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Abstract

The study of age is plagued by a lack of delineation
between the causes and effects within the ageing
phenotype. This has made it difficult to fully explain
the biological ageing process from first principles with
a single definition. Lacking a clear description of the
underlying root cause of biological age confounds clarity
in this critical field. In this paper, we demonstrate that
the epigenetic system has a built-in, unavoidable fidelity
limitation and consequently demonstrate that there is
a distinct class of DNA methylation loci that increases
in variance in a manner tightly correlated with chrono-
logical age. We demonstrate the existence of epigenetic
’activation functions’ and that topological features beyond
these activation functions represent deregulation. We
show that the measurement of epigenetic fidelity is an
accurate predictor of cross-species age and present a deep-
learning model that predicts chronological age exclusively
from knowledge of variance. We find that the classes of
epigenetic loci in which variation correlates with chrono-
logical age control genes that regulate transcription and
suggest that the inevitable consequence of this is a
feedback cycle of system-wide deregulation causing a
progressive collapse into the phenotype of age. This paper
represents a novel theory of biological systemic ageing with
arguments as to why, how and when epigenetic ageing is
inevitable.

Introduction

Despite increased research and the undeniable importance
and impact of ageing in medicine and society (1), the exact
nature of human ageing and its causative mechanisms
remain largely controversial. Many theories have been
put forward attempting to explain the ageing process (2),
yet the underlying molecular drivers of the human ageing
process continue to be a subject of great interest and
intense debate (3).

Recent studies have put the limelight on the potential
role of epigenetic modifications in ageing (4; 5; 6). These

include the discovery of epigenetic clocks, highly accurate
predictors of chronological age, based on a relatively small
number of methylation sites (7; 8). Epigenetic clocks
are associated with mortality, they can predict chrono-
logical age from various tissues, across the lifespan and in
multiple species, although their mechanistic basis remains
the subject of debate (5; 9). In addition, multiple changes
in methylation and other epigenetic modifications have
been reported with age, both in human and animal models
(4; 6; 10).

It has been proposed that epigenetic changes are causative
in ageing (5), and a recent study has suggested that DNA
damage response-induced loss of epigenetic information
drives ageing (11). More broadly, the information theory
of ageing has suggested that loss of epigenetic information
with age is a major driver of the ageing process (12;
11). It has also been suggested that pre-programmed
shifts in epigenetic information states with age are a
major determinant of ageing phenotypes (13). As such,
understanding the basis of epigenetic clocks, and how
epigenetic changes could impact ageing is a major and
important open question. Moreover, despite efforts to
understand the informatic character of ageing, there
has been comparatively little research on what makes
mammalian ageing inevitable.

In this work, we develop a conceptual model to explain
the ageing process based on first principles. We
demonstrate that the epigenetic system has unique
inherent informatic properties that progressively acquire
informatic corruption, meaning that with age epigenetic
information fidelity cannot be maintained. Our model
is further supported by empirical data from humans and
other species, and we derive a predictor of age based solely
on measures of epigenetic variation.

1 The fidelity limit theory of age

Repairing Damaged Information

Any state, including that of DNA methylation, can be
thought of as a state of information(Fig 1(ii)), and
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therefore epigenetic damage (which we define as any
epigenetic change that reduces the organism’s overall
chance of survival, and thus is selected towards system
ontology) represents information loss. When information
is destroyed, there are only two possible mechanisms
by which it can be recovered(Fig 1(iii)). Information
in the original state can be recovered from an identical
backup, via a system encoded to know which is which.
Alternatively, information can be reconstituted through
an algorithm: a series of rules that defined the original
information state. All of these systems of data recovery
must be applied consequently to damage through either
observation or prediction of data loss.

Mirror backup is impossible

To create a mirror backup for DNA methylation, an object
with identical informatic properties would have to exist
from which to duplicate the information, which would
also have to behave in an identical manner to the first in
response to noise and errors. Were this not the case, there
would no longer be one-to-one parity between original and
backup, and the process of comparison would itself become
noisy. A system would then be necessary to duplicate
changes between original and backup, maintaining parity,
encoding trust, and indicating which of the two DNA
methylation signals should be treated as a backup in
the event of damage. In a biological context, such a
system would itself inevitably be subject to error, allowing
noise to enter the decision-making governing trust and
therefore requiring another mechanism for mitigation and
correction. In essence, just as DNA methylation is the
single outer layer of control for DNA, DNA methylation
itself would require the same system, which would be
subject to the exact problems it was intended to avoid (Fig
1(iv)). This ”nesting doll problem” is infinitely recursive:
it is logically impossible in a noise-filled environment
to design a signal without a component in which all
damage has a mirror backup. We suggest a flawless
epigenetic mirror is impossible as an example of vicious
infinite regress (14), extremely similar to Bradley’s regress
(15; 16). Although described here in terms of individual
methylation loci, this process holds true for regions
of methylation or even systems of comparison between
chromosomes. Any such comparison requires a ’comparer’,
which becomes the point of entry for signal corruption,
unless it itself has a backup and so on.

Algorithmic fidelity is restricted

Lacking a mirror backup, any information lost in
epigenetic damage must be reconstituted using some
form of algorithm. Any algorithm that reconstitutes
information must itself be encoded which, in the context
of the cell, means genetically encoded in DNA. This has
a consequent cost to the cell (for example, the more DNA
used, the greater the chance of mutation), meaning that
any increase in survival cost must be offset with additional

functionality. Minimum algorithm size increases with the
complexity of information it is to define: an increase in the
latter must result in an increase in the former(Fig 2(i)).
This means algorithm size is also related to the fidelity by
which it reconstitutes lost information because low fidelity
reconstitution represents a reduction in information from
the original (Fig 2(ii)), essentially performing lossy
compression (17). A perfect reconstitution requires the
exclusive use of lossless compression and has consequently
higher storage requirements. Natural selection will not
select for lossless compression if the cost of the additional
information outweighs the benefit to survival, meaning in
all cases one should expect DNA compression to be lossy
(except in the case of individual errors with infinite cost
to survival, e.g. errors leading to cancer). With DNA
methylation containing two legal character states, defining
it with perfect fidelity would be equivalent to binary key
definition in cryptology, becoming exponentially large as
regions contain more CpG loci. With approximately 20
million CpG in the human genome, perfect fidelity is
therefore impossible. Even working under the assumption
that epigenetic regions represent the states to define, there
are over 20000 CpG islands in the human genome and an
uncountable number of cellular identities to define.

This is not to say that reconstruction is generally
impossible, but that high-fidelity reconstruction is
extremely informatically expensive and impossible to
perform over a large number of cellular states.

As a result, an epigenetic algorithm reconstituting lost
information would be forced to work within a spectrum
between total lack of fidelity (randomly recreating
data) and flawless fidelity, with the massive amount
of information required for high fidelity restricting the
majority of systems to error-prone reconstitution of
damage.

Legal Characters and Trust

When damage occurs in DNA it almost always produces
a dictionary illegal character on one of the strands. In
such cases (e.g., bulky adducts) DNA repair mechanisms
can cheaply and effectively recognise that these new
’characters’ in the DNA signal fall outside of the pre-
defined set of legal dictionary characters: A, T, C, G. Both
in this situation and when a dictionary legal character
is created, DNA repair mechanisms must look for more
information to determine which of the two strands to treat
as an information backup of the original (Fig 1(i)). This
is a system of trust and while imperfect, allows for the
correct repair decision to be made the majority of the time.
When the repair decision is incorrect, it might result in
mutation: the introduction of an incorrect but dictionary
legal signal element into the DNA signal. Damage can only
be repaired in the context of a signal in which the damage
is recognised as a dictionary illegal element. As mutation
creates a legal character within the context of the signal
representing the immediate DNA environment, there is not
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(i) Internal and external trust information (ii) Biological damage is information erasure

(iii) Reconstitution of information (iv) Mirror backups have an infinitely regressive outer shell

Figure 1: i. Natural selection infers that in single-strand breaks the side with the broken backbone (a.) is most likely to contain
the incorrect base. A system for deducing which strand to use as a mirror backup (b.) will have access to this information.
Methylation damage (c.) cannot provide this information, so (d.) would require information from an external scope (e.) to
make the same comparison. ii. Incorrect modification of CpG methylation can be thought of as information erasure, removing
part of the state information that allows for the recovery of the original state. iii. Epigenetic damage is information loss (a.)
that requires repair either with a mirror backup from which to duplicate information (b.) or an algorithm with which to define
it according to original principles(c.). iv. Epigenetic mirrored backups represent a vicious infinite regress of endlessly nesting
scopes. Comparing two strands requires a system of trust recognition (a.) that, if subject to noise, would itself require a mirror
backup. These two systems would themselves require an external system of trust (b.), which can itself make errors, requiring a
backup and another system of trust (c.) and so on (d.)
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(i) DNA cost impacts repair fidelity (ii) Repair fidelity impacts error retention

Figure 2: i. Any algorithm that corrects for epigenetic error must be comprised of proteins or RNA, which requires a region of
DNA to encode. The size of the genes encoding the system will be related to the sophistication of the algorithm, but this will come
at a survival cost commensurate to size. ii. The more sophisticated the algorithm for correcting error, the higher the fidelity
to correct error, as more rules can be encoded to describe the correct state of a region based on more detectable environmental
variables.

enough information on the original state of a dictionary
legal signal to allow for entropy-neutral reconstitution of
state, and so we can say that any dictionary legal error
such as mutation is logically irreversible in the immediate
context of repair enzymes. To repair this error in an
entropy-neutral manner, the signal containing the error
must be assessed in a higher syntax of which the local
signal is but an element. We can say that the information
scope must be broadened for repair.

DNA methylation sits outside the phosphate backbone
and thus outside the system of trust which allows for
limited local scope repair of DNA damage, and it has
exactly two dictionary legal characters: fully methylated
or unmethylated on both strands. Assuming no other
information, this results in a situation where if one
methylation is removed/added and a hemimethylated
state is created, there is no logical way within the scope
of a single repair enzyme to deduce which of the two
legal characters the damage state originated from. The
information of the original state is destroyed in the local
scope, that which contains information limited to the
methylation groups and immediately surrounding base
pairs. We can therefore say that methylation damage
is universally logically irreversible (as outlined in (18;
19; 20)) within the local scope of repair enzymes, with
all the consequences of such a trait, namely obligate
entropy increase upon repair (19; 21; 22). Put simply,
all hemi-state DNA methylation created by damage is
the equivalent to mismatched DNA bases with intact
backbones and all epigenetic damage is consequently

equivalent to mutation. We can say from this that
epigenetic damage repair decision-making is a recognisable
but not decidable language.

Repair information is in the wrong place

In any situation of repair, the reconstitution of damage
is limited by the amount of information available to the
repairer. We can think of this as the scope of information
that the repairer has access to. Any repair algorithm will
sit within nested scopes of repair information: an enzyme
might only be “aware” of the information in the immediate
region of DNA it contacts; it has no access to information
encoded in some distal section of DNA, or another cell, or
another city. The super-entity of control represented by
the system expressing and targeting that enzyme might
well have access to a broader scope of information with
which to target repairs. The caveat is that decisions about
repair and consequently accurate repair can only occur
within the scope of the information required and this may
not be the scope in which the information exists. For
example, the enzyme running along DNA has more up-to-
date information about the current damage-state of the
piece of DNA it sits upon than does the system that sent
it to fix that damage. It does not always follow that
the information scope of a subunit is a subset of that
of a system with a broader scope. Information loss can
result in logically irreversible damage within one scope
and that same damage can be logically reversible within
another. The question is: which scope has access to
the information necessary to detect the information loss
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and which scope has access to the information necessary
to repair the information loss? In non-mutational DNA
damage, both of these sets of required information can
exist within the same scope: that of the repair enzymes.
In both DNA mutation and epigenetic mutation the
information encoding the state of the ontological purpose
of the governed system is exclusively found within systems
that have access to information on ontological outcome.
The information on the identity of the specific loci (base
or CpG) under interrogation is limited to the repair
enzyme while the repair enzyme remains at the locus of
damage. This information is temporarily segregated from
that of ontological outcome: the repair enzyme will have
moved on and discarded information delineating location
by the time the system is observably diminished in efficacy
towards survival. It is therefore impossible to provide
repair enzymes with the information necessary to correctly
repair specific instances of mutation after the mutation
has occurred, as well as any damage that could arise from
more than one dictionary legal character. The information
necessary for repair is not locally available at the point
repair is locally possible.

Ageing is the consequence of repair fidelity
limitations

As there can be no mirroring backup to the epigenetic
state and any algorithmic backup is limited below perfect
fidelity, the logically irreversible information loss accrued
within the epigenetic state will remain unrepairable
in systems that have a complexity high enough that
the information necessary for repair demands lossy
compression. Damage will only be repaired up to the
fidelity allowed for by the compression of repair. The only
way to create logical reversibility in the systems and to
reduce entropy is to increase the scope of the system until
logical reversibility is possible.

When the amount of information necessary to create a
system exceeds that which is beneficially storable in DNA,
lossy compression will begin to be used as information
is encoded in cellular context. This is the fidelity
boundary: the point beyond which perfect fidelity is
impossible. By storing information in the state of the local
environment, systems can minimise the need to explicitly
code functionality in DNA while retaining the information
for approximate functionality, but with the consequence
that they become logically irreversible as the low fidelity
by which they are encoded results in multiple possible
original states for the current system state. At this point,
repair can occur but only in an entropic manner with a
degree of error.

This fidelity boundary is never reached in simple systems
but when systems expand in scope to allow for logical
reversibility, they increase the information necessary for
repair, approaching or crossing the fidelity boundary. If
any system that influences the information necessary for
its own repair is complex enough to demand definition

past the fidelity boundary it will imperfectly repair itself
when damage occurs, generating a feedback loop as it
progressively repairs itself with decreasing fidelity. We
suggest that simple systems are logically reversible below
the fidelity boundary and complex systems influencing
their own repair are not, inevitably becoming dysfunc-
tional unless they are so valuable for organism survival
that selection encodes the entire system within DNA.
Only through the construction of a true logically reversible
repair scope can the inevitably accruing system corruption
be fully reversed.

When the information required for logical reversibility
exceeds that storable in the immediate context of the cell,
the scope must be extended again to allow for repair.
Logical reversibility is then only achieved when the scope
expands to include a known originator state, i.e. a stem
cell. At this point, contextual algorithms with imperfect
fidelity reconstitute the information of the cell (differen-
tiation). In essence, the cell abandons its current state
and returns to a point of known logical reversibility. Stem
cells represent a type of cell that can be defined indepen-
dently of context and thus in an informatically efficient
manner. It is a simple, singular set of rules to encode,
cheap and robust due to the lack of need to handle multiple
definitions consequent to context. As epigenetic damage
creates complexity not just in individual cells but in tissues
and organs, the information defining the use of stem
cells to reconstitute damage becoming itself progressively
corrupted as tissue composition changes. This means
that the scope that allows for logically reversible repair
must be extended further back into epigenetic basality and
more and more cells and eventually tissue discarded to
allow for this. Discarding the information represented by
these tissues and cells reduces the information necessary
to encode a logically reversible state, and when this has
occurred enough that identity can be defined below the
fidelity boundary logical reversibility becomes possible.
We suggest that this is the point that childbirth is the only
solution available to the organism, in that the organism
discards the entire body save for a single primordial
stem cell that allows for the logical reversal of the entire
organism. Through this lens, reproduction is not only a
tool for selection but a necessity to shed age, and we argue
this is why we, or the tissue that once was part of us,
becomes young at the point of childbirth.

Low fidelity creates error feedback

As epigenetic signalling fails, the systems governed by
that signal will make incorrect decisions, resulting in a
feedback cycle in which the epigenetic fidelity governing
epigenetic fidelity fails, resulting in a recursive loss of
epigenetic control as well as deregulation of all systems
in which logical reversibility is impossible in the scope of
repair. The deregulation of all cellular systems governed
by epigenetic control is what, we suggest, gives rise to
the phenotype of age and explains the generalised loss of
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(i) Histogram of dataset 1 nac (human blood) (ii) Histogram of dataset 7 nac (human multitissue)

Figure 3: (i.) Dataset 1 (GSE87571 human whole blood) noise/age correlation (nac, as described in methods). Fluke
correlation would be expected to be a normal distribution centered on zero. The peak at nac 0.75 represents a large population
of CpG loci that increase in variance between samples with age. This dataset lacks a visible peak in the negative ranges of nac.
(ii.) CpG SD correlation to age in Dataset 7 (GSE61256 human multitissue) nac. This dataset displays all three theorised
populations, including a third peak within negative nac. We speculate that this peak represents genes switched on or off with age.

cellular identity seen in ageing tissues.

Our theory suggests that ageing is itself the inevitable
consequence of the impossibility of signal fidelity due to
the specific dynamic of epigenetics being a single system in
which it is impossible to design trust (through a mirrored
backup) or an algorithm with perfect signal fidelity in
systems where complexity is high enough that logical
reversibility is impossible without crossing the fidelity
boundary.

2 Results

Methylation variance with age

The principles outlined above suggest that there is an
inevitable accumulation of epigenetic damage with age,
driving the structure of epigenetic signals into randomness.
One measure of this dynamic is the progressing disparity
between an individual’s DNA methylation loci with age.
We obtained methylation data from externally generated
datasets (outlined in Methods) and obtained from them
beta values that represent the ratio of methylated to
unmethylated measurements within each sample for each
individual probe. The loci noise-to-age correlation (nac)
for each dataset was obtained as described in methods.
Results for datasets 1, 7 and 13 are summarised in Fig
3(i), 3(ii) and 4(i). All nac results and graphs for datasets
1-13 are provided in supplementary file 1. We used
Benjamini-Hochberg correction to account for multiple
testing, but most forms of multiple testing are heavily
biased to extremely strong correlation, and in any analysis
of stochastic noise the understanding of what represents
’fluke’ correlation can be observed through the expectation

that these will be represented by a normal distribution
centered on 0 correlation.

To decompose the nac of these tissues we looked
to separate this central distribution from additional
peaks representing subclasses of CpG with significant
populations of strongly positive or negative nac. In all
human datasets, save dataset 2 (where any such peak
remains ambiguous and non visible due to the positioning
of the fluke distribution), we see a unique peak of strong
positive nac. In datasets 5, 6, 7 and 13 we observe
a comparatively smaller peak of negative nac (dataset
6 being ambiguous due to the low number of samples
within it above the age of 60). In non-human datasets
the majority of loci approaching either -1 or 1 nac, likely
consequent to there only being few recorded age groups in
these datasets.

The general observation is that there are three
approximate classes of loci: those that correlated
negatively with age, those that correlate positively,
and those representing ’fluke’ correlation, centered on
nac 0.00. For reasons discussed below, we term the
population of CpG loci with abnormally high nac as ’self-
referential’ CpG/CGI (srCpG/srCGI), and the population
of loci with a negative nac as ’age-referential’ CpG/CGI
(arCpG/arCGI).

We noticed that in almost all human datasets the central
distribution, representing those CpG that do not belong to
a class specifically relating to age, is slightly shifted most
commonly towards positive correlation. The exception
to this is dataset 13, comprised of 1400 samples (25
samples per year of age between 30 and 85) taken from
a range of human datasets with multiple tissues being
represented. This dataset was made consequent to the
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individual datasets analysis to see if independently of
tissue type loci had a general trend towards high nac. The
result (Fig 4(i)) was that the general peak representing
typical loci became centred near a nac of 1, meaning that
the typical loci accumulates noise in a manner that consis-
tently correlates with age. This shift is likely consequent
to the high number of samples and the decreased size of
the age bins (from steps of 5 years to 1 year), allowing for
more consistent estimation of nac. The better represen-
tation in this dataset of the upper age ranges is also likely
a contributing factor. Due to the peak representing typical
loci being centred near nac 1.0, the rightshifted peak seen
in individual datasets is not visible. We believe this class
of loci still exists, but is hidden by the increased nac of
the general loci, and is more visible in the histograms of
the individual datasets. It is also worth noting that in
this higher fidelity dataset, the peak representing arCpG
also remains intact, further arguing that these represent a
unique class of CpG islands (CGI).

Methylation polarisation with age

We theorised that those CpG with high nac represented
a class of noise-retaining loci (later termed srCpG). We
expected the peak at r=0.00 to represent the nac of typical
CpGs, and we next set out to characterise the nature of
the negative correlations. We suggest that as an individual
gets older there is a tendency to switch on or off genes as
a mechanism to control noise. We expected that these
genes would therefore tend towards polar beta values in
their regulating methylation (either fully methylated or
unmethylated). To explore this, we segregated nac by the
polarisation of loci mean beta value with age in datasets
1 (Fig 4(ii)), 6, 10, and 14. This demonstrated that
in these datasets the distribution of negative correlation
is heavily skewed towards polarising loci, and that the
peak representing srCpG becomes segregated to those
CpG in which centralisation of beta value increases with
age. This suggests that those loci with that decrease in
variance with age indeed represent those genes that are
increasingly regulated in response/consequent to age, and
thus a different class of loci to those that, free of regulation,
drift into variance.

Methylation topology is an activation
function

We hypothesised that if different methylation regions
represented different classes of epigenetic control resulting
from the need for discrimination in the amount of noise
gene functionality was exposed to, evolution’s naturally
conserving effect would unify these classes into a few
different regulatory activation functions governed by a
simple set of arguments. Were this the case, we would
expect to observe conservation between the way specific
loci were themselves regulated and therefore regulated
the underlying gene. To visualise this, we performed
Euclidean k-means clustering on sorted preparation of

datasets 1 (Fig 5(i)), 6 10 and 14. In each of datasets 1, 6
and 10 (human and zebra, both longer lived mammals) we
observed a definite grouping in locus topology, indicating
that there are a few archetypical ”activation functions”
to which all DNA methylation belongs, and by which
all methylation is regulated. It appears that DNA
methylation is controlled by two types of functions, a
linear function and a step function, which themselves act
as components for a small range of combination activation
functions. We classify these overall activation functions as
linear functions, single-step functions, multistep functions,
and ”ragged” functions (functions containing regions with
numerous fractional subpopulations independent of the
majority ontological state). The topology of dataset 14
(GSE120137 mouse tissues) differs from that of longer-
lived mammals (Fig 5(ii)). Both linear and step functions
are observable, but the banding effect seen in human
methylation data is absent.

Examining the topology of the clusters and individual
CpG loci highlights that in most cases there is a majority
position output by the function controlling methylation for
each individual CpG locus. We assume that these are the
positions for the ontological purpose of system function.
In a large number of loci, there is also a ’tail’ region of
rapidly increasing or decreasing methylation approaching
the nearest occupancy absolute (beta 0.00/1.00). These
tails have the distinguishing feature of being an approxi-
mately consistent fraction of the total population size, but
the difference between the tip of the tail and the mean
beta value can vary substantially. We theorise that these
tails represent a failure of control, in which a methylation
area that is ideally at a given level of methylation loses its
ability to regulate itself, resulting in mean betas that differ
greatly from the ontological target. Mouse topologies
increase at a comparatively steep and smooth linear rate
with very little evidence of the ”tailing effect” seen in the
loci of longer-lived mammals (Fig 5(ii)), which suggests
that there is comparatively less ’failure of regulation’
because there is less regulation in the first place, mice not
selecting as strongly for epigenetic fidelity as mammals
more exposed to epigenetic mutation through lifespan and
lack of predation. It is notable that these tails do not
correlate to age in all loci. We believe that these may
in some cases represent a loss of control in disease states
and/or systems that lack the ability to create positive
feedback into further epigenetic deregulation.

Neural Networks can predict age from
noise

We trained a Keras regressor on datasets 1 (Fig 6(i)),
4-6, 9-12, using VIP preprocessing on each, as outlined
in methods. The purpose of this preprocessing was to
eliminate any non-variance information in the dataset,
giving the neural network no clue as to the overall beta
values. All the neural network had access to was the
knowledge of how relatively varied the beta values were
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(i) Histogram of dataset 13 nac (human multitissue
aggregation)

(ii) Polarisation of CpGs by correlation

Figure 4: (i.) Dataset 13 (human multitissue aggregation) nac (as described in methods). Due to the larger number of samples,
particularly in the higher age ranges where nac might be most expressed, and due to the increased fidelity of age measurement
(values binned every 1 year as opposed to every 5 years), this dataset shows a clearer picture of typical CpG nac. With the
exception of arCpG represented by the small peak around nac -0.4, it seems that all CpGs increasing in variance with age with
a strength of correlation that results in the distribution of typical CpG nac beign centered on nac 1.00. We speculate that the
smaller peak seen in the higher ranges of nac in individual tissue datasets is not visible on this graph due to the class being
swamped by the majority position. (ii.) Dataset 1 (GSE87571 human blood) nac faceted by the correlation between beta value
centralisation and age. CpG loci high nac are those in which beta centralisation increases with age.

in the age group the sample belonged to compared to the
other age groups in the feature. Features were selected
by random sampling and the results represent the mean
of a Kfold split (f=5). Network definition and results are
summarised in supplementary file 2. We observe that in all
cases the VIP clock can predict age with great accuracy,
illustrating that neural networks have the capability to
predict based entirely on the amount of variance in a CpG
site, rather than information on actual methylation levels.

To further demonstrate the capacity of such preprocessing,
we selected twenty loci from dataset 1 with a nac of over
0.95, and used these samples with VIP preprocessing to
construct single CpG networks (Fig 6(ii)). In all cases,
these single CpG clocks were predictive of chronological
age better than random, with a mean error of 9.18 years.

Control is lost in the regulation of
regulation

To improve the classification of high nac loci and
to isolated proposed ’srCGI’, we reasoned that ’fluke’
correlation was more likely to be represented in individual
CpG loci than entire CGI which should be more consistent
in their ontological effect. To this end, we grouped loci by
their CGI and calculated the SD of the correlations within
these CGI.

We subset datasets 1, 2 and 13 to only include CpG
from CGI with a nac SD below 0.15, and further subset
to contain only CGI in which both mean CpG nac and

centralisation (inverse of polarisation) were above 0.8. We
then used methylGSA (23) to perform gene set analysis
on unique genes associated with these loci and compared
them against both those loci that fall outside this criteria
and ten sets of randomly sampled CGI of equivalent size.

This preparation resulted in the enrichment of sequence-
specific DNA binding (GO:0043565), mRNA Binding
(GO:0003729), Ubiquitin Binding (GO:0043130),
Methylated Histone Binding (GO:0035064), Chromatin
DNA Binding (GO:0031490), RNA polymerase II
transcription regulatory region sequence-specific DNA
binding (GO:0000977), cis-regulatory region sequence-
specific DNA binding (GO:0000987) and other terms
that relate to transcriptional regulation (summarised
in supplementary table 3), traits absent from randomly
sampled control sets and the low polarisation set. It is
interesting that those CGI with highest nac are those
that are involved with the regulation of promoters and
enhancers, i.e. the regulation of regulation.

3 Discussion

The role of epigenetic changes in ageing has been a
major research focus, in particular since the discovery of
epigenetic clocks. In this work we set out to break down
the nature of epigenetic damage and characterise biological
ageing as a failure of repair fidelity. To do this, we began
by showing that chronological age generally correlates to
the progressive dispersion of loci methylation state, and
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(i) Methylation activation functions (human blood) (ii) Methylation activation functions (mouse kidney)

Figure 5: i. Topological activation functions of DNA methylation in dataset 1 (GSE87571 human whole blood). Sorted dataset
clustered using Euclidean k-means. ii. Topological activation functions of DNA methylation in dataset 14 (GSE120137 mouse
kidney). Dataset were sorted by value and clustered using Euclidean k-means (x resampled to 50).

that there are two classes of loci (arCpG and srCpG) that
significantly differ from the typical loci in how much the
noise they accumulate correlates to age (Fig 4(i)). We
can also demonstrate that these are distinct classes of
CpG loci in how they are regulated in response to age
(arCpG/arCGI) (Fig 4(ii)) and demonstrate through the
ranked variance clock that age can be predicted exclusively
from the knowledge of srCpG deregulation (Fig 6(i)),
which we confirmed in a range of tissues and species. This
fits exactly with our initial theory: epigenetic damage
is inevitable due to the impossibility of mirrored backup
and the bounding that limits any algorithmic repair to
imperfect fidelity, and that damage causes and therefore
correlates with age. We suggest that the distinct class of
age-response CpG (arCpG) represent those genes that are
being regulated increasingly in response to the phenotype
of age provoking damage (senescence, DNA repair, stress
response, etc). These loci are age referential because they
react to age, switching genes on or off as part of the
cellularstatic response to the deleterious effects of age.
They have negative nac because they consequently become
less noisy as biological age increases: a gene in a relatively
unregulated state with range of potential outputs becomes
tightly regulated, switched on or off and the regulatory
elements becoming more tightly bound in value due to
the pressures exerted. We suggest that srCpG represent
those systems in which control fails in such a manner
it has a knock on effect on other systems, the ground
zero for failure, and argue that there is evidence that the
reason for this subclass existing is that these srCpG control
regulation itself, self-referential in their definition of state.
Because srCpG cannot be provided with a system of trust

and backup, as described in the theory above, they are
doomed to fail, and take everything they control with
them. As they eventually control all other regulation,
they erode the general capacity of the cell to regulate
epigenetics, evidenced by the typical shift of the general
loci population towards positive nac.

We also find evidence for the progressive noise accumu-
lation in the manner by which individuals deviate from
the output of methylation activation functions. We
suggest that there are ’activation functions’ of regional
epigenetic control that are observable through the limited
range of outputs that define average methylation across
populations (Fig 5(i)). These activation functions are
defined through control of local methylation pressure,
upon which will be applied mechanisms that we suspect
to be a handful of evolutionarily conserved behaviours
repeatedly applied in combination to produce a limited
range of robust behaviours.

Within these activation functions, we suggest that
deviation from the ontologically intended output of
the activation function represents epigenetic damage,
eventually resulting in deregulation of the governed gene
expression. It seems likely that this is what is represented
by the topology ’tails’, samples in which loci control has
either become aberrant (or possibly some cases where the
loci were measured during a transition state).

We propose that this epigenetic damage would result in a
feedback cycle, in which deregulation would lead to further
deregulation through the disruption of maintenance and
repair of the epigenetic regions, and to the phenotype of
age through the general deregulation of cellular systems.
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(i) Age prediction from VIP processed dataset (ii) Age prediction from a single VIP processed srCpG.

Figure 6: (i.) Regressor trained on 10000 DNA methylation loci beta values from dataset 1 (GSE87571 human blood).
Chronological age (y) is measured against vs predicted age (x), with perfect prediction being represented by the samples in which
the predicted age matches the chronological age. (ii.) An identical regressor trained on a single srCpG. N.B. Graphs correspond
to results given in supplementary table via ’EXP’ code.

This would fit the profile of ageing as a robust, gradual
process, with slow, reliable progress made as deregu-
lation accumulates, accelerating toward network failure
as the feedback cycle picks up pace. We can see in the
gene ontology results (supplementary table 3) that in all
organisms and tissues, those genes regulated by the loci in
which deregulation correlates to age are genes governing
promotors and enhancers.

We suggest that this is because promotors and enhancers
have a unique feature that precludes polarising their
regional control for regulation: they need to regularly
reconfigure the local methylation state consequent to the
current state of transcription. We suggest this makes
them self-referentially defined, in that the definition of
the epigenetic signal of a promotor/enhancer modulator
relies in part on its own current state (such that any
damage results in damage to any rule from which the signal
could be corrected), and thus representing a class of loci
in which epigenetic regional control cannot be correctly
defined once epigenetic damage has occurred. We suggest
damage accrues in these regions and the global deregu-
lation of transcription that occurs consequent to this gives
rise to the general phenotype of age.

Our work characterises the cell as incapable of perfect
reconstitution of all instances of epigenetic damage, and
that it must instead pick and choose which systems to hold
to high fidelity and which to allow low fidelity. In some
cases, we argue, low fidelity is forced either way. There can
be no perfect fidelity backup of all epigenetic information
stored in the cell.

We would argue against the idea that any specific cellular
subsystem explains the general dynamic of age, rather
suggesting that the frequency of epigenetic events is

likely to be the main influence of the rate of epigenetic
damage and it is a core dynamic of epigenetic control
that information loss must occur in the regulation of any
adaptive system. The nature of the systems themselves
is irrelevant to the frequency of epigenetic modification
they demand and the fact that such modification must
in these systems be self-referentially defined. We argue
that DNA repair and other correlated behaviours are
simply representatives of this class of epigenetic regulation
and those models that recognise the link between age
and particular systems such as DNA repair (12; 11)
are measuring the rate at which epigenetic modification
within these systems leads to epigenetic damage. It has
been demonstrated that there is a general stochastic loss
of methylation over time (24) and that hemimethylated
states can spontaneously occur through methyl group
drop-off or enzymatic error (25), and we suggest that
this might provide a base rate at which biological ageing
progresses. We suggest that the idea the cell has a problem
with information loss is too broad; information is lost all
the time. We suggest that the real problem is the limit
of fidelity that biological compression must labour under,
the necessity for the use of lossy compression and a top-
level system of information handling that simply cannot
be designed in a manner with sufficient damage recovery.
Information is lost in systems that cannot correct for
information loss, and the only type of system that fits
that criteria are systems that have no external oversight
to provide logical reversibility and must therefore maintain
their own identity. The issue is not the general occurrence
of information loss, but the existence of information loss
in specific systems, those incapable of identity reconsti-
tution through the necessity of self reference. We argue
noise in the identity of noise identification systems is the
root cause of ageing.
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This theory, therefore, provides a full line of reasoning
from the logical necessity of epigenetic damage through
to the phenotype of age. The outlined theory is not
limited to methylation-based damage: the duplication of
histone markers and damage within that system shares
the exact same issue as methylation, as will any outer
layer system of information fidelity. In an effort to reduce
the information necessary to maintain a system in which
damage is logically reversible, we propose mammals use
childbirth to shed complexity, reducing the information
necessary to a single cell. In primordial cells, stem cells
and the simple cellular systems of organisms without
epigenetic regulation, damage is reversible through the
encoding of state in algorithms that can define the correct
informatic state within the genetic code. This is possible
due to the ability to prescribe what a cell should be
independently of its environment, and results in logical
reversibility. We suggest that logical reversibility is a
necessary objective for any organism existing in a noisy
channel.

4 Methods

Datasets

Datasets were handled in Python (v3.10.6) and processed
using Pandas (v1.5.3), Numpy (v1.22.4), methylprep
(v1.7.1) and GEOparse (v2.0.3). Datasets were visualised
with a combination of Matplotlib (v3.1.3) and Seaborn
(v0.11.2). Datasets were processed from IDAT using
methylprep default function (steps = [”all”]) or obtained
by direct download from the NCBI GEO repository
(https://www.ncbi.nlm.nih.gov/). Datasets were acquired
with the most recent version as of 01/09/2022. In cases of
a dataset containing multiple tissues, the tissue with the
greatest number of samples was used unless specified in
supplementary file 1. The datasets below, tissues selected
and the processes done to them are described in supple-
mentary file 1. In all cases, columns with na values were
removed prior to further processing.

• Dataset 1: GSE87571 (human blood) (26)

• Dataset 2: GSE132203 (human blood) (27)

• Dataset 3: GSE116339 (human blood) (28)

• Dataset 4: GSE183920 (human white blood cell) (29)

• Dataset 5: GSE175458 (human lung) (30)

• Dataset 6: GSE41826 (human brain) (31)

• Dataset 7: GSE61256 (human liver, muscle and
adipose) (32)

• Dataset 8: GSE183647 (human brain tumor) (33; 34)

• Dataset 9: GSE208713 (human liver tumor) (35)

• Dataset 10: GSE184223 (zebra blood) (36)

• Dataset 11: GSE184216 (roe deer blood) (37)

• Dataset 12: GSE164127 (bat skin) (38)

• Dataset 13: Aggregation of datasets 2-5, 7-9

• Dataset 14: GSE120137 (mouse multi-tissue) (39)

Dataset Processing

These datasets were used as a base to create additional
datasets using the following transformations, referred to
by the code in brackets:

SD by age (SbA)

Samples were binned into groups covering five years of age
(e.g. 60-65 years old). Within each bin, the standard
deviation was taken for the beta values within each
individual CpG loci, resulting in a table of age group SD by
loci. Bin population was restricted to the lowest common
bin population above 8, resulting in bins of equivalent size.

Variance Isolating Preprocessing (VIP)

Variance Isolating Preprocessing (VIP) datasets were
created by sorting samples by age and running a five-
row sliding window on each CpG taking the SD for each
window step. The age of each step was the mean age of
the samples used for the window. The dataset then had
all values replaced by a rank indicating their position from
lowest number to highest. This was done to remove all
possibility that the loci SD provided to the network was
allowing it to estimate beta values. Samples were then
shuffled.

Polarisation by age (PbA)

The polarisation datasets were created by modifying the
initial dataset with the following transformation on every
value (x):

0.5 − |X − 0.5|

Samples were binned into groups covering five years of age
(e.g. 60-65 years old), obtaining the mean and dropping
any bin that did not have at least n=5. These values
represented the final dataset.

Statistical Tests

Statistical tests were performed using scikit-learn
(v1.0.2) and Benjamini-Hochberg multiple correction
was handled using the ’multipletests’ function from
statsmodels (v0.12.2). Beta plots were resampled using
’TimeSeriesResampler’ and clustering was performed
using ’TimeSeriesKMeans’ from the package tslearn
(v0.5.3.2). A random seed of 0 was used for all clusterings.
Pearson’s R correlation was performed with the pandas
’corrwith’ function, feature ranking and sliding windows
were performed using the pandas ’rank’ and ’rolling’
functions respectively, and feature sorting was performed
with the Python built-in ’sorted’ function.
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Noise to Age Correlation (nac)

For each CpG, we binned samples into age groups as
described in supplementary table 1 and took the standard
deviation for each bin. We then performed a Pearson’s R
correlation between the age-binned SD and age resulting
in the noise-to-age correlation (nac) for the CpG.

Deep Learning and State Machine

Deep learning was performed using Tensorflow (v.2.11.0)
Keras. The methylation state machine was coded in
Python (v3.8.10).

Deep Learning preprocessing

Processing obeyed the following order. Sample and feature
order were randomised. Any validation set was isolated.
Special preprocessing, such as VIP was performed. Any
post-preprocessing validation set was isolated. The
network was then run at k-fold (5).

Gene Ontology

GO analysis was performed using the Enrichr tool (40).
Datasets used were subset to those CpG with known CGI
identities and then individual CGI values were obtained
for mean nac, nac SD and mean PbA, which were then
used for subsetting the datasets. For each dataset, the
background used was all the possible genes associated to
the dataset when subset for known CGI identity (all genes
that could have been selected had the CGI dataset been
included in it’s entirety.) For each dataset, 10 random
sample populations of equivalent size to the hypothesis
subset were generated alongside the hypothesis subset
(those CGI where mean nac was over 0.80, nac SD
was below 0.15 and PbA was below 0.20), as well as a
population comprising all of the CGI that fall outside the
hypothesis set.

Data Availability

• Supplementary file 1: Dataset descriptions and nac
result graphs

• Supplementary file 2: Clock results

• Supplementary file 3: GO enrichment results
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[13] J. P. de Magalhães, “Ageing as a software design
flaw,” Genome Biology, vol. 24, p. 51, Mar. 2023.

[14] R. Cameron, “Infinite Regress Arguments,” July
2018.

[15] K. Perovic, “Bradley’s Regress,” Nov. 2017.

[16] G. Bonino, “Bradley’s Regress: Relations, Exempli-
fication, Unity,” Axiomathes, vol. 23, pp. 189–200,
June 2013.

[17] L. A. Fitriya, T. W. Purboyo, and A. L. Prasasti, “A
Review of Data Compression Techniques,” Interna-
tional Journal of Applied Engineering Research,
vol. 12, no. 19, pp. 8956–8963, 2017.

[18] C. H. Bennett, “Logical Reversibility of
Computation,” IBM Journal of Research and

Development, vol. 17, pp. 525–532, Nov. 1973.
Conference Name: IBM Journal of Research and
Development.

[19] R. Landauer, “Dissipation and noise immunity in
computation and communication,” Nature, vol. 335,
pp. 779–784, Oct. 1988. Number: 6193 Publisher:
Nature Publishing Group.

[20] B. Hayes, “Reverse Engineering,” American Scientist,
vol. 94, no. 2, p. 107, 2006.

[21] R. Landauer, “Irreversibility and Heat Generation in
the Computing Process,” IBM Journal of Research
and Development, vol. 5, pp. 183–191, July 1961.
Conference Name: IBM Journal of Research and
Development.

[22] R. Landauer, “Minimal Energy Requirements in
Communication,” Science, vol. 272, pp. 1914–1918,
June 1996. Publisher: American Association for the
Advancement of Science.

[23] X. Ren and P. F. Kuan, “methylGSA: a Bioconductor
package and Shiny app for DNA methylation data
length bias adjustment in gene set testing,” Bioinfor-
matics, vol. 35, pp. 1958–1959, June 2019.

[24] T. Chen, Y. Ueda, J. E. Dodge, Z. Wang, and
E. Li, “Establishment and Maintenance of Genomic
Methylation Patterns in Mouse Embryonic Stem
Cells by Dnmt3a and Dnmt3b,” Molecular and
Cellular Biology, vol. 23, pp. 5594–5605, Aug.
2003. Publisher: Taylor & Francis eprint:
https://doi.org/10.1128/MCB.23.16.5594-5605.2003.

[25] J. Arand, D. Spieler, T. Karius, M. R. Branco,
D. Meilinger, A. Meissner, T. Jenuwein, G. Xu,
H. Leonhardt, V. Wolf, and J. Walter, “In Vivo
Control of CpG and Non-CpG DNA Methylation by
DNA Methyltransferases,” PLOS Genetics, vol. 8,
p. e1002750, June 2012. Publisher: Public Library
of Science.

[26] A. Johansson, S. Enroth, and U. Gyllensten,
“Continuous Aging of the Human DNA Methylome
Throughout the Human Lifespan,” PloS One, vol. 8,
no. 6, p. e67378, 2013.

[27] V. Kilaru, A. K. Knight, S. Katrinli, D. Cobb, A. Lori,
C. F. Gillespie, A. X. Maihofer, C. M. Nievergelt,
A. L. Dunlop, K. N. Conneely, and A. K. Smith,
“Critical evaluation of copy number variant calling
methods using DNA methylation,” vol. 44, no. 2,
pp. 148–158.

[28] S. W. Curtis, D. O. Cobb, V. Kilaru, M. L.
Terrell, E. M. Kennedy, M. E. Marder, D. B.
Barr, C. J. Marsit, M. Marcus, K. N. Conneely,
and A. K. Smith, “Exposure to polybrominated
biphenyl (PBB) associates with genome-wide DNA

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2023. ; https://doi.org/10.1101/2023.04.29.538716doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.29.538716
http://creativecommons.org/licenses/by/4.0/


methylation differences in peripheral blood,” vol. 14,
no. 1, pp. 52–66.

[29] J.-Q. Chen, L. A. Salas, J. K. Wiencke, D. C.
Koestler, A. M. Molinaro, A. S. Andrew, J. D.
Seigne, M. R. Karagas, K. T. Kelsey, and B. C.
Christensen, “Immune profiles and DNA methylation
alterations related with non-muscle-invasive bladder
cancer outcomes,” vol. 14, no. 1, p. 14.

[30] R. Borie, J. Cardwell, I. R. Konigsberg, C. M. Moore,
W. Zhang, S. K. Sasse, F. Gally, E. Dobrinskikh,
A. Walts, J. Powers, J. Brancato, M. Rojas, P. J.
Wolters, K. K. Brown, T. S. Blackwell, T. Nakanishi,
J. B. Richards, A. N. Gerber, T. E. Fingerlin,
N. Sachs, S. L. Pulit, Z. Zappala, D. A. Schwartz, and
I. V. Yang, “Colocalization of gene expression and
DNA methylation with genetic risk variants supports
functional roles of MUC5b and DSP in idiopathic
pulmonary fibrosis,” vol. 206, no. 10, pp. 1259–1270.

[31] J. Guintivano, M. J. Aryee, and Z. A. Kaminsky, “A
cell epigenotype specific model for the correction of
brain cellular heterogeneity bias and its application to
age, brain region and major depression,” Epigenetics,
vol. 8, pp. 290–302, Mar. 2013.

[32] S. Horvath, W. Erhart, M. Brosch, O. Ammerpohl,
W. von Schönfels, M. Ahrens, N. Heits, J. T. Bell,
P.-C. Tsai, T. D. Spector, P. Deloukas, R. Siebert,
B. Sipos, T. Becker, C. Röcken, C. Schafmayer, and
J. Hampe, “Obesity accelerates epigenetic aging of
human liver,” vol. 111, no. 43, pp. 15538–15543.

[33] H. N. Vasudevan, A. Choudhury, S. Hilz, J. E.
Villanueva-Meyer, W. C. Chen, C.-H. G. Lucas, S. E.
Braunstein, N. A. Oberheim Bush, N. Butowski,
M. Pekmezci, M. W. McDermott, A. Perry, D. A.
Solomon, S. T. Magill, and D. R. Raleigh,
“Intratumor and informatic heterogeneity influence
meningioma molecular classification,” vol. 144, no. 3,
pp. 579–583.

[34] A. Choudhury, S. T. Magill, C. D. Eaton, B. C.
Prager, W. C. Chen, M. A. Cady, K. Seo, C.-H. G.
Lucas, T. J. Casey-Clyde, H. N. Vasudevan, S. J.
Liu, J. E. Villanueva-Meyer, T.-C. Lam, J. K.-S.
Pu, L.-F. Li, G. K.-K. Leung, D. L. Swaney, M. Y.
Zhang, J. W. Chan, Z. Qiu, M. V. Martin, M. S.
Susko, S. E. Braunstein, N. A. O. Bush, J. D.
Schulte, N. Butowski, P. K. Sneed, M. S. Berger,
N. J. Krogan, A. Perry, J. J. Phillips, D. A. Solomon,
J. F. Costello, M. W. McDermott, J. N. Rich,
and D. R. Raleigh, “Meningioma DNA methylation
groups identify biological drivers and therapeutic
vulnerabilities,” vol. 54, no. 5, pp. 649–659.

[35] U. Perron, E. Grassi, A. Chatzipli, M. Viviani,
E. Karakoc, L. Trastulla, C. Isella, E. R. Zanella,
H. Klett, I. Molineris, J. Schueler, M. Esteller,
E. Medico, N. Conte, U. McDermott, L. Trusolino,

A. Bertotti, and F. Iorio, “Integrative ensemble
modelling of cetuximab sensitivity in colorectal
cancer PDXs.”

[36] S. Horvath, A. Haghani, S. Peng, E. N. Hales,
J. A. Zoller, K. Raj, B. Larison, T. R. Robeck,
J. L. Petersen, R. R. Bellone, and C. J. Finno,
“DNA methylation aging and transcriptomic studies
in horses,” Nature Communications, vol. 13, p. 40,
Jan. 2022.
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