

1 Maximum Likelihood Estimators For

2 Colony Forming Units

3 **K. Michael Martini, ^{a,c*} Satya Spandana Boddu, ^a Ilya Nemenman, ^{a,b,c} Nic Vega,**
4 ^{a,b,c*}

5 Department of Physics, Emory University, Atlanta, GA 30322^a

6 Department of Biology, Emory University, Atlanta, GA 30322^b

7 Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, GA 30322^c

8 **ABSTRACT** There is a recognized need to measure the abundance of microbes in
9 hospital environments, in the sanitation industry, and in food preparation. Doctors,
10 microbiologists, and food safety experts have been addressing this need by using se-
11 rial dilution methods to grow bacterial colonies in small enough numbers to count
12 and, from these counts, to infer bacterial concentrations measured in Colony Form-
13 ing Units (CFUs). There are two primary types of such methods: plating bacteria on
14 a growth medium and counting their resulting colonies or counting the number of
15 tubes at a given dilution that have growth. Traditionally, these types of data have
16 been analyzed separately using different analytic methods. Here we build a direct cor-
17 respondence between these approaches, which allows one to extend the use of the
18 Most Probable Number (MPN) method from the liquid tubes experiments, for which it
19 was developed, to the growth plates. We also discuss how to combine measurements
20 taken at different dilutions, and we review several ways of analyzing colony counts,
21 including the Poisson and truncated Poisson methods. For all methods, we discuss their
22 relevant error bounds, assumptions, strengths, and weaknesses. We provide an on-
23 line calculator for these estimators.

24 **IMPORTANCE** Estimation of the number of microbes in a sample is an important
25 problem with a long history of confusion. We provide a comparison of methods for
26 estimating abundance of microbes and detail a mapping between different methods,
27 which allows to extend their range of applicability. This mapping enables higher preci-
28 sion estimates of Colony Forming Units (CFUs) using the same data already collected
29 for traditional CFU estimation methods. Furthermore, we provide recommendations
30 for how to combine measurements of colony counts taken across dilutions, correcting
31 several misconceptions in the literature.

32 **INTRODUCTION**

33 Extrapolation of viable microbial counts from suspensions of live cells is a longstanding—
34 and surprisingly complicated—problem. The fundamental problem is simple: there
35 exists a volume V_0 with some unknown concentration of live microorganisms, which
36 an experimentalist wants to measure. That initial volume will be serially diluted (usu-
37 ally in a ten-fold series), and fixed-volume aliquots (sub-samples) of the resulting sus-
38 pensions will be cultured. If these aliquots are spread or dropped onto agar plates,
39 the resulting data will be in the form of colony counts. Alternately, multiple aliquots
40 may be taken from a single dilution and used to seed a number of wells or tubes of
41 liquid culture, or a number of plates. Then the number of volumes showing growth
42 when seeded from a particular dilution, as a fraction of the total number of volumes

Compiled May 18, 2023

This is a draft manuscript, pre-submission

Address correspondence to Nic Vega,
nvega@emory.edu, K. Michael Martini,
karl.michael.martini@emory.edu.

Martini et al.

43 inoculated, can be used to calculate the Most Probable Number (MPN) of live agents
44 in the initial volume (1, 2).

45 Best practice for this apparently simple and ubiquitous scenario has been the sub-
46 ject of debate for over a century (1, 3, 4, 5, 6, 7, 8, 9, 10, 11). There are technical consid-
47 erations to this problem. For example, all plates or tubes used for growth should have
48 the same ability to support growth of the organism(s) being studied, and the sample
49 must be sufficiently homogenized to ensure that microbes are free in solution and
50 not adhered to one another or to a substrate (4). However, such considerations are
51 case-specific and beyond the scope of the present work.

52 These counts are subject to counting errors as well. At one extreme, when the sam-
53 ple is too concentrated, the number of resulting colonies will be too numerous to count
54 (TNTC; sometimes “too many to count”, TMTC). At these high concentrations, colonies
55 merge, breaking the assumption that each microbe corresponds to one colony (6, 12).
56 At the other extreme, when the sample is very diluted, the number of colony initiating
57 bacteria in the sample is subject to small-number statistical (sampling) fluctuations,
58 resulting in high relative error (ratio of the standard deviation to the mean) (13, 14).
59 Finally, experimental errors, such as inaccuracies in pipetting, can emerge and com-
60 pound over the steps of a serial dilution. However, the latter source of error is ex-
61 pected to be negligible for equipment calibrated to usual standards, and technical
62 replication further reduces effects of this variation (15).

63 Thus the problem at hand is: How can CFU density best be estimated from plate
64 counts, given the error produced by sampling fluctuations, colony crowding, and (to
65 a lesser degree) pipetting? These errors will contribute differently to different exper-
66 imental designs. For a *single sample represented by one count of colonies* n_k at one
67 dilution d_k (because only one dilution was measured, or because only one spot or one
68 plate in a series was countable), statistical error of counts (presumably Poisson) is in-
69 evitable, and pipetting error will contribute but may not be significant. For a *single*
70 *sample represented by more than one count of colonies* (representing counts at different
71 dilutions within a single dilution series, and/or technical replicates where one sam-
72 ple was measured multiple times), the same errors apply, but pipetting bias may not
73 be constant across measurements (for example, one failing O-ring on a multichannel
74 pipette can lead to bias in a single column of a 96-well plate).

75 For *multiple samples of the same type measured in parallel* (biological replicates), we
76 can no longer expect variation across samples to reflect a Poisson-distributed sam-
77 pling error. Indeed, individual measurements will be subject to sampling variation, but
78 variation across samples will be biological (or otherwise inherent), and demographic
79 (accumulating over time) in addition to sampling. This was the basis for the Nobel-prize
80 winning experiments of Luria and Delbrück, who used the distribution of fluctuations
81 to distinguish Darwinian vs. Lamarckian evolution (16). This is also frequently the
82 case in environmental samples, where different samples from the same source (e. g.,
83 water samples from different parts of the same lake) will produce measurements that
84 have super-Poisson variation (aka, over-dispersed). In such cases, some of the varia-
85 tion is “real” due to inhomogeneities in the source, and it cannot be modeled as mere
86 sampling error. Biological variation is problem dependent and often carries in it the
87 imprint of the underlying fundamental biology (16); it will not be dealt with here. In-
88 stead, we will focus on estimation of CFU density within an individual sample, which
89 may be represented by a single set of measurements or by technical replicates, in
90 which one sample is measured multiple times.

91 The main objective of this paper is to propose methods for accurately estimating
92 colony forming units (CFUs), while taking into account the effects of crowding and sam-

MLE for CFUs

pling fluctuations, without losing valuable data from counts. Drawing from previous research (13, 12, 17, 14), we present simple analytical formulas that can be used to combine counts from different dilutions and to obtain precise CFU estimates along with accurate error bars. First, we examine existing methods in the literature, assessing their strengths and weaknesses. Next, we introduce the “Poisson with a cutoff” method, which clarifies the impact of crowding on CFU density estimation and demonstrates how to minimize the effects of sampling error by combining measurements of “uncrowded” counts. Finally, we use a crowding-explicit model to demonstrate the relationship between canonical plate-based counts and the Most Probable Number method for presence/absence of growth in liquid media. We conclude by providing practical recommendations for experimentalists on how to select appropriate dilution and replication schemes and how to combine data from multiple observations. We also have provided a calculator for these estimators available on Hugging Face spaces, named CFUestimator (18).

RESULTS

A Brief History of Counts Colony Forming Units (CFUs) are a proxy for the concentration of microbes within a sample. The experimental procedure for estimating CFUs consists of serially diluting homogeneous samples in a sterile aqueous buffer, then plating aliquots of these dilutions on growth-supporting agar and later counting the resulting colonies. If an appropriate dilution has been reached, each microbe will form an independent colony that is countable by eye. The simplest way of estimating CFUs is to multiply the number of colonies by the reciprocal of the dilution factor to find the concentration of colony-forming microbes in the original suspension (1, 5, 17). For example, say there is a single sample represented by one countable 10 cm plate in a dilution series, where we observe 100 distinct colonies after plating 100 μ L of a 1:100 dilution (dilution 2 in a ten-fold series) from the original sample. In this case, following this simple procedure, we would obtain:

$$\frac{\text{CFU}}{\text{Volume}} = \frac{\text{counts}}{\text{FracOriginalVolume}} = \frac{100}{0.1\text{mL} \cdot 0.01} = 100 \cdot 10^3 = 10^5 \text{ CFU/mL.} \quad (1)$$

This is exactly equivalent to multiplying the number of counts by a volume correction factor (1/(size of aliquot in mL)) and multiplying by the base of the dilution series raised to the power of the number of dilution steps:

$$\frac{\text{CFU}}{\text{Volume}} = \frac{1}{0.1\text{mL}} \cdot 100 \text{ colonies} \cdot 10^2 = 100 \cdot 10^3 = 10^5 \text{ CFU/mL.} \quad (2)$$

This simple calculation follows from a more general Poisson model, explained below. This method works reasonably well under ideal conditions: all samples should be represented by a single count of colonies, and each count should be large enough to minimize small-number sampling fluctuations, and yet small enough to avoid crowding on the plate. When any of these conditions are not met, accurate estimation of CFU density becomes more complicated.

There is a broad literature of methods proposing to ensure that estimates of CFU density are “good”. A *good* estimator should be accurate. Formally, this means that such estimators should have the true value of the CFU density as their expected value. In other words, they must be unbiased. *Good* estimators must also be precise, so that variance in the estimate is small and samples are repeatable. Therefore, an ideal solution to this problem should provide an estimator that is provably unbiased and with a

Martini et al.

137 minimal variance. The solution to this problem is well known in statistics: if we can as-
138 sume that data follows a specific probability distribution, then the *maximum likelihood*
139 *estimator (MLE)* for that distribution will have these properties.(13) While this is formally
140 true only for very large samples, MLE estimators generally perform well even for small
141 samples. Further, an ideal method should be straightforward to use in the hands of
142 researchers without advanced mathematics background. Unfortunately, many of the
143 available methods fail one or the other of these requirements, being either simple to
144 use, but statistically sub-optimal, or mathematically correct, but incomprehensible to
145 many bench scientists.

146 Straight-forward to use methods focus largely on designing protocols that avoid
147 data in error-prone extremes. For example, the FDA recommends (19) that the best
148 dilution range for coliform bacteria results in 25 to 250 colonies per 10-cm plate, with
149 the ideal count closest to 250. Restriction on the high end limits counting errors due to
150 growth limitation by nutrient depletion as well as outright merging of colonies, which
151 would bias the number of counts downward. Conversely, restriction on the lower end
152 limits the sampling error associated with small numbers of counts. Specifically, under
153 the assumption that counts represent random draws from a given sample and are,
154 therefore, Poisson-distributed, the error scales as the square root of the number of
155 counts. Thus, for small counts, the error becomes an unacceptably large fraction of
156 the mean. Within the example above, our dilution 2 count of 100 colonies should have
157 a standard deviation (SD) of $\sqrt{100} = 10$, giving a coefficient of variation (CV) of 10%. At
158 dilution 3, we might obtain 10 counts, with a SD of $\sqrt{10} \approx 3.16$, and a CV of 31.6%.

159 From here, the simplest approach that is often used in practice is to choose only
160 the plate or spot that has the “best” count in the acceptable range, and to estimate
161 CFU density based on that single count. Often only the dilution at the high end of
162 the countable range is used since it has the smallest sampling fluctuations; all other
163 measurements are discarded (17). We call this the “pick-the-best” method for later
164 reference. If counts in the acceptable range can be consistently achieved, this method
165 is straightforward and reasonably accurate. However, discarding data is rarely advis-
166 able, and over- and under-crowded measurements can, in fact, be used to improve
167 CFU estimates.

168 **Simplest “Good” Estimator: Poisson** One simple and reasonably accurate model
169 for calculating CFUs assumes that the number of colonies are Poisson distributed, with
170 variation due to sampling. That is, for a particular dilution, the mean colony count
171 for that dilution is the same as the variance. This model ignores crowding effects but
172 works well for modeling sampling fluctuations. By this model, the most likely estimator
173 for the density of microbes is simply the ratio of the total number of colonies counted
174 from all plates divided by the total amount of liquid used from the original sample in
175 all plates (see *Supplementary Information*). If there is only one countable measurement
176 for a given sample, this simplifies to “pick-the-best”.

177 The Poisson model implicitly assumes that the original sample is well mixed and
178 each microbe plated will result in its own separate and countable colony. It further as-
179 sumes that experimental volume is spread uniformly across the agar surface, resulting
180 in cells being randomly distributed, independent of the locations of where other cells
181 landed. Formally, these assumptions mean that there is a uniform and well mixed
182 population density r of microbes per unit volume in an initial volume of liquid V . The
183 liquid is diluted by a factor $d_k = V_k/V$, where V_k is the volume of the liquid from the
184 original sample used on the plate or the spot k . Plating will result in n_k colonies, where
185 n_k is Poisson distributed with the parameter $\lambda = rd_kV = rV_k$. That is, the average num-
186 ber of colonies per experiment is rd_kV with variance rd_kV . Using these assumptions,

MLE for CFUs

187 the MLE estimator of the density of microbes r_{mle} and its standard error are:

$$188 \quad r_{\text{mle}} = \frac{\sum_k n_k}{V \sum_k d_k} = \frac{\sum_k n_k}{\sum_k V_k}, \quad \sigma = \frac{r_{\text{mle}}}{\sqrt{\sum_k n_k}}. \quad (3)$$

189 In other words, the best estimator for the concentration, r_{mle} , is the total number of
190 colonies divided by the total amount of the original volume of liquid used. However,
191 as noted earlier, this ignores crowding and counting errors. In practice, this method
192 should be avoided unless all measurements are from well-dispersed, uncrowded plates,
193 as crowding effects can make a large difference in the estimator, resulting in underes-
194 timating the microbial density as colonies merge and are under-counted.

195 If technical replicates exist (multiple measurements of the same sample), it is
196 straightforward to test whether the data adhere to a Poisson distribution using the
197 following test, known as the dispersion index test. If there are j measurements of a
198 given sample, with average number of counts \bar{N} and variance of counts s_N^2 , then the
199 index of dispersion D^2 is:

$$200 \quad D^2 = \frac{(j - 1)s_N^2}{\bar{N}}, \quad (4)$$

201 which will be distributed as χ^2 with $j - 1$ degrees of freedom (13). If D^2 is greater
202 than the upper $1 - \alpha$ quantile of that distribution, where α is the needed significance
203 p-value, then we reject the null hypothesis that these replicates are drawn from the
204 same Poisson distribution. This can indicate technical problems that are introducing
205 an excess of variation, possibly by biasing replicates differently from one another (e.g.,
206 the failing O-ring example above), or biases due to a too-lenient cutoff for countability.

207 **Combining Data: Common Bad Estimators** The primary reason for the “pick-the-
208 best” approach is that it eliminates confusion over how to combine multiple measure-
209 ments for a given sample, particularly when counts belong to more than one dilution.
210 First notice that combining measurements from technical replicates that are taken at
211 the same dilution is straightforward. For example, let’s assume an original $200 \mu\text{L}$ vol-
212 ume V contains $r = 3 \cdot 10^8$ CFU. We can create simulated serial dilutions from this
213 original volume by assuming that each pipetting step (ten-fold dilutions and plating
214 onto agar) is a binomial sampling event (14) that comes with experimental noise. In
215 one such simulation, triplicate plating $100 \mu\text{L}$ aliquots results in counts $n_6 = (162, 141,$
216 $148)$, all from the sixth ten-fold dilution. The fraction of the original volume plated in
217 each case is $V_6 = 0.5 \cdot 10^{-6} = 5 \cdot 10^{-7}$. These numbers can be combined via the Poisson
218 method shown in the previous section to estimate CFU density in V :

$$219 \quad \text{CFU} = \frac{162 + 141 + 148}{5 \cdot 10^{-7} + 5 \cdot 10^{-7} + 5 \cdot 10^{-7}} = \frac{162 + 141 + 148}{3 \cdot 5 \cdot 10^{-7}} = 3.007 \cdot 10^8. \quad (5)$$

220 Alternately, counts taken from the same dilution can be averaged across technical
221 replicates, then adjusted by the volume plated and the dilution read (20):

$$222 \quad \text{CFU} = 2 \cdot \frac{162 + 141 + 148}{3} \cdot 10^6 = 2 \cdot \frac{162 + 141 + 148}{3 \cdot 10^{-6}} = \frac{162 + 141 + 148}{3 \cdot 0.5 \cdot 10^{-6}} = 3.007 \cdot 10^8. \quad (6)$$

223 Clearly, these two most common approaches are algebraically identical.

224 In contrast, combining counts across different dilutions is less straightforward. In
225 fact, some commonly-used methods for combining measurements are statistically in-
226 admissible. For example, if there are multiple measurements in the countable range,
227 the USDA recommends (20) that researchers calculate the estimated CFU for each di-
228 lution separately using the average colony count across technical replicates at a given
229 dilution and then average the results of the separate dilutions. If the two estimates
230 are more than a factor of 2 apart, the researcher is instructed to instead only use the

Martini et al.

231 counts from the higher-density plates. This commonly used method, incorrectly com-
232 bines the data using a simple average, thus increasing the variance of the estimated
233 CFU density. Indeed, continuing the example above, let's suppose that, on the plates
234 corresponding to the seventh ten-fold dilution from these three technical replicates,
235 we observe (13, 17, 20) colonies. The Poisson estimator gives us:

$$236 \quad \text{CFU} = \frac{162 + 141 + 148 + 13 + 17 + 20}{3(5 \cdot 10^{-7}) + 3(5 \cdot 10^{-8})} = 3.036 \cdot 10^8. \quad (7)$$

237 The USDA averaging method gives:

$$238 \quad \text{CFU} = \frac{1}{2} \left(2 \frac{162 + 141 + 148}{3} \cdot 10^6 + 2 \frac{13 + 17 + 20}{3} \cdot 10^7 \right) \\ = \frac{1}{2} (3.06 \cdot 10^8 + 3.33 \cdot 10^8) = 3.2 \cdot 10^8. \quad (8)$$

239 On these data, averaging was substantially less precise, with an error of 7% as com-
240 pared with the Poisson method's error of 1% (recall that the true density in this sim-
241 ulated example is $3.0 \cdot 10^8$ CFU per $200 \mu\text{L}$). The USDA method improperly averages
242 across dilutions, amplifying fluctuations associated with small colony number counts,
243 whereas the simple Poisson model properly combines measurements across dilutions
244 by effectively re-weighting small counts by the small volumes with which they are as-
245 sociated. In a later section, we demonstrate that averaging across dilutions will, as a
246 rule, increase the variance of CFU estimates.

247 **Too Few and Too Many** Further, there is the problem of what to do with zero
248 counts. These data are inevitably limited by some threshold of detection (TOD), repre-
249 senting the smallest CFU density at which counts can be detected. This "left-censoring"
250 is a well-known issue (21, 22, 23) with many proposed work-arounds, including but not
251 limited to: substituting zeros with a small value (which may be the average of the un-
252 detectable range, a maximum-likelihood inferred value, or some other small number),
253 reporting zeros as "below TOD" or "<1" rather than as a value, and pretending they
254 didn't happen (not generally recommended; although if zeros are rare, it won't make
255 much difference) (21, 23). Sometimes, a threshold of quantification (TOQ) represent-
256 ing the lowest "acceptable" (sufficiently precise) count is used along with or instead of
257 TOD (17), with values below this threshold omitted from analysis.

258 The "best" approach to zero-contaminated count data depends on what else is in
259 the data and what the data will be used to do. If a sample is represented by zero and
260 non-zero measurements, the Poisson model explicitly allows zero counts to be incor-
261 porated as outcomes of the random sampling process. For example, if a hypothetical
262 $V = 200 \mu\text{L}$ sample contains $5 \cdot 10^7$ CFU, one simulation of serial dilution and plating in
263 triplicate with $100 \mu\text{L}$ per plate produces dilution-6 counts of (31, 26, 20) and dilution-7
264 counts of (4, 0, 0). Using just the dilution-6 counts, we estimate

$$265 \quad \text{CFU} = \frac{31 + 26 + 20}{3(5 \cdot 10^{-7})} = 5.13 \cdot 10^7 \pm 0.59 \cdot 10^7. \quad (9)$$

266 If we use the lower dilution as well, we obtain

$$267 \quad \text{CFU} = \frac{31 + 26 + 20 + 4 + 0 + 0}{3(5 \cdot 10^{-7}) + 3(5 \cdot 10^{-8})} = 4.91 \cdot 10^7 \pm 0.55 \cdot 10^7. \quad (10)$$

268 In this case, incorporating data from zeros (in the form of the additional volume that
269 was plated but contained no counts) improved precision. Alternately, when zeros are
270 common because the density in the original sample is close to the TOD, non-zero
271 counts are useful for making a distinction between samples where no organisms are

MLE for CFUs

272 detectable (and density might be zero) and those where the density of organisms can-
273 not be zero. Although the actual density cannot be estimated accurately or precisely
274 from very low counts, the distinction between “ $<\text{TOD}$ ” and “ >1 ” for a given sample is
275 important (23).

276 At the other end of the range, researchers must deal with crowding and set thresh-
277 olds for “too many to count”. Defining an optimal range for “countable” data is not
278 always straightforward, and this determination is very important to ensure that CFU
279 estimates are accurate. Since the sampling-based standard error of counts scales as
280 $\frac{n_k}{\sqrt{n_k}}$, the number of colonies counted n_k should be as large as reasonably possible.

281 However, there are consequences for pushing this too far. As cell density in the
282 aliquot increases, counts will be biased downwards due to merging of colonies and
283 colony stunting or failure to grow. These data are then “right-censored”, with an upper
284 limit past which the number of counts observed does not increase in proportion to
285 an increase in the density in the original sample. Densities above this point result in
286 “crowded” samples, with counts that are lower than the true number of colony forming
287 units. Further, as the number of colonies per plate or spot increases, data collection
288 becomes more time-consuming; it is common for researchers to minimize effort on
289 plates near the top of the “acceptable” range by dividing plates into sections, counting
290 colonies in one section, and multiplying this count by the number of sections to get an
291 estimated final count for the whole plate (19). While this approach is sufficient for a
292 rough estimate of CFU density, it introduces additional sampling variation due to both
293 reduction in counts and imperfect division of plates, and it does not remove bias due
294 to crowding. We will demonstrate the consequences later in this paper.

295 Previous works (12) have modeled crowding using shifted Poisson distributions.
296 In these models, the variance of estimates from crowded data would be the same
297 as if there was no crowding and the mean would be shifted down due to colonies
298 merging together. However, this is *a priori* unlikely to be true. As we will show below,
299 if colonies are crowded, both the mean and the variance will be shifted relative to the
300 pure Poisson (uncrowded) distribution. The reason for this is that the variance of the
301 large colony counts is shifted downward due to a “ceiling” effect—there is an upper
302 bound to the total number of colonies, which limits upwards fluctuations. In other
303 words, the use of a shifted Poisson distribution is a reasonable approximation, but
304 the variance must also be modified.

305 **Better Estimators: Poisson With Cutoff, aka What's Countable, Exactly?** The
306 main problem with the naive Poisson model is that it does not account for counting
307 errors due to crowding. The simplest way to take account of the crowding is to assume
308 that there is a threshold of colonies, M , below which crowding is negligible, which in
309 practice will often be smaller than the largest number of counts we are willing to at-
310 tempt. We can then segment our data into two parts: plates with counts above the
311 threshold where crowding is important, and plates with counts below the threshold
312 where crowding is not important. If we have identified our cutoffs well, the naive Pois-
313 son estimator above is correct for all measurements where the number of colonies
314 counted $n_k \leq M$. The calculation is, therefore, exactly the same as for the naive Pois-
315 son estimator given above, with the caveat that only measurements $n_k \leq M$ are used.
316 Here, the indicator function $I(n_k < M)$ is 1 when $n_k < M$, and 0 otherwise. Similarly,
317 $I(n_k > M)$ is 1 when $n_k > M$, and 0 otherwise. Due to its balance between simplicity
318 and accuracy, this method is the easiest to use in practice.

$$319 r_{\text{mle}} = \frac{\sum_k I(n_k \leq M) n_k}{\sum_k I(n_k \leq M) V_k}, \quad \sigma = \frac{r_{\text{mle}}}{\sqrt{\sum_k I(n_k \leq M) n_k}}. \quad (11)$$

Martini et al.

320 If we want to incorporate data from measurements above this threshold M , the calcu-
321 lation becomes slightly more complicated. Using “crowded” measurements as if they
322 were uncrowded will bias the naive Poisson estimator downward, resulting in under-
323 estimation of CFU density (Fig. 2). In a *sophisticated* version of this model, we can use
324 the number of plates/spots that were above the crowding threshold M , along with the
325 colony counts from plates/spots below this threshold at the same dilution, to estimate
326 CFUs. This will be applicable when plate counts at a given dilution are toward the high
327 end of the countable range, such that some technical replicates fall below this thresh-
328 old and others above it by chance. To estimate the CFU density in the original sample
329 r , the following equation should be solved numerically (see SI for the derivation):

330
$$\sum_k I(n_k \leq N) \left(\frac{n_k}{r} - d_k V \right) + \sum_k I(n_k > N) \frac{d_k V (d_k r V)^N e^{-d_k r V}}{\int_0^{d_k r V} t^N e^{-t} dt} = 0. \quad (12)$$

331 The first term is equivalent to the simple Poisson model and uses the counts from un-
332 crowded samples directly, whereas the second term reflects the probability of counts
333 being above the threshold M . Inference of r can be done in Excel using SOLVER or
334 using numerical solvers in R, Python, MATLAB, etc. An equivalent model is shown in
335 (13).

336 This model properly accounts for two error sources: the sampling fluctuations and
337 the crowding effect. The simple Poisson, using only counts from uncrowded plates,
338 gives a good estimate for the CFU counts and properly combines multiple measure-
339 ments at different dilution factors. The more sophisticated form of the model has
340 greater precision, but the greater computational effort may or may not be worth it
341 to an investigator depending on the effect size and the structure of the experiment.
342 In the next section, we present an alternate estimator based on the Most Probable
343 Number approach, which we argue provides a better trade-off between effort and
344 estimator performance when incorporating data from crowded samples.

345 **Crowding and the Most Probable Number** For the final model we consider the
346 effects of crowding in space. To account for crowding, we will divide each plate into $N \approx$
347 $\frac{A_{\text{plate}}}{A_{\text{colony}}}$ regions, each approximately the size of a full colony. We make the assumption
348 that if more than one microbe lands in one of these regions, the colonies that form
349 from these cells will grow together and be counted as one colony. For each region,
350 the number of cells landing in that region will be Poisson distributed with parameter
351 $\lambda = \frac{d_k r V}{N}$.

352 These assumptions are equivalent to that of quantal-based methods for microbial
353 quantification, such as the commonly used Most Probable Number (MPN) method. In
354 the MPN assay, a known quantity (volume of original sample) is introduced into each of
355 a series of N replicate tubes, and the dilution of the original sample is adjusted to find
356 a region where some of the tubes contain viable growth and some do not. The results
357 of this assay are therefore, for each dilution volume V_k from the original sample, out
358 of the N_k tubes inoculated, a number n_k that is positive for growth.

359 A direct mapping to tube-based assays is possible if space on a plate (or within a
360 spot) is considered as a set of colony-sized bins. Each of the N colony-sized regions
361 on a plate or within a spot corresponds to one tube. The presence of colonies in a
362 particular region corresponds to when a tube has growth. Hence a plate that is divided
363 into N regions can be thought of as N tubes being tested in parallel, cf. Figure 1.

364 Therefore, the probability of n_k successes in N colony-size regions on the agar
365 surface can be described using a crowding-explicit model based on the binomial dis-
366 tribution. Assuming that the cells in the original sample are well-mixed, the probability

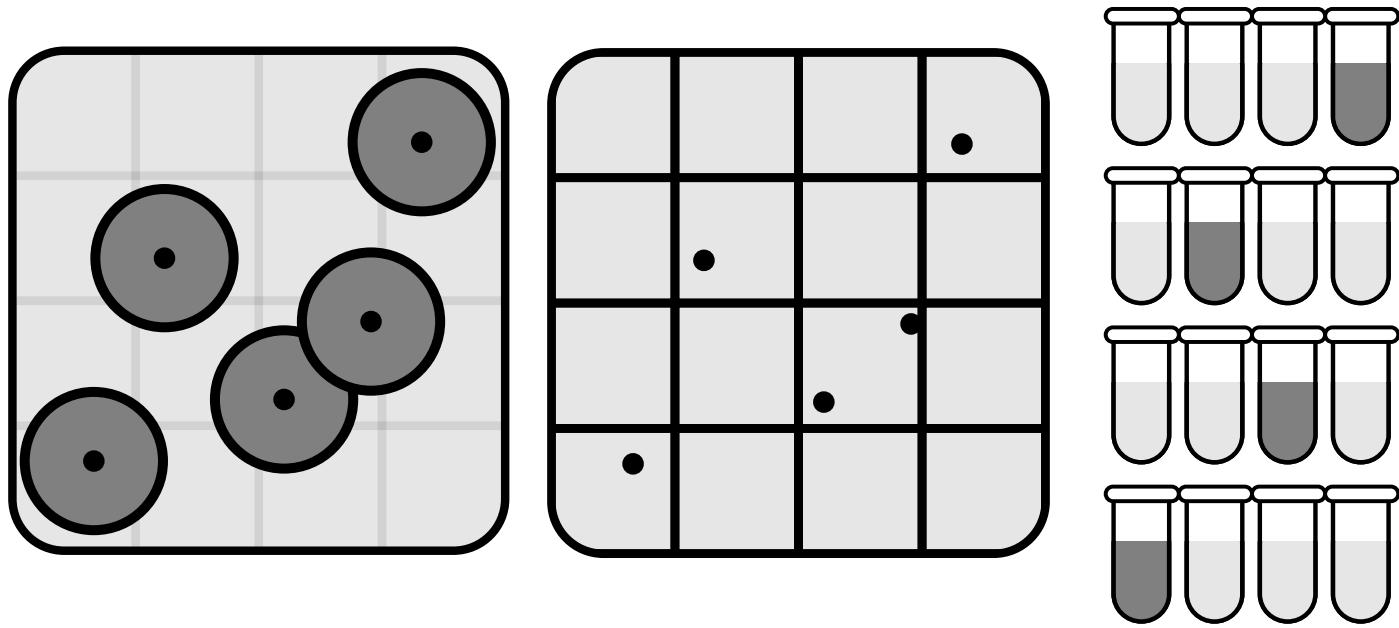


FIG 1 Visual equivalence between plate and tube based assays. The left panel is a cartoon of a typical plate containing colonies, where the growing colonies are shown as dark disks. In the middle panel, the plate is divided into N (here 16) approximately colony-sized regions. If a region contains one or more colony centers (black dots), this region can be mapped to a positive (dark) tube as shown in the right panel. Similarly regions containing no colony centers are mapped to negative (light) tubes. This demonstrates that plating is equivalent to a massive parallel version of a tube based assay with $N \approx \frac{A_{\text{plate}}}{A_{\text{colony}}}$ tubes. Furthermore it demonstrates that the MPN method can be used for plate data.

367 of zero cells landing in a particular region is (from the Poisson) $p_0 = e^{-\frac{d_k r V}{N}}$ and the probability
 368 that at least one cell lands in that region is therefore $p_> = 1 - e^{-\frac{d_k r V}{N}}$. Assuming
 369 that the original sample is well mixed, each region is independent of all other regions
 370 in our crowding model, so that

$$371 \quad p(n_k) = \binom{N}{n_k} p_>^{n_k} p_0^{N-n_k} = \binom{N}{n_k} (1 - e^{-\frac{d_k r V}{N}})^{n_k} e^{-d_k r V(N-n_k)}. \quad (13)$$

372 We can maximize this probability to find the MLE CFU density, r_{mle} (see the SI for the
 373 full derivation). We can accomplish this by numerically solving the following equation
 374 for r :

$$375 \quad \sum_k \frac{d_k n_k}{N(1 - e^{-r d_k r V / N})} = \sum_k d_k. \quad (14)$$

376 This expression for r is the same as that of the MPN estimator (19, 24). In the SI we show
 377 that, in the limit where concentrations and colony counts are low, this model simplifies
 378 to the Poisson model. Outside the “uncrowded” regime, the mean and the variance
 379 of data from the crowding model are not the same as in the Poisson. Therefore, the
 380 two approaches are not equal to each other, though both are depressed due to the
 381 “ceiling” effect described earlier. In the SI, we also find that the error associated with
 382 the maximum likelihood estimator r_{mle} of the MPN method can be minimized at an
 383 optimal dilution factor, which falls into the crowded regime.

384 The MPN procedure can generate biased estimates of the original sample density,
 385 and the precision and accuracy of results depend strongly on the number of tubes
 386 used (13). The bias on the maximum likelihood estimator results in an over-estimate
 387 of 20-25% with 5 tubes, which is reduced to a few percent with 50 tubes (see SI). By
 388 back of the envelope calculation, an average 10 cm plate (inside diameter 86 mm,

Martini et al.

389 surface area 58 cm²) can fit a maximum of approximately 5000 medium-sized (1 mm
390 outside diameter) "tubes", whereas a single grid square on a 10 x 10 cm square plate
391 (typically gridded 6 x 6) can fit 200 of these colony-sized spaces. All of these are well
392 above the threshold where the bias in this estimator (25) makes much difference in
393 the value. (Note that this refers to the number of *colony-sized spaces* available and is
394 independent of the number of colonies observed.) This also means that the standard
395 error of the estimator will, in theory, be minimized at a plating density that is much
396 higher than the threshold for "uncrowded" plates and, in fact, is well into a range of
397 densities where a minority of colonies will be distinct. Fortunately, the standard error
398 is still well behaved over a broad space in fraction of regions occupied (SI), meaning
399 that plate counts into the "uncrowded" range will still produce good estimates with
400 this method. In fact, this produces a result equivalent to that of the Poisson method
401 in the fully uncrowded regime. However, the MPN method is most useful as plating
402 densities encroach into the crowded regime, allowing precise and accurate estimation
403 of CFU density from plates that would provide severely biased estimates using a naive
404 Poisson model.

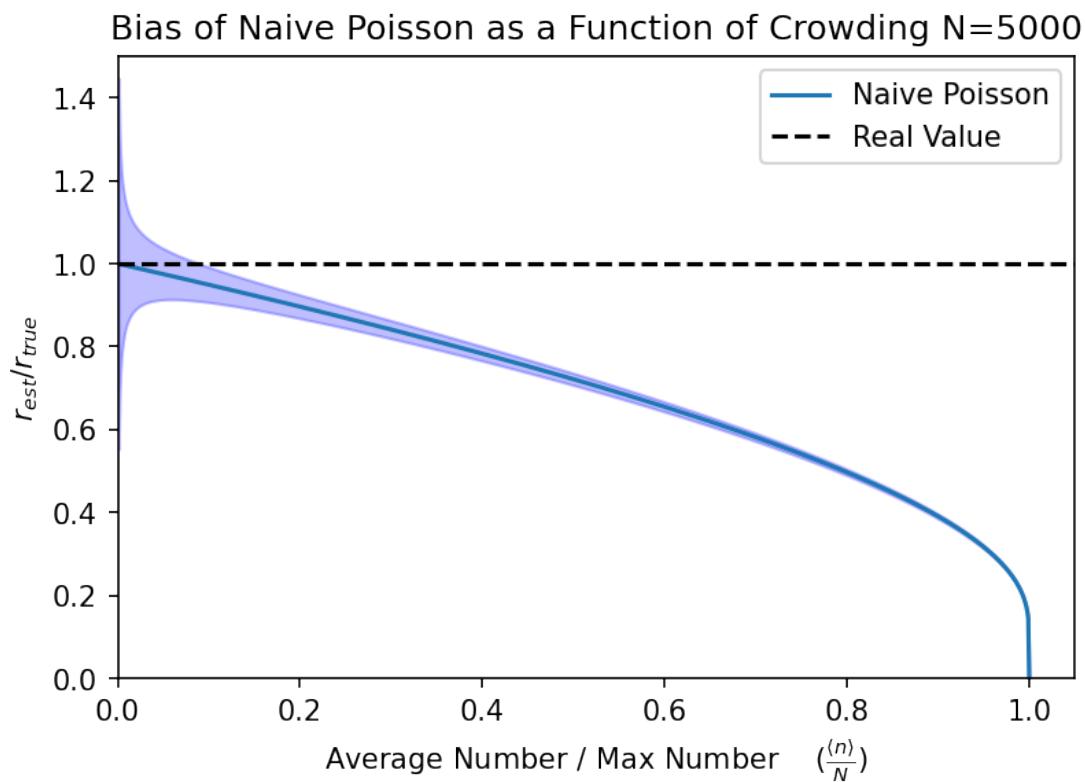


FIG 2 The naive Poisson estimator underestimates the true concentration and becomes more biased as a function of crowding. We illustrate this by plotting the ratio of the estimated concentration (with the error bands denoting \pm one s. e. m. at $N = 5000$) to the true concentration. Here crowding is measured by the ratio of the average number of colonies to the maximum number of colonies that can fit within a plate $f = \frac{\langle n \rangle}{N}$. At low crowding values, the naive estimator has low bias, but large uncertainty. At a crowding value of 0.2 the naive-Poisson estimator underestimates the true concentration by about 10%, and many-fold underestimation is possible as crowding approaches 1.

405 **Utility of the Models** Here we demonstrate the relative utility of each model for
406 estimation of CFU density from simulated data. First, we can use the crowding-explicit
407 binomial sampling model described in the previous section, to estimate bias due to

MLE for CFUs

408 crowding, and to demonstrate the importance of choosing an appropriate cutoff M ,
409 below which plates are considered to be uncrowded and countable. To do so, we solve
410 the crowded binomial model in Eq. 13 for dV with respect to the average number of
411 colonies $\langle n \rangle$ and the number of colony-sized regions on a plate N . Doing so we find
412 $dV = \frac{-N}{r} \log\left(1 - \frac{\langle n \rangle}{N}\right)$. We can substitute this into the Poisson estimator and find:

$$413 \quad r_p = \frac{\langle n \rangle}{dV} = \frac{\langle n \rangle}{\frac{-N}{r} \ln\left(1 - \frac{\langle n \rangle}{N}\right)} = -r \frac{\frac{\langle n \rangle}{N}}{\ln\left(1 - \frac{\langle n \rangle}{N}\right)}. \quad (15)$$

414 Let us define the ratio of expected colony number to the number of colony-sized
415 regions as $f = \frac{\langle n \rangle}{N}$. This ratio represents the amount of crowding, where a value of
416 1 is the maximum crowding and a value close to zero is in the uncrowded regime.
417 Expressing the previous expression in terms of the crowding we see

$$418 \quad \frac{r_p}{r} = -\frac{f}{\ln(1 - f)}. \quad (16)$$

419 This ratio indicates how close the estimated CFU concentration is to the true concen-
420 tration. A ratio of 1 tells us that we have an unbiased estimator, whereas a ratio of
421 less than 1 tells us we are underestimating the CFU density. We plot this expression
422 in Fig. 2 to show how the simple Poisson estimator underestimates the actual concen-
423 tration as a function of crowding, f . After a crowding value of $f = 0.2$ the Poisson
424 estimator starts to be significantly biased, undershooting the true value by about 10%.
425 This has implications for the value used in the Poisson model with a cutoff. The cutoff
426 should be chosen such that the bias is not greater than the experimenters targeted
427 precision. For example, if a bias must be less than 10%, then a cutoff of about 20% of
428 the total plate capacity should be used. In the case of a 10 cm plate with an estimated
429 5000 1mm diameter colony-sized regions, this corresponds to a cutoff of $M = 1000$,
430 whereas the more typical cutoff of $M = 300$ provides an essentially unbiased estimate
431 (bias 3%), but this results in a large statistical fluctuation of 5.8%. In the case of 6mm
432 grid grid on a 10cm by 10cm plate, there are roughly 200 grid regions in a plate. Thus
433 an $M = 40$ would be appropriate to achieve the bias less than 10%, and a threshold
434 of $M = 12$ colonies is required to reduce bias to 3% for colonies of this size. At these
435 thresholds, the statistical error would be 15.8%.

436 To compare the performance of the different estimators discussed here, we simu-
437 lated 1000 experiments and applied each of our estimators to the resulting data. Data
438 for each experiment was modeled using the binomial crowding model with $r = 10^5$,
439 $V = 0.2$, $N = 5000$, and dilution values (0.1, 0.1, 0.01, 0.01, 0.001, 0.001). This corre-
440 sponds to two replicates for each dilution in a tenfold dilution experiment. An example
441 set of colony counts corresponding to these dilutions is (1705, 1629, 196, 181, 21, 21).
442 The first two dilutions are in the over-crowded regime and the last two dilutions are
443 in the dilute uncrowded regime. The traditional methods ("pick-the-best", averaging,
444 segment averaging) and Poisson with a cutoff will discard the first two counts as too
445 many to count, while the other methods will use their numeric values. The resulting
446 distributions are plotted in Fig. 3.

447 The results show that the MPN (most probable number) method is unbiased and
448 has the highest degree of accuracy. The Poisson with a cutoff (which always discards
449 counts from the least-diluted samples in these outputs) is nearly unbiased, whereas
450 the naive Poisson is biased down due to inclusion of "crowded" data. The naive Pois-
451 son has a similar variance as that of the MPN because both are using all the data
452 points. However, the measure around which the naive Poisson estimator varies is in-
453 correct due to this bias. With the Poisson estimator, increasing accuracy comes at a

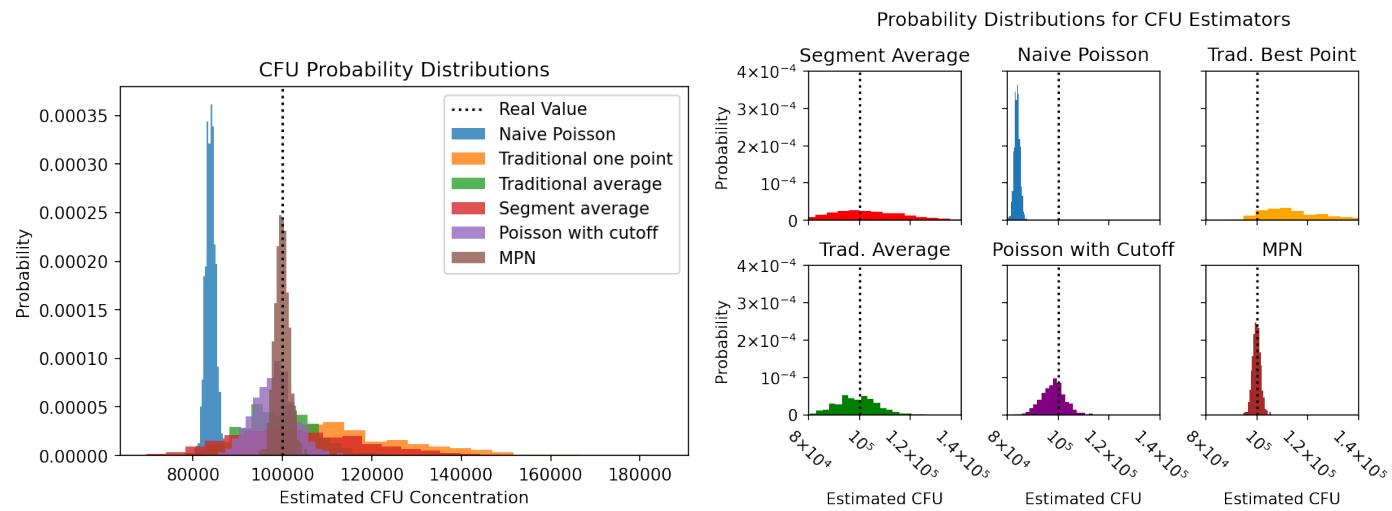


FIG 3 The probability distributions of estimated CFU concentrations from different estimators generated from 1000 independent numerical experiments with dilutions 0.1, 0.1, 0.01, 0.01, 0.001, 0.001, $r = 100000$, $V = 0.2$, $N = 5000$. Here the Segmented average, naive Poisson, “pick the best”, traditional average, Poisson with cutoff, and MPN methods are compared. The MPN method demonstrates the best combination of high precision and accuracy.

454 cost in precision; the Poisson with cutoff has roughly twice the standard error of the
 455 MPN method due to the fact that it does not use all the data and throws out the first
 456 two counts of each experiment. Next, the the traditional averaging method (20) has
 457 roughly five times the standard error of the MPN method, due to the fact that it gives
 458 lower-precision measurements the same weight as higher-precision large counts in
 459 the uncrowded regime. However, it is unbiased. If there are technical replicates, pick-
 460 the-best (choosing the largest number of counts in the countable range, over multiple
 461 technical replicates at each dilution) is a biased estimator (overestimating CFUs) and
 462 has a standard error roughly ten times that of the MPN method. (Pick-the-best where
 463 the best count from *each* technical replicate is used is equivalent to Poisson with a
 464 cutoff, with some loss of precision due to discarding of small counts.) Segment aver-
 465 aging (here, counting one-quarter of the plate, and assuming perfect segmenting such
 466 that exactly one-quarter of the colonies are counted) resulted in an unbiased estima-
 467 tor with the largest standard error, roughly 13 times the standard error of the MPN
 468 method.

469 These simulations show that the MPN method produces the most precise results
 470 and is unbiased. However, the Poisson with a cutoff is a close second, also with high
 471 accuracy and precision and with the advantage of being practical to calculate by hand.
 472 The bias of the naive Poisson (using all data) serves as a warning: if counts are not
 473 in the uncrowded regime, the Poisson assumptions do not apply, and an estimator
 474 using only number of colonies counted at each dilution will under-estimate the CFU
 475 density in the original sample. Other standard estimators (averaging, segment averag-
 476 ing) using the same data required for the Poisson estimator show universally poorer
 477 precision than Poisson with a cutoff and cannot be recommended.

478 CONCLUSION

479 We have presented several methods for estimating CFUs and we have provided a cal-
 480 culator for these estimators available on Hugging Face spaces, named CFUestimator
 481 (18). In practice, the choice of method will depend on the precision required for the

MLE for CFUs

482 estimate of CFU density. For experiments with reasonably large expected effect size,
483 the simplest mathematically admissible method - the Poisson estimator with a cutoff
484 - is perfectly valid, as long as the dilutions are chosen appropriately to ensure all mea-
485 surements are in the countable range. Broadly speaking, addition of unbiased data
486 will improve the precision of an estimator. Historically, technical replicates have been
487 used for this purpose - even technical duplication is sufficient to markedly reduce vari-
488 ance of the estimated CFU density, although triplicate plating is preferred to safeguard
489 against accidents and outliers (26) (also see SI). The Poisson model allows data from
490 technical replicates to be combined into a single mathematically interpretable esti-
491 mator with definable properties - specifically, a maximum likelihood estimator, which
492 should be an unbiased and minimally variable estimator for the true value. This is as
493 opposed to averaging (20), which produces an estimate whose properties are not well
494 defined. The Poisson method also allows the investigator to incorporate data from
495 dilutions with too few counts, *In addition to* (not in place of) data from countable wells
496 in the same dilution series - by effectively re-weighting the contribution of these wells
497 by the total volume of original suspension that they contain, these data can be used
498 to improve the accuracy of the estimator even though their sampling variance is high.

499 The correspondence shown here between using tubes and gridding a plate into
500 subsections based on colony area allows the usage of estimator techniques typically
501 used for quantal-based measurements of CFU density, specifically the MPN, where
502 positive growth events (e. g., colonies) are explicitly considered to represent *one or*
503 *more* originating cells. These techniques have a long history in environmental surveil-
504 lance microbiology, and statistically well-founded techniques are readily available for
505 analysis of such data (2, 27, 28). If an experimentalist wants tighter bounds for an es-
506 timated CFU count, the MPN provides a very low-variance, unbiased estimator at the
507 cost of some extra steps. This estimator allows the experimentalist to incorporate data
508 from normally uncountable (TMTC) plates as well as counts from uncrowded plates,
509 maximizing the amount of information that can be gleaned from a dilution series.

510 The MPN model requires an estimate of the maximum number of colonies that
511 can be packed into the growth area for each sample; we show (SI) that it is better to
512 over-estimate this maximum than to under-estimate it. If the patch size on a plate is
513 correctly chosen to be around the size of a typical colony, even a spot-plating assay on
514 a 10 by 10 cm plate is equivalent to running hundreds of tubes in parallel. Further, it is
515 necessary to estimate the number of occupied regions in the growth area. In or near
516 the uncrowded regime, this will be equivalent to the number of counts. However, this
517 method does not require that all colonies are individually countable - instead, image
518 analysis (29, 30, 31) can be used to estimate both the size of an individual colony and
519 the fraction of total area occupied by colony growth. The MPN estimator can therefore
520 potentially provide accurate, precise estimates of CFU density for plates where exact
521 counts cannot be obtained. However, colony size varies across different microorgan-
522 isms as well as across culture conditions (media type, agar percentage, pad thickness,
523 plate drying time and conditions, growth temperature and atmosphere, etc.) and incu-
524 bation time on plates, meaning that the size range of colonies may be different even
525 across plates within a single experiment (32, 33). This added complication of properly
526 choosing a grid size or determining the typical size of a colony means that application
527 of the MPN will most likely require parameters estimated for the specific experiment
528 being analyzed. Further, the fact that colony size can decrease under crowding means
529 that heavily-crowded plates or plate regions, where few or no distinct colonies are
530 visible, may have very different "average" colony sizes than the same microbes in a
531 less-crowded area. While theory suggests that the MPN estimator will be most pre-

Martini et al.

532 cise when the majority of colony-sized locations are occupied ((34), also see SI), this
533 practical limitation suggests that use of the MPN on plate count data will become less
534 accurate with extremes of crowding, and that the best use of the MPN is likely to be in
535 the liminal region between the technically uncrowded and the physically uncountable,
536 where most to all growth is in the form of distinct, countable colonies but crowding
537 produces a measurable bias in these counts.

538 ACKNOWLEDGEMENTS

539 This work was funded, in part, by NSF Grant No. 2014173. Ilya Nemenman was addi-
540 tionally supported by the Simons Investigator program.

541 REFERENCES

1. **McCrady MH.** 1915. The numerical interpretation of fermentation-tube results. *The J Infect Dis* p 183–212.
2. **Cochran WG.** 1950. Estimation of bacterial densities by means of the "most probable number". *Biometrics* 6 (2):105–116.
3. **Breed RS, Dotterrer W.** 1916. The number of colonies allowable on satisfactory agar plates. *J bacteriology* 1 (3):321–331.
4. **Fisher R, Thornton H, Mackenzie W.** 1922. THE ACCURACY OF THE PLATING METHOD OF ESTIMATING THE DENSITY OF BACTERIAL POPULATIONS: WITH PARTICULAR REFERENCE TO THE USE OF THORNTON'S AGAR MEDIUM WITH SOIL SAMPLES. *Ann Appl Biol* 9 (3-4):325–359.
5. **Halvorson H, Ziegler N.** 1933. Application of statistics to problems in bacteriology: I. A means of determining bacterial population by the dilution method. *J Bacteriol* 25 (2):101–121.
6. **Jennison MW, Wadsworth GP.** 1940. Evaluation of the errors involved in estimating bacterial numbers by the plating method. *J Bacteriol* 39 (4):389–397.
7. **Jones P, Mollison J, Quenouille M.** 1948. A Technique for the Quantitative Estimation of Soil Micro-organisms: With a Statistical Note by. *Microbiology* 2 (1):54–69.
8. **Skinner F, Jones P, Mollison J.** 1952. A comparison of a direct-and a plate-counting technique for the quantitative estimation of soil micro-organisms. *Microbiology* 6 (3-4):261–271.
9. **Johnson EA, Brown Jr BW.** 1961. The Spearman estimator for serial dilution assays. *Biometrics* p 79–88.
10. **Taylor J.** 1962. The estimation of numbers of bacteria by tenfold dilution series. *J Appl Bacteriol* 25 (1):54–61.
11. **Harris R, Sommers L.** 1968. Plate-dilution frequency technique for assay of microbial ecology. *Appl microbiology* 16 (2):330–334.
12. **Ben-David A, Davidson CE.** 2014. Estimation method for serial dilution experiments. *J microbiological methods* 107:214–221.
13. **Haas CN, Rose JB, Gerba CP.** 2014. Exposure Assessment, p 159–234. *In Quantitative Microbial Risk Assessment*. John Wiley & Sons, Ltd. doi:[10.1002/9781118910030.ch6](https://doi.org/10.1002/9781118910030.ch6). Section: 6 _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118910030.ch6>.
14. **Christen JA, Parker AE.** 2020. Systematic statistical analysis of microbial data from dilution series. *J Agric Biol Environ Stat* 25 (3):339–364.
15. **Hedges AJ.** 2002. Estimating the precision of serial dilutions and viable bacterial counts. *Int journal food microbiology* 76 (3):207–214.
16. **Luria SE, Delbrück M.** 1943. Mutations of bacteria from virus sensitivity to virus resistance. *Genetics* 28 (6):491.
17. **Sutton S.** 2011. Accuracy of plate counts. *J validation technology* 17 (3):42–46.
18. **Martini KM.** Calculate Colony Forming Units (CFUs) <https://huggingface.co/spaces/KMichaelMartini/CFUestimator>.
19. **for Food Safety C, Nutrition A.** BAM appendix 2: Most probable number from serial dilutions. FDA <https://www.fda.gov/food/laboratory-methods-food/bam-appendix-2-most-probable-number-serial-dilutions>.
20. **USDA.** Quantitative Analysis of Bacteria in Foods as Sanitary Indicators. USDA https://www.fsis.usda.gov/sites/default/files/media_file/2021-03/MLG-3.pdf.
21. **Canales RA, Wilson AM, Pearce-Walker JI, Verhougstraete MP, Reynolds KA.** Oct 2018. Methods for Handling Left-Censored Data in Quantitative Microbial Risk Assessment. *Appl Environ Microbiol* 84 (20):e01203–18. doi:[10.1128/AEM.01203-18](https://doi.org/10.1128/AEM.01203-18). Publisher: American Society for Microbiology.
22. **Gijbels I.** 2010. Censored data. *WIREs Comput Stat* 2 (2):178–188. doi:[10.1002/wics.80](https://doi.org/10.1002/wics.80). _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.80>.
23. **EPA C.** 2014. Evaluation of Options for Interpreting Environmental Microbiology Field Data Results having Low Spore Counts. Environmental Protection Agency.
24. **Alexander M.** 1983. Most probable number method for microbial populations. *Methods Soil Anal Part 2 Chem Microbiol Prop* 9:815–820.
25. **Salama IA, Koch GG, Tolley DH.** Jan 1978. On the estimation of the most probable number in a serial dilution experiment. *Commun Stat - Theory Methods* 7 (13):1267–1281. doi: [10.1080/03610927808827710](https://doi.org/10.1080/03610927808827710). Publisher: Taylor & Francis _eprint: <https://doi.org/10.1080/03610927808827710>.
26. **Weenk GH.** Oct 1992. Microbiological assessment of culture media: comparison and statistical evaluation of methods. *Int J Food Microbiol* 17 (2):159–181. doi:[10.1016/0168-1605\(92\)90113-H](https://doi.org/10.1016/0168-1605(92)90113-H).
27. **Garthright WE.** 1993. Bias in the logarithm of microbial density estimates from serial dilutions. *Biom J* 35 (3):299–314.
28. **Loyer MW, Hamilton MA.** Dec 1984. Interval estimation of the density of organisms using a serial-dilution experiment. *Biometrics* 40 (4):907–916. doi:[10.2307/2531142](https://doi.org/10.2307/2531142). MAG ID: 2317336612.
29. **Chiang PJ, Tseng MJ, He ZS, Li CH.** 2015. Automated counting of bacterial colonies by image analysis. *J microbiological methods* 108:74–82.
30. **Brugger SD, Baumberger C, Jost M, Jenni W, Brugger U, Mühlmann K.** 2012. Automated counting of bacterial colony forming units on agar plates. *PloS one* 7 (3):e33695.
31. **Bewes J, Suchowerska N, McKenzie D.** 2008. Automated cell colony counting and analysis using the circular Hough image transform algorithm (CHiTA). *Phys Med & Biol* 53 (21):5991.
32. **Savage GM, Halvorson HO.** Mar 1941. The Effect of Culture Environment on Results Obtained with the Dilution Method of Determining Bacterial Population. *J Bacteriol* 41 (3):355–362. doi: <https://doi.org/10.1128/JB.41.3.355-362.1941>.

MLE for CFUs

10.1128/jb.41.3.355-362.1941. MAG ID: 108945167.

- 33. **Chacón JM, Möbius W, Harcombe WR.** Mar 2018. The spatial and metabolic basis of colony size variation. *The ISME J* 12 (3):669–680. doi:[10.1038/s41396-017-0038-0](https://doi.org/10.1038/s41396-017-0038-0).
- 34. **Strijbosch LW, Buurman WA, Does RJ, Zinken PH, Groenewegen G.** 1987. Limiting dilution assays: experimental design and statistical analysis. *J immunological methods* 97 (1):133–140.
- 35. **Hurley MA, Roscoe M.** 1983. Automated statistical analysis of microbial enumeration by dilution series. *J applied bacteriology* 55 (1):159–164.
- 36. **Clarke K, Owens N.** 1983. A simple and versatile micro-computer program for the determination of 'most probable number'. *J Microbiol Methods* 1 (3):133–137.
- 37. **Herigstad B, Hamilton M, Heersink J.** 2001. How to optimize the drop plate method for enumerating bacteria. *J microbiological methods* 44 (2):121–129.
- 38. **Jett BD, Hatter KL, Huycke MM, Gilmore MS.** 1997. Simplified agar plate method for quantifying viable bacteria. *Biotechniques* 23 (4):648–650.
- 39. **Kirchman D, Sigda J, Kapuscinski R, Mitchell R.** 1982. Statistical analysis of the direct count method for enumerating bacteria. *Appl Environ Microbiol* 44 (2):376–382.
- 40. **Brewster JD.** 2003. A simple micro-growth assay for enumerating bacteria. *J Microbiol Methods* 53 (1):77–86.
- 41. **Tremaine SC, Mills AL.** 1987. Tests of the critical assumptions of the dilution method for estimating bacterivory by microeucaryotes. *Appl environmental microbiology* 53 (12):2914–2921.
- 42. **Gronewold AD, Wolpert RL.** 2008. Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration. *Water research* 42 (13):3327–3334.
- 43. **Horvitz DG, Thompson DJ.** 1952. A generalization of sampling without replacement from a finite universe. *J Am statistical Assoc* 47 (260):663–685.