, 1495–1512.
- 845 8. Westra, E.R., Pul, Ü., Heidrich, N., Jore, M.M., Lundgren, M., Stratmann, T.,
846 Wurm, R., Raine, A., Mescher, M., and Van Heereveld, L. (2010). H-NS-mediated
847 repression of CRISPR-based immunity in *Escherichia coli* K12 can be relieved by
848 the transcription activator LeuO. *Mol. Microbiol.* 77, 1380–1393.
- 849 9. MacRitchie, D.M., Buelow, D.R., Price, N.L., and Raivio, T.L. (2008). Two-
850 component signaling and gram-negative envelope stress response systems. *Adv.*
851 *Exp. Med. Biol.* 631, 80–110.
- 852 10. Perez-Rodriguez, R., Haitjema, C., Huang, Q., Nam, K.H., Bernardis, S., Ke, A.,
853 and DeLisa, M.P. (2011). Envelope stress is a trigger of CRISPR RNA-mediated
854 DNA silencing in *Escherichia coli*. *Mol. Microbiol.* 79, 584–599.
- 855 11. Liu, T., Liu, Z., Ye, Q., Pan, S., Wang, X., Li, Y., Peng, W., Liang, Y., She, Q., and
856 Peng, N. (2017). Coupling transcriptional activation of CRISPR-Cas system and
857 DNA repair genes by Csa3a in *Sulfolobus islandicus*. *Nucl. Acids Res.* 45, 8978–
858 8992.
- 859 12. He, F., Vestergaard, G., Peng, W., She, Q., and Peng, X. (2017). CRISPR-Cas
860 type I-A Cascade complex couples viral infection surveillance to host

861 transcriptional regulation in the dependence of Csa3b. *Nucl. Acids Res.* **45**, 1902–
862 1913.

863 13. Smith, L.M., Hampton, H.G., Yevstigneyeva, M.S., Mahler, M., Paquet, Z.S.M., and
864 Fineran, P.C. (2023). CRISPR-Cas immunity is repressed by the LysR-type
865 transcriptional regulator PigU. *Nucl. Acids Res.*, gkad1165.
866 10.1093/nar/gkad1165.

867 14. Patterson, A.G., Chang, J.T., Taylor, C., and Fineran, P.C. (2015). Regulation of
868 the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer
869 acquisition and interference. *Nucl. Acids Res.* **43**, 6038–6048.

870 15. Høyland-Kroghsbo, N.M., Paczkowski, J., Mukherjee, S., Broniewski, J., Westra,
871 E., Bondy-Denomy, J., and Bassler, B.L. (2017). Quorum sensing controls the
872 *Pseudomonas aeruginosa* CRISPR-Cas adaptive immune system. *PNAS* **114**,
873 131–135.

874 16. Høyland-Kroghsbo, N.M., Muñoz, K.A., and Bassler, B.L. (2018). Temperature, by
875 controlling growth rate, regulates CRISPR-Cas activity in *Pseudomonas*
876 *aeruginosa*. *mBio* **9**, e02184-18. 1

877 17. Murray, A.G., and Eldridge, P.M. (1994). Marine viral ecology: incorporation of
878 bacteriophage into the microbial planktonic food web paradigm. *J. Plankt. Res.* **16**,
879 627–641.

880 18. Carlson, M.C.G., Ribalet, F., Maidanik, I., Durham, B.P., Hulata, Y., Ferrón, S.,
881 Weissenbach, J., Shamir, N., Goldin, S., Baran, N., et al. (2022). Viruses affect
882 picocyanobacterial abundance and biogeography in the North Pacific Ocean. *Nat.*
883 *Microbiol.* **7**, 570–580.

884 19. Scholz, I., Lange, S.J., Hein, S., Hess, W.R., and Backofen, R. (2013). CRISPR-
885 Cas systems in the cyanobacterium *Synechocystis* sp. PCC6803 exhibit distinct
886 processing pathways involving at least two Cas6 and a Cmr2 protein. *PLoS ONE*
887 **8**, e56470.

888 20. Reimann, V., Alkhnbashi, O.S., Saunders, S.J., Scholz, I., Hein, S., Backofen, R.,
889 and Hess, W.R. (2017). Structural constraints and enzymatic promiscuity in the
890 Cas6-dependent generation of crRNAs. *Nucl. Acids Res.* **45**, 915–925.

891 21. Kieper, S.N., Almendros, C., Behler, J., McKenzie, R.E., Nóbrega, F.L., Haagsma,
892 A.C., Vink, J.N.A., Hess, W.R., and Brouns, S.J.J. (2018). Cas4 facilitates PAM-
893 compatible spacer selection during CRISPR adaptation. *Cell Rep.* **22**, 3377–338.

894 22. Behler, J., Sharma, K., Reimann, V., Wilde, A., Urlaub, H., and Hess, W.R. (2018).
895 The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a
896 CRISPR–Cas subtype III-Bv system. *Nat. Microbiol.* **3**, 367–377.

897 23. Scholz, I., Lott, S.C., Behler, J., Gärtner, K., Hagemann, M., and Hess, W.R.
898 (2019). Divergent methylation of CRISPR repeats and cas genes in a subtype I-D
899 CRISPR-Cas-system. *BMC Microbiol.* **19**, 147.1-147.11.

900 24. McBride, T.M., Schwartz, E.A., Kumar, A., Taylor, D.W., Fineran, P.C., and
901 Fagerlund, R.D. (2020). Diverse CRISPR-Cas complexes require independent
902 translation of small and large subunits from a single gene. *Mol. Cell* **80**, 971–979.

903 25. Schwartz, E., Bravo, J., Ahsan, M., Macias, L., McCafferty, C., Dangerfield, T.,
904 Walker, J., Brodbelt, J., Palermo, G., Fineran, P., et al. (2023). Type III CRISPR-
905 Cas effectors act as protein-assisted ribozymes during RNA cleavage. *Res. Sq.*,
906 rs.3.rs-2837968.

907 26. Hein, S., Scholz, I., Voß, B., and Hess, W.R. (2013). Adaptation and modification
908 of three CRISPR loci in two closely related cyanobacteria. *RNA Biol.* 10, 852–864.

909 27. Makarova, K.S., Anantharaman, V., Grishin, N.V., Koonin, E.V., and Aravind, L.
910 (2014). CARF and WYL domains: ligand-binding regulators of prokaryotic defense
911 systems. *Front. Genet.* 5, 102.

912 28. Garcia-Doval, C., Schwede, F., Berk, C., Rostøl, J.T., Niewoehner, O., Tejero, O.,
913 Hall, J., Marraffini, L.A., and Jinek, M. (2020). Activation and self-inactivation
914 mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6.
915 *Nat. Commun.* 11, 1596.

916 29. Ding, J., Schuergers, N., Baehre, H., and Wilde, A. (2022). Enzymatic properties
917 of CARF-domain proteins in *Synechocystis* sp. PCC 6803. *Front. Microbiol.* 13,
918 1046388.

919 30. Riediger, M., Kadowaki, T., Nagayama, R., Georg, J., Hihara, Y., and Hess, W.R.
920 (2019). Biocomputational analyses and experimental validation identify the regulon
921 controlled by the redox-responsive transcription factor RpaB. *iScience* 15, 316–
922 331.

923 31. Kujat, S.L., and Owttrim, G.W. (2000). Redox-regulated RNA helicase expression.
924 *Plant Physiol.* 124, 703–714.

925 32. Chamot, D., Colvin, K.R., Kujat-Choy, S.L., and Owttrim, G.W. (2005). RNA
926 structural rearrangement via unwinding and annealing by the cyanobacterial RNA
927 helicase, CrhR. *J. Biol. Chem.* 280, 2036–2044.

928 33. Prakash, J.S.S., Krishna, P.S., Sirisha, K., Kanesaki, Y., Suzuki, I., Shivaji, S., and
929 Murata, N. (2010). An RNA helicase, CrhR, regulates the low-temperature-
930 inducible expression of heat-shock genes *groES*, *groEL1* and *groEL2* in
931 *Synechocystis* sp. PCC 6803. *Microbiology* 156, 442–451.

932 34. Georg, J., Rosana, A.R.R., Chamot, D., Migur, A., Hess, W.R., and Owttrim, G.W.
933 (2019). Inactivation of the RNA helicase CrhR impacts a specific subset of the
934 transcriptome in the cyanobacterium *Synechocystis* sp. PCC 6803. *RNA Biol.* 16,
935 1205–1214.

936 35. Rowland, J.G., Simon, W.J., Prakash, J.S.S., and Slabas, A.R. (2011). Proteomics
937 reveals a role for the RNA helicase *crhR* in the modulation of multiple metabolic
938 pathways during cold acclimation of *Synechocystis* sp. PCC6803. *J. Proteome*
939 *Res.* 10, 3674–3689.

940 36. Migur, A., Heyl, F., Fuss, J., Srikumar, A., Huettel, B., Steglich, C., Prakash, J.S.S.,
941 Reinhardt, R., Backofen, R., Owttrim, G.W., et al. (2021). The temperature-
942 regulated DEAD-box RNA helicase CrhR interactome: Autoregulation and
943 photosynthesis-related transcripts. *J Exp Bot* 72, 7564–7579.

944 37. Kopf, M., Klähn, S., Scholz, I., Matthiessen, J.K.F., Hess, W.R., and Voß, B.
945 (2014). Comparative analysis of the primary transcriptome of *Synechocystis* sp.
946 PCC 6803. *DNA Res.* 21, 527–539.

947 38. Kunert, A., Hagemann, M., and Erdmann, N. (2000). Construction of promoter
948 probe vectors for *Synechocystis* sp. PCC 6803 using the light-emitting reporter
949 systems Gfp and LuxAB. *J. Microbiol. Methods* 41, 185–194.

950 39. Kadokawa, T., Nagayama, R., Georg, J., Nishiyama, Y., Wilde, A., Hess, W.R., and
951 Hihara, Y. (2016). A feed-forward loop consisting of the response regulator RpaB
952 and the small RNA PsrR1 controls light acclimation of photosystem I gene
953 expression in the cyanobacterium *Synechocystis* sp. PCC 6803. *Plant Cell Physiol.*
954 57, 813–823.

955 40. Eriksson, J., Salih, G.F., Ghebramedhin, H., and Jansson, C. (2000). Deletion
956 mutagenesis of the 5' *psbA2* region in *Synechocystis* 6803: Identification of a
957 putative cis element involved in photoregulation. *Mol. Cell Biol. Res. Comm.* 3,
958 292–298.

959 41. Song, K., Baumgartner, D., Hagemann, M., Muro-Pastor, A.M., Maaß, S., Becher,
960 D., and Hess, W.R. (2022). AtpΘ is an inhibitor of F0F1 ATP synthase to arrest
961 ATP hydrolysis during low-energy conditions in cyanobacteria. *Curr. Biol.* 32, 136–
962 148.e5.

963 42. Song, K., Hagemann, M., Georg, J., Maaß, S., Becher, D., and Hess, W.R. (2022).
964 Expression of the cyanobacterial FoF1 ATP synthase regulator AtpΘ depends on
965 small DNA-binding proteins and differential mRNA stability. *Microbiol. Spectr.* 10,
966 e0256221.

967 43. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie
968 2. *Nat. Methods* 9, 357–359. 1.

969 44. Bischler, T. (2022). PEAKachu. <https://github.com/tbischler/PEAKachu>

970 45. Rosana, A.R.R., Whitford, D.S., Migur, A., Steglich, C., Kujat-Choy, S.L., Hess,
971 W.R., and Owttrim, G.W. (2020). RNA helicase-regulated processing of the
972 *Synechocystis rimO-crhR* operon results in differential cistron expression and
973 accumulation of two sRNAs. *J. Biol. Chem.* 295, 6372–6386.

974 46. Sharma, K., Hrle, A., Kramer, K., Sachsenberg, T., Staals, R.H.J., Randau, L.,
975 Marchfelder, A., van der Oost, J., Kohlbacher, O., Conti, E., et al. (2015). Analysis
976 of protein-RNA interactions in CRISPR proteins and effector complexes by UV-
977 induced cross-linking and mass spectrometry. *Methods* 89, 138–148.

978 47. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
979 Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly
980 accurate protein structure prediction with AlphaFold. *Nature* 596, 583–589.

981 48. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger,
982 M. (2022). ColabFold: making protein folding accessible to all. *Nat. Methods* 19,
983 679–682.

984 49. Whitman, B.T., Murray, C.R.A., Whitford, D.S., Paul, S.S., Fahlman, R.P., Glover,
985 M.J.N., and Owttrim, G.W. (2022). Degron-mediated proteolysis of CrhR-like
986 DEAD-box RNA helicases in cyanobacteria. *J. Biol. Chem.* 298, 101925.

987 50. Huen, J., Lin, C.-L., Golzarroshan, B., Yi, W.-L., Yang, W.-Z., and Yuan, H.S.
988 (2017). Structural Insights into a unique dimeric DEAD-box helicase CshA that
989 promotes RNA decay. *Structure* 25, 469–481. 1

990 51. Yang, C.-D., Chen, Y.-H., Huang, H.-Y., Huang, H.-D., and Tseng, C.-P. (2014).
991 CRP represses the CRISPR/Cas system in *Escherichia coli*: evidence that
992 endogenous CRISPR spacers impede phage P1 replication. *Mol. Microbiol.* 92,
993 1072–1091. 1

994 52. Wilde, A., and Hihara, Y. (2016). Transcriptional and posttranscriptional regulation
995 of cyanobacterial photosynthesis. *Biochim. Biophys. Acta* 1857, 296–308.

996 53. Lillestøl, R.K., Shah, S.A., Brügger, K., Redder, P., Phan, H., Christiansen, J., and
997 Garrett, R.A. (2009). CRISPR families of the crenarchaeal genus *Sulfolobus*:
998 bidirectional transcription and dynamic properties. *Mol. Microbiol.* 72, 259–272.

999 54. Erdmann, S., and Garrett, R.A. (2012). Selective and hyperactive uptake of foreign
1000 DNA by adaptive immune systems of an archaeon via two distinct mechanisms.
1001 *Mol. Microbiol.* 85, 1044–1056.

1002 55. Díez-Villaseñor, C., Guzmán, N.M., Almendros, C., García-Martínez, J., and
1003 Mojica, F.J.M. (2013). CRISPR-spacer integration reporter plasmids reveal distinct
1004 genuine acquisition specificities among CRISPR-Cas I-E variants of *Escherichia*
1005 *coli*. *RNA Biol.* 10, 792–802.

1006 56. Yosef, I., Shitrit, D., Goren, M.G., Burstein, D., Pupko, T., and Qimron, U. (2013).
1007 DNA motifs determining the efficiency of adaptation into the *Escherichia coli*
1008 CRISPR array. *PNAS* 110, 14396–14401.

1009 57. Lin, P., Pu, Q., Wu, Q., Zhou, C., Wang, B., Schettler, J., Wang, Z., Qin, S., Gao,
1010 P., Li, R., et al. (2019). High-throughput screen reveals sRNAs regulating crRNA
1011 biogenesis by targeting CRISPR leader to repress Rho termination. *Nat. Commun.*
1012 10, 3728.

1013 58. Kramer, K., Sachsenberg, T., Beckmann, B.M., Qamar, S., Boon, K.-L., Hentze,
1014 M.W., Kohlbacher, O., and Urlaub, H. (2014). Photo-cross-linking and high-
1015 resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding
1016 proteins. *Nat. Methods* 11, 1064–1070..

1017 59. Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box
1018 RNA helicase family. *Nat. Rev. Mol. Cell Biol.* 12, 505–516.

1019 60. Shchepachev, V., Bresson, S., Spanos, C., Petfalski, E., Fischer, L., Rappaport,
1020 J., and Tollervey, D. (2018). Defining the RNA interactome by total RNA-
1021 associated protein purification. Preprint at bioRxiv, 10.1101/436253
1022 10.1101/436253.

1023 61. Knörlein, A., Sarnowski, C.P., de Vries, T., Stoltz, M., Götze, M., Aebersold, R.,
1024 Allain, F.H.-T., Leitner, A., and Hall, J. (2022). Nucleotide-amino acid π-stacking
1025 interactions initiate photo cross-linking in RNA-protein complexes. *Nat. Commun.*
1026 13, 2719. 1

1027 62. Bourgeois, C.F., Mortreux, F., and Auboeuf, D. (2016). The multiple functions of
1028 RNA helicases as drivers and regulators of gene expression. *Nat. Rev. Mol. Cell
1029 Biol.* 17, 426–438.

1030 63. Khemici, V., and Linder, P. (2018). RNA helicases in RNA decay. *Biochem. Soc.
1031 Trans.* 46, 163–172.

1032 64. Rosana, A.R.R., Chamot, D., and Owttrim, G.W. (2012). Autoregulation of RNA
1033 helicase expression in response to temperature stress in *Synechocystis* sp. PCC
1034 6803. PLoS ONE 7, e48683.

1035 65. Sireesha, K., Radharani, B., Krishna, P.S., Sreedhar, N., Subramanyam, R.,
1036 Mohanty, P., and Prakash, J.S.S. (2012). RNA helicase, CrhR is indispensable for
1037 the energy redistribution and the regulation of photosystem stoichiometry at low
1038 temperature in *Synechocystis* sp. PCC6803. Biochim. Biophys. Acta 1817, 1525–
1039 1536.

1040 66. Rosana, A.R.R., Whitford, D.S., Fahlman, R.P., and Owttrim, G.W. (2016).
1041 Cyanobacterial RNA helicase CrhR localizes to the thylakoid membrane region
1042 and cosediments with degradosome and polysome complexes in *Synechocystis*
1043 sp. strain PCC 6803. J. Bacteriol. 198, 2089–2099. 10.1128/JB.00267-16.

1044 67. Clokie, M.R.J., and Mann, N.H. (2006). Marine cyanophages and light.
1045 Environmental Microbiology 8, 2074–2082.

1046 68. Chou-Zheng, L., and Hatoum-Aslan, A. (2019). A type III-A CRISPR-Cas system
1047 employs degradosome nucleases to ensure robust immunity. Elife 8, e45393.

1048 69. Stanier, R.Y., Deruelles, J., Rippka, R., Herdman, M., and Waterbury, J.B. (1979).
1049 Generic assignments, strain histories and properties of pure cultures of
1050 cyanobacteria. Microbiology 111, 1–61.

1051 70. Zhang, L., McSpadden, B., Pakrasi, H.B., and Whitmarsh, J. (1992). Copper-
1052 mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium
1053 *Synechocystis* 6803. J. Biol. Chem. 267, 19054–19059.

1054 71. Pinto, F., Thapper, A., Sontheim, W., and Lindblad, P. (2009). Analysis of current
1055 and alternative phenol based RNA extraction methodologies for cyanobacteria.
1056 BMC Mol. Biol. 10, 79. 1

1057 72. Kelly, C.L., Taylor, G.M., Hitchcock, A., Torres-Méndez, A., and Heap, J.T. (2018).
1058 A rhamnose-inducible system for precise and temporal control of gene expression
1059 in cyanobacteria. ACS Synth. Biol. 7, 1056–1066.

1060 73. Beyer, H.M., Gonschorek, P., Samodelov, S.L., Meier, M., Weber, W., and
1061 Zurbriggen, M.D. (2015). AQUA cloning: a versatile and simple enzyme-free
1062 cloning approach. PLOS ONE 10, e0137652.

1063 74. Klähn, S., Baumgartner, D., Pfreundt, U., Voigt, K., Schön, V., Steglich, C., and
1064 Hess, W.R. (2014). Alkane biosynthesis genes in cyanobacteria and their
1065 transcriptional organization. Front. Bioeng. Biotechnol. 2, 24.

1066 75. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
1067 sequencing reads. EMBnet j. 17.

1068 76. Zhan, J., Steglich, C., Scholz, I., Hess, W.R., and Kirilovsky, D. (2021). Inverse
1069 regulation of light harvesting and photoprotection is mediated by a 3'-end-derived
1070 sRNA in cyanobacteria. Plant Cell 33, 358–380.

1071 77. Bäumert, H.G., Sköld, S.-E., and Kurland, C.G. (1978). RNA-protein
1072 neighbourhoods of the ribosome obtained by crosslinking. Eur. J. Biochem. 89,
1073 353–359.

1074