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Abstract

The road from transcription to protein synthesis is paved with many obstacles, allowing for
several modes of post-transcriptional regulation of gene expression. A fundamental player in
MRNA biology is DDX3X, an RNA binding protein that canonically regulates mRNA translation.
By monitoring dynamics of mRNA abundance and translation following DDX3X depletion, we
observe stabilization of translationally suppressed mRNAs. We use interpretable statistical
learning models to uncover GC content in the coding sequence as the major feature
underlying RNA stabilization. This result corroborates GC content-related mRNA regulation
detectable in other studies, including hundreds of ENCODE datasets and recent work focusing
on mRNA dynamics in the cell cycle. We provide further evidence for mRNA stabilization by
detailed analysis of RNA-seq profiles in hundreds of samples, including a Ddx3x conditional
knockout mouse model exhibiting cell cycle and neurogenesis defects. Our study identifies a
ubiquitous feature underlying mRNA regulation and highlights the importance of quantifying
multiple steps of the gene expression cascade, where RNA abundance and protein production

are often uncoupled.
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Introduction

The cytoplasmic fate of RNA molecules is impacted their subcellular localization, RNA binding
partners, and engagement with the ribosomal machinery. These aspects are strongly
interconnected?, which poses a great challenge, as it increases the number of variables and
experimental approaches needed to answer many questions in mRNA biology. To this end,
many protocols couple biochemical isolation, or metabolic labeling, of RNA with high
throughput sequencing technologies, thus providing a snapshot of the transcriptome at
specific stages of the mRNA life cycle, with high throughput and sensitivity. For example, high-
throughput sequencing protocols, when coupled to ribosome isolation, such as in Ribo-seq?,
metabolic labeling strategies in SLAM-seq3, immunoprecipitation of RNA binding proteins
(RBP) as in CLIP-seq* and many others, have shed light on many regulatory mechanisms

pertaining to different aspects of post-transcriptional gene regulation.

DDX3X is a multifunctional RNA helicase that is highly expressed in many tissues and able to
unwind structured RNA to influence cytoplasmic post-transcriptional gene regulation®.
Together with its ability to bind initiating ribosomes, DDX3X has been often described as a
translation regulator, specifically promoting translation of RNA with structured 5’UTRs®’.
However, as mentioned above, cytoplasmic processes like translation or mRNA decay are
intertwined, and connection between the two processes encompass different molecular
mechanisms, such as mRNA surveillance mechanisms like nonsense-mediated decay (NMD)8,
ribosome-collision dependent mRNA cleavage®, and others. In order to understand when and
how such processes are coupled, it is important to study the dynamics of such mechanisms.
For instance, it has been proposed that miRNA can first trigger translation suppression and

then mRNA deadenylation and decapping leading to RNA degradation?®.
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Mutations in DDX3X are associated with a variety of human diseases including cancers and
developmental delay!!. Variant types are disease selective in DDX3X, with cancers ranging
from primarily loss-of-function alleles in NK-TCL and other blood cancers to nearly exclusively
missense variants in medulloblastoma!l. In DDX3X syndrome, missense variants are
phenotypically more severe than loss-of-function. Previously, we used functional genomics
approaches to identify mechanistic differences between depletion of DDX3X and expression
of missense variants’. We found that DDX3X missense variants predominantly affect
ribosome occupancy while DDX3X depletion impacts both ribosome occupancy and RNA
levels. However, it is unclear whether the changes in RNA levels constituted a cellular

response to translation suppression, often described as “buffering”*2.

MRNA regulation has been linked to neurogenesis during development, where multiple RNA
binding factors, including DDX3X, ensure correct protein synthesis as cells transition between
different fates and states!®. To that end, it is important to think about the dynamics of gene
expression, as complex dynamics of cell proliferation and differentiation ensure correct

developmental patterning.

In order to access such complex interplays of a multitude of factors which shape gene
expression, large-scale consortia have provided a great resource for investigations into gene
regulation. While historically devoted to promoting investigation into transcriptional
regulation, recent efforts started to provide precious information into post-transcriptional
mechanisms, with hundreds of RBPs profiled in terms of both binding and function, by means
of CLIP-seq, and knockdown followed by RNA-seq*. As in biology many molecular processes
are interconnected, large-scale datasets and data amenable to re-analysis are at the very

heart of many research efforts®.
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85 Here, we identify how inactivation of DDX3X evolves over time to lead to acute and long-term
86 changes to post-transcriptional gene regulation. We here employ different analytical
87  approaches applied to newly generated experimental data and many previously published
88  studiesrelated to mRNA regulation, to show that GC content is associated with mRNA stability
89 changes following DDX3X depletion. Our analyses indicate that this effect is widespread and
90 s associated with cell cycle changes in mRNA regulation, including RNA stability. This further
91 reinforces roles for DDX3X in RNA stability in addition to translation. Together, our work
92  represents a significant advancement in the understanding of a fundamental regulator, which

93  sits at the very heart of the gene expression cascade.

94

95 Results

96 Time-resolved gene expression regulation by DDX3X.

97 To characterize the dynamics of DDX3X-dependent changes in the gene expression cascade,
98 weemployed a previously validated auxin-degron system to efficiently deplete DDX3X protein
99 in the HCT116 colorectal cancer cell line!®, where we found near-complete rescue of gene
100 expression changes by DDX3X expression, thus being able to use this tool to monitor DDX3X-
101  dependent changes. We profiled RNA levels and translation using RNA-seq and Ribo-seq along
102  atime-course of DDX3X depletion, at 4, 8, 16, 24 and 48 hours after auxin or DMSO control
103  treatment. (Figure 1A). Efficiency of DDX3X depletion, together with quality control and
104  general statistics of the generated libraries, can be found in Supplementary Figure 1 and
105 Supplementary Table 1. As expected, the number of differentially expressed genes increased

106 alongthe time-course, with most changes supporting the role of DDX3X as a positive regulator
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107  of translation (Figure 1B). Changes in translation were negatively correlated with changes in
108 mRNA levels, which together contributed to many changes in Translation Efficiency (TE),
109  calculated using Ribo-seq changes given RNA-seq changes (Methods). At a closer look, we
110 observed how “TE_down” mRNAs undergo translation suppression in the early time point
111  after DDX3X depletion, with their mRNA levels increasing in the later time points (Figure 1C).
112  The opposite behavior is observed for “TE_up” mRNAs, exhibiting higher ribosome occupancy
113 first, and lower mRNA levels later. Such behavior was more evident when showing time-point
114  specific changes and binning mRNAs in a 2D grid on the Ribo-seq/RNA-seq coordinate plane
115  (Figure 1D, Methods), which highlighted a common regulatory mode, with early translation

116  regulation followed by changes in mRNA levels.

117  This analysis shows the time-resolved dynamics of mRNA regulation by DDX3X, with hundreds
118  of mRNAs changing in their steady-state levels albeit showing the opposite directionality in

119 translation rates.

120
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Figure 1: Dynamics of mRNA regulation by DDX3X

In A) a description of the experimental design. Below Ribo-seq and RNA-seq fold changes at different time points. Different regulated classes
are shown in different colors. The size of the dots indicates the adjusted P-values for differential translation efficiency test (Methods). TE:
translation efficiency, NS: not significant. In B) average delta TE values (differences in TE values) for each class along the time course. The size
of the dots indicates the number of significantly changing mRNAs. C) progression along the time course for mRNA regulated 48h post degron
induction. RNA-seq and Ribo-seq fold changes are shown at each time point. D) Differences in Ribo-seq or RNA-seq fold changes between
each time point and the previous one, shown as a vector plot. Magnitude of changes shown as a color gradient, while transparency of the vectors

indicates the number of mMRNAs in each coordinate bin (Methods).

126
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127  Translation suppression by DDX3X is coupled with mRNA stabilization.

128 Changes to transcript levels can result from changes in transcription rates or post-
129  transcriptional regulation. To identify the relative contribution of different processes to RNA
130 levels, we used our time-course dataset to calculate changes in transcription, processing and
131  stability using INSPECTY. INSPECT uses the proportion of intronic versus exonic reads to
132  identify nascent vs. mature transcripts, and uses a system of ordinary differential equations
133  (ODEs) to infer rates of RNA synthesis, processing and decay. Compared to non-regulated
134 mRNAs, regulated mRNAs showed modest changes in transcription rates, suggesting
135 transcription changes are not the major contributor to RNA level changes following DDX3
136  depletion, In contrast, we found more pronounced changes in mRNA stability as evidenced
137 by TE down transcripts (Figure 2A). As our initial RNA-seq protocol was not designed to
138 capture pre-mRNA molecules, we validated our estimated mRNA stability changes by
139  employing the 4sU metabolic labeling SLAM-seq protocol® in our degron system after 8 hours
140 of DDX3X depletion, in a way to detect changes in mRNA stability at early time points. Briefly,
141  cells were incubated with 4sU to comprehensively label transcribed RNAs, and their
142  abundance was followed after 8h of DDX3X degron activation, using DMSO as control. 4sU
143  treatment induces T>C conversions in the sequenced cDNA molecules, which can be used to
144  monitor mRNA stability changes after a uridine chase, as shown in Figure 2B. As expected, we
145  observed a drastic drop in T>C harboring reads after the chase, which reflects mRNA decay

146  rates (Supplementary Figure 2). As shown in Figure 2B, after a labeling time of 24 hours, the
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168  JUND RNA was stabilized after 24 hours with knock down of DDX3 and Actinomycin D (ACTd)

169  treatment (Supplementary Figure 3A); EIF2A RNA was more degraded after 24 hours with

170  knock down of DDX3 and ACTD (Supplementary Figure 3B). These results show an overall
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good agreement between the qPCR and the sequencing-based assays, despite the difficulty
arising from choosing control genes and the modest fold changes observed in the sequencing

data.

By profiling ribosome occupancy, steady state transcript levels, and mRNA decay, this analysis
shows that DDX3X depletion triggers multiple modes of post-transcriptional regulation,

involving translation suppression and a subsequent wave of mRNA stabilization.
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180  GC-rich coding sequences underlie mRNA regulation by DDX3X.
181  With hundreds of mRNAs post-transcriptionally regulated after DDX3X depletion, we aimed
182  to identify specific features belonging to up- or downregulated targets. We therefore built
183  regression models to quantitatively predict levels of TE changes (Methods, Supplementary
184  Table 2). We used different biophysical properties of genes and mRNAs, (e.g. length and GC
185 content) and several gene and transcript features (e.g. introns, 3’"UTR, etc.., Methods) as
A) B) C) delta_TE
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Figure 3: GC content in the coding sequence predicts regulation by DDX3X

A) Classification of different mRNAs according to their change in mRNA levels or translation. In B) model performance
(correlation between predicted vs. real values) on unseen test data of the random forest regression model for transcript classes
as defined in A). C) Predictive power of most informative features, with their importance values (Methods) plotted on the x axis.
Feature pertaining to GC content in different section of transcripts (GCpct*), baseline translation levels (base_TE), codon
frequencies (codonfr*), positional read density (posdens®), and length features (intronlen) are displayed. D) Vector plot as in
Figure 1D, highlighting GCcds values. Partition of inferred degradation rate (E) or SLAM-seq profiles (F,) for mRNAs partitioned

by GCcds values. Significance values for SLAM-seq from a one-sided Wilcoxon test.
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186  features for a Random Forest regression model. Given the extensive literature on codon-
187 mediated mRNA stability regulation, we added codon frequencies and previously validated
188  codon optimality calculations'®. Also, we added measured GC-content at 1%, 2" or 37 codon
189  position, as it was recently shown to potentially play a role in mRNA stability regulation92°,
190 In addition, to pinpoint features predictive of mRNA stability changes rather than translation
191 changes exclusively, we divided transcripts according to their position in the Ribo-seq/RNA-
192  seq coordinate system, to capture mRNAs where changes between assays agreed or not
193  (Figure 3A, Methods). Interestingly, the categories differed in their DDX3X binding pattern
194  (Supplementary Figure 4): re-analysis of our previously published PAR-CLIP data showed how
195  stabilized targes (x,-xy groups) have a lower T>C conversion signal in their 5’UTRs, and a higher
196  signal in CDS peaks, with the opposite being true for true translation targets (y group). This
197  analysis suggests that stabilized mRNAs might be regulated differently than “canonical”

198 translationally suppressed targets.

199  As shown in Figure 3B, the Random Forest model predicted TE changes with high precision,
200 especially in cases where mRNA stability and translation were anti-correlated (-xy group). In
201  addition, this model calculated the predictive power of each input feature (Figure 3C,
202  Methods), which highlighted GC content in the coding sequence (which we will refer to as
203  GCcds) as the most important feature. Feature selection is a very important method to select
204  predictive features, especially when facing high levels of multicollinearity (Supplementary
205  Figure 5). To validate the results from the Random Forest regression, we used Lasso
206  regression (Methods), another well-known method for feature selection. Results from the
207  Lasso regression were similar, and also identified GC content in the coding sequence as the

208  most relevant feature in predicting TE changes (Supplementary Figure 6). GC content in the
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209 CDS remained the top predictor when using additional features, such as GC content in

210 different sections of the CDS, or amino acid frequencies (Supplementary Figure 7).

211  In the light of these results, we tested whether GCcds was associated with the DDX3X-
212 dependent transcriptome dynamics reported above. As shown in Figure 3D, mRNAs
213 partitioned on the Ribo-seq/RNA-seq coordinate system based on their GCcds value.
214  Moreover, stability values from both INSPECT and SLAM-seq partitioned according to GCcds
215  values (Figure 3E-F). A similar, albeit weaker, separation was observed for predicted

216  transcription and processing rates (Supplementary Figure 8).

217 By using multiple analytical approaches, we here show how GCcds, not just GC content in
218 general, or in other sections of the transcriptome, is a predominant feature of stabilized, yet

219  untranslated, mRNAs following DDX3X depletion.

220

221  GCcontent in the coding sequence is a ubiquitous signal in mRNA regulation.

222  Given the extensive connections between different aspects of mRNA regulation by thousands
223 of regulators, we tested the breadth of the influence of features such as GCcds in other
224  studies of RNA regulators. We re-analyzed >2000 RNA-seq samples (Methods) from the
225 recent ENCODE RBPome!* study encompassing >200 RBP knockdowns, and performed

226  differential analysis followed by predictive modeling using the same methods and features as
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227  described in the previous section, this time aiming at predicting changes in mRNA levels

228  (Figure 4A).
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Figure 4: A ubiquitous feature in mRNA regulation

A) Schema describing the ENCODE analysis strategy. B) Histogram representing overall model performance across datasets. C)
Model performance (spearman correlation between predicted and real values on unseen test data) on the y axis, with importance of 3
example features variables (indicating their predictive value) on the x axis. Top knockdown experiments, together with DDX3X, are
show with labels. Data shown is from shRNA KD experiments in K562 cells. The linear relationship between GCcds importance and
model performance indicates its relevance as the top predictor of RNA changes in dozens of datasets. D) mRNA level changes
against GCcds values in a DDX3X knockdown experiment in the ENCODE dataset. E) Schematics of the cell cycle data used. Values
for different kinetic parameters were partitioned according to GCcds values of their mRNAs and tested for significant differences. F)
Normalized cell proportion (obtained by dividing cell percentages between Auxin treatment and DMSO) in different stages of the cell
cycle along the degron time course. An increase in G1 and decrease in S phase can be observed at later time points. Significance

values come from a Wilcoxon two-sided test (n=6 in each condition).
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229  We first grouped datasets according to knockdown efficiency, which varied according to
230  knockdown method and cell line (Supplementary Figure 9, Methods). We selected the sample
231 with the highest knockdown efficiency for each RBP and called feature importance using our
232 analytical pipeline. Predictive power of our Random Forest regression strategy varied across
233  different datasets (Figure 4B). Once again, the strongest predictor of mRNA changes was
234  GCcds, whose predictive power dominated over other variables (Figure 4C, Supplementary
235  Figure 10). As expected, changes upon DDX3X knockdown in the ENCODE data also exhibited
236  aclear dependency over GCcds (Figure 4D), albeit to a lower degree compared to our degron
237  dataset, likely due to differences in DDX3X depletion strategies and, importantly, to our
238 translation profiling dataset, which allowed us to distinguish between specific classes (i.e.

239  “TE_down”) of regulated mRNAs (Discussion).

240  Given the widespread relevance of GCcds as a predictor of post-transcriptionally regulated
241  targets, we reasoned that a major cellular process might mediate the observed mRNA
242  changes. We re-analyzed data from a recent study?! focused on mRNA clearance during cell
243  cycle re-entry, where the authors used a FUCCI (fluorescent, ubiquitination-based cell-cycle
244 indicators) cell system coupling RNA labeling, scRNA-seq and single-molecule imaging
245  techniques to find extensive decay differences among different transcripts, potentially
246  related to poly-A tail mediated regulation. Despite a lower throughput when compared to
247  sequencing-based experiments, kinetic parameters estimated from their data (exemplified in
248  thedecay curvein Figure 4E) showed significant differences when partitioned by GCcds values
249  (Figure 4E). mRNAs rich in GCcds showed lower half-life values, and fast decay kinetics at cell
250 cycle re-entry, with the opposite trend exhibited by mRNAs poor in GC content in their coding
251  sequence. Motivated by this finding, we decided to investigate differences in cell cycle

252  dynamics in our degron system, by using 5-ethynyl-2'-deoxyuridine (EdU) incorporation
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253  followed by FACS analysis (Methods, Supplementary Figure 11). As shown in Figure 4F and
254  Supplementary Figure 12, DDX3X depletion resulted in cells staying more in G1 and less in S

255  phase when compared to controls, throughout the time course.

256 By re-analysis of thousands of RNA-seq samples, these results show the prevalence of GCcds
257 in post-transcriptional regulation and RBP functions, with a potential role for cell-cycle

258 dependent mRNA dynamics in shaping such a regulatory phenomenon.

259

260  Ashiftin 5-3’ RNA-coverage as a hallmark of mRNA stabilization.

261 Inaddition to gene-level aggregate measures of abundance, we investigated whether changes
262 in decay could be identified by taking advantage of the high resolution of RNA-seq
263  experiments across gene bodies, which has previously been employed to inform about mRNA
264  decay'®. We leveraged our time-resolved degron dataset to investigate changes in 5’-3’
265  coverage, a known hallmark of RNA degradation often employed to verify overall integrity of
266  cellular mRNAs or to estimate transcript-level decay. We calculated 2 different metrics, using

267  the strategy illustrated in Figure 5.
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Figure 5: Coverage analysis of regulated mRNAs reveals changes in 5’-3’ decay

Coverage analysis strategy in the degron dataset using a practical example (CSRNPZ2 gene): coverage starting point is first
identified using pooled data, then coverage tracks for each experiment are extracted. Coverage starting points (in transcript
coordinates) and coverage values (log2FC to DMSO) are calculated for each time point and used as input to a linear model. The
beta coefficient (shown in pink) for each model is then extracted for each mRNA and values are compared across different
classes (stabilized vs unchanging vs degraded). More details are available in the Methods section. P-values from one-sided

Wilcoxon test.
268 Initially, we pooled all samples to identify the major isoform for each gene (Methods), and
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269  thefirst position at 15% of the maximum coverage. We then calculated such position for each
270 time point. Importantly, coverage values were normalized for each transcript, thus controlling
271  for expression level changes. Also, we did not observe similar changes at the 3’ end of
272  transcripts (Supplementary Figure 13). We then used coverage starting points as input for
273  linear regression. The regression coefficient was extracted and compared across the top 250
274  stabilized, degraded, and control mRNAs, alongside 1500 control transcripts. As shown in
275  Figure 5, coverage values on stabilized mRNAs started as an earlier position in the transcripts,
276  with moderate albeit significant differences between categories, indicating a lower 5’-3’
277  decay along the DDX3X degron time course. The opposite trend was observed for degraded
278  transcripts. Similarly, we calculated average coverage values in a window of 300nt around the
279  coverage start and applied a similar strategy: 5’ coverage values increased along the time
280  course, confirming the accumulation of translationally suppressed mRNA species otherwise
281  destined for degradation. Results were similar when using different cutoffs for the definition

282  of coverage starting point (Supplementary Figure 14).
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283  To test whether the suppression of 5’-3’ decay of untranslated transcripts by DDX3X occurs in

284  vivo, we re-analyzed recent RNA-seq/Ribo-seq dataset in a conditional Ddx3x (cKO) mouse
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Figure 6. GCcds - mediated mRNA stabilization is detectable in vivo and across the ENCODE

RBP database.

A) Changes in Ribo-seq and RNA-seq levels in a conditional Ddx3x mouse model, as in Figure 1A, showing GCcds values.
B) Strategy for coverage analysis in the mouse Ddx3x cKO experiment, shown for the Ctxn1 gene. Differences in coverage
values are extracted and compared across regulated mRNAs. In C) same strategy as in Figure 5A applied to each
differential analysis followed by RBP knockdown in the ENCODE dataset. Differences in coverage values between stabilized
and unchanging mRNAs (shown by p-values, as calculated as in panel B), in pink color) are plotted against GCcds
importance (x axis). D) Example mean coverage on 2 mRNAs (1 stabilized and 1 degraded), partitioning RBP knockdown
datasets by their GCcds importance. An increase in coverage can be observed for the stabilized mRNA, while the opposite

trend is visible for a degraded transcript.


https://doi.org/10.1101/2023.05.11.540322
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.11.540322; this version posted November 23, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

285  model*3(Figure 6), where cell cycle and neurogenesis defects are evident when Ddx3x is
286  depleted in neuronal progenitors. After applying our analytical pipeline, we observed that the
287  accumulation of untranslated transcripts is even more evident in this in vivo model, as is its
288  relationship with GCcds values (Figure 6A). Analogous to the strategy presented in Figure 5,
289 5’ coverage values, as well as coverage starting points (Supplementary Figure 15), differed
290 significantly between wild type and Ddx3x cKO animals (Figure 6B) in regulated transcripts,

291  while no difference was detected at the 3’end (Supplementary Figure 16).

292

293  Leveraging again the power of hundreds of RNA-seq experiments, we examined 5’ coverage
294  profiles in the ENCODE dataset, partitioning experiments by their dependency on GCcds
295  values. Differences between stabilized and control mRNAs are greater as the GCcds signature
296 is more predominant (Figure 6C). Aggregating different experiments according to their GCcds
297 dependency for example transcripts (Figure 6D) confirm this phenomenon, where both
298  coverage starting position and coverage values changed across different datasets, indicative

299  of mRNA decay regulation.

300 Taken together, we provide evidence for in vivo DDX3X-mediated stabilization of untranslated
301 transcripts, its dependence on GCcds values, and, supporting the different analyses reported
302 in this study (Figure 7) a high-resolution RNA-seq coverage analysis strategy to investigate
303  GCcds-related mRNA decay regulation, with support from hundreds of post-transcriptionally

304  perturbed transcriptomes.
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Figure 7. A model for multimodal mRNA regulation by DDX3X

A schematic showing the effects of DDX3X depletion on GC-content related changes in translation and mRNA stability,

highlighting potential molecular mechanisms underlying this phenomenon.
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309 Discussion

310 The multifaceted role of DDX3X, described as involved in different molecular processes, often
311 hinders the ability to understand its functions, especially considering the interconnected
312  nature of molecular processes in the cell. Multiple mRNA features might underlie different
313 modes of regulation, as we previously showed and experimentally validated 5’UTR
314 dependencies underlying DDX3X translation regulation’. This outlines an unmet need for

315  studies linking multiple aspects of the gene expression cascade.

316 In addition to profiling RNA levels and translation, we further dissected dynamics of
317  cytoplasmic regulation by DDX3X, by employing a time course of efficient DDX3X depletion
318  (Figure 1A). Akin to previous studies observing translation suppression preceding mRNA
319 changes during miRNA-mediated regulation!®, we observed an accumulation of
320 translationally suppressed RNAs. This highlights the importance to profile not only mRNA
321 abundance but also translation levels, which, in absence of quantitative estimates of
322 regulated protein levels, can greatly help researchers understanding the functions of many
323  cryptic regulators often involved in multiple processes, like DDX3X and other RBPs?2. Despite
324  relatively fast kinetics of DDX3X degradation from our degron system, more work needs to be
325 performed to pinpoint exactly what changes occur right after DDX3X depletion, and to more

326  precisely quantify the lag between translation suppression and mRNA stabilization.

327

328 By employing multiple techniques for feature selection, we identified a major feature
329 underlying mRNA regulation by DDX3X, as well as by many other post-transcriptional

330 regulators. An important area of investigation for the future is to employ more unbiased
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331 approaches, akin to recent Natural Language Processing-inspired methods in transcription
332 regulation??, in mRNA biology to accurately estimate the relevant features directly from data
333  rather than specified by potentially biased approaches. In our hands, the relevance of GCcds
334 s clearly picked up by both the Random Forest and the Lasso (Supplementary Figure 4).
335 Importantly, we included similar features, such as overall GC content?*, in UTRs, introns etc.,

336 alongside codon frequencies?® and previously estimated values of codon optimality.

337  Our study suggests that data-driven approaches to functional transcriptomics are highly
338 needed, where data from multiple experiments are routinely re-analyzed to test hypotheses
339 and provide new insights into the complex world of mRNA biology. However, while profiling
340 translation allowed us to focus on specific mMRNA classes and their features, no large-scale
341 translation profiling study exists yet, with few, precious small atlases recently appearing in
342  the literature?®. The current ENCODE RBP series is of great value to many mRNA biology
343  researchers worldwide and it has been an invaluable resource for many recent studies?®?/,

344  yet an extension of these approaches which includes other aspects of post-transcriptional

345  regulation, such as translation and stability, is in great need.

346

347 In the original ENCODE RBP study'4, gene expression estimates were GC-corrected for each
348 sample, as GC content has been often reported as a confounder, especially when comparing
349 across sequencing technologies and labs. Given the presence of GC-related biases in
350 sequencing-based assays, we think that great caution must be taken when observing
351 expression changes driven by GC content features, especially when interpreted as direct
352  effects from single molecular factors. Our degron time course analysis, despite containing

353 dozens of features pertaining to GC content measures, detected GC content specifically in
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354  coding sequence as a feature underlying regulation, and this region-specific effect is not
355 consistent with a general confounding role for GCcds. Moreover, our analysis focused on
356 differences upon a perturbation under a single sequencing platform and laboratory settings,
357  which are likely to have similar GC-related confounders, should there be any. Important
358 confirmation of the relevance of GCcds and its relationship to mRNA dynamics also came
359 from: employing SLAM-seq to estimate differences in stability (Figure 2), qPCR validations
360 (Supplementary Figure 3), re-analysis of in vivo Ddx3x cKO RNA-seq/Ribo-seq (Figure 6), re-
361 analysis of hundreds of RBP perturbations in human cell lines (Figure 4), and by analyzing

362  kinetics extracted by transcriptome dynamics in cell-cycle specific states (Figure 4).

363

364 Together with well-established differential analysis statistical methods, which allowed us to
365 robustly identify different classes of regulated mRNAs, we exploited the high resolution
366 offered by RNA-seq to analyze differences in 5’end coverage for thousands of individual
367  transcripts (Figure 5), as an additional metric reflecting active regulation of mRNA decay
368 mechanisms. We posit that popular analysis strategies for -omics techniques, despite their
369 popularity over more than a decade, often obscures information with regards to mRNA
370 processing and other molecular mechanisms, which can be uncovered by dedicated
371 computational methods. Importantly, such dynamics are invisible (or, worse, can significantly

372  distort quantification estimates) when performing gene-level analyses.

373

374  The mechanism, or mechanisms, by which GC content in coding regions shapes mRNA
375  dynamics is still to be determined. We speculate that complex RNA structures in the coding

376  sequence can form in the absence of active translation elongation, and such structure may
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377 mediate degradation, helped by RNP complexes in the cytoplasm. However, recent literature
378 focused on the role of different codons in mediating such effect!®. In our hands, codon-
379 mediated effects seem to be negligible when considering the overall GCcds values, but more
380 work needs to be done to identify cases where one or the other, or a mix of the two, can
381 mediate mRNA decay on different transcripts. The involvement of mRNA dynamics during the
382 cell cycle (Figure 4) suggests a model where, during cell cycle - dependent translation
383  suppression, mRNAs are able to fold structures in the coding sequence promoting decay, and,
384  when such processes are misregulated (e.g., by depleting multifunctional RNA helicases such
385 as DDX3X), this process is less efficient. The extent to which cell cycle changes might depend
386 on direct DDX3X binding and regulation remains to be elucidated. Further work needs to be
387 done to refine the exact function, together with the subcellular localization, of regulated
388 mRNAs. For instance, mRNA retention in the nucleus might be an additional
389 underappreciated mode of gene expression control?®, and is in line with our observation
390 about the untranslated status of regulated transcripts. However, we identified GC content in
391 the coding sequence as the hallmark feature for stabilized transcripts, a feature which is

392  defined by translation in the cytoplasm.

393  While RBP binding data remains an important starting point from which we can build testable
394  hypothesis, simple binding-to-function paradigms might also create bias when trying to
395 explain complex phenotypes arising from RBP misfunction. Moreover, we observed how
396 binding patterns might different between different regulated classes (Supplementary Figure
397  4).Inour previous study we investigated the changes in translation and RNA abundance using
398 a DDX3X helicase mutant; one of the observations we made pertained to the lack of RNA
399 changes in our data, suggesting a potential function for the helicase activity in orchestrating

400  such changes.
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401  Previous work implicated DDX3X in mediating cell cycle dynamics by a variety of
402  mechanisms?, including a direct regulation of cyclin E1 translation3°, which however was not
403 among the most regulated mRNAs in our dataset (Supplementary Table 2). More work needs
404  to be done to accurately quantify mRNA dynamics and RBP functions in the cell cycle, where
405 translation regulation mechanisms332 ensure controlled rates protein synthesis. The
406 connection between cell cycle, sequence content and mRNA regulation is reinforced by the
407  in vivo data, adding to the importance of studying post-transcriptional regulation along the
408 neurogenesis axis>*3* where the equilibrium between proliferation, apoptosis and

409 differentiation3® shapes the complexity of the developing brain.

410
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422 Methods

423

424  Ribo-seq and RNA seq experimental protocol

425

426  HCT116 cells with inducible degradation of DDX3X (as previously described?!®), were plated in
427  15cm plates at 20% confluency (~3.5x10 6 cells/plate). 48 hours post plating, when the cells
428  were at ~ 70% confluency, the media was changed and fresh media with 500 uM IAA (Indole-
429  3-acetic acid, the most common naturally occurring Auxin hormone) (Research Products
430 International, cat: 154000-5.0) or DMSO was added to cells. Cells were harvested at 0, 4, 8,
431 16, 24, and 48 hours post IAA addition. Cell number did not appreciably increase over the 48
432  hours of the experiment. To quantify DDX3X protein, we used an anti-DDX3X antibody
433  described in previous work’ normalized to an anti-GAPDH antibody (Rockland

434  Immunochemicals, cat: 600-401-A33S).

435  Cells were treated with 100 ug/ml cycloheximide (CHX), washed with PBS containing 100
436  ug/ml CHX, and immediately spun down and flash frozen. Once all time-points were collected,
437  the cells were thawed and lysed in ice-cold lysis buffer (20 mM TRIS-HCI pH 7.4, 150mM Nacl,
438 5 mM MgCI2, 1mM DTT, 100 pg/ml CHX, 1 % (v/v) Triton X-100, 25 U/ml TurboDNase
439  (Ambion)). 240 pl lysate was treated with 6 pl RNase | (Ambion, 100 U/ul) for 45 minutes at
440  RT with gentle agitation and further digestion halted by addition of SUPERase:In (Ambion).
441  lllustra Microspin Columns S-400 HR (GE healthcare) were used to enrich for monosomes, and
442  RNA was extracted from the flow-through using Direct-zol kit (Zymo Research). Gel slices of

443  nucleic acids between 24-32 nts long were excised from a 15% urea-PAGE gel. Eluted RNA
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444  was treated with T4 PNK and preadenylated linker was ligated to the 3’ end using T4 RNA

445  Ligase 2 truncated KQ (NEB, M0373L).

446  Linker-ligated footprints were reverse transcribed using Superscript Il (Invitrogen) and gel-
447  purified RT products circularized using CircLigase Il (Lucigen, CL4115K). rRNA depletion was
448 performed using biotinylated oligos as described3® and libraries constructed using a different

449  reverse indexing primer for each sample.

450  For the RNA-seq, RNA was extracted from 25 pl intact lysate (non-digested) using the Direct-
451  zol kit (Zymo Research) and stranded total RNA libraries were prepared using the TruSeq

452  Stranded Total RNA Human/Mouse/Rat kit (lllumina), following manufacturer’s instructions.

453  Libraries were quantified and checked for quality using a Qubit fluorimeter and Bioanalyzer

454  (Agilent) and sequenced on a HiSeq 4000 sequencing system.

455

456  Slam-seq experimental protocol

457

458  SLAM-seq was performed at 60-70% confluency for DDX3X-mAID tagged HCT116. Media was
459 changed and fresh media with 100uM 4-thiouridine (4sU) was added to cells and changed
460 every 3 hours for 24 hours. 8 hours prior to collection, growth medium was aspirated and
461  replaced. Uridine chase was performed where cells were washed twice with 1X PBS and
462  incubated with media containing 10 mM uridine and DMSO or 100uM IAA for 0 or 8 hours to
463  induce degradation of DDX3X. At respective time points, cells were harvested followed by
464  total RNA extraction using TRIzol (Ambion) following the manufacturer's instructions

465  (SLAMseq Kinetics Kit — Catabolic Kinetics Module, Lexogen). Total RNA was alkylated by
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466 iodoacetamide for 15 min and RNA was purified by ethanol precipitation. 200ng alkylated
467 RNA were used as input for generating 3’-end mRNA sequencing libraries using a
468 commercially available kit (QuantSeq 3' mRNA-Seq Library Prep Kit FWD for lllumina,

469  Lexogen).

470

471  Ribo-seq data analysis

472

473  Reads were stripped of their adapter, collapsed, and UMI sequences were removed. Clean
474  reads were then mapped to rRNA, tRNA, snoRNA and miRNA sequences using bowtie23” using
475  sequences retrieved from UCSC browser and aligning reads were discarded. Remaining reads
476  were mapped to the genome and transcriptome using STAR3® v2.7.9a supplied with the
477 GENCODE v32 GTF file. STAR parameters were: --outFilterMismatchNmax 3 --
478  outFilterMultimapNmax 50 --chimScoreSeparation 10 --chimScoreMin 20 --chimSegmentMin
479 15 --outfilterintronMotifs RemoveNoncanonicalUnannotated --alignSJoverhangMin 500 --

480 outSAMmultNmax 1 --outMultimapperOrder Random.

481

482  SLAM-seq data analysis

483

484  Reads were mapped to the genome and transcriptome using same RNA-seq parameters,
485  except for --outFilterMismatchNmax 10. Reads containing T>C mutations were extracted

486  from the BAM file using GenomicAlignments and GenomicFiles Bioconductor3® packages.
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487

488 RNA-seq data analysis

489

490 Reads were mapped to the genome and transcriptome using STAR with same Ribo-seq
491 parameters. Synthesis, processing, and degradation rates were obtained using INSPEcTY’
492  v1.17, using default settings. Genes significantly changing in their dynamics at a p-value cutoff

493  of .05 were used for subsequent analysis.

494

495  Differential analysis

496

497  Unique counts on different genomic regions were obtained using RiboseQC*. 5’ end coverage
498 values were inspected using Bioconductor®® packages such as GenomicFeatures®* and
499  rtracklayer*?. DESeq2*® was used to obtain RNA-seq, Ribo-seq, and TE regulation, as described
500 previously’: changes in translation efficiency were calculated using DESeq2 by using assay
501 type (RNA-seq or Ribo-seq) as an additional covariate. Translationally regulated genes were
502  defined using an FDR cutoff of 0.05 from a likelihood ratio test, using a reduced model without

503 the assay type covariate, e.g. assuming no difference between RNA-seq and Ribo-seq counts.

504 A similar strategy was used to define significant changes in DDX3X-mediated stability from
505 SLAM-seq: count tables with T>C reads were built and analyzed using labeling (4sU/DMSOQ)
506 and degron status (8h. vs DMSO) as the two variables of interest; regulation in stability was
507 defined using a reduced model without the degron type covariate, e.g. assuming no

508 difference between DMSO and degron activation.
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509 Translationally regulated genes (as defined by Ribo-seq/RNA-seq) and stability regulated

510 genes (as defined by SLAM-seq) were defined using a p-value cutoff of .05.

511 For Figure 1D and 3D, the coordinate system was divided into 70 bins on each axis. GCcds
512  values (for Figure 3D), or Ribo-seq and RNA-seq fold changes between each time point and
513  the previous one (for Figure 1D) were averaged across genes in the same bin. Only mRNAs
514  with significant changes in translation efficiency at 48h post degron induction were

515 considered.

516

517 Random Forest and Lasso regression

518

519 The Random Forest regression was run using the randomForest** package with default
520 parameters. Lasso regression was performed on scaled variables using the gimnet*> package.
521  While the entire feature table is available in Supplementary Table 2, a short description of the

522  input features follows:

523  TPM values using RNA-seq (in log scale). Baseline TE levels, defined as ratio of Ribo to RNA
524  reads. Baseline RNA mature levels, defined as length-normalized ratio of RNA-seq reads in
525 introns versus exons. GC content, length (in log scale) and Ribo-seq/RNA-seq density in: 5’
526 UTRs, a window of 25nt around start and stop codons, CDS regions, non-coding internal
527  exons, introns, and 3’ UTRs. Codon frequencies. Measures of gene-specific codon optimality,
528  previously calculated from a recent study!®. GC-content at first, second, or third codon

529  position.

530
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Feature importance (measured by mean decrease in accuracy for the random forest model
and by the lasso coefficients) and correlation between predicted and measured test data

were calculated on a 5-fold cross-validation scheme.

Analysis of cell cycle - dependent mRNA dynamics

Estimated mRNA decay kinetics at cell cycle re-entry were deposited as supplementary files
of the original study?!. Genes were partitioned cutting their GCcds values into 3 groups given

the low number of quantified genes (total n=220).

Cell cycle staging

To measure DNA replication and cell cycle stage, EdU (5-ethynyl-2’-deoxyuridine) was added
to cells at 10nM for 1.5 hrs before harvesting. 1 confluent well of a 6-well plate of HCT116
cells were harvested and processed as per manufacturer's instructions for the Click-iT™ Plus
EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit (Thermo Fisher cat: C10634). Per
manufacturer's instructions, FxCycle Violet DNA content stain (Thermo Fisher cat: F10347)
was added after the Click-iT reaction at 1:1,000 dilution before quantifying on a BD LSR Dual

Fortessa flow cytometer. Alexa Fluor 647 was measured in the 670-30 Red C-A Channel and
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551  FxCycle Violet Stain was measured in the 450-50 Violet F-A Channel. Analysis was performed

552  using FACS DIVA and FlowJo V10 (FlowJo, LLC) software.

553

554  5’end coverage analysis

555

556  Computation on single-nucleotide coverage values was performed using rtracklayer®?. For
557  each differential analysis, we extracted the most 250 stabilized and the most 250 degraded
558 genes ranking P-values from RNA-seq differential analysis. 1500 control RNAs were randomly
559  sampled from non-regulated genes, using p-values >.2 and TPM values > 3. Coverage values
560 were 0-1 (min/max) normalized and the first position at value >.15 was identified as coverage
561  starting position. In addition, a general coverage starting point was selected by pooling all
562  samples, and a window of 250nt around such position was used to calculate average coverage
563  valuesaround the coverage start. Log2 fold change with respect to the control condition were

564  then calculated.

565  For degron data, starting position and log2fc coverage values were extracted and used as
566 input for linear regression. For coverage values, intercept was omitted, as the first value was
567 0. Beta coefficients were then extracted and compared between stabilized, degraded, and

568 control mRNAs.

569  For mouse Ddx3x cKO and ENCODE data, differences between starting position (knockdown
570 vs wt) and log2FC (knockdown vs wt) in coverage values were used to compare stabilized,
571  degraded and control mRNAs, bypassing the regression step (2 values were calculated, as only

572  wt or knockdown conditions were present).
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573  TagMan RT-PCR

574  DDX3X-mAlID tagged HCT116 cells were plated in 6 well plates at 30-40% confluency. 24 hours
575  post plating 500 uM IAA or DMSO was added to cells with or without 200nM Actinomycin D
576  (ActD) for respective conditions. Total RNA was extracted from cells at 60-70% confluency
577  using Direct-zol kit (Zymo Research) at 0 and 24 hours post-ActD and IAA or DMSO treatment.
578 TagMan probes for JUND, EIF2A, RACK1, LGALS1, and PFN1 were predesigned and purchased
579 from ThermoFisher Scientific. Riboseq degraded (EIF2A) or stabilized genes (JUND) were
580 conjugated with FAM dye while control genes RACK1, LGALS1, and PFN1 were conjugated
581 with VIC dye. For the TagMan real-time quantitative PCR amplification reactions, we
582 employed an Applied Biosystems QuantStudio 6 Real-Time PCR System instrument. Real-time
583  PCR was conducted using TagMan Fast Virus 1-Step Master Mix from Applied Biosystems in
584  384-well plates, following the manufacturer's protocol. Each well contained either the genes
585  subject to riboseq degradation gene (EIF2A) or stabilization gene (JUND) along with control
586 genes (RACK1, LGALS1, or PFN1). All reactions were conducted in triplicate. Thermal cycling
587 conditions adhered to the manufacturer's recommended standard protocol. The
588 quantification of the target input amount was determined using the cycle threshold (CT)
589  value, which corresponds to the point at which the PCR amplification plot crosses the
590 threshold. Expression of ribose degraded and stabilized genes were normalized to each

591 control genes respectively.

592  Gene Species Chromosome Location Assay ID Dye

593  RACK1 HUMAN Chr.5: 181236928 - 181243906 on Build GRCh38 Hs00272002_m1 VIC-MGB

594  LGALS1 HUMAN Chr.22: 37675606 - 37679802 on Build GRCh38 Hs00355202_m1 VIC-MGB
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595  PFN1 HUMAN Chr.17: 4945650 - 4949088 on Build GRCh38 Hs07291746_gH VIC-MGB

596 JUND HUMAN Chr.19: 18279694 - 18281656 on Build GRCh38 Hs04187679_s1 FAM-MGB
597  EIF2A HUMAN Chr.3: 150546678 - 150586016 on Build GRCh38 Hs00230684_m1 FAM-MGB
598 Details of TagMan® real-time PCR assays obtained from ThermoFisher Scientific.

599

600 Data and code availability

601

602  Raw sequencing data for Ribo-seq, RNA-seq and SLAM-seq can be found under GEO accession
603  GSE218433, with token “ujmtquoulnirpgx”. Encode accession numbers can be found in
604  Supplementary Table 3. Ddx3x knockout Ribo-seq and RNA-seq were analyzed from accession
605 number GSE203078, processed data can be found in Supplementary Table 4. Code to
606 reproduce all figures, together with processed data, can be found at

607  https://github.com/calviellolab/DDX3X GC paper.
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Supplementary Table 1. Read mapping statistics for the Ribo-seq RNA-seq DDX3X time course

dataset.

Supplementary Table 2. Input to the Random Forest model for the DD3X3 time course

dataset.

Supplementary Table 3. Accession codes for the analyzed ENCODE datasets, with information
for each differential analysis. Multiple accession can be technical replicate of a biological

replicate.

Supplementary Table 4. Input to the Random Forest model for the cKO Ddx3x mouse dataset.
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