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Abstract: 

The mammalian hippocampus has been compared to a Global Positioning System (GPS) that 

enables spatial navigation. This notion has been primarily drawn from studies conducted in 

nocturnal mammals, such as rats; that lack many adaptations to daylight vision compared to diurnal 

primates. Here we demonstrate that during foraging in a 3D maze, the common marmoset, a new 

world diurnal primate with foveal, stereo-color vision, predominantly uses rapid head-gaze shifts 

to visually explore their surroundings while remaining stationary, and then minimizes head 

movements to navigate towards goals. On the other hand, rats, mainly move their head at low 

velocities while locomoting to explore the environment using their whiskers. These differences in 

exploration-navigation strategies reflect the species' sensory adaptations to different ecological 

niches. In the marmoset hippocampus CA3/CA1 regions putative pyramidal neurons show 

selectivity for 3D view, head direction, and less for place, but mainly mixed selectivity for 

combinations of these variables. Despite weak place selectivity, the spatial position of the animal 

in the maze can be decoded from the activity of small ensembles of mixed selective neurons. 

Inhibitory interneurons are tuned to 3D angular head velocity and translation speed, with most 

cells showing mixed selectivity for both variables. Finally, marmosets lack the rhythmic theta 

oscillations of local field potentials seen during locomotion in rats. Instead, they show resetting of 

theta oscillations triggered by head-gaze shifts that co-occurred with the activation of inhibitory 

interneurons, followed by various modulations in the activity of pyramidal cells. Our results show 

that the marmoset visual exploration/navigation strategies and the hippocampal neuronal 

specializations supporting them diverge from those observed in rats, reflecting the far-sensing 

capabilities of the marmoset visual system adapted to diurnal lifestyle.  

Introduction: 

The hippocampus is a phylogenetically ancient structure of the mammalian brain that has been 

implicated in spatial memory and navigation1–3. Understanding how the hippocampus supports a 
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cognitive map-like representation of the outer world first came from recordings of single-neuron 

spiking activity in freely moving rats, describing individual neurons that selectively increased their 

firing rate when subjects occupied a specific location within a maze1,4. Following the discovery of 

place cells, a rich diversity of spatial encoding neurons has been reported within the hippocampal 

formation and in functionally related brain areas5–13. Based on the results of spatial navigation 

studies in rodents, the hippocampus has been deemed a Global Positioning System (GPS) that 

enables the formation of a cognitive map of the environment. However, recent navigation studies 

in primate species such as macaques and marmosets have not replicated the range of neuronal 

selectivities found in the hippocampus of rats and mice14,15. Thus, it is unclear whether the analogy 

of the hippocampus as a GPS generalizes to the aforementioned primate species. 

In primates, hippocampus studies are much scarcer than in rats and mice. Some studies in macaque 

monkeys have reported that neurons in the hippocampus encode the direction of the subject’s gaze 

in space (view)14,16–20. It has been proposed that diurnal primates’ highly developed visual 

capabilities21 may have shaped neuronal selectivities in the hippocampus18,22,23. Indeed, macaques 

and marmosets with diurnal lifestyle and foveal, stereoscopic color vision, have developed a head-

gaze control system that allows orienting the fovea towards locations of interest while inspecting 

visual scenes24–26. However, several studies in non-human primates (NHPs) have mainly used 

paradigms in which the subject is placed in a primate chair with the head and/or body restrained 

while performing visual tasks on a computer screen27–29. These experimental paradigms may 

deprive the hippocampus of multisensory inputs such as vestibular and proprioceptive that occur 

during real-world navigation.  

A few studies in freely moving monkeys14,30–32 have reported that some hippocampal neurons are 

tuned for variables related to place, gaze direction or view, head movements and the interaction 

between view and place. One study trained marmosets to navigate a linear maze under constrained 

conditions (tethered) and described the existence of place-like cells in the hippocampus15. 

Interestingly, they describe that rhythmic hippocampal theta oscillations are not omnipresent 

during locomotion-exploratory behavior15, as is the case in mice and rats3,33. In other mammalian 

species, such as the Egyptian fruit bat34 theta oscillations in the hippocampus occur in short bouts. 

Finally, some studies have documented that in humans and macaque monkeys, theta oscillations 

are coupled to saccades, and they have variable frequencies35–37.  

In the present study, we test the hypothesis that diurnal primates have developed different 

exploration-navigation strategies compared to nocturnal rodents such as rats, and that such 

strategies have shaped the physiology of the hippocampus. We investigate the exploration-

navigation strategies of marmosets during unrestricted 3D foraging and compare them to those of 

freely moving rats. We built a setup that allowed for continuous tracking of the marmoset body 

position and head direction in 3D and recording neural activity from the hippocampus (CA3 and 

CA1) wirelessly. We found that marmosets navigate 3D environments using quadrupedal 

locomotion, during which the head-gaze remains relatively stable. They make frequent stops, 

during which they execute sequences of rapid head-gaze movements toward locations of interest 

(visual exploration). This is different from rats that often move their heads at low velocities during 

locomotion, ‘scanning’ the environment with their whiskers38. Additionally, we use wireless 

recordings of neural activity and demonstrate that marmoset hippocampal neurons in subfields 
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CA3 and CA1 predominantly encode a mix of variables related to 3D head/gaze direction, speed, 

and position in space. We found a predominance of 3D view, head direction and spatial position 

coding in putative pyramidal (principal) cells, and a mix of 3D angular head velocity (AHV) and 

translation speed (TS) in putative interneurons. We demonstrate that from small ensembles of 

mixed selective neurons, weakly tuned for spatial position, we could reliably decode the subject’s 

position in the maze. Finally, we demonstrated that rapid head-gaze movements reset local field 

potentials (LFP) theta oscillations in the hippocampus, which coincides with an increase in the 

response of interneurons followed by modulation of pyramidal neurons’ firing. 

Results 

Spatial exploration strategies in marmosets and rats 

We measured position and head direction signals in two freely moving marmosets (1 male and 1 

female) while they foraged through a 3D maze searching for reward (e.g., condensed milkshake 

or marshmallows; Fig. 1a, Fig. S1g, methods). A reward was delivered at 1 of the 12 possible 

maze locations randomly selected (Fig. 3b), by either cueing the subject with an LED light or 

waving a hand at the reward location; this reward schedule was used to encourage navigation of 

the 3D maze. Recorded data consisted of 6 different variables, three for the position of the subject 

in the maze (horizontal or Xp, depth or Yp, vertical or Zp), and 3 for rotational head direction (Xh, 

Yh, Zh) yaw, roll and pitch. Body position signals were low-pass filtered at 4Hz. TS was calculated 

from the position signals (see methods).  

Xh, Yh, and Zh rotation vectors were used to calculate the AHV (see methods). We then classified 

rapid translation or rapid head rotation movements based on a minimum speed/velocity threshold 

(higher than 15cm/s TS and 200°/s AHV, for body translation and head rotation movements 

respectively) and amplitude threshold (30cm and 16° for body translation and head rotation 

movements respectively).  
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Figure 1 | Behavioral setup and data traces. (a) Top, recording chamber cap cover with a 

schematic of marker positions that allow tracking position and direction of the subject’s head. 

Bottom, a schematic of the maze and wireless recording setup. (b) Data traces with three example 

single cells. The type of signal and corresponding units are indicated. In the spike rasters, each 

vertical line indicates an action potential. 

We observed that during foraging marmosets alternate between periods in which the subjects 

translate in 3D space (quadrupedal locomotion) while the head remains ‘fixed’ relative to the body, 

and periods in which they stop translating in space (body stationary), and the head frequently 

rotates relative to the body (supplementary movie 1). During the latter periods, they explore the 

environment through frequent rapid head movements that end in gaze fixations39, resembling the 

way humans and other primates freely explore visual scenes25. We will refer to these rapid head 

movements as head-gaze shifts since the main goal is to align the gaze with objects/locations of 

interest. To corroborate this observation, we computed translation trajectories and associated 

velocities. Indeed, marmosets alternated between translations during which head-gaze movements 

were scarce (Fig. 2a, left, blue trajectories) and stops during which head movements were frequent 

(Fig. 2a, left, red dots). 

To contrast the navigation strategies of marmosets and rats, we performed the same analyses in a 

dataset available online (CRCNS.org, Data sharing, hc-2 data set) collected while rats were 
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foraging in a maze searching for rewards. Rats were video-tracked (sampled at 39.06Hz) using 

two LEDs of different colors, placed on the front and back of the head, from which the position 

and head direction can be measured40. Rats are nocturnal; their vision has adapted to detect motion 

in dim light conditions. Their retinas possess ultraviolet-sensitive cones, and the majority of their 

optic nerve axons target the superior colliculus (SC) rather than the lateral geniculate nucleus 

(LGN)41. Although rats possess visual capabilities and can perform visual tasks42, they have no 

well-defined fovea, their spectral sensitivity is considerably smaller than that of diurnal primates, 

and the anatomical position of their eyes does not enable stereo vision to the same degree as front-

positioned eyes primates41,43. Consequently, rats must rely to a larger degree on olfaction and 

whisking to sense the environment. Most of the rat’s eye movements are often disconjugated44 and 

stabilize the eyes against movements of the head.  

We found that rats’ head movements often occurred simultaneously with the body translation 

movements during locomotion (Fig.  2a, right, green dots). In marmosets, 80% (99% confidence 

interval [79%, 80%]) of the head movements occurred during body stops while in the rat only 14% 

(99%, confidence interval [12%, 14%]) of the head movements occurred during body stops (Fig. 

2b, left pie chart). On the other hand, in marmosets, only 20% (99% confidence interval [19%, 

20%]) of the head movements occurred during body translations while in rats 86% (99% 

confidence interval [85%, 87%]) of the head movements occurred during translations (Fig. 2b, 

right pie chart). The range of TS and AHV in the marmoset appears larger than in the rat which 

may reflect different adaptations in the two species. The AHV in the marmoset has a long tail 

along the X-axis corresponding to low TS compared to the rat (Fig. 2b). This is due to the high 

frequency of rapid head-gaze movements in the marmoset when the body is stationary.  

Rapid head-gaze movements in the marmoset have the signature of gaze shifts composed of 

coordinated movements of the eyes and the head. The main sequence, described as the relationship 

between the amplitude and peak velocity of eye saccades has been used to characterize gaze 

shifts45. During gaze shifts the peak velocity/speed increases monotonically with increases in head 

movement or saccade amplitude, progressively saturating for large movements25. Marmoset rapid 

head movements, much like eye movements, are stereotyped ballistic movements used for visual 

exploration; and the main sequence has been used to describe their kinematics39. We hypothesize 

that in the marmoset the main sequence of the head movements will follow a similar profile as the 

main sequence of gaze shifts in macaques. On the other hand, rats, lacking a sophisticated head-

gaze apparatus would systematically show lower peak velocities relative to marmosets.  

To test this hypothesis, we computed the main sequence of head movements (movement amplitude 

vs. peak velocity) in both species. In both, marmosets and rats head peak velocity increased as a 

function of movement amplitude (Fig. 2c) indicating a general kinematic principle also reported 

in other species46. Importantly, head movements of the same amplitude have higher mean peak 

velocity in the marmoset than in the rat (two-sided Wilcoxon signed-rank test, p < 5 x 10-324, 

Z=113.8). The maximum response (Rmax) of a Naka-Rushton function fit to the velocity as a 

function of movement amplitude is higher for marmosets compared to rats (795°/s vs 430.9°/s; 

Fig. 2c, Fig. S1 c,d). These results are consistent with marmosets’ use of head-gaze shifts to 

visually explore the environment during body stops to position and stabilize the fovea on objects 

of interest. On the other hand, rats use head scanning mainly during locomotion to orient the 
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whiskers and facilitate exploration47,48. Rats may also use vision but with their lack of fovea and 

poor color and stereo vision, they may not require image stabilization to the same degree as 

marmosets do44,49. 

We did not measure eye position in the marmosets in the 3D maze, but instead relied on head 

movements as a proxy for gaze direction, thus marmosets may have moved the eyes-in-head during 

exploration producing misalignments of head and gaze. We have previously demonstrated in 

macaques that after a head-eye gaze shift the eyes and head tend to be aligned at the final position46. 

However, we tested marmosets during several sessions in which they were seated on a primate 

chair, and we fixed the head while they explored a visual scene on a computer monitor. We 

measured eye position and computed the amplitude and peak velocity of eye-in-head saccades. 

Interestingly, we observed that saccades were in their majority shorter than 5 degrees (Fig. 2c, Fig. 

S1 e,f), which coincides with the lower limit of the head movement distribution. So, if we were to 

estimate the gaze position from the head direction in the marmoset, the error could be as large as 

5 degrees. Since our goal was not to obtain an accurate estimate of gaze position but to compare 

marmosets and rats’ visual exploration strategies, we conclude our measurements have sufficient 

resolution to justify our main conclusions.   

 

Figure 2 | Exploration strategies in marmosets and rats. (a) Selected trajectory examples of 

subject C (left) and 2 different rat subjects (right) during foraging (rat subject A on the top panel 

and rat subject B on the bottom panel). The size of the marker is proportional to the time spent at 

that location, Red = rapid head movement, Blue = body translation movement and Green = both 

head and body movement were present. (b) Distribution of AHV vs TS, pie chart displays the 

percentage of head movements that happen during body translation movement or rest (defined as 

no body movement present), for both marmoset (left) and rat (right). (c) Main sequence of head 
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movements for both marmoset (head and eye movements) and rat (head movements). A Naka-

Rushton function was fit to the mean values (dashed line), Wilcoxon signed-rank test bootstrapped 

p-values (marmoset head movement data were re-sampled to match rat head movement counts, 

this process was repeated 500 times) are displayed on a log-scale (cyan dots) and median p-values 

are shown as pink line and dots. (d) Schematic of the two different exploration strategies observed 

in marmosets and rats during foraging. 

Coding of space by single neurons in the freely moving marmoset hippocampus 

We recorded the responses of single neurons and LFPs in the hippocampus of two common 

marmosets by implanting chronic microwire brush arrays (MBA, Microprobes for Life Science, 

Gaithersburg, MD) in the subfields CA3 (Subject P) and CA1 (Subject C). We verified the final 

position of the electrodes using 9.4T MRI and micro-CT imagining co-registration (Fig. 3a, Fig. 

S2a, and methods). Data acquisition was accomplished using wireless telemetry (CerePlex Exilis, 

Blackrock Microsystems, Salt Lake City, UT) while the marmosets foraged for rewards at reward 

ports of a 3D maze (Fig. 3b and methods). We defined view as the facing location of the marmoset 

at any given point in time (linear projection of the head direction onto the walls of the maze, see 

methods)14. We recorded a total of 331 neurons in both subjects (178 in subject C and 153 in 

subject P).  

Excitatory pyramidal neurons are commonly regarded as the cells responsible for transmitting and 

processing spatial information in the hippocampus1,50–52, while inhibitory interneurons have been 

associated with the encoding of non-spatial variables like speed53, or with synchronizing activity 

in the hippocampal network54. To quantify spatial tuning to either place or view with conventional 

methods, we classified neurons based on their bursting properties and firing rate55–59 into either 

putative interneurons or putative pyramidal cells (Fig. 3c), and we used exclusively putative 

pyramidal cells to assess variables related to spatial tuning. A total of 204 cells were classified as 

putative pyramidal and 127 were classified as putative interneurons.  
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Figure 3 | Single neuron responses to view and place. (a) (top) MRI and CT imaging showing 

the final electrode location. (bottom) 3D reconstruction of the segmented hippocampus showing 

electrode location for Subject P (left) and Subject C (right). (b) Schematic representation of the 

3D maze. (c) Electrophysiological parameters used to classify cells into putative pyramidal cells 

(n=204) or putative interneurons (n=127), the cluster boundaries are calculated using the k-means 

algorithm. (d) Single-cell example of a place cell. Firing rate maps for both place (left panels) and 

view (right panels). The color indicates the firing rate. (e) Single-cell example of a view cell 

(similar panel configuration as in d). (f) Single-cell example of a mixed place and view cell (similar 

panel configuration as in d).  

Some putative pyramidal cells showed selectivity for the subject’s position in the maze while they 

were poorly selective for view (example in Fig. 3d). Other cells show view selectivity but poor 

place selectivity (example in Fig. 3e). Other cells show a mix of view and place selectivity 

(example in Fig. 3f). For the analyses of spatial selectivity, we calculated the spatial information 

content (SIC)60–62 of putative pyramidal cells. The SIC quantifies the amount of information (bits) 

each neuronal spike transmits about the location of the subject. SIC was computed for each putative 

pyramidal neuron, and a SIC shuffled control was computed by circularly shifting spike times by 

a random duration a total of 5000 times. Neurons with SIC that exceeded the 95th percentile of the 

null distribution were classified as selective. Overall, neurons had higher SIC for view than for 

place (Fig 4b, two-sided Wilcoxon signed-rank test, p=1.4 x 10-55, Z=15.7). Using this metric, we 

found that 66 (32%) of cells were place selective and 159 (76%) were view selective. For subject 

C, out of all the sampled view bins, 76.4% (99% confidence interval [64.5%, 88.4%]) had at least 

one cell that exhibited selectivity for that bin. Similarly, for subject P 78.3% (99% confidence 

interval [68.6%, 88%%]) had at least one selective view field. In contrast, of all visited place bins, 
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in both subjects, 25% (Subject C 99% confidence interval [12.11%, 36.1%], Subject P 99% 

confidence interval [14.1%, 34.2%])  had at least one selective place field. 

Figure 4 | SIC comparison between view and place and place/view field locations. (a) Violin 

distribution of Z-scored SIC for putative pyramidal cells, gray distribution is shuffled control. (b) 

(left) Place field location for all place cells and separated according to the three distinct floors of 

the 3D maze, color indicates the number of place fields at that location, white indicates bins 

without place fields. (right) Map of all spatial trajectories travelled across (n=26 and n=33 

sessions) for subject C (top) and subject P (bottom), respectively. Color intensity reflects more 

time spent in that position. (c) View field locations for all view cells, color indicates the number 

of view fields at that location, white indicates bins without view fields. Right: map of all view-

gaze positions  (n=26 and n=33 sessions) for subject C (top) and subject P (bottom), respectively. 

Color intensity reflects higher counts. 

Coding of speed by single neurons in the hippocampus of freely moving marmosets  

Neurons in the rodent hippocampus show selectivity for the TS of the animal locomoting in a maze 

or running in a wheel11,12,53,63–68. However, little is known about the presence of speed cells in the 

hippocampus of non-human primates. A previous study14 reported encoding of both TS and AHV 

in freely moving macaques, mainly in putative interneurons. We found no reports in the common 

marmoset.  

For this analysis, we included both putative interneurons and pyramidal cells. We found single 

neurons that vary their response rate as a function of AHV (Fig. 5a left) and TS (Fig. 5a right). To 

quantify speed encoding we calculated the speed score as defined in53,69 (Pearson correlation 

coefficient between the time series of firing rate and either AHV or TS). To select the neurons that 

were responsive to either AHV or TS, any given cell had to meet these two criteria: 1) as reported 

by a previous study53, a speed score higher than 0.3, and 2) the cell’s speed score had to be higher 

than the 95th percentile of speed scores in a shuffle null distribution (1000 permutations calculated 

by circularly shifting the vectorized spike raster relative to the equally sized speed vector) (Fig. 

5b, Fig. S2 e-h). We found a total of 43 (33%) speed selective cells. 

A significant amount of the speed cells encoded both, TS and AHV (Fig. 5c, 20 AHV cells, 3 TS 

cells, 20 mixed cells). Interestingly, neurons encoding AHV often show selectivity for only that 

variable, but most neurons encoding TS also showed selectivity for AHV (AHV cells 90% 

confidence interval [34%,59%]; TS 90% confidence interval [1%,13%]). As a control we 

investigated whether speed cells were predominantly putative interneurons (Fig. 5 d, e, Fig. S2 i,j, 
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proportion of speed cells that were putative pyramidal cells 90% confidence interval [3%,18%]; 

proportion of speed cells that were putative interneurons 90% confidence interval [82%, 97%]), 

furthermore, the median AHV and TS score for the population of putative interneurons was higher 

than in putative pyramidal cells (two-sided Wilcoxon signed-rank test, TS p=3 x 10-22, Z=9.7; 

AHV p=1.3 x10-25, Z=10.5) corroborating that, as in the rat, speed tuned cells are mainly 

interneurons53. 

Figure 5 | Single neuron responses to TS and AHV. (a) Example cells. On the left for AHV, the 

cell increases the firing as a function of AHV but not TS. Right: TS cell firing increases as a 

function of TS but not AHV. (b) Distribution of speed score (Pearson correlation between time 

series of firing rate and speed) for both TS and AHV for all cells, the red dotted line at a 0.3-speed 

score, indicates the threshold to define significant encoding. (c) AHV and TS significant cells 

count distribution, orange color indicates cells that are both AHV and TS significant cells. (d) 

Distribution of speed cells according to putative cell type. (e) Speed score distribution for both 

AHV and TS labelled according to cell type, (green = putative interneuron, pink= putative 

pyramidal), the red dotted line indicates a speed score of 0.3. 

Mixed selectivity in the marmoset hippocampus 

To quantify mixed selectivity for the different variables (space, view, head direction and speed) in 

the recorded neurons we use a generalized additive model70 (GAM) that fits the neuron’s response 

to behavioral parameters described as the sum of fitted, cross-validated spline functions. We 

trained two different model types, one for putative pyramidal cells and the other for putative 

interneurons. The output model can have either none, one (first order model) or multiple variables 

(i.e. second or third order models) as significant predictors of the firing rate of single neurons, we 

can then classify cells that encode multiple variables as cells with mixed selectivity.  For putative 
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pyramidal cells, the model included place, view, and head direction as predictors (Fig. 6a). The 

putative interneuron model included AHV and TS as predictors (Fig. 6c). Across all cell types, 

160/331, 48.3% significantly encoded at least one variable (Putative pyramidal cells 56/204, 

27.5%; Putative interneurons 104/127, 81.9%); amongst all encoding cells, mixed selectivity was 

predominant over single selectivity (140/160, 87.5% mixed selective; Putative pyramidal cells: 

48/56, 85.7% mixed selective; Putative interneurons: 92/104, 88.5% mixed selective).  

In the putative pyramidal model (Fig. 6b), place was exclusively encoded in combination with 

either view or head direction, there were no cells whose firing rate encoded only place, with the 

large majority of cells significantly encoding the three variables (view: 3/204, head direction: 

5/204, view + head direction: 3/204, view + place: 3/204, place + head direction: 4/204, view + 

place + head direction: 38/204, Fig. S4 for rate map examples, Fig. S5 a,b for individual marmoset 

results). For the putative interneuron model (Fig. 6d, Fig. S5 c,d), we found 6/127 (5%) AHV 

cells, 6/127(5%)  TS speed cells and 92/127 (73%) mixed selective cells (AHV + TS). In summary, 

for the putative pyramidal model, single behavior selectivity is dominated by visuospatial variables 

(view + head direction) rather than place alone. For the putative interneuron model, selectivity was 

similar for TS and AHV. Finally, for both putative pyramidal and interneuron cells, mixed 

selectivity for combinations of different variables was predominant.   
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Figure 6 | Mixed selectivity GAM encoding model. A cross-validated GAM model was fitted to 

(a) putative pyramidal cells (view + place + head direction (h.d.)), single cell model fit example 

for view (left) and place (right), rate maps correlation shown as R2. (b) Proportion of encoding 

putative pyramidal cells (pie chart). (c) GAM fitted to putative interneurons (AHV + TS), single 

cell model fit example for AHV (left) and TS (right), the goodness of fit is shown as R2. (d) 

Proportion of putative interneuron encoding cells (pie chart). 

Ensembles of mixed selective neurons encode place 

Our previous results demonstrate that individual cells within the marmoset hippocampus are 

weakly selective for place, and rather encode a combination of variables, with a higher proportion 

of cells encoding view or head direction relative to place. This observation may suggest that the 

amount of place-related information in the marmoset hippocampus is relatively limited. However, 

previous research has demonstrated that populations of neurons, referred to as ensembles, can still 

contain substantial amounts of information about task-related variables, even if individual cells are 

poorly tuned 27,71,72. Furthermore, numerous studies, conducted primarily in rodents have amassed 

a wealth of evidence demonstrating that the subject’s position can be decoded from the firing rate 

of hippocampal cell ensembles64,73,74 achieving accuracies of approximately 10cm (approximately 

equivalent to the subjects’ body size)75. To further explore this issue, we used firing rates of a 

pseudo-population of mixed selective putative pyramidal cells in areas CA3 and CA1 to decode 

the animals’ location in the maze.  

We first divided the maze into two spatial regions (bins) per floor (Fig. 7a). From the 6 resultant 

bins, we identified the 4 bins that best optimized visitation frequency and neuron counts across all 

sessions for each subject, (Fig. 7 a,d; top). Using firing rates obtained during periods where the 

subject’s head velocity was low (less than 200°/s, see methods), we decoded the subject’s location 

employing a linear multiclass support vector machine (SVM) classifier. To identify the 

combination of neurons (ensemble) that provides the best decoding accuracy, we used an 

‘ensemble construction’ method previously described76,77. We iteratively tested combinations of 

different neurons from a pool of a pseudo-population of putative pyramidal neurons. In the first 

iteration, we train one classifier per neuron, and the neuron exhibiting the highest decoding 

accuracy is then selected as the ‘ensemble seed’, for the second iteration, we train all the possible 

two-neuron combinations that include the previously selected units along with the remaining units 

in the pseudo-population; then the best two-neuron ensemble is selected. This process continued 

with each subsequent iteration, involving the training of an n+1 ensemble and the selection of the 

‘best ensemble’, until performance becomes asymptotic (e.g., at n=20 cells). We constructed two 

different ensembles using this method, one where the pool of neurons included all recorded 

putative pyramidal cells, we called this the ‘all units best ensemble’ (pool size = subject C 75 cells, 

subject P 119 cells), and a second ensemble where the cells that significantly encoded at least one 

spatial variable, as per the previous GAM analysis, were excluded from the pool of neurons, we 

called this the ‘no significant units best ensemble’ (pool size = subject C 61 cells, subject P 78 

cells). For both pools of neurons, we only included cells from sessions where subjects sampled 

each spatial bin at least 50 times. The latter was done to have sufficient data to train the classifiers. 

We fit a Naka-Rushton function to the decoder performance as a function of ensemble size and 

calculated statistics on the fit coefficients. 
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We decode place significantly above chance level (1/4, 0.25) (‘all units best ensemble’ decoding 

accuracy (Fig. 7 a,d; blue line, Fig. 7 c,f), subject C=0.45 (95% confidence interval [0.44 0.46]); 

subject P=0.49 (95% confidence interval [0.48 0.5]). The ‘all units best ensemble’ decoding 

accuracy was significantly higher than the ‘no significant units best ensemble’ decoding accuracy 

(Fig. 7 a,d; pink line), subject C=0.42 (95% confidence interval [0.41 0.43]); subject P=0.42 (95% 

confidence interval [0.41 0.43]). The latter indicates that neurons with significant fits for the GAM 

model contributed substantially to decoding accuracy. However, the fact that ensembles of neurons 

without significant fits also produce decoding accuracies higher than chance suggests that many 

of these neurons contain information about place. We further tested whether our ensemble 

construction method was effective in selecting combinations of the most informative neurons from 

the pseudo-population by training a decoder on ‘random combination ensembles’. We randomly 

generated 100 different and unique combinations of 20 cells and decoded place from those 

ensembles (Fig. 7 a,d; cyan line). The ‘random combination ensemble’ decoding accuracy was 

significantly lower than the one of optimized ensembles, subject C = 0.35 (95% confidence interval 

[0.35 0.36]); subject P = 0.34 (95% confidence interval [0.34 0.35]).  

Finally, we examined the encoding profiles of the neurons comprising the 'all units best ensemble'. 

Specifically, we focused on identifying the best-encoded spatial variable based on the GAM 

model. We found that the cells part of the ensemble encoded a mixture of view, head direction and 

place (Fig. 7 b,e). Interestingly, despite place being the decoded variable, there is a predominance 

of view and head direction as the single cells’ best-encoded variables in the ‘optimized’ ensembles. 

The latter demonstrates that spatial position could be decoded from our population of mixed 

selective neurons. Furthermore, it suggests that view and head direction can provide information 

about place and may explain the exploratory gaze behavior marmosets exhibit when stationary. 
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Figure 7 | Population decoding of place using a linear SVM classifier. (a,d) (top) 3D diagram 

of the binned place locations used to decode the subject’s position, (bottom) blue and pink lines 

correspond to a Naka-Rushton function fit to the decoding accuracy (y-axis) as a function 

ensemble size (number of neurons, x-axis), shaded area corresponds to 95% confidence intervals. 

Blue solid lines correspond to the best ensemble constructed from a pool of all recorded putative 

pyramidal neurons. Pink solid lines correspond to the best ensemble constructed from a pool of 

non significantly selective cells (as per GAM encoding analysis). R2 goodness of fit value is 

reported. The cyan lines correspond to the decoding accuracy of a randomized combination of 

neurons (100 iterations), shaded area corresponds to 95% confidence intervals. The gray dashed 

lines correspond to chance decoding accuracy (1/4, 0.25). (b,e) Best encoded variable proportion 

(as per GAM encoding analyses) for the combination of n=20 neurons part of the best ensemble 

pooled from all the single units (a,d; blue line). (c,f) Confusion matrix derived from the best 

ensemble classification accuracy (a,d; blue line). 

Marmoset rapid head movements trigger LFP theta phase-resetting and modulation of single 

cell responses 

Rhythmic, LFP theta oscillations in the hippocampus have been widely documented in rodents 

such as rats and mice3,33. Theta oscillations are thought to coordinate hippocampal cell assembles, 

and it has been proposed that they are involved in memory formation78–80. However, in some 

species like humans, macaques, marmosets, and bats, theta oscillations are not present as a rhythm 

during locomotion but appear in short bouts14,15,81–83. In humans and macaques, saccadic eye 

movements are thought to reset the phase of theta oscillations35–37,84,85. Here we hypothesize that 

head-gaze movements in the marmoset will induce theta phase resetting, which modulates 

neuronal activity during visual exploration (when the animals acquire information about the 

environment) aiding memory encoding. 

We aligned the LFPs to the peak velocity of head movements (see methods) and computed average 

LFPs (Fig. 8a). We also aligned spectrograms corresponding to LFP traces and computed their 

averages. We found the strongest power in the 4-15Hz band with a peak at the theta frequencies 

(4-10Hz) around the onset of the head movement (Fig. 8a). To determine whether head-gaze theta 

phase-resetting was accompanied by a modulation of neuronal firing we obtained the average 

firing per single cell as a function of head movement events. We found that in both putative 

interneurons and pyramidal cells, spiking activity was modulated by the occurrence of a head 

movement (Fig 7b, Fig. S6 d-f). To quantify the precise nature of this modulation, we calculated 

a firing rate shuffled distribution through circular permutation of spike times, repeating the process 

1000 times. Significance was evaluated using eight different bins, each spanning 50ms, within a 

400ms window (total of eight bins). The center of the window was aligned with the peak velocity 

of each detected head movement event in the recording session, with a range of 200ms before and 

after the head movement peak velocity. Cells were classified as up-modulated if the real mean 

firing rate exceeded the 97.5th percentile of the mean shuffle firing rate at that bin and across bins, 

down-modulated if the mean firing rate was lower than the 2.5th percentile of the mean shuffle 

firing rate at any bin and across bins, and up/down modulated if their mean firing rate both 

exceeded and was lower than the 97.5th and 2.5th percentile of the shuffle respectively at different 

time bins. 
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We found that a lower percentage of putative pyramidal cells (72/204, 35.3%) were modulated 

(Fig. 8c) in comparison to putative interneurons (105/127, 82.7%). Furthermore, the average firing 

rate maxima of all modulated putative interneurons peaked at 31.2ms after the alignment 0 point 

(time from head movement velocity peak), whereas for all modulated putative pyramidal neurons 

it peaked at 81ms, a difference of 49.8ms. When accounting for the type of modulation (Fig. 8d), 

putative pyramidal cells seem more evenly split between down-modulation (14.7%) and up-

modulation (19.6%), whereas, in modulated putative interneurons, up-modulation was most 

prevalent (66.9%), in comparison to down-modulation (6.3%). For both cell types, up/down-

modulation was relatively rare at 1% in putative pyramidal and 9.5% in putative interneurons. The 

differences in activation latencies and the proportion of the different modulation types suggest that 

phase-resetting may be causally linked to interneuron activation that is followed by a range of 

modulation in pyramidal cells.  

Figure 8 | Theta oscillations and single neuron phase-resetting to head movements. (a) Head-

gaze phase-resetting of the average LFP aligned to head movement peak velocity (0 point). The 

color scale indicates average time-frequency representation (TFR) as Z-scored LFP power. Pink 

dotted lines indicate theta power band (4-10hz). (b) Single-cell phase-resetting example for a 

putative pyramidal (pink) and a putative interneuron (green) cell. (c) Average Z-scored firing rate 

phase-resetting for all head movement-modulated putative pyramidal (pink) and putative 

interneuron (green) cells; dotted line indicates the time of maximal activation. (d) Distribution of 

shuffle-controlled, head movement-modulated cells according to cell type (left, putative 

pyramidal; right, putative interneuron), cells can be up-modulated when the firing rate significantly 

increases, down-modulated when the firing rate significantly decreases, and up/down modulated 

when they show both significant increased and decreased phases (regardless of order).  

Discussion 

We used motion capture to track the behavior of freely moving marmosets foraging in a 3D maze 

and recorded the responses of neurons in the CA3 and CA1 regions of the hippocampus. We found 

that marmosets explore the environment using alternations of body translations and frequent stops. 

During translations head rotations are constrained. During stops, marmosets make frequent rapid 
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head-gaze shifts to explore the visual scene. This strategy differs from the one of rats, that 

frequently move their heads at low velocity ‘scanning’ the environment as they locomote. We 

found that putative pyramidal neurons in the CA3 and CA1 regions mainly encoded a mix of view, 

head direction, and place. Putative interneurons encoded a mix of AHV and TS. We demonstrated 

that the position of the animal in the maze (place) can be decoded from small ensembles of mixed 

selective cells, despite the predominance of encoding of view and head direction. Finally, we found 

that rapid head movements reset the phase of theta oscillations in the hippocampus. Theta phase-

resetting is accompanied by the activation of interneurons followed by a variety of modulations in 

pyramidal cells.  

Exploration strategies in marmosets and rats 

Rats and mice have been the primary animal model used to study spatial navigation86–89, with 1337 

indexed publications in 2022 (Pubmed indexed search query: ‘Rodentia’ AND 

‘hippocampus/physiology’). Studies in non-human primates have been scarce (4 in 2022 in 

Pubmed indexed search, query: ‘primates/physiology’ OR ‘Callithrix/physiology’ OR ‘Macaca 

mulatta’ AND ‘hippocampus/physiology'). There has been a tacit assumption that results from 

studies in nocturnal rodents such as mice and rats can be extrapolated to diurnal primates such as 

macaques and humans. However, there are differences between sensory systems and behaviours 

between nocturnal rodents and diurnal non-human primates that may be aligned with differences 

in how the hippocampus processes information during navigation. For example, rats and mice lack 

foveae, their eyes are displaced to the sides of the face, and they lack the wide range of color vision 

of diurnal primates like marmosets26,90. Rats can move their eyes independently, while marmosets 

cannot; marmosets make conjugate eye movements that preserve the alignment of the two eyes 

needed for stereovision26,44. Marmosets’ high acuity color and stereovision allows far sensing 

during daylight to forage for fruit, trees, discriminate between conspecifics during mating or social 

interactions, or escape predators. These specializations make them distinct from nocturnal rodents 

such as rats.  

Rapid head movements are key to marmosets’ and other diurnal primates’ efficient exploration of 

the environment via the far-sensing capabilities of their visual system91. They have previously 

been described in marmosets sitting in a primate chair39. In this study, we report the presence of 

these highly stereotypical movements in a marmoset navigating in 3D space. They followed the 

main sequence, much like it has been described for eye-head gaze shifts in macaques46 and 

predominantly occur when the subjects are stationary, visually exploring the environment (visual 

navigation). We reasoned that because vision is ‘far sensing’ and the high-resolution fovea allows 

for the estimation of objects' features, animals do not need to actively visit locations to identify 

potential targets and landmarks for navigating. They can also identify depth stationary cues such 

as size differences, objects’ occlusion cues, and dynamic cues using motion parallax that allow 

evaluating distances to target and path planning before translating in 3D space92,93. 

In contrast, mice and rats use a different strategy likely adapted to their nocturnal lifestyle. Their 

limited color vision, lack of a fovea and the absence of daylight may have evolved in the use of 

near-sensing capabilities to identify target objects during navigation and the lack of rapid head-

gaze movements. Instead, they use slower head movements during navigation likely to position 

the whiskers or orient their olfactory apparatus toward possible targets or landmarks. In the 
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presence of poor illumination, rats would more frequently need to use path integration during self-

motion for exploring the environment relative to marmosets.  

The divergence between primates and rats may be traced to their ancestors. During early evolution, 

when mammals were predominantly nocturnal to escape predation by dinosaurs, most mammals 

regressed their visual capabilities, more suited for daylight, while expanding somatosensory, 

olfactory and hearing capabilities better suited for nocturnal activities91.  However, primates may 

have escaped the pre-extinction nocturnal bottleneck by developing a sophisticated visual system, 

expanding the pathway from the retina to the thalamus and the visual cortex. This reliance on high-

resolution stereo vision allowed foraging for insects and fruit in the distal branches of trees but 

may have produced a regression of their olfactory and somatosensory capabilities (e.g., whiskers). 

After the extinction of the dinosaurs, 66 million years ago, primates safely invaded the day-life 

niche further and disproportionally developed their already expanded visual system to incorporate 

color vision and extraordinary stereo and object recognition abilities91. This may have led primates, 

such as marmosets, to adopt more efficient navigation strategies relying on the far-sensing power 

of vision and consequently shaping neuronal selectivities in the hippocampus. In contrast, rats 

never escaped the nocturnal bottleneck and therefore, like their mammalian ancestor, preserved 

their near sensing capabilities such as whiskers, olfaction and audition to support navigation. 

Indeed, our data indicate that the common marmoset, a diurnal primate, uses different strategies to 

explore and navigate the environment compared to the rat, a nocturnal dweller. These differences 

may have impacted the physiological mechanisms of spatial navigation and specializations in the 

hippocampus of the two species.  

Representation of space in the marmoset hippocampus 

Previous studies in rats have shown that place cells form the basis for an internal representation of 

a spatial cognitive map1,4. The percentage of all hippocampal pyramidal cells that can be 

considered place cells ranges from 20-25%4,94. The identification of place cells in the rat 

hippocampus is astonishingly clear and replicable1,4. Studies in other species such as nocturnal 

bats have also reported place cells82,95. In primates, reports of place cells are scarce. Instead, studies 

using virtual reality in macaques have shown a representation of spatial locations that depend on 

objects-context27 or landmarks96. A recent study in freely moving macaques14 found that classic 

place cells are rare (7% of all cells). They reported that about 26% of all cells encoded place, but 

other variables such as facing location were better encoded. The only study in marmosets15 showed 

that when subjects moved on a linear ‘L-shaped’ track, 14.1% of cells could be classified as place 

cells. Interestingly, they reported that 77.9% of these cells were directionally selective, which 

could be interpreted as encoding head direction or view, as in the macaque study14.  

Our study was conducted in freely moving marmosets in a 3D environment, where these small 

primates naturally forage. Although we found neurons that encoded view and place in the 3D maze, 

we show a predominance of variables related to the head direction and view. Place encoding 

occurred in 21.5% of all cells; however, we observed that place was exclusively encoded in 

conjunction with either view or head direction, and most frequently both. ‘Bonafide’ place cells as 

reported in rodents were not found. 
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Our results may be related to changes in the brain structure and function happening in diurnal 

primates such as the expansion of areas related to vision, and the emergence of a high-resolution 

fovea91. Diurnal primates have also evolved a sophisticated eye-head apparatus that allows 

coordinated gaze shifts to stabilize the fovea on objects of interest. Vision, as a far-sensing strategy 

has shaped diurnal primates’ lifestyle and the physiology of the hippocampus. From an anatomical 

connectivity perspective, the primate hippocampus receives more visual information than that of 

the rat97–101; from a behavioral perspective, as shown in this study, there is a prevalence of 

navigation strategies that favor visual exploration behavior in primates. We argue that primate 

brains developed navigation and spatial memory systems adjusted to their diurnal lifestyles that 

heavily rely on visual cues and landmarks rather than on ma ps of space. One issue that remains 

unclear is whether the entire range of selectivities described as part of the navigational GPS in the 

entorhinal cortex of rodents (e.g., grid cells, border cells) is also present in primates. One study in 

macaques has described grid cell-like gaze selectivity in the entorhinal cortex when subjects 

inspected a visual scene102. This, however, is very different from grid cells that triangulate the 

animal’s position in the environment.  

Representation of speed in the marmoset hippocampus 

While there is abundant evidence of speed-correlated activity in the hippocampus of 

rodents11,12,53,63–68, there is limited evidence in primates. A study14 reported significant encoding 

of both linear speed and angular velocity (TS and AHV in our study, respectively) in freely moving 

macaques, where most of these speed-encoding cells were putative interneurons. Similarly, a study 

found hippocampal cells in macaque monkeys, that responded to linear and rotation-assisted 

motion (monkey sitting in a remote-controlled robotic platform)16. Our study reports speed cells 

in the freely moving marmoset in a 3D environment. Moreover, we show that AHV was encoded 

to the same level as TS and that most cells had mixed selectivity for both variables. In agreement 

with rodent literature, the strongest speed-correlated signal was observed in putative 

interneurons53. 

One notable difference from findings made in rodents is the prevalence of AHV encoding in 

marmoset CA3/CA1 neurons. Encoding of AHV has been reported in rodent studies almost 

exclusively in either parahippocampal regions (MEC, parasubiculum, presubiculum)103, 

retrosplenial cortex104, or sub-cortical regions associated with vestibular information processing 

(lateral mammillary nuclei, thalamic nuclei and striatum)7,8,105,106. The encoding of AHV has been 

theorized that serves an essential role in the generation of grid cells107,108 or the general processing 

of self-motion69,109,110. The function of head-speed cells in the marmoset is not clear but may be 

related to the signal that produces head-gaze theta phase-resetting.  

Ensemble coding of space in the marmoset hippocampus 

Our results demonstrate that space can be decoded from neuronal ensembles’ firing activity in the 

hippocampus regions CA1/CA3 of marmosets (Fig. 7). Remarkably, the neurons that yield the 

highest decoding accuracy, are not highly selective to specific places. Instead, these neurons 

exhibit mixed selectivity for view, head direction and place (Fig. 7 b,e). Numerous prior work has 

explored how neuronal mixed selectivity supports efficient representation and processing of 

complex information in the brain 71,72,111. Mixed selective neurons exhibit modest selectivity for 
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individual features, but increased selectivity for combinations of two or more features111. It has 

been theorized that neuronal ensembles face limitations to flexibly represent feature dimensions 

across different behavioral contexts when neuronal selectivity is highly specific111. This limitation 

becomes particularly prominent when considering that ensembles are constrained by a finite 

number of neurons. To overcome these limitations, neuronal networks may leverage between 

specificity and flexibility of neuronal selectivity72. This approach is especially advantageous when 

high-dimensional representations are required. Coding of space can be regarded as highly 

dimensional when encompassing a multitude of sensory inputs61,112,113. We propose that the 

presence of highly mixed information in the marmoset hippocampal neuronal ensembles supports 

reliable representations of space. 

One contrasting difference between the neuronal responses observed in this study (and the NHP 

hippocampus in general), and the ones commonly observed in nocturnal rodents, is the 

predominance of variables directly related to gaze such as view and head direction14,16,18,30. 

Marmosets high-resolution foveal vision might allow anchoring of place representations and future 

paths for navigation to visual/scene cues, such as landmarks identity, depth, egocentric/allocentric 

location, and the spatial relationships between them extracted from visual exploration via gaze 

shifts19. In contrast, ‘near’ sensory cues like olfaction and whisking are readily available to 

nocturnal rodents such as rats. With heads positioned much lower above the ground relative to 

marmosets and a nocturnal lifestyle prioritizing places with poor illumination, rats may be ‘less’ 

visually-driven. However, recent work has demonstrated diverse selectivity in the hippocampus of 

rats; implementation of multivariate encoding analyses and novel experimental paradigms in 

previous studies provide evidence that place cells in the hippocampus of rats also encode variables 

beyond place, like position, distance and direction of motion of a bar of light under body fixed 

conditions114, or be modulated by head direction and the presence of visual cues or olfactory 

cues12,113,115,116. Thus, mixed selectivity may be the norm in hippocampus neurons. However, 

mixed selectivity seems to be biased to overrepresent certain variables depending on the ecological 

niche of the species. For the case of marmosets, encoding of visual variables related to gaze 

orientation seems to be predominant in hippocampal neurons, at least in the daylight conditions in 

which diurnal primates usually forage. 

Indeed, we found that place can be decoded from ensembles with a predominance of view and 

head direction mixed selective neurons. The information provided by these ensembles about 

landmarks in the environment (allocentric coding) and self-orientation relative to them 

(egocentric) can be sufficient to position oneself in space (origin of the place information) and aid 

goal-directed navigation117 and the formation of spatial memories. It may also provide flexibility 

to adjust navigation strategies to the task demands (e.g., egocentric rather than allocentric 

representations27). 

Head-gaze movement phase-resetting 

It has been shown that memory encoding involves interactions between theta oscillations and 

incoming sensory signals into the hippocampus118. Indeed,  responses of hippocampus neurons to 

sensory events are synchronized to a certain phase of theta oscillations119,120. It has been proposed 

that theta oscillations are like a metronome for coordinating sensory information transfer from 

cortical areas to the hippocampus118. This theory matches data from rodents; however, it has a 
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shortcoming when extrapolated to humans. In humans and non-human primates, hippocampus 

theta oscillations are not rhythmic but appear in short bouts14,15,121,122. Interestingly, some studies 

have reported that theta oscillations are locked to the execution of saccades37, a phenomenon 

known as saccade phase-resetting35.  

Rapid head movements in species of primates are used to direct gaze toward spatial locations24,46. 

In marmosets head velocities reach values above that of eye velocities during saccades made with 

the head restrained (Fig. 2c). Here we report an LFP modulation described as head-gaze theta 

phase-resetting22,37,84,123,124. Moreover, a significant percentage of neurons’ firing rate was 

modulated during and following head movement initiation. Notably, in putative interneurons the 

most common form of modulation was an increase in firing rate (up-modulation), but in putative 

pyramidal cells, it was evenly split between up and down modulation (Fig. 8d). The peak of the 

modulation effect was also found to be different across cell types, where putative interneuron 

modulation peaked before putative pyramidal cell  (49.8 ms faster, Fig. 8c). Together, this suggests 

that the signal triggering head movements (e.g., a corollary discharge signal) initially activates 

interneurons that may reset background noise in pyramidal neurons that can be differentially 

activated by incoming sensory inputs.  

We propose that head-gaze theta phase-resetting may act as a ‘single pulse metronome’ that 

synchronizes stochastic firing in neuronal ensembles before the eyes land on a target, allowing 

incoming sensory signals to be ‘distinguished’ from the background noise of the circuit. The 

activation of inhibitory interneurons may be causally linked to the process of resetting neuronal 

ensembles and decreasing noise, while the modulation in putative pyramidal neurons may be 

directly related to the arrival of sensory inputs to ensembles of pyramidal cells and encoding of 

sensory signals. This mechanism may be the driver of theta oscillations in diurnal mammals with 

foveal vision that explore the environment through voluntary gaze shifts. It has been further 

proposed that during a gaze shift a corollary discharge (CD) signal originating in the SC reaches 

the thalamus and then via the nucleus reuniens (NR) reaches the hippocampus125,126. However, a 

CD signal that reaches areas of the neocortex seems to do so via the medial dorsal thalamic 

nucleus127 and plays roles such as inhibiting visual processing during saccades and remapping of 

receptive fields127–130. It is currently unclear how the CD signal in the hippocampus and neocortical 

areas are linked and how it relates to the head-gaze phase-resetting phenomenon reported here.  

Conclusion  

We provided evidence that freely moving marmosets use different exploration-navigation 

strategies compared to rats. These strategies have shaped physiological adaptations in the 

hippocampus. Cognitive maps of space in the marmoset and likely in other diurnal primates may 

be driven by mixed or conjunctive coding of gaze-related variables that enable encoding of visual 

features and object relationships used as landmarks for navigation. Head-gaze phase-resetting 

seems to play a role in synchronizing theta oscillations to increase the efficiency of information 

encoding in the marmoset hippocampus.  
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Data and code availability 

The complete dataset and source code used in this study are available upon request to DBP or 

JCMT 
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Materials and Methods: 

Ethics statement 

The animal care and handling procedures, encompassing basic care, housing and husbandry, 

animal training, surgical procedures, and experiments (data collection), were granted approval by 

the University of Western Ontario Animal Care Committee. This approval guarantees adherence 

to federal (Canadian Council on Animal Care), provincial (Ontario Animals in Research Act), 

regulatory (e.g., CIHR/NSERC), and other national CALAM standards, ensuring the ethical use 

of animals. The animals' physical and psychological well-being was regularly assessed by 

researchers, registered veterinary technicians, and veterinarians. 

Experimental setup and behavioral paradigm 

Two adult (1 female, aged 5y and 1 male, aged 3y) marmosets were trained to forage for reward 

in a rectangular transparent maze with 3 different vertical levels (3D maze, Fig. 1a). For the 

majority of the recording sessions, the subjects were placed in the chamber alongside their cage 

partner with the purpose to alleviate stress. Reward locations were placed at 4 different positions 

in each level of the maze, two on one side and two on the opposite side (Fig. 3b). Each reward 

location consisted of a small panel containing an LED and a liquid reward delivery system 

controlled by a solenoid via the NIMH MonkeyLogic131 software. The subject was cued by 

flashing the LED. When the subject approached the LED location and was closer than 15 cm to 

the reward delivery site a sound was played, and a reward was delivered. After that another, 

different LED was flashed, and the sequence of events was repeated. We also rewarded the subjects 

manually by waving a hand at the reward location and delivering a marshmallow when the subject 

approached.  Recording sessions lasted for as long as the subject was willing to continue foraging 

(~40-60 minutes). 

Motion capture 3D tracking 

A total of 14, synchronized, cameras (Optitrack, Flex 13, Corvallis, OR), were placed around the 

3D maze in a configuration that optimized coverage and minimized occlusion. Video frames were 

acquired at 60hz. The cameras emit 850nm infrared (IR) light and are fitted with a lens filter for 

IR light. 

A recording chamber was placed on the skull of the subjects that allowed to house the electrodes 

and wireless recording headstage, a 3D printed cap covered the recording equipment and 6 

spherical retro-reflective markers (4mm diameter, Facial Marker, Optitrack) were arranged in a 

unique geometric configuration (rigid body) and affixed on top of the cap. 

Before every recording session, the setup was calibrated using a calibration wand (CWM-125, 

Optitrack). The wand consists of 3 markers of known dimensions and distance to each other that 

are used to compute a volumetric world coordinate system measured in metric units via 

triangulation algorithms. A calibration square (CS-100, Optitrack) was used to define the zero 

point (where the horizontal or X, depth or Y, and vertical or Z axes intercept) and the plane 

corresponding to the ground (plane parallel to the maze floors); the calibration square and 

subsequently the zero point was always placed at the lowest point of the south-west corner of the 
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maze. This calibration will be used by the tracking software (Motive, Optitrack) to compute the 

position and orientation of the cameras; the calibration step is essential to triangulate the 3D 

position (Xp, Yp and Zp, in metric units) of the markers from the individual camera’s 2D images. 

After the 3D position of the cluster of cap markers is estimated, the rigid body is tracked as a 

unique object at the pivot point (origin of the rotational axes roll, pitch and yaw), this point is 

manually placed at roughly the intersection between the vertical axis of the neck of the subject and 

the visual axis (eye level). The roll axis is manually aligned so that it is parallel to the estimated 

visual axis (red axis, Fig. S1 a,b), the pitch axis is manually aligned parallel to the maze floors 

(estimated using the ground plane, blue axis, Fig. S1 a,b) and the yaw axis is aligned parallel to 

the vertical plane (plane perpendicular to the ground plane, green axis, Fig. S1 a,b). 

Implantation surgery and electrophysiological recordings  

After co-registration of anatomical MRI (9.4T) and microCT (150um) scans132–134 (3D Slicer 

software, slicer.org), we implanted a recording chamber ‘cap’ (Fig. S1 i,h) that allowed a 3D 

printed grid to be placed above the skull surface, each space in the grid could be used as a fiducial 

to calculate the trajectory necessary to reach the CA fields. We chronically implanted 32ch 

microwires ‘brush’ array electrodes in the hippocampus’ CA1 (subject C) and CA3 (subject P) 

(Microprobes, Gaithersburg, USA). The final position of the electrodes was verified with post-

surgical micro CT imaging and registration to the pre-surgical anatomical MRI (Fig. 3a, Fig. S2a). 

In subject P, we used a semi-chronic electrode implant that consisted of a small microdrive that 

allowed the electrode to be lowered after implantation (2 mm total range). We lowered the 

microdrive in increments of 70-150 um, until we reached the end of the working range and finally, 

took micro CT images to verify the final position of the electrode.  

Neural activity was recorded using wireless telemetry (CerePlex Exilis, Cerebus Data Acquisition 

System, Blackrock Neurotech, Utah, USA) sampled at 30kHz.  

Data Analyses 

All analyses were performed using custom-built MATLAB scripts (Mathworks Inc, version 

2021b) unless otherwise specified. A MATLAB wrapper was used to calculate the generalized 

additive models using PyGAM70, a Python open-source resource. 

 

Body translation speed 

Translation speed or TS was defined as: 

𝑠 =
√(𝛥𝑥)2+ (𝛥𝑦)2+ (𝛥𝑧)2

𝛥𝑡
  

Where 𝑠 is the translation speed of the rigid body, 𝑥 is the position in the horizontal axis, 𝑦 is the 

position in the depth axis, 𝑧 is the position in the vertical axis and 𝑡 is time. 

Angular head velocity 
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The rotation vectors (pitch, raw and roll) were exported from the motive software as rotation 

quaternions (q), defined as: 

q = q0 + iq1 + jq2 + kq3 

where q0 , q1 ,q2  and q3  are real numbers, and i , j  and k  are imaginary unit vectors. Quaternions 

offer an advantage over traditional Euler’s axis angles in that they are a more efficient way to 

compute rotations and are not susceptible to gimbal lock.  

The AHV was defined as: 

𝜔 =
∆𝜃

∆𝑡
 

Where 𝜔 is the AHV, 𝜃 is the angular distance and 𝑡 is time. 

The angular distance 𝜃 between  𝜃𝑡2 − 𝜃𝑡1  was computed using the MATLAB function dist 

(Robotics and autonomous systems toolbox). 

Significant head and body movement classification  

Significant head movements were defined as epochs where AHV was higher than 200°/s and the 

amplitude of the movement was higher than 10°. Movements with velocities higher than 2000°/s 

were deemed artifactual. 

Significant body translations were defined as epochs where the TS was higher than 16 cm/s and 

the amplitude of the movement was at least 30cm. Movements with speeds higher than 300cm/s 

were deemed artifactual 

Head Direction 

We considered the distinction between head direction and view as illustrated by135 ( Fig. S1h)  

The head direction is solved by the tracking software using a custom arrangement of markers that 

creates a rigid body with predefined XYZ axis angles. The axes are aligned to the subject’s head 

anatomy and a pivot point is placed virtually in the neck, in a way that the horizontal head direction 

of the rigid body runs along the midline of the head and is parallel with the head direction and the 

vertical axis perpendicular to the maze floors. 

The tracking software solves the head direction in terms of angular values of yaw (horizontal axis), 

pitch (vertical axis) and roll (lateral tilt axis) for the rigid body as a whole, in an allocentric 

reference frame. 

The 2D head direction is estimated from the yaw angle values alone, and the 3D head direction is 

estimated from yaw, pitch and roll angles.  

View as facing location 
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A ray is cast from the vector of 3D head direction and the intersection of this ray with the walls of 

the maze is defined as the facing location. Since the marmoset’s oculomotor range is largely <10°, 

we interpret the facing location as view26. 

Signal pre-processing and spike sorting 

Offline spike sorting was performed using Plexon (Offline Sorter, Plexon Inc., Texas, USA), a 4-

pole, Butterworth, 250Hz high pass, a digital filter was applied to the raw 30kHz broadband signal, 

and a -4 sigma noise threshold was used to detect and align individual waveforms. Principal 

component analysis (PCA) was used to define the feature space and automatic (T-Distribution E-

M) sorting was applied to isolate units. Manual inspection was then performed to classify units 

into noise units, multi-units or single-units (Fig. S2 b,c,d). Quality control measures were 

implemented after sorting the spike data. Single units that fired less than 100 spikes per session 

were invalidated. Additionally, to account for the use of microwire arrays where the final location 

of individual wires cannot be controlled, potential duplicate units were invalidated if the isolated 

units shared more than 50% of the spike times (estimated at 1ms temporal resolution). In cases 

where two or more units met this criterion, only the unit with the highest signal-to-noise ratio was 

included in the subsequent analyses. 

Burst Index 

Bursts can be described as a rapid sequence of action potentials followed by a period of relative 

quiescence136,137, it has been estimated that 95% of pyramidal cells in the macaque monkey CA3 

fire in bursts138,139. The burst index (BI) is a metric that has been proposed to describe the 

propensity of burstiness in the firing pattern of neurons, where higher BI values indicate a neuron’s 

higher propensity to fire in bursts. As previously described55,140 we calculated the BI by estimating 

both the inter-spike interval (ISI) histogram and the predicted ISI distribution, which is based on 

a Poisson distribution calculated from the mean firing rate of the whole recording session.  

The predicted Poisson distribution of ISI was computed as follows: 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 

Where λ= firing rate, and t= time bin. The probability was calculated for each 1ms time bin in the 

2-40ms time range, a normalization procedure was implemented by summing all of the predictions 

in both the predicted and real ISIs.  

The burst index was computed as the following: 

𝑏𝑢𝑟𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 =
∑ 𝐼𝑆𝐼𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ∑ 𝐼𝑆𝐼𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

∑ 𝐼𝑆𝐼𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + ∑ 𝐼𝑆𝐼𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 
 

Where the sum of ISIs was performed between the values from 2 and 20ms. The burst index is 

ultimately defined as the division between the subtraction of the measured ISI sum and the ISI 

predicted, and the sum of both these sums. In the end, the index is bound between -1 and 1.  

Classification of putative interneuron and pyramidal cells 
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Macaque monkey hippocampal neurons have been putatively classified as interneuron/pyramidal 

cells based on firing rate alone56,58, where interneuron cells are typically of the fast-spiking type 

(average firing rates above 10Hz). To increase the robustness of classification in our analysis and 

avoid potential species-specific biases that firing rate thresholding classification could introduce 

(since it has only been used in macaque monkeys), we implemented an unsupervised classification 

algorithm (k-means, MATLAB function kmeans) using burst index and average firing rate as 

features. We refrained from using other classical methods of classification like spike waveform 

width, since it has been shown that short-duration waveforms from neurons recorded from the 

hippocampus can represent axonal activity, and are not necessarily inhibitory interneurons in 

nature57.  

Spatial information content  

Occupancy and firing rate maps were estimated based on a spatial bin division shown in Fig.4 b,c, 

(place bins n=84, view fields n=106) per recording session. Bins that weren’t sampled more than 

3 independent times, or less than 200ms were discarded. Spatial Information Content (SIC)61,62 

was calculated independently for place and view for every individual cell. SIC was defined as:  

𝐼 = ∑ 𝑃𝑖

𝜆𝑖

𝜆̅
log2

𝜆𝑖

𝜆

𝐿

𝑖

 

Where the proportion of occupied time in each spatial bin is (Pi) and λ is the mean firing rate. 

Significant cells were defined as SIC > 0.05 (corrected alpha value for the number of bins) of the 

null distribution (5000 circular shift permutations). In the same way, for significant cells, 

significant bins (place or view fields) were defined as SIC > 0.05 (corrected alpha value for the 

number of bins) of the null distribution for that bin.  

Speed cell definition 

A single cell was defined as a speed cell if it met two criteria: 

1) Speed score higher than 0.3: 

We used the same definition as53,69, for the speed score, which is the Pearson’s correlation 

coefficient between the time series of speed and the time series of firing rate. 

After determining the instantaneous speed (sampled at 60hz), both the time series of speed (AHV 

and TS were computed independently) and firing rate were smoothed using a 1-D Gaussian with 

50ms standard deviation. The correlation coefficient was defined as the following: 

𝑟 =
∑( 𝑥𝑖 − 𝑥̅) (𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2∑(𝑦𝑖 − 𝑦̅)2
 

and it was calculated using the MATLAB function corrcoef. 

2) Shuffle control criteria 
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Using the same smoothed firing rate time series, a shuffle distribution of speed scores was 

computed after circularly shifting the time series 1000 times. This distribution served as the null 

distribution used to estimate the significance of the real speed score (real speed score higher than 

95th percentile null distribution). 

Since AHV and TS speed scores are estimated independently, cells can be classified as AHV cells, 

TS cells, or both. 

Generalized Additive Model (pyGAM) 

Generalized additive models (GAM) are a particularly useful tool to explore the relationship 

between neural activity and multiple behavioral variables. They are specifically advantageous 

when exploring complex and non-linear interactions between the covariates and the independent 

factor141. Here we describe the implementation used in every neuron reported in the paper, we used 

this model to classify single cells according to their encoding profiles; where a cell could 

significantly encode none, one or a combination of behaviours (predictors). 

The general form of GAMs is described by: 

𝐹(𝑥)  =  𝑦 =  𝑒𝑥𝑝( 𝛽0 + 𝑓1(𝑥1)  + 𝑓2(𝑥2)  + … + 𝑓𝑟(𝑥𝑟)) 

In our implementation y is a single neuron’s firing rate, β0 is the intercept (constant), [X1,X2,…Xr] 

are the predictor variables (space, view, head direction and speed). 

This GAM implementation has three components: distribution, link function (𝐹(𝑥) = 𝑔(𝜇|𝑋)) and 

a functional form (fr ). We calculated all our models using a log link function, Poisson distribution 

and a functional form function of penalized B splines142. The models are cross-validated during 

training to avoid overfitting, and the goodness of fit estimates are averaged across k-folds.                                                   

As reported in the results section, spatially selective cells are mainly putative pyramidal cells and 

speed-encoding cells are mainly putative interneurons, so in order to optimize computing times, 

we designed two separate models, one for putative pyramidal neurons (including space, view and 

head direction) and the other for putative interneurons (AHV and TS). 

We utilized a nested, stepwise, forward search model selection approach to determine the optimal 

number of predictors per cell (Fig. S3a). The methodology involved a gradual construction of the 

model by iteratively incorporating predictor variables based on their individual contributions to 

the overall goodness of fit. Initially, all available one-variable models (first-order models) were 

fitted, and a surrogate null distribution of first-order models was computed. This null distribution 

was obtained by randomly circularly shifting the vectorized firing rate a total of 50 times. To 

establish statistical significance, we compared the actual explained deviance (ED) with the 95th 

percentile of the null distribution (Bonferroni corrected). If the real ED exceeded this threshold, 

the model was considered statistically significant. 

The ED of the real model was then normalized by subtracting the mean shuffle ED from the real 

ED, allowing us to select the first-order model with the highest ED when multiple first-order 

models crossed the significance threshold. The variable in the best model was retained as a 

predictor for the subsequent iteration of model selection (n+1 order model). In each iteration, one 
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of the remaining variables was added at a time until all combinations of that order were evaluated. 

Similar to the first-order models, statistical significance was assessed by comparing it against a 

null shuffle distribution. For models with more than one variable, the time series of the single 

predictor under consideration was circularly shuffled, while the firing rate and already selected 

predictors remained unaltered. The training process concluded when the incremental improvement 

in model fit by adding more variables became statistically negligible. At this point, the final 

combination of variables was selected as the best model for a specific neuron. 

The performance of the winning model is evaluated by generating a spike raster prediction using 

the best final nested GAM model (Fig. S3 b,c). These predictions are then compared to the actual 

neuron's rasters using cross-validation with 5 folds. Since each recording session (40-60 minutes 

long) is divided into 5 equally-timed folds, each predicted raster is a continuous time series 

approximately 8-12 minutes long. To assess the similarity between the predictions and the real 

rasters, the Pearson correlation coefficient is calculated between the predicted and real raster data. 

Additionally, the coefficient of determination (R2) is obtained for each fold, and the final R2 is 

computed by averaging across all folds(Fig. S5 a,c). 

To determine the statistical significance of the model's predictive power, an F-test is performed on 

the calculated R2 values, using an α-value of 0.05. This test allows us to ascertain if the model's 

performance is significantly better than what would be expected by chance. Cells whose winner 

model's performance is statistically significant are considered to encode the variables used as 

predictors in that model. 

Place decoding analyses 

We used a linear multi-class support vector machine (SVM) classifier (fitecoc, MATLAB 

function), composed of ‘n’ number of classes of binary learners in a one-versus-one design. The 

performance accuracy of each model was evaluated using 5-fold cross-validation and trained 10 

times using distinct subsamples of all available trials. The subsampling procedure ensured the 

proper balance of classes with varying trial numbers. The model’s features were derived from 

firing rates of a pseudo-population of neurons, obtained from periods where the AHV was lower 

than 200°/s, akin to head ‘fixations’, which in marmosets can be considered analogous to eye 

fixations. The firing rates were integrated over 200ms centred around those low AHV periods; 

each interval was treated as a trial. We included neurons in the pseudo-population if they had 

samples from a spatial bin (see below) at least 50 times (trials) per recording session.  

To decode place from this pseudo-population, we partitioned the maze into 2 spatial bins per floor, 

resulting in a total of 6 spatial bins. We identified the 4 spatial bins (the model’s classes) with the 

highest visitation frequency and number of neurons that could be incorporated into the pseudo-

population (Fig. 7 a,d).  

We used a previously described ensemble construction procedure76,77, this procedure iteratively 

finds the combination of neurons that provides the best decoding performance from a pool of 

pseudo-population of neurons (Fig. S5e). First, we train all the single-neuron models and identify 

the model with the highest decoding accuracy. We use this neuron as the ‘seed’, and we fit all 

possible combinations of n+1 ensembles including the seed and the remaining neurons in the pool. 

We then select the sub-ensemble with the highest decoding accuracy and continue fitting n+1 
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models with the remaining units. We repeat this procedure until the performance of the model 

becomes asymptotic and does not significantly improve by adding more units; this final ensemble 

was referred to as the ‘all units best ensemble’. To evaluate the contribution of the neurons that 

significantly encode spatial variables, as per the GAM analysis, we repeated the previous ensemble 

construction procedure while excluding those neurons from the pool. We referred to this ensemble 

as the ‘no significant units best ensemble’. Finally, we fit a Naka-Rushton function to both 

ensembles' performance, to calculate statistics on the fit coefficients and to aid with visualization. 

Raw ensemble performances can be found in the supplementary information (Fig. S6 a,b) 

To validate the efficacy of the ensemble construction procedure in identifying the ‘optimal’ 

combination of neurons that maximized the classifier’s performance, we fit a ‘random combination 

ensemble’, where we randomly generated 100 different combinations of neurons from the pseudo-

population pool. Subsequently, we iteratively trained the model using n+1 neurons from the 

randomly generated combination. 

Signal pre-processing for local field potentials 

Using the FieldTrip toolbox143 a 4-pole, Butterworth, 250Hz high pass digital filter was applied to 

the raw 30kHz broadband signal. The data was then down-sampled to 1kHz. To eliminate low-

frequency noise a 1Hz high pass filter was applied and a high-frequency artifact rejection algorithm 

was employed where the data was band-pass filtered between 100-250Hz (9-order Butterworth 

filter and boxcar of 0.2) and the Hilbert envelope of the signal was calculated and subsequently Z-

scored. The artifact threshold was defined at 4 Z-score and a window including 100 ms before and 

after threshold crossing was rejected. 

Time-frequency representation 

To calculate the oscillatory power of the LFP and its time-frequency representation, we used 

Morlet wavelets, implemented with the FieldTrip toolbox. The wavelets consisted of 7 oscillations, 

with center frequencies ranging from 1 to 30Hz (in even steps of 1Hz), and a 25ms smoothing time 

window. Baseline normalization was implemented to account for 1/f activity using the decibel 

conversion method, described as follows: 

dB = 10log10 (
𝑠𝑖𝑔𝑛𝑎𝑙

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) 

Where the baseline was estimated as the fractal component from the power spectrum calculated 

using the Fitting Oscillations and One-Over-F (FOOOF) algorithm144 (FieldTrip implementation). 

Neuronal modulation to head movements  

Our classification of modulated units builds upon the framework presented in the work of a 

previous study126. However, our approach differs in that we introduce an additional category of 

modulation, namely units that are both up and down-modulated. 

Spike timestamps for a given single neuron are exported from the Plexon software as binary spike 

trains with a 1ms time resolution. We extracted spike train epochs (a window of 400ms) centered 

on the peak velocity of head movements and divided that window into 8 equally timed bins (50ms 

each). We calculated average spike rates across all head movements for each bin. Next, we 
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generated a shuffled distribution of firing rates by circularly permutating spike times, repeating 

this process 1000 times. Cells were classified as up-modulated if the real average firing rate 

exceeded the 97.5th percentile of the shuffle average firing rate at any bin and across bins (shuffle 

distribution of maximum firing rates across the entire 400ms window). Cells were classified as 

down-modulated if the real average firing rate was lower than the 2.5th percentile of the shuffle at 

any bin and across bins (shuffle distribution of minimum firing rates across the entire 400ms 

window). Cells were classified as up/down modulated if their real average firing rate both 

exceeded the 97.5th percentile and was lower than the 2.5th percentile of the shuffle at different 

time bins. 
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Supplementary figure 1 (a) View from the top showing the alignment of the roll axis (red) with 

the visual axis, assuming a cyclopean eye. (b) Diagram illustrating the position of the pivot point 

(origin of rotation angles). The position of the pivot point (originally placed in the position of the 

most posterior retro-reflective marker) is linearly translated downwards, along the vertical axis to 

align with the subject’s visual axis. (c) Main sequence (amplitude vs peak velocity) of head 

movements and Naka-Rushton function fit, for marmoset (blue markers, red line) and rat (black 

markers, green line); dashed lines correspond to 95% confidence intervals. (d) Distribution of 

inter-event interval for marmoset and rat head movements (blue and red distributions respectively) 

and marmoset eye saccades (green distribution). (e) Main sequence (amplitude vs peak velocity) 

of marmoset eye saccades, error bars convey 95% confidence intervals. The dashed line 

corresponds to a Naka-Rushton function fit. (f) Distribution of marmoset eye saccade amplitudes, 

dashed line placed at 5o. (g) Example trajectory traces (gray) of the 3D position during a recording 

session for subject C. (h) Illustration taken from a previous publication135, displays the vector 

direction differences between head direction and view encoding. (i) 3D model of the recording 

chamber ring placed on the skull of the marmoset. (j) 3D model of the spacer that houses the 

electrode connector (omnentics 36pin), the spacer is placed on top of the chamber ring and it serves 

as a head-fixation base. 
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Supplementary figure 2 (a) MRI and micro-CT based 3D reconstruction of the electrode 

recording sites for subject C (left hippocampus) and subject P (right hippocampus). (b) Screenshot 

of a sorting session of one channel using Plexon software (Offline Sorter, Plexon Inc., Texas, 

USA). PCA view is displayed with labelled clusters, blue is a single unit, green is multi-unit 

activity, and yellow is the noise unit. (c) Multi-unit activity spike waveforms, aligned to the 

negative peak. (d) Single unit activity spike waveforms, aligned to the negative peak. (e,f) AHV 

speed scores for subject C and subject P respectively, the dashed line indicates a speed score of 

0.3. (g,h) TS speed scores for subject C and subject P respectively, the dashed line indicates a 

speed score of 0.3. (i,j) Speed score distribution for both AHV and TS labelled according to cell 

type for subject C and subject P respectively, (green = putative interneuron, pink = putative 

pyramidal), the dashed line indicates a speed score of 0.3. 
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Supplementary figure 3 (a) Schematic describing the stepwise forward search GAM model 

selection process. (b) Real vs. predicted firing rate for a putative interneuron example cell 

(example cell from Fig.6c). (c) Real vs. predicted firing rate for a putative pyramidal example cell 

(example cell from Fig.6a). 
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Supplementary figure 4 Additional single-cell examples are provided to illustrate the diverse 

types of encoding observed in putative pyramidal single neurons using the GAM model. Rate maps 

depicting view, place, and head direction are plotted to represent the corresponding behaviors 

encoded by individual neurons. In the case of cells encoding only one variable (first order models), 

a single rate map is observed. Conversely, in cells encoding multiple variables (second and third 

order models) multiple rate maps are displayed, indicating the specific behaviors being encoded. 

In head direction rate maps, firing rates corresponding to yaw angles (horizontal head direction) 

are color-coded as green, roll angles (lateral tilt) as red, and pitch angles (vertical axis) as blue. In 

the case of third order models, the view and place rate maps share the same color map, with the 

maximum firing rate indicated at the top of the color bar. 
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Supplementary figure 5 (a) Average R2 between predicted and real spike rasters of all 

significantly encoding putative pyramidal cells. (b) Proportion of putative pyramidal encoding 

cells for subject C (left) and subject P (right).  (c) Average R2 between predicted and real spike 

rasters of all significantly encoding putative interneuron cells. (d) Proportion of putative 

interneuron encoding cells for subject C (left) and subject P (right). Since each recording session 

is divided into 5 equally-timed folds, each predicted raster is a continuous time series 

approximately 8-12 min. long. (e) Schematic describing the best ensemble building procedure. 

(left) The most informative neuron is selected, as assessed by the single-neuron with the highest 

SVM decoding accuracy of place. (right) The most informative neuron is used as a seed to 

iteratively add units (looped through the remaining units) to the subsequent subensembles until 

the ‘best ensemble’ n-combination of neurons is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.05.24.542209doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542209
http://creativecommons.org/licenses/by-nc/4.0/


61 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.05.24.542209doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542209
http://creativecommons.org/licenses/by-nc/4.0/


62 

 

Supplementary figure 6 (a,b) (top) 3D diagram of the binned place locations used to decode the 

subject’s position, (bottom) blue and pink lines correspond to raw decoding accuracy (y axis) as 

a function ensemble size (number of neurons, x axis), shaded area corresponds to 95% 

confidence intervals. Blue solid lines correspond to the best ensemble constructed from a pool of 

all recorded putative pyramidal neurons. Pink solid lines correspond to the best ensemble 

constructed from a pool of non significantly selective cells (as per GAM encoding analysis). R2 

goodness of fit value is reported. The cyan lines correspond to decoding accuracy of a 

randomized combination of neurons (100 iterations), shaded area corresponds to 95% confidence 

intervals. The gray dashed lines correspond to chance decoding accuracy (1/4, 0.25). (d,e,f) 

Additional single-cell examples of down-modulated, up-modulated and up/down modulated cells 

respectively. Each raster plot corresponds to a single neuron and is aligned (time 0) with the peak 

velocity time of a head movement, where each row corresponds to one head movement event and 

each blue dot represents one neuronal spike, negative times indicate the neuron’s firing before 

the peak velocity of a head movement, while positive times indicate the neuron’s firing 

afterwards. 
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Supplementary movie 1: https://youtu.be/Vz4lMer5g8o  (Recording session video example)  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.05.24.542209doi: bioRxiv preprint 

https://youtu.be/Vz4lMer5g8o
https://doi.org/10.1101/2023.05.24.542209
http://creativecommons.org/licenses/by-nc/4.0/

