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Abstract 19 

The road from transcription to protein synthesis is paved with many obstacles, allowing for 20 

several modes of post-transcriptional regulation of gene expression. A fundamental player in 21 

mRNA biology is DDX3X, an RNA binding protein that canonically regulates mRNA translation. 22 

By monitoring dynamics of mRNA abundance and translation following DDX3X depletion, we 23 

observe stabilization of translationally suppressed mRNAs. We use interpretable statistical 24 

learning models to uncover GC content in the coding sequence as the major feature 25 

underlying RNA stabilization. This result corroborates GC content-related mRNA regulation 26 

detectable in other studies, including hundreds of ENCODE datasets and recent work focusing 27 

on mRNA dynamics in the cell cycle. We provide further evidence for mRNA stabilization by 28 

detailed analysis of RNA-seq profiles in hundreds of samples, including a Ddx3x conditional 29 

knockout mouse model exhibiting cell cycle and neurogenesis defects. Our study identifies a 30 

ubiquitous feature underlying mRNA regulation and highlights the importance of quantifying 31 

multiple steps of the gene expression cascade, where RNA abundance and protein production 32 

are often uncoupled. 33 

 34 

 35 

 36 

 37 

 38 
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Introduction 39 

The cytoplasmic fate of RNA molecules is impacted their subcellular localization, RNA binding 40 

partners, and engagement with the ribosomal machinery. These aspects are strongly 41 

interconnected1, which poses a great challenge, as it increases the number of variables and 42 

experimental approaches needed to answer many questions in mRNA biology. To this end, 43 

many protocols couple biochemical isolation, or metabolic labeling, of RNA with high 44 

throughput sequencing technologies, thus providing a snapshot of the transcriptome at 45 

specific stages of the mRNA life cycle, with high throughput and sensitivity. For example, high-46 

throughput sequencing protocols, when coupled to ribosome isolation, such as in Ribo-seq2, 47 

metabolic labeling strategies in SLAM-seq3, immunoprecipitation of RNA binding proteins 48 

(RBP) as in CLIP-seq4 and many others, have shed light on many regulatory mechanisms 49 

pertaining to different aspects of post-transcriptional gene regulation. 50 

DDX3X is a multifunctional RNA helicase that is highly expressed in many tissues and able to 51 

unwind structured RNA to influence cytoplasmic post-transcriptional gene regulation5. 52 

Together with its ability to bind initiating ribosomes, DDX3X has been often described as a 53 

translation regulator, specifically promoting translation of RNA with structured 5’UTRs6,7. 54 

However, as mentioned above, cytoplasmic processes like translation or mRNA decay are 55 

intertwined, and connection between the two processes encompass different molecular 56 

mechanisms, such as mRNA surveillance mechanisms like nonsense-mediated decay (NMD)8, 57 

ribosome-collision dependent mRNA cleavage9, and others. In order to understand when and 58 

how such processes are coupled, it is important to study the dynamics of such mechanisms. 59 

For instance, it has been proposed that miRNA can first trigger translation suppression and 60 

then mRNA deadenylation and decapping leading to RNA degradation10. 61 
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Mutations in DDX3X are associated with a variety of human diseases including cancers and 62 

developmental delay11. Variant types are disease selective in DDX3X, with cancers ranging 63 

from primarily loss-of-function alleles in NK-TCL and other blood cancers to nearly exclusively 64 

missense variants in medulloblastoma11. In DDX3X syndrome, missense variants are 65 

phenotypically more severe than loss-of-function. Previously, we used functional genomics 66 

approaches to identify mechanistic differences between depletion of DDX3X and expression 67 

of missense variants7. We found that DDX3X missense variants predominantly affect 68 

ribosome occupancy while DDX3X depletion impacts both ribosome occupancy and RNA 69 

levels. However, it is unclear whether the changes in RNA levels constituted a cellular 70 

response to translation suppression, often described as “buffering”12. 71 

mRNA regulation has been linked to neurogenesis during development, where multiple RNA 72 

binding factors, including DDX3X, ensure correct protein synthesis as cells transition between 73 

different fates and states13. To that end, it is important to think about the dynamics of gene 74 

expression, as complex dynamics of cell proliferation and differentiation ensure correct 75 

developmental patterning. 76 

In order to access such complex interplays of a multitude of factors which shape gene 77 

expression, large-scale consortia have provided a great resource for investigations into gene 78 

regulation. While historically devoted to promoting investigation into transcriptional 79 

regulation, recent efforts started to provide precious information into post-transcriptional 80 

mechanisms, with hundreds of RBPs profiled in terms of both binding and function, by means 81 

of CLIP-seq, and knockdown followed by RNA-seq14. As in biology many molecular processes 82 

are interconnected, large-scale datasets and data amenable to re-analysis are at the very 83 

heart of many research efforts15.  84 
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Here, we identify how inactivation of DDX3X evolves over time to lead to acute and long-term 85 

changes to post-transcriptional gene regulation. We here employ different analytical 86 

approaches applied to newly generated experimental data and many previously published 87 

studies related to mRNA regulation, to show that GC content is associated with mRNA stability 88 

changes following DDX3X depletion. Our analyses indicate that this effect is widespread and 89 

is associated with cell cycle changes in mRNA regulation, including RNA stability. This further 90 

reinforces roles for DDX3X in RNA stability in addition to translation. Together, our work 91 

represents a significant advancement in the understanding of a fundamental regulator, which 92 

sits at the very heart of the gene expression cascade. 93 

 94 

Results 95 

Time-resolved gene expression regulation by DDX3X. 96 

To characterize the dynamics of DDX3X-dependent changes in the gene expression cascade, 97 

we employed a previously validated auxin-degron system to efficiently deplete DDX3X protein 98 

in the HCT116 colorectal cancer cell line16, where we found near-complete rescue of gene 99 

expression changes by DDX3X expression, thus being able to use this tool to monitor DDX3X-100 

dependent changes. We profiled RNA levels and translation using RNA-seq and Ribo-seq along 101 

a time-course of DDX3X depletion, at 4, 8, 16, 24 and 48 hours after auxin or DMSO control 102 

treatment. (Figure 1A). Efficiency of DDX3X depletion, together with quality control and 103 

general statistics of the generated libraries, can be found in Supplementary Figure 1 and 104 

Supplementary Table 1. As expected, the number of differentially expressed genes increased 105 

along the time-course, with most changes supporting the role of DDX3X as a positive regulator 106 
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of translation (Figure 1B). Changes in translation were negatively correlated with changes in 107 

mRNA levels, which together contributed to many changes in Translation Efficiency (TE), 108 

calculated using Ribo-seq changes given RNA-seq changes (Methods). At a closer look, we 109 

observed how “TE_down” mRNAs undergo translation suppression in the early time point 110 

after DDX3X depletion, with their mRNA levels increasing in the later time points (Figure 1C). 111 

The opposite behavior is observed for “TE_up” mRNAs, exhibiting higher ribosome occupancy 112 

first, and lower mRNA levels later. Such behavior was more evident when showing time-point 113 

specific changes and binning mRNAs in a 2D grid on the Ribo-seq/RNA-seq coordinate plane 114 

(Figure 1D, Methods), which highlighted a common regulatory mode, with early translation 115 

regulation followed by changes in mRNA levels. 116 

This analysis shows the time-resolved dynamics of mRNA regulation by DDX3X, with hundreds 117 

of mRNAs changing in their steady-state levels albeit showing the opposite directionality in 118 

translation rates. 119 

 120 

 121 

 122 

 123 

 124 

 125 
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 126 

Figure 1: Dynamics of mRNA regulation by DDX3X 

In A) a description of the experimental design. Below Ribo-seq and RNA-seq fold changes at different time points. Different regulated classes 

are shown in different colors. The size of the dots indicates the adjusted P-values for differential translation efficiency test (Methods). TE: 

translation efficiency, NS: not significant. In B) average delta TE values (differences in TE values) for each class along the time course. The size 

of the dots indicates the number of significantly changing mRNAs. C) progression along the time course for mRNA regulated 48h post degron 

induction. RNA-seq and Ribo-seq fold changes are shown at each time point. D) Differences in Ribo-seq or RNA-seq fold changes between 

each time point and the previous one, shown as a vector plot. Magnitude of changes shown as a color gradient, while transparency of the vectors 

indicates the number of mRNAs in each coordinate bin (Methods). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.05.11.540322doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540322
http://creativecommons.org/licenses/by/4.0/


Translation suppression by DDX3X is coupled with mRNA stabilization. 127 

Changes to transcript levels can result from changes in transcription rates or post-128 

transcriptional regulation. To identify the relative contribution of different processes to RNA 129 

levels, we used our time-course dataset to calculate changes in transcription, processing and 130 

stability using INSPEcT17. INSPEcT uses the proportion of intronic versus exonic reads to 131 

identify nascent vs. mature transcripts, and uses a system of ordinary differential equations 132 

(ODEs) to infer rates of RNA synthesis, processing and decay. Compared to non-regulated 133 

mRNAs, regulated mRNAs showed modest changes in transcription rates, suggesting 134 

transcription changes are not the major contributor to RNA level changes following DDX3 135 

depletion, In contrast, we found more pronounced changes in mRNA stability as evidenced 136 

by TE down transcripts (Figure 2A). As our initial RNA-seq protocol was not designed to 137 

capture pre-mRNA molecules, we validated our estimated mRNA stability changes by 138 

employing the 4sU metabolic labeling SLAM-seq protocol3 in our degron system after 8 hours 139 

of DDX3X depletion, in a way to detect changes in mRNA stability at early time points. Briefly, 140 

cells were incubated with 4sU to comprehensively label transcribed RNAs, and their 141 

abundance was followed after 8h of DDX3X degron activation, using DMSO as control. 4sU 142 

treatment induces T>C conversions in the sequenced cDNA molecules, which can be used to 143 

monitor mRNA stability changes after a uridine chase, as shown in Figure 2B. As expected, we 144 

observed a drastic drop in T>C harboring reads after the chase, which reflects mRNA decay 145 

rates (Supplementary Figure 2). As shown in Figure 2B, after a labeling time of 24 hours, the 146 
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percentage of reads harboring T>C 147 

mutations was different for the regulated 148 

categories (Methods) after only 8 hours of 149 

degron induction, confirming the 150 

stabilization of translationally suppressed 151 

mRNAs upon DDX3X depletion. While the 152 

modest depth and resolution of our SLAM-153 

seq dataset (Supplementary Figure 2) 154 

couldn’t allow for more detailed insights 155 

on mRNA changes, it represented an 156 

important validation of mRNA stability 157 

regulation by DDX3X. In addition, we 158 

profiled RNA abundance via qPCR 159 

combining our DDX3X degron system with 160 

ActD treatment, to measure RNA stability 161 

changes. We selected few target genes: 162 

JUND was identified in our data as a 163 

stabilized RNA, while EIF2A was identified 164 

to be degraded. RACK1, LGALS1, and 165 

PFN1 were used as controls to normalize 166 

with via RT-PCR with Taq-man probes. 167 

JUND RNA was stabilized after 24 hours with knock down of DDX3 and Actinomycin D (ACTd) 168 

treatment (Supplementary Figure 3A); EIF2A RNA was more degraded after 24 hours with 169 

knock down of DDX3 and ACTD (Supplementary Figure 3B). These results show an overall 170 

Figure 2: Stabilization of untranslated mRNAs  

A) Synthesis and decay as inferred by INSPEcT: different regulated 

classes in different colors along the time course. Log2FC of 

estimated rates with respect to control are shown on the y axis. B) 

Schematic of a SLAM-seq experiment (above). Real data shown at 

the bottom: percentage of T>C-containing reads on the y axis after 

labeling and chase. DDX3X degron (using DMSO as a control) was 

triggered together with the chase reaction to monitor differences in 

decay rates upon DDX3X depletion. Significance values from a one-

sided Wilcoxon test. 
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good agreement between the qPCR and the sequencing-based assays, despite the difficulty 171 

arising from choosing control genes and the modest fold changes observed in the sequencing 172 

data. 173 

By profiling ribosome occupancy, steady state transcript levels, and mRNA decay, this analysis 174 

shows that DDX3X depletion triggers multiple modes of post-transcriptional regulation, 175 

involving translation suppression and a subsequent wave of mRNA stabilization. 176 

 177 

 178 

 179 
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GC-rich coding sequences underlie mRNA regulation by DDX3X. 180 

With hundreds of mRNAs post-transcriptionally regulated after DDX3X depletion, we aimed 181 

to identify specific features belonging to up- or downregulated targets. We therefore built 182 

regression models to quantitatively predict levels of TE changes (Methods, Supplementary 183 

Table 2). We used different biophysical properties of genes and mRNAs, (e.g. length and GC 184 

content) and several gene and transcript features (e.g. introns, 3’UTR, etc.., Methods) as 185 

Figure 3: GC content in the coding sequence predicts regulation by DDX3X  

A) Classification of different mRNAs according to their change in mRNA levels or translation. In B) model performance 

(correlation between predicted vs. real values) on unseen test data of the random forest regression model for transcript classes 

as defined in A). C) Predictive power of most informative features, with their importance values (Methods) plotted on the x axis. 

Feature pertaining to GC content in different section of transcripts (GCpct*), baseline translation levels (base_TE), codon 

frequencies (codonfr*), positional read density (posdens*), and length features (intronlen) are displayed. D) Vector plot as in 

Figure 1D, highlighting GCcds values. Partition of inferred degradation rate (E) or SLAM-seq profiles (F,) for mRNAs partitioned 

by GCcds values. Significance values for SLAM-seq from a one-sided Wilcoxon test. 
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features for a Random Forest regression model. Given the extensive literature on codon-186 

mediated mRNA stability regulation, we added codon frequencies and previously validated 187 

codon optimality calculations18. Also, we added measured GC-content at 1st, 2nd or 3rd codon 188 

position, as it was recently shown to potentially play a role in mRNA stability regulation19,20. 189 

In addition, to pinpoint features predictive of mRNA stability changes rather than translation 190 

changes exclusively, we divided transcripts according to their position in the Ribo-seq/RNA-191 

seq coordinate system, to capture mRNAs where changes between assays agreed or not 192 

(Figure 3A, Methods). Interestingly, the categories differed in their DDX3X binding pattern 193 

(Supplementary Figure 4): re-analysis of our previously published PAR-CLIP data showed how 194 

stabilized targes (x,-xy groups) have a lower T>C conversion signal in their 5’UTRs, and a higher 195 

signal in CDS peaks, with the opposite being true for true translation targets (y group). This 196 

analysis suggests that stabilized mRNAs might be regulated differently than “canonical” 197 

translationally suppressed targets. 198 

As shown in Figure 3B, the Random Forest model predicted TE changes with high precision, 199 

especially in cases where mRNA stability and translation were anti-correlated (-xy group). In 200 

addition, this model calculated the predictive power of each input feature (Figure 3C, 201 

Methods), which highlighted GC content in the coding sequence (which we will refer to as 202 

GCcds) as the most important feature. Feature selection is a very important method to select 203 

predictive features, especially when facing high levels of multicollinearity (Supplementary 204 

Figure 5). To validate the results from the Random Forest regression, we used Lasso 205 

regression (Methods), another well-known method for feature selection. Results from the 206 

Lasso regression were similar, and also identified GC content in the coding sequence as the 207 

most relevant feature in predicting TE changes (Supplementary Figure 6). GC content in the 208 
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CDS remained the top predictor when using additional features, such as GC content in 209 

different sections of the CDS, or amino acid frequencies (Supplementary Figure 7). 210 

In the light of these results, we tested whether GCcds was associated with the DDX3X-211 

dependent transcriptome dynamics reported above. As shown in Figure 3D, mRNAs 212 

partitioned on the Ribo-seq/RNA-seq coordinate system based on their GCcds value. 213 

Moreover, stability values from both INSPEcT and SLAM-seq partitioned according to GCcds 214 

values (Figure 3E-F). A similar, albeit weaker, separation was observed for predicted 215 

transcription and processing rates (Supplementary Figure 8). 216 

By using multiple analytical approaches, we here show how GCcds, not just GC content in 217 

general, or in other sections of the transcriptome, is a predominant feature of stabilized, yet 218 

untranslated, mRNAs following DDX3X depletion. 219 

 220 

GC content in the coding sequence is a ubiquitous signal in mRNA regulation. 221 

Given the extensive connections between different aspects of mRNA regulation by thousands 222 

of regulators, we tested the breadth of the influence of features such as GCcds in other 223 

studies of RNA regulators. We re-analyzed >2000 RNA-seq samples (Methods) from the 224 

recent ENCODE RBPome14 study encompassing >200 RBP knockdowns, and performed 225 

differential analysis followed by predictive modeling using the same methods and features as 226 
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described in the previous section, this time aiming at predicting changes in mRNA levels 227 

(Figure 4A). 228 

Figure 4: A ubiquitous feature in mRNA regulation  

A) Schema describing the ENCODE analysis strategy. B) Histogram representing overall model performance across datasets. C) 

Model performance (spearman correlation between predicted and real values on unseen test data) on the y axis, with importance of 3 

example features variables (indicating their predictive value) on the x axis. Top knockdown experiments, together with DDX3X, are 

show with labels. Data shown is from shRNA KD experiments in K562 cells. The linear relationship between GCcds importance and 

model performance indicates its relevance as the top predictor of RNA changes in dozens of datasets. D) mRNA level changes 

against GCcds values in a DDX3X knockdown experiment in the ENCODE dataset. E) Schematics of the cell cycle data used. Values 

for different kinetic parameters were partitioned according to GCcds values of their mRNAs and tested for significant differences. F) 

Normalized cell proportion (obtained by dividing cell percentages between Auxin treatment and DMSO) in different stages of the cell 

cycle along the degron time course. An increase in G1 and decrease in S phase can be observed at later time points. Significance 

values come from a Wilcoxon two-sided test (n=6 in each condition). 
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We first grouped datasets according to knockdown efficiency, which varied according to 229 

knockdown method and cell line (Supplementary Figure 9, Methods). We selected the sample 230 

with the highest knockdown efficiency for each RBP and called feature importance using our 231 

analytical pipeline. Predictive power of our Random Forest regression strategy varied across 232 

different datasets (Figure 4B). Once again, the strongest predictor of mRNA changes was 233 

GCcds, whose predictive power dominated over other variables (Figure 4C, Supplementary 234 

Figure 10). As expected, changes upon DDX3X knockdown in the ENCODE data also exhibited 235 

a clear dependency over GCcds (Figure 4D), albeit to a lower degree compared to our degron 236 

dataset, likely due to differences in DDX3X depletion strategies and, importantly, to our 237 

translation profiling dataset, which allowed us to distinguish between specific classes (i.e. 238 

“TE_down”) of regulated mRNAs (Discussion). 239 

Given the widespread relevance of GCcds as a predictor of post-transcriptionally regulated 240 

targets, we reasoned that a major cellular process might mediate the observed mRNA 241 

changes. We re-analyzed data from a recent study21 focused on mRNA clearance during cell 242 

cycle re-entry, where the authors used a FUCCI (fluorescent, ubiquitination-based cell-cycle 243 

indicators) cell system coupling RNA labeling, scRNA-seq and single-molecule imaging 244 

techniques to find extensive decay differences among different transcripts, potentially 245 

related to poly-A tail mediated regulation. Despite a lower throughput when compared to 246 

sequencing-based experiments, kinetic parameters estimated from their data (exemplified in 247 

the decay curve in Figure 4E) showed significant differences when partitioned by GCcds values 248 

(Figure 4E). mRNAs rich in GCcds showed lower half-life values, and fast decay kinetics at cell 249 

cycle re-entry, with the opposite trend exhibited by mRNAs poor in GC content in their coding 250 

sequence. Motivated by this finding, we decided to investigate differences in cell cycle 251 

dynamics in our degron system, by using 5-ethynyl-2'-deoxyuridine (EdU) incorporation 252 
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followed by FACS analysis (Methods, Supplementary Figure 11). As shown in Figure 4F and 253 

Supplementary Figure 12, DDX3X depletion resulted in cells staying more in G1 and less in S 254 

phase when compared to controls, throughout the time course. 255 

By re-analysis of thousands of RNA-seq samples, these results show the prevalence of GCcds 256 

in post-transcriptional regulation and RBP functions, with a potential role for cell-cycle 257 

dependent mRNA dynamics in shaping such a regulatory phenomenon. 258 

 259 

A shift in 5’-3’ RNA-coverage as a hallmark of mRNA stabilization. 260 

In addition to gene-level aggregate measures of abundance, we investigated whether changes 261 

in decay could be identified by taking advantage of the high resolution of RNA-seq 262 

experiments across gene bodies, which has previously been employed to inform about mRNA 263 

decay19. We leveraged our time-resolved degron dataset to investigate changes in 5’-3’ 264 

coverage, a known hallmark of RNA degradation often employed to verify overall integrity of 265 

cellular mRNAs or to estimate transcript-level decay. We calculated 2 different metrics, using 266 

the strategy illustrated in Figure 5. 267 
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Initially, we pooled all samples to identify the major isoform for each gene (Methods), and 268 

Figure 5: Coverage analysis of regulated mRNAs reveals changes in 5’-3’ decay 

Coverage analysis strategy in the degron dataset using a practical example (CSRNP2 gene): coverage starting point is first 

identified using pooled data, then coverage tracks for each experiment are extracted. Coverage starting points (in transcript 

coordinates) and coverage values (log2FC to DMSO) are calculated for each time point and used as input to a linear model. The 

beta coefficient (shown in pink) for each model is then extracted for each mRNA and values are compared across different 

classes (stabilized vs unchanging vs degraded). More details are available in the Methods section. P-values from one-sided 

Wilcoxon test. 
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the first position at 15% of the maximum coverage. We then calculated such position for each 269 

time point. Importantly, coverage values were normalized for each transcript, thus controlling 270 

for expression level changes. Also, we did not observe similar changes at the 3’ end of 271 

transcripts (Supplementary Figure 13). We then used coverage starting points as input for 272 

linear regression. The regression coefficient was extracted and compared across the top 250 273 

stabilized, degraded, and control mRNAs, alongside 1500 control transcripts. As shown in 274 

Figure 5, coverage values on stabilized mRNAs started as an earlier position in the transcripts, 275 

with moderate albeit significant differences between categories, indicating a lower 5’-3’ 276 

decay along the DDX3X degron time course. The opposite trend was observed for degraded 277 

transcripts. Similarly, we calculated average coverage values in a window of 300nt around the 278 

coverage start and applied a similar strategy: 5’ coverage values increased along the time 279 

course, confirming the accumulation of translationally suppressed mRNA species otherwise 280 

destined for degradation. Results were similar when using different cutoffs for the definition 281 

of coverage starting point (Supplementary Figure 14). 282 
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To test whether the suppression of 5’-3’ decay of untranslated transcripts by DDX3X occurs in 283 

vivo, we re-analyzed recent RNA-seq/Ribo-seq dataset in a conditional Ddx3x (cKO) mouse 284 

Figure 6. GCcds - mediated mRNA stabilization is detectable in vivo and across the ENCODE 

RBP database. 

A) Changes in Ribo-seq and RNA-seq levels in a conditional Ddx3x mouse model, as in Figure 1A, showing GCcds values. 

B) Strategy for coverage analysis in the mouse Ddx3x cKO experiment, shown for the Ctxn1 gene. Differences in coverage 

values are extracted and compared across regulated mRNAs. In C) same strategy as in Figure 5A applied to each 

differential analysis followed by RBP knockdown in the ENCODE dataset. Differences in coverage values between stabilized 

and unchanging mRNAs (shown by p-values, as calculated as in panel B), in pink color) are plotted against GCcds 

importance (x axis). D) Example mean coverage on 2 mRNAs (1 stabilized and 1 degraded), partitioning RBP knockdown 

datasets by their GCcds importance. An increase in coverage can be observed for the stabilized mRNA, while the opposite 

trend is visible for a degraded transcript. 
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model13(Figure 6), where cell cycle and neurogenesis defects are evident when Ddx3x is 285 

depleted in neuronal progenitors. After applying our analytical pipeline, we observed that the 286 

accumulation of untranslated transcripts is even more evident in this in vivo model, as is its 287 

relationship with GCcds values (Figure 6A). Analogous to the strategy presented in Figure 5, 288 

5’ coverage values, as well as coverage starting points (Supplementary Figure 15), differed 289 

significantly between wild type and Ddx3x cKO animals (Figure 6B) in regulated transcripts, 290 

while no difference was detected at the 3’end (Supplementary Figure 16). 291 

 292 

Leveraging again the power of hundreds of RNA-seq experiments, we examined 5’ coverage 293 

profiles in the ENCODE dataset, partitioning experiments by their dependency on GCcds 294 

values. Differences between stabilized and control mRNAs are greater as the GCcds signature 295 

is more predominant (Figure 6C). Aggregating different experiments according to their GCcds 296 

dependency for example transcripts (Figure 6D) confirm this phenomenon, where both 297 

coverage starting position and coverage values changed across different datasets, indicative 298 

of mRNA decay regulation. 299 

Taken together, we provide evidence for in vivo DDX3X-mediated stabilization of untranslated 300 

transcripts, its dependence on GCcds values, and, supporting the different analyses reported 301 

in this study (Figure 7) a high-resolution RNA-seq coverage analysis strategy to investigate 302 

GCcds-related mRNA decay regulation, with support from hundreds of post-transcriptionally 303 

perturbed transcriptomes. 304 
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 305 

 306 

 307 

 308 

Figure 7. A model for multimodal mRNA regulation by DDX3X  

A schematic showing the effects of DDX3X depletion on GC-content related changes in translation and mRNA stability, 

highlighting potential molecular mechanisms underlying this phenomenon. 
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Discussion 309 

The multifaceted role of DDX3X, described as involved in different molecular processes, often 310 

hinders the ability to understand its functions, especially considering the interconnected 311 

nature of molecular processes in the cell. Multiple mRNA features might underlie different 312 

modes of regulation, as we previously showed and experimentally validated 5’UTR 313 

dependencies underlying DDX3X translation regulation7. This outlines an unmet need for 314 

studies linking multiple aspects of the gene expression cascade. 315 

In addition to profiling RNA levels and translation, we further dissected dynamics of 316 

cytoplasmic regulation by DDX3X, by employing a time course of efficient DDX3X depletion 317 

(Figure 1A). Akin to previous studies observing translation suppression preceding mRNA 318 

changes during miRNA-mediated regulation10, we observed an accumulation of 319 

translationally suppressed RNAs. This highlights the importance to profile not only mRNA 320 

abundance but also translation levels, which, in absence of quantitative estimates of 321 

regulated protein levels, can greatly help researchers understanding the functions of many 322 

cryptic regulators often involved in multiple processes, like DDX3X and other RBPs22. Despite 323 

relatively fast kinetics of DDX3X degradation from our degron system, more work needs to be 324 

performed to pinpoint exactly what changes occur right after DDX3X depletion, and to more 325 

precisely quantify the lag between translation suppression and mRNA stabilization. 326 

 327 

By employing multiple techniques for feature selection, we identified a major feature 328 

underlying mRNA regulation by DDX3X, as well as by many other post-transcriptional 329 

regulators. An important area of investigation for the future is to employ more unbiased 330 
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approaches, akin to recent Natural Language Processing-inspired methods in transcription 331 

regulation23, in mRNA biology to accurately estimate the relevant features directly from data 332 

rather than specified by potentially biased approaches. In our hands, the relevance of GCcds 333 

is clearly picked up by both the Random Forest and the Lasso (Supplementary Figure 4). 334 

Importantly, we included similar features, such as overall GC content24, in UTRs, introns etc., 335 

alongside codon frequencies20 and previously estimated values of codon optimality. 336 

Our study suggests that data-driven approaches to functional transcriptomics are highly 337 

needed, where data from multiple experiments are routinely re-analyzed to test hypotheses 338 

and provide new insights into the complex world of mRNA biology. However, while profiling 339 

translation allowed us to focus on specific mRNA classes and their features, no large-scale 340 

translation profiling study exists yet, with few, precious small atlases recently appearing in 341 

the literature25. The current ENCODE RBP series is of great value to many mRNA biology 342 

researchers worldwide and it has been an invaluable resource for many recent studies26,27, 343 

yet an extension of these approaches which includes other aspects of post-transcriptional 344 

regulation, such as translation and stability, is in great need. 345 

 346 

In the original ENCODE RBP study14, gene expression estimates were GC-corrected for each 347 

sample, as GC content has been often reported as a confounder, especially when comparing 348 

across sequencing technologies and labs. Given the presence of GC-related biases in 349 

sequencing-based assays, we think that great caution must be taken when observing 350 

expression changes driven by GC content features, especially when interpreted as direct 351 

effects from single molecular factors. Our degron time course analysis, despite containing 352 

dozens of features pertaining to GC content measures, detected GC content specifically in 353 
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coding sequence as a feature underlying regulation, and this region-specific effect is not 354 

consistent with a general confounding role for GCcds. Moreover, our analysis focused on 355 

differences upon a perturbation under a single sequencing platform and laboratory settings, 356 

which are likely to have similar GC-related confounders, should there be any. Important 357 

confirmation of the relevance of GCcds and its relationship to mRNA dynamics also came 358 

from: employing SLAM-seq to estimate differences in stability (Figure 2), qPCR validations 359 

(Supplementary Figure 3), re-analysis of in vivo Ddx3x cKO RNA-seq/Ribo-seq (Figure 6), re-360 

analysis of hundreds of RBP perturbations in human cell lines (Figure 4), and by analyzing 361 

kinetics extracted by transcriptome dynamics in cell-cycle specific states (Figure 4).  362 

 363 

Together with well-established differential analysis statistical methods, which allowed us to 364 

robustly identify different classes of regulated mRNAs, we exploited the high resolution 365 

offered by RNA-seq to analyze differences in 5’end coverage for thousands of individual 366 

transcripts (Figure 5), as an additional metric reflecting active regulation of mRNA decay 367 

mechanisms. We posit that popular analysis strategies for -omics techniques, despite their 368 

popularity over more than a decade, often obscures information with regards to mRNA 369 

processing and other molecular mechanisms, which can be uncovered by dedicated 370 

computational methods. Importantly, such dynamics are invisible (or, worse, can significantly 371 

distort quantification estimates) when performing gene-level analyses. 372 

 373 

The mechanism, or mechanisms, by which GC content in coding regions shapes mRNA 374 

dynamics is still to be determined. We speculate that complex RNA structures in the coding 375 

sequence can form in the absence of active translation elongation, and such structure may 376 
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mediate degradation, helped by RNP complexes in the cytoplasm.  However, recent literature 377 

focused on the role of different codons in mediating such effect18. In our hands, codon-378 

mediated effects seem to be negligible when considering the overall GCcds values, but more 379 

work needs to be done to identify cases where one or the other, or a mix of the two, can 380 

mediate mRNA decay on different transcripts. The involvement of mRNA dynamics during the 381 

cell cycle (Figure 4) suggests a model where, during cell cycle - dependent translation 382 

suppression, mRNAs are able to fold structures in the coding sequence promoting decay, and, 383 

when such processes are misregulated (e.g., by depleting multifunctional RNA helicases such 384 

as DDX3X), this process is less efficient. The extent to which cell cycle changes might depend 385 

on direct DDX3X binding and regulation remains to be elucidated. Further work needs to be 386 

done to refine the exact function, together with the subcellular localization, of regulated 387 

mRNAs. For instance, mRNA retention in the nucleus might be an additional 388 

underappreciated mode of gene expression control28, and is in line with our observation 389 

about the untranslated status of regulated transcripts. However, we identified GC content in 390 

the coding sequence as the hallmark feature for stabilized transcripts, a feature which is 391 

defined by translation in the cytoplasm.  392 

While RBP binding data remains an important starting point from which we can build testable 393 

hypothesis, simple binding-to-function paradigms might also create bias when trying to 394 

explain complex phenotypes arising from RBP misfunction. Moreover, we observed how 395 

binding patterns might different between different regulated classes (Supplementary Figure 396 

4). In our previous study we investigated the changes in translation and RNA abundance using 397 

a DDX3X helicase mutant; one of the observations we made pertained to the lack of RNA 398 

changes in our data, suggesting a potential function for the helicase activity in orchestrating 399 

such changes.  400 
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Previous work implicated DDX3X in mediating cell cycle dynamics by a variety of 401 

mechanisms29, including a direct regulation of cyclin E1 translation30, which however was not 402 

among the most regulated mRNAs in our dataset (Supplementary Table 2). More work needs 403 

to be done to accurately quantify mRNA dynamics and RBP functions in the cell cycle, where 404 

translation regulation mechanisms31,32 ensure controlled rates protein synthesis. The 405 

connection between cell cycle, sequence content and mRNA regulation is reinforced by the 406 

in vivo data, adding to the importance of studying post-transcriptional regulation along the 407 

neurogenesis axis33,34, where the equilibrium between proliferation, apoptosis and 408 

differentiation35 shapes the complexity of the developing brain. 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 
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Methods 422 

 423 

Ribo-seq and RNA seq experimental protocol 424 

 425 

HCT116 cells with inducible degradation of DDX3X (as previously described16), were plated in 426 

15cm plates at 20% confluency (~3.5x10 6 cells/plate). 48 hours post plating, when the cells 427 

were at ~ 70% confluency, the media was changed and fresh media with 500 µM IAA (Indole-428 

3-acetic acid, the most common naturally occurring Auxin hormone) (Research Products 429 

International, cat: I54000-5.0) or DMSO was added to cells. Cells were harvested at 0, 4, 8, 430 

16, 24, and 48 hours post IAA addition. Cell number did not appreciably increase over the 48 431 

hours of the experiment. To quantify DDX3X protein, we used an anti-DDX3X antibody 432 

described in previous work7 normalized to an anti-GAPDH antibody (Rockland 433 

Immunochemicals, cat: 600-401-A33S). 434 

Cells were treated with 100 µg/ml cycloheximide (CHX), washed with PBS containing 100 435 

µg/ml CHX, and immediately spun down and flash frozen. Once all time-points were collected, 436 

the cells were thawed and lysed in ice-cold lysis buffer (20 mM TRIS-HCl pH 7.4, 150mM NaCl, 437 

5 mM MgCl2, 1mM DTT, 100 µg/ml CHX, 1 % (v/v) Triton X-100, 25 U/ml TurboDNase 438 

(Ambion)). 240 µl lysate was treated with 6 µl RNase I (Ambion, 100 U/µl) for 45 minutes at 439 

RT with gentle agitation and further digestion halted by addition of SUPERase:In (Ambion). 440 

Illustra Microspin Columns S-400 HR (GE healthcare) were used to enrich for monosomes, and 441 

RNA was extracted from the flow-through using Direct-zol kit (Zymo Research). Gel slices of 442 

nucleic acids between 24-32 nts long were excised from a 15% urea-PAGE gel. Eluted RNA 443 
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was treated with T4 PNK and preadenylated linker was ligated to the 3’ end using T4 RNA 444 

Ligase 2 truncated KQ (NEB, M0373L). 445 

Linker-ligated footprints were reverse transcribed using Superscript III (Invitrogen) and gel-446 

purified RT products circularized using CircLigase II (Lucigen, CL4115K). rRNA depletion was 447 

performed using biotinylated oligos as described36 and libraries constructed using a different 448 

reverse indexing primer for each sample. 449 

For the RNA-seq, RNA was extracted from 25 µl intact lysate (non-digested) using the Direct-450 

zol kit (Zymo Research) and stranded total RNA libraries were prepared using the TruSeq 451 

Stranded Total RNA Human/Mouse/Rat kit (Illumina), following manufacturer’s instructions. 452 

Libraries were quantified and checked for quality using a Qubit fluorimeter and Bioanalyzer 453 

(Agilent) and sequenced on a HiSeq 4000 sequencing system. 454 

 455 

Slam-seq experimental protocol 456 

 457 

SLAM-seq was performed at 60-70% confluency for DDX3X-mAID tagged HCT116. Media was 458 

changed and fresh media with 100μM 4-thiouridine (4sU) was added to cells and changed 459 

every 3 hours for 24 hours. 8 hours prior to collection, growth medium was aspirated and 460 

replaced. Uridine chase was performed where cells were washed twice with 1X PBS and 461 

incubated with media containing 10 mM uridine and DMSO or 100µM IAA for 0 or 8 hours to 462 

induce degradation of DDX3X. At respective time points, cells were harvested followed by 463 

total RNA extraction using TRIzol (Ambion) following the manufacturer's instructions 464 

(SLAMseq Kinetics Kit – Catabolic Kinetics Module, Lexogen). Total RNA was alkylated by 465 
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iodoacetamide for 15 min and RNA was purified by ethanol precipitation. 200ng alkylated 466 

RNA were used as input for generating 3’-end mRNA sequencing libraries using a 467 

commercially available kit (QuantSeq 3ʹ mRNA-Seq Library Prep Kit FWD for Illumina, 468 

Lexogen). 469 

 470 

Ribo-seq data analysis 471 

 472 

Reads were stripped of their adapter, collapsed, and UMI sequences were removed. Clean 473 

reads were then mapped to rRNA, tRNA, snoRNA and miRNA sequences using bowtie237 using 474 

sequences retrieved from UCSC browser and aligning reads were discarded. Remaining reads 475 

were mapped to the genome and transcriptome using STAR38 v2.7.9a supplied with the 476 

GENCODE v32 GTF file. STAR parameters were: --outFilterMismatchNmax 3 --477 

outFilterMultimapNmax 50 --chimScoreSeparation 10 --chimScoreMin 20 --chimSegmentMin 478 

15 --outFilterIntronMotifs RemoveNoncanonicalUnannotated --alignSJoverhangMin 500 --479 

outSAMmultNmax 1 --outMultimapperOrder Random. 480 

 481 

SLAM-seq data analysis 482 

 483 

Reads were mapped to the genome and transcriptome using same RNA-seq parameters, 484 

except for --outFilterMismatchNmax 10. Reads containing T>C mutations were extracted 485 

from the BAM file using GenomicAlignments and GenomicFiles Bioconductor39 packages.  486 
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 487 

RNA-seq data analysis 488 

 489 

Reads were mapped to the genome and transcriptome using STAR with same Ribo-seq 490 

parameters. Synthesis, processing, and degradation rates were obtained using INSPEcT17 491 

v1.17, using default settings. Genes significantly changing in their dynamics at a p-value cutoff 492 

of .05 were used for subsequent analysis. 493 

 494 

Differential analysis 495 

 496 

Unique counts on different genomic regions were obtained using RiboseQC40. 5’ end coverage 497 

values were inspected using Bioconductor39 packages such as GenomicFeatures41 and 498 

rtracklayer42. DESeq243 was used to obtain RNA-seq, Ribo-seq, and TE regulation, as described 499 

previously7: changes in translation efficiency were calculated using DESeq2 by using assay 500 

type (RNA-seq or Ribo-seq) as an additional covariate. Translationally regulated genes were 501 

defined using an FDR cutoff of 0.05 from a likelihood ratio test, using a reduced model without 502 

the assay type covariate, e.g. assuming no difference between RNA-seq and Ribo-seq counts. 503 

A similar strategy was used to define significant changes in DDX3X-mediated stability from 504 

SLAM-seq: count tables with T>C reads were built and analyzed using labeling (4sU/DMSO) 505 

and degron status (8h. vs DMSO) as the two variables of interest; regulation in stability was 506 

defined using a reduced model without the degron type covariate, e.g. assuming no 507 

difference between DMSO and degron activation. 508 
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Translationally regulated genes (as defined by Ribo-seq/RNA-seq) and stability regulated 509 

genes (as defined by SLAM-seq) were defined using a p-value cutoff of .05. 510 

For Figure 1D and 3D, the coordinate system was divided into 70 bins on each axis. GCcds 511 

values (for Figure 3D), or Ribo-seq and RNA-seq fold changes between each time point and 512 

the previous one (for Figure 1D) were averaged across genes in the same bin. Only mRNAs 513 

with significant changes in translation efficiency at 48h post degron induction were 514 

considered. 515 

 516 

Random Forest and Lasso regression 517 

 518 

The Random Forest regression was run using the randomForest44 package with default 519 

parameters. Lasso regression was performed on scaled variables using the glmnet45 package. 520 

While the entire feature table is available in Supplementary Table 2, a short description of the 521 

input features follows: 522 

TPM values using RNA-seq (in log scale). Baseline TE levels, defined as ratio of Ribo to RNA 523 

reads. Baseline RNA mature levels, defined as length-normalized ratio of RNA-seq reads in 524 

introns versus exons. GC content, length (in log scale) and Ribo-seq/RNA-seq density in: 5ʹ 525 

UTRs, a window of 25nt around start and stop codons, CDS regions, non-coding internal 526 

exons, introns, and 3ʹ UTRs. Codon frequencies. Measures of gene-specific codon optimality, 527 

previously calculated from a recent study18. GC-content at first, second, or third codon 528 

position. 529 

 530 
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Feature importance (measured by mean decrease in accuracy for the random forest model 531 

and by the lasso coefficients) and correlation between predicted and measured test data 532 

were calculated on a 5-fold cross-validation scheme. 533 

 534 

 535 

Analysis of cell cycle - dependent mRNA dynamics 536 

 537 

Estimated mRNA decay kinetics at cell cycle re-entry were deposited as supplementary files 538 

of the original study21. Genes were partitioned cutting their GCcds values into 3 groups given 539 

the low number of quantified genes (total n=220). 540 

 541 

Cell cycle staging 542 

 543 

To measure DNA replication and cell cycle stage, EdU (5-ethynyl-2´-deoxyuridine) was added 544 

to cells at 10nM for 1.5 hrs before harvesting. 1 confluent well of a 6-well plate of HCT116 545 

cells were harvested and processed as per manufacturer's instructions for the Click-iT™ Plus 546 

EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit (Thermo Fisher cat: C10634). Per 547 

manufacturer's instructions, FxCycle Violet DNA content stain (Thermo Fisher cat: F10347) 548 

was added after the Click-iT reaction at 1:1,000 dilution before quantifying on a BD LSR Dual 549 

Fortessa flow cytometer. Alexa Fluor 647 was measured in the 670-30 Red C-A Channel and 550 
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FxCycle Violet Stain was measured in the 450-50 Violet F-A Channel. Analysis was performed 551 

using FACS DIVA and FlowJo V10 (FlowJo, LLC) software.  552 

 553 

5’end coverage analysis 554 

 555 

Computation on single-nucleotide coverage values was performed using rtracklayer42. For 556 

each differential analysis, we extracted the most 250 stabilized and the most 250 degraded 557 

genes ranking P-values from RNA-seq differential analysis. 1500 control RNAs were randomly 558 

sampled from non-regulated genes, using p-values >.2 and TPM values > 3. Coverage values 559 

were 0-1 (min/max) normalized and the first position at value >.15 was identified as coverage 560 

starting position. In addition, a general coverage starting point was selected by pooling all 561 

samples, and a window of 250nt around such position was used to calculate average coverage 562 

values around the coverage start. Log2 fold change with respect to the control condition were 563 

then calculated. 564 

For degron data, starting position and log2fc coverage values were extracted and used as 565 

input for linear regression. For coverage values, intercept was omitted, as the first value was 566 

0. Beta coefficients were then extracted and compared between stabilized, degraded, and 567 

control mRNAs. 568 

For mouse Ddx3x cKO and ENCODE data, differences between starting position (knockdown 569 

vs wt) and log2FC (knockdown vs wt) in coverage values were used to compare stabilized, 570 

degraded and control mRNAs, bypassing the regression step (2 values were calculated, as only 571 

wt or knockdown conditions were present). 572 
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TaqMan RT-PCR 573 

DDX3X-mAID tagged HCT116 cells were plated in 6 well plates at 30-40% confluency. 24 hours 574 

post plating 500 μM IAA or DMSO was added to cells with or without 200nM Actinomycin D 575 

(ActD) for respective conditions. Total RNA was extracted from cells at 60-70% confluency 576 

using Direct-zol kit (Zymo Research) at 0 and 24 hours post-ActD and IAA or DMSO treatment. 577 

TaqMan probes for JUND, EIF2A, RACK1, LGALS1, and PFN1 were predesigned and purchased 578 

from ThermoFisher Scientific. Riboseq degraded (EIF2A) or stabilized genes (JUND) were 579 

conjugated with FAM dye while control genes RACK1, LGALS1, and PFN1 were conjugated 580 

with VIC dye. For the TaqMan real-time quantitative PCR amplification reactions, we 581 

employed an Applied Biosystems QuantStudio 6 Real-Time PCR System instrument. Real-time 582 

PCR was conducted using TaqMan Fast Virus 1-Step Master Mix from Applied Biosystems in 583 

384-well plates, following the manufacturer's protocol. Each well contained either the genes 584 

subject to riboseq degradation gene (EIF2A) or stabilization gene (JUND) along with control 585 

genes (RACK1, LGALS1, or PFN1). All reactions were conducted in triplicate. Thermal cycling 586 

conditions adhered to the manufacturer's recommended standard protocol. The 587 

quantification of the target input amount was determined using the cycle threshold (CT) 588 

value, which corresponds to the point at which the PCR amplification plot crosses the 589 

threshold. Expression of ribose degraded and stabilized genes were normalized to each 590 

control genes respectively. 591 

Gene Species Chromosome Location Assay ID Dye 592 

RACK1 HUMAN Chr.5: 181236928 - 181243906 on Build GRCh38 Hs00272002_m1 VIC-MGB 593 

LGALS1 HUMAN Chr.22: 37675606 - 37679802 on Build GRCh38 Hs00355202_m1 VIC-MGB 594 
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PFN1 HUMAN Chr.17: 4945650 - 4949088 on Build GRCh38 Hs07291746_gH VIC-MGB 595 

JUND HUMAN Chr.19: 18279694 - 18281656 on Build GRCh38 Hs04187679_s1 FAM-MGB 596 

EIF2A HUMAN Chr.3: 150546678 - 150586016 on Build GRCh38 Hs00230684_m1 FAM-MGB 597 

Details of TaqMan® real-time PCR assays obtained from ThermoFisher Scientific. 598 

 599 

Data and code availability 600 

 601 

Raw sequencing data for Ribo-seq, RNA-seq and SLAM-seq can be found under GEO accession 602 

GSE218433, with token “ujmtquoulnirpgx”. Encode accession numbers can be found in 603 

Supplementary Table 3. Ddx3x knockout Ribo-seq and RNA-seq were analyzed from accession 604 

number GSE203078, processed data can be found in Supplementary Table 4. Code to 605 

reproduce all figures, together with processed data, can be found at 606 

https://github.com/calviellolab/DDX3X_GC_paper . 607 
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