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Abstract:

The mammalian hippocampus has been compared to a Global Positioning System (GPS) that
enables spatial navigation. This notion has been primarily drawn from studies conducted in
nocturnal mammals, such as rats; that lack many adaptations to daylight vision compared to diurnal
primates. Here we demonstrate that during foraging in a 3D maze, the common marmoset, a new
world diurnal primate with foveal, stereo-color vision, predominantly uses rapid head-gaze shifts
to visually explore their surroundings while remaining stationary, and then minimizes head
movements to navigate towards goals. On the other hand, rats, mainly move their head at low
velocities while locomoting to explore the environment using their whiskers. These differences in
exploration-navigation strategies reflect the species' sensory adaptations to different ecological
niches. In the marmoset hippocampus CA3/CAL regions putative pyramidal neurons show
selectivity for 3D view, head direction, and less for place, but mainly mixed selectivity for
combinations of these variables. Despite weak place selectivity, the spatial position of the animal
in the maze can be decoded from the activity of small ensembles of mixed selective neurons.
Inhibitory interneurons are tuned to 3D angular head velocity and translation speed, with most
cells showing mixed selectivity for both variables. Finally, marmosets lack the rhythmic theta
oscillations of local field potentials seen during locomotion in rats. Instead, they show resetting of
theta oscillations triggered by head-gaze shifts that co-occurred with the activation of inhibitory
interneurons, followed by various modulations in the activity of pyramidal cells. Our results show
that the marmoset visual exploration/navigation strategies and the hippocampal neuronal
specializations supporting them diverge from those observed in rats, reflecting the far-sensing
capabilities of the marmoset visual system adapted to diurnal lifestyle.

Introduction:

The hippocampus is a phylogenetically ancient structure of the mammalian brain that has been
implicated in spatial memory and navigation!=. Understanding how the hippocampus supports a
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cognitive map-like representation of the outer world first came from recordings of single-neuron
spiking activity in freely moving rats, describing individual neurons that selectively increased their
firing rate when subjects occupied a specific location within a maze®*. Following the discovery of
place cells, a rich diversity of spatial encoding neurons has been reported within the hippocampal
formation and in functionally related brain areas®> 3. Based on the results of spatial navigation
studies in rodents, the hippocampus has been deemed a Global Positioning System (GPS) that
enables the formation of a cognitive map of the environment. However, recent navigation studies
in primate species such as macaques and marmosets have not replicated the range of neuronal
selectivities found in the hippocampus of rats and mice!**°. Thus, it is unclear whether the analogy
of the hippocampus as a GPS generalizes to the aforementioned primate species.

In primates, hippocampus studies are much scarcer than in rats and mice. Some studies in macaque
monkeys have reported that neurons in the hippocampus encode the direction of the subject’s gaze
in space (view)*1®20 It has been proposed that diurnal primates’ highly developed visual
capabilities?* may have shaped neuronal selectivities in the hippocampus'®2223, Indeed, macaques
and marmosets with diurnal lifestyle and foveal, stereoscopic color vision, have developed a head-
gaze control system that allows orienting the fovea towards locations of interest while inspecting
visual scenes?*%, However, several studies in non-human primates (NHPs) have mainly used
paradigms in which the subject is placed in a primate chair with the head and/or body restrained
while performing visual tasks on a computer screen’’2°, These experimental paradigms may
deprive the hippocampus of multisensory inputs such as vestibular and proprioceptive that occur
during real-world navigation.

A few studies in freely moving monkeys'#*%32 have reported that some hippocampal neurons are
tuned for variables related to place, gaze direction or view, head movements and the interaction
between view and place. One study trained marmosets to navigate a linear maze under constrained
conditions (tethered) and described the existence of place-like cells in the hippocampus®.
Interestingly, they describe that rhythmic hippocampal theta oscillations are not omnipresent
during locomotion-exploratory behavior®®, as is the case in mice and rats®>%. In other mammalian
species, such as the Egyptian fruit bat3* theta oscillations in the hippocampus occur in short bouts.
Finally, some studies have documented that in humans and macaque monkeys, theta oscillations
are coupled to saccades, and they have variable frequencies®'.

In the present study, we test the hypothesis that diurnal primates have developed different
exploration-navigation strategies compared to nocturnal rodents such as rats, and that such
strategies have shaped the physiology of the hippocampus. We investigate the exploration-
navigation strategies of marmosets during unrestricted 3D foraging and compare them to those of
freely moving rats. We built a setup that allowed for continuous tracking of the marmoset body
position and head direction in 3D and recording neural activity from the hippocampus (CA3 and
CA1l) wirelessly. We found that marmosets navigate 3D environments using quadrupedal
locomotion, during which the head-gaze remains relatively stable. They make frequent stops,
during which they execute sequences of rapid head-gaze movements toward locations of interest
(visual exploration). This is different from rats that often move their heads at low velocities during
locomotion, ‘scanning’ the environment with their whiskers®. Additionally, we use wireless
recordings of neural activity and demonstrate that marmoset hippocampal neurons in subfields
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CA3 and CA1 predominantly encode a mix of variables related to 3D head/gaze direction, speed,
and position in space. We found a predominance of 3D view, head direction and spatial position
coding in putative pyramidal (principal) cells, and a mix of 3D angular head velocity (AHV) and
translation speed (TS) in putative interneurons. We demonstrate that from small ensembles of
mixed selective neurons, weakly tuned for spatial position, we could reliably decode the subject’s
position in the maze. Finally, we demonstrated that rapid head-gaze movements reset local field
potentials (LFP) theta oscillations in the hippocampus, which coincides with an increase in the
response of interneurons followed by modulation of pyramidal neurons’ firing.

Results
Spatial exploration strategies in marmosets and rats

We measured position and head direction signals in two freely moving marmosets (1 male and 1
female) while they foraged through a 3D maze searching for reward (e.g., condensed milkshake
or marshmallows; Fig. 1a, Fig. S1g, methods). A reward was delivered at 1 of the 12 possible
maze locations randomly selected (Fig. 3b), by either cueing the subject with an LED light or
waving a hand at the reward location; this reward schedule was used to encourage navigation of
the 3D maze. Recorded data consisted of 6 different variables, three for the position of the subject
in the maze (horizontal or Xp, depth or Yp, vertical or Zp), and 3 for rotational head direction (Xh,
Yh, Zh) yaw, roll and pitch. Body position signals were low-pass filtered at 4Hz. TS was calculated
from the position signals (see methods).

Xh, Yh, and Zh rotation vectors were used to calculate the AHV (see methods). We then classified
rapid translation or rapid head rotation movements based on a minimum speed/velocity threshold
(higher than 15cm/s TS and 200°/s AHV, for body translation and head rotation movements
respectively) and amplitude threshold (30cm and 16° for body translation and head rotation
movements respectively).


https://doi.org/10.1101/2023.05.24.542209
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.24.542209; this version posted August 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

b) 10s

X position ﬂ\,\\/h/"i

Y position | 20 cm
Z position ’\\___\"‘f

Body translation WMMMML |20 cm/s

speed

Vaw W

Roll

Pitch  \ /S

Angular head velociww«ﬂl&m | 200°s

> %) ———
Broadband signalm ’1 mV

== [ |~
— L
-
_—
| W
‘- 120
0 [ I T e O I AR A1 LI
Spike rasters NN IR NN UT A O O OO
X (cm)

Y (cm)

| 100°
140

60
Figure 1 | Behavioral setup and data traces. (a) Top, recording chamber cap cover with a

schematic of marker positions that allow tracking position and direction of the subject’s head.
Bottom, a schematic of the maze and wireless recording setup. (b) Data traces with three example
single cells. The type of signal and corresponding units are indicated. In the spike rasters, each
vertical line indicates an action potential.

We observed that during foraging marmosets alternate between periods in which the subjects
translate in 3D space (quadrupedal locomotion) while the head remains ‘fixed’ relative to the body,
and periods in which they stop translating in space (body stationary), and the head frequently
rotates relative to the body (supplementary movie 1). During the latter periods, they explore the
environment through frequent rapid head movements that end in gaze fixations®, resembling the
way humans and other primates freely explore visual scenes?. We will refer to these rapid head
movements as head-gaze shifts since the main goal is to align the gaze with objects/locations of
interest. To corroborate this observation, we computed translation trajectories and associated
velocities. Indeed, marmosets alternated between translations during which head-gaze movements
were scarce (Fig. 2a, left, blue trajectories) and stops during which head movements were frequent
(Fig. 2a, left, red dots).

To contrast the navigation strategies of marmosets and rats, we performed the same analyses in a
dataset available online (CRCNS.org, Data sharing, hc-2 data set) collected while rats were
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foraging in a maze searching for rewards. Rats were video-tracked (sampled at 39.06Hz) using
two LEDs of different colors, placed on the front and back of the head, from which the position
and head direction can be measured*’. Rats are nocturnal; their vision has adapted to detect motion
in dim light conditions. Their retinas possess ultraviolet-sensitive cones, and the majority of their
optic nerve axons target the superior colliculus (SC) rather than the lateral geniculate nucleus
(LGN)*L. Although rats possess visual capabilities and can perform visual tasks*?, they have no
well-defined fovea, their spectral sensitivity is considerably smaller than that of diurnal primates,
and the anatomical position of their eyes does not enable stereo vision to the same degree as front-
positioned eyes primates***3, Consequently, rats must rely to a larger degree on olfaction and
whisking to sense the environment. Most of the rat’s eye movements are often disconjugated** and
stabilize the eyes against movements of the head.

We found that rats’ head movements often occurred simultaneously with the body translation
movements during locomotion (Fig. 2a, right, green dots). In marmosets, 80% (99% confidence
interval [79%, 80%]) of the head movements occurred during body stops while in the rat only 14%
(99%, confidence interval [12%, 14%]) of the head movements occurred during body stops (Fig.
2b, left pie chart). On the other hand, in marmosets, only 20% (99% confidence interval [19%,
20%]) of the head movements occurred during body translations while in rats 86% (99%
confidence interval [85%, 87%]) of the head movements occurred during translations (Fig. 2b,
right pie chart). The range of TS and AHV in the marmoset appears larger than in the rat which
may reflect different adaptations in the two species. The AHV in the marmoset has a long tail
along the X-axis corresponding to low TS compared to the rat (Fig. 2b). This is due to the high
frequency of rapid head-gaze movements in the marmoset when the body is stationary.

Rapid head-gaze movements in the marmoset have the signature of gaze shifts composed of
coordinated movements of the eyes and the head. The main sequence, described as the relationship
between the amplitude and peak velocity of eye saccades has been used to characterize gaze
shifts*®®. During gaze shifts the peak velocity/speed increases monotonically with increases in head
movement or saccade amplitude, progressively saturating for large movements?. Marmoset rapid
head movements, much like eye movements, are stereotyped ballistic movements used for visual
exploration; and the main sequence has been used to describe their kinematics®®. We hypothesize
that in the marmoset the main sequence of the head movements will follow a similar profile as the
main sequence of gaze shifts in macaques. On the other hand, rats, lacking a sophisticated head-
gaze apparatus would systematically show lower peak velocities relative to marmosets.

To test this hypothesis, we computed the main sequence of head movements (movement amplitude
vs. peak velocity) in both species. In both, marmosets and rats head peak velocity increased as a
function of movement amplitude (Fig. 2¢) indicating a general kinematic principle also reported
in other species®. Importantly, head movements of the same amplitude have higher mean peak
velocity in the marmoset than in the rat (two-sided Wilcoxon signed-rank test, p < 5 x 10732,
Z=113.8). The maximum response (Rmax) of a Naka-Rushton function fit to the velocity as a
function of movement amplitude is higher for marmosets compared to rats (795°/s vs 430.9°/s;
Fig. 2c, Fig. S1 c,d). These results are consistent with marmosets’ use of head-gaze shifts to
visually explore the environment during body stops to position and stabilize the fovea on objects
of interest. On the other hand, rats use head scanning mainly during locomotion to orient the
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whiskers and facilitate exploration®’8, Rats may also use vision but with their lack of fovea and
poor color and stereo vision, they may not require image stabilization to the same degree as
marmosets do*+*°.

We did not measure eye position in the marmosets in the 3D maze, but instead relied on head
movements as a proxy for gaze direction, thus marmosets may have moved the eyes-in-head during
exploration producing misalignments of head and gaze. We have previously demonstrated in
macaques that after a head-eye gaze shift the eyes and head tend to be aligned at the final position“®.
However, we tested marmosets during several sessions in which they were seated on a primate
chair, and we fixed the head while they explored a visual scene on a computer monitor. We
measured eye position and computed the amplitude and peak velocity of eye-in-head saccades.
Interestingly, we observed that saccades were in their majority shorter than 5 degrees (Fig. 2c, Fig.
S1 e,f), which coincides with the lower limit of the head movement distribution. So, if we were to
estimate the gaze position from the head direction in the marmoset, the error could be as large as
5 degrees. Since our goal was not to obtain an accurate estimate of gaze position but to compare
marmosets and rats’ visual exploration strategies, we conclude our measurements have sufficient
resolution to justify our main conclusions.
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Figure 2 | Exploration strategies in marmosets and rats. (a) Selected trajectory examples of
subject C (left) and 2 different rat subjects (right) during foraging (rat subject A on the top panel
and rat subject B on the bottom panel). The size of the marker is proportional to the time spent at
that location, Red = rapid head movement, Blue = body translation movement and Green = both
head and body movement were present. (b) Distribution of AHV vs TS, pie chart displays the
percentage of head movements that happen during body translation movement or rest (defined as
no body movement present), for both marmoset (left) and rat (right). (c) Main sequence of head
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movements for both marmoset (head and eye movements) and rat (head movements). A Naka-
Rushton function was fit to the mean values (dashed line), Wilcoxon signed-rank test bootstrapped
p-values (marmoset head movement data were re-sampled to match rat head movement counts,
this process was repeated 500 times) are displayed on a log-scale (cyan dots) and median p-values
are shown as pink line and dots. (d) Schematic of the two different exploration strategies observed
in marmosets and rats during foraging.

Coding of space by single neurons in the freely moving marmoset hippocampus

We recorded the responses of single neurons and LFPs in the hippocampus of two common
marmosets by implanting chronic microwire brush arrays (MBA, Microprobes for Life Science,
Gaithersburg, MD) in the subfields CA3 (Subject P) and CA1 (Subject C). We verified the final
position of the electrodes using 9.4T MRI and micro-CT imagining co-registration (Fig. 3a, Fig.
S2a, and methods). Data acquisition was accomplished using wireless telemetry (CerePlex Exilis,
Blackrock Microsystems, Salt Lake City, UT) while the marmosets foraged for rewards at reward
ports of a 3D maze (Fig. 3b and methods). We defined view as the facing location of the marmoset
at any given point in time (linear projection of the head direction onto the walls of the maze, see
methods)!*. We recorded a total of 331 neurons in both subjects (178 in subject C and 153 in
subject P).

Excitatory pyramidal neurons are commonly regarded as the cells responsible for transmitting and
processing spatial information in the hippocampus*%-°2, while inhibitory interneurons have been
associated with the encoding of non-spatial variables like speed®?, or with synchronizing activity
in the hippocampal network>*. To quantify spatial tuning to either place or view with conventional
methods, we classified neurons based on their bursting properties and firing rate>>° into either
putative interneurons or putative pyramidal cells (Fig. 3c), and we used exclusively putative
pyramidal cells to assess variables related to spatial tuning. A total of 204 cells were classified as
putative pyramidal and 127 were classified as putative interneurons.
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Figure 3 | Single neuron responses to view and place. (a) (top) MRI and CT imaging showing
the final electrode location. (bottom) 3D reconstruction of the segmented hippocampus showing
electrode location for Subject P (left) and Subject C (right). (b) Schematic representation of the
3D maze. (c) Electrophysiological parameters used to classify cells into putative pyramidal cells
(n=204) or putative interneurons (n=127), the cluster boundaries are calculated using the k-means
algorithm. (d) Single-cell example of a place cell. Firing rate maps for both place (left panels) and
view (right panels). The color indicates the firing rate. (e) Single-cell example of a view cell

(similar panel configuration as in d). (f) Single-cell example of a mixed place and view cell (similar
panel configuration as in d).

Some putative pyramidal cells showed selectivity for the subject’s position in the maze while they
were poorly selective for view (example in Fig. 3d). Other cells show view selectivity but poor
place selectivity (example in Fig. 3e). Other cells show a mix of view and place selectivity
(example in Fig. 3f). For the analyses of spatial selectivity, we calculated the spatial information
content (SIC)®-%2 of putative pyramidal cells. The SIC quantifies the amount of information (bits)
each neuronal spike transmits about the location of the subject. SIC was computed for each putative
pyramidal neuron, and a SIC shuffled control was computed by circularly shifting spike times by
a random duration a total of 5000 times. Neurons with SIC that exceeded the 95 percentile of the
null distribution were classified as selective. Overall, neurons had higher SIC for view than for
place (Fig 4b, two-sided Wilcoxon signed-rank test, p=1.4 x 10°°, Z=15.7). Using this metric, we
found that 66 (32%) of cells were place selective and 159 (76%) were view selective. For subject
C, out of all the sampled view bins, 76.4% (99% confidence interval [64.5%, 88.4%]) had at least
one cell that exhibited selectivity for that bin. Similarly, for subject P 78.3% (99% confidence
interval [68.6%, 88%9%]) had at least one selective view field. In contrast, of all visited place bins,
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in both subjects, 25% (Subject C 99% confidence interval [12.11%, 36.1%], Subject P 99%
confidence interval [14.1%, 34.2%]) had at least one selective place field.
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Figure 4 | SIC comparison between view and place and place/view field locations. (a) Violin
distribution of Z-scored SIC for putative pyramidal cells, gray distribution is shuffled control. (b)
(left) Place field location for all place cells and separated according to the three distinct floors of
the 3D maze, color indicates the number of place fields at that location, white indicates bins
without place fields. (right) Map of all spatial trajectories travelled across (n=26 and n=33
sessions) for subject C (top) and subject P (bottom), respectively. Color intensity reflects more
time spent in that position. (c) View field locations for all view cells, color indicates the number
of view fields at that location, white indicates bins without view fields. Right: map of all view-
gaze positions (n=26 and n=33 sessions) for subject C (top) and subject P (bottom), respectively.
Color intensity reflects higher counts.
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Coding of speed by single neurons in the hippocampus of freely moving marmosets

Neurons in the rodent hippocampus show selectivity for the TS of the animal locomoting in a maze
or running in a wheel'1125363-68 ‘However, little is known about the presence of speed cells in the
hippocampus of non-human primates. A previous study** reported encoding of both TS and AHV
in freely moving macaques, mainly in putative interneurons. We found no reports in the common
marmoset.

For this analysis, we included both putative interneurons and pyramidal cells. We found single
neurons that vary their response rate as a function of AHV (Fig. 5a left) and TS (Fig. 5a right). To
quantify speed encoding we calculated the speed score as defined in>*%° (Pearson correlation
coefficient between the time series of firing rate and either AHV or TS). To select the neurons that
were responsive to either AHV or TS, any given cell had to meet these two criteria: 1) as reported
by a previous study®®, a speed score higher than 0.3, and 2) the cell’s speed score had to be higher
than the 95" percentile of speed scores in a shuffle null distribution (1000 permutations calculated
by circularly shifting the vectorized spike raster relative to the equally sized speed vector) (Fig.
5b, Fig. S2 e-h). We found a total of 43 (33%) speed selective cells.

A significant amount of the speed cells encoded both, TS and AHV (Fig. 5¢, 20 AHV cells, 3 TS
cells, 20 mixed cells). Interestingly, neurons encoding AHV often show selectivity for only that
variable, but most neurons encoding TS also showed selectivity for AHV (AHV cells 90%
confidence interval [34%,59%]; TS 90% confidence interval [1%,13%]). As a control we
investigated whether speed cells were predominantly putative interneurons (Fig. 5d, e, Fig. S2i,j,
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proportion of speed cells that were putative pyramidal cells 90% confidence interval [3%,18%];
proportion of speed cells that were putative interneurons 90% confidence interval [82%, 97%)]),
furthermore, the median AHV and TS score for the population of putative interneurons was higher
than in putative pyramidal cells (two-sided Wilcoxon signed-rank test, TS p=3 x 102%, Z=9.7;
AHV p=1.3 x102°, Z=10.5) corroborating that, as in the rat, speed tuned cells are mainly
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Figure 5| Single neuron responses to TS and AHV. (a) Example cells. On the left for AHV, the
cell increases the firing as a function of AHV but not TS. Right: TS cell firing increases as a
function of TS but not AHV. (b) Distribution of speed score (Pearson correlation between time
series of firing rate and speed) for both TS and AHV for all cells, the red dotted line at a 0.3-speed
score, indicates the threshold to define significant encoding. (c) AHV and TS significant cells
count distribution, orange color indicates cells that are both AHV and TS significant cells. (d)
Distribution of speed cells according to putative cell type. () Speed score distribution for both
AHV and TS labelled according to cell type, (green = putative interneuron, pink= putative
pyramidal), the red dotted line indicates a speed score of 0.3.

Mixed selectivity in the marmoset hippocampus

To quantify mixed selectivity for the different variables (space, view, head direction and speed) in
the recorded neurons we use a generalized additive model” (GAM) that fits the neuron’s response
to behavioral parameters described as the sum of fitted, cross-validated spline functions. We
trained two different model types, one for putative pyramidal cells and the other for putative
interneurons. The output model can have either none, one (first order model) or multiple variables
(i.e. second or third order models) as significant predictors of the firing rate of single neurons, we
can then classify cells that encode multiple variables as cells with mixed selectivity. For putative
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pyramidal cells, the model included place, view, and head direction as predictors (Fig. 6a). The
putative interneuron model included AHV and TS as predictors (Fig. 6¢). Across all cell types,
160/331, 48.3% significantly encoded at least one variable (Putative pyramidal cells 56/204,
27.5%; Putative interneurons 104/127, 81.9%); amongst all encoding cells, mixed selectivity was
predominant over single selectivity (140/160, 87.5% mixed selective; Putative pyramidal cells:
48/56, 85.7% mixed selective; Putative interneurons: 92/104, 88.5% mixed selective).

In the putative pyramidal model (Fig. 6b), place was exclusively encoded in combination with
either view or head direction, there were no cells whose firing rate encoded only place, with the
large majority of cells significantly encoding the three variables (view: 3/204, head direction:
5/204, view + head direction: 3/204, view + place: 3/204, place + head direction: 4/204, view +
place + head direction: 38/204, Fig. S4 for rate map examples, Fig. S5 a,b for individual marmoset
results). For the putative interneuron model (Fig. 6d, Fig. S5 c,d), we found 6/127 (5%) AHV
cells, 6/127(5%) TS speed cells and 92/127 (73%) mixed selective cells (AHV + TS). In summary,
for the putative pyramidal model, single behavior selectivity is dominated by visuospatial variables
(view + head direction) rather than place alone. For the putative interneuron model, selectivity was
similar for TS and AHV. Finally, for both putative pyramidal and interneuron cells, mixed
selectivity for combinations of different variables was predominant.
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Figure 6 | Mixed selectivity GAM encoding model. A cross-validated GAM model was fitted to
(a) putative pyramidal cells (view + place + head direction (h.d.)), single cell model fit example
for view (left) and place (right), rate maps correlation shown as R?. (b) Proportion of encoding
putative pyramidal cells (pie chart). (c) GAM fitted to putative interneurons (AHV + TS), single
cell model fit example for AHV (left) and TS (right), the goodness of fit is shown as R2. (d)
Proportion of putative interneuron encoding cells (pie chart).

Ensembles of mixed selective neurons encode place

Our previous results demonstrate that individual cells within the marmoset hippocampus are
weakly selective for place, and rather encode a combination of variables, with a higher proportion
of cells encoding view or head direction relative to place. This observation may suggest that the
amount of place-related information in the marmoset hippocampus is relatively limited. However,
previous research has demonstrated that populations of neurons, referred to as ensembles, can still
contain substantial amounts of information about task-related variables, even if individual cells are
poorly tuned 2”272, Furthermore, numerous studies, conducted primarily in rodents have amassed
a wealth of evidence demonstrating that the subject’s position can be decoded from the firing rate
of hippocampal cell ensembles® 737 achieving accuracies of approximately 10cm (approximately
equivalent to the subjects’ body size)’®. To further explore this issue, we used firing rates of a
pseudo-population of mixed selective putative pyramidal cells in areas CA3 and CA1 to decode
the animals’ location in the maze.

We first divided the maze into two spatial regions (bins) per floor (Fig. 7a). From the 6 resultant
bins, we identified the 4 bins that best optimized visitation frequency and neuron counts across all
sessions for each subject, (Fig. 7 a,d; top). Using firing rates obtained during periods where the
subject’s head velocity was low (less than 200°/s, see methods), we decoded the subject’s location
employing a linear multiclass support vector machine (SVM) classifier. To identify the
combination of neurons (ensemble) that provides the best decoding accuracy, we used an
‘ensemble construction’ method previously described’®’’. We iteratively tested combinations of
different neurons from a pool of a pseudo-population of putative pyramidal neurons. In the first
iteration, we train one classifier per neuron, and the neuron exhibiting the highest decoding
accuracy is then selected as the ‘ensemble seed’, for the second iteration, we train all the possible
two-neuron combinations that include the previously selected units along with the remaining units
in the pseudo-population; then the best two-neuron ensemble is selected. This process continued
with each subsequent iteration, involving the training of an n+1 ensemble and the selection of the
‘best ensemble’, until performance becomes asymptotic (e.g., at n=20 cells). We constructed two
different ensembles using this method, one where the pool of neurons included all recorded
putative pyramidal cells, we called this the “all units best ensemble’ (pool size = subject C 75 cells,
subject P 119 cells), and a second ensemble where the cells that significantly encoded at least one
spatial variable, as per the previous GAM analysis, were excluded from the pool of neurons, we
called this the ‘no significant units best ensemble’ (pool size = subject C 61 cells, subject P 78
cells). For both pools of neurons, we only included cells from sessions where subjects sampled
each spatial bin at least 50 times. The latter was done to have sufficient data to train the classifiers.
We fit a Naka-Rushton function to the decoder performance as a function of ensemble size and
calculated statistics on the fit coefficients.
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We decode place significantly above chance level (1/4, 0.25) (‘all units best ensemble’ decoding
accuracy (Fig. 7 a,d; blue line, Fig. 7 c,f), subject C=0.45 (95% confidence interval [0.44 0.46]);
subject P=0.49 (95% confidence interval [0.48 0.5]). The ‘all units best ensemble’ decoding
accuracy was significantly higher than the ‘no significant units best ensemble’ decoding accuracy
(Fig. 7 a,d; pink line), subject C=0.42 (95% confidence interval [0.41 0.43]); subject P=0.42 (95%
confidence interval [0.41 0.43]). The latter indicates that neurons with significant fits for the GAM
model contributed substantially to decoding accuracy. However, the fact that ensembles of neurons
without significant fits also produce decoding accuracies higher than chance suggests that many
of these neurons contain information about place. We further tested whether our ensemble
construction method was effective in selecting combinations of the most informative neurons from
the pseudo-population by training a decoder on ‘random combination ensembles’. We randomly
generated 100 different and unique combinations of 20 cells and decoded place from those
ensembles (Fig. 7 a,d; cyan line). The ‘random combination ensemble’ decoding accuracy was
significantly lower than the one of optimized ensembles, subject C = 0.35 (95% confidence interval
[0.35 0.36]); subject P = 0.34 (95% confidence interval [0.34 0.35]).

Finally, we examined the encoding profiles of the neurons comprising the 'all units best ensemble'.
Specifically, we focused on identifying the best-encoded spatial variable based on the GAM
model. We found that the cells part of the ensemble encoded a mixture of view, head direction and
place (Fig. 7 b,e). Interestingly, despite place being the decoded variable, there is a predominance
of view and head direction as the single cells’ best-encoded variables in the ‘optimized’ ensembles.
The latter demonstrates that spatial position could be decoded from our population of mixed
selective neurons. Furthermore, it suggests that view and head direction can provide information
about place and may explain the exploratory gaze behavior marmosets exhibit when stationary.
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Figure 7 | Population decoding of place using a linear SVM classifier. (a,d) (top) 3D diagram
of the binned place locations used to decode the subject’s position, (bottom) blue and pink lines
correspond to a Naka-Rushton function fit to the decoding accuracy (y-axis) as a function
ensemble size (number of neurons, x-axis), shaded area corresponds to 95% confidence intervals.
Blue solid lines correspond to the best ensemble constructed from a pool of all recorded putative
pyramidal neurons. Pink solid lines correspond to the best ensemble constructed from a pool of
non significantly selective cells (as per GAM encoding analysis). R? goodness of fit value is
reported. The cyan lines correspond to the decoding accuracy of a randomized combination of
neurons (100 iterations), shaded area corresponds to 95% confidence intervals. The gray dashed
lines correspond to chance decoding accuracy (1/4, 0.25). (b,e) Best encoded variable proportion
(as per GAM encoding analyses) for the combination of n=20 neurons part of the best ensemble
pooled from all the single units (a,d; blue line). (c,f) Confusion matrix derived from the best
ensemble classification accuracy (a,d; blue line).

Marmoset rapid head movements trigger LFP theta phase-resetting and modulation of single
cell responses

Rhythmic, LFP theta oscillations in the hippocampus have been widely documented in rodents
such as rats and mice®%, Theta oscillations are thought to coordinate hippocampal cell assembles,
and it has been proposed that they are involved in memory formation’®8. However, in some
species like humans, macaques, marmosets, and bats, theta oscillations are not present as a rhythm
during locomotion but appear in short bouts'**>#1-83 In humans and macaques, saccadic eye
movements are thought to reset the phase of theta oscillations®=37#48, Here we hypothesize that
head-gaze movements in the marmoset will induce theta phase resetting, which modulates
neuronal activity during visual exploration (when the animals acquire information about the
environment) aiding memory encoding.

We aligned the LFPs to the peak velocity of head movements (see methods) and computed average
LFPs (Fig. 8a). We also aligned spectrograms corresponding to LFP traces and computed their
averages. We found the strongest power in the 4-15Hz band with a peak at the theta frequencies
(4-10Hz) around the onset of the head movement (Fig. 8a). To determine whether head-gaze theta
phase-resetting was accompanied by a modulation of neuronal firing we obtained the average
firing per single cell as a function of head movement events. We found that in both putative
interneurons and pyramidal cells, spiking activity was modulated by the occurrence of a head
movement (Fig 7b, Fig. S6 d-f). To quantify the precise nature of this modulation, we calculated
a firing rate shuffled distribution through circular permutation of spike times, repeating the process
1000 times. Significance was evaluated using eight different bins, each spanning 50ms, within a
400ms window (total of eight bins). The center of the window was aligned with the peak velocity
of each detected head movement event in the recording session, with a range of 200ms before and
after the head movement peak velocity. Cells were classified as up-modulated if the real mean
firing rate exceeded the 97.5" percentile of the mean shuffle firing rate at that bin and across bins,
down-modulated if the mean firing rate was lower than the 2.5" percentile of the mean shuffle
firing rate at any bin and across bins, and up/down modulated if their mean firing rate both
exceeded and was lower than the 97.5" and 2.5™ percentile of the shuffle respectively at different
time bins.
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We found that a lower percentage of putative pyramidal cells (72/204, 35.3%) were modulated
(Fig. 8c) in comparison to putative interneurons (105/127, 82.7%). Furthermore, the average firing
rate maxima of all modulated putative interneurons peaked at 31.2ms after the alignment 0 point
(time from head movement velocity peak), whereas for all modulated putative pyramidal neurons
it peaked at 81ms, a difference of 49.8ms. When accounting for the type of modulation (Fig. 8d),
putative pyramidal cells seem more evenly split between down-modulation (14.7%) and up-
modulation (19.6%), whereas, in modulated putative interneurons, up-modulation was most
prevalent (66.9%), in comparison to down-modulation (6.3%). For both cell types, up/down-
modulation was relatively rare at 1% in putative pyramidal and 9.5% in putative interneurons. The
differences in activation latencies and the proportion of the different modulation types suggest that
phase-resetting may be causally linked to interneuron activation that is followed by a range of
modulation in pyramidal cells.
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Figure 8 | Theta oscillations and single neuron phase-resetting to head movements. (a) Head-
gaze phase-resetting of the average LFP aligned to head movement peak velocity (0 point). The
color scale indicates average time-frequency representation (TFR) as Z-scored LFP power. Pink
dotted lines indicate theta power band (4-10hz). (b) Single-cell phase-resetting example for a
putative pyramidal (pink) and a putative interneuron (green) cell. (¢c) Average Z-scored firing rate
phase-resetting for all head movement-modulated putative pyramidal (pink) and putative
interneuron (green) cells; dotted line indicates the time of maximal activation. (d) Distribution of
shuffle-controlled, head movement-modulated cells according to cell type (left, putative
pyramidal; right, putative interneuron), cells can be up-modulated when the firing rate significantly
increases, down-modulated when the firing rate significantly decreases, and up/down modulated
when they show both significant increased and decreased phases (regardless of order).

Discussion

We used motion capture to track the behavior of freely moving marmosets foraging in a 3D maze
and recorded the responses of neurons in the CA3 and CA1 regions of the hippocampus. We found
that marmosets explore the environment using alternations of body translations and frequent stops.
During translations head rotations are constrained. During stops, marmosets make frequent rapid
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head-gaze shifts to explore the visual scene. This strategy differs from the one of rats, that
frequently move their heads at low velocity ‘scanning’ the environment as they locomote. We
found that putative pyramidal neurons in the CA3 and CA1 regions mainly encoded a mix of view,
head direction, and place. Putative interneurons encoded a mix of AHV and TS. We demonstrated
that the position of the animal in the maze (place) can be decoded from small ensembles of mixed
selective cells, despite the predominance of encoding of view and head direction. Finally, we found
that rapid head movements reset the phase of theta oscillations in the hippocampus. Theta phase-
resetting is accompanied by the activation of interneurons followed by a variety of modulations in
pyramidal cells.

Exploration strategies in marmosets and rats

Rats and mice have been the primary animal model used to study spatial navigation®5°, with 1337
indexed publications in 2022 (Pubmed indexed search query: ‘Rodentia’ AND
‘hippocampus/physiology’). Studies in non-human primates have been scarce (4 in 2022 in
Pubmed indexed search, query: ‘primates/physiology’ OR ‘Callithrix/physiology’ OR ‘Macaca
mulatta’ AND ‘hippocampus/physiology'). There has been a tacit assumption that results from
studies in nocturnal rodents such as mice and rats can be extrapolated to diurnal primates such as
macaques and humans. However, there are differences between sensory systems and behaviours
between nocturnal rodents and diurnal non-human primates that may be aligned with differences
in how the hippocampus processes information during navigation. For example, rats and mice lack
foveae, their eyes are displaced to the sides of the face, and they lack the wide range of color vision
of diurnal primates like marmosets?®%°. Rats can move their eyes independently, while marmosets
cannot; marmosets make conjugate eye movements that preserve the alignment of the two eyes
needed for stereovision?44. Marmosets’ high acuity color and stereovision allows far sensing
during daylight to forage for fruit, trees, discriminate between conspecifics during mating or social
interactions, or escape predators. These specializations make them distinct from nocturnal rodents
such as rats.

Rapid head movements are key to marmosets’ and other diurnal primates’ efficient exploration of
the environment via the far-sensing capabilities of their visual system®:. They have previously
been described in marmosets sitting in a primate chair®®. In this study, we report the presence of
these highly stereotypical movements in a marmoset navigating in 3D space. They followed the
main sequence, much like it has been described for eye-head gaze shifts in macaques*® and
predominantly occur when the subjects are stationary, visually exploring the environment (visual
navigation). We reasoned that because vision is ‘far sensing” and the high-resolution fovea allows
for the estimation of objects' features, animals do not need to actively visit locations to identify
potential targets and landmarks for navigating. They can also identify depth stationary cues such
as size differences, objects’ occlusion cues, and dynamic cues using motion parallax that allow
evaluating distances to target and path planning before translating in 3D space®>%,

In contrast, mice and rats use a different strategy likely adapted to their nocturnal lifestyle. Their
limited color vision, lack of a fovea and the absence of daylight may have evolved in the use of
near-sensing capabilities to identify target objects during navigation and the lack of rapid head-
gaze movements. Instead, they use slower head movements during navigation likely to position
the whiskers or orient their olfactory apparatus toward possible targets or landmarks. In the
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presence of poor illumination, rats would more frequently need to use path integration during self-
motion for exploring the environment relative to marmosets.

The divergence between primates and rats may be traced to their ancestors. During early evolution,
when mammals were predominantly nocturnal to escape predation by dinosaurs, most mammals
regressed their visual capabilities, more suited for daylight, while expanding somatosensory,
olfactory and hearing capabilities better suited for nocturnal activities®*. However, primates may
have escaped the pre-extinction nocturnal bottleneck by developing a sophisticated visual system,
expanding the pathway from the retina to the thalamus and the visual cortex. This reliance on high-
resolution stereo vision allowed foraging for insects and fruit in the distal branches of trees but
may have produced a regression of their olfactory and somatosensory capabilities (e.g., whiskers).
After the extinction of the dinosaurs, 66 million years ago, primates safely invaded the day-life
niche further and disproportionally developed their already expanded visual system to incorporate
color vision and extraordinary stereo and object recognition abilities®. This may have led primates,
such as marmosets, to adopt more efficient navigation strategies relying on the far-sensing power
of vision and consequently shaping neuronal selectivities in the hippocampus. In contrast, rats
never escaped the nocturnal bottleneck and therefore, like their mammalian ancestor, preserved
their near sensing capabilities such as whiskers, olfaction and audition to support navigation.
Indeed, our data indicate that the common marmoset, a diurnal primate, uses different strategies to
explore and navigate the environment compared to the rat, a nocturnal dweller. These differences
may have impacted the physiological mechanisms of spatial navigation and specializations in the
hippocampus of the two species.

Representation of space in the marmoset hippocampus

Previous studies in rats have shown that place cells form the basis for an internal representation of
a spatial cognitive map®. The percentage of all hippocampal pyramidal cells that can be
considered place cells ranges from 20-25%*%. The identification of place cells in the rat
hippocampus is astonishingly clear and replicable!*. Studies in other species such as nocturnal
bats have also reported place cells®%. In primates, reports of place cells are scarce. Instead, studies
using virtual reality in macaques have shown a representation of spatial locations that depend on
objects-context?’ or landmarks®. A recent study in freely moving macaques'* found that classic
place cells are rare (7% of all cells). They reported that about 26% of all cells encoded place, but
other variables such as facing location were better encoded. The only study in marmosets'® showed
that when subjects moved on a linear ‘L-shaped’ track, 14.1% of cells could be classified as place
cells. Interestingly, they reported that 77.9% of these cells were directionally selective, which
could be interpreted as encoding head direction or view, as in the macaque study.

Our study was conducted in freely moving marmosets in a 3D environment, where these small
primates naturally forage. Although we found neurons that encoded view and place in the 3D maze,
we show a predominance of variables related to the head direction and view. Place encoding
occurred in 21.5% of all cells; however, we observed that place was exclusively encoded in
conjunction with either view or head direction, and most frequently both. ‘Bonafide’ place cells as
reported in rodents were not found.
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Our results may be related to changes in the brain structure and function happening in diurnal
primates such as the expansion of areas related to vision, and the emergence of a high-resolution
fovea®. Diurnal primates have also evolved a sophisticated eye-head apparatus that allows
coordinated gaze shifts to stabilize the fovea on objects of interest. Vision, as a far-sensing strategy
has shaped diurnal primates’ lifestyle and the physiology of the hippocampus. From an anatomical
connectivity perspective, the primate hippocampus receives more visual information than that of
the rat®’~1%%: from a behavioral perspective, as shown in this study, there is a prevalence of
navigation strategies that favor visual exploration behavior in primates. We argue that primate
brains developed navigation and spatial memory systems adjusted to their diurnal lifestyles that
heavily rely on visual cues and landmarks rather than on ma ps of space. One issue that remains
unclear is whether the entire range of selectivities described as part of the navigational GPS in the
entorhinal cortex of rodents (e.g., grid cells, border cells) is also present in primates. One study in
macaques has described grid cell-like gaze selectivity in the entorhinal cortex when subjects
inspected a visual scene'®. This, however, is very different from grid cells that triangulate the
animal’s position in the environment.

Representation of speed in the marmoset hippocampus

While there is abundant evidence of speed-correlated activity in the hippocampus of
rodents'125363-68 there is limited evidence in primates. A study* reported significant encoding
of both linear speed and angular velocity (TS and AHV in our study, respectively) in freely moving
macaques, where most of these speed-encoding cells were putative interneurons. Similarly, a study
found hippocampal cells in macaque monkeys, that responded to linear and rotation-assisted
motion (monkey sitting in a remote-controlled robotic platform)*®. Our study reports speed cells
in the freely moving marmoset in a 3D environment. Moreover, we show that AHV was encoded
to the same level as TS and that most cells had mixed selectivity for both variables. In agreement
with rodent literature, the strongest speed-correlated signal was observed in putative
interneurons®?,

One notable difference from findings made in rodents is the prevalence of AHV encoding in
marmoset CA3/CA1 neurons. Encoding of AHV has been reported in rodent studies almost
exclusively in either parahippocampal regions (MEC, parasubiculum, presubiculum),
retrosplenial cortex!®*, or sub-cortical regions associated with vestibular information processing
(lateral mammillary nuclei, thalamic nuclei and striatum)”81%51%_ The encoding of AHV has been
theorized that serves an essential role in the generation of grid cells**"1% or the general processing
of self-motion®®1%%110 The function of head-speed cells in the marmoset is not clear but may be
related to the signal that produces head-gaze theta phase-resetting.

Ensemble coding of space in the marmoset hippocampus

Our results demonstrate that space can be decoded from neuronal ensembles’ firing activity in the
hippocampus regions CA1/CA3 of marmosets (Fig. 7). Remarkably, the neurons that yield the
highest decoding accuracy, are not highly selective to specific places. Instead, these neurons
exhibit mixed selectivity for view, head direction and place (Fig. 7 b,e). Numerous prior work has
explored how neuronal mixed selectivity supports efficient representation and processing of
complex information in the brain "+7211 Mixed selective neurons exhibit modest selectivity for
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individual features, but increased selectivity for combinations of two or more features'’. It has
been theorized that neuronal ensembles face limitations to flexibly represent feature dimensions
across different behavioral contexts when neuronal selectivity is highly specifict'. This limitation
becomes particularly prominent when considering that ensembles are constrained by a finite
number of neurons. To overcome these limitations, neuronal networks may leverage between
specificity and flexibility of neuronal selectivity’?. This approach is especially advantageous when
high-dimensional representations are required. Coding of space can be regarded as highly
dimensional when encompassing a multitude of sensory inputs®:12113 We propose that the
presence of highly mixed information in the marmoset hippocampal neuronal ensembles supports
reliable representations of space.

One contrasting difference between the neuronal responses observed in this study (and the NHP
hippocampus in general), and the ones commonly observed in nocturnal rodents, is the
predominance of variables directly related to gaze such as view and head direction!#16:18:30,
Marmosets high-resolution foveal vision might allow anchoring of place representations and future
paths for navigation to visual/scene cues, such as landmarks identity, depth, egocentric/allocentric
location, and the spatial relationships between them extracted from visual exploration via gaze
shifts!®. In contrast, ‘near’ sensory cues like olfaction and whisking are readily available to
nocturnal rodents such as rats. With heads positioned much lower above the ground relative to
marmosets and a nocturnal lifestyle prioritizing places with poor illumination, rats may be ‘less’
visually-driven. However, recent work has demonstrated diverse selectivity in the hippocampus of
rats; implementation of multivariate encoding analyses and novel experimental paradigms in
previous studies provide evidence that place cells in the hippocampus of rats also encode variables
beyond place, like position, distance and direction of motion of a bar of light under body fixed
conditions!!*, or be modulated by head direction and the presence of visual cues or olfactory
cuest?113115:116 Thys mixed selectivity may be the norm in hippocampus neurons. However,
mixed selectivity seems to be biased to overrepresent certain variables depending on the ecological
niche of the species. For the case of marmosets, encoding of visual variables related to gaze
orientation seems to be predominant in hippocampal neurons, at least in the daylight conditions in
which diurnal primates usually forage.

Indeed, we found that place can be decoded from ensembles with a predominance of view and
head direction mixed selective neurons. The information provided by these ensembles about
landmarks in the environment (allocentric coding) and self-orientation relative to them
(egocentric) can be sufficient to position oneself in space (origin of the place information) and aid
goal-directed navigation!’” and the formation of spatial memories. It may also provide flexibility
to adjust navigation strategies to the task demands (e.g., egocentric rather than allocentric
representations?’).

Head-gaze movement phase-resetting

It has been shown that memory encoding involves interactions between theta oscillations and
incoming sensory signals into the hippocampus®8. Indeed, responses of hippocampus neurons to
sensory events are synchronized to a certain phase of theta oscillations'®!?, It has been proposed
that theta oscillations are like a metronome for coordinating sensory information transfer from
cortical areas to the hippocampus!t®, This theory matches data from rodents; however, it has a
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shortcoming when extrapolated to humans. In humans and non-human primates, hippocampus
theta oscillations are not rhythmic but appear in short bouts!41>121122 Interestingly, some studies
have reported that theta oscillations are locked to the execution of saccades®’, a phenomenon
known as saccade phase-resetting®.

Rapid head movements in species of primates are used to direct gaze toward spatial locations?*4°,
In marmosets head velocities reach values above that of eye velocities during saccades made with
the head restrained (Fig. 2c). Here we report an LFP modulation described as head-gaze theta
phase-resetting?237:84123.124  Moreover, a significant percentage of neurons’ firing rate was
modulated during and following head movement initiation. Notably, in putative interneurons the
most common form of modulation was an increase in firing rate (up-modulation), but in putative
pyramidal cells, it was evenly split between up and down modulation (Fig. 8d). The peak of the
modulation effect was also found to be different across cell types, where putative interneuron
modulation peaked before putative pyramidal cell (49.8 ms faster, Fig. 8c). Together, this suggests
that the signal triggering head movements (e.g., a corollary discharge signal) initially activates
interneurons that may reset background noise in pyramidal neurons that can be differentially
activated by incoming sensory inputs.

We propose that head-gaze theta phase-resetting may act as a ‘single pulse metronome’ that
synchronizes stochastic firing in neuronal ensembles before the eyes land on a target, allowing
incoming sensory signals to be ‘distinguished’ from the background noise of the circuit. The
activation of inhibitory interneurons may be causally linked to the process of resetting neuronal
ensembles and decreasing noise, while the modulation in putative pyramidal neurons may be
directly related to the arrival of sensory inputs to ensembles of pyramidal cells and encoding of
sensory signals. This mechanism may be the driver of theta oscillations in diurnal mammals with
foveal vision that explore the environment through voluntary gaze shifts. It has been further
proposed that during a gaze shift a corollary discharge (CD) signal originating in the SC reaches
the thalamus and then via the nucleus reuniens (NR) reaches the hippocampus?>*?, However, a
CD signal that reaches areas of the neocortex seems to do so via the medial dorsal thalamic
nucleus'?’ and plays roles such as inhibiting visual processing during saccades and remapping of
receptive fields'2"1%, It is currently unclear how the CD signal in the hippocampus and neocortical
areas are linked and how it relates to the head-gaze phase-resetting phenomenon reported here.

Conclusion

We provided evidence that freely moving marmosets use different exploration-navigation
strategies compared to rats. These strategies have shaped physiological adaptations in the
hippocampus. Cognitive maps of space in the marmoset and likely in other diurnal primates may
be driven by mixed or conjunctive coding of gaze-related variables that enable encoding of visual
features and object relationships used as landmarks for navigation. Head-gaze phase-resetting
seems to play a role in synchronizing theta oscillations to increase the efficiency of information
encoding in the marmoset hippocampus.
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Data and code availability

The complete dataset and source code used in this study are available upon request to DBP or
JCMT
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Materials and Methods:
Ethics statement

The animal care and handling procedures, encompassing basic care, housing and husbandry,
animal training, surgical procedures, and experiments (data collection), were granted approval by
the University of Western Ontario Animal Care Committee. This approval guarantees adherence
to federal (Canadian Council on Animal Care), provincial (Ontario Animals in Research Act),
regulatory (e.g., CIHR/NSERC), and other national CALAM standards, ensuring the ethical use
of animals. The animals' physical and psychological well-being was regularly assessed by
researchers, registered veterinary technicians, and veterinarians.

Experimental setup and behavioral paradigm

Two adult (1 female, aged 5y and 1 male, aged 3y) marmosets were trained to forage for reward
in a rectangular transparent maze with 3 different vertical levels (3D maze, Fig. 1a). For the
majority of the recording sessions, the subjects were placed in the chamber alongside their cage
partner with the purpose to alleviate stress. Reward locations were placed at 4 different positions
in each level of the maze, two on one side and two on the opposite side (Fig. 3b). Each reward
location consisted of a small panel containing an LED and a liquid reward delivery system
controlled by a solenoid via the NIMH MonkeyLogic!*! software. The subject was cued by
flashing the LED. When the subject approached the LED location and was closer than 15 cm to
the reward delivery site a sound was played, and a reward was delivered. After that another,
different LED was flashed, and the sequence of events was repeated. We also rewarded the subjects
manually by waving a hand at the reward location and delivering a marshmallow when the subject
approached. Recording sessions lasted for as long as the subject was willing to continue foraging
(~40-60 minutes).

Motion capture 3D tracking

A total of 14, synchronized, cameras (Optitrack, Flex 13, Corvallis, OR), were placed around the
3D maze in a configuration that optimized coverage and minimized occlusion. Video frames were
acquired at 60hz. The cameras emit 850nm infrared (IR) light and are fitted with a lens filter for
IR light.

A recording chamber was placed on the skull of the subjects that allowed to house the electrodes
and wireless recording headstage, a 3D printed cap covered the recording equipment and 6
spherical retro-reflective markers (4mm diameter, Facial Marker, Optitrack) were arranged in a
unique geometric configuration (rigid body) and affixed on top of the cap.

Before every recording session, the setup was calibrated using a calibration wand (CWM-125,
Optitrack). The wand consists of 3 markers of known dimensions and distance to each other that
are used to compute a volumetric world coordinate system measured in metric units via
triangulation algorithms. A calibration square (CS-100, Optitrack) was used to define the zero
point (where the horizontal or X, depth or Y, and vertical or Z axes intercept) and the plane
corresponding to the ground (plane parallel to the maze floors); the calibration square and
subsequently the zero point was always placed at the lowest point of the south-west corner of the
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maze. This calibration will be used by the tracking software (Motive, Optitrack) to compute the
position and orientation of the cameras; the calibration step is essential to triangulate the 3D
position (Xp, Yp and Zp, in metric units) of the markers from the individual camera’s 2D images.

After the 3D position of the cluster of cap markers is estimated, the rigid body is tracked as a
unique object at the pivot point (origin of the rotational axes roll, pitch and yaw), this point is
manually placed at roughly the intersection between the vertical axis of the neck of the subject and
the visual axis (eye level). The roll axis is manually aligned so that it is parallel to the estimated
visual axis (red axis, Fig. S1 a,b), the pitch axis is manually aligned parallel to the maze floors
(estimated using the ground plane, blue axis, Fig. S1 a,b) and the yaw axis is aligned parallel to
the vertical plane (plane perpendicular to the ground plane, green axis, Fig. S1 a,b).

Implantation surgery and electrophysiological recordings

After co-registration of anatomical MRI (9.4T) and microCT (150um) scans'®2-13 (3D Slicer
software, slicer.org), we implanted a recording chamber ‘cap’ (Fig. S1 i,h) that allowed a 3D
printed grid to be placed above the skull surface, each space in the grid could be used as a fiducial
to calculate the trajectory necessary to reach the CA fields. We chronically implanted 32ch
microwires ‘brush’ array electrodes in the hippocampus’ CA1 (subject C) and CA3 (subject P)
(Microprobes, Gaithersburg, USA). The final position of the electrodes was verified with post-
surgical micro CT imaging and registration to the pre-surgical anatomical MRI (Fig. 3a, Fig. S2a).
In subject P, we used a semi-chronic electrode implant that consisted of a small microdrive that
allowed the electrode to be lowered after implantation (2 mm total range). We lowered the
microdrive in increments of 70-150 um, until we reached the end of the working range and finally,
took micro CT images to verify the final position of the electrode.

Neural activity was recorded using wireless telemetry (CerePlex Exilis, Cerebus Data Acquisition
System, Blackrock Neurotech, Utah, USA) sampled at 30kHz.

Data Analyses

All analyses were performed using custom-built MATLAB scripts (Mathworks Inc, version
2021b) unless otherwise specified. A MATLAB wrapper was used to calculate the generalized
additive models using PYyGAM'®, a Python open-source resource.

Body translation speed

Translation speed or TS was defined as:

_ J(Ax)2+ (4y)%+ (42)?
o At

S

Where s is the translation speed of the rigid body, x is the position in the horizontal axis, y is the
position in the depth axis, z is the position in the vertical axis and t is time.

Angular head velocity
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The rotation vectors (pitch, raw and roll) were exported from the motive software as rotation
quaternions (q), defined as:

g=qo+ iq1 + jq> + kg

where qo, 01 ,g2 and gs are real numbers, andi, j and k are imaginary unit vectors. Quaternions
offer an advantage over traditional Euler’s axis angles in that they are a more efficient way to
compute rotations and are not susceptible to gimbal lock.

The AHV was defined as:
AGO

w=—
At

Where w is the AHV, 8 is the angular distance and t is time.

The angular distance 6 between 6., — 6,; was computed using the MATLAB function dist
(Robotics and autonomous systems toolbox).

Significant head and body movement classification

Significant head movements were defined as epochs where AHV was higher than 200°/s and the
amplitude of the movement was higher than 10°. Movements with velocities higher than 2000°/s
were deemed artifactual.

Significant body translations were defined as epochs where the TS was higher than 16 cm/s and
the amplitude of the movement was at least 30cm. Movements with speeds higher than 300cm/s
were deemed artifactual

Head Direction
We considered the distinction between head direction and view as illustrated by'® ( Fig. S1h)

The head direction is solved by the tracking software using a custom arrangement of markers that
creates a rigid body with predefined XYZ axis angles. The axes are aligned to the subject’s head
anatomy and a pivot point is placed virtually in the neck, in a way that the horizontal head direction
of the rigid body runs along the midline of the head and is parallel with the head direction and the
vertical axis perpendicular to the maze floors.

The tracking software solves the head direction in terms of angular values of yaw (horizontal axis),
pitch (vertical axis) and roll (lateral tilt axis) for the rigid body as a whole, in an allocentric
reference frame.

The 2D head direction is estimated from the yaw angle values alone, and the 3D head direction is
estimated from yaw, pitch and roll angles.

View as facing location
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A ray is cast from the vector of 3D head direction and the intersection of this ray with the walls of
the maze is defined as the facing location. Since the marmoset’s oculomotor range is largely <10°,
we interpret the facing location as view?,

Signal pre-processing and spike sorting

Offline spike sorting was performed using Plexon (Offline Sorter, Plexon Inc., Texas, USA), a 4-
pole, Butterworth, 250Hz high pass, a digital filter was applied to the raw 30kHz broadband signal,
and a -4 sigma noise threshold was used to detect and align individual waveforms. Principal
component analysis (PCA) was used to define the feature space and automatic (T-Distribution E-
M) sorting was applied to isolate units. Manual inspection was then performed to classify units
into noise units, multi-units or single-units (Fig. S2 b,c,d). Quality control measures were
implemented after sorting the spike data. Single units that fired less than 100 spikes per session
were invalidated. Additionally, to account for the use of microwire arrays where the final location
of individual wires cannot be controlled, potential duplicate units were invalidated if the isolated
units shared more than 50% of the spike times (estimated at 1ms temporal resolution). In cases
where two or more units met this criterion, only the unit with the highest signal-to-noise ratio was
included in the subsequent analyses.

Burst Index

Bursts can be described as a rapid sequence of action potentials followed by a period of relative
quiescence®®®¥ it has been estimated that 95% of pyramidal cells in the macaque monkey CA3
fire in bursts®1° The burst index (BI) is a metric that has been proposed to describe the
propensity of burstiness in the firing pattern of neurons, where higher BI values indicate a neuron’s
higher propensity to fire in bursts. As previously described>4° we calculated the Bl by estimating
both the inter-spike interval (ISI) histogram and the predicted ISI distribution, which is based on
a Poisson distribution calculated from the mean firing rate of the whole recording session.

The predicted Poisson distribution of ISI was computed as follows:
ft) = 2e74

Where A= firing rate, and t= time bin. The probability was calculated for each 1ms time bin in the
2-40ms time range, a normalization procedure was implemented by summing all of the predictions
in both the predicted and real ISls.

The burst index was computed as the following:

Y. ISIs measured — ), ISIs predicted
Y. ISIs measured + ). ISIs predicted

burst index =

Where the sum of ISIs was performed between the values from 2 and 20ms. The burst index is
ultimately defined as the division between the subtraction of the measured ISI sum and the ISI
predicted, and the sum of both these sums. In the end, the index is bound between -1 and 1.

Classification of putative interneuron and pyramidal cells
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Macaque monkey hippocampal neurons have been putatively classified as interneuron/pyramidal
cells based on firing rate alone®®8, where interneuron cells are typically of the fast-spiking type
(average firing rates above 10Hz). To increase the robustness of classification in our analysis and
avoid potential species-specific biases that firing rate thresholding classification could introduce
(since it has only been used in macagque monkeys), we implemented an unsupervised classification
algorithm (k-means, MATLAB function kmeans) using burst index and average firing rate as
features. We refrained from using other classical methods of classification like spike waveform
width, since it has been shown that short-duration waveforms from neurons recorded from the
hippocampus can represent axonal activity, and are not necessarily inhibitory interneurons in
nature®’.

Spatial information content

Occupancy and firing rate maps were estimated based on a spatial bin division shown in Fig.4 b,c,
(place bins n=84, view fields n=106) per recording session. Bins that weren’t sampled more than
3 independent times, or less than 200ms were discarded. Spatial Information Content (SIC)%%2
was calculated independently for place and view for every individual cell. SIC was defined as:

L
A A
I = Pi Tlogz 7
i
Where the proportion of occupied time in each spatial bin is (Pi) and A is the mean firing rate.

Significant cells were defined as SIC > 0.05 (corrected alpha value for the number of bins) of the
null distribution (5000 circular shift permutations). In the same way, for significant cells,
significant bins (place or view fields) were defined as SIC > 0.05 (corrected alpha value for the
number of bins) of the null distribution for that bin.

Speed cell definition
A single cell was defined as a speed cell if it met two criteria:
1) Speed score higher than 0.3:

We used the same definition as®*®°, for the speed score, which is the Pearson’s correlation
coefficient between the time series of speed and the time series of firing rate.

After determining the instantaneous speed (sampled at 60hz), both the time series of speed (AHV
and TS were computed independently) and firing rate were smoothed using a 1-D Gaussian with
50ms standard deviation. The correlation coefficient was defined as the following:

. X(xi— %) (i —¥)
V2 x — 02X (y; — ¥)?

and it was calculated using the MATLAB function corrcoef.

2) Shuffle control criteria
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Using the same smoothed firing rate time series, a shuffle distribution of speed scores was
computed after circularly shifting the time series 1000 times. This distribution served as the null
distribution used to estimate the significance of the real speed score (real speed score higher than
95" percentile null distribution).

Since AHV and TS speed scores are estimated independently, cells can be classified as AHV cells,
TS cells, or both.

Generalized Additive Model (pyGAM)

Generalized additive models (GAM) are a particularly useful tool to explore the relationship
between neural activity and multiple behavioral variables. They are specifically advantageous
when exploring complex and non-linear interactions between the covariates and the independent
factor!#!, Here we describe the implementation used in every neuron reported in the paper, we used
this model to classify single cells according to their encoding profiles; where a cell could
significantly encode none, one or a combination of behaviours (predictors).

The general form of GAMs is described by:

Fx) =y = exp(fo + fi(x1) + fo(x2) + ..+ fr(x1))

In our implementation y is a single neuron’s firing rate, fo is the intercept (constant), [X1,Xz,...Xi]
are the predictor variables (space, view, head direction and speed).

This GAM implementation has three components: distribution, link function (F(x) = g(u|X)) and
a functional form (f;). We calculated all our models using a log link function, Poisson distribution
and a functional form function of penalized B splines!*?. The models are cross-validated during
training to avoid overfitting, and the goodness of fit estimates are averaged across k-folds.

As reported in the results section, spatially selective cells are mainly putative pyramidal cells and
speed-encoding cells are mainly putative interneurons, so in order to optimize computing times,
we designed two separate models, one for putative pyramidal neurons (including space, view and
head direction) and the other for putative interneurons (AHV and TS).

We utilized a nested, stepwise, forward search model selection approach to determine the optimal
number of predictors per cell (Fig. S3a). The methodology involved a gradual construction of the
model by iteratively incorporating predictor variables based on their individual contributions to
the overall goodness of fit. Initially, all available one-variable models (first-order models) were
fitted, and a surrogate null distribution of first-order models was computed. This null distribution
was obtained by randomly circularly shifting the vectorized firing rate a total of 50 times. To
establish statistical significance, we compared the actual explained deviance (ED) with the 95th
percentile of the null distribution (Bonferroni corrected). If the real ED exceeded this threshold,
the model was considered statistically significant.

The ED of the real model was then normalized by subtracting the mean shuffle ED from the real
ED, allowing us to select the first-order model with the highest ED when multiple first-order
models crossed the significance threshold. The variable in the best model was retained as a
predictor for the subsequent iteration of model selection (n+1 order model). In each iteration, one
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of the remaining variables was added at a time until all combinations of that order were evaluated.
Similar to the first-order models, statistical significance was assessed by comparing it against a
null shuffle distribution. For models with more than one variable, the time series of the single
predictor under consideration was circularly shuffled, while the firing rate and already selected
predictors remained unaltered. The training process concluded when the incremental improvement
in model fit by adding more variables became statistically negligible. At this point, the final
combination of variables was selected as the best model for a specific neuron.

The performance of the winning model is evaluated by generating a spike raster prediction using
the best final nested GAM model (Fig. S3 b,c). These predictions are then compared to the actual
neuron's rasters using cross-validation with 5 folds. Since each recording session (40-60 minutes
long) is divided into 5 equally-timed folds, each predicted raster is a continuous time series
approximately 8-12 minutes long. To assess the similarity between the predictions and the real
rasters, the Pearson correlation coefficient is calculated between the predicted and real raster data.
Additionally, the coefficient of determination (R?) is obtained for each fold, and the final R? is
computed by averaging across all folds(Fig. S5 a,c).

To determine the statistical significance of the model's predictive power, an F-test is performed on
the calculated R? values, using an a-value of 0.05. This test allows us to ascertain if the model's
performance is significantly better than what would be expected by chance. Cells whose winner
model's performance is statistically significant are considered to encode the variables used as
predictors in that model.

Place decoding analyses

We used a linear multi-class support vector machine (SVM) classifier (fitecoc, MATLAB
function), composed of ‘n” number of classes of binary learners in a one-versus-one design. The
performance accuracy of each model was evaluated using 5-fold cross-validation and trained 10
times using distinct subsamples of all available trials. The subsampling procedure ensured the
proper balance of classes with varying trial numbers. The model’s features were derived from
firing rates of a pseudo-population of neurons, obtained from periods where the AHV was lower
than 200°/s, akin to head ‘fixations’, which in marmosets can be considered analogous to eye
fixations. The firing rates were integrated over 200ms centred around those low AHV periods;
each interval was treated as a trial. We included neurons in the pseudo-population if they had
samples from a spatial bin (see below) at least 50 times (trials) per recording session.

To decode place from this pseudo-population, we partitioned the maze into 2 spatial bins per floor,
resulting in a total of 6 spatial bins. We identified the 4 spatial bins (the model’s classes) with the
highest visitation frequency and number of neurons that could be incorporated into the pseudo-
population (Fig. 7 a,d).

We used a previously described ensemble construction procedure’®’’, this procedure iteratively
finds the combination of neurons that provides the best decoding performance from a pool of
pseudo-population of neurons (Fig. S5e). First, we train all the single-neuron models and identify
the model with the highest decoding accuracy. We use this neuron as the ‘seed’, and we fit all
possible combinations of n+1 ensembles including the seed and the remaining neurons in the pool.
We then select the sub-ensemble with the highest decoding accuracy and continue fitting n+1
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models with the remaining units. We repeat this procedure until the performance of the model
becomes asymptotic and does not significantly improve by adding more units; this final ensemble
was referred to as the ‘all units best ensemble’. To evaluate the contribution of the neurons that
significantly encode spatial variables, as per the GAM analysis, we repeated the previous ensemble
construction procedure while excluding those neurons from the pool. We referred to this ensemble
as the ‘no significant units best ensemble’. Finally, we fit a Naka-Rushton function to both
ensembles' performance, to calculate statistics on the fit coefficients and to aid with visualization.
Raw ensemble performances can be found in the supplementary information (Fig. S6 a,b)

To validate the efficacy of the ensemble construction procedure in identifying the ‘optimal’
combination of neurons that maximized the classifier’s performance, we fit a ‘random combination
ensemble’, where we randomly generated 100 different combinations of neurons from the pseudo-
population pool. Subsequently, we iteratively trained the model using n+1 neurons from the
randomly generated combination.

Signal pre-processing for local field potentials

Using the FieldTrip toolbox**® a 4-pole, Butterworth, 250Hz high pass digital filter was applied to
the raw 30kHz broadband signal. The data was then down-sampled to 1kHz. To eliminate low-
frequency noise a 1Hz high pass filter was applied and a high-frequency artifact rejection algorithm
was employed where the data was band-pass filtered between 100-250Hz (9-order Butterworth
filter and boxcar of 0.2) and the Hilbert envelope of the signal was calculated and subsequently Z-
scored. The artifact threshold was defined at 4 Z-score and a window including 100 ms before and
after threshold crossing was rejected.

Time-frequency representation

To calculate the oscillatory power of the LFP and its time-frequency representation, we used
Morlet wavelets, implemented with the FieldTrip toolbox. The wavelets consisted of 7 oscillations,
with center frequencies ranging from 1 to 30Hz (in even steps of 1Hz), and a 25ms smoothing time
window. Baseline normalization was implemented to account for 1/f activity using the decibel
conversion method, described as follows:

)

Where the baseline was estimated as the fractal component from the power spectrum calculated
using the Fitting Oscillations and One-Over-F (FOOOF) algorithm** (FieldTrip implementation).

] l
dB = 10log1o (—2—

baseline

Neuronal modulation to head movements

Our classification of modulated units builds upon the framework presented in the work of a
previous study'?. However, our approach differs in that we introduce an additional category of
modulation, namely units that are both up and down-modulated.

Spike timestamps for a given single neuron are exported from the Plexon software as binary spike
trains with a 1ms time resolution. We extracted spike train epochs (a window of 400ms) centered
on the peak velocity of head movements and divided that window into 8 equally timed bins (50ms
each). We calculated average spike rates across all head movements for each bin. Next, we
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generated a shuffled distribution of firing rates by circularly permutating spike times, repeating
this process 1000 times. Cells were classified as up-modulated if the real average firing rate
exceeded the 97.5th percentile of the shuffle average firing rate at any bin and across bins (shuffle
distribution of maximum firing rates across the entire 400ms window). Cells were classified as
down-modulated if the real average firing rate was lower than the 2.5th percentile of the shuffle at
any bin and across bins (shuffle distribution of minimum firing rates across the entire 400ms
window). Cells were classified as up/down modulated if their real average firing rate both
exceeded the 97.5th percentile and was lower than the 2.5th percentile of the shuffle at different
time bins.
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Supplementary figure 1 (a) View from the top showing the alignment of the roll axis (red) with
the visual axis, assuming a cyclopean eye. (b) Diagram illustrating the position of the pivot point
(origin of rotation angles). The position of the pivot point (originally placed in the position of the
most posterior retro-reflective marker) is linearly translated downwards, along the vertical axis to
align with the subject’s visual axis. () Main sequence (amplitude vs peak velocity) of head
movements and Naka-Rushton function fit, for marmoset (blue markers, red line) and rat (black
markers, green line); dashed lines correspond to 95% confidence intervals. (d) Distribution of
inter-event interval for marmoset and rat head movements (blue and red distributions respectively)
and marmoset eye saccades (green distribution). () Main sequence (amplitude vs peak velocity)
of marmoset eye saccades, error bars convey 95% confidence intervals. The dashed line
corresponds to a Naka-Rushton function fit. (f) Distribution of marmoset eye saccade amplitudes,
dashed line placed at 5°. (g) Example trajectory traces (gray) of the 3D position during a recording
session for subject C. (h) Illustration taken from a previous publication'*®, displays the vector
direction differences between head direction and view encoding. (i) 3D model of the recording
chamber ring placed on the skull of the marmoset. (j) 3D model of the spacer that houses the
electrode connector (omnentics 36pin), the spacer is placed on top of the chamber ring and it serves
as a head-fixation base.
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Supplementary figure 2 (@) MRI and micro-CT based 3D reconstruction of the electrode
recording sites for subject C (left hippocampus) and subject P (right hippocampus). (b) Screenshot
of a sorting session of one channel using Plexon software (Offline Sorter, Plexon Inc., Texas,
USA). PCA view is displayed with labelled clusters, blue is a single unit, green is multi-unit
activity, and yellow is the noise unit. (c) Multi-unit activity spike waveforms, aligned to the
negative peak. (d) Single unit activity spike waveforms, aligned to the negative peak. (e,f) AHV
speed scores for subject C and subject P respectively, the dashed line indicates a speed score of
0.3. (g,h) TS speed scores for subject C and subject P respectively, the dashed line indicates a
speed score of 0.3. (i,J) Speed score distribution for both AHV and TS labelled according to cell
type for subject C and subject P respectively, (green = putative interneuron, pink = putative
pyramidal), the dashed line indicates a speed score of 0.3.
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Supplementary figure 3 (a) Schematic describing the stepwise forward search GAM model
selection process. (b) Real vs. predicted firing rate for a putative interneuron example cell
(example cell from Fig.6c¢). (c) Real vs. predicted firing rate for a putative pyramidal example cell
(example cell from Fig.6a).
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Supplementary figure 4 Additional single-cell examples are provided to illustrate the diverse
types of encoding observed in putative pyramidal single neurons using the GAM model. Rate maps
depicting view, place, and head direction are plotted to represent the corresponding behaviors
encoded by individual neurons. In the case of cells encoding only one variable (first order models),
a single rate map is observed. Conversely, in cells encoding multiple variables (second and third
order models) multiple rate maps are displayed, indicating the specific behaviors being encoded.
In head direction rate maps, firing rates corresponding to yaw angles (horizontal head direction)
are color-coded as green, roll angles (lateral tilt) as red, and pitch angles (vertical axis) as blue. In
the case of third order models, the view and place rate maps share the same color map, with the
maximum firing rate indicated at the top of the color bar.
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Supplementary figure 5 (a) Average R? between predicted and real spike rasters of all
significantly encoding putative pyramidal cells. (b) Proportion of putative pyramidal encoding
cells for subject C (left) and subject P (right). (c) Average R? between predicted and real spike
rasters of all significantly encoding putative interneuron cells. (d) Proportion of putative
interneuron encoding cells for subject C (left) and subject P (right). Since each recording session
is divided into 5 equally-timed folds, each predicted raster is a continuous time series
approximately 8-12 min. long. () Schematic describing the best ensemble building procedure.
(left) The most informative neuron is selected, as assessed by the single-neuron with the highest
SVM decoding accuracy of place. (right) The most informative neuron is used as a seed to
iteratively add units (looped through the remaining units) to the subsequent subensembles until
the ‘best ensemble’ n-combination of neurons is obtained.
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Supplementary figure 6 (a,b) (top) 3D diagram of the binned place locations used to decode the
subject’s position, (bottom) blue and pink lines correspond to raw decoding accuracy (y axis) as
a function ensemble size (number of neurons, x axis), shaded area corresponds to 95%
confidence intervals. Blue solid lines correspond to the best ensemble constructed from a pool of
all recorded putative pyramidal neurons. Pink solid lines correspond to the best ensemble
constructed from a pool of non significantly selective cells (as per GAM encoding analysis). R?
goodness of fit value is reported. The cyan lines correspond to decoding accuracy of a
randomized combination of neurons (100 iterations), shaded area corresponds to 95% confidence
intervals. The gray dashed lines correspond to chance decoding accuracy (1/4, 0.25). (d,e,f)
Additional single-cell examples of down-modulated, up-modulated and up/down modulated cells
respectively. Each raster plot corresponds to a single neuron and is aligned (time 0) with the peak
velocity time of a head movement, where each row corresponds to one head movement event and
each blue dot represents one neuronal spike, negative times indicate the neuron’s firing before
the peak velocity of a head movement, while positive times indicate the neuron’s firing
afterwards.
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Supplementary movie 1: https://youtu.be/\Vz4IMer5g8o (Recording session video example)
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