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ABSTRACT There is a recognized need to measure the abundance of microbes in8

hospital environments, in the sanitation industry, and in food preparation. Doctors,9

microbiologists, and food safety experts have been addressing this need by using se-10

rial dilution methods to grow bacterial colonies in small enough numbers to count11

and, from these counts, to infer bacterial concentrations measured in Colony Form-12

ing Units (CFUs). There are two primary types of such methods: plating bacteria on13

a growth medium and counting their resulting colonies or counting the number of14

tubes at a given dilution that have growth. Traditionally, these types of data have15

been analyzed separately using different analytic methods. Here we build a direct cor-16

respondence between these approaches, which allows one to extend the use of the17

Most Probable Number (MPN) method from the liquid tubes experiments, for which it18

was developed, to the growth plates. We also discuss how to combine measurements19

taken at different dilutions, and we review several ways of analyzing colony counts,20

including the Poison and truncated Poisonmethods. For all methods, we discuss their21

relevant error bounds, assumptions, strengths, and weaknesses. We provide an on-22

line calculator for these estimators.23

IMPORTANCE Estimation of the number of microbes in a sample is an important24

problem with a long history of confusion. We provide a comparison of methods for25

estimating abundance of microbes and detail a mapping between different methods,26

which allows to extend their range of applicability. This mapping enables higher preci-27

sion estimates of Colony Forming Units (CFUs) using the same data already collected28

for traditional CFU estimation methods. Furthermore, we provide recommendations29

for how to combinemeasurements of colony counts taken across dilutions, correcting30

several misconceptions in the literature.31

INTRODUCTION32

Extrapolation of viablemicrobial counts fromsuspensions of live cells is a longstanding—33

and surprisingly complicated—problem. The fundamental problem is simple: there34

exists a volume V0 with some unknown concentration of live microorganisms, which35

an experimentalist wants to measure. That initial volume will be serially diluted (usu-36

ally in a ten-fold series), and fixed-volume aliquots (sub-samples) of the resulting sus-37

pensions will be cultured. If these aliquots are spread or dropped onto agar plates,38

the resulting data will be in the form of colony counts. Alternately, multiple aliquots39

may be taken from a single dilution and used to seed a number of wells or tubes of40

liquid culture, or a number of plates. Then the number of volumes showing growth41

when seeded from a particular dilution, as a fraction of the total number of volumes42
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inoculated, can be used to calculate the Most Probable Number (MPN) of live agents43

in the initial volume (1, 2).44

Best practice for this apparently simple and ubiquitous scenario has been the sub-45

ject of debate for over a century (1, 3, 4, 5, 6, 7, 8, 9, 10, 11). There are technical consid-46

erations to this problem. For example, all plates or tubes used for growth should have47

the same ability to support growth of the organism(s) being studied, and the sample48

must be sufficiently homogenized to ensure that microbes are free in solution and49

not adhered to one another or to a substrate (4). However, such considerations are50

case-specific and beyond the scope of the present work.51

These counts are subject to counting errors aswell. At one extreme, when the sam-52

ple is too concentrated, the number of resulting colonieswill be toonumerous to count53

(TNTC; sometimes “too many to count”, TMTC). At these high concentrations, colonies54

merge, breaking the assumption that each microbe corresponds to one colony (6, 12).55

At the other extreme, when the sample is very diluted, the number of colony initiating56

bacteria in the sample is subject to small-number statistical (sampling) fluctuations,57

resulting in high relative error (ratio of the standard deviation to the mean) (13, 14).58

Finally, experimental errors, such as inaccuracies in pipetting, can emerge and com-59

pound over the steps of a serial dilution. However, the latter source of error is ex-60

pected to be negligible for equipment calibrated to usual standards, and technical61

replication further reduces effects of this variation (15).62

Thus the problem at hand is: How can CFU density best be estimated from plate63

counts, given the error produced by sampling fluctuations, colony crowding, and (to64

a lesser degree) pipetting? These errors will contribute differently to different exper-65

imental designs. For a single sample represented by one count of colonies nk at one66

dilution dk (because only one dilution was measured, or because only one spot or one67

plate in a series was countable), statistical error of counts (presumably Poisson) is in-68

evitable, and pipetting error will contribute but may not be significant. For a single69

sample represented by more than one count of colonies (representing counts at different70

dilutions within a single dilution series, and/or technical replicates where one sam-71

ple was measured multiple times), the same errors apply, but pipetting bias may not72

be constant across measurements (for example, one failing O-ring on a multichannel73

pipette can lead to bias in a single column of a 96-well plate).74

Formultiple samples of the same type measured in parallel (biological replicates), we75

can no longer expect variation across samples to reflect a Poisson-distributed sam-76

pling error. Indeed, individualmeasurements will be subject to sampling variation, but77

variation across samples will be biological (or otherwise inherent), and demographic78

(accumulating over time) in addition to sampling. Thiswas the basis for theNobel-prize79

winning experiments of Luria and Delbruck, who used the distribution of fluctuations80

to distinguish Darwininan vs. Lamarckian evolution (16). This is also frequently the81

case in environmental samples, where different samples from the same source (e. g.,82

water samples from different parts of the same lake) will produce measurements that83

have super-Poisson variation (aka, over-dispersed). In such cases, some of the varia-84

tion is “real” due to inhomogeneities in the source, and it cannot be modeled as mere85

sampling error. Biological variation is problem dependent and often carriers in it the86

imprint of the underlying fundamental biology (16); it will not be dealt with here. In-87

stead, we will focus on estimation of CFU density within an individual sample, which88

may be represented by a single set of measurements or by technical replicates, in89

which one sample is measured multiple times.90

The main objective of this paper is to propose methods for accurately estimating91

colony forming units (CFUs), while taking into account the effects of crowding and sam-92
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pling fluctuations, without losing valuable data from counts. Drawing from previous93

research (13, 12, 17, 14), we present simple analytical formulas that can be used to94

combine counts from different dilutions and to obtain precise CFU estimates along95

with accurate error bars. First, we examine existing methods in the literature, assess-96

ing their strengths and weaknesses. Next, we introduce the “Poisson with a cutoff”97

method, which clarifies the impact of crowding on CFU density estimation and demon-98

strates how to minimize the effects of sampling error by combining measurements of99

“uncrowded” counts. Finally, we use a crowding-explicit model to demonstrate the100

relationship between canonical plate-based counts and the Most Probable Number101

method for presence/absence of growth in liquid media. We conclude by providing102

practical recommendations for experimentalists on how to select appropriate dilu-103

tion and replication schemes and how to combine data from multiple observations.104

We also have provided a calculator for these estimators available on Hugging Face105

spaces, named CFUestimator (18).106

RESULTS107

A Brief History of Counts Colony Forming Units (CFUs) are a proxy for the con-108

centration of microbes within a sample. The experimental procedure for estimating109

CFUs consists of serially diluting homogeneous samples in a sterile aqueous buffer,110

then plating aliquots of these dilutions on growth-supporting agar and later counting111

the resulting colonies. If an appropriate dilution has been reached, each microbe will112

form an independent colony that is countable by eye. The simplest way of estimating113

CFUs is to multiply the number of colonies by the reciprocal of the dilution factor to114

find the concentration of colony-formingmicrobes in the original suspension (1, 5, 17).115

For example, say there is a single sample represented by one countable 10 cm plate in116

a dilution series, where we observe 100 distinct colonies after plating 100 µL of a 1:100117

dilution (dilution 2 in a ten-fold series) from the original sample. In this case, following118

this simple procedure, we would obtain:119

CFU
Volume

=
counts

FracOriginalVolume
=

100

0.1mL · 0.01
= 100 · 103 = 105CFU/mL. (1)120

This is exactly equivalent to multiplying the number of counts by a volume correction121

factor (1/(size of aliquot inmL)) andmultiplying by the base of the dilution series raised122

to the power of the number of dilution steps:123

CFU
Volume

=
1

0.1mL · 100colonies · 102 = 100 · 103 = 105CFU/mL. (2)124

This simple calculation follows from a more general Poisson model, explained be-125

low. This method works reasonably well under ideal conditions: all samples should be126

represented by a single count of colonies, and each count should be large enough to127

minimize small-number sampling fluctuations, and yet small enough to avoid crowd-128

ing on the plate. When any of these conditions are not met, accurate estimation of129

CFU density becomes more complicated.130

There is a broad literature of methods proposing to ensure that estimates of CFU131

density are “good”. A good estimator should be accurate. Formally, this means that132

such estimators should have the true value of the CFU density as their expected value.133

In other words, they must be unbiased. Good estimators must also be precise, so that134

variance in the estimate is small and samples are repeatable. Therefore, an ideal solu-135

tion to this problem should provide an estimator that is provably unbiased and with a136
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minimal variance. The solution to this problem is well known in statistics: if we can as-137

sume that data follows a specific probability distribution, then themaximum likelihood138

estimator (MLE) for that distributionwill have these properties.(13)While this is formally139

true only for very large samples, MLE estimators generally performwell even for small140

samples. Further, an ideal method should be straightforward to use in the hands of141

researchers without advanced mathematics background. Unfortunately, many of the142

available methods fail one or the other of these requirements, being either simple to143

use, but statistically sub-optimal, or mathematically correct, but incomprehensible to144

many bench scientists.145

Straight-forward to use methods focus largely on designing protocols that avoid146

data in error-prone extremes. For example, the FDA recommends (19) that the best147

dilution range for coliform bacteria results in 25 to 250 colonies per 10-cm plate, with148

the ideal count closest to 250. Restriction on the high end limits counting errors due to149

growth limitation by nutrient depletion as well as outright merging of colonies, which150

would bias the number of counts downward. Conversely, restriction on the lower end151

limits the sampling error associated with small numbers of counts. Specifically, under152

the assumption that counts represent random draws from a given sample and are,153

therefore, Poisson-distributed, the error scales as the square root of the number of154

counts. Thus, for small counts, the error becomes an unacceptably large fraction of155

themean. Within the example above, our dilution 2 count of 100 colonies should have156

a standard deviation (SD) of
√
100 = 10, giving a coefficient of variation (CV) of 10%. At157

dilution 3, we might obtain 10 counts, with a SD of
√
10 ≈ 3.16, and a CV of 31.6%.158

From here, the simplest approach that is often used in practice is to choose only159

the plate or spot that has the “best” count in the acceptable range, and to estimate160

CFU density based on that single count. Often only the dilution at the high end of161

the countable range is used since it has the smallest sampling fluctuations; all other162

measurements are discarded (17). We call this the “pick-the-best” method for later163

reference. If counts in the acceptable range can be consistently achieved, this method164

is straightforward and reasonably accurate. However, discarding data is rarely advis-165

able, and over- and under-crowded measurements can, in fact, be used to improve166

CFU estimates.167

Simplest “Good” Estimator: Poisson One simple and reasonably accuratemodel168

for calculating CFUs assumes that the number of colonies are Poisson distributed, with169

variation due to sampling. That is, for a particular dilution, the mean colony count170

for that dilution is the same as the variance. This model ignores crowding effects but171

workswell formodeling sampling fluctuations. By thismodel, themost likely estimator172

for the density of microbes is simply the ratio of the total number of colonies counted173

from all plates divided by the total amount of liquid used from the original sample in174

all plates (see Supplementary Information). If there is only one countablemeasurement175

for a given sample, this simplifies to “pick-the-best”.176

The Poisson model implicitly assumes that the original sample is well mixed and177

each microbe plated will result in its own separate and countable colony. It further as-178

sumes that experimental volume is spread uniformly across the agar surface, resulting179

in cells being randomly distributed, independent of the locations of where other cells180

landed. Formally, these assumptions mean that there is a uniform and well mixed181

population density r of microbes per unit volume in an initial volume of liquidV . The182

liquid is diluted by a factor dk = Vk /V , where Vk is the volume of the liquid from the183

original sample used on the plate or the spot k . Plating will result in nk colonies, where184

nk is Poisson distributed with the parameter λ = r dkV = rVk . That is, the average num-185

ber of colonies per experiment is r dkV with variance r dkV . Using these assumptions,186
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the MLE estimator of the density of microbes rmle and its standard error are:187

rmle =

∑
k nk

V
∑

k dk
=

∑
k nk∑
k Vk
, σ =

rmle√∑
k nk
. (3)188

In other words, the best estimator for the concentration, rmle, is the total number of189

colonies divided by the total amount of the original volume of liquid used. However,190

as noted earlier, this ignores crowding and counting errors. In practice, this method191

should be avoidedunless allmeasurements are fromwell-dispersed, uncrowdedplates,192

as crowding effects can make a large difference in the estimator, resulting in underes-193

timating the microbial density as colonies merge and are under-counted.194

If technical replicates exist (multiple measurements of the same sample), it is195

straightforward to test whether the data adhere to a Poisson distribution using the196

following test, known as the dispersion index test. If there are j measurements of a197

given sample, with average number of counts N̄ and variance of counts s2N , then the198

index of dispersion D 2 is:199

D 2 =
(j − 1)s2N

N̄
, (4)200

which will be distributed as χ2 with j − 1 degrees of freedom (13). If D 2 is greater201

than the upper 1 − α quantile of that distribution, where α is the needed significance202

p-value, then we reject the null hypothesis that these replicates are drawn from the203

same Poisson distribution. This can indicate technical problems that are introducing204

an excess of variation, possibly by biasing replicates differently fromone another (e. g.,205

the failing O-ring example above), or biases due to a too-lenient cutoff for countability.206

CombiningData: CommonBadEstimators The primary reason for the “pick-the-207

best” approach is that it eliminates confusion over how to combine multiple measure-208

ments for a given sample, particularly when counts belong to more than one dilution.209

First notice that combining measurements from technical replicates that are taken at210

the same dilution is straightforward. For example, let’s assume an original 200 µL vol-211

ume V contains r = 3 · 108 CFU. We can create simulated serial dilutions from this212

original volume by assuming that each pipetting step (ten-fold dilutions and plating213

onto agar) is a binomial sampling event (14) that comes with experimental noise. In214

one such simulation, triplicate plating 100 µL aliquots results in counts n6 =(162, 141,215

148), all from the sixth ten-fold dilution. The fraction of the original volume plated in216

each case isV6 = 0.5 · 10−6 = 5 · 10−7. These numbers can be combined via the Poisson217

method shown in the previous section to estimate CFU density inV :218

CFU =
162 + 141 + 148

5 · 10−7 + 5 · 10−7 + 5 · 10−7
=

162 + 141 + 148

3 · 5 · 10−7
= 3.007 · 108. (5)219

Alternately, counts taken from the same dilution can be averaged across technical220

replicates, then adjusted by the volume plated and the dilution read (20):221

CFU = 2 · 162 + 141 + 148

3
· 106 = 2 · 162 + 141 + 148

3 · 10−6
=

162 + 141 + 148

3 · 0.5 · 10−6
= 3.007 · 108. (6)222

Clearly, these two most common approaches are algebraically identical.223

In contrast, combining counts across different dilutions is less straightforward. In224

fact, some commonly-used methods for combining measurements are statistically in-225

admissible. For example, if there are multiple measurements in the countable range,226

the USDA recommends (20) that researchers calculate the estimated CFU for each di-227

lution separately using the average colony count across technical replicates at a given228

dilution and then average the results of the separate dilutions. If the two estimates229

are more than a factor of 2 apart, the researcher is instructed to instead only use the230
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counts from the higher-density plates. This commonly used method, incorrectly com-231

bines the data using a simple average, thus increasing the variance of the estimated232

CFU density. Indeed, continuing the example above, let’s suppose that, on the plates233

corresponding to the seventh ten-fold dilution from these three technical replicates,234

we observe (13, 17, 20) colonies. The Poisson estimator gives us:235

CFU =
162 + 141 + 148 + 13 + 17 + 20

3(5 · 10−7) + 3(5 · 10−8)
= 3.036 · 108. (7)236

The USDA averaging method gives:237

CFU =
1

2
(2162 + 141 + 148

3
· 106 + 2

13 + 17 + 20

3
· 107)

=
1

2
(3.06 · 108 + 3.33 · 108) = 3.2 · 108.

(8)238

On these data, averaging was substantially less precise, with an error of 7% as com-239

pared with the Poisson method’s error of 1% (recall that the true density in this sim-240

ulated example is 3.0 · 108 CFU per 200 µL). The USDA method improperly averages241

across dilutions, amplifying fluctuations associated with small colony number counts,242

whereas the simple Poissonmodel properly combinesmeasurements across dilutions243

by effectively re-weighting small counts by the small volumes with which they are as-244

sociated. In a later section, we demonstrate that averaging across dilutions will, as a245

rule, increase the variance of CFU estimates.246

Too Few and Too Many Further, there is the problem of what to do with zero247

counts. These data are inevitably limited by some threshold of detection (TOD), repre-248

senting the smallest CFU density at which counts can be detected. This “left-censoring”249

is a well-known issue (21, 22, 23) withmany proposed work-arounds, including but not250

limited to: substituting zeros with a small value (which may be the average of the un-251

detectable range, a maximum-likelihood inferred value, or some other small number),252

reporting zeros as “below TOD” or “<1” rather than as a value, and pretending they253

didn’t happen (not generally recommended; although if zeros are rare, it won’t make254

much difference) (21, 23). Sometimes, a threshold of quantification (TOQ) represent-255

ing the lowest “acceptable” (sufficiently precise) count is used along with or instead of256

TOD (17), with values below this threshold omitted from analysis.257

The “best” approach to zero-contaminated count data depends on what else is in258

the data and what the data will be used to do. If a sample is represented by zero and259

non-zero measurements, the Poisson model explicitly allows zero counts to be incor-260

porated as outcomes of the random sampling process. For example, if a hypothetical261

V = 200 µL sample contains 5 · 107 CFU, one simulation of serial dilution and plating in262

triplicate with 100 µL per plate produces dilution-6 counts of (31, 26, 20) and dilution-7263

counts of (4, 0, 0). Using just the dilution-6 counts, we estimate264

CFU =
31 + 26 + 20

3(5 · 10−7)
= 5.13 · 107 ± 0.59 · 107. (9)265

If we use the lower dilution as well, we obtain266

CFU =
31 + 26 + 20 + 4 + 0 + 0

3(5 · 10−7) + 3(5 · 10−8)
= 4.91 · 107 ± 0.55 · 107. (10)267

In this case, incorporating data from zeros (in the form of the additional volume that268

was plated but contained no counts) improved precision. Alternately, when zeros are269

common because the density in the original sample is close to the TOD, non-zero270

counts are useful for making a distinction between samples where no organisms are271
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detectable (and density might be zero) and those where the density of organisms can-272

not be zero. Although the actual density cannot be estimated accurately or precisely273

from very low counts, the distinction between “<TOD” and “>1” for a given sample is274

important (23).275

At the other end of the range, researchersmust deal with crowding and set thresh-276

olds for “too many to count”. Defining an optimal range for “countable” data is not277

always straightforward, and this determination is very important to ensure that CFU278

estimates are accurate. Since the sampling-based standard error of counts scales as279
nk√
nk
, the number of colonies counted nk should be as large as reasonably possible.280

However, there are consequences for pushing this too far. As cell density in the281

aliquot increases, counts will be biased downwards due to merging of colonies and282

colony stunting or failure to grow. These data are then “right-censored”, with an upper283

limit past which the number of counts observed does not increase in proportion to284

an increase in the density in the original sample. Densities above this point result in285

“crowded” samples, with counts that are lower than the true number of colony forming286

units. Further, as the number of colonies per plate or spot increases, data collection287

becomes more time-consuming; it is common for researchers to minimize effort on288

plates near the top of the “acceptable” range by dividing plates into sections, counting289

colonies in one section, andmultiplying this count by the number of sections to get an290

estimated final count for the whole plate (19). While this approach is sufficient for a291

rough estimate of CFU density, it introduces additional sampling variation due to both292

reduction in counts and imperfect division of plates, and it does not remove bias due293

to crowding. We will demonstrate the consequences later in this paper.294

Previous works (12) have modeled crowding using shifted Poisson distributions.295

In these models, the variance of estimates from crowded data would be the same296

as if there was no crowding and the mean would be shifted down due to colonies297

merging together. However, this is a priori unlikely to be true. As we will show below,298

if colonies are crowded, both the mean and the variance will be shifted relative to the299

pure Poisson (uncrowded) distribution. The reason for this is that the variance of the300

large colony counts is shifted downward due to a “ceiling” effect—there is an upper301

bound to the total number of colonies, which limits upwards fluctuations. In other302

words, the use of a shifted Poisson distribution is a reasonable approximation, but303

the variance must also be modified.304

Better Estimators: Poisson With Cutoff, aka What’s Countable, Exactly? The305

main problem with the naive Poisson model is that it does not account for counting306

errors due to crowding. The simplest way to take account of the crowding is to assume307

that there is a threshold of colonies, M , below which crowding is negligible, which in308

practice will often be smaller than the largest number of counts we are willing to at-309

tempt. We can then segment our data into two parts: plates with counts above the310

threshold where crowding is important, and plates with counts below the threshold311

where crowding is not important. If we have identified our cutoffs well, the naive Pois-312

son estimator above is correct for all measurements where the number of colonies313

counted nk ≤ M . The calculation is, therefore, exactly the same as for the naive Pois-314

son estimator given above, with the caveat that only measurements nk ≤ M are used.315

Here, the indicator function I (nk < M ) is 1 when nk < M , and 0 otherwise. Similarly,316

I (nk > M ) is 1 when nk > M , and 0 otherwise. Due to its balance between simplicity317

and accuracy, this method is the easiest to use in practice.318

rmle =

∑
k I (nk ≤ M )nk∑
k I (nk ≤ M )Vk

, σ =
rmle√∑

k I (nk ≤ M )nk
. (11)319
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If we want to incorporate data frommeasurements above this thresholdM , the calcu-320

lation becomes slightly more complicated. Using “crowded” measurements as if they321

were uncrowded will bias the naive Poisson estimator downward, resulting in under-322

estimation of CFU density (Fig. 2). In a sophisticated version of this model, we can use323

the number of plates/spots that were above the crowding thresholdM , along with the324

colony counts from plates/spots below this threshold at the same dilution, to estimate325

CFUs. This will be applicable when plate counts at a given dilution are toward the high326

end of the countable range, such that some technical replicates fall below this thresh-327

old and others above it by chance. To estimate the CFU density in the original sample328

r , the following equation should be solved numerically (see SI for the derivation):329 ∑
k

I (nk ≤ N )
( nk
r

− dkV
)
+
∑
k

I (nk > N ) dkV (dk rV )N e−dk rV∫ dk rV

0
tN e−t d t

= 0. (12)330

The first term is equivalent to the simple Poisson model and uses the counts from un-331

crowded samples directly, whereas the second term reflects the probability of counts332

being above the threshold M . Inference of r can be done in Excel using SOLVER or333

using numerical solvers in R, Python, MATLAB, etc. An equivalent model is shown in334

(13).335

Thismodel properly accounts for two error sources: the sampling fluctuations and336

the crowding effect. The simple Poisson, using only counts from uncrowded plates,337

gives a good estimate for the CFU counts and properly combines multiple measure-338

ments at different dilution factors. The more sophisticated form of the model has339

greater precision, but the greater computational effort may or may not be worth it340

to an investigator depending on the effect size and the structure of the experiment.341

In the next section, we present an alternate estimator based on the Most Probable342

Number approach, which we argue provides a better trade-off between effort and343

estimator performance when incorporating data from crowded samples.344

Crowding and the Most Probable Number For the final model we consider the345

effects of crowding in space. To account for crowding, wewill divide eachplate intoN ≈346
Aplate
Acolony

regions, each approximately the size of a full colony. We make the assumption347

that if more than one microbe lands in one of these regions, the colonies that form348

from these cells will grow together and be counted as one colony. For each region,349

the number of cells landing in that region will be Poisson distributed with parameter350

λ = dk rV
N .351

These assumptions are equivalent to that of quantal-basedmethods formicrobial352

quantification, such as the commonly used Most Probable Number (MPN) method. In353

theMPNassay, a knownquantity (volumeof original sample) is introduced into each of354

a series of N replicate tubes, and the dilution of the original sample is adjusted to find355

a region where some of the tubes contain viable growth and some do not. The results356

of this assay are therefore, for each dilution volumeVk from the original sample, out357

of the Nk tubes inoculated, a number nk that is positive for growth.358

A direct mapping to tube-based assays is possible if space on a plate (or within a359

spot) is considered as a set of colony-sized bins. Each of the N colony-sized regions360

on a plate or within a spot corresponds to one tube. The presence of colonies in a361

particular region corresponds towhen a tube has growth. Hence a plate that is divided362

into N regions can be thought of as N tubes being tested in parallel, cf. Figure 1.363

Therefore, the probability of nk successes in N colony-size regions on the agar364

surface can be described using a crowding-explicit model based on the binomial dis-365

tribution. Assuming that the cells in the original sample are well-mixed, the probability366
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FIG 1 Visual equivalence between plate and tube based assays. The left panel is a cartoon of a typical plate containing colonies,
where the growing colonies are shownas dark disks. In themiddle panel, the plate is divided intoN (here 16) approximately colony-
sized regions. If a region contains one or more colony centers (black dots), this region can be mapped to a positive (dark) tube as
shown in the right panel. Similarly regions containing no colony centers are mapped to negative (light) tubes. This demonstrates
that plating is equivalent to a massive parallel version of a tube based assay with N ≈ Aplate

Acolony
tubes. Furthermore it demonstrates

that the MPNmethod can be used for plate data.

of zero cells landing in a particular region is (from the Poisson) p0 = e
−dk rV

N and the prob-367

ability that at least one cell lands in that region is therefore p> = 1 − e
−dk rV

N . Assuming368

that the original sample is well mixed, each region is independent of all other regions369

in our crowding model, so that370

p (nk ) =
(
N

nk

)
pnk> pN −nk

0 =

(
N

nk

)
(1 − e

−dk rV
N )nk e−dk rV (N −nk ) . (13)371

We can maximize this probability to find the MLE CFU density, rmle (see the SI fo the372

full derivation). We can accomplish this by numerically solving the following equation373

for r :374 ∑
k

dk nk

N (1 − e−r dkV /N )
=
∑
k

dk . (14)375

This expression for r is the sameas that of theMPNestimator(19, 24). In the SIwe show376

that, in the limit where concentrations and colony counts are low, thismodel simplifies377

to the Poisson model. Outside the “uncrowded” regime, the mean and the variance378

of data from the crowding model are not the same as in the Poisson. Therefore, the379

two approaches are not equal to each other, though both are depressed due to the380

“ceiling” effect described earlier. In the SI, we also find that the error associated with381

the maximum likelihood estimator rmle of the MPN method can be minimized at an382

optimal dilution factor, which falls into the crowded regime.383

The MPN procedure can generate biased estimates of the original sample density,384

and the precision and accuracy of results depend strongly on the number of tubes385

used (13). The bias on the maximum likelihood estimator results in an over-estimate386

of 20-25% with 5 tubes, which is reduced to a few percent with 50 tubes (see SI). By387

back of the envelope calculation, an average 10 cm plate (inside diameter 86 mm,388
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surface area 58 cm2) can fit a maximum of approximately 5000 medium-sized (1 mm389

outside diameter) “tubes”, whereas a single grid square on a 10 x 10 cm square plate390

(typically gridded 6 x 6) can fit 200 of these colony-sized spaces. All of these are well391

above the threshold where the bias in this estimator (25) makes much difference in392

the value. (Note that this refers to the number of colony-sized spaces available and is393

independent of the number of colonies observed.) This also means that the standard394

error of the estimator will, in theory, be minimized at a plating density that is much395

higher than the threshold for “uncrowded” plates and, in fact, is well into a range of396

densities where a minority of colonies will be distinct. Fortunately, the standard error397

is still well behaved over a broad space in fraction of regions occupied (SI), meaning398

that plate counts into the “uncrowded” range will still produce good estimates with399

this method. In fact, this produces a result equivalent to that of the Poisson method400

in the fully uncrowded regime. However, the MPN method is most useful as plating401

densities encroach into the crowded regime, allowing precise and accurate estimation402

of CFU density from plates that would provide severely biased estimates using a naive403

Poisson model.404

FIG 2 The naive Poisson estimator underestimates the true concentration and becomes more biased as a function of crowding.
We illustrate this by plotting the ratio of the estimated concentration (with the error bands denoting ± one s. e. m. at N = 5000) to
the true concentration. Here crowding is measured by the ratio of the average number of colonies to the maximum number of
colonies that can fit within a plate f = ⟨n ⟩

N . At low crowding values, the naive estimator has low bias, but large uncertainty. At a
crowding value of 0.2 the naive-Poisson estimator underestimates the true concentration by about 10%, and many-fold underes-
timation is possible as crowding approaches 1.

Utility of the Models Here we demonstrate the relative utility of each model for405

estimation of CFU density from simulated data. First, we can use the crowding-explicit406

binomial sampling model described in the previous section, to estimate bias due to407
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crowding, and to demonstrate the importance of choosing an appropriate cutoff M ,408

belowwhich plates are considered to be uncrowded and countable. To do so, we solve409

the crowded binomial model in Eq. 13 for dV with respect to the average number of410

colonies ⟨n⟩ and the number of colony-sized regions on a plate N . Doing so we find411

dV = −N
r log(1 − ⟨n ⟩

N ). We can substitute this into the Poisson estimator and find:412

rp =
⟨n⟩
dV

=
⟨n⟩

−N
r ln

(
1 − ⟨n ⟩

N

) = −r
⟨n ⟩
N

ln
(
1 − ⟨n ⟩

N

) . (15)413

Let us define the ratio of expected colony number to the number of colony-sized414

regions as f = ⟨n ⟩
N . This ratio represents the amount of crowding, where a value of415

1 is the maximum crowding and a value close to zero is in the uncrowded regime.416

Expressing the previous expression in terms of the crowding we see417

rp

r
= − f

ln(1 − f ) . (16)418

This ratio indicates how close the estimated CFU concentration is to the true concen-419

tration. A ratio of 1 tells us that we have an unbiased estimator, whereas a ratio of420

less than 1 tells us we are underestimating the CFU density. We plot this expression421

in Fig. 2 to show how the simple Poisson estimator underestimates the actual concen-422

tration as a function of crowding, f . After a crowding value of f = 0.2 the Poisson423

estimator starts to be significantly biased, undershooting the true value by about 10%.424

This has implications for the value used in the Poisson model with a cutoff. The cutoff425

should be chosen such that the bias is not greater than the experimenters targeted426

precision. For example, if a bias must be less than 10%, then a cutoff of about 20% of427

the total plate capacity should be used. In the case of a 10 cm plate with an estimated428

5000 1mm diameter colony-sized regions, this corresponds to a cutoff of M = 1000,429

whereas the more typical cutoff of M = 300 provides an essentially unbiased estimate430

(bias 3%), but this results in a large statistical fluctuation of 5.8%. In the case of 6mm431

grid grid on a 10cm by 10cm plate, there are roughly 200 grid regions in a plate. Thus432

an M = 40 would be appropriate to achieve the bias less than 10%, and a threshold433

of M = 12 colonies is required to reduce bias to 3% for colonies of this size. At these434

thresholds, the statistical error would be 15.8%.435

To compare the performance of the different estimators discussed here, we simu-436

lated 1000 experiments and applied each of our estimators to the resulting data. Data437

for each experiment was modeled using the binomial crowding model with r = 105,438

V = 0.2, N = 5000, and dilution values (0.1, 0.1, 0.01, 0.01, 0.001, 0.001). This corre-439

sponds to two replicates for each dilution in a tenfold dilution experiment. An example440

set of colony counts corresponding to these dilutions is (1705, 1629, 196, 181, 21, 21).441

The first two dilutions are in the over-crowded regime and the last two dilutions are442

in the dilute uncrowded regime. The traditional methods (“pick-the-best”, averaging,443

segment averaging) and Poisson with a cutoff will discard the first two counts as too444

many to count, while the other methods will use their numeric values. The resulting445

distributions are plotted in Fig. 3.446

The results show that the MPN (most probable number) method is unbiased and447

has the highest degree of accuracy. The Poisson with a cutoff (which always discards448

counts from the least-diluted samples in these outputs) is nearly unbiased, whereas449

the naive Poisson is biased down due to inclusion of “crowded” data. The naive Pois-450

son has a similar variance as that of the MPN because both are using all the data451

points. However, the measure around which the naive Poisson estimator varies is in-452

correct due to this bias. With the Poisson estimator, increasing accuracy comes at a453
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FIG 3 The probability distributions of estimated CFU concentrations fromdifferent estimators generated from 1000 independent
numerical experiments with dilutions 0.1, 0.1, 0.01, 0.01, 0.001, 0.001, r = 100000, V = 0.2, N = 5000. Here the Segmented average,
naive Poisson, “pick the best”, traditional average, Poisson with cuttoff, and MPN methods are compared. The MPN method
demonstrates the best combination of high precision and accuracy.

cost in precision; the Poisson with cutoff has roughly twice the standard error of the454

MPN method due to the fact that it does not use all the data and throws out the first455

two counts of each experiment. Next, the the traditional averaging method (20) has456

roughly five times the standard error of the MPN method, due to the fact that it gives457

lower-precision measurements the same weight as higher-precision large counts in458

the uncrowded regime. However, it is unbiased. If there are technical replicates, pick-459

the-best (choosing the largest number of counts in the countable range, over multiple460

technical replicates at each dilution) is a biased estimator (overestimating CFUs) and461

has a standard error roughly ten times that of the MPNmethod. (Pick-the-best where462

the best count from each technical replicate is used is equivalent to Poisson with a463

cutoff, with some loss of precision due to discarding of small counts.) Segment aver-464

aging (here, counting one-quarter of the plate, and assuming perfect segmenting such465

that exactly one-quarter of the colonies are counted) resulted in an unbiased estima-466

tor with the largest standard error, roughly 13 times the standard error of the MPN467

method.468

These simulations show that the MPN method produces the most precise results469

and is unbiased. However, the Poisson with a cutoff is a close second, also with high470

accuracy and precision and with the advantage of being practical to calculate by hand.471

The bias of the naive Poisson (using all data) serves as a warning: if counts are not472

in the uncrowded regime, the Poisson assumptions do not apply, and an estimator473

using only number of colonies counted at each dilution will under-estimate the CFU474

density in the original sample. Other standard estimators (averaging, segment averag-475

ing) using the same data required for the Poisson estimator show universally poorer476

precision than Poisson with a cutoff and cannot be recommended.477

CONCLUSION478

We have presented several methods for estimating CFUs and we have provided a cal-479

culator for these estimators available onHugging Face spaces, namedCFUestimator480

(18). In practice, the choice of method will depend on the precision required for the481
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estimate of CFU density. For experiments with reasonably large expected effect size,482

the simplest mathematically admissible method - the Poisson estimator with a cutoff483

- is perfectly valid, as long as the dilutions are chosen appropriately to ensure all mea-484

surements are in the countable range. Broadly speaking, addition of unbiased data485

will improve the precision of an estimator. Historically, technical replicates have been486

used for this purpose - even technical duplication is sufficient to markedly reduce vari-487

ance of the estimated CFU density, although triplicate plating is preferred to safeguard488

against accidents and outliers (26) (also see SI). The Poisson model allows data from489

technical replicates to be combined into a single mathematically interpretable esti-490

mator with definable properties - specifically, a maximum likelihood estimator, which491

should be an unbiased and minimally variable estimator for the true value. This is as492

opposed to averaging (20), which produces an estimate whose properties are not well493

defined. The Poisson method also allows the investigator to incorporate data from494

dilutions with too few counts, in addition to (not in place of) data from countable wells495

in the same dilution series - by effectively re-weighting the contribution of these wells496

by the total volume of original suspension that they contain, these data can be used497

to improve the accuracy of the estimator even though their sampling variance is high.498

The correspondence shown here between using tubes and gridding a plate into499

subsections based on colony area allows the usage of estimator techniques typically500

used for quantal-based measurements of CFU density, specifically the MPN, where501

positive growth events (e. g., colonies) are explicitly considered to represent one or502

more originating cells. These techniques have a long history in environmental surveil-503

lance microbiology, and statistically well-founded techniques are readily available for504

analysis of such data (2, 27, 28). If an experimentalist wants tighter bounds for an es-505

timated CFU count, the MPN provides a very low-variance, unbiased estimator at the506

cost of some extra steps. This estimator allows the experimentalist to incorporate data507

from normally uncountable (TMTC) plates as well as counts from uncrowded plates,508

maximizing the amount of information that can be gleaned from a dilution series.509

The MPN model requires an estimate of the maximum number of colonies that510

can be packed into the growth area for each sample; we show (SI) that it is better to511

over-estimate this maximum than to under-estimate it. If the patch size on a plate is512

correctly chosen to be around the size of a typical colony, even a spot-plating assay on513

a 10 by 10 cm plate is equivalent to running hundreds of tubes in parallel. Further, it is514

necessary to estimate the number of occupied regions in the growth area. In or near515

the uncrowded regime, this will be equivalent to the number of counts. However, this516

method does not require that all colonies are individually countable - instead, image517

analysis(29, 30, 31) can be used to estimate both the size of an individual colony and518

the fraction of total area occupied by colony growth. TheMPN estimator can therefore519

potentially provide accurate, precise estimates of CFU density for plates where exact520

counts cannot be obtained. However, colony size varies across different microorgan-521

isms as well as across culture conditions (media type, agar percentage, pad thickness,522

plate drying time and conditions, growth temperature and atmosphere, etc.) and incu-523

bation time on plates, meaning that the size range of colonies may be different even524

across plates within a single experiment (32, 33). This added complication of properly525

choosing a grid size or determining the typical size of a colony means that application526

of the MPN will most likely require parameters estimated for the specific experiment527

being analyzed. Further, the fact that colony size can decrease under crowdingmeans528

that heavily-crowded plates or plate regions, where few or no distinct colonies are529

visible, may have very different “average” colony sizes than the same microbes in a530

less-crowded area. While theory suggests that the MPN estimator will be most pre-531
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cise when the majority of colony-sized locations are occupied ((34), also see SI), this532

practical limitation suggests that use of the MPN on plate count data will become less533

accurate with extremes of crowding, and that the best use of the MPN is likely to be in534

the liminal region between the technically uncrowded and the physically uncountable,535

where most to all growth is in the form of distinct, countable colonies but crowding536

produces a measurable bias in these counts.537
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