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Biomolecular condensates play a crucial role in regulating gene expression, but their behavior in
chromatin remains poorly understood. Classical theories of phase separation are limited to thermal
equilibrium, and traditional methods can only simulate a limited number of condensates. In this
paper, we introduce a novel mean-field-like method that allows us to simulate millions of conden-
sates in a heterogeneous elastic medium to model the dynamics of transcriptional condensates in
chromatin. Using this method, we unveil an elastic ripening process in which the average con-
densate radius exhibits a unique temporal scaling, (R) ~ t'/5, different from the classical Ostwald
ripening, and we theoretically derive the exponent based on energy conservation and scale invari-
ance. We also introduce active dissolution to model the degradation of transcriptional condensates
upon RNA accumulation. Surprisingly, three different kinetics of condensate growth emerge, corre-
sponding to constitutively expressed, transcriptional-bursting, and silenced genes. Notably, multiple
distributions of transcriptional-bursting kinetics from simulations, e.g., the burst frequency, agree
with transcriptome-wide experimental data. Furthermore, the timing of growth initiation can be
synchronized among bursting condensates, with power-law scaling between the synchronization pe-
riod and dissolution rate. Our results shed light on the complex interplay between biomolecular
condensates and the elastic medium, with important implications for gene expression regulation.

I. INTRODUCTION

Biomolecular condensates are membraneless cellular
compartments with many crucial physiological functions,
e.g., stress adaptation, accelerating biochemical reac-
tions, reducing noise [1-6]. Specifically, transcription-
related condensates comprised of RNA polymerases
(RNAPs) are observed in both prokaryotes and eukary-
otes [7-12], suggesting an essential role of RNAP con-
densates in gene expression regulation. Biomolecular
condensates are often liquid droplets forming via liquid-
liquid phase separation (LLPS) [2, 13], supported by their
fluid-like behaviors [1, 14-16]. Classical LLPS theories fo-
cus on liquid droplets in a liquid environment at or evolv-
ing towards thermal equilibrium [13, 17, 18]. According
to classical LLPS theories, molecules flow from small to
big condensates to reduce the total surface energy, called
Ostwald ripening. The outcome is a single large conden-
sate because this configuration minimizes the surface en-
ergy. However, in many cases, the surrounding environ-
ments of biomolecular condensates are not simple viscous
liquids, e.g., the nucleoplasm is filled with chromatin, and
the cytoplasm contains cytoskeleton. It has been found
that the elastic medium can interact with condensates
and affect their growth and coarsening [19-26]. For ex-
ample, light-activated condensates in vivo were observed
to be constrained by the chromatin as the condensates
could only stay in the chromatin-sparse region [23]. Soft
matter experiments also found that the droplet-forming
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molecules flow from droplets in stiff medium to droplets
in soft medium, suggesting a new driving force of coarsen-
ing due to elasticity beyond the classical LLPS theories
[27, 28]. It is still unclear whether the elastic driving
force generates any novel universality class of the ripen-
ing process beyond the Ostwald ripening.

Furthermore, numerous out-of-equilibrium processes
consume energy inside living cells. In particular, the ef-
fects of active chemical reactions on the formation and
morphologies of condensates have been intensely studied
recently [29-31]. One notable function of active chemical
reactions is to generate multiple stable coexisting con-
densates beyond the classical Ostwald ripening [1, 32—
35]. While active chemical reactions consume energies,
such as ATP, alternative mechanisms to generate coex-
isting condensates have been proposed, e.g., through the
nonlinear elasticity of surrounding network [20, 22, 25],
which do not consume energy. In the meantime, other
out-of-equilibrium processes also play crucial roles in con-
densate formation and dissolution. For example, recent
experiments found that RNAP condensates can dissolve
due to the accumulation of transcribed mRNAs, which is
also an active process consuming energy [36].

In this work, we study the out-of-equilibrium dynam-
ics of biomolecular condensates in a heterogeneous elastic
medium. Regarding the theoretical tools, we introduce
a novel mean-field-like model, which allows us to sim-
ulate millions of condensates simultaneously and signif-
icantly exceeds the computation capacity of traditional
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FIG. 1. Biomolecular condensates grow in the interspace of a
heterogeneous elastic medium. Each condensate has a fixed
inside concentration cin, and a shared outside concentration
cout- Condensates’ growth is suppressed by the surrounding
elastic medium through a confining pressure, which can be
different among condensates.

phase-field simulations [13]. We first study the case of
a neo-Hookean elastic medium in which each condensate
is confined by a constant local elastic pressure that can
be different among condensates. Surprisingly, we find a
new dynamical scaling of the average condensate radius
(R) ~ t'/% during the ripening phase induced by het-
erogeneous elasticity, which we denote as elastic ripen-
ing. The 1/5 exponent is beyond the 1/3 exponent in
the classical Ostwald ripening, and we derive its value
based on principles of energy conservation and scale in-
variance. We also introduce nonlinear elasticity beyond
the neo-Hookean model in which the ripening of conden-
sates can be suppressed, and multiple condensates can co-
exist. However, within this nonlinear model, the system
quickly reaches an equilibrium state without any tempo-
ral changes.

To incorporate biological activity, we assume that con-
densates dissolve at a rate proportional to their vol-
ume inspired by experiments in which RNAs can dis-
solve transcription-related condensates [36]. As a sup-
port of the active dissolution model, the simulated dis-
tribution of condensate lifetimes is similar to that of
RNA polymerase II (Pol IT) condensates in experiments
[9]. Furthermore, depending on the local stiffness around
condensates, the condensates can grow immediately af-
ter dissolution, grow intermittently, or be suppressed
entirely, which we propose to correspond to constitu-
tively expressed, transcriptional-bursting, and silenced
genes. As another support of our theories, multiple sim-
ulated distributions of the kinetics of transcriptional-
bursting genes, including the burst frequency and the
burst size, agree with those of transcriptome-wide exper-
imental data [37].

Surprisingly, a subset of the intermittently growing
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condensates with similar local stiffness can be synchro-
nized so that they start growing simultaneously. We in-
vestigate the fraction of synchronized condensates and
find a power-law scaling between the synchronization pe-
riod with the dissolution rate. Our work reveals a new
universality class for the ripening process of condensates
in a heterogeneous elastic medium and uncovers the po-
tential roles of chromatin elasticity in gene expression
regulation.

II. THE CONDENSATE GROWTH MODEL

We propose a mean-field-like model to describe the
growth dynamics of condensates in a heterogeneous elas-
tic medium (Figure 1). We assume that the condensate-
forming biomolecule has a fixed concentration ¢;, inside
the condensates and all condensates share a common out-
side concentration cqyut. This assumption is justified by
phase-field simulations of condensate formation in which
a virtually uniform outside concentration is observed
(Supplementary Material and Figure S3). A uniform
outside concentration is biologically reasonable because
the typical protein diffusion constant in vivo is about 1
pum? /s, which means that it takes seconds for a protein
to fully explore the space inside a cell such as nucleus
[38]. We assume near-equilibrium dynamics so that the
changing rate of a condensate’s volume is proportional to
the derivative of free energy with its volume,

oV 1 OF

T kV's EYa kV (1)
where g is the reduced free energy of condensate forma-
tion per unit volume, which we call condensing affinity,
and

W=

(g _pc)a

(2)

g = Cink‘BTln (Cout
€o

) e
Here, ¢y is the saturated concentration of phase sepa-
ration and g = 0 when couy = ¢o as expected (see de-
tailed derivations in Appendix A). The confining pressure

150 Po = Ps + per. Here, p, = 2v(47/3V)1/3 is the Laplace
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pressure and <y is the surface tension. pe is the elastic
pressure due to the surrounding medium, and we will ex-
plain its value later. The V/3 factor on the right side of
Eq. (1) comes from the spherical geometry. The particle
flux entering an absorbing sphere is proportional to its
radius in three dimensions: J oc 1/Rx R? ~ R where 1/R
is for the concentration gradient and R? is for the surface
area. As we show later, this V1/3 factor is critical to ob-
tain the correct scaling of the Ostwald ripening without
heterogeneous elastic medium [13, 17, 18]. In the follow-
ing, we non-dimensionalize the condensate growth model
so that all the variables become dimensionless by select-
ing the energy unit ¢y = kg7, the length unit Iy = 051/3
and the time unit to = 1/(kc2loksT).
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FIG. 2. Elastic ripening in a heterogeneous neo-Hookean elastic medium. (a) Visualization of simulation results based on
the condensate growth model. The systems undergo ripening until only one condensate survives. Note that the positions of
these condensates are generated randomly and only a small subset of condensates are shown. (b) During the elastic ripening,
the average radius exhibits a power-law scaling with time, (R) ~ t1/°. The elastic pressure pe = E obeys a uniform random
distribution in the range [0,2F]. At a later time, the elastic ripening crossovers to the Ostwald ripening in which (R) ~ /3.
(¢) The average local elastic pressure (E) also exhibits a power law scaling with time, (E) ~ t=3/%. (d) Distributions of the
normalized radii R/(R) from ¢ = 1000 to ¢t = 4000 with a fixed interval converge to a universal distribution, exhibiting scale
invariance. The gray dashed line is the theoretical prediction (Supplementary Material). Inset: the raw distributions of R at
different times. (e) Distributions of the normalized radii E/(F) from ¢ = 1000 to ¢ = 4000 with a fixed interval converge to
a universal distribution, exhibiting scale invariance. Inset: the raw distributions of E at different times. In (a), (d), and (e),
E = 1. In all figures, the radii of nucleation sites R, = 1.5R, where R. = 2v/gini. For the case of E = 0, we add randomness
to Ry so that it is uniformly distributed from R. to 2R. to avoid deterministic dynamics. In (b) to (e), the total number of
nucleation sites is 5 x 105.

18¢ affinity so that R, is the minimum nucleation radius for
the condensate to grow at the beginning of the simulation

in the absence of elastic pressure.

In this work, we mainly focus on the nucleation regime
of phase separation because the average concentrations
of condensate-forming molecules in vivo are typically
far from the spinodal regime [39, 40]. We introduce a

18

o

186

160 fixed number of nucleation sites with the nucleation ra-
wo dius R, which can be related to the lengths of some
wm specific DNA sequences, such as the promoters [12]. A
12 condensate is initiated at a nucleation site if the con-
173 densing affinity overcomes the local Laplace and elastic
s pressure. Therefore, the larger R,,, the easier the con-
s densate to initiate growth. In the following numerical
s simulations, we set ¢;, = 10, the initial outside concen-
w7 tration cout, ini = 2 and 7 = 0.1. coy is calculated as
178 (Cout,ini‘/tot - Zivzl CinVi)/(Vtot - Zf\il Vz)a where N is
the total number of nucleation sites. V; is a condensate’s
volume and Vi is the total system volume, which we set
as Viot 102N. Neither V; nor Vi include the nucle-
ation site volumes, which are typically very small. We
define R. = 2v/gini, where gin; is the initial condensing
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III. ELASTIC RIPENING

In the following, we use the neo-Hookean elasticity to
model the elastic medium in which the elastic energy cost
is proportional to the condensate’s volume Fp; = EV so
the local elastic pressure pg is E [25]. To mimic the het-
erogeneity of local stiffness in the nucleus, e.g., due to
the spatial organization of euchromatin and heterochro-
matin, we assign each condensate a random FE. In the
case of Ostwald ripening, corresponding to the case of
homogeneous E, small condensates shrink while big con-
densates grow as this ripening process reduces the overall
surface energy. During the Ostwald ripening, the average
and standard deviation of those survived condensates’
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0 radii exhibit power scaling with time, (R) ~ o ~ (yt)'/3
o [13, 17, 18).

For the case of a heterogeneous elastic medium, we ex-
203 pect a similar ripening process in which condensates with
2 large E shrink and condensates with small E grow since
205 this can reduce the overall elastic energy. We simulate the
206 condensate growth model and choose a uniform distribu-
207 tion of E from 0 to 2F where E is the average (Appendix
28 B). Indeed, condensates initiated at nucleation sites with
20 large E shrink during ripening (Figure S4), and nucle-
ation sites with very large F may not initiate condensate
growth throughout the simulations due to their strong
elastic pressures.

Surprisingly, the system undergoing elastic ripening
exhibits a novel power-law scaling between the average
condensate radius and time, which crossovers to the Ost-
wald ripening at a later time (Figure 2a, b and Movie
S1). Also, the standard deviation of the condensate ra-
dius exhibits a similar power-law scaling (Figure S5a).
Moreover, the average and the standard deviation of the
local elastic pressures also exhibit power-law scaling (Fig-
ure 2¢ and Figure S5b).To summarize,

(R) ~op ~ At%, (3)
(B) ~op ~ Bt™F. (4)

Here, 0% = (R?) — (R)? and 0% = (E?) — (E)?. The av-
erage variable (...) is averaged over condensates weighted
by their volumes, so the contribution of dissolved con-
densates is negligible. We also test the non-weighted av-
erage by excluding dissolved condensates explicitly and
obtain similar results (Figure S6). « and § are the two
power-law exponents. As we show later, A and B are the
prefactors depending on the initial conditions.

In the following, we theoretically derive the two expo-
nents, based on the following relations:

(R)? ~(E) = B=1-2a,
(ER?) ~opo = B =3a.
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Eq. (5) comes from energy conservation: the dissipation
power per unit volume W = —g—gV/V ~ V2V ~ R
must be equal to the elastic energy changing rate per
unit volume, which is £. Eq. (6) comes from the scale
invariance of the average elastic energy per condensate.
o, is the initial standard deviation of E with all nu-
cleation sites contributing equally (excluding sites that
never grow during the simulation). We remark that og o
is the only scale of the initial E distribution (shifting the
E distribution by a constant does not affect the dynamics
22 of condensate growth). Based on Eqgs. (5, 6), we obtain
23 that o = 1/5 and 8 = 3/5. We can also obtain the ex-
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FIG. 3. Elastic ripening is suppressed in an elastic medium
beyond neo-Hookean elasticity. (a) Visualization of simula-
tion results based on the condensate growth model. In this
modified model, the elastic pressure increases with the con-
densate radius so that p = F+Y R where E obeys a uniform
random distribution in the range [0,2E] and Y is a constant.
Here Y = 0.1. (b) The average radius (R) first exhibits the
elastic ripening scaling and then reaches a plateau. In all pan-

els, £ = 1 and the radii of nucleation sites R, = 1.5R.. In
(b), the total number of nucleation sites is 5 x 10°.

Our theoretical predictions are nicely confirmed for the
average radius (R) (Figure 2b), the standard deviation
of radius (Figure S5a), the average local elastic pressure
(E) (Figure 2c), and the standard deviation of E (Figure
S5b). We also verify the invariance of average condensate
energy in Eq. (6) (Figure S7) and the expressions of the
factors A and B (Figure S8). Our results do not depend
on the distribution of E (Figure S9).

We have used the scale-invariance assumption in de-
riving Eq. (6), and the same power-law scaling of (R)
and op supports this idea. To explicitly test the scale-
invariance assumption, we plot the distributions of the
normalized condensates’ radii R/(R) at different times
for the surviving condensates, and they indeed overlap,
which means that the only length scale is the average ra-
dius (R) (Figure 2d). Notably, the distribution of R/(R)
can be calculated semi-analytically, the gray dashed line
in Figure 2d (Supplementary Material), although it de-
pends on the distribution of E (Figure S10). Scale in-
variance is also observed for the distributions of E/(FE)
for the surviving condensates (Figure 2e). During the
elastic ripening, the heterogeneity of local elastic pres-


https://doi.org/10.1101/2023.05.27.542561
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

©

26/

©

27

I}

27

=

272

273

27

>

27!

o

276

277

278

27"

©

280

28

2

28

R

283

28

®

285

28

>

28

Q

288

289
290

291

29

o

29

@

294

29!

@

29

=

29

N

29

=3

299

30

15y

30:

2

30:

N}

30

@

30

i

30!

&

30

=

307

30

®

30

©

31

15}

31

sy

312

31

w

31

I

315

31

o

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.27.542561; this version posted August 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sures for the surviving condensates decreases while the
heterogeneity of the radii for the surviving condensates
increases. As a result, the Ostwald ripening eventually
takes over the elastic ripening (Figure 2b).

IV. BEYOND NEO-HOOKEAN

In a neo-Hookean medium, the elastic pressure is con-
stant for each condensate, and the system undergoes
ripening until only one condensate is left. It has been
shown that a nonlinear elastic medium beyond neo-
Hookean can suppress ripening [20, 22, 25]. To incorpo-
rate nonlinearity, we modify the elastic pressure so that
it increases with the condensate radius po = F + YR
where Y is a constant, in agreement with recent molecu-
lar dynamical simulations [22]. We find that the average
radius first follows the 1/5 elastic ripening scaling and
then saturates to a plateau Rpa.x (Figure 3 and Movie
S2). From Eq. (1), it is easy to find Ry,.x at equilibrium,
Riax = g (E)ty (g;(};))z_gvy. The system eventually

reaches an equilibrium state where multiple condensates
coexist with heterogeneous radii determined by the local
elastic pressures.

V. NONEQUILIBRIUM DYNAMICS OF
ACTIVELY-DISSOLVING CONDENSATES

So far, we have analyzed the ripening dynamics of con-
densates as the system approaches thermal equilibrium,
governed by the gradient of free energy. However, biolog-
ical systems are often out of equilibrium due to energy-
consuming processes. For example, transcriptional con-
densates can dissolve in the nucleus because of the accu-
mulation of transcribed RNAs [36], and this active dis-
solution process makes the system depart from thermal
equilibrium. To investigate the effects of active dissolu-
tion on the dynamics of transcriptional condensates, we
introduce an active dissolution rate to each condensate
so that they have a constant rate to dissolve per unit
volume kg5, that is, the probability for condensate to
dissolve within a short time window dt is kq;sVdt. We
assume the dissolution to be instantaneous because of
fast protein diffusion [38, 41].

We first study the case of a heterogeneous neo-Hookean
medium. To verify whether the active dissolution model
is biologically reasonable, we calculate the distribution of
condensate lifetimes from simulations and find that it is
similar to the experimental data of Pol II condensates in
live mouse embryonic stem cells from Ref. [9], supporting
the validity of our model assumption (Figure S11). In-
terestingly, we find that the growth dynamics of conden-
sates can be categorized into three cases. Condensates
at nucleation sites with small local elastic pressures F

5
a i Constitutive e Bursting e Silenced
b1 )M/ 1 A b1
0 0 A4 0 ‘
0 25 5x10t 0 25 5x10 0 25 5u10?
t t t
d 5 E=1, kg =107
Silenced

FIG. 4. Dynamics of condensate growth and dissolution and
its mapping to transcriptional kinetics. (a) Condensates with
weak local stiffness, i.e., small E, grow immediately after dis-
solution and can be associated with constitutively expressed
genes. (b) Condensates with intermediate local stiffness grow
intermittently with a delay since the last dissolution and can
be associated with transcriptional-bursting genes. (c) Con-
densates with strong local stiffness never grow, representing
silenced genes that are not expressed. In (a) to (¢), R, = 8R..
(d) Phase diagram of condensate growth dynamics as a func-
tion of R, normalized by R. and E. The purple, blue, and
gray regions represent condensates associated with constitu-
tively expressed, transcriptional-bursting, and silenced genes.
The dark blue area represents the synchronized bursting con-
densates. In all panels, E = 1, kais = 10~° and the number
of nucleation sites N = 2000.

aiw grow immediately after dissolution (Figure 4a); conden-
31 sates at nucleation sites with intermediate FE grow after a
a0 delay since the last dissolution (Figure 4b); condensates
20 at nucleation sites with large E never grow (Figure 4c).
a1 Intriguingly, these three cases can be mapped to three dif-
a2 ferent gene expression kinetics: constitutively expressed
33 genes, transcriptional-bursting genes, and silenced genes
2 (Figure 4d). Understanding the kinetics of transcription
s2s has been a central challenge in the study of stochastic
a6 gene expression. Particularly, a bursting gene switches
227 between the active and inactive states stochastically and
3 is transcribed only when in the active state. Multiple
39 mechanisms for transcriptional bursting have been pro-
30 posed, such as histone modifications and transcription
s factor availability [37, 42-44]. Our results suggest that
a2 the local stiffness of chromatin provides a mechanical way
333 to regulate transcription kinetics.

s To test whether the transcriptional-bursting mecha-
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FIG. 5. Comparison between experiments and simulations of transcriptional-bursting dynamics. The experimental data are
transcriptome-wide distributions of transcriptional-bursting properties in primary mouse fibroblasts from Ref. [37]. Corre-
spondingly, the simulated distributions are for the bursting condensates. (a) The count distribution of burst frequency from
simulations of the condensate growth model (bottom) is similar to that from experiments (top). (b) Similar to (a) but for the
distribution of burst size. (c) Similar to (a) but for the distribution of time until burst. (d) Similar to (a) but for the time
distribution during a burst. In all panels, the distributions are normalized with their averages over all genes or condensates.
In all panels of simulations, £ = 1, the radii of nucleation sites R, = 5R., kais = 107% and the number of nucleation sites
N = 10°. Calculation details of bursting kinetics are included in Appendix B.

nism based on chromatin stiffness captures the main fea-
tures of the bursting kinetics in experimental data, we
compare the statistical properties of bursting conden-
sates in our simulations to the transcriptome-wide allele-
resolution experimental data in primary mouse fibrob-
lasts from Ref. [37]. Four variables quantify the kinet-
ics of a transcriptional-bursting gene: (1) the burst fre-
quency, which quantifies how often the gene transitions to
the active state and gets transcribed; (2) the burst size,
which is the number of mRNAs produced during each
burst; (3) the time until burst, which is the time interval
between the finish of the last burst to the start of the next
burst; (4) the time during burst, which is the time inter-
val of a burst. Calculation details of bursting kinetics
are included in Appendix B. Notably, the distributions
of burst frequency, size, time until burst, and time during
burst all qualitatively match the experimental data, par-
ticularly the skewness (Figure 5). These results suggest
that our condensate growth model with active dissolution
in a heterogeneous elastic medium captures some basic
features of transcriptional kinetics in vivo (if not all). We
also test other parameters for the simulations and obtain
similar results (Figure S12).

Furthermore, we observe a collective behavior of con-
densate growth: the initiation timings of a subset of
bursting condensates are synchronized. When the nu-
cleation radius R,, is small, the complete set of bursting
condensates are synchronized (Figure 4d, Figure 6a, and
Movie S3). As R, increases, a subset of the bursting con-
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densates remain synchronized. Eventually, the initiation
timings of all condensates become completely uncorre-
lated (Figure 6b, ¢ and Movie S4). Intuitively, when
the nucleation radius R, is small, the condensate has
to overcome a large Laplace pressure to initiate growth.
Therefore, condensates must wait until other condensates
dissolve so that the outside concentration cq, is high
enough to overcome the Laplace pressure. While for large
R,,, condensates can grow without the help of other con-
densates. We confirm that this phenomenon is generated
by surface tension because the synchronized growth dis-
appears in an artificial system without surface tension
(Figure S13). This emerging synchronized dynamics of
condensate growth suggests a mechanism of synchronized
gene expression based on LLPS.

We define an order parameter fsyn. to represent the
fraction of synchronized condensates excluding nucle-
ation sites that never grow. When the fraction feync
equals 1, all the condensates that can grow are synchro-
nized. We obtain a heatmap of fsmnc as a function of
R,, and kqis (Figure 6d). foync decreases gradually as R,,
increases, indicating a continuous transition from fully
synchronized to uncorrelated growth. Also, the fyync de-
creases as the dissolution rate kg;s increases. This is be-
cause condensates release molecules to the environment
more frequently when kg;s is large; therefore, the outside
concentration ¢y is high so that the coupling between
condensates is weakened.

For the fully synchronized case (fsyne = 1), we predict
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FIG. 6. Synchronized growth of condensates in a neo-Hookean medium. (a) The temporal trajectories of condensate volumes
V under a small R, in which the initiation timings of all condensates are fully synchronized (excluding condensates that never
grow during the simulation). Here, R, = 1.2R.. (b) Here, R, = 4R.. In this case, a subset of the bursting condensates are
synchronized (inset). (c) Here, R, = 10R.. In this case, the initiation timings of all condensates are completely uncorrelated.
(d) The fraction of synchronized condensates as a function of R,/R. and —log,,(kais). (e) The period T exhibits piecewise
power-law scaling with kgis. Inset: During one period of synchronization, the average volume over synchronized condensates
(V) ~ t3/2 during the growth phase, then reaches the plateau phase, and finally undergoes ripening with (V) ~ t. Here
kais = 1077 and E = 0.01. In (e), R, = 1.01R. so that fiync = 1 for the entire range of simulated kqis. In (a) to (d), E = 1.

In all panels, the number of nucleation sites N = 2000.

303 that the period T, which is the time interval between two
304 successive synchronized growth, should exhibit piecewise
35 power-law scalings with the dissolution rate kgis. We es-
w6 timate the period using kqis(V)T ~ 1 where (V) is the
a7 average volume during one synchronization period in the
08 limit of zero active dissolution rate. When the dissolu-
300 tion rate kqjs is large, the condensates dissolve during the
«o initial growth phase. In this regime, (V') ~ t3/2 because
w g — pe is essentially constant [see Eq. (1) and the inset
w02 of Figure 6e]; therefore, T ~ kgig“l As kq;s decreases,
a3 the condensates can grow larger before they dissolve,
ws and the average condensate size can reach the plateau
w05 phase before ripening in which (V) ~ const; therefore,
ae T~ k‘;; As kgis further decreases, the system should
w7 undergo ripening. If the ripening is driven by elastic
ws ripening, (V) ~ t3/%, and the period T ~ kd_ig'625. If the
a0 ripening is driven by Ostwald ripening, V' ~ ¢, and the
a0 period T ~ k;ig's

a1 To test our predictions, we simulate the condensate
a2 growth model by choosing R,, = 1.01R,. and a small E to
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ensure that fsyn. = 1in the entire range of simulated kqis.
Our predictions are nicely confirmed (Figure 6e). We do
not see a clear signature of the scaling T' ~ k(;ig.ezs gen-
erated by elastic ripening in Figure 6e. We think that
this is because the small range of E makes the regime
of elastic ripening too short to observe (inset of Figure
6e). To test the existence of the scaling 7' ~ k;ig‘ﬁ%,
we increase the range of F and find a scaling behavior
consistent with elastic ripening (Figure S14a). Our con-
clusions regarding the power-law scaling between T and
the dissolution rate for the fully synchronized case are
independent of the choice of R, and E. Nevertheless,
we note that the k;i; and kgig's scalings occur only when
fsyne = 1 (Figure S14b). This is because the plateau and
ripening phases only apply to a closed system of synchro-
nized condensates; that is, the outside concentration coyuy
is set by synchronized condensates only.
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FIG. 7. Synchronized growth of condensates in a medium beyond neo-Hookean. (a) The same phase diagram of condensate
growth dynamics as Figure 4d but in a medium beyond neo-Hookean with Y = 0.1. (b) The same analysis as (a) with Y = 0.3.

(c) The fraction of synchronized condensates as a function of R, given different Y’s. In (a) to (c), E = 1 and kais = 107°.
(d) The synchronization period T exhibits piecewise power-law scaling with kais. Inset: during one synchronization period, the
average volume over synchronized condensates (V) ~ t3/? during the growth phase, then reaches the plateau phase without
the ripening phase. Here kqis = 1077 and £ = 0.01. (V) increases at the end of the synchronization period because of the
increasing outside concentration due to the early dissolution of some condensates, which nevertheless does not affect the scaling
relation. In (d), Y = 0.1, R, = 1.01R. so that fsync = 1 for the entire range of simulated k4is. In all panels, the number of

nucleation sites N = 2000.

VI. SYNCHRONIZED GROWTH BEYOND
NEO-HOOKEAN

430
431

In the medium beyond neo-Hookean elasticity in which
P = E + YR, the phase space of bursting condensates
shrinks while the phase space of constitutive condensates
a3 expands compared with the neo-Hookean model (Figure
s Ta, b). We calculate the synchronized fraction fync un-
der different Y’s and find that fon. decreases signifi-
cantly when Y increases (Figure 7c). Because the in-
creasing confining pressure limits the condensate growth,
condensates tend to be smaller than the limiting case
Y =0, which means a higher outside concentration cgyt-
a2 Therefore, it is easier for condensate to initiate growth
a3 without waiting for other condensates’ dissolution. The
aa synchronization period T also exhibits power-law scalings

432
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as with the dissolution rate in the fully synchronized regime
s (Figure 7d). The main difference compared with the neo-
w7 Hookean model is that the T ~ kgi(sm scaling disappears
as since ripening is suppressed by nonlinear elasticity. Fur-
a9 ther, the T' ~ kgi; scaling does not require the condition
a0 fsync = 1 anymore since the condensate volume will reach
ss1 a plateau value in any case due to the increasing elastic
42 pressure po; = F + Y R (Figure 3 and Figure S15).

VII. DISCUSSION

453

s In this work, we have systematically investigated the
s dynamical behaviors of biomolecular condensates in a
a6 heterogeneous elastic medium. We introduce a mean-

w7 field-like model to investigate the condensate growth dy-
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namics, allowing us to track millions of condensates si-
multaneously. Using this novel numerical method, we
find a new dynamical scaling for the elastic ripening,
(R) ~ tY/5 and theoretically derive the origin of the
1/5 exponent based on energy conservation and scale in-
variance. Furthermore, the heterogeneity of local elas-
tic pressure decreases over time and exhibits power-law
scaling as well, o ~ t~3/5. Ripening is suppressed in an
elastic medium beyond neo-Hookean elasticity, and mul-
tiple condensates can coexist at equilibrium. Our theo-
retical predictions and numerical simulations nicely agree
with each other.

To incorporate biological activity, we also introduce a
constant dissolution rate per unit volume to each con-
densate to model the dissolution of transcriptional con-
densates in vivo due to RNA accumulation [36]. This
active dissolution process drives the system out of equi-
librium. As evidence of the validity of the active disso-
lution model, the simulated distribution of condensate
lifetimes is similar to experimental data [9]. Intrigu-
ingly, the temporal growth patterns of condensates re-
semble gene expression dynamics. Condensates in soft
regions with weak local stiffness keep growing and con-
tinue to grow immediately after dissolution, correspond-
ing to constitutively expressed genes. Meanwhile, con-
densates with stronger local stiffness initiate growth af-
ter a delay since the last dissolution, corresponding to
transcriptional-bursting genes, which switch between ac-
tive and inactive states and initiate transcription only
in the active state. If the local stiffness is too strong,
condensates can never grow, corresponding to silenced
genes that are not expressed. Surprisingly, the simulated
distributions of multiple characteristics of transcriptional
burst, including the burst frequency and size, nicely re-
produce the transcriptome-wide experimental distribu-
tions [37]. Our results suggest that the local mechanical
properties of chromatin play a key role in regulating gene
expression kinetics, which can be another layer of regula-
tion on top of the compartmentalization of euchromatin
and heterochromatin.

Notably, the timing of the growth initiation of bursting
condensates can be synchronized. We remark that this
is entirely a nonequilibrium effect due to the active dis-
solution process and finite surface tension. The fraction
of synchronized condensates depends on the nucleation
radius and dissolution rate. For the fully-synchronized
cases, the period of synchronized growth exhibits piece-
wise power-law scalings with the dissolution rate. We
theoretically derive the power-law exponents and show
that it is related to the power-law scalings of average
condensate sizes with time. In an elastic medium be-
yond neo-Hookean, synchronized growth is suppressed,
and the results are qualitatively similar.

Some questions remain regarding the connection of our
results to condensates in natural biological systems. In
the experiments by Cho et al., though the lifetime dis-
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tribution of transient condensates can be captured by
our model, stable and large condensates that virtually do
not dissolve within the experimental time window coex-
ist with smaller condensates that dissolve frequently [9].
This indicates that the nonequilibrium dissolution pro-
cess of biomolecular condensates can be more complex
than our simplified assumptions. The coalescence of con-
densates is also not included in our model. Recently, Lee
et al. found a new dynamical scaling of ripening gener-
ated by the coalescence of subdiffusive condensates [23].
In the future, it will be interesting to explore the inter-
ference of elastic ripening, driven by the gradient of local
stiffness and the subdiffusion of condensates themselves.

ACKNOWLEDGMENTS

We thank Fanlong Meng, Zhi Qi, and Yiyang Ye
for useful discussions related to this work. The re-
search was funded by National Key R&D Program of
China (2021YFF1200500) and supported by grants from
Peking-Tsinghua Center for Life Sciences.

L.M. conceived, designed, and carried out the theoret-
ical and numerical part of this work. S.M. conceived and
designed the theoretical part of this work. J.L. conceived,
designed, and carried out the theoretical and numerical
part of this work. All the authors contributed to the
preparation of the manuscript.

APPENDIX A: DETAILED DERIVATION OF
THE CONDENSATE GROWTH MODEL

We compute the condensing affinity g in the conden-
sate growth model by considering a small change of the
condensate volume V with its inside concentration fixed
at Cin:

oF _or
ON OV
Cin(,“/out - Min) + (pin - pout)-

9)

Here, pi, and poys are the chemical potentials of the
condensate-forming molecules inside and outside the con-
densate. p;, and pous are the pressures inside and out-
side the condensate. Next, we use the Gibbs-Duhem
equation, Ndy = —SdT + Vdp [45]. Therefore, i, =
1o + (Pin — Po)/cin Where pg is the chemical potential of
the condensate-forming molecules and pg is the pressure
at equilibrium in the thermodynamic limit.

Regarding the chemical potential and the pressure out-
side condensates, we have dpows = kpTdcout/Cout and
dpout = dptout/Cous- Here, we have used the dilute so-
lution assumption for dyue,t and the Gibbs-Duhem re-
lation for dpoui. Integrating cou¢ from cg, the satu-
ration concentration at equilibrium in the thermody-
namic limit, we obtain pous = po + kT In(cout/co) and
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results, we obtain

g = Cink’BTln (COut
C

) ) — kBT(Cout — Co). (10)

APPENDIX B: DETAILS OF NUMERICAL
SIMULATIONS AND DATA ANALYSIS

We perform numerical simulations by solving Eq. (1)
using the explicit Euler method on MATLAB. In Figure
4d, Figure 7a, and Figure 7b, a condensate is mapped
to a constitutively expressed gene if more than half of its
growths initiate within a dimensionless time 100 since the
last dissolution. Meanwhile, a condensate is mapped to a
silenced gene if it never grows during the simulation. Fi-
nally, the rest condensates correspond to transcriptional-
bursting genes.

In Figure 5a, a condensate’s burst frequency is calcu-
lated as the inverse of the average interval between suc-
cessive growth initiations. In Figure 5b, a condensate’s
burst size is approximated as the product of its final vol-
ume before dissolution and half of its lifetime. In Figure
5¢, the time until burst is calculated as the average inter-
val from dissolution to the next initiation. In Figure 5d,
the time during burst is calculated as its average lifetime.
In all panels of Figure 5 for the simulations, we exclude
the data of small condensates whose burst size is smaller
than a threshold 106.

In Figure 4d, Figure 6, and Figure 7, we label the con-
densate that can grow with the largest E as the first syn-
chronized condensate. We then scan the condensates that
can grow from the largest E to the smallest E, and the
condensate is labeled as synchronized if over 80% of its
initiation timings overlap with the growth timing of the
latest synchronized condensate. After all the synchro-
nized condensates are identified, we calculate the period
by finding the average interval between two successive
peaks of the distribution of initiation timings for all syn-
chronized condensates.

In Figure 6e and 7d, in the case of £ = 0, we add a
small noise +0.001R,, to the nucleation radius to avoid
deterministic dynamics. In the inset of Figure Ge, we ex-
clude the (V') data when the survived condensates’ num-
ber is smaller than 200 below which finite size effects are
significant.

Movie S1: Condensates undergo elastic ripening in
a heterogeneous neo-Hookean elastic medium until only
one condensate exists. The simulation result is the same
as Figure 2a in the main text. In the movie, we show a fi-
nite number of nucleation sites, randomly and uniformly
chosen from the distribution of E. The same protocol
applies to other movies.

Movie S2: Elastic ripening is suppressed in an elastic
medium beyond neo-Hookean elasticity. The simulation
result is the same as Figure 3a in the main text.
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Movie S3: All actively-dissolving condensates are syn-
chronized when R, is small. Simulation parameters are
the same as in Figure 5a in the main text.

Movie S4: All actively-dissolving condensates grow
randomly when R, is large. Simulation parameters are
the same as in Figure 5c in the main text.
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