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ABSTRACT There is a recognized need to measure the abundance of microbes in
hospital environments, in the sanitation industry, and in food preparation. Doctors,
microbiologists, and food safety experts have been addressing this need by using se-
rial dilution methods to grow bacterial colonies in small enough numbers to count
and, from these counts, to infer bacterial concentrations measured in Colony Form-
ing Units (CFUs). There are two primary types of such methods: plating bacteria on
a growth medium and counting their resulting colonies or counting the number of
tubes at a given dilution that have growth. Traditionally, these types of data have
been analyzed separately using different analytic methods. Here we build a direct cor-
respondence between these approaches, which allows one to extend the use of the
Most Probable Number (MPN) method from the liquid tubes experiments, for which it
was developed, to the growth plates. We also discuss how to combine measurements
taken at different dilutions, and we review several ways of analyzing colony counts,
including the Poison and truncated Poison methods. For all methods, we discuss their
relevant error bounds, assumptions, strengths, and weaknesses. We provide an on-
line calculator for these estimators.

IMPORTANCE Estimation of the number of microbes in a sample is an important
problem with a long history of confusion. We provide a comparison of methods for
estimating abundance of microbes and detail a mapping between different methods,
which allows to extend their range of applicability. This mapping enables higher preci-
sion estimates of Colony Forming Units (CFUs) using the same data already collected
for traditional CFU estimation methods. Furthermore, we provide recommendations
for how to combine measurements of colony counts taken across dilutions, correcting
several misconceptions in the literature.

INTRODUCTION

Extrapolation of viable microbial counts from suspensions of live cells is a longstanding—

and surprisingly complicated—problem. The fundamental problem is simple: there
exists a volume Vy with some unknown concentration of live microorganisms, which
an experimentalist wants to measure. That initial volume will be serially diluted (usu-
ally in a ten-fold series), and fixed-volume aliquots (sub-samples) of the resulting sus-
pensions will be cultured. If these aliquots are spread or dropped onto agar plates,
the resulting data will be in the form of colony counts. Alternately, multiple aliquots
may be taken from a single dilution and used to seed a number of wells or tubes of
liquid culture, or a number of plates. Then the number of volumes showing growth
when seeded from a particular dilution, as a fraction of the total number of volumes
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inoculated, can be used to calculate the Most Probable Number (MPN) of live agents
in the initial volume (1, 2).

Best practice for this apparently simple and ubiquitous scenario has been the sub-
ject of debate for over a century (1, 3,4,5,6,7,8,9, 10, 11). There are technical consid-
erations to this problem. For example, all plates or tubes used for growth should have
the same ability to support growth of the organism(s) being studied, and the sample
must be sufficiently homogenized to ensure that microbes are free in solution and
not adhered to one another or to a substrate (4). However, such considerations are
case-specific and beyond the scope of the present work.

These counts are subject to counting errors as well. At one extreme, when the sam-
pleistoo concentrated, the number of resulting colonies will be too numerous to count
(TNTC; sometimes “too many to count”, TMTC). At these high concentrations, colonies
merge, breaking the assumption that each microbe corresponds to one colony (6, 12).
At the other extreme, when the sample is very diluted, the number of colony initiating
bacteria in the sample is subject to small-number statistical (sampling) fluctuations,
resulting in high relative error (ratio of the standard deviation to the mean) (13, 14).
Finally, experimental errors, such as inaccuracies in pipetting, can emerge and com-
pound over the steps of a serial dilution. However, the latter source of error is ex-
pected to be negligible for equipment calibrated to usual standards, and technical
replication further reduces effects of this variation (15).

Thus the problem at hand is: How can CFU density best be estimated from plate
counts, given the error produced by sampling fluctuations, colony crowding, and (to
a lesser degree) pipetting? These errors will contribute differently to different exper-
imental designs. For a single sample represented by one count of colonies n; at one
dilution dy (because only one dilution was measured, or because only one spot or one
plate in a series was countable), statistical error of counts (presumably Poisson) is in-
evitable, and pipetting error will contribute but may not be significant. For a single
sample represented by more than one count of colonies (representing counts at different
dilutions within a single dilution series, and/or technical replicates where one sam-
ple was measured multiple times), the same errors apply, but pipetting bias may not
be constant across measurements (for example, one failing O-ring on a multichannel
pipette can lead to bias in a single column of a 96-well plate).

For multiple samples of the same type measured in parallel (biological replicates), we
can no longer expect variation across samples to reflect a Poisson-distributed sam-
pling error. Indeed, individual measurements will be subject to sampling variation, but
variation across samples will be biological (or otherwise inherent), and demographic
(accumulating over time) in addition to sampling. This was the basis for the Nobel-prize
winning experiments of Luria and Delbruck, who used the distribution of fluctuations
to distinguish Darwininan vs. Lamarckian evolution (16). This is also frequently the
case in environmental samples, where different samples from the same source (e. g.,
water samples from different parts of the same lake) will produce measurements that
have super-Poisson variation (aka, over-dispersed). In such cases, some of the varia-
tion is “real” due to inhomogeneities in the source, and it cannot be modeled as mere
sampling error. Biological variation is problem dependent and often carriers in it the
imprint of the underlying fundamental biology (16); it will not be dealt with here. In-
stead, we will focus on estimation of CFU density within an individual sample, which
may be represented by a single set of measurements or by technical replicates, in
which one sample is measured multiple times.

The main objective of this paper is to propose methods for accurately estimating
colony forming units (CFUs), while taking into account the effects of crowding and sam-
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o3 pling fluctuations, without losing valuable data from counts. Drawing from previous
04 research (13, 12, 17, 14), we present simple analytical formulas that can be used to
o5 combine counts from different dilutions and to obtain precise CFU estimates along
96 With accurate error bars. First, we examine existing methods in the literature, assess-
97 ing their strengths and weaknesses. Next, we introduce the “Poisson with a cutoff”
98¢ method, which clarifies the impact of crowding on CFU density estimation and demon-
99 strates how to minimize the effects of sampling error by combining measurements of
100 “uncrowded” counts. Finally, we use a crowding-explicit model to demonstrate the
101 relationship between canonical plate-based counts and the Most Probable Number
102 method for presence/absence of growth in liquid media. We conclude by providing
103 practical recommendations for experimentalists on how to select appropriate dilu-
104 tion and replication schemes and how to combine data from multiple observations.
105 We also have provided a calculator for these estimators available on Hugging Face
106 spaces, named CFUestimator (18).

107 RESULTS

108 A Brief History of Counts Colony Forming Units (CFUs) are a proxy for the con-
100 centration of microbes within a sample. The experimental procedure for estimating
110 CFUs consists of serially diluting homogeneous samples in a sterile aqueous buffer,
111 then plating aliquots of these dilutions on growth-supporting agar and later counting
112 the resulting colonies. If an appropriate dilution has been reached, each microbe will
113 form an independent colony that is countable by eye. The simplest way of estimating
114 CFUs is to multiply the number of colonies by the reciprocal of the dilution factor to
115 find the concentration of colony-forming microbes in the original suspension (1, 5, 17).
116 For example, say there is a single sample represented by one countable 10 cm plate in
117 adilution series, where we observe 100 distinct colonies after plating 100 L of a 1:100
118 dilution (dilution 2 in a ten-fold series) from the original sample. In this case, following
110 this simple procedure, we would obtain:

CFU counts 100

120 = =
Volume  FracOriginalVolume ~ 0.1mL-0.01

=100-10° =10° CFU/mL. (1)

121 This is exactly equivalent to multiplying the number of counts by a volume correction
122 factor (1/(size of aliquotin mL)) and multiplying by the base of the dilution series raised
123 to the power of the number of dilution steps:

CFU 1
Volume 0.1mL

124 -100 colonies - 102 = 100 - 10° = 10° CFU/mL. )
125 This simple calculation follows from a more general Poisson model, explained be-
126 low. This method works reasonably well under ideal conditions: all samples should be
127 represented by a single count of colonies, and each count should be large enough to
128 minimize small-number sampling fluctuations, and yet small enough to avoid crowd-
120 ing on the plate. When any of these conditions are not met, accurate estimation of
130 CFU density becomes more complicated.

131 There is a broad literature of methods proposing to ensure that estimates of CFU
132 density are “good”. A good estimator should be accurate. Formally, this means that
133 such estimators should have the true value of the CFU density as their expected value.
134 In other words, they must be unbiased. Good estimators must also be precise, so that
135 variance in the estimate is small and samples are repeatable. Therefore, an ideal solu-
136 tion to this problem should provide an estimator that is provably unbiased and with a
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137 minimal variance. The solution to this problem is well known in statistics: if we can as-
138 sume that data follows a specific probability distribution, then the maximum likelihood
130 estimator (MLE) for that distribution will have these properties.(13) While this is formally
140 true only for very large samples, MLE estimators generally perform well even for small
141 samples. Further, an ideal method should be straightforward to use in the hands of
12 researchers without advanced mathematics background. Unfortunately, many of the
143 available methods fail one or the other of these requirements, being either simple to
144 USe, but statistically sub-optimal, or mathematically correct, but incomprehensible to
145 many bench scientists.

146 Straight-forward to use methods focus largely on designing protocols that avoid
147 data in error-prone extremes. For example, the FDA recommends (19) that the best
148 dilution range for coliform bacteria results in 25 to 250 colonies per 10-cm plate, with
149 theideal count closest to 250. Restriction on the high end limits counting errors due to
150 growth limitation by nutrient depletion as well as outright merging of colonies, which
151 would bias the number of counts downward. Conversely, restriction on the lower end
152 limits the sampling error associated with small numbers of counts. Specifically, under
153 the assumption that counts represent random draws from a given sample and are,
154 therefore, Poisson-distributed, the error scales as the square root of the number of
155 counts. Thus, for small counts, the error becomes an unacceptably large fraction of
156 the mean. Within the example above, our dilution 2 count of 100 colonies should have
157 a standard deviation (SD) of Y100 = 10, giving a coefficient of variation (CV) of 10%. At
158 dilution 3, we might obtain 10 counts, with a SD of V10 ~ 3.16, and a CV of 31.6%.

150 From here, the simplest approach that is often used in practice is to choose only
160 the plate or spot that has the “best” count in the acceptable range, and to estimate
161 CFU density based on that single count. Often only the dilution at the high end of
162 the countable range is used since it has the smallest sampling fluctuations; all other
163 Mmeasurements are discarded (17). We call this the “pick-the-best” method for later
164 reference. If counts in the acceptable range can be consistently achieved, this method
165 is straightforward and reasonably accurate. However, discarding data is rarely advis-
166 able, and over- and under-crowded measurements can, in fact, be used to improve
167 CFU estimates.

168 Simplest “Good"” Estimator: Poisson One simple and reasonably accurate model
160 for calculating CFUs assumes that the number of colonies are Poisson distributed, with
170 variation due to sampling. That is, for a particular dilution, the mean colony count
171 for that dilution is the same as the variance. This model ignores crowding effects but
172 works well for modeling sampling fluctuations. By this model, the most likely estimator
173 for the density of microbes is simply the ratio of the total number of colonies counted
174 from all plates divided by the total amount of liquid used from the original sample in
175 all plates (see Supplementary Information). If there is only one countable measurement
176 for a given sample, this simplifies to “pick-the-best”.

177 The Poisson model implicitly assumes that the original sample is well mixed and
178 each microbe plated will result in its own separate and countable colony. It further as-
179 sumes that experimental volume is spread uniformly across the agar surface, resulting
180 in cells being randomly distributed, independent of the locations of where other cells
181 landed. Formally, these assumptions mean that there is a uniform and well mixed
182 population density r of microbes per unit volume in an initial volume of liquid V. The
183 liquid is diluted by a factor d¢ = Vi /V, where V, is the volume of the liquid from the
184 original sample used on the plate or the spot k. Plating will result in n, colonies, where
185 n is Poisson distributed with the parameter A = rdiV = rVi. That s, the average num-
186 ber of colonies per experiment is rd, V with variance rd, V. Using these assumptions,
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187 the MLE estimator of the density of microbes rye and its standard error are:

Vi Ve O Seme

189 In other words, the best estimator for the concentration, rye, is the total number of
190 colonies divided by the total amount of the original volume of liquid used. However,
191 as noted earlier, this ignores crowding and counting errors. In practice, this method
192 should be avoided unless all measurements are from well-dispersed, uncrowded plates,
193 as crowding effects can make a large difference in the estimator, resulting in underes-
104 timating the microbial density as colonies merge and are under-counted.

195 If technical replicates exist (multiple measurements of the same sample), it is
196 straightforward to test whether the data adhere to a Poisson distribution using the
197 following test, known as the dispersion index test. If there are j measurements of a
108 given sample, with average number of counts N and variance of counts s2, then the
100 index of dispersion D? is:

2k Nk _ 2k Mk _ I'mle 3)

188 I'mle =

. _ 1 2
200 D = (’T)SN (4)

200 which will be distributed as y? with j — 1 degrees of freedom (13). If D? is greater
202 than the upper 1 — a quantile of that distribution, where « is the needed significance
203 p-value, then we reject the null hypothesis that these replicates are drawn from the
204 same Poisson distribution. This can indicate technical problems that are introducing
205 an excess of variation, possibly by biasing replicates differently from one another (e. g.,
206 the failing O-ring example above), or biases due to a too-lenient cutoff for countability.
207 Combining Data: Common Bad Estimators The primary reason for the “pick-the-
208 best” approach is that it eliminates confusion over how to combine multiple measure-
200 ments for a given sample, particularly when counts belong to more than one dilution.
210 First notice that combining measurements from technical replicates that are taken at
211 the same dilution is straightforward. For example, let's assume an original 200 uL vol-
212 ume V contains r = 3 - 10® CFU. We can create simulated serial dilutions from this
213 original volume by assuming that each pipetting step (ten-fold dilutions and plating
214 onto agar) is a binomial sampling event (14) that comes with experimental noise. In
215 one such simulation, triplicate plating 100 uL aliquots results in counts ng =(162, 141,
216 148), all from the sixth ten-fold dilution. The fraction of the original volume plated in
217 each caseis Vg = 0.5-107¢ = 5. 1077, These numbers can be combined via the Poisson
218 method shown in the previous section to estimate CFU density in V:

162+ 141 + 148 _162+141+148

CFU = -
e 5.10745-10-7+5-10-7 3.5.10-7

=3.007 - 108. (5)

220 Alternately, counts taken from the same dilution can be averaged across technical
221 replicates, then adjusted by the volume plated and the dilution read (20):

162 + 141 + 148 106 = 2 162 +141+148 162+ 141 + 148

CFU=2. = =
222 3 3.10-6 3.05-106

=3.007 - 10%. (6)

223 Clearly, these two most common approaches are algebraically identical.

224 In contrast, combining counts across different dilutions is less straightforward. In
225 fact, some commonly-used methods for combining measurements are statistically in-
226 admissible. For example, if there are multiple measurements in the countable range,
227 the USDA recommends (20) that researchers calculate the estimated CFU for each di-
228 |ution separately using the average colony count across technical replicates at a given
220 dilution and then average the results of the separate dilutions. If the two estimates
230 are more than a factor of 2 apart, the researcher is instructed to instead only use the
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231 counts from the higher-density plates. This commonly used method, incorrectly com-
232 bines the data using a simple average, thus increasing the variance of the estimated
233 CFU density. Indeed, continuing the example above, let's suppose that, on the plates
234 corresponding to the seventh ten-fold dilution from these three technical replicates,
235 we observe (13, 17, 20) colonies. The Poisson estimator gives us:

162+ 141 +148+13+17+20

CFU = =3.036 - 10%. 7
20 3(5-10-7) +3(5 - 10-9) )
237 The USDA averaging method gives:
CFU = %(2162+141 + 148 ) 106+213+17+20 ) 107)

238 ? (8)
= E(3.06 108 +3.33-10%) =3.2- 108,

239 On these data, averaging was substantially less precise, with an error of 7% as com-
240 pared with the Poisson method’s error of 1% (recall that the true density in this sim-
241 ulated example is 3.0 - 108 CFU per 200 ul). The USDA method improperly averages
242 across dilutions, amplifying fluctuations associated with small colony number counts,
243 whereas the simple Poisson model properly combines measurements across dilutions
244 by effectively re-weighting small counts by the small volumes with which they are as-
245 sociated. In a later section, we demonstrate that averaging across dilutions will, as a
246 rule, increase the variance of CFU estimates.

247 Too Few and Too Many Further, there is the problem of what to do with zero
248 counts. These data are inevitably limited by some threshold of detection (TOD), repre-
249 senting the smallest CFU density at which counts can be detected. This “left-censoring”
250 is awell-known issue (21, 22, 23) with many proposed work-arounds, including but not
251 limited to: substituting zeros with a small value (which may be the average of the un-
252 detectable range, a maximum-likelihood inferred value, or some other small number),
253 reporting zeros as “below TOD” or “<1” rather than as a value, and pretending they
254 didn't happen (not generally recommended; although if zeros are rare, it won't make
255 much difference) (21, 23). Sometimes, a threshold of quantification (TOQ) represent-
256 ing the lowest “acceptable” (sufficiently precise) count is used along with or instead of
257 TOD (17), with values below this threshold omitted from analysis.

258 The “best” approach to zero-contaminated count data depends on what else is in
250 the data and what the data will be used to do. If a sample is represented by zero and
260 Non-zero measurements, the Poisson model explicitly allows zero counts to be incor-
261 porated as outcomes of the random sampling process. For example, if a hypothetical
262V =200 uL sample contains 5- 107 CFU, one simulation of serial dilution and plating in
263 triplicate with 100 uL per plate produces dilution-6 counts of (31, 26, 20) and dilution-7
264 counts of (4, 0, 0). Using just the dilution-6 counts, we estimate

_31+26+20

- . 7 . 7
265 CFU = 305-10°7) =5.13-10" £0.59 - 10", 9)

266 If we use the lower dilution as well, we obtain

_ 31+26+20+4+0+0

207 CFU = 3(5-10-7) +3(5 - 10-%)

=491-10" £0.55-10". (10)

268 In this case, incorporating data from zeros (in the form of the additional volume that
260 was plated but contained no counts) improved precision. Alternately, when zeros are
270 common because the density in the original sample is close to the TOD, non-zero
271 counts are useful for making a distinction between samples where no organisms are
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272 detectable (and density might be zero) and those where the density of organisms can-
273 not be zero. Although the actual density cannot be estimated accurately or precisely
274 from very low counts, the distinction between “<TOD" and “>1" for a given sample is
275 important (23).

276 At the other end of the range, researchers must deal with crowding and set thresh-
277 olds for “too many to count”. Defining an optimal range for “countable” data is not
278 always straightforward, and this determination is very important to ensure that CFU
279 estimates are accurate. Since the sampling-based standard error of counts scales as
280 \’/77% the number of colonies counted ny should be as large as reasonably possible.

281 However, there are consequences for pushing this too far. As cell density in the
282 aliquot increases, counts will be biased downwards due to merging of colonies and
283 colony stunting or failure to grow. These data are then “right-censored”, with an upper
284 limit past which the number of counts observed does not increase in proportion to
285 an increase in the density in the original sample. Densities above this point result in
286 “crowded” samples, with counts that are lower than the true number of colony forming
287 units. Further, as the number of colonies per plate or spot increases, data collection
288 becomes more time-consuming; it is common for researchers to minimize effort on
289 plates near the top of the “acceptable” range by dividing plates into sections, counting
200 colonies in one section, and multiplying this count by the number of sections to get an
201 estimated final count for the whole plate (19). While this approach is sufficient for a
202 rough estimate of CFU density, itintroduces additional sampling variation due to both
203 reduction in counts and imperfect division of plates, and it does not remove bias due
204 to crowding. We will demonstrate the consequences later in this paper.

295 Previous works (12) have modeled crowding using shifted Poisson distributions.
206 In these models, the variance of estimates from crowded data would be the same
207 as if there was no crowding and the mean would be shifted down due to colonies
208 merging together. However, this is a priori unlikely to be true. As we will show below,
200 if colonies are crowded, both the mean and the variance will be shifted relative to the
300 pure Poisson (uncrowded) distribution. The reason for this is that the variance of the
301 large colony counts is shifted downward due to a “ceiling” effect—there is an upper
302 bound to the total number of colonies, which limits upwards fluctuations. In other
303 words, the use of a shifted Poisson distribution is a reasonable approximation, but
304 the variance must also be modified.

305 Better Estimators: Poisson With Cutoff, aka What's Countable, Exactly? The
306 main problem with the naive Poisson model is that it does not account for counting
307 errors due to crowding. The simplest way to take account of the crowding is to assume
308 that there is a threshold of colonies, M, below which crowding is negligible, which in
300 practice will often be smaller than the largest number of counts we are willing to at-
310 tempt. We can then segment our data into two parts: plates with counts above the
311 threshold where crowding is important, and plates with counts below the threshold
312 where crowding is not important. If we have identified our cutoffs well, the naive Pois-
313 son estimator above is correct for all measurements where the number of colonies
314 counted n, < M. The calculation is, therefore, exactly the same as for the naive Pois-
315 son estimator given above, with the caveat that only measurements n, < M are used.
316 Here, the indicator function I(n¢ < M) is 1 when ny < M, and 0 otherwise. Similarly,
317 I(n¢ > M) is 1 when ny > M, and 0 otherwise. Due to its balance between simplicity
318 and accuracy, this method is the easiest to use in practice.

319 Frole = 2 Ik < M)k o= fme (1)

Yo I(ne < MV VEcI(ne < Myng
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320 If we wantto incorporate data from measurements above this threshold M, the calcu-
321 lation becomes slightly more complicated. Using “crowded” measurements as if they
322 were uncrowded will bias the naive Poisson estimator downward, resulting in under-
323 estimation of CFU density (Fig. 2). In a sophisticated version of this model, we can use
324 the number of plates/spots that were above the crowding threshold M, along with the
325 colony counts from plates/spots below this threshold at the same dilution, to estimate
326 CFUs. This will be applicable when plate counts at a given dilution are toward the high
327 end of the countable range, such that some technical replicates fall below this thresh-
328 old and others above it by chance. To estimate the CFU density in the original sample
320 r, the following equation should be solved numerically (see Sl for the derivation):

de(dkrV)Ne‘dk’V
/od”v tNe-tdt

330 DI <N ("r—k - dkv) + 3" I(ne > N) - 0. (12)
k k

331 The first term is equivalent to the simple Poisson model and uses the counts from un-
332 crowded samples directly, whereas the second term reflects the probability of counts
333 being above the threshold M. Inference of r can be done in Excel using SOLVER or
334 using numerical solvers in R, Python, MATLAB, etc. An equivalent model is shown in
335 (13).

336 This model properly accounts for two error sources: the sampling fluctuations and
337 the crowding effect. The simple Poisson, using only counts from uncrowded plates,
338 gives a good estimate for the CFU counts and properly combines multiple measure-
330 ments at different dilution factors. The more sophisticated form of the model has
340 greater precision, but the greater computational effort may or may not be worth it
341 to an investigator depending on the effect size and the structure of the experiment.
3a2 In the next section, we present an alternate estimator based on the Most Probable
343 Number approach, which we argue provides a better trade-off between effort and
344 estimator performance when incorporating data from crowded samples.

345 Crowding and the Most Probable Number For the final model we consider the
3a6  effects of crowdingin space. To account for crowding, we will divide each plateinto N =
347 % regions, each approximately the size of a full colony. We make the assumption
348 thatyif more than one microbe lands in one of these regions, the colonies that form
340 from these cells will grow together and be counted as one colony. For each region,
350 the number of cells landing in that region will be Poisson distributed with parameter

51 A= LV
T
352 These assumptions are equivalent to that of quantal-based methods for microbial

353 quantification, such as the commonly used Most Probable Number (MPN) method. In
354 the MPN assay, a known quantity (volume of original sample) is introduced into each of
355 a series of N replicate tubes, and the dilution of the original sample is adjusted to find
356 aregion where some of the tubes contain viable growth and some do not. The results
357 of this assay are therefore, for each dilution volume V, from the original sample, out
sss  of the Ny tubes inoculated, a number ny that is positive for growth.

359 A direct mapping to tube-based assays is possible if space on a plate (or within a
360 Spot) is considered as a set of colony-sized bins. Each of the N colony-sized regions
361 on a plate or within a spot corresponds to one tube. The presence of colonies in a
362 particular region corresponds to when a tube has growth. Hence a plate that is divided
363 into N regions can be thought of as N tubes being tested in parallel, cf. Figure 1.

364 Therefore, the probability of n, successes in N colony-size regions on the agar
365 surface can be described using a crowding-explicit model based on the binomial dis-
366 tribution. Assuming that the cells in the original sample are well-mixed, the probability
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4 N\

o J
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\_/

FIG1 Visual equivalence between plate and tube based assays. The left panel is a cartoon of a typical plate containing colonies,
where the growing colonies are shown as dark disks. In the middle panel, the plate is divided into N (here 16) approximately colony-
sized regions. If a region contains one or more colony centers (black dots), this region can be mapped to a positive (dark) tube as
shown in the right panel. Similarly regions containing no colony centers are mapped to negative (light) tubes. This demonstrates

that the MPN method can be used for plate data.

of zero cells landing in a particular region is (from the Poisson) py = e~ andthe prob-
ability that at least one cell lands in that region is therefore p. =1 - e Assuming
that the original sample is well mixed, each region is independent of all other regions
in our crowding model, so that

N N —dprv
p(nk>=(nk)kapg*”u(nk)m—e Wy g derV (N=ne), (13)

We can maximize this probability to find the MLE CFU density, rmie (See the Sl fo the
full derivation). We can accomplish this by numerically solving the following equation

for r: 4
KNk
Zk:—N(1 T ;dk. (14)

This expression for r is the same as that of the MPN estimator(19, 24). In the Sl we show
that, in the limit where concentrations and colony counts are low, this model simplifies
to the Poisson model. Outside the “uncrowded” regime, the mean and the variance
of data from the crowding model are not the same as in the Poisson. Therefore, the
two approaches are not equal to each other, though both are depressed due to the
“ceiling” effect described earlier. In the SI, we also find that the error associated with
the maximum likelihood estimator rye of the MPN method can be minimized at an
optimal dilution factor, which falls into the crowded regime.

The MPN procedure can generate biased estimates of the original sample density,
and the precision and accuracy of results depend strongly on the number of tubes
used (13). The bias on the maximum likelihood estimator results in an over-estimate
of 20-25% with 5 tubes, which is reduced to a few percent with 50 tubes (see SI). By
back of the envelope calculation, an average 10 cm plate (inside diameter 86 mm,

that plating is equivalent to a massive parallel version of a tube based assay with N ~ If;fo‘:y tubes. Furthermore it demonstrates
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surface area 58 cm?) can fit a maximum of approximately 5000 medium-sized (1 mm
outside diameter) “tubes”, whereas a single grid square on a 10 x 10 cm square plate
(typically gridded 6 x 6) can fit 200 of these colony-sized spaces. All of these are well
above the threshold where the bias in this estimator (25) makes much difference in
the value. (Note that this refers to the number of colony-sized spaces available and is
independent of the number of colonies observed.) This also means that the standard
error of the estimator will, in theory, be minimized at a plating density that is much
higher than the threshold for “uncrowded” plates and, in fact, is well into a range of
densities where a minority of colonies will be distinct. Fortunately, the standard error
is still well behaved over a broad space in fraction of regions occupied (SI), meaning
that plate counts into the “uncrowded” range will still produce good estimates with
this method. In fact, this produces a result equivalent to that of the Poisson method
in the fully uncrowded regime. However, the MPN method is most useful as plating
densities encroach into the crowded regime, allowing precise and accurate estimation
of CFU density from plates that would provide severely biased estimates using a naive
Poisson model.

Bias of Naive Poisson as a Function of Crowding N=5000

1.4 —— Naive Poisson
—-—- Real Value

1.2 -

1.0 A

0.8 1

lest!Ttrue

0.6 -

0.4 -

0.2 1

0.0 I T T T
0.0 0.2 0.4 0.6 0.8 1.0

Average Number / Max Number ({Nﬂ)

FIG2 The naive Poisson estimator underestimates the true concentration and becomes more biased as a function of crowding.
We illustrate this by plotting the ratio of the estimated concentration (with the error bands denoting + one s. e. m. at N = 5000) to
the true concentration. Here crowding is measured by the ratio of the average number of colonies to the maximum number of
colonies that can fit within a plate 7 = <—,7,> At low crowding values, the naive estimator has low bias, but large uncertainty. At a
crowding value of 0.2 the naive-Poisson estimator underestimates the true concentration by about 10%, and many-fold underes-
timation is possible as crowding approaches 1.

Utility of the Models Here we demonstrate the relative utility of each model for
estimation of CFU density from simulated data. First, we can use the crowding-explicit
binomial sampling model described in the previous section, to estimate bias due to

10
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408 crowding, and to demonstrate the importance of choosing an appropriate cutoff M,
400 below which plates are considered to be uncrowded and countable. To do so, we solve
410 the crowded binomial model in Eq. 13 for dV with respect to the average number of
411 colonies (n) and the number of colony-sized regions on a plate N. Doing so we find
a2 dV =Llog(1- %). We can substitute this into the Poisson estimator and find:

(n)
(m) (m N
413 rp = = =-r . (15)
av - n n
T’Vln(1—%) In(1—%)
414 Let us define the ratio of expected colony number to the number of colony-sized

415 regions as f = <LN> . This ratio represents the amount of crowding, where a value of
416 1 is the maximum crowding and a value close to zero is in the uncrowded regime.
417 Expressing the previous expression in terms of the crowding we see

p f
418 - = —m. (16)
419 This ratio indicates how close the estimated CFU concentration is to the true concen-
420 tration. A ratio of 1 tells us that we have an unbiased estimator, whereas a ratio of
421 less than 1 tells us we are underestimating the CFU density. We plot this expression
422 in Fig. 2 to show how the simple Poisson estimator underestimates the actual concen-
423 tration as a function of crowding, f. After a crowding value of £ = 0.2 the Poisson
424 estimator starts to be significantly biased, undershooting the true value by about 10%.
425 This has implications for the value used in the Poisson model with a cutoff. The cutoff
426 should be chosen such that the bias is not greater than the experimenters targeted
427 precision. For example, if a bias must be less than 10%, then a cutoff of about 20% of
428 the total plate capacity should be used. In the case of a 10 cm plate with an estimated
420 5000 1mm diameter colony-sized regions, this corresponds to a cutoff of M = 1000,
430 whereas the more typical cutoff of M = 300 provides an essentially unbiased estimate
431 (bias 3%), but this results in a large statistical fluctuation of 5.8%. In the case of 6mm
432 grid grid on a 10cm by 10cm plate, there are roughly 200 grid regions in a plate. Thus
433 an M = 40 would be appropriate to achieve the bias less than 10%, and a threshold
43¢ of M =12 colonies is required to reduce bias to 3% for colonies of this size. At these
435 thresholds, the statistical error would be 15.8%.
436 To compare the performance of the different estimators discussed here, we simu-
437 lated 1000 experiments and applied each of our estimators to the resulting data. Data
438 for each experiment was modeled using the binomial crowding model with r = 10,
439V = 0.2, N = 5000, and dilution values (0.1, 0.1, 0.01, 0.01, 0.001, 0.001). This corre-
440 sponds to two replicates for each dilution in a tenfold dilution experiment. An example
441 set of colony counts corresponding to these dilutions is (1705, 1629, 196, 181, 21, 21).
442 The first two dilutions are in the over-crowded regime and the last two dilutions are
443 in the dilute uncrowded regime. The traditional methods (“pick-the-best”, averaging,
444 segment averaging) and Poisson with a cutoff will discard the first two counts as too
445 many to count, while the other methods will use their numeric values. The resulting
446 distributions are plotted in Fig. 3.
447 The results show that the MPN (most probable number) method is unbiased and
448 has the highest degree of accuracy. The Poisson with a cutoff (which always discards
449 counts from the least-diluted samples in these outputs) is nearly unbiased, whereas
450 the naive Poisson is biased down due to inclusion of “crowded” data. The naive Pois-
451 son has a similar variance as that of the MPN because both are using all the data
452 points. However, the measure around which the naive Poisson estimator varies is in-
453 correct due to this bias. With the Poisson estimator, increasing accuracy comes at a
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Probability Distributions for CFU Estimators
CFU Probability Distributions %10 ASegment Average Naive Poisson Trad. Best Point
x10™ T T T
0.00035 A N Real Value 2 3x107% 1
Na|v_e. Poisson . B 55101
0.00030 Traditional one point g
B Traditional average T 107 :
0.00025 4 B Segment average :
’ ; ) 0+ —— ; .
> Poisson with cutoff ) )
= 0.00020 - == MPN » Trad. Average Poisson with Cutoff MPN
E : 4x10 : : :
o —
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2 2x10-* 1 1
0.00010 - S : :
£ 107% : 1 :
0.00005 1 ol | ,.‘._
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FIG3 The probability distributions of estimated CFU concentrations from different estimators generated from 1000 independent
numerical experiments with dilutions 0.1, 0.1, 0.01, 0.01, 0.001, 0.001, = 100000, V' = 0.2, N = 5000. Here the Segmented average,
naive Poisson, “pick the best”, traditional average, Poisson with cuttoff, and MPN methods are compared. The MPN method

demonstrates the best combination of high precision and accuracy.

cost in precision; the Poisson with cutoff has roughly twice the standard error of the
MPN method due to the fact that it does not use all the data and throws out the first
two counts of each experiment. Next, the the traditional averaging method (20) has
roughly five times the standard error of the MPN method, due to the fact that it gives
lower-precision measurements the same weight as higher-precision large counts in
the uncrowded regime. However, it is unbiased. If there are technical replicates, pick-
the-best (choosing the largest number of counts in the countable range, over multiple
technical replicates at each dilution) is a biased estimator (overestimating CFUs) and
has a standard error roughly ten times that of the MPN method. (Pick-the-best where
the best count from each technical replicate is used is equivalent to Poisson with a
cutoff, with some loss of precision due to discarding of small counts.) Segment aver-
aging (here, counting one-quarter of the plate, and assuming perfect segmenting such
that exactly one-quarter of the colonies are counted) resulted in an unbiased estima-
tor with the largest standard error, roughly 13 times the standard error of the MPN
method.

These simulations show that the MPN method produces the most precise results
and is unbiased. However, the Poisson with a cutoff is a close second, also with high
accuracy and precision and with the advantage of being practical to calculate by hand.
The bias of the naive Poisson (using all data) serves as a warning: if counts are not
in the uncrowded regime, the Poisson assumptions do not apply, and an estimator
using only number of colonies counted at each dilution will under-estimate the CFU
density in the original sample. Other standard estimators (averaging, segment averag-
ing) using the same data required for the Poisson estimator show universally poorer
precision than Poisson with a cutoff and cannot be recommended.

CONCLUSION

We have presented several methods for estimating CFUs and we have provided a cal-
culator for these estimators available on Hugging Face spaces, named CFUestimator
(18). In practice, the choice of method will depend on the precision required for the

12
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482 estimate of CFU density. For experiments with reasonably large expected effect size,
483 the simplest mathematically admissible method - the Poisson estimator with a cutoff
484 - is perfectly valid, as long as the dilutions are chosen appropriately to ensure all mea-
485 surements are in the countable range. Broadly speaking, addition of unbiased data
486 Will improve the precision of an estimator. Historically, technical replicates have been
487 used for this purpose - even technical duplication is sufficient to markedly reduce vari-
488 ance of the estimated CFU density, although triplicate plating is preferred to safeguard
489 against accidents and outliers (26) (also see Sl). The Poisson model allows data from
400 technical replicates to be combined into a single mathematically interpretable esti-
401 mator with definable properties - specifically, a maximum likelihood estimator, which
492 should be an unbiased and minimally variable estimator for the true value. This is as
403 opposed to averaging (20), which produces an estimate whose properties are not well
404 defined. The Poisson method also allows the investigator to incorporate data from
495 dilutions with too few counts, in addition to (not in place of) data from countable wells
496 in the same dilution series - by effectively re-weighting the contribution of these wells
497 by the total volume of original suspension that they contain, these data can be used
408 to improve the accuracy of the estimator even though their sampling variance is high.
499 The correspondence shown here between using tubes and gridding a plate into
s00 Ssubsections based on colony area allows the usage of estimator techniques typically
so1 used for quantal-based measurements of CFU density, specifically the MPN, where
s02 positive growth events (e. g., colonies) are explicitly considered to represent one or
503 more originating cells. These techniques have a long history in environmental surveil-
s04 lance microbiology, and statistically well-founded techniques are readily available for
so5 analysis of such data (2, 27, 28). If an experimentalist wants tighter bounds for an es-
s06 timated CFU count, the MPN provides a very low-variance, unbiased estimator at the
s07 costof some extra steps. This estimator allows the experimentalist to incorporate data
s08 from normally uncountable (TMTC) plates as well as counts from uncrowded plates,
500 maximizing the amount of information that can be gleaned from a dilution series.

510 The MPN model requires an estimate of the maximum number of colonies that
511 can be packed into the growth area for each sample; we show (SI) that it is better to
512 over-estimate this maximum than to under-estimate it. If the patch size on a plate is
513 correctly chosen to be around the size of a typical colony, even a spot-plating assay on
514 a 10 by 10 cm plate is equivalent to running hundreds of tubes in parallel. Further, it is
515 hecessary to estimate the number of occupied regions in the growth area. In or near
s16 the uncrowded regime, this will be equivalent to the number of counts. However, this
517 method does not require that all colonies are individually countable - instead, image
s18  analysis(29, 30, 31) can be used to estimate both the size of an individual colony and
s10  thefraction of total area occupied by colony growth. The MPN estimator can therefore
s20 potentially provide accurate, precise estimates of CFU density for plates where exact
521 counts cannot be obtained. However, colony size varies across different microorgan-
522 isms as well as across culture conditions (media type, agar percentage, pad thickness,
523 plate drying time and conditions, growth temperature and atmosphere, etc.) and incu-
s24 bation time on plates, meaning that the size range of colonies may be different even
525 across plates within a single experiment (32, 33). This added complication of properly
s26 choosing a grid size or determining the typical size of a colony means that application
527 of the MPN will most likely require parameters estimated for the specific experiment
s28 being analyzed. Further, the fact that colony size can decrease under crowding means
520 that heavily-crowded plates or plate regions, where few or no distinct colonies are
530 Vvisible, may have very different “average” colony sizes than the same microbes in a
531 less-crowded area. While theory suggests that the MPN estimator will be most pre-
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cise when the majority of colony-sized locations are occupied ((34), also see SI), this
practical limitation suggests that use of the MPN on plate count data will become less
accurate with extremes of crowding, and that the best use of the MPN is likely to be in
the liminal region between the technically uncrowded and the physically uncountable,
where most to all growth is in the form of distinct, countable colonies but crowding
produces a measurable bias in these counts.
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