

1 **Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid
2 assembly**

3
4 Baculoviruses are insect-infecting pathogens with wide applications as biological
5 pesticides, *in vitro* protein production vehicles and gene therapy tools. Its cylindrical
6 nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA
7 encoding proteins for viral replication and entry, is formed by the highly conserved major
8 capsid protein VP39. The mechanism for VP39 assembly remains unknown. We
9 determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious
10 nucleocapsid of *Autographa californica* multiple nucleopolyhedrovirus, revealing how
11 dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises
12 a unique protein fold conserved across baculoviruses, which includes a Zinc finger
13 domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that
14 VP39 assembles in several closely-related helical geometries. This VP39 reconstruction
15 reveals general principles for baculoviral nucleocapsid assembly.

16

17

1 **Helical reconstruction of VP39 reveals principles for**

2 **baculovirus nucleocapsid assembly**

3

4 Friederike M. C. Benning^{1,2}, Simon Jenni³, Coby Y. Garcia^{1,4}, Tran H. Nguyen¹, Xuewu
5 Zhang^{5,6}, Luke H. Chao^{1,2,*}

6

7 ¹Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114,
8 USA

9 ²Department of Genetics, Harvard Medical School, Boston, MA, USA

10 ³Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical
11 School, Boston, MA 02115, USA

12 ⁴Harvard College, Cambridge, MA 02138, USA

13 ⁵Department of Biophysics, University of Texas Southwestern Medical Center, Dallas,
14 TX 75390, USA

15 ⁶Department of Pharmacology, University of Texas Southwestern Medical Center,
16 Dallas, TX 75390, USA

17

18 *Correspondence: chao@molbio.mgh.harvard.edu

19

20 **Introduction**

21

22 Baculoviruses are a family of arthropod-infecting, double-stranded DNA viruses. The
23 biosafety properties and high target specificity of baculoviruses have led to their
24 development as biological control agents, with growing importance due to the increase in
25 insecticide resistance, compounded by climate disruption^{1,2}. Baculoviruses are also well-
26 established biotechnological platforms for heterologous protein expression³⁻⁷, vaccine
27 production⁸, and therapeutic gene delivery⁹. Despite decades of study, the structural
28 basis for baculovirus assembly has remained unknown.

29

30 The *Baculoviridae* family comprises four genera: alphabaculoviruses,
31 betabaculoviruses, gammabaculoviruses, and deltabaculoviruses, which all share a set
32 of 38 core genes¹⁰. Alphabaculoviruses are subdivided into group I and group II
33 nucleopolyhedroviruses (NPV), which differ in their genomic content¹¹. *Autographa*
34 *californica* multiple nucleopolyhedrovirus (AcMNPV) is an extensively studied group I
35 alphabaculovirus, and a model system for baculovirus molecular biology. The circular
36 baculoviral genome ranges from 80-180 kb in size and encodes for 90-180 genes^{12,13}.
37 Upon synthesis in the viral stroma of the host nucleus, the baculovirus genome is
38 packaged into rod-shaped nucleocapsids of 20-60 nm in diameter and 200-400 nm in
39 length¹⁴⁻¹⁶. A hallmark of baculoviruses is the presence of two morphologically and
40 functionally distinct virion types, which depend on the stage of their biphasic life cycle.
41 Occlusion-derived virions (ODV) drive the primary infection in epithelial cells of the larval
42 midgut, initiating the release of budded virions (BV), which spread the infection to other
43 cells in the host. Outside the host, a protein matrix protects nucleopolyhedroviral ODVs
44 in occlusion bodies. While ODVs and BVs differ in the origins and composition of their
45 bilayer envelopes, they both share a common nucleocapsid structure^{14,17}.

46

47 The 39 kDa protein VP39 is the most abundant component of the nucleocapsid, with
48 homologs in alpha- and betabaculoviruses¹⁰. VP39 forms the capsid shell encasing the
49 nucleocapsid core¹⁸⁻²⁰. Deletion of VP39 in *Bombyx mori* NPV (BmNPV) and AcMNPV
50 results in complete loss of budded virions, nucleocapsids, and AcMNPV replication^{21,22}.

51

52 Mutation of glycine 276 to serine (G276S) in BmNPV VP39 results in fewer infectious
53 budded viruses²³. To date, the field has lacked high resolution understanding of
54 baculovirus nucleocapsid assembly²⁴. Helical diffraction analysis of negatively-stained
55 nucleocapsids of the betabaculovirus *Spodoptera litura* granulovirus (SIGV) suggested a
56 12-start helix with stacked rings parallel to the helical axis¹⁵. Two helical reconstructions
57 of *in vitro* assembled *Helicoverpa armigera* NPV (HearNPV) at 14 Å and 21 Å resolution
58 reported VP39 helical assemblies that varied in diameter¹⁶.

59

60 Mature baculoviral nucleocapsids contain a distinct apical cap and a basal structure²⁵.
61 Based on these ultrastructural observations, the current model for baculoviral
62 nucleocapsid packaging proposes that an ATP-driven motor injects the viral genome into
63 empty, preformed capsids, as seen in other viruses with genome sizes larger than 20
64 kb²⁶⁻²⁹. First, VP39 assembles into empty capsids emanating from basal structures in the
65 viral stroma, a region in the host cell nucleus²⁵. Upon viral DNA replication in the viral
66 stroma, the viral phosphatase 38K dephosphorylates the viral protein P6.9, allowing it to
67 condense the DNA into nucleoproteins³⁰. Second, high concentrations of replicated DNA
68 trigger its packaging into the preformed capsids, presumably through a protein channel
69 at the apical cap²⁶. An ATP-dependent packaging motor is hypothesized to pump DNA
70 through the portal. Upon complete genome injection, a structural protein blocks the portal
71 to form mature nucleocapsids²⁶. Preformed capsids are observed to grow longer when
72 they are not packaged with viral genome, however, it remains unknown how capsid length
73 is regulated. Despite the identification of key components, major questions in
74 nucleocapsid assembly, DNA packaging, and capsid maturation remain.

75

76 Interactions with the VP39 protein regulate key steps in the baculovirus lifecycle,
77 including nucleocapsid-dependent transport. Retrograde transport of nucleocapsids to
78 the nucleus occurs through actin-based motility, and VP39 has been observed to interact
79 with actin and to be essential for cellular and nuclear actin polymerization^{31,32}. Interactions
80 of VP39 with the motor protein Kinesin-1 facilitate anterograde nucleocapsid transport
81 from the nucleus to the cell periphery along microtubules^{33,34}. In addition, VP39 has been

82 shown to interact with several viral proteins such as the phosphatase 38K, the DNA-
83 binding protein P6.9, a transcriptional activator IE-2, and FP25, which regulates the BV
84 to ODV^{30,35-40}. VP39 of Group I and Group II NPVs are relatively conserved, however,
85 while substituted VP39 self-assembles into empty capsid structures, no infectious
86 nucleocapsids were observed⁴¹. How the VP39 assembly templates cytoskeleton-
87 dependent transport, or viral genome packaging has also remained unknown.

88

89 The principles of VP39 assembly into capsids remain poorly understood, limiting
90 molecular understanding of the baculovirus lifecycle and restricting rational engineering
91 of capsid properties. Here, we present a 3.2 Å-resolution electron cryomicroscopy (cryo-
92 EM) structure of the AcMNPV VP39 protein and its assembly into helical nucleocapsids.
93 Structural studies of baculoviral nucleocapsids have proven challenging due to their
94 flexibility, heterogeneity, and fragility. We overcame these challenges by integrating cryo-
95 EM technical sample preparation and computational solutions. Our helical reconstruction
96 reveals that dimers of VP39 assemble into tubes of approximately 50 nm diameter and
97 several hundred μm in length. We find that the VP39 monomer comprises a unique mixed
98 alpha/beta fold, which includes a putative Zinc-finger domain facing the inside of the
99 nucleocapsids. VP39 dimers are stabilized by wrapping a loop around a β hairpin of the
100 adjacent monomer. Our analysis of the flexible subunit contacts provides insights into the
101 assembly of nucleocapsids of varying diameters. Additionally, the AcMNPV nucleocapsid
102 reconstruction reveals putative binding sites for the viral genome. We discuss the
103 implications of these results for nucleocapsid assembly, genome packaging, viral
104 trafficking, and infectivity.

105

106 **Results**

107

108 *Helical reconstruction of the cylindrical central trunk of the VP39 nucleocapsid*

109 We determined a helical reconstruction of the *Autographa californica* multiple
110 nucleopolyhedrosis virus (AcMNPV) nucleocapsid (Fig. 1). Cryo-EM images were
111 collected from secreted nucleocapsids purified from *Spodoptera frugiperda* Sf9 cells,
112 which ranged up to several micrometers in length and had a diameter of approximately
113 40 to 55 nm (Fig. 1A). To maximize the number of intact nucleocapsids, we used a
114 Sephadryl S-1000 SF resin for gel filtration and concentrated the sample using solvent
115 absorption chambers, which yielded more intact tubes than centrifugal concentrators.
116 Cryo-EM data collection was greatly facilitated by graphene-supported grids, which
117 increased particle yield per micrograph by a factor of 5 and made this reconstruction
118 possible⁴². With an initial data set collected from conventional Quantifoil grids (16,402
119 segments from 45,000 micrographs), we were only able to obtain a low-resolution
120 reconstruction. We obtained 74,620 segments after manually picking tubes from 44,540
121 micrographs (Supplementary Fig. 1). 2D classification revealed significant variation in
122 tube diameter between classes (ranging from approximately 36 to 53 nm; Extended Data
123 Fig. 1), suggesting heterogeneity in the sample. Initial helical symmetry parameters (rise:
124 43 Å, twist: -7.3°) were derived from 2D class averages of 27,777 segments selected from
125 good-looking classes (see methods and Supplementary Fig. 1 for details)⁴³. The
126 segments within these classes had an outer diameter of 42.9 nm, and 3D maps
127 reconstructed from a further selection of 4,983 segments with D14 symmetry imposed
128 revealed clear secondary structure features⁴⁴. Fourier-Bessel indexing of the average
129 power spectrum of these 4,983 segments confirmed the initially determined helical
130 symmetry parameters (Supplementary Fig. 2). After further refinement of segment
131 alignment, helical symmetry parameters (final refined helical rise of 43.86 Å and helical
132 twist of -7.16°), correction for beam-induced aberrations, and optimization of movie frame
133 summation (see methods), we obtained a reconstruction with a resolution of 4.1 Å as
134 judged by its Fourier shell correlation (FSC) with the final atomic model (see below) and
135 applying a cutoff of 0.5 (Extended Data Fig. 2A and C).

136

137 In our reconstruction, individual VP39 subunits pack as dimers that assemble into 14
138 helical strands and together form the central cylindrical structure of the baculoviral
139 nucleocapsid (Fig. 1C).

140

141 *Local reconstruction and modeling of the VP39 capsid protein*

142 To improve the resolution for *ab initio* model building of the VP39 structure, we used
143 a local reconstruction approach, focusing on aligning four adjacent VP39 dimers after
144 symmetry expansion of the segment particle stack that we used for the helical
145 reconstruction to 209,286 images (see methods). To improve the helical and local
146 reconstructions, we then used the VP39 dimer in a supervised classification approach to
147 identify segments that classified with the most abundant helical symmetry and
148 corresponded to 0-2% of tube flattening. The resulting 19,012 segments were used for a
149 final round of helical and local reconstruction (see methods and Supplementary Fig. 1).

150

151 After local alignment, we estimated the overall resolution of the four-dimer
152 reconstruction to be approximately 3.2 Å (Fig. 1D, Extended Data Fig. 2B and D,
153 Extended Data Fig. 3). The density map revealed unambiguous side-chain densities
154 (Extended Data Fig. 4). We initially used ModelAngelo for model building⁴⁵, where we
155 observed that—without providing an amino-acid sequence—the program was able to
156 output an almost complete trace of the VP39 structure with a high degree of correct amino
157 acid assignments (64% identity, 77% similarity), confirming the visually assessed quality
158 of the reconstruction. We completed the model by manual building in Coot⁴⁶. The first 11
159 residues of the N terminus and the last 27 residues of the C terminus of VP39 were
160 unresolved in our cryo-EM reconstruction and were not included in the model
161 (Supplementary Table 1).

162

163 *Structure of the A. californica MNPV VP39 capsid protein*

164 The helical reconstruction reveals that VP39 is assembled as dimers that form a
165 compact repeat unit of 107 Å x 50 Å x 43 Å (Fig. 2A). Each dimer subunit comprises a
166 mixed alpha/beta fold, with extensive interdigitation of elements with its partner in the
167 dimer (Fig. 2B, D). Protein fold-similarity searches of our determined VP39 monomeric

168 unit, using the Dali Protein Structure Comparison Server⁴⁷ and Foldseek⁴⁸, did not result
169 in significant hits from previously determined or predicted structures (Z score < 5 for
170 DALI), indicating the VP39 fold we describe here had not been previously observed
171 experimentally.

172

173 The N terminus of the VP39 polypeptide chain folds into a Zinc finger (ZF) consisting
174 of three short α helices, α 1– α 3 (residues 12-57; Fig. 2C). The VP39 ZF consists of a
175 conserved C-x17-C-x12-C-x2-H motif (Extended Data Fig. 5). The Coulomb potential map
176 reveals strong signal in the vicinity of cysteine 18, cysteine 36, cysteine 49, and histidine
177 52, which are positioned for tetrahedral coordination of a metal ion. Based on the nature
178 and distances of the donor residues, which occur most frequently in Zinc-coordination
179 groups⁴⁹, we placed a Zinc metal ion at the center of the coordination group. The ZF faces
180 the luminal volume of the VP39 nucleocapsid assembly and is surrounded by positively
181 charged residues, consistent with a role in binding viral DNA (Fig. 2E; Extended Data Fig.
182 5, Extended Data Fig. 6).

183

184 Following the ZF, a short linker connects to a long β hairpin (consisting of β 1 and β 2),
185 which we refer to as the ‘antenna’. An unstructured 10-residue long polypeptide segment
186 links the antenna to the mixed alpha/beta ‘claw’, which cradles the ZF domain. A 25 \AA -
187 long finger (residues 19-36) of the ZF extends parallel to α helices α 8- α 10 of the claw
188 and α helix α 3 perpendicular to the finger region. A flexible 12-residue long stretch of the
189 polypeptide chain leads from the claw to a distinct sub-region containing three α helices
190 encircling a four-stranded β sheet. We refer to this section as the ‘glider’ region. The glider β
191 region sits against the antenna and claw, completing the core VP39 domain. The glider β
192 sheet comprises two central parallel β strands flanked by antiparallel β strands. A 75-
193 residue long ‘lasso’-like extension from the glider β sheet forms a three-stranded
194 antiparallel β sheet with strand β 3 of the claw and wraps around the antenna domain of
195 the adjacent monomer on the internal face of the tube. It then threads back into the glider
196 domain as internal strand β 9 (residues 226-300; Fig. 2D).

197

198 Residues 252-261 lie on a flexible loop that is exposed to the inside of the
199 nucleocapsid. While there is density for the peptide backbone in this region, side chain
200 density is not resolved.

201

202 *VP39 monomers wrap around their neighbor to form a dimeric helical repeat unit*

203 The intra-dimer interface is stabilized by the 75-residue long lasso loop, parts of which
204 protrude into the adjacent monomer of the repeat domain and wrap around its antenna
205 domain (Fig. 2D). The dimer interface consists primarily of hydrophobic contacts between
206 residues 225-291 of the lasso region of one monomer and residues 62-72 of the antenna
207 of the adjacent monomer. An additional hydrogen bond is formed between aspartate 44
208 in the ZF region and tyrosine 288 in the lasso region. Further stabilizing interactions
209 between the lasso loop and the antenna include salt bridges between lysine 273 and
210 aspartate 70, as well as aspartate 282 and lysine 75. An intra-dimer lasso to lasso
211 electrostatic connection occurs between arginine 225 and aspartate 245 (Supplementary
212 Table 2). The interdigitated nature of the dimer interface together with the partial wrapping
213 around the neighboring monomer gives the two monomers the characteristics of
214 interlocking chains.

215

216 *Residues on flexible linkers connect helix repeat units*

217 We refer to inter-dimer contacts, as opposed to intra-dimer contacts, for interactions
218 between the VP39 dimeric helical repeat units. Using the PDBePISA tool⁵⁰, we identified
219 four inter-dimer contacts, which are all primarily mediated by hydrogen bonding (Fig. 3,
220 Supplementary Table 3). These inter-dimer subunit contacts contribute to nucleocapsid
221 stability.

222

223 Lateral contacts stabilizing adjacent units in the nucleocapsid (Fig. 3, square symbol)
224 are predicted to be the strongest inter-dimer interactions of the helical assembly (the
225 theoretical total gain in solvation free energy upon interface formation is $\Delta G_{\text{sol}} = -13.8$
226 kcal/mol; obtained from analysis using PDBePISA and defined as the difference in total
227 solvation energies of isolated and interfacing chains). These contacts are mediated by
228 one pair of hydrophobic residues on two neighboring claw regions, which include the

229 conserved cysteine 169. Residues involved reside on a flexible loop and on the outermost
230 α helix (α 10) of the claw. Notably, cysteine 169 is within 5.5 Å (C_β - C_β distance) of another
231 cysteine (Cys 132) of a laterally adjacent unit. Both cysteines were reduced even though
232 the condition during purification was oxidizing (Extended Data Fig. 7).

233

234 The VP39 nucleocapsid is stabilized by two distinct types of interactions along the
235 helical axis, referred to as 'axial' contacts hereafter. Type-i axial contacts are exclusively
236 hydrophobic and occur between residues of the claw and lasso regions with residues of
237 the C terminus (A-D, A'-D', B-C, and B'-C'; $\Delta G_{\text{sol}} = -3.4$ kcal/mol; circled 'i' symbol in Fig.
238 3). Type-ii axial contacts occur between monomers A' with D and B' with C ($\Delta G_{\text{sol}} = -6.2$
239 kcal/mol; circled 'ii' symbol in Fig. 3). Type-ii axial contacts are mediated primarily by
240 hydrophobic interactions of residues on the exposed, flexible portions of the lasso loops
241 at the periphery of the subunit and a salt bridge, which links glutamate 275 and lysine
242 269.

243

244 Additionally, a hydrophobic contact stabilizes the axial-lateral interaction between the
245 highly conserved glutamate 139 in the claw of monomer A' and the peptide backbone of
246 phenylalanine 26 in the ZF region of monomer C ($\Delta G_{\text{sol}} = -5.0$ kcal/mol; hexagon symbol
247 in Fig. 3).

248

249 *Conservation of the VP39 fold across all baculoviruses*

250 To analyze the conservation of the VP39 fold and its interactions within the
251 nucleocapsid across baculoviruses, we aligned 73 sequences of VP39 (the final
252 alignment included sequences of 55 alphabaculoviruses, 15 betabaculoviruses, 2
253 gammabaculoviruses, and 1 deltabaculovirus) (Supplementary Fig. 3, Supplementary
254 Fig. 4). In our alignments, the Zn-coordinating residues (cysteine 18, cysteine 36, cysteine
255 49 and histidine 52 in AcMNPV) in the ZF region are conserved in all 73 sequences.
256 Moreover, several residues in helices in the claw and glider regions, which face the ZF
257 coordination center (α 7, α 8, α 10, α 13), are highly conserved. Sequence conservation
258 extends to several intra-dimer contacts as well as interactions between helical repeat
259 units, including residues of the lasso region (residues tyrosine 250, leucine 266,

260 isoleucine 268, valine 271, phenylalanine 274, glutamate 289), residue aspartate 44 in
261 the ZF region, and cysteine 132, glutamate 139 and cysteine 169 in the claw
262 (Supplementary Table 4). Additionally, a stretch of residues across the entire β sheet in
263 the glider region, which faces the outside of the tube, is conserved (Fig. 4A).

264

265 We generated protein structure predictions of VP39 dimers from six selected viruses
266 using AlphaFold2^{51,52}. To cover a wide range of baculoviral diversity, we selected
267 sequences of a closely related alphabaculovirus (BmNPV), more distantly related
268 alphabaculoviruses (HaNPV and SeNPV), and two betabaculoviruses (PxGV and SIGV;
269 also called granuloviruses) for model prediction (Supplementary Fig. 5 for prediction
270 confidence). Sequence-independent superposition of the predicted models onto our
271 AcMNPV VP39 dimer structure reveals a high conservation of the VP39 dimer fold (Fig.
272 4B; 0.8-2.1 Å RMSD by residue). We limited the following model comparisons to regions
273 of high prediction confidence (teal to blue on the local Distance Difference Test (IDDT)
274 bar in Supplementary Fig. 5). In the ZF coordination center, which was predicted with high
275 confidence, the four Zn-coordinating residues of all six models align with those in the
276 reconstructed VP39 dimer (Fig. 4C, D). While all baculovirus dimers are predicted to
277 share the same overall architecture, granulovirus models exhibit longer loops between
278 α 7 and α 8 in the claw region compared to the alpha- and gammabaculovirus models (4
279 residues in alphabaculoviruses, 11 residues in PxGV and 32 residues in SIGV; Fig. 4E).
280 Alphabaculoviruses also feature longer C termini than beta- and gammabaculoviruses,
281 whose chains terminate directly after the β 9 strand in the glider region. In the closely
282 related alphabaculoviruses of *A. californica* and *B. mori*, residues 242-248 of the lasso
283 region bulge out towards the outer surface of the tube, while it consists of a shorter loop
284 in other models (234-246 in HaNPV, 237-239 in SeNPV, 258-260 in PxGV, 254-256 in
285 SIGV). While all models are predicted to have a lasso region, the prediction confidence
286 for its central part is low. In contrast to the alpha- and betabaculovirus models, where the
287 lasso encircles the antenna of the adjacent monomer, the lasso loop of the
288 gammabaculovirus NsNPV is sandwiched between the antenna and the glider regions of
289 the neighboring monomer (residues 232-300).

290

291 Our AcMNPV VP39 structure reveals that the luminal face of the dimer exhibits a net
292 positive surface charge with a few distinct negative residues lining the dimer interface.
293 The outward-facing side of the dimer features a band of positive charges in lateral
294 direction. This charge pattern is conserved in the predicted alphabaculovirus structures
295 and to a smaller extent in the beta- and gammabaculovirus models (Extended Data Fig.
296 8).

297

298 The multiple sequence alignment shows that residues involved in lateral, type-ii, and
299 axial-lateral contacts are conserved across all baculoviruses. In particular, residues
300 cysteine 169 and valine 271 are present in all baculoviruses, and glutamate 139, is
301 present as a glutamate or aspartate. The candidate disulfide-partner cysteine 132 is
302 conserved in all baculoviruses (Supplementary Fig. 3). In contrast, residues asparagine
303 264 and leucine 266, which are involved in type-i interfaces, and the axial-lateral contact
304 residue phenylalanine 26 are conserved exclusively in alphabaculoviruses but not in other
305 baculoviruses (Supplementary Fig. 3; Supplementary Table 4).

306

307 Superposition of the predicted baculoviral dimer structures shows that both salt
308 bridges that stabilize the intra-dimer interface (lysine 273 and aspartate 70; aspartate 282
309 and lysine 75) are conserved in alphabaculoviruses. In BmNPV, lysine 273, aspartate 70,
310 aspartate 282, and lysine 75 structurally align with the identical residues in AcMNPV. In
311 HaNPV, structural alignment of arginine 261 with lysine 273 and glutamate 68 with
312 aspartate 70 suggest that this salt bridge may be conserved. In SeNPV, lysine 274,
313 glutamate 69, glutamate 277, and arginine 75, which faces in the opposite direction, are
314 structurally aligning with the salt bridge residues in AcMNPV.

315

316 *Nucleocapsid polymorphism*

317 Heterogeneity in helical assemblies of biomolecules has been observed in several
318 cases when analyzed by cryo-EM⁵³⁻⁵⁶. Possible reasons for the observed heterogeneity
319 were variations in the helical packing of subunits, and artifacts introduced during cryo-EM
320 sample preparation, such as deformation or flattening of assembled tubes during
321 vitrification. We observed nucleocapsids of varying diameters on micrographs and the

322 distribution of the measured diameter of all extracted segments is shown in Extended
323 Data Fig. 1A, suggesting that not all nucleocapsids had the same helical symmetry as we
324 applied during the reconstruction of a subset of segments. This heterogeneity was
325 consistent with differences distinguishable by 2D and 3D classification.

326

327 To further investigate the degree of polymorphism in our observed nucleocapsids, we
328 applied a supervised classification approach, to sort segments into classes with different
329 helical geometries and/or potential tube flattening induced by sample preparation. The
330 helical geometry of an AcMNPV nucleocapsids can be described by wrapping a 2D
331 “crystal” lattice into a tube without creating a seam (Fig. 5A). This wrapping can be done
332 by choosing different wrapping vectors, whose components are defined by the numbers
333 n_1 and n_2 of unit cell vectors of the 2D lattice ($n_1\mathbf{a}$, $n_2\mathbf{b}$). Each wrapping vector leads to a
334 tube with unique helical geometry. The length of the wrapping vector corresponds to the
335 circumference of the helix. If n_1 and n_2 are integer times of each other, the helical
336 assembly has rotational symmetry, e.g. such as in our helical reconstruction (above),
337 which is described by a wrapping vector with n_1 and n_2 of both 14 and consequently has
338 C14 symmetry (or D14 if the dyad of the VP39 dimer is taken into account). We therefore
339 created 144 polymorphic 3D reference structures, each of which with a distinct helical
340 symmetry, for supervised 3D classification (Fig. 5B-D). By choosing different wrapping
341 vectors, but maintaining the geometry of the 2D lattice, the local inter subunit contacts
342 between VP39 dimers (Fig. 3) would not be substantially altered. In addition, we applied
343 tube flattening (10 per reference), thus yielding a set of 1440 3D reference structures for
344 supervised classification (see methods, Supplementary Figs. 6 and 7 for details).

345

346 After global alignment (C1, no symmetry imposed) of 72,013 extracted segments to
347 the 1440 3D reference structures and assigning each segment to the corresponding 3D
348 reference, which gave the highest score, we observed that 40% of the segments were
349 part of capsids that assembled with a helical symmetry of $n_1=14$ and $n_2=14$, which is the
350 symmetry of our helical reconstruction (Fig. 5D). Most of the remaining segments
351 partitioned to helical symmetries with wrapping vectors in the vicinity of the [$n_1=14$, $n_2=14$]
352 helical geometry. A closer inspection of the segments belonging to tubes with [$n_1=14$,

353 $n_2=14$] symmetry revealed that only approximately 14% of these segments aligned best
354 to the non-flattened 3D reference. Different degrees of flattening were observed for the
355 remaining [$n_1=14$, $n_2=14$] segments, and classes with different helical symmetries showed
356 comparable flattening distributions (Fig. 5E), suggesting that this type of tube distortion
357 did indeed occur during sample preparation and accounts, in addition to different helical
358 geometries, for the observed distribution of tube diameters in the cryo-EM images and
359 the observed heterogeneity of 2D class averages (Extended Data Fig. 1). The imposed
360 symmetries for segments partitioning into 3D references are consistent when comparing
361 the direct fit of averaged power spectra of calculated and observed segments
362 (Supplementary Fig. 6, Supplementary Movies 3 and 4). Given the caveats associated
363 with analyzing Fourier spectra^{57,58}, interpretable maps would be the best way to verify
364 correct helical symmetry assignments. However, while we calculated reconstructions for
365 segments of the three most populated, 0-2% flattened classes (Supplementary Fig. 8),
366 we did not have a sufficiently high number of segments to yield an interpretable map to
367 unambiguously prove the correct helical symmetry assignments for symmetries other
368 than our [14,14] reconstruction (Supplementary Table 5).

369

370 **Discussion**

371

372 Baculoviruses have been used since the 1980s as gene vectors in academic and
373 industrial research, and as pesticides against insect crop infestations. The rod-shaped
374 nucleocapsid protects the large double-stranded viral DNA. While earlier work identified
375 VP39 as the major capsid protein, how the baculoviral nucleocapsid assembly is formed
376 by VP39 subunits has remained unknown until now¹⁸⁻²⁰. Here, we present a high-
377 resolution helical reconstruction by cryo-EM of the *A. californica* multiple
378 nucleopolyhedrovirus (AcMNPV) nucleocapsid central trunk, which we purified from
379 infected *Spodoptera frugiperda* Sf9 cells. At 3.2 Å overall resolution, side chains were
380 clearly identifiable, which allowed for us to build a high-quality model of the VP39 protein
381 within the local reconstructed cryo-EM volume (Fig. 1).

382

383 Our reconstruction allows an in-depth analysis of the VP39 assembly. We find that
384 VP39 forms a dimeric repeat unit that assembles predominantly into a 14-strand helix.

385 The VP39 dimer subunit adopts a unique mixed alpha/beta fold (Fig. 2), which was not
386 recognized by the DALI structural comparison server and Foldseek. The fold includes a
387 Zn-finger region with a Zn²⁺ ion coordinated by a conserved CCCH motif, which is facing
388 the capsid lumen. Moreover, it is surrounded by basic residues, priming this region as a
389 possible binding pocket for the viral DNA. Notably, a 75-residue long lasso loop embraces
390 the antenna region of the adjacent VP39 monomer in each repeat unit, providing
391 significant additional dimer stability and thereby forming interlocking dimer pairs.

392

393 A mutagenesis study of BmNPV VP39 identified the conserved glycine 276 residue
394 as important for proper nucleocapsid assembly²³. Morphologically aberrant
395 nucleocapsids have been previously observed for a G276S mutant²³. Our reconstruction
396 reveals that glycine 276 is nestled in between several axial assembly contacts facing the
397 nucleocapsid lumen and introduces a significant kink in the lasso region (Fig. 3, Extended
398 Data Fig. 9). This explains how glycine 276 plays an important role in maintaining the
399 integrity of the lasso loop and associated inter-dimer contacts.

400

401 Actin-based motility has been shown to accelerate nuclear baculoviral nucleocapsid
402 transit and egress⁵⁹. Published work identified residues 192-286 in BmNPV VP39 to be
403 required for nuclear actin polymerization³¹. Our reconstruction shows that these residues
404 form a spiraling pattern along the exterior side of the capsid shaft (Extended Data Fig.
405 10). AcMNPV shares 97% sequence identity with BmNPV for this putative actin-binding
406 site.

407

408 To further investigate observed variations in nucleocapsid diameter, we performed a
409 supervised 3D classification analysis of our dataset (Fig. 5). The analysis allowed us to
410 determine to which extent VP39 assembles into nucleocapsids with different helical
411 geometries (while maintaining essentially identical inter-dimer contacts), and to which
412 extent cryo-EM sample preparation distorted the nucleocapsid tubes¹⁴. We found that
413 40% of the tubes in our dataset assembled with [n₁=14, n₂=14] helical symmetry. Most of
414 the remaining segments belonged to tubes of either C15 or C13 symmetry, which
415 correspond to occasional insertions or deletions of single subunits in the helical plane.

416 These differences in helical symmetries generate nucleocapsids that match the published
417 range of AcMNPV diameters. Our analysis furthermore indicated that most of the tubes
418 were flattened in our preparation. While we cannot unambiguously identify the source of
419 flattening in our sample, it is noteworthy that tube flattening has been observed for cilia in
420 published work⁶⁰, with one study describing tube compression parallel to the ice plane on
421 the EM grid^{60,61}.

422

423 In contrast to more rigid helical assemblies, the flexibility and elasticity of filaments
424 often present challenges for high-resolution structural analysis. Filament conformational
425 heterogeneity or variation in assembly state can pose particular challenges for identifying
426 the correct helical symmetry at low resolution. Frequently, near-atomic resolution is
427 required to unambiguously distinguish the correct symmetry parameters⁶². For our VP39
428 nucleocapsids, the fragile nature of the sample and the variety of observed nucleocapsid
429 diameters likely hampered previous attempts at structure determination. We overcame
430 these limitations by combining the use of graphene-coated EM-grids, solvent absorption
431 chambers for sample concentration. Careful classification to select a subset of
432 heterogenous segments and focused local reconstruction approaches provided critical
433 steps to obtain our near-atomic resolution final maps.

434

435 Earlier cryo-EM analysis of AcMNPV nucleocapsid ultrastructure in budded vesicles
436 reported two distinct AcMNPV nucleocapsid morphologies, which differ in diameter¹⁴.
437 Similarly, low-resolution cryo-EM reconstructions of recombinantly expressed and self-
438 assembled HaNPV VP39 nucleocapsids reveal two capsid morphologies, which differ in
439 diameter (90% self-assemble into the narrower one)¹⁶. Each study compares the two
440 nucleocapsid morphologies to relaxed and compressed springs, thereby proposing that
441 the nucleocapsid may expand or compress in accommodating the viral genome. We find
442 that most of the residues that form inter-dimer contacts are on flexible loops, which may
443 facilitate longitudinal capsid stretching and play a role in pushing the viral genome out of
444 the nucleocapsid.

445

446 Our results show that the Zn-coordinating residues and several inter- and intra-dimer
447 contacts of the VP39 dimer are conserved across alpha-, beta- and gammabaculoviruses.
448 Based on structure predictions, we reveal that alpha- and betabaculovirural VP39 shares
449 the same dimeric protein fold and general surface charge patterns. The charge pattern
450 across the luminal face of the nucleocapsid suggests a surface primed for interacting with
451 multiple strands of packaged DNA (Extended Data Fig. 6). While the low-confidence
452 predicted lasso loop in gammabaculoviral VP39 is inserted between the antenna and
453 glider regions of the adjacent monomer and introduces stronger bending of the VP39
454 dimer towards the capsid inside, all other regions share the same protein fold as alpha-
455 and betabaculoviruses. The differences in tube diameter for different baculoviral species
456 are likely due to different inter-dimer contacts. Based on the conserved fold and overall
457 architecture, our reconstruction reveals general principles for baculoviral nucleocapsid
458 assembly. Future studies will explain outstanding questions including how the capsid is
459 capped during maturation and how nucleocapsid interactions with cytoskeletal elements
460 regulate the viral lifecycle.

461
462

463 **Materials and methods**

464

465 **Nucleocapsid expression and purification**

466 *Spodoptera frugiperda* Sf9 cells in SF900 III SFM medium (Thermo Scientific) were
467 transfected with purified bacmid from DH10EMbacY cells (Intact Genomics, USA),
468 carrying the unrelated decahistidine- or FLAG-tagged human constructs, and FuGENE 6
469 transfection reagent (Promega, USA), propagated, and stored as baculovirus infected
470 insect cell stocks (BII Cs)⁶³. Nucleocapsids were harvested from Sf9 cells 96 hours after
471 incubation with BII Cs by centrifugation at 1,000 g for 20 min and lysed in lysis buffer (50
472 mM HEPES, 0.25 M NaCl, 40 mM imidazole, 5% glycerol, 5 mM EDTA, pH 7.5) by
473 sonication using a Branson 450 Digital Sonifier (Marshall Scientific, USA) with 10 second
474 pulses at 50% amplitude for 12 min. The lysate was cleared by ultracentrifugation at
475 142,000 g and the pellet solubilized in lysis buffer with 1% (w/v) lauryl maltose neopentyl
476 glycol (LMNG), followed by homogenization using a Polytron PT 1200 E homogenizer
477 (Kinematica, Switzerland), sonication and incubation for 1 hour at 4°C. Solubilized protein
478 was cleared by ultracentrifugation at 46,400 g and purified by metal affinity
479 chromatography using a Nickel-charged EconoFit Nuvia IMAC column (Bio-Rad, USA).
480 Protein was eluted in 20 mM HEPES, 50 mM NaCl, 5% glycerol, 1 mM EDTA, 0.02%
481 (w/v) LMNG, pH 7.5 with a linear gradient to 1 M imidazole. Lysate containing FLAG-
482 tagged target protein was purified using ANTI-FLAG M2 Affinity Gel resin (Sigma-Aldrich,
483 USA) and eluted with 3x FLAG peptide (APExBIO, USA). Following concentration by
484 centrifugation (Amicon Ultra, Millipore Sigma, USA) the eluate was buffer exchanged into
485 20 mM Triethanolamine, 50 mM NaCl, 5% glycerol, 1 mM EDTA, 0.02% LMNG with a
486 HiPrep 26/10 Desalting column (GE Healthcare, USA). It was further purified by anion
487 exchange chromatography using HiTrap Q HP resin (Cytiva, USA) by a linear gradient to
488 1 M NaCl. The sample was concentrated to 0.5 ml and purified by size exclusion
489 chromatography using Sephadryl S-1000 SF resin (Cytiva, USA). Purified nucleocapsid
490 tubes were concentrated using Vivapore solvent absorption chambers (Sartorius,
491 Germany) and subsequently used for further processing. The presence of tubes was
492 confirmed by negative stain transmission electron microscopy (TEM).

493

494 **Negative stain TEM**

495 Glow-discharged 200 mesh FCF200-CU-SB carbon-coated copper grids (Electron
496 Microscopy Sciences, PA, USA) were prepared by adsorbing 3.5 μ l of the sample for 45
497 seconds, followed by three washes with water before staining three times for 10 seconds
498 each in 1.25% uranyl formate. The grids were imaged either on a FEI Morgagni
499 microscope operated at 80 keV equipped with an AMT Nanosprint5 camera (Brandeis
500 Electron Microscopy Facility, Brandeis University, Waltham, MA, USA) or on a Phillips
501 CM10 operated at 100 keV equipped with a Gatan UltraScan 894 CCD camera (Molecular
502 Electron Microscopy Suite, Harvard Medical School, Boston, MA, USA).

503

504 **Single-particle cryo-electron microscopy**

505 *Graphene grid preparation*

506 Graphene grids were prepared as described by Han *et al*⁶⁴. Graphene on copper foil
507 (Graphene Supermarket, USA) was coated with methyl methacrylate MMA(8.5)MAA EL
508 6 (Kayaku Advanced Materials, USA) using a tabletop centrifuge converted into a spin
509 coater at the speed of 1,000 rpm for 1 min. Backside graphene was removed by glow
510 discharge at 30 mA for 30 seconds using a PELCO easiGlow system (Ted Pella, USA).
511 A MMA/graphene bilayer was created by etching off the copper layer in 1 M ammonium
512 persulfate (Sigma, USA) for 20-30 min, followed by washing the bilayer in water.
513 MMA/graphene was applied onto 300 mesh gold-coated Quantifoil R 0.6/1 copper grids
514 (Electron Microscopy Sciences, USA) by using the grids to scoop out the bilayer, followed
515 by air-drying the MMA/graphene-supported grids. The graphene was annealed to the
516 grids by incubating at 130°C for 20 min. After cooling the grids to room temperature, the
517 MMA layer was removed by two incubation steps in acetone for 30 min each, followed by
518 incubation in 2-propanol for 20 min. Grids were air-dried, followed by incubation at 130°C
519 for 20 min. Graphene-coated grids were either used directly or vacuum-sealed for
520 storage.

521

522 *Specimen preparation and cryo-EM data acquisition*

523 Immediately prior to sample application, graphene-grids were made hydrophobic by
524 exposure to UV/ozone for 10 min using a ProCleaner (Bioforce Nanosciences, VA, USA).

525 3.5 μ l of sample were applied to the graphene-side of the grids, incubated for 30 seconds,
526 followed by blotting for 6 or 8 seconds using a Vitrobot Mark IV at room temperature,
527 100% humidity, with a blotting force of +15, and vitrified in liquid ethane cooled to liquid
528 nitrogen temperature. Grids were imaged using a Titan Krios (Thermo Scientific, MA,
529 USA) microscope operated at 300 keV and equipped with a K3 direct electron detector
530 and a GIF BioQuantum energy filter (Gatan, CA, USA). Two data sets of 19,883 and
531 26,113 movies, respectively, were collected using SerialEM version 3.8.5 at a nominal
532 magnification of 105,000x with a pixel size of 0.825 \AA and a defocus range of -0.4 to -1.9
533 μ m. Movies were acquired with 2.7 seconds exposure time, fractionated into 52 frames
534 and 13.88 e⁻/pixel/s (total dose of 55.06 e⁻/ \AA^2) for data set 1 and 13.683 e⁻/pixels/s (total
535 dose of 54.28 e⁻/ \AA^2) for data set 2.

536

537 *Cryo-EM data processing and initial helical reconstruction*

538 We collected two large data sets for this reconstruction (see Supplementary Fig. 1 for
539 flow-chart). A first data set of 19,883 movies was corrected for beam-induced motion
540 using the UCSF MotionCor2⁶⁵ program and the contrast transfer function (CTF) was
541 estimated with CTFFIND4.1⁶⁶. Micrographs with an estimated resolution worse than 10 \AA
542 (as judged by the quality of the fit of observed Thon rings) were removed. In the remaining
543 19,145 micrographs, we manually defined the start-end coordinates of observed tubes in
544 Relion 4.0.1 and extracted 27,706 segments with the following parameters: 500 \AA tube
545 diameter, number of asymmetrical units: 1, helical rise: 44.2 \AA , box size: 228 pixels with
546 3.3 $\text{\AA}/\text{px}$ (corresponding to four-times binned data)^{44,67,68}. The helical symmetry
547 parameters, which were used for segment extraction, were obtained by Fourier-Bessel
548 analysis of 2D class averages of an initial data set of AcMNPV VP39 nucleocapsids on
549 conventional Quantifoil grids (as opposed to final data collected on graphene-coated gold
550 grids).

551

552 Following six rounds of 2D classification in Relion, we generated an initial volume from
553 4,512 segments using relion_helix_inimodel2d⁶⁹. Class averages from 2D classification
554 in cisTEM (v. 1.0.0⁷⁰) showed more detailed subunit features than those produced with
555 Relion. We therefore subjected the 27,706 initially picked segments to three rounds of 2D

556 classification in cisTEM v. 1.0.0⁷⁰, selected class averages that showed detailed subunit
557 features and tubes of the same diameter, and generated a helical reconstruction from
558 9,344 selected segments and the initial volume in CryoSPARC (twist: 7° with a search
559 range of -15° to 15°, rise: 43.8 Å with a search range of 20-60 Å, C15, non-uniform
560 refinement option)^{71,72}. The resulting map was used as an input model for helical
561 reconstruction in CryoSPARC with 8,288 segments from two rounds of 2D classification
562 of the initial 27,706 segments in cisTEM (twist: 7° with a search range of -15° to 15°, rise:
563 44 Å with a search range of 20-60 Å, C14, non-uniform refinement option). Finer selection
564 in these and subsequent rounds of 2D classification, where we focused exclusively on
565 class averages with C14 rotational symmetry, led to switching from C15 to C14 symmetry
566 for helical reconstruction.

567

568 The initial collection of 19,883 movies proved to be insufficient for calculating a 3D
569 reconstruction with identifiable secondary structure elements. We therefore had to
570 increase the number of segments and collected a second set of 26,113 movies. These
571 movies were pre-processed in Relion as described above for data set 1, yielding 46,914
572 segments, which were extracted with the following parameters: 500 Å tube diameter,
573 number of asymmetrical units: 1, helical rise: 44.2 Å, box size: 456 pixels with 1.65 Å/px
574 (corresponding to two-times binned data). Following two rounds of 2D classification in
575 cisTEM, 19,823 segments were combined with 7,954 segments from data set 1 (re-
576 extracted with a 456 px box at 1.65 Å/px and subjected to two rounds of 2D classification
577 in cisTEM). We determined initial helical symmetry parameters by indexing the power
578 spectra of these class averages using PyHI (Python v. 3.7)⁴³. The 27,777 segments were
579 used for helical reconstruction using the above mentioned C14-volume and applying D14-
580 symmetry in CryoSPARC (twist: 7.5° with a search range of -15° to 15°, rise: 44 Å with a
581 search range of 20-60 Å, D14, non-uniform refinement option). We used CryoSPARC for
582 helical reconstruction of the two-times binned data because secondary structures in maps
583 generated with Relion using the same input were slightly flattened. Following one round
584 of 3D classification (10 classes), in which we selected two classes with similar tube
585 diameter and refined each class separately using the helical refinement option in
586 CryoSPARC (twist: 7.5° with a search range of -15° to 15°, rise: 44 Å with a search range

587 of 20-60 Å, D14, non-uniform refinement option), a final helical refinement of the two
588 combined classes (4,983 segments, twist: 7.5° with a search range of -15° to 15°, rise: 44
589 Å with a search range of 20-60 Å, D14, non-uniform refinement option), resulted in a map
590 at 4.1 Å resolution (0.143 FSC at 4.1 Å using half maps, 0.5 FSC at 4.4 Å using map and
591 final model [see below]; Extended Data Fig. 2A and C). The correctness of the imposed
592 helical symmetry during reconstruction was supported by observation of resolved
593 secondary structures (α helices and β strands) in this map.

594

595 *Refined helical reconstruction*

596 One limitation of segment selection after 2D classification in cisTEM was the
597 program's inability to carry forward all particle metadata, such as the extraction
598 coordinates and name of the original micrographs. We therefore mapped back the 4,983
599 segments of the initial helical reconstruction to the original segment particle stack from
600 the combined two data sets. We did this by converting each image into a Python NumPy
601 array⁷³, calculating an MD5 checksum, and mapping identical checksums between the
602 two stacks using Python dictionaries. We then re-extracted with relion_preprocess the
603 selected 4,983 segments from the original micrographs with the following parameters:
604 box size: 912 pixels with 0.825 Å/px, background radius: 400 pixels (corresponding to
605 unbinned data) (Supplementary Fig. 1).

606

607 We prepared a 3D mask from the initial helical reconstruction with relion_mask_create
608 (--lowpass 4.2 --helix --z_percentage 0.6 --extend_inimask 10 --width_soft_edge 10). We
609 used cisTEM for particle alignment when working with large box sizes (912 cubic voxels)
610 because of its speed and limitations due to memory requirements when using other
611 software packages for alignment. To obtain a refined helical reconstruction from the 4,983
612 segments, we used the following protocol: (i) Local alignment with C1 symmetry of each
613 segment to the current 3D reference (symmetrized and masked) using refine3d from
614 cisTEM⁷⁰. (ii) Calculation of 3D reconstructions with C1 symmetry (full and half maps)
615 using relion_reconstruct. (iii) Refinement of the helical symmetry parameters in the C1
616 reconstructed maps using relion_helix_toolbox with a helical rise search range of ± 10 grid
617 points of 0.088 Å and a helical twist search range of ± 20 grid points of 0.014° (note that

618 because we assumed D14 symmetry a priori, we only searched for one set of helical
619 parameters). (iv) Symmetrization of the maps by first applying D14 symmetry using
620 `relion_image_handler` followed by applying helical symmetry using `relion_helix_toolbox`
621 with the refined helical parameters (`--cyl_inner_diameter` 380 `--cyl_outer_diameter` 501 -
622 `-z_percentage` 0.3 `-sphere_percentage` 0.9 `-width` 5). (v) Calculation of FSC curves from
623 the half maps. For this, we split the segments equally in the middle of the particle stack,
624 in order to avoid contribution of segments extracted from the same VP39 tube to both half
625 maps. (vi) We performed eight iterations of steps (i) to (v). (vi) Refinement of CTF
626 parameters with `relion_ctf_refine`, where we used per-particle defocus fitting; beam-tilt
627 refinement, and fitting of anisotropic magnification distortion for each of the particle
628 stack's 18 optics groups. (vii) Refinement of particle images with `relion_motion_refine`.
629 After two iterations of this protocol, we observed convergence of the calculated FSC
630 curves (Extended Data Fig. 2A and C). The helical rise refined to 43.86 Å and the helical
631 twist to -7.16° (Supplementary Table 1).

632

633 *Local alignment and reconstruction of VP39 dimers*

634 For local reconstruction, we symmetry expanded the 4,983 segment particle stack
635 metadata file with `relion_particle_symmetry_expand` in two steps. First, with `--helix` `--twist`
636 43.86 `--rise` -7.16 `--asu` 1. Second, with `--sym` C14. This yielded 42 particles per segment,
637 or an expanded stack of 209,286 images. After signal subtraction with `relion_project` of
638 the entire helical density, except a single set of four adjacent VP39 dimers, we obtained
639 209,286 signal-subtracted segment images. Since subparticle extraction from the motion-
640 refine corrected stack was not possible in Relion, we extracted subparticles with a box
641 size of 360 pixels from the 209,296 signal-subtracted segment images using custom made
642 Python scripts and IMOD programs⁷⁴. The subparticle box was centered on the center of
643 gravity of the four VP39 dimers. We used alignment by classification⁵³, followed by local
644 alignment with cisTEM⁷⁰ and local density averaging of the eight protomers with
645 `relion_localsym`. We used `sharpen_map` from cisTEM for postprocessing and map
646 sharpening. The FSC for the local reconstruction at different processing steps is shown
647 in Extended Data Fig. 2B and C. The final resolution was 3.2 Å (Extended Data Fig. 2D)
648 as judged by correlation between the half maps (Supplementary Table 1).

649

650 *Supervised classification of helical segments*

651 In order to determine the helical symmetry and extent of potential tube flattening upon
652 sample vitrification for all our extracted segments, we prepared a set of 3D references
653 with defined helical geometry and flattening for supervised classification.

654

655 We first calculated the unit cell vectors $\mathbf{a} = [27.91 \text{ \AA}, -43.86 \text{ \AA}]$ and $\mathbf{b} = [72.31 \text{ \AA}, 43.86$
656 $\text{ \AA}]$ of the underlying 2D “crystal” lattice that described the $[n_1=14, n_2=14]$ symmetry of our
657 4.1 \AA -resolution reconstruction. Different helical symmetries, where the local packing of
658 VP39 protomers is invariant (or almost invariant) by obeying the same 2D “crystal” lattice
659 and where the resulting tubes do not contain a seam, can be defined by a wrapping vector
660 $\mathbf{w} = n_1\mathbf{a} + n_2\mathbf{b}$ ⁷⁵. The wrapping vector defines how the 2D “crystal” lattice is wrapped into
661 a tube. It lies in the equator of the helix and its length corresponds to the circumference
662 of the helix (Fig. 5A). Thus, with \mathbf{a} and \mathbf{b} defined, we calculated the helical parameters x_1 ,
663 y_1, x_2, y_2 for any chosen lattice point $[n_1, n_2]$ by vector analysis and trigonometry using
664 NumPy⁷³ (Fig. 5B and C). x_1 and x_2 are the arc lengths with corresponding helical twist₁
665 and twist₂, respectively. y_1 and y_2 are the helical rise₁ and rise₂, respectively. If n_1 and n_2
666 are integer times of each other, the helical packing results in rotational symmetry ($x_1 = x_2$
667 and $y_1 = y_2$), e.g. C14 for the $[n_1=14, n_2=14]$ symmetry (Fig. 5B). If n_1 and n_2 are different,
668 there is no rotational symmetry (Fig. 5C).

669

670 We rigid-body fitted the refined VP39 dimer structure into the map of the $[n_1=14,$
671 $n_2=14]$ symmetry reconstruction and then used PyMOL to symmetry-expand it according
672 to the helical geometries for a chosen set of wrapping vectors in order to generate atomic
673 models of the full tubes (Fig. 5D). The lengths of the wrapping vectors for which we
674 calculated 3D references were between 1140 and 1660 \AA . This translated to diameters
675 between approximately 360 and 530 \AA , reflecting the observed distribution in diameters
676 of our imaged VP39 tubes (Extended Data Fig. 1). We first radially translated the dimer
677 to match its center of mass to the radius of the helix. Symmetry expansion then involved
678 rotation and translation according to the calculated helical twists and rises, followed by a
679 rotation around the radial vector of the dimer to account for the relative orientation of the

680 2D lattice for any given wrapping vector (Fig. 5B and C). To model flattening of the tubes,
681 we introduced deformation to elliptical helical geometry as previously described⁵³. We
682 used a scale of 1.00–1.09 for the major axis of the ellipse and made ten 3D references
683 for each wrapping vector (0–9% flattening) (Fig. 5B and C). We used SciPy⁷⁶ for
684 calculation of elliptical line integrals and to numerically determine the minor axis for a
685 given elliptical circumference. We matched helical twists to elliptical path lengths (putting
686 the dimer center of gravity to the correct x and y coordinates) and kept a reference vector
687 normal to the tangential plane of the elliptical helix (rotation of the dimer around an axis
688 along z and going through its center of gravity). An animation of the deformation of the
689 [n₁=14, n₂=14] symmetry tube is shown in Supplementary Movie 1. Supplementary Movie
690 2 shows the power spectra of the least and the most flattened classes for segments
691 corresponding to the [n₁=14, n₂=14] symmetry. We used the programs sfall and fftbig from
692 CCP4⁷⁷ to calculate structure factors and density maps from the modeled tubes (box size
693 = 912). This yielded 1440 3D references for supervised classification.

694

695 We used a supercluster computer where we had access to about 4000 CPUs for
696 parallelized classification of the full segment particle stack with 72,013 images. With
697 refine3d from cisTEM⁷⁰, we globally aligned each segment to each of the 1440 3D
698 references using two-times binned data. We limited the resolution for alignment to 12 Å
699 (dictated by the available computational resources), imposed C1 symmetry, and used a
700 spherical mask with an outer radius of 360 Å. We assigned each segment to the 3D
701 reference that gave the highest score and mapped the distribution onto the 2D “crystal”
702 lattice shown in Fig. 5D. To verify the helical symmetry assignments of segments after
703 supervised classification, we compared the direct fit between the averaged power spectra
704 of the segments and the averaged power spectra calculated from projections of the
705 corresponding 3D references (Supplementary Movies 3 and 4, Supplementary Fig. 6).
706 Supplementary Fig. 7 shows the class partitioning of subparticles derived from either 0%
707 or 2% flattened segments after classification without alignment. Given the challenges and
708 ambiguities associated with Fourier-Bessel indexing^{57,58}, we also calculated
709 reconstructions using all segments that partitioned into the three most populated, 0-2%
710 flattened classes (Supplementary Fig. 8). For this, we used a simplified reconstruction

711 protocol, in which we followed the main protocol for refined helical reconstruction but only
712 performed one iteration (instead of two) of alignment with cisTEM, reconstruction with C1
713 symmetry, map symmetrization, and refinement of CTF parameters with *relion_ctf_refine*.
714 In contrast to the main reconstruction protocol, where we symmetrized the maps by first
715 applying D14 symmetry, we used local symmetry instead, followed by applying helical
716 symmetry as done in the main reconstruction protocol. To compare the simplified
717 reconstruction protocol with the main reconstruction protocol, we applied this simplified
718 protocol to all 19,012 segments of the main [14, 14]-symmetric reconstruction and
719 obtained a reconstruction at 4.1 Å (3.6 Å with the main reconstruction protocol). To
720 compare the effect of having only a limited amount of segments available, as is the case
721 for the next most populated classes (1,349 segments for [13, 14] symmetry and 1,116
722 segments for [15, 14] symmetry), we randomly selected 1,196 segments from the [14,
723 14]-symmetric class and calculated a reconstruction using the simplified protocol, which
724 yielded a resolution of 9.2 Å, showing that limiting the number of segments to about 1,200
725 does not even yield a high-resolution reconstruction for the [14, 14] class.

726

727 To improve the helical and local reconstructions, we used the supervised
728 classification approach to increase the number of segments for reconstruction by
729 including segments that corresponded to 1% and 2% flattened tubes in addition to the
730 non-flattened tubes. 19,012 segments, which classified with the 3D reference of $[n_1=14,$
731 $n_2=14]$ symmetry and corresponded to 0-2% tube flattening, were used for a final round
732 of helical reconstruction, followed by local reconstruction (Supplementary Fig. 1 and
733 Extended Data Fig. 2 for FSC curves).

734

735 **Model building and refinement**

736 Automated model building was performed by ModelAngelo⁴⁵, using the locally-
737 averaged electron density map in the absence of a sequence input. Following manual
738 model building in Coot⁴⁶, we refined the model using real-space refinement^{78,79} and
739 validated it using MolProbity in Phenix⁸⁰. Protein structure comparison was performed
740 using the Dali Protein Structure Comparison Server⁴⁷ and the Foldseek Search Server⁴⁸.
741 Molecular representations were generated and analyzed with PyMOL (The PyMOL

742 Molecular Graphics System, Version 2.5 Schrödinger, LLC) and UCSF ChimeraX
743 (Resource for Biocomputing, Visualization, and Informatics, University of California, San
744 Francisco)⁸¹.

745

746 **Sequence alignment and conservation mapping**

747 We collected 81 amino acid sequences of 61 alphabaculoviruses, 17
748 betabaculoviruses, 2 gammabaculoviruses, and 1 deltabaculovirus using NCBI
749 BLAST^{82,83}. Sequences were aligned using MAFFT (online webserver)^{84,85} and
750 alignments were analyzed and edited in Jalview v. 2.11.2.6⁸⁶. Sequences with long gaps
751 or insertions were removed prior to performing a second round of MAFFT alignment. The
752 final alignment included 73 sequences. Sequence conservation was mapped onto the
753 VP39 structure using the ConSurf webserver^{87,88}. Alignments were visualized with
754 EMBL's multiple sequence alignment viewer MView⁸⁹. Phylogenetic trees were calculated
755 in Jalview using the Neighbor Joining algorithm with a BLOSUM62 substitution matrix⁹⁰
756 and visualized using the interactive Tree of Life iTOL⁹¹.

757

758 **Structure prediction**

759 Model predictions for baculoviral VP39 dimers were calculated by AlphaFold2-
760 multimer^{51,52} using ColabFold v. 1.5.2⁹² and the COSMIC² platform⁹³. Predicted structures
761 were compared to the reconstructed VP39 dimer by superposition onto the monomer in
762 the dimer structures using *super* in PyMOL.

763

764 **Mass spectrometry**

765 Purified nucleocapsids in 20 mM HEPES, 150 mM NaCl, 0.02% (w/v) LMNG, pH 7.5
766 were denatured in 5% (w/v) SDS and reduced with 0.2 M DTT at 57°C for one hour.
767 Following alkylation with 0.5 M iodoacetamide for 45 min in the dark, samples were
768 acidified with 12% phosphoric acid for a final concentration of 1.2% phosphoric acid. Upon
769 loading of seven-fold diluted sample in S-trap binding buffer (90% methanol/100mM
770 TEAB) to S-trap spin column (Protifi, NY, USA), the sample was washed three times and
771 digested with 500 ng trypsin at 47°C for one hour. Peptides were eluted by the addition
772 of 40% (v/v) acetonitrile in 0.5% (v/v) acetic acid, followed by the addition of 80% (v/v)

773 acetonitrile in 0.5% (v/v) acetic acid. The organic solvent was removed using a SpeedVac
774 concentrator and the sample was reconstituted in 0.5 (v/v) acetic acid.

775

776 Approximately 1 µg of each sample was analyzed individually by LC/MS/MS. Samples
777 were separated online using a Thermo Scientific EASY-nLC 1200 where solvent A was
778 2% acetonitrile/0.5% acetic acid and solvent B was 80% acetonitrile/0.5% acetic acid. A
779 120 min gradient from 5-35% B was applied for all samples. Peptides were gradient eluted
780 directly to a Thermo Scientific Orbitrap Eclipse Mass Spectrometer. High resolution full
781 spectra were acquired with a resolution of 120,000, an AGC target of 4e5, with a
782 maximum ion time of 50 ms, and a scan range of 400 to 1500 m/z. All precursors with
783 charge states between 2-10 were selected for fragmentation. Dynamic exclusion was set
784 for 30 seconds after one scan. All MS/MS of spectra were collected with a resolution of
785 30,000, AGC target of 2e5, maximum ion time of 200 ms, one microscan, 2 m/z isolation
786 window, auto scan range mode, and NCE of 27. The instrument was set to run at top
787 speed with a cycle time of 3 seconds. Samples were run a second time with the same
788 gradient and MS parameters except only charge states between 4-10 were selected for
789 fragmentation. MS/MS spectra were searched in PD1.4 against the *Autographa*, *Bombyx*,
790 *Spodoptera frugiperda*, and contaminants databases. MS/MS spectra were also
791 searched in Byos by Protein Metrics against the Major Capsid Protein and VP39
792 sequences alone to find peptides.

793

794 **Reporting summary**

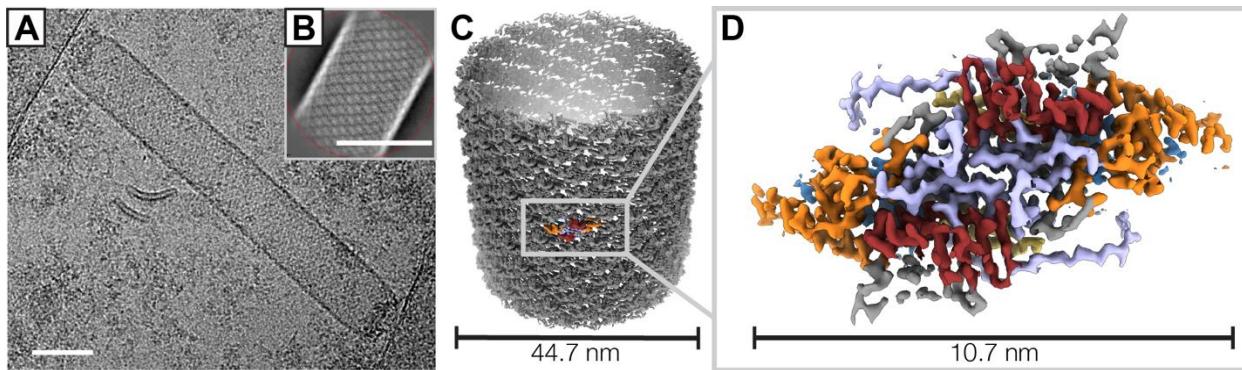
795 Further information on research design is available here [...].

796

797 **Data availability**

798 The cryo-EM maps generated in this study were deposited in the Electron Microscopy
799 Data Bank under accession codes XXX (helical reconstruction) and EMD-41133 (local
800 reconstruction). The refined model coordinates generated in this study were deposited in
801 the Protein Data Bank under accession codes 8TAF (4x dimer). VP39 Protein sequences
802 used in this study are available in the UniProt database and the NCBI reference sequence
803 database RefSeq under the following accession codes: *Adoxophyes honmai* NPV

804 ([Q80LM9](#)), *Agrotis epsilon* MNPV ([B6D606](#)), *Agrotis segetum* NPV A ([YP_529756.1](#)),
805 *Agrotis segetum* NPV B ([A0A0A7KR68](#)), *Anthraea pernyi* NPV ([Q1HH30](#)), *Anticarsia*
806 *gemmaatalis* MNPV ([A0A0S3J001](#)), *Autographa californica* MNPV ([P17499](#)), *Bombyx mori*
807 NPV ([O92449](#)), *Buzura suppressaria* NPV ([W5VKH2](#)), *Catopsilia Pomona* NPV
808 ([A0A172WZD1](#)), *Choristoneura fumiferana* NPV ([Q7TLR6](#)), *Choristoneura fumiferana*
809 DEF NPV ([Q6VTQ7](#)), *Choristoneura murinana* NPV ([YP_008992160.1](#)), *Choristoneura*
810 *rosaceana* NPV ([YP_008378418.1](#)), *Chrysodeixis chalcites* NPV ([Q4KSZ8](#)),
811 *Chrysodeixis includens* NPV ([A0A5B8YRG4](#)), *Clanis bilineata* NPV ([Q0N423](#)),
812 *Condylorrhiza vestigialis* MNPV ([A0A0B4UL98](#)), *Crytophlebia peltastica* NPV
813 ([YP_010086942.1](#)), *Culex nigripalpus* NPV (isolate Florida/1997) ([Q919P5](#)),
814 *Cychlophragma undans* NPV ([YP_010086669.1](#)), *Dione juno* NPV ([QDL56966.1](#)),
815 *Ectropis obliqua* NPV ([A0EYX1](#)), *Epiphyas postvittana* NPV ([Q91GH6](#)), *Euproctis*
816 *pseudoconspersa* NPV ([C3TWY4](#)), *Helicoverpa armigera* MNPV ([B7SUE9](#)), *Helicoverpa*
817 *armigera* NPV G4 ([NP_075147.1](#)), *Hemileuca* sp. NPV ([S5MQE4](#)), *Hyphantria cunea*
818 NPV ([Q2NNW8](#)), *Hyposidra talaca* NPV ([YP_010086341.1](#)), *Lambdina fiscellaria* NPV
819 ([A0A0E3Z6R9](#)), *Leucania separata* NPV ([Q0IL23](#)), *Lonomia obliqua* MNPV
820 ([YP_009666419.1](#)), *Lymantria dispar* MNPV ([A0A140HQW4](#)), *Lymantria xylina* NPV
821 ([YP_003517828.1](#)), *Mamestra configurata* NPV B ([Q8JM54](#)), *Maruca vitrata* NPV
822 ([A1YRC9](#)), *Mythimna unipuncta* NPV ([YP_009666748.1](#)), *Neodiprion lecontei* NPV
823 (strain Canada) ([Q6JP79](#)), *Neodiprion sertifer* NPV ([Q6JK71](#)), *Operophtera brumata* NPV
824 ([YP_009552634.1](#)), *Orgyia leucostigma* NPV ([B0FDU5](#)), *Orgyia pseudotsugata* MNPV
825 ([P17500](#)), *Oxyplax ochracea* NPV ([YP_009666582.1](#)), *Peridroma alphabaculovirus*
826 ([A0A068LKA4](#)), *Perigonia lusca* SNPV ([A0A0M3WPB5](#)), *Pseudoplusia includens* SNPV
827 IE ([A0A0B5A1E3](#)), *Rachiplusia nu* NPV ([QEI03677.1](#)), *Spodoptera eridania* NPV
828 ([YP_010087081.1](#)), *Spodoptera exempta* NPV ([YP_010086493.1](#)), *Spodoptera exigua*
829 MNPV ([Q9J862](#)), *Spodoptera frugiperda* NPV ([A1YJ67](#)), *Spodoptera littoralis* NPV
830 ([YP_009505885.1](#)), *Spodoptera litura* MNPV ([Q9DWZ8](#)), *Sucra jujuba* NPV
831 ([A0A097P905](#)), *Thysanoplusia orichalcea* NPV ([L0CLC9](#)), *Trichoplusia ni* SNPV
832 ([Q461Y9](#)), *Urbanus proteus* NPV ([A0A161C6Y7](#)), *Agrotis segetum* GV
833 ([YP_009513130.1](#)), *Closteria anachoreta* GV ([F4ZKV8](#)), *Diatraea saccharalis* GV
834 ([A0A0R7EYZ4](#)), *Epinotia aporema* GV ([K4EQF1](#)), *Erinnys ello* GV ([A0A097DAR9](#)),


835 *Helicoverpa armigera* GV ([A9YMV5](#)), *Hyphantria cunea* GV ([QBQ01638.1](#)), *Mocis latipes*
836 GV ([A0A162GVW7](#)), *Plodia interpunctella* GV ([A0A1L5JH15](#)), *Plutella xylostella* GV
837 ([Q9DVV4](#)), *Pseudalatia unipuncta* GV ([B6S6Y4](#)), *Spodoptera frugiperda* GV
838 ([A0A0C5AUX0](#)), *Spodoptera litura* GV ([A5IZT9](#)), *Trichoplusia ni* GV LBIV-12
839 ([YP_009506175.1](#)), *Xestia c-nigrum* GV ([Q9PYT2](#)).^{94,95}

840

841

842

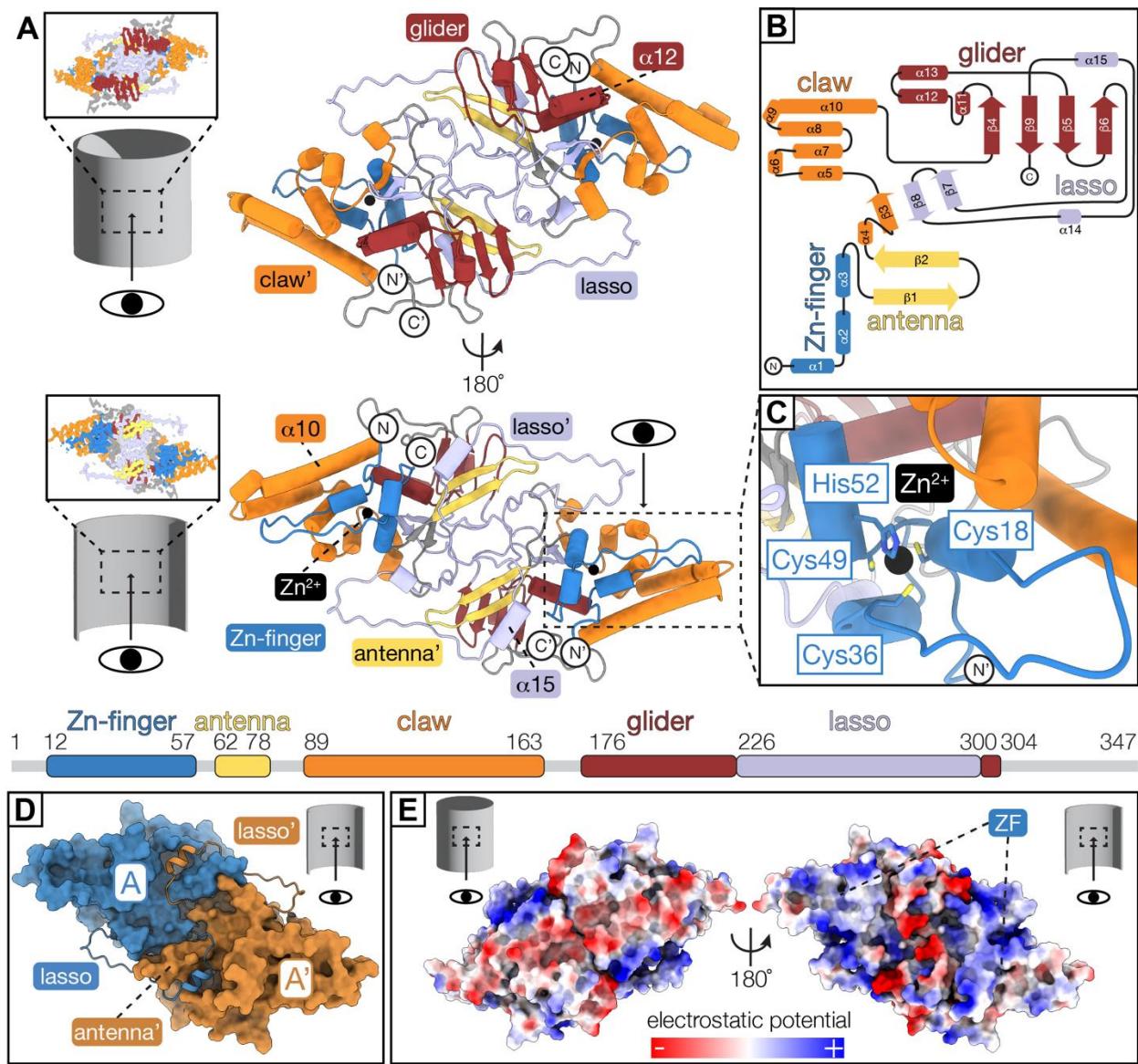

843

Fig. 1 Helical reconstruction of the AcMNPV nucleocapsid.

845 (A) Micrograph showing a vitrified AcMNPV nucleocapsid on a graphene-coated gold grid.
846 Sigma contrast was set to 3 and the image was low-pass filtered to 20 Å. The scale bar
847 corresponds to 50 nm.
848 (B) A representative 2D class average image of nucleocapsid segments generated in
849 *cisTEM*⁷⁰. The scale bar corresponds to 50 nm.
850 (C) Helical reconstruction of the nucleocapsid at 3.6 Å resolution.
851 (D) VP39 dimer volume at 3.2 Å resolution after local reconstruction and density
852 averaging. Regions are color-coded: Zn-finger (residues 12-57, blue), antenna (residues
853 62-78, yellow), claw (residues 89-163, orange), glider (residues 176-225 and 301-304,
854 red), lasso (residues 226-300, light purple).
855

856

857

858 **Fig. 2 The dimeric VP39 repeating unit comprises a unique mixed alpha/beta
859 protein fold.**

860 (A) VP39 dimer model viewed from the capsid exterior (top) and luminal side (bottom).

861 The linear fold architecture of the monomer is depicted below the models. Regions are

862 color-coded: Zn-finger (residues 12-57, blue), antenna (residues 62-78, yellow), claw

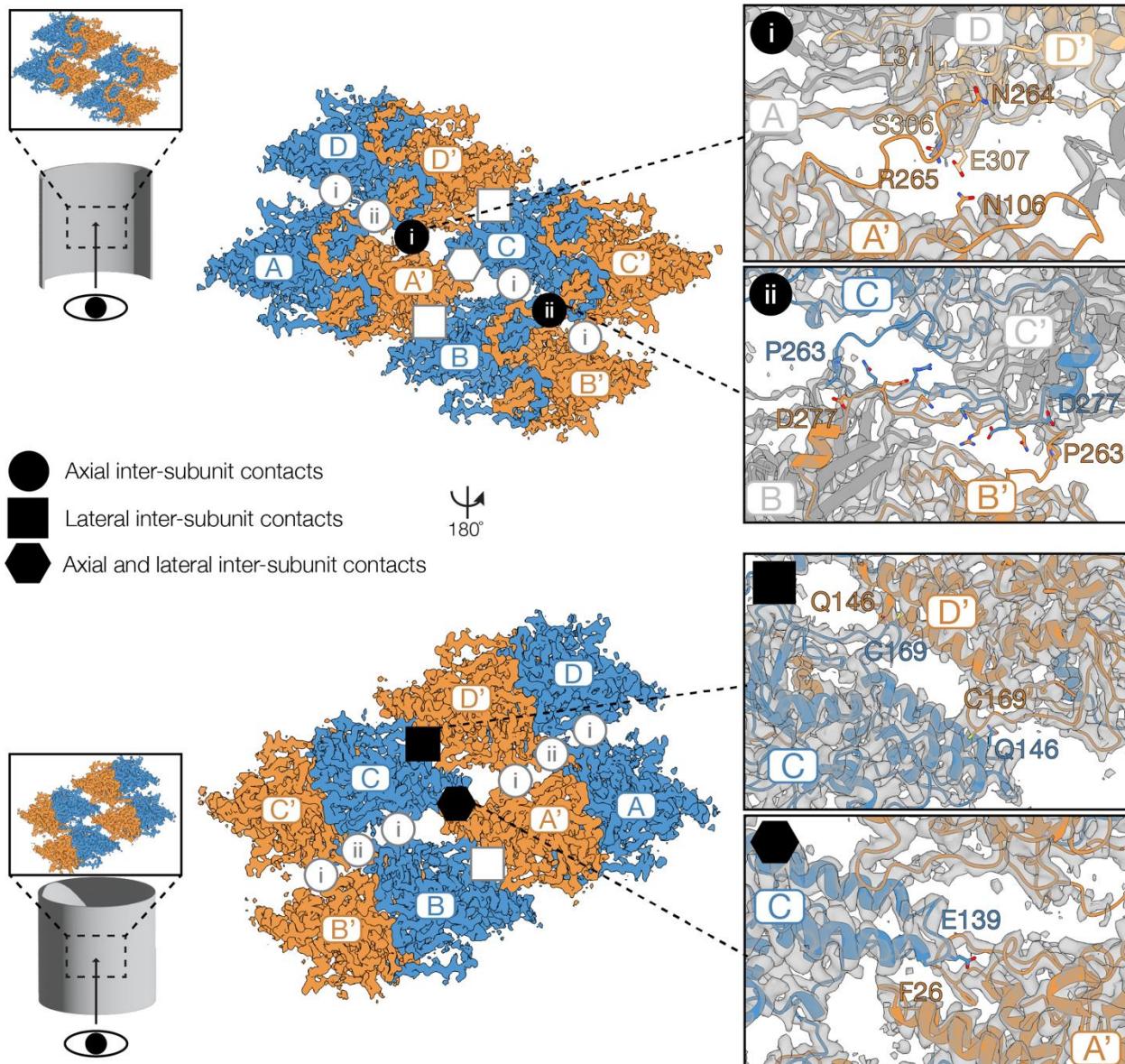
863 (residues 89-163, orange), glider (residues 176-225 and 301-304, red), lasso (residues

864 226-300, light purple), Zn²⁺ (black sphere). Apostrophe indicates second monomer.

865 (B) Secondary structure diagram of the VP39 monomer with regions colored according to

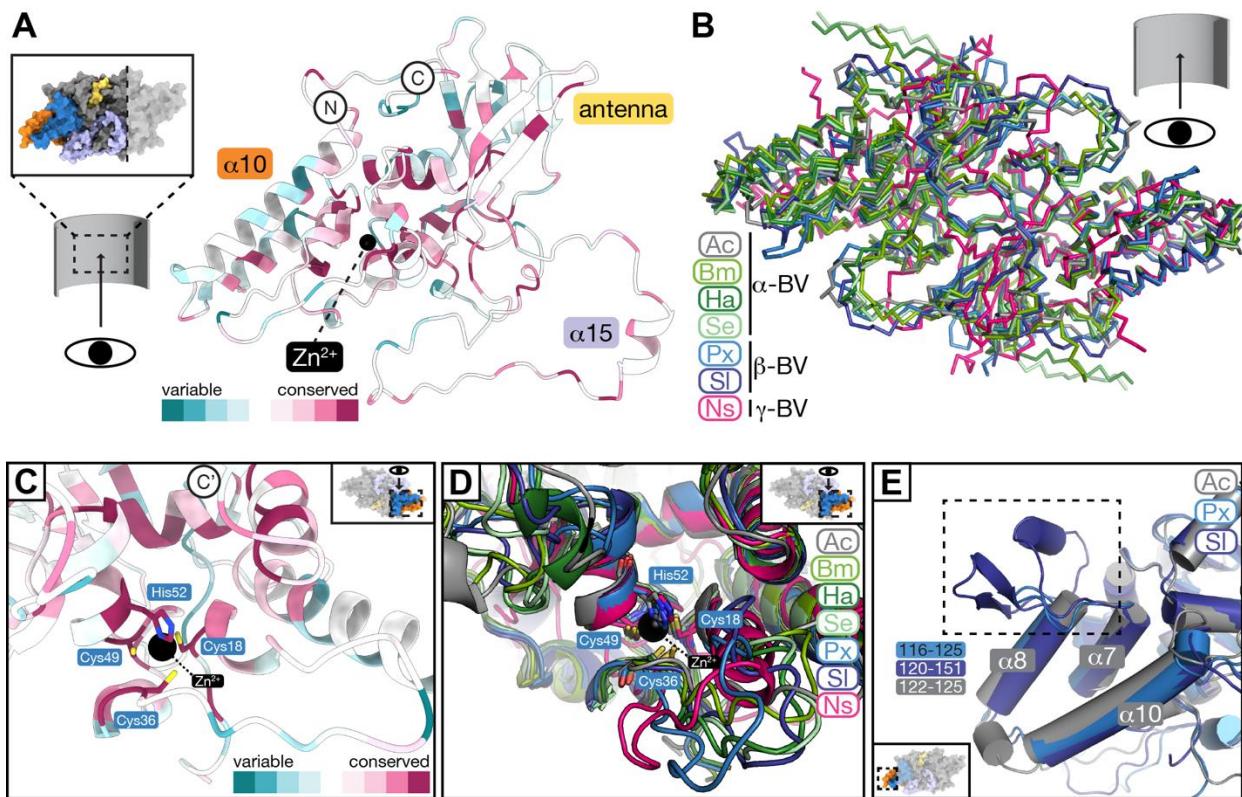
866 linear scheme in (A).

867 (C) Close-up view of Zn-coordination site (more details in Extended Data Fig. 5).


868 (D) Surface representation of the VP39 dimer model with monomers colored in blue and
869 ochre. Residues 271-291 of the lasso region (cartoon representation) fold around the
870 antenna region of the adjacent monomer.

871 (E) Electrostatic surface potential of the VP39 dimer viewed from the exterior (left) and
872 luminal (right) capsid side (more details in Extended Data Fig. 6).

873 ZF: Zn-finger region.


874

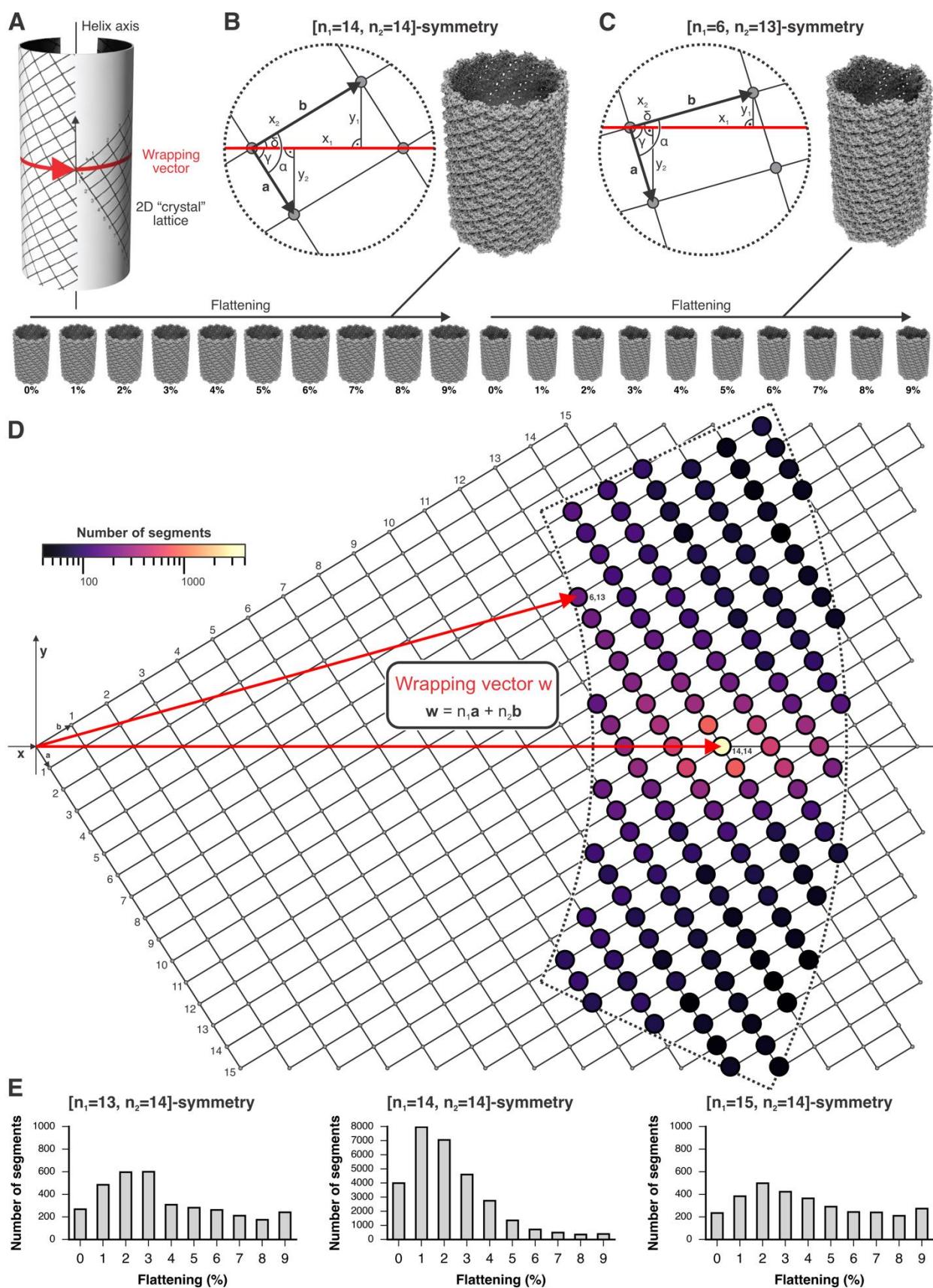
875

Fig. 3 Inter-dimer contacts of the VP39 assembly.

877 Four VP39 dimer repeat units and their interfaces viewed from the capsid lumen (top) and
878 the capsid exterior (bottom). Monomers are labeled with letters A-D (blue) and A'-D'
879 (ochre) for the dimeric partner monomer. The four types of inter-dimer interactions are
880 highlighted as follows: axial contacts type-i and ii (circle with roman numeral), lateral
881 contacts (square), axial-lateral contacts (hexagon). Close-ups of each type of contact,
882 which are labeled with their respective symbol, show interface residues as sticks.
883 Monomers, which are not involved in the respective type of contact depicted in the close-
884 ups, are grayed out.
885

Fig. 4 Sequence and fold conservation of baculoviral VP39.

(A) Amino acid sequence conservation of VP39 across 73 sequences mapped on the VP39 monomer structure (viewed from the inside of the nucleocapsid) using the ConSurf webserver^{87,88}. Variable residues are colored from light to dark teal with darker colors representing stronger sequence variability in sequence alignments. Light red to dark red represent conserved residues from less to high conservation.


(B) Model predictions of baculoviral VP39 dimers superposed onto *A. californica* ('Ac'; gray) VP39 dimer structure. Predicted VP39 structures using AlphaFold2 (see methods) from the following viruses were superimposed: *B. mori* NPV ('Bm'; medium green; 1.5 Å RMSD by residue), *H. armigera* NPV (Ha; dark green; 1.1 Å RMSD by residue), *S. exigua* NPV (Se; light green, 1.0 Å RMSD by residue), *P. xylostella* granulovirus (GV) (Px; light blue; 1.1 Å RMSD by residue), *S. litura* GV (Sl; dark blue; 1.1 Å RMSD by residue), *N. sertifer* NPV (Ns; pink; 5.0 Å RMSD by residue). α -BV: alphabaculovirus, β -BV: betabaculovirus; γ -BV: gammabaculovirus.

(C) Close-up of the ZF region of AcMNPV VP39 with Zn-coordinating residues depicted and color-coded by sequence conservation using ConSurf.

903 (D) Close-up of the ZF region of AcMNPV VP39 with superposed predicted models for
904 six baculoviral VP39 dimers (see (B) for details and color code) with Zn-coordinating
905 residues shown.

906 (E) Close-up of the inward-facing claw region of AcMNPV VP39 with superposed
907 predicted models of VP39 of betabaculoviral *P. xylostea* GV ('Px'; yellow) and *S. litura*
908 GV (see (B) and methods for details on prediction and superposition).

909

911 **Fig. 5 Heterogeneity of the AcMNPV capsid.**

912 (A) Formal description of helical symmetry by wrapping a 2D “crystal” lattice on a cylinder.
913 A wrapping vector, shown in red, points from the origin of the lattice to a particular lattice
914 point and lies in the equator of the helix.
915 (B and C) Calculation of helical parameters from the lattice and wrapping vectors (see
916 also methods) and preparation of 3D references for supervised classification. If n_1 and n_2
917 are integer times of each other, as with [$n_1=14$, $n_2=14$] symmetry shown in (B), the helix
918 has rotational symmetry. If n_1 and n_2 are not related by an integer value, as with [$n_1=6$,
919 $n_2=13$] symmetry shown in (C), there is no rotational symmetry. 3D references with
920 increasing degree of flattening are shown at the bottom for the two helical symmetries.
921 (D) Supervised classification results mapped on the 2D “crystal” lattice. The sector
922 delineated by dashed lines includes the lattice points with corresponding different helical
923 symmetries for which we prepared 3D references. Two rapping vectors for the
924 symmetries shown in (B) and (C), respectively, are shown in red. The distribution of VP39
925 capsid geometries is color coded by prevalence from low (black) to high (yellow).
926 (E) Histograms for three capsid geometries with substantial prevalence reveal the degree
927 of tube flattening.

928
929

930 Acknowledgments

931 We thank Z. Li, S. Sterling, R. Walsh, M. Mayer, R. Nair, and S. Rawson from the Harvard
932 Medical School Cryo-EM Center for Structural Biology and the Harvard Medical School
933 Molecular Electron Microscopy Suite for their exceptional support during grid screening
934 and data collection; M. Rigney and B. Isaac for greatly facilitating our use of the Brandeis
935 Electron Microscopy Facility; the SBGrid Consortium for assistance with software and
936 high-performance computing; J. Delgado from the MGH Department of Molecular Biology
937 for support with software and high-performance computing; M. Antonelli and B.
938 Ueberheide from the Proteomics Center at New York University Grossman School of
939 Medicine for mass spectrometry analysis of our samples; T. Grant for discussions and
940 advice; G. Lander, M. Ohi, J. Kollman, M. Vos, and the Helmsley Charitable Trust for the
941 opportunity to attend the 2019 Cryo-Electron Microscopy course at Cold Spring Harbor
942 Laboratories (F.M.C.B.); and Y. Han, X. Fan, E. Eng, A. Noble and the staff from the New
943 York Structural Biology Center for the opportunity to attend the workshop on graphene
944 grids for CryoEM hosted by the National Center for Cryo-EM Access and Training and
945 the National Resource for Automated Molecular Microscopy (F.M.C.B.). Portions of this
946 research were conducted on the O2 High Performance Compute Cluster, operated by the
947 Research Computing Group at Harvard Medical School. We acknowledge support from
948 the Swiss National Science Foundation grant P180777 (F.M.C.B.), and the National
949 Institutes of Health R35GM130289 (X.Z) and R35GM142553 (L.H.C).

950

951 Author information

952 Authors and Affiliations

953 **Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
954 02114, USA**

955 Friederike M. C. Benning, Tran H. Nguyen, Coby Y. Garcia & Luke H. Chao

956 **Department of Genetics, Harvard Medical School, Boston, MA, USA**

957 Friederike M. C. Benning & Luke H. Chao

958 **Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical**
959 **School, Boston, MA, 02115, USA**

960 Simon Jenni

961 **Harvard College, Cambridge, MA 02138, USA**

962 Coby Y. Garcia

963 **Department of Biophysics, University of Texas Southwestern Medical Center,**
964 **Dallas, TX 75390, USA**

965 Xuewu Zhang

966 **Department of Pharmacology, University of Texas Southwestern Medical Center,**
967 **Dallas, TX 75390, USA**

968 Xuewu Zhang

969 **Contributions**

970 F.M.C.B. and L.H.C. conceived of the study and designed the experiments. F.M.C.B. and
971 T.H.N. expressed the proteins. F.M.C.B. purified the nucleocapsids. F.M.C.B. collected
972 the data and together with C.Y.G. and L.H.C. picked the segments. F.M.C.B., C. Y. G.,
973 S.J., X.Z. and L.H.C. analyzed the data, reconstructed the structures, and built models.
974 F.M.C.B. and L.H.C. wrote the manuscript with contributions from S.J. All authors
975 approved the final version of the manuscript.

976 **Corresponding authors**

977 Correspondence to Luke H. Chao.

978 **Competing interests**

979 The authors declare no competing interests.

980 Supplementary Information

981

- 982 1. Landwehr, A. Benefits of Baculovirus Use in IPM Strategies for Open Field and Protected
983 Vegetables. *Frontiers in Sustainable Food Systems* **4**(2021).
- 984 2. Ma, C.-S. et al. Climate warming promotes pesticide resistance through expanding
985 overwintering range of a global pest. *Nature Communications* **12**, 5351 (2021).
- 986 3. Wang, C.-Y. et al. Recombinant Baculovirus Containing the Diphtheria Toxin A Gene for
987 Malignant Glioma Therapy. *Cancer Research* **66**, 5798-5806 (2006).
- 988 4. Huang, W. et al. Suppression of gastric cancer growth by baculovirus vector-mediated
989 transfer of normal epithelial cell specific-1 gene. *World J Gastroenterol* **14**, 5810-5
990 (2008).
- 991 5. Balani, P. et al. High Mobility Group Box2 Promoter-controlled Suicide Gene Expression
992 Enables Targeted Glioblastoma Treatment. *Molecular Therapy* **17**, 1003-1011 (2009).
- 993 6. Ono, C., Okamoto, T., Abe, T. & Matsuura, Y. Baculovirus as a Tool for Gene Delivery and
994 Gene Therapy. *Viruses* **10**, 510 (2018).
- 995 7. Garcia Fallit, M. et al. Evaluation of Baculoviruses as Gene Therapy Vectors for Brain
996 Cancer. *Viruses* **15**, 608 (2023).
- 997 8. Hong, M. et al. Genetic engineering of baculovirus-insect cell system to improve protein
998 production. *Frontiers in Bioengineering and Biotechnology* **10**(2022).
- 999 9. Pidre, M.L., Arrás, P.N., Amorós Morales, L.C. & Romanowski, V. The Magic Staff: A
1000 Comprehensive Overview of Baculovirus-Based Technologies Applied to Human and
1001 Animal Health. *Viruses* **15**, 80 (2023).
- 1002 10. Jehle, J.A. et al. On the classification and nomenclature of baculoviruses: a proposal for
1003 revision. *Arch Virol* **151**, 1257-66 (2006).
- 1004 11. Zanotto, P.M., Kessing, B.D. & Maruniak, J.E. Phylogenetic interrelationships among
1005 baculoviruses: evolutionary rates and host associations. *J Invertebr Pathol* **62**, 147-64
1006 (1993).
- 1007 12. Lauzon, H.A.M. et al. Sequence and Organization of the *< i>Neodiprion lecontei</i>*
1008 Nucleopolyhedrovirus Genome. *Journal of Virology* **78**, 7023-7035 (2004).
- 1009 13. Hayakawa, T. et al. Sequence Analysis of the *Xestia c-nigrum* Granulovirus Genome.
1010 *Virology* **262**, 277-297 (1999).
- 1011 14. Wang, Q. et al. Budded baculovirus particle structure revisited. *J Invertebr Pathol* **134**,
1012 15-22 (2016).
- 1013 15. Burley, S.K., Miller, A., Harrap, K.A. & Kelly, D.C. Structure of the baculovirus
1014 nucleocapsid. *Virology* **120**, 433-440 (1982).
- 1015 16. Rao, G. et al. Controllable Assembly of Flexible Protein Nanotubes for Loading
1016 Multifunctional Modules. *ACS Applied Materials & Interfaces* **10**, 25135-25145 (2018).
- 1017 17. Blissard, G.W. & Theilmann, D.A. Baculovirus Entry and Egress from Insect Cells. *Annual
1018 Review of Virology* **5**, 113-139 (2018).

1019 18. Federici, B.A. Ultrastructure of baculoviruses. in *The Biology of Baculoviruses*, Vol. 1 61-
1020 88 (CRC Press, Boca Raton, Florida, 1986).

1021 19. Pearson, M.N., Russell, R.L.Q., Rohrmann, G.F. & Beaudreau, G.S. p39, a major
1022 baculovirus structural protein: Immunocytochemical characterization and genetic
1023 location. *Virology* **167**, 407-413 (1988).

1024 20. Thiem, S.M. & Miller, L.K. Identification, sequence, and transcriptional mapping of the
1025 major capsid protein gene of the baculovirus *Autographa californica* nuclear
1026 polyhedrosis virus. *J Virol* **63**, 2008-18 (1989).

1027 21. Ono, C. et al. Phenotypic grouping of 141 BmNPVs lacking viral gene sequences. *Virus*
1028 *Research* **165**, 197-206 (2012).

1029 22. Bai, H. et al. Major capsid protein of *Autographa californica* multiple
1030 nucleopolyhedrovirus contributes to the promoter activity of the very late viral genes.
1031 *Virus Research* **273**, 197758 (2019).

1032 23. Katsuma, S. & Kokusho, R. A Conserved Glycine Residue Is Required for Proper
1033 Functioning of a Baculovirus VP39 Protein. *J Virol* **91**(2017).

1034 24. DiMaio, F. et al. The molecular basis for flexibility in the flexible filamentous plant
1035 viruses. *Nat Struct Mol Biol* **22**, 642-4 (2015).

1036 25. Fraser, M.J. Ultrastructural observations of virion maturation in *Autographa californica*
1037 nuclear polyhedrosis virus infected *Spodoptera frugiperda* cell cultures. *Journal of*
1038 *Ultrastructure and Molecular Structure Research* **95**, 189-195 (1986).

1039 26. Zhao, S., He, G., Yang, Y. & Liang, C. Nucleocapsid Assembly of Baculoviruses. *Viruses*
1040 **11**(2019).

1041 27. Döhner, K. et al. Importin α 1 is required for nuclear import of herpes simplex virus
1042 proteins and capsid assembly in fibroblasts and neurons. *PLoS Pathog* **14**, e1006823
1043 (2018).

1044 28. Yang, Q., Maluf, N.K. & Catalano, C.E. Packaging of a unit-length viral genome: the role
1045 of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in
1046 bacteriophage lambda. *J Mol Biol* **383**, 1037-48 (2008).

1047 29. Chelikani, V., Ranjan, T. & Kondabagil, K. Revisiting the genome packaging in viruses with
1048 lessons from the "Giants". *Virology* **466-467**, 15-26 (2014).

1049 30. Lai, Q. et al. The 38K-Mediated Specific Dephosphorylation of the Viral Core Protein P6.9
1050 Plays an Important Role in the Nucleocapsid Assembly of *Autographa californica*
1051 Multiple Nucleopolyhedrovirus. *J Virol* **92**(2018).

1052 31. Zhang, J., Li, Y., Zhao, S. & Wu, X. Identification of A functional region in *Bombyx mori*
1053 nucleopolyhedrovirus VP39 that is essential for nuclear actin polymerization. *Virology*
1054 **550**, 37-50 (2020).

1055 32. Lanier, L.M. & Volkman, L.E. Actin Binding and Nucleation by *Autographa californica*M
1056 Nucleopolyhedrovirus. *Virology* **243**, 167-177 (1998).

1057 33. Danquah, J.O., Botchway, S., Jeshtadi, A. & King, L.A. Direct interaction of baculovirus
1058 capsid proteins VP39 and EXON0 with kinesin-1 in insect cells determined by
1059 fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy. *J*
1060 *Virol* **86**, 844-53 (2012).

1061 34. Fang, M., Nie, Y. & Theilmann, D.A. AcMNPV EXON0 (AC141) which is required for the
1062 efficient egress of budded virus nucleocapsids interacts with beta-tubulin. *Virology* **385**,
1063 496-504 (2009).

1064 35. Braunagel, S.C. et al. Mutations within the *< i > Autographa*
1065 *californica < /i > Nucleopolyhedrovirus < i > FP25K < /i >* Gene Decrease the Accumulation of
1066 ODV-E66 and Alter Its Intranuclear Transport. *Journal of Virology* **73**, 8559-8570 (1999).

1067 36. Wu, W. et al. *< i > Autographa californica < /i >* Multiple Nucleopolyhedrovirus 38K Is a
1068 Novel Nucleocapsid Protein That Interacts with VP1054, VP39, VP80, and Itself. *Journal*
1069 *of Virology* **82**, 12356-12364 (2008).

1070 37. Wu, Y. et al. Screening of candidate proteins interacting with IE-2 of *Bombyx mori*
1071 nucleopolyhedrovirus. *Molecular Biology Reports* **40**, 5797-5804 (2013).

1072 38. Yoo, S. & Guarino, L.A. Functional dissection of the ie2 gene product of the baculovirus
1073 *Autographa californica* nuclear polyhedrosis virus. *Virology* **202**, 164-72 (1994).

1074 39. Liu, C.Y. et al. RING and coiled-coil domains of baculovirus IE2 are critical in strong
1075 activation of the cytomegalovirus major immediate-early promoter in mammalian cells.
1076 *J Virol* **83**, 3604-16 (2009).

1077 40. Li, S. et al. The FP25K Acts as a Negative Factor for the Infectivity of AcMNPV Budded
1078 Virus. *PLOS ONE* **10**, e0128471 (2015).

1079 41. Li, S. et al. VP39 of *Spodoptera litura* multicapsid nucleopolyhedrovirus cannot
1080 efficiently rescue the nucleocapsid assembly of vp39-null *Autographa californica*
1081 multiple nucleopolyhedrovirus. *Virology Journal* **18**, 81 (2021).

1082 42. Han, Y. et al. High-yield monolayer graphene grids for near-atomic resolution
1083 cryoelectron microscopy. *Proceedings of the National Academy of Sciences* **117**, 1009-
1084 1014 (2020).

1085 43. Zhang, X. Python-based Helix Indexer: A graphical user interface program for finding
1086 symmetry of helical assembly through Fourier-Bessel indexing of electron microscopic
1087 data. *Protein Sci* **31**, 107-117 (2022).

1088 44. He, S. & Scheres, S.H.W. Helical reconstruction in RELION. *Journal of Structural Biology*
1089 **198**, 163-176 (2017).

1090 45. Jamali, K. et al. Automated model building and protein identification in cryo-EM maps.
1091 *bioRxiv*, 2023.05.16.541002 (2023).

1092 46. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot.
1093 *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

1094 47. Holm, L. Dali server: structural unification of protein families. *Nucleic Acids Research* **50**,
1095 W210-W215 (2022).

1096 48. Kempen, M.v. et al. Fast and accurate protein structure search with Foldseek. *bioRxiv*,
1097 2022.02.07.479398 (2023).

1098 49. Harding, M.M. The architecture of metal coordination groups in proteins. *Acta*
1099 *Crystallogr D Biol Crystallogr* **60**, 849-59 (2004).

1100 50. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state.
1101 *J Mol Biol* **372**, 774-97 (2007).

1102 51. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. *bioRxiv*,
1103 2021.10.04.463034 (2022).

1104 52. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature*
1105 **596**, 583-589 (2021).

1106 53. Jenni, S., Horwitz, J.A., Bloyet, L.-M., Whelan, S.P.J. & Harrison, S.C. Visualizing molecular
1107 interactions that determine assembly of a bullet-shaped vesicular stomatitis virus
1108 particle. *Nature Communications* **13**, 4802 (2022).

1109 54. Weber, M.S. et al. Structural heterogeneity of cellular K5/K14 filaments as revealed by
1110 cryo-electron microscopy. *eLife* **10**, e70307 (2021).

1111 55. DiMattia, Michael A. et al. The Structure of HIV-1 Rev Filaments Suggests a Bilateral
1112 Model for Rev-RRE Assembly. *Structure* **24**, 1068-1080 (2016).

1113 56. Wang, Y.A., Yu, X., Yip, C., Strynadka, N.C. & Egelman, E.H. Structural Polymorphism in
1114 Bacterial EspA Filaments Revealed by Cryo-EM and an Improved Approach to Helical
1115 Reconstruction. *Structure* **14**, 1189-1196 (2006).

1116 57. Egelman, E.H. Reconstruction of helical filaments and tubes. *Methods Enzymol* **482**, 167-
1117 83 (2010).

1118 58. Zheng, W. et al. Cryoelectron-Microscopic Structure of the pKpQIL Conjugative Pili from
1119 Carbapenem-Resistant Klebsiella pneumoniae. *Structure* **28**, 1321-1328.e2 (2020).

1120 59. Ohkawa, T. & Welch, M.D. Baculovirus Actin-Based Motility Drives Nuclear Envelope
1121 Disruption and Nuclear Egress. *Curr Biol* **28**, 2153-2159.e4 (2018).

1122 60. Bui, K.H., Yagi, T., Yamamoto, R., Kamiya, R. & Ishikawa, T. Polarity and asymmetry in the
1123 arrangement of dynein and related structures in the Chlamydomonas axoneme. *Journal*
1124 *of Cell Biology* **198**, 913-925 (2012).

1125 61. Greenan, G.A., Vale, R.D. & Agard, D.A. Electron cryotomography of intact motile cilia
1126 defines the basal body to axoneme transition. *J Cell Biol* **219** (2020).

1127 62. Egelman, E.H. Ambiguities in helical reconstruction. *eLife* **3**, e04969 (2014).

1128 63. Wasilko, D.J. et al. The titerless infected-cells preservation and scale-up (TIPS) method
1129 for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from
1130 insect cells infected with recombinant baculovirus. *Protein Expr Purif* **65**, 122-32 (2009).

1131 64. Han, Y. et al. High-yield monolayer graphene grids for near-atomic resolution
1132 cryoelectron microscopy. *Proc Natl Acad Sci U S A* **117**, 1009-1014 (2020).

1133 65. Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for
1134 improved cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).

1135 66. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from
1136 electron micrographs. *J Struct Biol* **192**, 216-21 (2015).

1137 67. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S.H.W. New tools for
1138 automated cryo-EM single-particle analysis in RELION-4.0. *Biochemical Journal* **478**,
1139 4169-4185 (2021).

1140 68. Scheres, S.H.W. RELION: Implementation of a Bayesian approach to cryo-EM structure
1141 determination. *Journal of Structural Biology* **180**, 519-530 (2012).

1142 69. Scheres, S.H.W. Amyloid structure determination in RELION-3.1. *Acta Crystallogr D*
1143 *Struct Biol* **76**, 94-101 (2020).

1144 70. Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle
1145 image processing. *eLife* **7**, e35383 (2018).

1146 71. Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms for rapid
1147 unsupervised cryo-EM structure determination. *Nature Methods* **14**, 290-296 (2017).

1148 72. Punjani, A., Zhang, H. & Fleet, D.J. Non-uniform refinement: adaptive regularization
1149 improves single-particle cryo-EM reconstruction. *Nature Methods* **17**, 1214-1221 (2020).

1150 73. Harris, C.R. et al. Array programming with NumPy. *Nature* **585**, 357-362 (2020).

1151 74. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-
1152 dimensional image data using IMOD. *J Struct Biol* **116**, 71-6 (1996).

1153 75. Tsai, C.J. & Nussinov, R. A unified convention for biological assemblies with helical
1154 symmetry. *Acta Crystallogr D Biol Crystallogr* **67**, 716-28 (2011).

1155 76. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python.
1156 *Nature Methods* **17**, 261-272 (2020).

1157 77. Winn, M.D. et al. Overview of the CCP4 suite and current developments. *Acta
1158 Crystallogr D Biol Crystallogr* **67**, 235-42 (2011).

1159 78. Afonine, P.V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography.
1160 *Acta Crystallographica Section D* **74**, 531-544 (2018).

1161 79. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and
1162 electrons: recent developments in Phenix. *Acta Crystallographica Section D* **75**, 861-877
1163 (2019).

1164 80. Williams, C.J. et al. MolProbity: More and better reference data for improved all-atom
1165 structure validation. *Protein Sci* **27**, 293-315 (2018).

1166 81. Pettersen, E.F. et al. UCSF ChimeraX: Structure visualization for researchers, educators,
1167 and developers. *Protein Sci* **30**, 70-82 (2021).

1168 82. Sayers, E.W. et al. Database resources of the national center for biotechnology
1169 information. *Nucleic Acids Res* **50**, D20-d26 (2022).

1170 83. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment
1171 search tool. *J Mol Biol* **215**, 403-10 (1990).

1172 84. Katoh, K., Rozewicki, J. & Yamada, K.D. MAFFT online service: multiple sequence
1173 alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* **20**,
1174 1160-1166 (2017).

1175 85. Kuraku, S., Zmasek, C.M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand
1176 exploration of metazoan gene family trees on MAFFT sequence alignment server with
1177 enhanced interactivity. *Nucleic Acids Research* **41**, W22-W28 (2013).

1178 86. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. Jalview
1179 Version 2—a multiple sequence alignment editor and analysis workbench.
Bioinformatics **25**, 1189-1191 (2009).

1180 87. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of
1181 residues on protein structures. *Nucleic Acids Res* **33**, W299-302 (2005).

1182 88. Yariv, B. et al. Using evolutionary data to make sense of macromolecules with a “face-
1183 lifted” ConSurf. *Protein Science* **32**, e4582 (2023).

1184 89. Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022.
1185 *Nucleic acids research* **50**, W276-W279 (2022).

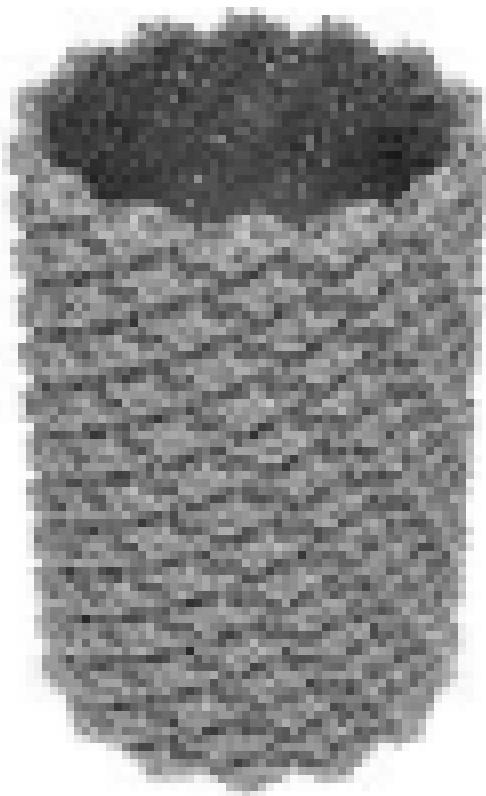
1186 90. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing
1187 phylogenetic trees. *Mol Biol Evol* **4**, 406-25 (1987).

1188 91. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
1189 tree display and annotation. *Nucleic Acids Research* **49**, W293-W296 (2021).

1190

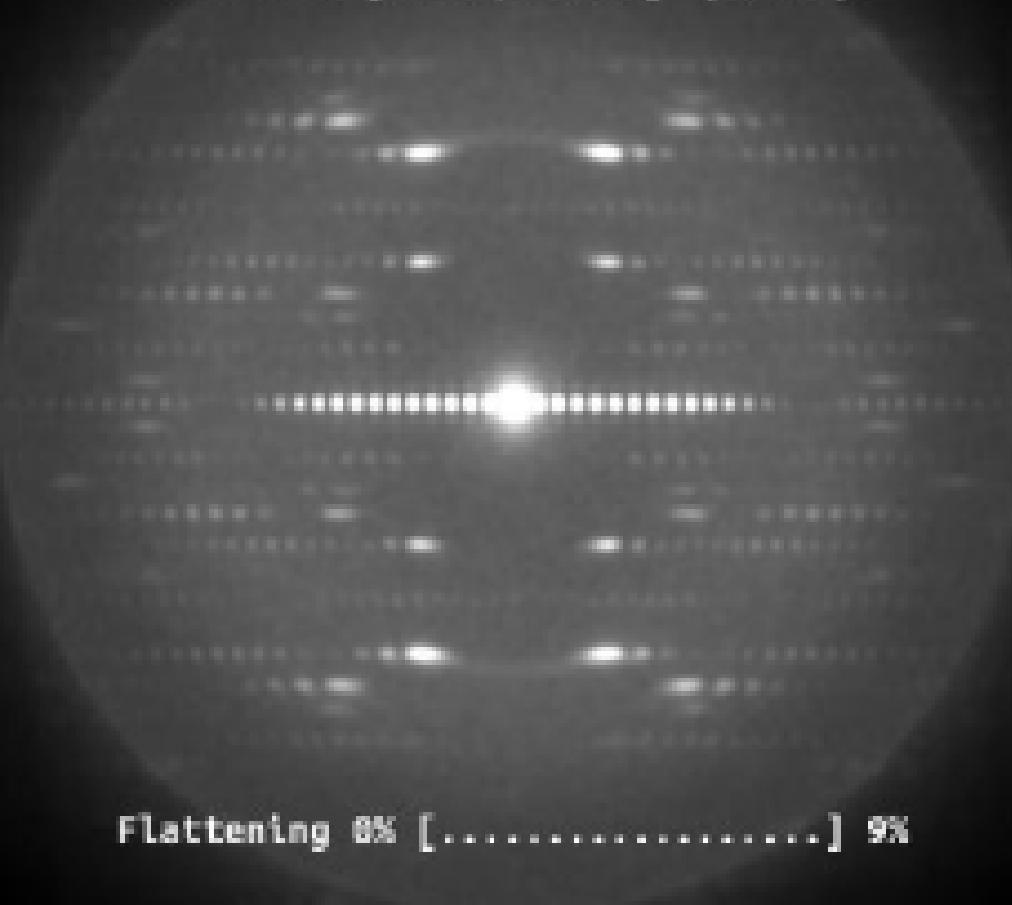
1191 92. Mirdita, M. et al. ColabFold: making protein folding accessible to all. *Nat Methods* **19**,
1192 679-682 (2022).

1193 93. Cianfrocco, M.A., Wong-Barnum, M., Youn, C., Wagner, R. & Leschziner, A. COSMIC2: A
1194 Science Gateway for Cryo-Electron Microscopy Structure Determination. in *Proceedings*
1195 *of the Practice and Experience in Advanced Research Computing 2017 on Sustainability,*
1196 *Success and Impact* Article 22 (Association for Computing Machinery, New Orleans, LA,
1197 USA, 2017).

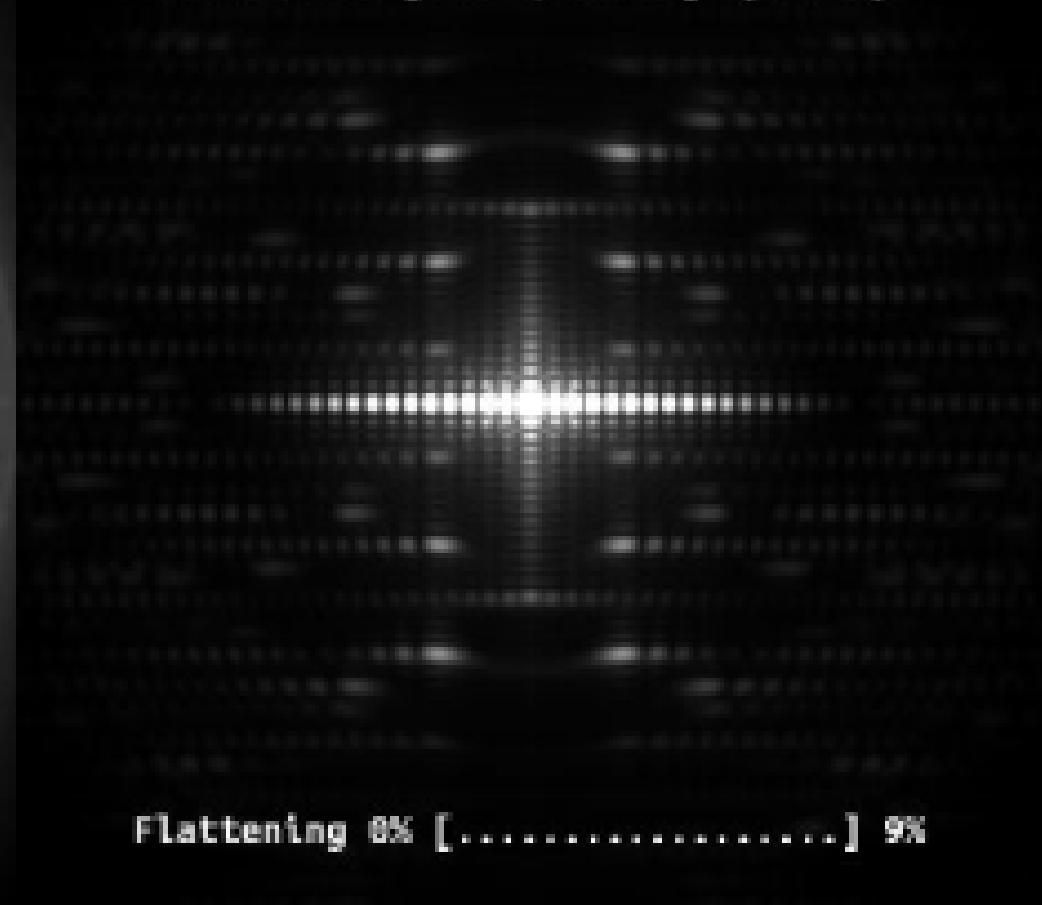

1198 94. Consortium, T.U. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic Acids*
1199 *Research* **51**, D523-D531 (2022).

1200 95. O'Leary, N.A. et al. Reference sequence (RefSeq) database at NCBI: current status,
1201 taxonomic expansion, and functional annotation. *Nucleic Acids Res* **44**, D733-45 (2016).

1202

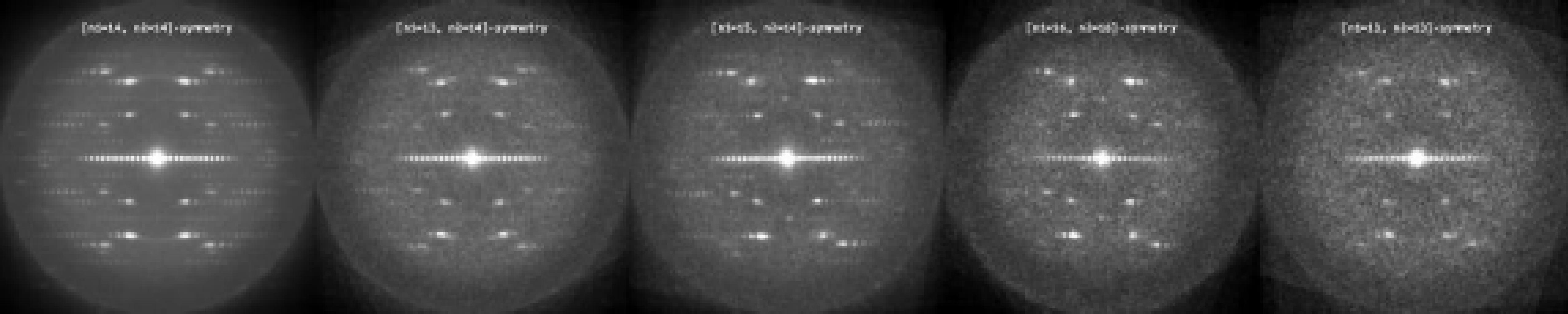

1203

1204

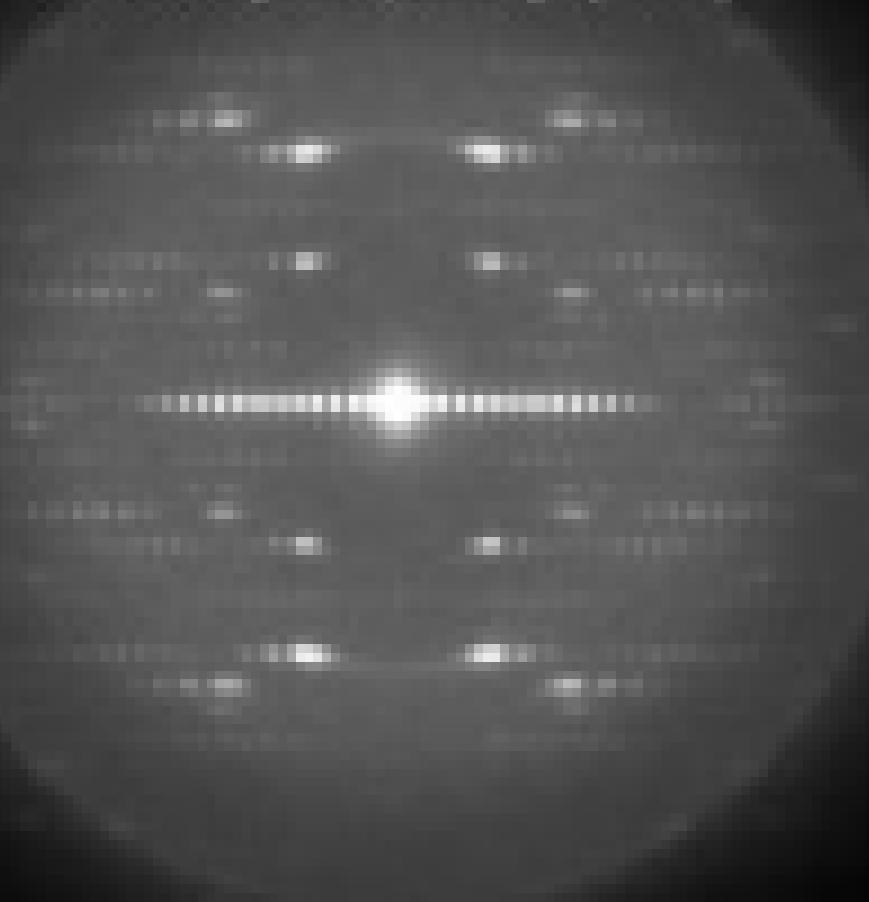


Flattening 0% [.....] 0%

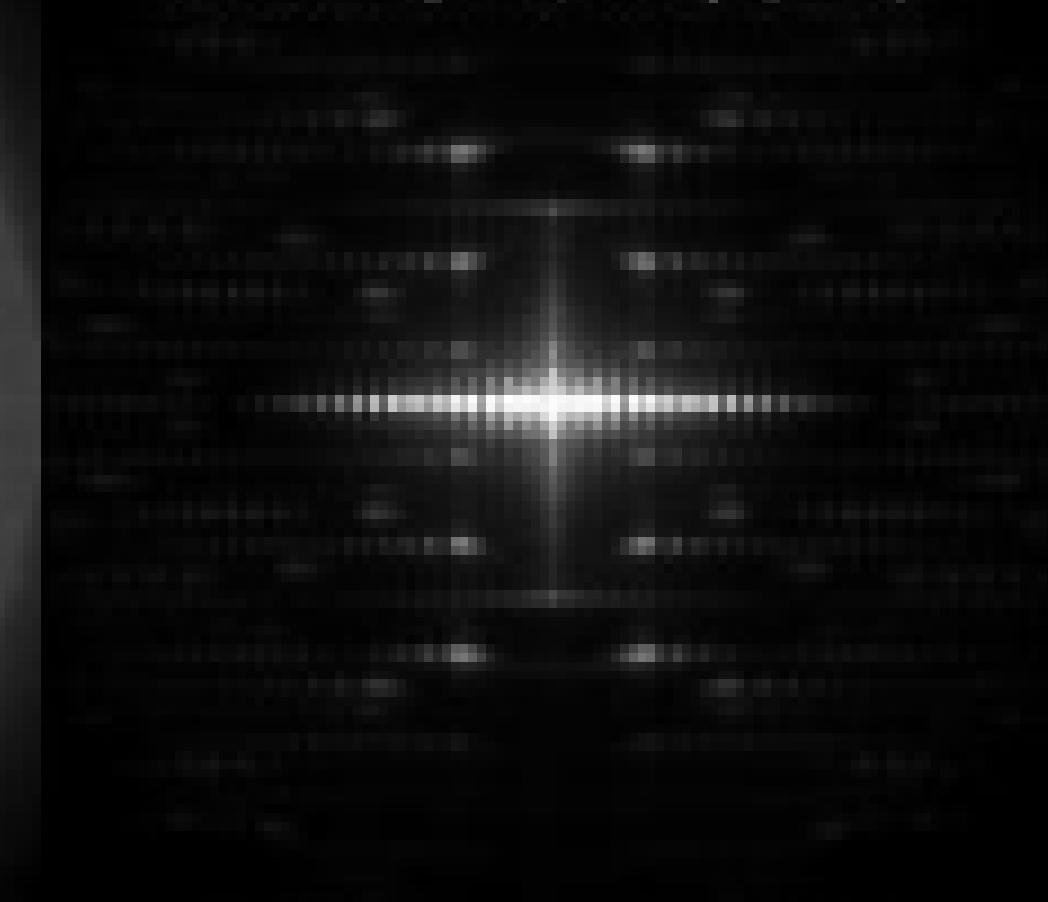
Observed [n1=14, n2=14]-symmetry



Calculated [n1=14, n2=14]-symmetry



Flattening 8% [.....] 9%


Flattening 8% [.....] 9%

Observed [60×64, 80×80]-symmetry

Calculated [60×64, 80×80]-symmetry

