

1 **Neuropeptide Y-expressing dorsal horn inhibitory interneurons gate spinal
2 pain and itch signalling**

3

4 Kieran A. Boyle^{1,3}, Erika Polgár^{1,3}, Maria Gutierrez-Mecinas^{1,3}, Allen C. Dickie^{1,3},
5 Andrew H. Cooper¹, Andrew M. Bell¹, M. Evelline Jumolea¹, Adrian Casas-Benito¹,
6 Masahiko Watanabe², David I. Hughes¹, Greg A. Weir¹, John S. Riddell¹ and Andrew
7 J. Todd^{1*}

8

9 ¹School of Psychology and Neuroscience, College of Medical, Veterinary and Life
10 Sciences, University of Glasgow, Glasgow G12 8QQ, UK

11 ²Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-
12 8638, Japan

13 ³Equal contribution

14 *Corresponding Author: Andrew.Todd@glasgow.ac.uk

15 **ABSTRACT**

16 Somatosensory information is processed by a complex network of interneurons in
17 the spinal dorsal horn. It has been reported that inhibitory interneurons that express
18 neuropeptide Y (NPY), either permanently or during development, suppress
19 mechanical itch, with no effect on pain. Here we investigate the role of interneurons
20 that continue to express NPY (NPY-INs) in adulthood. We find that chemogenetic
21 activation of NPY-INs reduces behaviours associated with acute pain and pruritogen-
22 evoked itch, whereas silencing them causes exaggerated itch responses that
23 depend on cells expressing the gastrin-releasing peptide receptor. As predicted by
24 our previous studies, silencing of another population of inhibitory interneurons (those
25 expressing dynorphin) also increases itch, but to a lesser extent. Importantly, NPY-
26 IN activation also reduces behavioural signs of inflammatory and neuropathic pain.
27 These results demonstrate that NPY-INs gate pain and itch transmission at the
28 spinal level, and therefore represent a potential treatment target for pathological pain
29 and itch.

30 **INTRODUCTION**

31 The spinal dorsal horn represents the entry point into the CNS for somatosensory
32 information from the trunk and limbs. This information is relayed via projection cells
33 to supraspinal sites, where it leads to perceptions, including pain and itch¹⁻³.
34 However, projection cells represent only ~1% of dorsal horn neurons, with the vast
35 majority comprising excitatory and inhibitory interneurons that are arranged into local
36 microcircuits that process somatosensory information. Altered function of these
37 circuits contributes to chronic pain and pruritus (itch)^{4,5}. Dysregulation of inhibitory
38 circuits has attracted particular interest, as broad disruption of spinal inhibitory
39 signalling produces behaviours reminiscent of symptoms in patients suffering from
40 chronic pain or pruritus⁶⁻⁹.

41 We have described a molecular classification scheme that assigns the inhibitory
42 interneurons in mouse superficial dorsal horn (SDH; laminae I-II) to five largely non-
43 overlapping populations, based on expression of calretinin (CR), parvalbumin (PV),
44 neuronal nitric oxide synthase (nNOS), dynorphin and galanin (Dyn/Gal) or
45 neuropeptide Y (NPY)¹⁰. This scheme has since been validated and extended by
46 large-scale transcriptomic studies^{11,12}. These molecularly-defined interneuron
47 populations appear to be functionally distinct as they display differential activation
48 profiles in response to noxious and innocuous stimuli¹¹⁻¹³. A major advantage of this
49 approach is that it allows investigation of the function of different populations through
50 targeted manipulation with techniques such as chemogenetics, optogenetics and
51 toxin-mediated silencing or ablation. Studies of this type have implicated the PV
52 interneurons in preventing tactile allodynia^{14,15}, the nNOS interneurons in gating both
53 mechanical and thermal inputs¹⁶, and the Dyn/Gal population in suppressing
54 mechanical pain and pruritogen-evoked itch^{16,17}. Ablation or silencing of dorsal horn
55 NPY-lineage neurons (i.e. cells that express NPY transiently during development or
56 persistently into adulthood) has been reported to cause spontaneous itching
57 behaviours and enhancement of touch-evoked (mechanical) itch, without affecting
58 pruritogen-evoked itch or pain behaviours¹⁸. This has led to the view that the main
59 function of the NPY cells is suppression of mechanical itch¹⁹⁻²⁴. This limited role for
60 NPY interneurons is surprising for several reasons: (1) they account for one-third of
61 all inhibitory interneurons in SDH¹⁰, (2) they innervate a population of nociceptive
62 projection cells that belong to the anterolateral system (ALS)^{13,25-27}, (3) while

63 mechanical itch is restricted to hairy skin, NPY-expressing neurons are present
64 throughout the dorsal horn, including areas innervated from glabrous skin^{10,28} and (4)
65 NPY itself has a role in modulating chronic pain²⁹. As noted above, the approach
66 used by Bourane et al¹⁸ targeted a broad population of inhibitory interneurons that
67 express NPY during development, as well as those that express NPY in adulthood.
68 Tashima et al³⁰ recently attempted to target NPY-INs by injecting adeno-associated
69 viruses (AAVs) with a *Npy* promoter into the rat spinal cord. However, expression
70 was largely restricted to lamina IIo (even though many NPY cells are found in other
71 laminae) and fewer than half of the targeted cells contained either NPY or its mRNA.
72 Therefore, the role of those dorsal horn interneurons that continue to express NPY
73 (NPY-INs) remains unclear.

74 Here we use intraspinal injections of AAVs carrying Cre-dependent expression
75 cassettes into young adult NPY::Cre mice to target dorsal horn NPY-INs. We
76 demonstrate that this technique can be used to manipulate inhibitory interneurons
77 that express NPY in adulthood, while avoiding those cells that transiently express
78 NPY during development. We show that chemogenetic activation of dorsal horn
79 NPY-INs suppresses acute mechanical and thermal nocifensive behaviours, as well
80 as those resulting from pruritogen-evoked itch, and reduces activity in spinal
81 networks that process nociceptive and pruritoceptive information. Furthermore, NPY-
82 IN activation abolishes mechanical and thermal hypersensitivity in models of
83 inflammatory and neuropathic pain. Finally, we show that silencing of NPY-INs
84 results in spontaneous itch and an exaggerated response to pruritogens, and that
85 this depends on a circuit involving GABAergic input from NPY-INs to excitatory
86 interneurons that express the gastrin-releasing peptide receptor (GRPR). Together
87 these results demonstrate that dorsal horn NPY-INs have a far broader role than
88 previously suggested, since they gate transmission of nociceptive and pruriceptive
89 information. They therefore represent a potential target for the development of new
90 treatments for pain and itch.

91

92 **RESULTS**

93 **Cre-dependent AAV injections in young adult NPY::Cre mice target dorsal horn**
94 **inhibitory NPY interneurons and avoid transient NPY-expressing cells.**

95 We initially assessed the suitability of using intra-spinal injection of AAVs
96 encoding Cre-dependent constructs in RH26 NPY::Cre mice (the line used by
97 Bourane et al¹⁸) to target NPY-INs in the dorsal horn. We first performed RNAscope
98 fluorescent *in situ* hybridisation (FISH) to compare *Cre* and *Npy* mRNA expression in
99 lumbar spinal cord sections from young adult NPY::Cre mice. Across laminae I-III
100 91.6% \pm 0.3% of cells classed as *Cre*-positive cells were also *Npy*-positive, and
101 these accounted for 62.1% \pm 0.6% of *Npy*-positive cells, demonstrating that *Cre*
102 expression in the NPY::Cre line faithfully captures the majority of NPY-INs in the
103 adult dorsal horn (Figures 1A and 1B). Accordingly, injection of either
104 AAV.flex.tdTomato (tdTom) or AAV.flex.eGFP (both serotype 1 with CAG promoter,
105 see Key Resources Table) into the lumbar dorsal horn of adult NPY::Cre mice
106 (Figure 1C) resulted in fluorescent protein (FP) expression matching that previously
107 reported for NPY neurons^{10,26}, with cell bodies concentrated in laminae I-III (Figure
108 1D). The great majority of FP-expressing neurons in laminae I-III were
109 immunoreactive (IR) for NPY (78.5% \pm 3.6%), and these accounted for 74.6% \pm
110 1.9% of the NPY-IR neurons in this area (Figures 1D and 1E).

111 We then crossed NPY::Cre mice with the Cre-dependent reporter line Ai9 (to label
112 all NPY lineage neurons with tdTomato) and injected AAV.flex.eGFP into the lumbar
113 dorsal horn of these mice, to target cells that continued to express NPY (Figures 1F
114 and Figure 1 – figure supplement 1A). In these animals, tdTom-positive cells were
115 seen throughout the dorsal horn, and were much more numerous than eGFP-
116 expressing cells in the region of the injection site (Figure 1G). All tdTom-labelled
117 cells were immunoreactive for the transcription factor Pax2 (Figure 1 – figure
118 supplement 1B), which is expressed by all dorsal horn inhibitory neurons in
119 rodents^{7,31}, and these accounted for 40.8% \pm 10.0% of Pax2 cells in laminae I-III.
120 Virtually all eGFP-expressing neurons within this region were tdTom-positive (97.8%
121 \pm 0.2%), but these only accounted for 51.1% \pm 3.5% of the tdTom-positive population
122 (Figures 1H and 1I). In agreement with the data presented above, the great majority
123 tdTom+;eGFP+ neurons were found to be NPY-IR (85.2% \pm 0.2%), and these
124 accounted for 67.0% \pm 6.3% of the NPY-IR cells in laminae I-III. In contrast, only
125 32.1% \pm 2.1% of the tdTom+;eGFP-negative cells displayed NPY immunoreactivity,

126 corresponding to just $24.1\% \pm 2.7\%$ of all NPY-IR interneurons (Figures 1H and 1I).

127 Overall, $58.3\% \pm 0.9\%$ of tdTom+ neurons were NPY-immunoreactive.

128 These results suggest that transient Cre expression occurs in a broad population
129 of dorsal horn inhibitory interneurons in NPY::Cre mice, presumably driven by NPY
130 expression during development. However, Cre expression in adult mice occurs in a
131 much more restricted population of inhibitory interneurons that express NPY
132 persistently. To characterise these cells in relation to the neurochemical populations
133 of inhibitory interneurons that we had identified in the SDH¹⁰, we focussed our
134 analysis on laminae I-II and compared the expression of the different neurochemical
135 markers between the tdTom+;eGFP+ and tdTom+;eGFP-negative cells. Within this
136 region, $85.8\% \pm 2.5\%$ of tdTom+;eGFP+ cells were NPY-IR, while approximately
137 10%, 3% and 1% expressed galanin, nNOS or PV, respectively (Figure 1 – figure
138 supplement 1C). This is in good agreement with the degree of overlap between
139 these markers and NPY that we have previously described¹⁰. Surprisingly, $23.7\% \pm$
140 7.0% of tdTom+;eGFP+ cells expressed CR (Figure 1 – figure supplement 1C),
141 which has previously been reported to show minimal overlap with NPY-IR³².
142 Nonetheless tdTom+;eGFP+ cells are largely restricted to the NPY+ population of
143 inhibitory interneurons. In contrast, tdTom+;eGFP-negative neurons were much
144 more broadly spread across four of the populations, with approximately 28%
145 expressing NPY, 44% expressing CR and 24% each expressing galanin or nNOS,
146 although virtually none ($1.4\% \pm 1.4\%$) expressed PV (Figure 1 – figure supplement
147 1C).

148 Because we intended to use Cre-dependent expression of the excitatory
149 DREADD hM3Dq^{7,16} to activate NPY-INS, we also assessed targeting of this receptor
150 to the appropriate interneurons following injection of AAV.flex.hM3Dq-mCherry into
151 the lumbar dorsal horn of adult NPY::Cre mice (Figure 1 – figure supplement 1D).
152 hM3Dq-mCherry-expressing cells in the SDH displayed a near-identical pattern in
153 terms of co-localisation with inhibitory interneuron markers to that of the eGFP+ cells
154 following AAV.flex.eGFP injection (Figure 1 – figure supplement 1E and 1F). For the
155 mCherry+ cells, $90.5\% \pm 6.2\%$ co-expressed NPY (accounting for $66.1\% \pm 4.8\%$ of
156 all NPY interneurons) and there was little or no overlap with the galanin, nNOS and
157 PV populations (Figure 1 – figure supplement 1E and 1F). Again, significant overlap
158 was observed between hM3Dq-mCherry- and CR-positive cells, with $28.0\% \pm 1.5\%$

159 of mCherry-labelled cells displaying CR-IR. NPY-IR was detected in $93.1\% \pm 3.7\%$ of
160 mCherry+;CR+ cells in sections co-stained with NPY antibody (Figure 1 – figure
161 supplement 1E), demonstrating that this represents NPY::Cre-driven recombination
162 in interneurons co-expressing NPY and CR, rather than ectopic recombination in
163 CR+;NPY-negative interneurons. The level of NPY-IR in the CR cells was generally
164 very low (Figure 1 – figure supplement 1E), which probably explains why this overlap
165 was not detected previously³². As expected, virtually all mCherry-labelled cells were
166 inhibitory ($97.4\% \pm 2.6\%$ Pax2-positive), and these accounted for a quarter of all
167 inhibitory interneurons in the SDH (Figure 1 – figure supplement 1F). Crucially, no
168 mCherry-labelled cells were observed in the ipsi- or contralateral L3, L4 or L5 DRG
169 of four AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice (data not shown), as would
170 be expected from the lack of NPY expression in uninjured mouse DRG neurons³³.

171 Collectively these results demonstrate that injection of AAVs encoding Cre-
172 dependent constructs into the dorsal horn of adult NPY::Cre mice allows specific
173 targeting of most inhibitory interneurons that persistently express NPY, and avoids
174 capturing a broader population of inhibitory interneurons that express NPY
175 transiently during development.

176

177 **Activation of inhibitory NPY interneurons reduces activity in dorsal horn 178 circuits recruited by nociceptive and pruritic stimuli.**

179 We initially assessed the efficacy of our chemogenetic strategy to activate NPY-
180 INs in NPY::Cre mice injected with AAV.flex.hM3Dq-mCherry by comparing
181 expression of the activity marker Fos two hours after administration of the hM3Dq
182 ligand clozapine-N-oxide (CNO) or vehicle (Figure 2 – figure supplement 1A). Only
183 $8.8\% \pm 4.7\%$ of mCherry-labelled cells in laminae I-III displayed Fos-IR in vehicle-
184 treated animals, but this rose dramatically to $82.9\% \pm 2.5\%$ in CNO-treated mice
185 (Figure 2 – figure supplement 1B and 1C). Of these mCherry+;Fos+ cells, $87.5\% \pm$
186 3.1% displayed detectable NPY immunoreactivity, and these accounted for $53.9\% \pm$
187 1.2% of all NPY-IR neurons (Figure 2 – figure supplement 1D and 1E). Surprisingly,
188 we also observed a small but significant increase in the proportion of mCherry-
189 negative cells that expressed Fos following CNO (from $2.7\% \pm 0.3\%$ in vehicle-
190 treated to $5.8\% \pm 1.0\%$ in CNO-treated mice), and this increase was entirely
191 restricted to inhibitory interneurons (Figure 2 – figure supplement 1C). A significant

192 proportion of these mCherry-negative;Fos+ cells were also NPY-IR ($31.3\% \pm 4.8\%$;
193 Figure 2 – figure supplement 1E), and these may represent NPY-INs that express
194 hM3Dq-mCherry at a level sufficient for direct CNO-mediated activation, but that is
195 too low for immunohistochemical detection. Alternatively, they may have been
196 indirectly recruited via disinhibition following CNO-mediated activation of hM3Dq-
197 mCherry-expressing NPY-INs. Overall, CNO treatment resulted in Fos expression in
198 $65.9\% \pm 2.8\%$ of all NPY-INs, and these comprised $65.5\% \pm 3.8\%$ of Fos-expressing
199 cells (Figure 2 – figure supplement 1E). In summary, intraspinal injection of
200 AAV.flex.hM3Dq-mCherry into adult NPY::Cre mice allows chemogenetic activation
201 of two thirds of dorsal horn NPY-INs, and a small proportion of other dorsal inhibitory
202 interneurons.

203 We then assessed the ability of dorsal horn NPY-INs to suppress the transmission
204 of pain- and itch-related information at the circuit level. NPY::Cre mice that had had
205 intraspinal injections of AAV.flex.hM3Dq-mCherry were injected with vehicle or CNO,
206 and then received a noxious heat (hindpaw immersion in 52°C water) or pruritic
207 (intradermal injection of chloroquine, CQ, in the calf) stimulus ipsilateral to the viral
208 injection under brief general anaesthesia (Figures 2A and 2B). Mice that received the
209 pruritic stimulus were fitted with an Elizabethan collar to prevent Fos induction due to
210 itch-related biting of the leg. Following a two-hour survival period, spinal cord
211 sections were processed for Fos-IR. In vehicle treated animals, the noxious heat and
212 pruritic stimuli resulted in ipsilateral Fos expression in the somatotopically relevant
213 areas of the dorsal horn. Fos+ cells were particularly clustered in the medial half of
214 the SDH following noxious heat, and the middle third of the SDH after CQ, as
215 previously reported^{34,35} (Figures 2C and 2D). Accordingly, analysis of Fos expression
216 was performed within these regions of the SDH. In CNO-treated mice there was a
217 clear increase in the proportion of mCherry-labelled cells expressing Fos (Figures
218 2C-2F), presumably due to direct chemogenetic activation of these cells (as
219 described above). However, for both the noxious heat and pruritic stimuli, we
220 observed a significant decrease in the proportion of mCherry-negative cells that were
221 Fos-positive, when compared to vehicle-treated mice (noxious heat: vehicle = $26.7\% \pm 4.7\%$ vs. CNO = $6.7\% \pm 1.2\%$; CQ injection: vehicle = $12.9\% \pm 4.2\%$ vs. CNO = $2.1\% \pm 0.3\%$) (Figures 2C-2F). In both cases the decrease was largely restricted to
222 Pax2-negative (excitatory) neurons, although a significant decrease was also
223

225 observed in Pax2-positive cells in heat-stimulated mice, with a similar trend in CQ-
226 stimulated mice (Figures 2E and 2F).

227 These results demonstrate that activation of NPY-INs inhibits neurons that are
228 normally recruited by noxious or pruritic stimuli in dorsal horn circuits. To investigate
229 the nature of this inhibition in more detail, we performed optogenetic experiments in
230 spinal cord slices from NPY::Cre mice that had received intraspinal injections of
231 AAV.flex.ChR2-eYFP, resulting in expression of eYFP-tagged channelrhodopsin in
232 NPY-INs (Figure 2G). Short pulses of blue light reliably evoked inward currents and
233 action potential firing in all (10/10) eYFP-ChR2+ cells tested (Figure 2 – figure
234 supplement 2A-C). Recordings were made from 41 ChR2-eYFP-negative cells in the
235 SDH (Figures 2G and Figure 2 – figure supplement 2D), with an optogenetically-
236 evoked postsynaptic current (oPSC) being seen in 29 cells (70.7%). In 7 of the cells
237 with oPSCs, bath application of the AMPAr and NMDAr antagonists, NBQX and D-
238 APV, respectively, did not alter the peak amplitude of the current (baseline = -779.8
239 pA ± 267.7 pA vs. NBQX / D-APV = -756.6 pA ± 285.8 pA, p = 0.578, Wilcoxon
240 matched-pairs signed rank test) (Figure 2 – figure supplement 2E and 2F),
241 demonstrating that these were not mediated by glutamate and were therefore
242 optogenetically-evoked IPSCs (oIPSCs). The GABAergic / glycinergic nature of
243 these oIPSCs was investigated by bath application of gabazine and strychnine,
244 respectively (in the presence of NBQX and D-APV). All oIPSCs tested (6/6) were
245 reduced by gabazine, but not strychnine (Figures 2H and 2I), indicating that inhibition
246 is predominantly mediated by GABA. This is consistent with the finding that NPY
247 neurons in laminae I-III are all GABA-IR, but are not enriched with glycine³⁶. Taken
248 together, these findings demonstrate that NPY-INs provide a powerful GABAergic
249 inhibitory input to surrounding dorsal horn neurons and can reduce the activation of
250 excitatory neurons that are normally recruited by noxious or pruritic stimuli,
251 suggesting that when activated they suppress the transmission of pain- and itch-
252 related information in the dorsal horn.

253

254 **Activation of inhibitory NPY interneurons increases acute nocifensive reflex
255 thresholds and reduces pruritogen-evoked itch behaviour.**

256 We then looked for behavioural correlates of the NPY-IN-mediated suppression of
257 dorsal horn pain and itch circuits. To do this, we assessed mechanical and thermal

258 nocifensive reflexes, as well as CQ-induced itch behaviour, in NPY::Cre mice that
259 had received unilateral spinal injections of AAV.flex.hM3Dq-mCherry and were then
260 treated with vehicle or CNO (Figure 3A). In vehicle-treated mice, as expected, there
261 were no significant differences between the hindpaws contralateral and ipsilateral to
262 the AAV injection for the 50% mechanical withdrawal threshold (MWT) or for
263 withdrawal latencies to noxious heat or cold. However, in CNO-treated mice
264 nocifensive thresholds/latencies in the ipsilateral paw were significantly increased
265 across all three modalities, demonstrating a generalised anti-nociceptive effect of
266 NPY-IN activation (Figures 3B-3D). CNO-treated mice also spent significantly less
267 time biting the calf area in the 30 minutes following CQ injection than vehicle-treated
268 controls, demonstrating a reduction in pruritogen-evoked itch upon NPY-IN activation
269 (Figure 3E). It has been proposed that when used at high doses, systemic CNO may
270 have off-target effects as a result of conversion to clozapine³⁷. We therefore tested
271 the effect of 5mg/kg CNO (the dose used throughout our study) on naïve wild-type
272 mice, and found no change in mechanical or thermal nocifensive thresholds, or on
273 locomotor performance (Figure 3 – figure supplement 1). This confirms that the
274 effects observed in AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice are due to
275 DREADD activation, and not the result of off-target effects of CNO. These findings
276 show that chemogenetic activation of dorsal horn NPY-INS has a broad anti-
277 nociceptive effect across a range of modalities and suppresses pruritogen-evoked
278 itch.

279

280 **Activation of NPY interneurons blocks mechanical and thermal
281 hypersensitivity in models of inflammatory and neuropathic pain.**

282 We next assessed the effects of chemogenetically activating NPY-INS in the
283 context of inflammatory and neuropathic pain (Figures 4A, 4D and 4G). Intraplantar
284 CFA resulted in punctate mechanical and heat hypersensitivity of the ipsilateral paw
285 of AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice that received i.p. injection of
286 vehicle prior to behavioural testing. However, the mechanical and heat
287 hypersensitivity were completely blocked in mice treated with CNO, and the heat
288 latencies were significantly increased above the pre-CFA baseline values (Figure 4B
289 and 4C). Vehicle-treated AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice that had
290 undergone spared nerve injury (SNI) also displayed mechanical and heat

291 hypersensitivity of the ipsilateral paw, compared to pre-surgery thresholds. Both the
292 mechanical and heat hypersensitivity were blocked in CNO-treated mice (Figures 4E
293 and 4F). Because *de novo* expression of NPY is known to occur in injured A-fibre
294 afferents following nerve injury^{33,38-40}, this could result in expression of hM3Dq in
295 these afferents, thus confounding interpretation of our results. We therefore
296 quantified the number of mCherry-labelled cells in the somatotopically-relevant L4
297 and L5 DRG four weeks following SNI surgery in 4 mice (Figure 4 – figure
298 supplement 1). As expected, no labelled cells were observed contralateral to the
299 AAV injection and SNI surgery in either DRG in any of the mice. A few mCherry-
300 labelled cells were observed in both L4 and L5 DRG on the ipsilateral side (cells per
301 DRG: L4 = 12.5 ± 2.3, L5 = 17.5 ± 3.6; Figure 4 – figure supplement 1). Because the
302 numbers of A-fibre sensory neurons within the mid-lumbar DRG are estimated to be
303 in the thousands in mice^{41,42}, it is highly unlikely that CNO-mediated activation of the
304 very few hM3Dq-expressing cells observed in the L4 and L5 DRG following SNI
305 would contribute to the blockade of neuropathic pain that we observed. We therefore
306 conclude that this effect is due to activation of spinal inhibitory NPY-INs. We also
307 assessed mCherry expression in the L4 and L5 DRG of 5 CFA-treated
308 AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice, 3 days following CFA injection. In
309 contrast to nerve injury, neuropeptide upregulation is not observed in rodent DRG
310 under inflammatory conditions^{33,40}. As expected, we observed no mCherry-labelled
311 cells in the contra- or ipsilateral L4 or L5 DRG of these mice (data not shown).

312 Spinal NPY signalling has been implicated in the suppression of neuropathic pain
313 through inhibition of NPY Y1 receptor (Y1R)-expressing excitatory interneurons in
314 the dorsal horn^{29,43,44}. Therefore the suppression of neuropathic hypersensitivity that
315 we observed during chemogenetic activation of NPY-INs could be due to GABAergic
316 transmission, NPY signalling, or a combination of both. To assess the potential role
317 of Y1R signalling, we systemically co-administered CNO and the Y1R-selective
318 antagonist BMS 193885²¹ prior to behavioural testing in AAV.flex.hM3Dq-mCherry-
319 injected NPY::Cre mice that had undergone SNI surgery. Administration of the Y1R
320 antagonist had no effect on the CNO-mediated suppression of tactile and heat
321 hypersensitivity in these mice (Figures 4E and 4F), suggesting that action of NPY on
322 Y1 receptors is not required for this effect.

323 In addition to evoked hypersensitivity, peripheral nerve injury induces ongoing
324 neuropathic pain in rodents, as well as engaging affective-emotional responses to
325 pain⁴⁵. To determine the contribution of NPY-INs to ongoing pain we tested whether
326 CNO induced conditioned place preference (CPP) in a separate cohort of
327 AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice following SNI surgery (Figure 4G).
328 A wildtype control group that had undergone SNI was also included to test for any
329 possible preference of (or aversion to) the effects of CNO that could have resulted
330 from off-target effects independent of DREADD activation. CNO did not induce
331 preference or aversion in either of these experimental groups (Figures 4H and 4I,
332 Figure 4 – figure supplement 2A and 2B). However, using the same experimental
333 setup we observed preference for a chamber paired with gabapentin in mice that had
334 undergone SNI (Figure 4 – figure supplement 2C and 2D), showing that the CPP
335 method was sufficiently sensitive to detect ongoing neuropathic pain. Together,
336 these findings suggest that activating NPY-INs may not alleviate ongoing pain in the
337 SNI model. We also assessed SNI-induced cold hypersensitivity in the cohort of
338 AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice that were used for CPP testing
339 (Figure 4G). We observed a marked increase in the duration of the response to an
340 acetone droplet applied to the ipsilateral hindpaw relative to the pre-SNI baseline
341 when the mice had been dosed with a vehicle control. Administration of CNO
342 completely blocked this hypersensitivity, demonstrating a reversal of SNI-induced
343 cold allodynia when NPY-INs are activated. This result also demonstrates that the
344 lack of CPP in the chemogenetic experiments was not due to a failure to activate
345 NPY-INs.

346 In summary, chemogenetic activation of NPY-INs suppresses both mechanical and
347 thermal hypersensitivity in models of inflammatory and neuropathic pain, and the
348 suppression of neuropathic hypersensitivity appears to be mediated predominantly
349 by GABAergic transmission from NPY-INs. However, NPY-IN activation does not
350 appear to affect ongoing pain in the neuropathic model.

351

352 **Toxin-mediated silencing of NPY interneurons causes spontaneous itch and
353 enhances pruritogen-evoked itch but does not alter nocifensive reflexes.**

354 We then tested whether tetanus toxin light chain (TeLC)-mediated silencing of
355 NPY-INs following spinal injection of AAV.flex.TeLC.eGFP into NPY::Cre mice

356 altered pain- or itch-related behaviours (Figure 5A and Figure 5 – figure supplement
357 1A). Immunohistochemical assessment of the overlap of NPY and GFP expression
358 in these mice demonstrated a very similar specificity and efficacy of expression in
359 NPY-INs to that described above for other viral constructs. In animals injected with
360 AAV.flex.TeLC.eGFP 82.6% ± 5.0% of GFP-positive cells co-expressed NPY and
361 61.7% ± 3.5% of NPY-positive cells co-expressed GFP (Figure 5 – figure
362 supplement 1F and 1G).

363 Compared to AAV.flex.eGFP-injected controls, AAV.flex.TeLC.eGFP-injected
364 NPY::Cre mice displayed significant enhancement of CQ-induced itch when tested 4
365 to 6 days after AAV injection ($P<0.0001$, 2-way ANOVA with Tukey's post-test,
366 Figure 5B). Approximately two thirds of AAV.flex.TeLC.eGFP-injected mice also
367 developed skin lesions on the ipsilateral hindlimb, within the corresponding
368 dermatomes, by day 7 (Figures 5D and 5E). This phenotype was never observed in
369 the AAV.flex.eGFP-injected controls, and strongly suggests development of
370 spontaneous itch following silencing of NPY-INs. Consistent with this interpretation,
371 we observed a significant increase in the time spent biting the calf prior to CQ
372 injection in AAV.flex.TeLC.eGFP-injected NPY::Cre mice compared to
373 AAV.flex.eGFP-injected mice of the same genotype ($P=0.0014$, 2-way ANOVA with
374 Tukey's post-test, Figure 5C). In contrast to these marked effects on itch-related
375 behaviours, silencing of NPY-INs did not significantly alter punctate tactile or thermal
376 nocifensive thresholds at 4-6 days after AAV injection (Figure 5 – figure supplement
377 1A-1D). Motor co-ordination, as assessed by rotarod, was also unaffected by NPY-
378 IN silencing; however, a small but significant improvement was detected in
379 AAV.flex.eGFP-injected mice relative to their baseline pre-surgery performance,
380 most likely reflecting a mild training effect (Figure 5 – figure supplement 1E). Taken
381 together these findings indicate that tonic activity of NPY-INs suppresses itch, but
382 has no obvious impact on nociceptive thresholds.

383

384 **Increased itch caused by silencing NPY interneurons operates through a**
385 **circuit involving GRPR-expressing excitatory interneurons.**

386 Several studies have shown that GRPR-expressing excitatory dorsal horn
387 interneurons (GRPR-INs) are crucial for pruritogen-evoked itch⁴⁶⁻⁴⁸, while it has been
388 proposed that they are not required for mechanical itch^{18,21} (but see Chen et al²³). To

389 assess whether signalling through GRPR-INs was required for the itch-related
390 behaviours that we observed when NPY-INs were silenced, we crossed NPY::Cre
391 and GRPR^{CreERT2} mice and concomitantly silenced NPY-INs and GRPR-INs through
392 spinal injection of AAV.flex.TeLC.eGFP (Figure 5A). AAV.flex.eGFP-injected mice of
393 the same genotype were again used as a control group. NPY::Cre;GRPR^{CreERT2} mice
394 that received injections of AAV.flex.TeLC.eGFP showed no significant difference in
395 CQ-induced itch, compared to AAV.flex.eGFP-injected controls ($P=0.34$, 2-way
396 ANOVA with Tukey's post-test, Figure 5B). However, when comparing NPY::Cre and
397 NPY::Cre;GRPR^{CreERT2} mice that had received injections of AAV.flex.TeLC.eGFP,
398 we found that the NPY::Cre;GRPR^{CreERT2} mice showed significantly less CQ-induced
399 itch behaviour than NPY::Cre mice ($P<0.0001$, 2-way ANOVA with Tukey's post-test,
400 Figure 5B). Furthermore, AAV.flex.TeLC.eGFP-injected NPY::Cre;GRPR^{CreERT2} mice
401 did not display a significant increase in spontaneous biting prior to CQ administration
402 (compared to AAV.flex.eGFP-injected controls; $P=0.82$, 2-way ANOVA with Tukey's
403 post-test, Figure 5C) and never developed skin lesions (Figures 5D and 5E). These
404 data demonstrate that both the spontaneous itch and the increased pruritogen-
405 evoked itch observed following silencing of NPY-INs are at least partly transmitted
406 via GRPR-INs.

407 This led us to ask whether NPY-INs provide direct inhibitory synaptic input to
408 GRPR-INs. To investigate this we performed *ex vivo* patch clamp experiments in
409 spinal cord slices from NPY::Cre;GRPR^{FlpO} mice that had received intraspinal
410 injections of AAV.flex.ChR2-eYFP together with AAV.FRT.mCherry, resulting in
411 expression of eYFP-tagged channelrhodopsin in NPY-INs and mCherry in GRPR-
412 INs (Figure 5F). Recordings were made from 11 mCherry+ cells and all of these
413 exhibited an oIPSC (with no failures) when the slice was illuminated with brief pulses
414 of blue light, with a mean peak oIPSC amplitude of $250.1 \text{ pA} \pm 58.9 \text{ pA}$ (Figure 5G).
415 In 3 / 3 of these cells oIPSCs were abolished by the application of TTX and rescued
416 by the addition of 4-AP (Figure 5H), confirming that they were monosynaptic, and
417 therefore that NPY-INs directly inhibit GRPR-INs. The GABAergic / glycinergic
418 nature of the oIPSCs was assessed in three of the cells (Figure 5 – figure
419 supplement 2A-2C). In 2 / 3 cells the oIPSC was gabazine sensitive / strychnine
420 insensitive, indicating GABA-mediated inhibition, while in the other cell the oIPSC
421 was sensitive to both gabazine and strychnine, indicating mixed GABA and glycine

422 inhibition (Figure 5 – figure supplement 2B and 2C). Although Acton et al²¹ provided
423 evidence that GRPR-INs lack the Y1R, Chen et al²³ reported that 35% of GRPR cells
424 had Y1R mRNA. We therefore tested the effect of bath-applying the Y1R agonist
425 [Leu³¹,Pro³⁴]-neuropeptide Y, while recording from GRPR-INs (Figure 5 – figure
426 supplement 2D). We found that all 10 cells tested failed to show an outward current
427 in response to [Leu³¹,Pro³⁴]-neuropeptide Y (Figure 5 – figure supplement 2E and
428 2F), suggesting that NPY acting on the Y1R is unlikely to have made a significant
429 contribution to the suppression of GRPR cells by NPY-INs. We also investigated
430 inhibitory NPY-IN input to GRPR-INs anatomically. To do this, we quantified the
431 proportion of inhibitory synaptic contacts onto GRPR-INs (labelled through spinal
432 injection of Cre-dependent AAV-Brainbow2 into GRPR^{CreERT2} mice; Figure 5I) at
433 which NPY was present in the presynaptic bouton. Inhibitory synapses were
434 identified by the presence of VGAT-positive presynaptic boutons apposed to puncta
435 of the postsynaptic protein gephyrin. Many of the gephyrin puncta on the GRPR-INs
436 were contacted by NPY-IR boutons, and these accounted for 45.0% \pm 1.9% of all
437 inhibitory synapses on the GRPR-INs (Figures 5J and 5K). This was significantly
438 higher than the proportion of inhibitory (VGAT+) boutons in the vicinity of the
439 analysed cells that contained NPY (36.2% \pm 2.6%; Figure 5K). Together these data
440 provide strong evidence that NPY-INs selectively target GRPR-INs and generate a
441 powerful GABAergic inhibition of these cells.

442

443 **Toxin-mediated silencing of dynorphin interneurons enhances pruritogen-
444 evoked itch.**

445 Dorsal horn inhibitory interneurons that co-express dynorphin and galanin have
446 been implicated in suppression of itch as their activation reduces pruritogen-evoked
447 itch^{16,22}, while constitutive loss of B5-I neurons, which include this population, results
448 in enhanced pruritogen-evoked itch and skin lesions due to spontaneous
449 scratching^{49,50}. In addition, Brewer et al⁵¹ reported that chemogenetic inhibition of
450 dynorphin lineage cells increases pruritogen-evoked itch. Given the well-established
451 role of dynorphin-expressing interneurons (Dyn-INs) in suppressing itch, we
452 compared the effect of silencing these cells with that of silencing the NPY-INs, in
453 order to explore a potential overlap of function. Although dynorphin is also expressed
454 by a subset of dorsal horn excitatory interneurons, we have shown that these are

455 largely restricted to areas innervated by afferents from glabrous skin¹⁶. We injected
456 AAV.flex.TeLC.eGFP (or AAV.flex.eGFP as a control) into the dorsal horn of the L3
457 segment of Pdyn^{Cre} mice for these experiments (Figure 6A). This segment was
458 chosen for 2 reasons: (1) it receives input from the region of calf that we used to test
459 the effect of pruritogens, and (2) it receives input exclusively from hairy skin, and
460 therefore the great majority of virally-transfected Dyn-INs are likely to be inhibitory
461 cells (those that co-express dynorphin and galanin)¹⁶.

462 In contrast to the effects of silencing NPY-INs, silencing of Dyn-INs never resulted
463 in skin lesions, and the time spent biting the calf prior to CQ injection appeared to be
464 unaffected (Figure 6B; $P=0.7431$, 2-way repeated measures ANOVA with Šidák's
465 post-test). This suggests that silencing Dyn-INs does not result in spontaneous itch.
466 Silencing of Dyn-INs did result in enhanced CQ-evoked itch, when compared to
467 AAV.flex.eGFP-injected controls (Figure 6B; $P=0.0379$, 2-way repeated measures
468 ANOVA with Šidák's post-test). However, this enhancement was markedly less
469 pronounced than that observed following silencing of NPY-INs (compare Figure 6B
470 with Figure 5B). To confirm that the effects of TeLC-mediated silencing resulted from
471 targeting of Cre-expressing cells, we also injected either AAV.flex.TeLC.eGFP or
472 AAV.flex.eGFP into the L3 segments of wild-type mice, and assessed CQ-evoked
473 itch behaviours 4-6 days later (Figure 6 – figure supplement 1A). As expected in
474 these control animals there was no significant difference in the time spent biting the
475 calf between AAV.flex.TeLC.eGFP- or AAV.flex.eGFP-injected mice either before or
476 after injection of CQ (Figure 6 – figure supplement 1B).

477 These findings suggest that while both NPY- and Dyn-INs can suppress itch, the
478 NPY population has a more substantial role in this mechanism. One explanation for
479 this could be that although Dyn-INs form inhibitory synapses onto GRPR cells²², the
480 density of these synapses is less than that of those arising from the NPY-INs. To test
481 this, we assessed contacts from inhibitory dynorphin cells onto GRPR-INs (Fig 6C-
482 6E), using an antibody against dynorphin B (DynB) and found that these constituted
483 only $20.9\% \pm 2.2\%$ of the inhibitory synapses on these cells. This did not differ
484 significantly from the proportion of inhibitory boutons that contained DynB in the
485 vicinity of the analysed cells ($22.6\% \pm 1.6\%$; Figures 6D and 6E). Collectively these
486 results suggest that unlike NPY-INs, Dyn-INs do not preferentially target GRPR-INs.
487 In addition, they contribute a far lower proportion of inhibitory synapses on the

488 GRPR-INs (compared to the NPY-INs), and loss of this input has a much less
489 dramatic effect on itch.

490

491 **DISCUSSION**

492 Inhibitory interneurons in the SDH play an important role in suppressing pain and
493 itch. NPY-expressing cells constitute around a third of the inhibitory neurons in this
494 region and are also present in deeper laminae. Previous studies in which NPY-
495 lineage neurons were ablated demonstrated that these cells are responsible for
496 preventing mechanical itch through a mechanism involving NPY and the Y1
497 receptor^{18,21}. Here we show, by selectively activating those cells that continue to
498 express the peptide, that the NPY cells inhibit acute nocifensive reflexes and reduce
499 mechanical and thermal hypersensitivity in both inflammatory and neuropathic pain
500 models. In addition, they strongly suppress itch evoked by chloroquine. Silencing the
501 NPY cells causes spontaneous itch and exaggerated responses to chloroquine, and
502 both of these effects are reduced by simultaneously silencing GRPR-expressing
503 excitatory interneurons, indicating that suppression of itch by the NPY cells operates
504 through downstream GRPR-INs.

505

506 **A broad inhibitory role for NPY cells**

507 Our findings indicate that NPY-INs have a far broader role in suppressing pain-
508 and itch-related behaviours than had been suggested by previous studies that used
509 the same NPY::Cre line^{18,20,21}, despite the fact that we were targeting a more
510 restricted neuronal population. The differences in experimental findings are likely to
511 result from two methodological issues: (1) the technique used to target cells, and (2)
512 the use of loss-of-function or gain-of-function approaches. In each of these other
513 studies, cells were targeted by an intersectional genetic approach that limited
514 expression to spinal cord and brainstem, but would have included a large additional
515 group of inhibitory neurons that expressed NPY only during development¹⁸. Here, we
516 used an alternative strategy to restrict expression: intraspinal injection of AAVs
517 coding for Cre-dependent constructs^{7,16}. While this approach failed to capture a
518 minority of NPY-expressing neurons, it enabled us to target a large number of these
519 cells. Importantly, expression was restricted to those cells that continue to express

520 NPY. This was confirmed by our finding that up to 85% of the virally transfected cells
521 contained detectable levels of NPY.

522 The main differences in interpreting the roles of NPY cells are likely to depend on
523 whether the cells were inactivated (through ablation or synaptic silencing) or
524 chemogenetically activated. In agreement with Bourane et al¹⁸, we found that
525 silencing NPY cells had no effect on acute nociceptive thresholds. However,
526 chemogenetically activating these cells increased thresholds for both thermal and
527 mechanical nocifensive reflexes, and reduced hypersensitivity in neuropathic and
528 inflammatory pain models. Interestingly, Acton et al²¹ also observed an anti-
529 nociceptive effect on mechanical stimuli when they chemogenetically activated NPY-
530 lineage neurons, but attributed this to ectopic activation of Y1 receptors on primary
531 sensory neurons. However, although Y1 is present in cell bodies of some primary
532 sensory cells, it is not thought to traffic to their central terminals^{52,53}. Acton et al²¹ did
533 not test whether activating NPY-lineage neurons had any effect on responses to
534 thermal stimuli, or on neuropathic/inflammatory hypersensitivity, so it is not possible
535 to compare our findings in these contexts. The most likely explanation for
536 discrepancies between the findings of loss-of-function and gain-of-function studies is
537 that although NPY cells have an antinociceptive action, other interneurons provide
538 sufficient inhibition to maintain nocifensive reflexes when NPY cells are silenced. Our
539 findings therefore indicate that NPY-INS have a far broader role in somatosensory
540 processing than was previously recognised.

541

542 **NPY cells suppress spontaneous and pruritogen-evoked itch**

543 Our previous studies^{16,49} had implicated dynorphin/galanin cells in suppression of
544 pruritogen-evoked itch. This was based on the findings that *Bhlhb5*^{-/-} mice (which
545 lack these cells) show exaggerated responses to pruritogens⁴⁹, and that
546 chemogenetic activation of Dyn-INS suppressed CQ-evoked itch¹⁶. In support of this,
547 Liu et al²² subsequently showed that activating galanin-expressing cells also
548 suppresses pruritogen-evoked itch. This anti-pruritic action is likely to involve
549 dynorphin acting on κ-opioid receptors⁴⁹ as well as direct inhibition of GRPR cells
550 (which are an integral part of the spinal itch pathway) by GABA and/or glycine
551 released from the dynorphin/galanin cells²². Liu et al also showed that ablating
552 galanin-expressing cells enhances pruritogen-evoked itch, and consistent with this

553 we find enhancement of CQ-evoked itch when cells belonging to this population are
554 silenced by injecting AAV.flex.TeLC into $Pdyn^{Cre}$ mice.

555 Here we show that activating NPY cells also strongly suppresses CQ-evoked itch.
556 This is at odds with findings of Acton et al²¹, who reported that chemogenetic
557 activation of NPY-lineage neurons failed to alter scratching in response to CQ. There
558 are technical differences between these studies, since Acton et al used a reporter
559 mouse line to express hM3Dq, and injected CQ intradermally behind the ear. The
560 discrepancy between the results of these studies is most likely to result from higher
561 levels of DREADD expression following viral transfection, and therefore more
562 effective neuronal activation. However, there may also have been a contribution from
563 regional differences in the itch tests used (hindlimb versus head), as well as in the
564 neuronal populations targeted (as noted above). Although Bourane et al¹⁸ reported
565 that ablating ~70% of NPY-lineage neurons had no effect on itch evoked by CQ, we
566 found that synaptic silencing of the NPY cells with TeLC increased CQ-evoked itch,
567 and often resulted in development of skin lesions, presumably secondary to the
568 spontaneous itch-related biting that was also observed. In fact, the antipruritic action
569 of the NPY-INs may be more powerful than that of the dynorphin/galanin cells, since
570 TeLC silencing in the $Pdyn^{Cre}$ mouse caused less of an increase in chloroquine-
571 evoked itch behaviour (compared to silencing in the NPY::Cre line) and did not result
572 in the development of spontaneous itch or associated skin lesions. Nonetheless, our
573 findings demonstrate that both NPY-INs and Dyn-INs contribute to the suppression
574 of pruritogen-evoked itch thus revealing an overlap of function of these
575 neurochemically distinct inhibitory interneuron populations.

576

577 **NPY cells operate through a circuit involving GRPR neurons**

578 Both spontaneous and CQ-evoked itch behaviours were suppressed when GRPR
579 and NPY cells were silenced simultaneously, and we show directly, using both
580 anatomical and electrophysiological methods, that the NPY cells provide a strong
581 inhibitory input to GRPR-INs. This indicates that GRPR cells are downstream of the
582 NPY cells (Figure 7A). This inhibitory input to GRPR cells appears to be even more
583 powerful than that originating from the dynorphin/galanin cells, since NPY-
584 immunoreactive boutons accounted for 45% of the inhibitory synapses on the GRPR
585 cells, compared to the 21% from dynorphin-immunoreactive boutons. Consistent with

586 this we found that optogenetic activation of NPY cells elicited oIPSCs in all of the
587 GRPR cells tested. Interestingly, these were of much higher mean amplitude (~250
588 pA), than the ~80 pA oIPSCs reported by Liu et al²² in GRPR cells when galanin
589 cells were optogenetically activated using a very similar experimental approach. The
590 inhibition of GRPR cells by NPY-INs is likely to be predominantly GABAergic, since
591 oIPSCs were reduced by gabazine in all cells (with one also sensitive to strychnine).
592 Also, consistent with previous evidence showing that the majority of GRPR cells lack
593 Y1 receptors^{21,23}, we did not detect outward currents in any of the GRPR cells that
594 were tested with a Y1 agonist.

595 Although GRPR-expressing excitatory interneurons have been strongly implicated
596 in itch, we have recently shown that these cells respond to noxious as well as pruritic
597 stimuli, that they correspond morphologically to a class of SDH excitatory
598 interneurons known as vertical cells, and that chemogenetically activating them
599 results in behaviours reflecting both pain and itch⁵⁴. Vertical cells provide input to
600 lamina I projection neurons⁵⁵, and are thought to form an integral part of circuits that
601 underlie both normal and pathological pain^{17,56,57}. It is already known that axons of
602 NPY cells directly innervate lamina I projection cells, as well as a population of
603 nociceptive projection neurons in laminae III-V of the dorsal horn^{27,58}. This direct
604 input to ALS projection neurons will presumably contribute to the antinociceptive
605 action of the NPY cells. The present findings raise the possibility that the powerful
606 inhibitory GABAergic NPY-GRPR circuit that we have identified contributes not only
607 to the alleviation of itch, but also to the suppression of nocifensive reflexes and the
608 reduction of hypersensitivity in persistent pain states (Figure 7B).

609

610 **Activating NPY cells suppresses hypersensitivity in persistent pain states**

611 Importantly, in addition to its effect on acute nocifensive reflexes and itch,
612 activating NPY cells also blocked thermal and mechanical hypersensitivity in both
613 inflammatory and neuropathic pain states. In the SNI model, we found that
614 administration of a Y1 antagonist had no effect on the reversal of mechanical and
615 heat hypersensitivity when NPY cells were activated. NPY acting on Y1 receptors
616 expressed by spinal neurons is known to reduce signs of neuropathic pain^{29,43,59};
617 however, it appears that chemogenetic activation of NPY cells generated GABAergic
618 inhibition that was sufficiently powerful to reverse the hypersensitivity independently

619 of Y1 signalling. Interestingly, our CPP findings suggest that activating NPY neurons
620 may not suppress on-going pain in the SNI model, implying that on-going and
621 evoked components of neuropathic pain operate through different circuits at the
622 spinal cord level.

623 Previous studies have tested the effects of chemogenetically activating other
624 inhibitory interneuron populations on persistent pain states. Glycinergic cells account
625 for the majority of inhibitory interneurons in deep dorsal horn and are largely
626 separate from the NPY-INs^{36,60}. Foster et al⁷ showed that activating these cells
627 reduced responses to acute thermal and mechanical noxious stimuli and suppressed
628 mechanical hypersensitivity in the chronic constriction injury model. Activation of PV-
629 expressing inhibitory interneurons reduced inflammatory and neuropathic
630 mechanical allodynia, but had no effect on heat hypersensitivity¹⁵. A recent study by
631 Albisetti et al⁶¹ found that activating a population of dorsal horn inhibitory
632 interneurons defined by expression of *Kcnip2* suppressed cold allodynia in a
633 neuropathic model. However, our findings apparently provide the first evidence that
634 activating dorsal horn inhibitory interneurons can suppress heat hypersensitivity, in
635 addition to cold and mechanical allodynia, in persistent pain states. A population of
636 NPY-expressing inhibitory interneurons with a similar laminar location has recently
637 been identified in human spinal cord⁶². These cells therefore provide an attractive
638 target for the treatment of neuropathic pain, particularly for the significant cohort of
639 patients who experience thermal hyperalgesia⁶³.

640

641 **MATERIALS AND METHODS**

642

643 **Key resources table**

Reagent or resource	Source	Identifier
Mouse lines		
STOCK Tg(Npy-cre)RH26Gsat/Mmucd (<i>NPY::Cre</i>)	GENSAT / MMRRC	Cat#: 34810-UCD RRID: MMRRC_34810-UCD
B6.Cg-Gt(ROSA)26Sor ^{tm1(CAG-tdTomato)Hze} /J (Ai9)	Prof. Hongkui Zheng; available from The Jackson Laboratory, ME, USA	Cat#: 007909 RRID: IMSR_JAX:007909
GRPR-iCreERT2 (<i>Grpr</i> ^{CreERT2})	Dr. Yan-Gang Sun	Liu et al. (2019), PNAS 116, 27011-27017
GRPR-FIpO (<i>Grpr</i> ^{FlpO})	Dr. Yan-Gang Sun	Mu et al. (2017), Science 357, 695-699
B6;129S-Pdyn ^{tm1.1(cre)Mjkr} /LowIJ (<i>Pdyn</i> ^{Cre})	The Jackson Laboratory, ME, USA	Cat#: 027958 RRID: IMSR_JAX:027958
AAV constructs		
AAV1 pCAG-FLEX-EGFP-WPRE (AAV.flex.eGFP; 1.72 x 10 ⁹ GC)	Penn Vector Core, PA, USA; available from Addgene, MA, USA (deposited by Hongkui Zeng)	Cat#: 51502 RRID: Addgene_51502 Oh et al. (2014), Nature 508, 207-214
AAV1 pCAG-FLEX-tdTomato-WPRE (AAV.flex.tdTomato; 1.76 x 10 ⁹ GC)	Penn Vector Core, PA, USA; available from Addgene, MA, USA (deposited by Hongkui Zeng)	Cat#: 51503 RRID: Addgene_51503 Oh et al. (2014), Nature 508, 207-214
pAAV1-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGhpA (AAV.ChR2-eYFP; 5.09 x 10 ⁸ GC)	Penn Vector Core, PA, USA; available from Addgene, MA, USA (deposited by Karl Deisseroth)	Cat#: 20298 RRID: Addgene_20298
rAAV2/hSyn-DIO-hm3D-mcherry (AAV.flex.hM3Dq-mCherry; 3.8 x 10 ⁸ GC)	University of North Carolina Vector Core, NC, USA; available from Addgene, MA, USA (deposited by Bryan Roth)	Cat#: 44361 RRID: Addgene_44361 Krashes et al. (2011), J Clin Invest. 121, 1424-1428
ssAAV-2/2-hSyn1-dlox-hM3D(Gq)_mCherry(rev)-dlox-WPRE-hGhpA (AAV.flex.hM3Dq-mCherry; 7.65 x 10 ⁸ GC)	Viral Vector Facility, University of Zurich, Switzerland	Cat#: v89-2
ssAAV-2/2-hSyn1-dlox-EGFP(rev)-dlox-WPRE-hGhpA (AAV.flex.eGFP; 2 x 10 ⁸ GC)	Viral Vector Facility, University of Zurich, Switzerland	Cat#: v115-2
pssAAV-2-hSyn1-chl-dlox-EGFP_2A_FLAG_TeTxLC(rev)-dlox-WPRE-SV40pA (AAV.flex.TeLC.eGFP; 2 x 10 ⁸ GC)	Viral Vector Facility, University of Zurich, Switzerland	Cat#: v322-2
ssAAV-8/2-hSyn1-dFRT-mCherry(rev)-dFRT-WPRE-hGhpA (AAV.FRT.mCherry; 8.7 x 10 ⁸ GC)	Viral Vector Facility, University of Zurich, Switzerland	Cat#: v188-8
AAV9-EF1a-BbChT (AAV-Brainbow2; 1.5 - 5.96 x 10 ⁷ GC)	Addgene, MA, USA; Deposited by Dawen Cai & Joshua Sanes	Cat#: 45186-AAV9 RRID: Addgene_45186 Cai et al. (2013), Nat Methods 10, 540-547

Antibodies		
Goat anti-Calretinin (1:1000)	SWANT, Bellinoza, Switzerland	Cat#: CG1 RRID: AB_10000342
Goat anti-cFOS (1:2000)	Santa Cruz Biotechnology Inc., CA, USA	Cat#: sc-52-G RRID: AB_2629503
Rabbit anti-DynorphinB (1:500)	Dr.Philippe Ciofi, INSERM, France	Cat#: IS-35 RRID: AB_2819033
Rabbit anti-Galanin (1:1000)	Peninsula Laboratories, CA, USA	Cat#: T-4334 RRID: AB_518348
Mouse anti-Gephyrin (1:500)	SynapticSystems, Göttingen, Germany	Cat#: 147021 RRID: AB_2232546
Chicken anti-GFP (1:1000)	Abcam plc., Cambridge, UK	Cat#: ab13970 RRID: AB_300798
Chicken anti-mCherry (1:10,000)	Abcam plc., Cambridge, UK	Cat#: ab205402 RRID: AB_2722769
Rat anti-mCherry (1:1000)	Invitrogen; Thermo Fisher Scientific, UK	Cat#: M11217 RRID: AB_2536611
Rat anti-mTFP (1:500)	Kerafast Inc., Boston, MA, USA	Cat#: EMU108
Chicken anti-NeuN (1:1000)	SynapticSystems, Göttingen, Germany	Cat#: 266006 RRID: AB_2571734
Guinea pig anti-NeuN (1:500)	SynapticSystems, Göttingen, Germany	Cat#: 266004 RRID: AB_2619988
Rabbit anti-nNOS (1:2000)	MilliporeSigma, MA, USA	Cat#: 07-571 RRID: AB_310722
Rabbit anti-NPY (1:1000)	Peninsula Laboratories, CA, USA	Cat#: T-4070 RRID: AB_518504
Guinea pig anti-Parvalbumin (1:2500)	Frontier Institute Co. Ltd, Hokkaido, Japan	Cat#: PV-GP-Af1000 RRID: AB_2336938
Rabbit anti-PAX2 (1:1000)	Invitrogen; Thermo Fisher Scientific, UK	Cat#: 71-6000 RRID: AB_2533990
Rabbit anti-PAX2 (1:200)	MilliporeSigma, MA, USA	Cat#: HPA047704 RRID: AB_2636861
Goat anti-VGAT (1:1000)	Frontier Institute Co. Ltd, Hokkaido, Japan	Cat#: VGAT-Go-Af620 RRID: AB_2571623
Alexa Fluor® 488 Donkey Anti-Chicken IgY (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 703-545-155 RRID: AB_2340375
Alexa Fluor® 488 Donkey Anti-Goat IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 705-545-003 RRID: AB_2340428
Alexa Fluor® 488 Donkey Anti-Rabbit IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 711-545-152 RRID: AB_2313584
Alexa Fluor® 647 Donkey Anti-Chicken IgY (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 703-605-155 RRID: AB_2340379
Alexa Fluor® 647 Donkey Anti-Goat IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 705-605-147 RRID: AB_2340437
Alexa Fluor® 647 Donkey Anti-Guinea pig IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 706-605-148 RRID: AB_2340476
Alexa Fluor® 647 Donkey Anti-Rabbit IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 711-605-152 RRID: AB_2492288

Biotin-SP Donkey Anti-Goat IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 705-065-147 RRID: AB_2340397
Biotin-SP Donkey Anti-Guinea pig IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 706-065-148 RRID: AB_2340451
Biotin-SP Donkey Anti-Rabbit IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 711-065-152 RRID: AB_2340593
Biotin-SP Donkey Anti-Rat IgG (1:500)	Jackson ImmunoResearch, PA, USA	Cat#: 712-065-153 RRID: AB_2315779
Rhodamine Red TM -X Donkey Anti-Chicken IgY (1:100)	Jackson ImmunoResearch, PA, USA	Cat#: 703-295-155 RRID: AB_2340371
Rhodamine Red TM -X Donkey Anti-Guinea pig IgG (1:100)	Jackson ImmunoResearch, PA, USA	Cat#: 706-295-148 RRID: AB_2340468
Rhodamine Red TM -X Donkey Anti-Mouse IgG (1:100)	Jackson ImmunoResearch, PA, USA	Cat#: 715-295-151 RRID: AB_2340832
Rhodamine Red TM -X Donkey Anti-Rabbit IgG (1:100)	Jackson ImmunoResearch, PA, USA	Cat#: 711-295-152 RRID: AB_2340613
Rhodamine Red TM -X Donkey Anti-Rat IgG (1:100)	Jackson ImmunoResearch, PA, USA	Cat#: 712-295-153 RRID: AB_2340676
RNAScope probes		
Mm-Npy-C3	ACD BioTechne, CA, USA	Cat#: 313321-C3
Cre-C2	ACD BioTechne, CA, USA	Cat#: 312281-C2
Chemicals, peptides and recombinant proteins		
Clozapine-N-oxide (CNO)	Tocris, Abingdon, UK	Cat#: 4936
CNO-dihydrochloride	Tocris, Abingdon, UK	Cat#: 6329
Gabapentin	Sigma-Aldrich, Glasgow, UK	Cat#: PHR1049-1G
SR95531 (Gabazine)	Abcam, Cambridge, UK	Cat#: ab120042
Strychnine hydrochloride	Sigma-Aldrich, Glasgow, UK	Cat#: S8753
Tetrodotoxin citrate (TTX)	Alamone Labs, Jerusalem, Israel	Cat#: T-550
NBQX disodium salt	Abcam, Cambridge, UK	Cat#: ab120046
D-APV	Tocris, Abingdon, UK	Cat#: 0106
4-aminopyridine (4-AP)	Sigma-Aldrich, Glasgow, UK	Cat#: 275875
BMS 139885	Tocris, Abingdon, UK	Cat#: 3242
(-)-Bicuculline methobromide	Tocris, Abingdon, UK	Cat#: 0109
[Leu31,Pro34]-neuropeptide Y	Tocris, Abingdon, UK	Cat#: 1176
Chloroquine diphosphate salt	Sigma-Aldrich, Glasgow, UK	Cat#: C6628
Complete Freund's Adjuvant (CFA)	Sigma-Aldrich, Glasgow, UK	Cat#: F5881
Software		
Neurolucida	MBF Bioscience, VT, USA	https://www.mbfbioscience.com/neurolucida RRID: SCR_001775
Neurolucida Explorer	MBF Bioscience, VT, USA	https://www.mbfbioscience.com/neurolucida-explorer RRID: SCR_017348
pClamp	Molecular Devices, CA, USA	https://www.moleculardevices.com/products/axon-patch-clamp-system/acquisition-and-analysis-

		software/pclamp-software-suite#gref RRID: SCR_011323
Zen Black	Carl Zeiss, Germany	https://www.zeiss.com/microscopy/int/products/microscope-software/zen.html RRID: SCR_018163
Prism	GraphPad Software, CA, USA	https://www.graphpad.com/scientific-software/prism/ RRID: SCR_002798
Behavioral Observation Research Interactive Software (BORIS)	Oliver Friard & Marco Gamba, University of Torino, Italy	https://www.boris.unito.it/

644

645

646 **Experimental Model and Subject Details**

647 All experiments were approved by the Ethical Review Process Applications Panel
648 of the University of Glasgow, and were carried out in accordance with the European
649 Community directive 86/609/EC, the UK Animals (Scientific Procedures) Act 1986
650 and ARRIVE guidelines. The following transgenic mouse lines were utilised in this
651 study: the GENSAT BAC transgenic RH26 NPY::Cre line, which express Cre
652 recombinase under control of the NPY promoter⁶⁴; the Ai9 Cre reporter line, in which
653 a loxP-flanked STOP cassette prevents CAG promoter-driven transcription of
654 tdTomato; the GRPR^{CreERT2} line, in which 2A-linked optimized Cre recombinase
655 fused with the ligand-binding domain of the estrogen receptor is inserted into the
656 3'UTR of the *Grpr* gene⁶⁵; the GRPR^{FlpO} line, in which 2A-linked FlpO recombinase is
657 fused with the last exon of the *Grpr* gene²²; and the Pdyn^{Cre} line, in which an IRES
658 site fused to Cre recombinase is inserted downstream of the stop codon of the *Pdyn*
659 gene⁶⁶. Further details of these lines can be found in the Key Resources table.
660 NPY::Cre and Ai9, NPY::Cre and GRPR^{CreERT2}, NPY::Cre and GRPR^{FlpO} or
661 GRPR^{CreERT2} and Ai9 mice were crossed to produce NPY::Cre;Ai9,
662 NPY::Cre;GRPR^{CreERT2}, NPY::Cre;GRPR^{FlpO} and GRPR^{CreERT2};Ai9 experimental
663 animals, respectively. For experiments involving the GRPR^{CreERT2} line, mice received
664 6 mg of tamoxifen (2x i.p. injections of 3 mg on consecutive days). For the
665 NPY::Cre;GRPR^{CreERT2} mice, this was administered on the day of surgery and on the
666 next day. Wildtype C57BL/6 mice were used for assessment of possible off-target
667 effects of systemic CNO administration, and also to test for Cre-independent effects
668 following injection of AAV.flex.TeLC.eGFP. Mice weighed 15 g to 28 g and animals
669 of both sexes were used, with care taken to include approximately equal numbers of

670 males and females. The animals were between 5 and 14 weeks old at the time of
671 tissue harvest (for anatomy), electrophysiological recording, or behavioural testing.
672 Where drug treatment was given (except for CPP experiments), the treatment type,
673 or the order in which mice received the drug or vehicle was randomised. For TeLC
674 experiments, the viral construct used for each animal was randomised. In all of these
675 cases, the experimenter was blind to the treatment or the viral construct used.

676

677 **Intraspinal AAV injections**

678 Mice were anaesthetised with 1% to 2% isoflurane and placed in a stereotaxic
679 frame. The skin was incised in the midline over the upper back and superficial
680 muscle was removed from the vertebral column at the level of the T12 to L1
681 vertebrae, which were then clamped. The L3 and L5 spinal segments were injected
682 through the T12/T13 and T13/L1 intervertebral spaces, respectively, whereas the L4
683 segment was injected via a hole drilled through the lamina of the T13 vertebra.
684 Injections were performed by making a small slit in the dura and inserting a glass
685 micropipette (outer/inner tip diameter: 60/40 μm) attached to a 10 μL Hamilton
686 syringe, 400 μm lateral to the midline and 300 μm below the pial surface. The
687 following AAV constructs were used: AAV.flex.eGFP (1.72×10^9 GC),
688 AAV.flex.tdTomato (1.76×10^9 GC) and AAV.flex.ChR2-eYFP (5.09×10^8 GC), all
689 from Penn Vector Core, PA, USA; AAV.flex.hM3Dq-mCherry, University of North
690 Carolina Vector Core, NC, USA or University of Zurich Viral Vector Facility,
691 Switzerland, (3.8×10^8 or 7.65×10^8 GC, respectively); AAV.flex.eGFP (2×10^8 GC),
692 AAV.flex.TeLC.eGFP (2×10^8 GC) and AAV.FRT.mCherry, (8.7×10^8 GC), all from
693 University of Zurich Viral Vector Facility, Switzerland; and AAV-Brainbow2 ($1.5 - 5.96$
694 $\times 10^7$ GC), Addgene, MA, USA. Further details of the viruses used can be found in
695 the Key Resources table. 300 nL of virus was infused per injection site (or 500nl for
696 AAV-Brainbow2) at a rate of 30-40 nL/minute using a syringe pump (Harvard
697 Apparatus, MA, USA). Pipettes were left within the spinal cord for 5 mins to minimise
698 leakage of injectate. Once injections were complete the wound was closed and
699 animals recovered with appropriate analgesic administration (0.3 mg/kg
700 buprenorphine and 5 mg/kg carprofen). The success of spinal AAV injections was
701 assessed by *post-hoc* immunohistochemical staining for the appropriate fluorescent
702 marker protein. Mice were only included for behavioural analyses if the AAV

703 injection(s) into the spinal segments relevant to the dermatome(s) being tested were
704 successful (L4 and L5 for plantar hindpaw-directed tests, L3 for calf skin-directed
705 tests; see below). In some experiments NPY::Cre;GRPR^{CreERT2} mice were injected
706 with AAV.flex.eGFP or AAV.flex.TeLC.eGFP, which should result in both NPY-
707 expressing and GRPR-expressing virus-infected cells being labelled with eGFP. This
708 was confirmed for each injection site in each animal by two methods: 1) by
709 assessing the distribution of eGFP-labelled cells, as NPY-INs are located throughout
710 laminae I-III, whereas GRPR-INs are almost entirely restricted to laminae I and IIo,
711 and 2) by antibody co-staining for the inhibitory marker Pax2, as NPY-INs in laminae
712 I-III are exclusively inhibitory, whereas GRPR-INs in laminae I and IIo are exclusively
713 excitatory. Post-AAV-injection behavioural testing was performed within 1-5 weeks
714 for experiments using AAV.flex.hM3Dq-mCherry, and within 4-6 days for
715 experiments using AAV.flex.TeLC.eGFP. For anatomical analyses of inhibitory
716 synaptic input on to GRPR-INs AAV-Brainbow2 injections were performed
717 unilaterally into the L3 and L5 segments and mice were perfused 2-3 weeks post-
718 surgery. For electrophysiological studies, AAV.flex.ChR2-eYFP, on some occasions
719 combined with AAV.FRT.mCherry, was injected unilaterally or bilaterally into the L3
720 and/or L5 segments and spinal cord slices were prepared from the mice 1-3 weeks
721 post-surgery.

722

723 **Intraplantar complete Freund's adjuvant (CFA) injections**

724 Mice were briefly anaesthetised with 1% to 2% isoflurane, the plantar surface of
725 the hindpaw ipsilateral to the spinal AAV injection was wiped with 70% ethanol and
726 20 µl of 1 mg/ml CFA was injected subcutaneously. Behavioural testing was
727 performed prior to (pre-CFA baseline) and 2 days following CFA injections.

728

729 **Spared nerve injury (SNI) surgery**

730 Mice were anaesthetised with 1% to 2% isoflurane, an incision was made in the
731 skin over the thigh ipsilateral to the spinal AAV injection and the underlying muscle
732 was blunt-dissected to reveal the sciatic nerve. The tibial and common peroneal
733 branches were identified, and 7-0 Mersilk (Ethicon, Puerto Rico) was used to apply
734 two tight ligatures 2-3 mm apart on each nerve branch. The length of nerve between
735 the ligatures was then removed and the wound was closed. Great care was taken to

736 avoid damage to the sural branch of the sciatic nerve during the surgery.
737 Behavioural testing was performed prior to (pre-SNI baseline) and from 2-4 weeks
738 following SNI surgery.

739

740 **Drug administration**

741 Clozapine-N-Oxide (CNO; Tocris Bioscience, Bristol, UK) dissolved in a 10%
742 DMSO / 90% sterile saline mixture was injected intraperitoneally (i.p.) at a dose of 5
743 mg/kg; 10% DMSO / 90% sterile saline mixture alone was used as a vehicle control.
744 In some cases we used CNO-dihydrochloride (Tocris Bioscience), dissolved in 10%
745 water / 90% sterile saline at a dose of 5 mg/kg, with 10% water / 90% sterile saline
746 as a vehicle control. For some experiments the Y1 antagonist BMS 193885 (Bio-
747 Techne, Abingdon, UK) dissolved in a 40% PEG-400 / 60% sterile saline mixture
748 was co-injected i.p. at a dose of 10 mg/kg with CNO; co-injection of the respective
749 vehicles for CNO and BMS 193885 was used as a control. Gabapentin (Sigma
750 Aldrich) was injected i.p. at a dose of 100mg/kg. The timing of CNO or gabapentin
751 injections for conditioned place preference (CPP) testing are described in the
752 relevant section below. For all other behavioural testing, CNO, CNO + BMS 193885
753 or vehicle were injected a minimum of 30 minutes prior to the start of testing, and all
754 testing was completed within a maximum of 5 hours following injection.

755

756 **Behavioural testing**

757 *von Frey test (noxious punctate mechanical sensitivity)*

758 Mice were placed in a plastic enclosure with mesh flooring and allowed to
759 acclimatise for at least 45 minutes. von Frey filaments of logarithmically incremental
760 stiffness (range 0.01 g to 4 g) were applied to the plantar surface of the hindpaw and
761 the 50% mechanical withdrawal threshold (MWT) was determined using Dixon's up-
762 down method^{67,68}. Briefly, filaments were applied sequentially, beginning with the
763 mid-range filament (0.4 g), and the presence or absence of a withdrawal response
764 (lifting and/or shaking of the paw) was noted. If a withdrawal response was
765 observed, the next lowest filament was used subsequently; if no response was
766 observed, the next highest filament was used subsequently. Testing continued until a
767 series of six filaments had been applied from the point when the response threshold
768 was first crossed, and the 50% MWT was calculated using the formula 50% MWT =

769 $(10^{[X_f+k\delta]})/10,000$, where X_f = log value of the final filament applied, k = tabular value
770 (taken from Chaplan et al.⁶⁷) based on the pattern of six positive/negative responses
771 and δ = mean difference (in log units) of the range of filaments used (0.323). When
772 testing mice that had undergone spared nerve injury, care was taken to apply von
773 Frey filaments to the sural territory of the hindpaw.

774

775 *Hargreaves test (noxious heat sensitivity)*

776 Mice were placed in plastic enclosures on a raised glass platform warmed to 25°C
777 and allowed to acclimatise for at least 30 minutes. A radiant heat source (IITC, CA,
778 USA) set to 25% active intensity was targeted to the plantar surface of the hindpaw
779 to be tested (using an angled mirror and guide light), and the time until paw
780 withdrawal from the heat source (withdrawal latency) was noted. Testing of ipsilateral
781 and contralateral paws was alternated with at least 3 minutes interval between
782 consecutive tests, and a cut-off time of 25s was used to prevent tissue damage.
783 Each hindpaw was tested 5 times, and the average withdrawal latency calculated.
784 When testing mice that had undergone spared nerve injury, care was taken to target
785 the heat source to the sural territory of the hindpaw.

786

787 *Dry ice test (noxious cold sensitivity)*

788 Mice were placed in plastic enclosures on a raised 5 mm-thick glass platform at
789 room temperature and allowed to acclimatise for at least 45 minutes. A dry ice pellet
790 of ~1 cm diameter was applied to the underside of the glass directly below the
791 hindpaw to be tested, and the withdrawal latency was recorded⁶⁹. Care was taken to
792 ensure that the plantar surface of the hindpaw was in direct contact with the glass
793 prior to testing. Testing of ipsilateral and contralateral paws was alternated with at
794 least 3 minutes interval between consecutive tests, and a cut-off time of 25 s was
795 used to prevent tissue damage. Each hindpaw was tested 5 times, and the average
796 withdrawal latency calculated.

797

798 *Acetone evaporation test (noxious cold sensitivity)*

799 Mice were placed in plastic enclosure with mesh flooring and allowed to
800 acclimatise for at least 30 minutes. A 10 μ l droplet of acetone was applied to the
801 sural territory of the plantar hindpaw and the total amount of time spent shaking,

802 lifting and licking the paw within 30 seconds of acetone application was recorded
803 using a stopwatch. Each hindpaw was tested 3 times, with at least 3 minutes interval
804 between consecutive tests, and the average total response time calculated.

805

806 *Rotarod test (motor co-ordination)*

807 Mice were placed into the rotarod apparatus (IITC, CA, USA), which was
808 programmed to accelerate from 4 to 40 rpm over 5 minutes. Mice were allowed two
809 trial runs prior to performing four test runs, and the average maximum rpm attained
810 was calculated from the test runs.

811

812 *Pruritogen-evoked itch test*

813 Mice were acclimatised for 30 mins in plastic enclosures surrounded by angled
814 mirrors to provide unobstructed views of the targeted hindlimb, and were then video
815 recorded for 30 mins (pre-CQ). They then received 10 μ l of 1% chloroquine (CQ)
816 dissolved in PBS via intradermal injection into the calf ipsilateral to the spinal AAV
817 injection (which had been shaved 24 hours prior to testing). Successful intradermal
818 injection of CQ was assessed by the appearance of a skin bleb at the injection site.
819 Mice were video recorded for 30 minutes following CQ injection (post-CQ). The
820 amount of time spent biting the injected area was scored offline either manually with
821 a stopwatch or using BORIS event logging software (freely available,
822 <https://www.boris.unito.it/>)⁷⁰. Videos were viewed at one-quarter speed for analysis.

823

824 *Conditioned place preference (CPP) test*

825 To test for ongoing neuropathic pain, a three-day conditioning protocol using a
826 biased chamber assignment was used for conditioned place preference (CPP)
827 testing as described previously⁷¹. The custom 3-chamber CPP apparatus consisted
828 of two conditioning side chambers (170 x 150 mm) connected by a centre chamber
829 (70 x 75 mm), 180 mm tall, with infrared-transparent plastic lids (QD Plastics,
830 Dumbarton, UK). Mice were able to discriminate between chambers using visual
831 (vertical versus horizontal black-and-white striped walls) and sensory (rough versus
832 smooth textured floor) cues. On day 1 (acclimation, 7 days after SNI surgery), mice
833 had free access to explore all chambers for 30 minutes. On days 2 and 3
834 (preconditioning), mice were again allowed to freely explore for 30 min whilst their

835 position was recorded using an infrared camera and AnyMaze 7.16 software
836 (Stoelting, USA). To avoid pre-existing chamber bias, mice spending more than 90%
837 or less than 5% of time in either side chamber during preconditioning were excluded
838 (1 mouse from each experimental group). For conditioning (days 4 to 6), each
839 morning, mice received i.p. vehicle injection, were returned to their home cage for 5
840 min, then confined to their preferred side chamber for 30 min. Four hours later, mice
841 received i.p. CNO (5 mg/kg) or gabapentin (100 mg/kg), were returned to their home
842 cage for 5 min, and then placed in their non-preferred chamber for 30 min. On test
843 day (day 7), mice could freely explore all chambers whilst their position was
844 recorded, as during pre-conditioning, for 30 min. Difference scores were calculated
845 as the time spent in each chamber on test day minus the mean time spent during
846 pre-conditioning. We have previously shown that CNO given at a much lower dose
847 (0.2 mg/kg) to mice in which spinal GRPR neurons expressed hM3Dq resulted in
848 itch- and pain-related behaviours that started within 5 minutes of administration⁵⁴. It
849 is therefore very likely that NPY neurons would have been activated throughout the
850 conditioning period for CNO. In addition, the timecourse of action of CNO and
851 gabapentin are likely to be similar, since both were administered i.p., and there was
852 a clear preference for the chamber paired with gabapentin.

853

854 **Noxious heat and pruritic induction of Fos**

855 Mice were injected i.p. with CNO or vehicle 30 minutes prior to receiving a noxious
856 heat or pruritic stimulation under brief isoflurane anaesthesia, ipsilateral to spinal
857 AAV.flex.hM3Dq-mCherry injection. The noxious heat stimulus was immersion of the
858 hindpaw into 52°C water for 15 s. The pruritic stimulus was intradermal injection of
859 CQ into the calf as described above, following shaving of the leg 24 hours prior to
860 CQ injection. These mice were fitted with Elizabethan collars to prevent Fos
861 induction through scratching and/or biting of the injected area. Mice were
862 transcardially perfused under deep terminal anaesthesia 2 hours after stimulation,
863 and spinal cord tissue was processed for imaging and analysis as described below.

864

865 **Electrophysiology**

866 Electrophysiological studies were performed on spinal cord slices from NPY::Cre
867 or NPY::Cre;GRPR^{FlpO} mice that had received an intraspinal injection of

868 AAV.flex.ChR2-eYFP or AAV.flex.ChR2-eYFP combined with AAV.FRT.mCherry,
869 respectively, 1 to 3 weeks prior to recordings. Additional recordings were performed
870 on spinal cord slices from GRPR^{CreERT2};Ai9 mice. Recordings were made from 51
871 cells (39 from female, 12 from male mice) from spinal cord slices obtained from 21
872 NPY::Cre mice (16 female, 5 male) and an additional 11 cells from 5 female
873 NPY::Cre;GRPR^{FlpO} mice and 10 cells from 5 female GRPR^{CreERT2};Ai9 mice, that
874 were aged 5 to 11 weeks. Spinal cord slices were prepared as described
875 previously⁷². Mice were decapitated under isoflurane anaesthesia and the spinal
876 cord removed in ice-cold dissection solution. In some cases decapitation was
877 performed following transcardial perfusion with ice-cold dissection solution under
878 terminal anaesthesia with pentobarbital (20 mg i.p.). The lumbar region was
879 embedded in an agarose block and 300 µm parasagittal or 350 µm transverse slices
880 were cut with a vibrating blade microtome (Thermo Scientific Microm HM 650V,
881 Loughborough, UK; Leica VT1200s, Milton Keynes, UK; or Campden Instruments
882 7000smz-2, Loughborough, UK). Slices were then allowed to recover for at least 30
883 minutes in recording solution at room temperature. In some cases slices were placed
884 in an N-methyl-D-glucamine (NMDG)-based recovery solution at ~32°C for 15
885 minutes⁷³ before being placed in a modified recording solution at room temperature
886 for at least 30 minutes. The solutions used contained the following (in mM);
887 dissection, 251.6 sucrose, 3.0 KCl, 1.2 NaH₂PO₄, 0.5 CaCl₂, 7.0 MgCl₂, 26.0
888 NaHCO₃, 15.0 glucose; NMDG recovery, 93.0 NMDG, 2.5 KCl, 1.2 NaH₂PO₄, 0.5
889 CaCl₂, 10.0 MgSO₄, 30.0 NaHCO₃, 25.0 glucose, 5.0 Na-ascorbate, 2.0 thiourea, 3.0
890 Na-pyruvate, and 20.0 HEPES; modified recording, 92.0 NaCl, 2.5 KCl, 1.2
891 NaH₂PO₄, 2.0 CaCl₂, 2.0 MgSO₄, 30.0 NaHCO₃, 25.0 glucose, 5.0 Na-ascorbate, 2.0
892 thiourea, 3.0 Na-pyruvate, and 20.0 HEPES; and recording, 125.8 NaCl, 3.0 KCl, 1.2
893 NaH₂PO₄, 2.4 CaCl₂, 1.3 MgCl₂, 26.0 NaHCO₃, 15.0 glucose. All solutions were
894 bubbled with 95% O₂ / 5% CO₂.

895

896 Whole-cell patch-clamp recordings were made from ChR2-eYFP+ or ChR2-eYFP-
897 neurons in NPY::Cre tissue, from mCherry+ cells in NPY::Cre;GRPR^{FlpO} tissue, or
898 from tdTom+ cells in GRPR^{CreERT2};Ai9 tissue in the superficial dorsal horn, using
899 patch pipettes that had a typical resistance of 3 – 7 MΩ. Data were recorded and

900 acquired with a Multiclamp 700B amplifier and pClamp 10 software (both Molecular
901 Devices, Wokingham, UK), and were filtered at 4 kHz and digitised at 10 kHz.

902

903 To validate the optogenetic activation of NPY neurons, recordings were made
904 from ChR2-eYFP+ cells using a K-based intracellular solution. The presence of
905 optogenetically-activated currents were observed in voltage clamp mode, from a
906 holding potential of -70 mV, by illuminating the slice with brief (1 – 4 ms) pulses of
907 blue light, generated by a 470 nm LED (CoolLED pE-100, Andover, UK) and
908 delivered via the microscope objective. The ability to optogenetically drive action
909 potential firing in NPY neurons was similarly tested by applying brief pulses of blue
910 light while the membrane potential was held around -60 mV in current clamp mode.

911 Inhibition from NPY cells to other cells in the superficial dorsal horn was
912 investigated in tissue from NPY::Cre mice, by recording from ChR2-eYFP-negative
913 cells that were within the region of the viral injection, as determined by eYFP
914 expression, and applying pulses of blue light as detailed above. Inhibition of GRPR
915 cells by NPY cells was similarly assessed by recording from mCherry+ GRPR cells
916 in slices from NPY::Cre;GRPR^{FlpO} mice. Cells were classed as receiving
917 optogenetically-evoked IPSCs (oIPSCs) if there was a clear reliably evoked inward
918 current (CsCl-based intracellular, V_{hold} -70 mV), or outward current (K-based
919 intracellular, V_{hold} -40 mV; Cs-methanesulfonate-based intracellular, V_{hold} 0mV), that
920 was time-locked to the light pulse. In a subset of recordings, using CsCl-based
921 intracellular solution (V_{hold} -70 mV), the optogenetically-evoked postsynaptic currents
922 were confirmed to be non-glutamatergic by bath application of NBQX (10 μ M) and D-
923 APV (30 μ M). The nature of the oIPSCs recorded in unlabelled (CsCl-based
924 intracellular, V_{hold} -70 mV) and GRPR (Cs-methanesulfonate-based intracellular, V_{hold}
925 0mV) cells was investigated by bath application of the GABA antagonist, gabazine
926 (300 nM) and the glycine antagonist, strychnine (300 nM); in the case of unlabelled
927 cells this was done in the presence of NBQX and D-APV. oIPSCs were evoked 6
928 times (0.05 Hz) (Baseline) prior to the application of gabazine or strychnine, which
929 was added to the recording solution and washed into the recording chamber for 5
930 minutes before and during the recording of a further 6 oIPSCs. Strychnine was then
931 added to gabazine or gabazine added to strychnine and following a further 5 minute
932 wash in period 6 oIPSCs were recorded. oIPSCs were classified as 'sensitive' to

933 gabazine and/or strychnine if the drug reduced the mean peak amplitude of the
934 oIPSC to a level that was less than 2 SD of the mean peak amplitude recorded
935 during baseline or the previous drug application, and ‘insensitive’ if this threshold
936 was not met. The monosynaptic nature of the oIPSCs was tested in a subset of
937 GRPR cells, by investigating whether oIPSCs that were abolished by the application
938 of tetrodotoxin (TTX; 0.5 μ M) could be rescued by the addition of 4-aminopyridine (4-
939 AP; 100 μ M)⁷⁴. To test whether the release of NPY from NPY cells may contribute to
940 the inhibition of GRPR cells, patch clamp recordings were made from tdTom+ GRPR
941 cells from GRPR^{CreERT2};Ai9 mice to assess responses to the NPY Y₁ receptor
942 agonist, [Leu³¹,Pro³⁴]-Neuropeptide Y (300 nM), which was bath applied in the
943 presence of TTX (0.5 μ M), bicuculline (10 μ M) and strychnine (1 μ M) (K-based
944 intracellular, V_{hold} -50 mV). Following a 1 minute baseline period, [Leu³¹,Pro³⁴]-
945 Neuropeptide Y was applied for 4 minutes, and cells were classified as responders
946 if [Leu³¹,Pro³⁴]-Neuropeptide Y resulted in an outward current of 5 pA or greater and
947 were classified as non-responders if this threshold was not reached.

948

949 The intracellular solutions used contained the following (in mM); K-based, 130.0
950 K-gluconate, 10.0 KCl, 2.0 MgCl₂, 10.0 HEPES, 0.5 EGTA, 2.0 ATP-Na₂, 0.5 GTP-
951 Na, and 0.2% Neurobiotin, pH adjusted to 7.3 with 1.0M KOH; CsCl-based, 130.0
952 CsCl, 1.0 MgCl₂, 10.0 HEPES, 10.0 EGTA, 5.0 N-(2,6-
953 dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314-Br), 2.0 ATP-
954 Na₂, 0.3 GTP-Na, and 0.2% Neurobiotin, pH adjusted to 7.35 with 1.0M CsOH; Cs-
955 methylsulfonate-based, 120.0 Cs-methylsulfonate, 10.0 Na-methylsulfonate, 10.0
956 EGTA, 1.0 CaCl₂, 10.0 HEPES, 5.0 N-(2,6-dimethylphenylcarbamoylmethyl)
957 triethylammonium chloride (QX-314-Cl), 2.0 Mg₂-ATP, and 0.2% Neurobiotin, pH
958 adjusted to 7.2 with 1.0M CsOH.

959

960 All chemicals were obtained from Sigma except: TTX, QX-314-Br, QX-314-Cl
961 (Alomone, Jerusalem, Israel), Gabazine, NBQX (Abcam, Cambridge, UK), sucrose,
962 glucose, NaH₂PO₄ (VWR, Lutterworth, UK), D-APV, [Leu³¹,Pro³⁴]-Neuropeptide Y
963 (Tocris, Abingdon, UK) and Neurobiotin (Vector Labs, Peterborough, UK).

964

965 **Immunohistochemistry (IHC)**

966 Animals were terminally anaesthetised with pentobarbital (20 mg i.p.) and
967 transcardially perfused with 4% freshly depolymerised formaldehyde. The spinal cord
968 was then dissected out and post-fixed in the same fixative for 2 hours, and 60 µm-
969 thick transverse or sagittal sections from appropriate lumbar sections were cut on a
970 vibrating microtome. Sections were immersed in 50% ethanol for 30 minutes to
971 enhance antibody penetration before incubation in appropriate primary and
972 secondary antibodies at 4°C for 72 and 24 hours, respectively. Details of the
973 antibodies used in this study can be found in the Key Resources table. Sections
974 were continuously agitated during antibody incubation and washed 3 times in PBS
975 that contained 0.3 M NaCl following each incubation. Following the final PBS wash,
976 sections were mounted on slides in Vectashield anti-fade mounting medium (Vector
977 Laboratories, CA, USA). In some cases lumbar dorsal root ganglia (DRGs) were also
978 removed and processed intact for IHC before whole-mounting on slides.

979

980 **Fluorescent in situ hybridisation (FISH)**

981 Multiple-labelling FISH was performed using RNAscope probes and RNAscope
982 fluorescent multiplex reagent kit 320850 (ACD BioTechne, CA, USA). Mice were
983 deeply anaesthetised, the spinal cord was rapidly removed by hydraulic extrusion
984 and the lumbar enlargement was excised and snap-frozen on dry ice. Lumbar
985 segments were then embedded in OCT mounting medium and 12 µm-thick
986 transverse sections were cut on a Leica CM 1950 cryostat (Leica, Milton Keynes,
987 UK). Sections were mounted non-sequentially (such that sections on the same slide
988 were at least 4 apart) onto SuperFrost Plus slides (VWR, Lutterworth, UK) and air-
989 dried. The slides were then reacted according to the manufacturer's recommended
990 protocol, using probes against *Cre* and *Npy* that were revealed with Atto 550 and
991 Alexa 647, respectively. Further details of the probes used can be found in the Key
992 Resources table. Sections were mounted using Prolong-Glass anti-fade medium
993 containing NucBlue (Hoescht 33342) nuclear stain (ThermoFisher Scientific, Paisley,
994 UK).

995

996 **Image acquisition and analysis**

997 IHC and FISH slides were imaged with a Zeiss LSM 710 confocal microscope
998 system equipped with Ar multi-line, 405-nm diode, 561-nm solid-state and HeNe

999 lasers. For analyses of AAV.flex.FP, AAV.flex.hM3Dq-mCherry or
1000 AAV.flex.TeLC.eGFP-labelled cells image stacks were taken through a 40x objective
1001 (NA = 1.3) at a z-separation of 1 μ m. For assessment of spinal injection sites and
1002 analysis of mCherry expression in DRGs of AAV.flex.hM3Dq-mCherry-injected mice,
1003 image stacks were taken through a 10x objective (NA = 0.3) at a z-separation of 2
1004 μ m. Image analysis was performed using Neurolucida software (MBF Bioscience,
1005 VT, USA).

1006 For comparison of tdTomato or eGFP expression with NPY immunoreactivity in
1007 AAV.flex.tdTomato- or AAV.flex.eGFP-injected NPY::Cre mice, and in
1008 AAV.flex.eGFP-injected NPY::Cre;Ai9 mice, a modified optical disector method was
1009 used⁷⁵. All structures labelled with the neuronal marker NeuN that had their bottom
1010 surface between reference and look-up sections separated by 10 μ m (10 optical
1011 sections) were marked within the injection site in laminae I-III. The NPY-IR, eGFP
1012 and/or tdTomato channels were then viewed separately and sequentially, and the
1013 NeuN profiles were marked as positive or negative as appropriate. As NPY-IR varies
1014 greatly from cell to cell and is often observed as discrete clumps within the perikaryal
1015 cytoplasm^{10,26}, cells were classified as NPY-positive if clear above-background
1016 signal was observed in at least 3 consecutive optical sections. The same optical
1017 disector method was used to identify NeuN-positive cells, and compare mCherry,
1018 Fos and Pax2 or mCherry, Fos and NPY immunoreactivity in these cells in vehicle-
1019 or CNO-dosed AAV.flex.hM3Dq-mCherry spinal-injected NPY::Cre mice, as well as
1020 eGFP and NPY immunoreactivity in the AAV.flex.TeLC.eGFP spinal-injected
1021 NPY::Cre mice. A similar method was used to compare mCherry, Fos and Pax2 in
1022 NeuN-positive cells in the vehicle- or CNO-dosed AAV.flex.hM3Dq-mCherry spinal-
1023 injected NPY::Cre mice that had received noxious heat or pruritic stimuli 2 hours
1024 prior to perfusion; however, in this case the reference and look-up sections were
1025 separated by 20 μ m (20 optical sections) and analyses were restricted to the
1026 somatotopically-relevant areas of laminae I and II (medial half for noxious heat
1027 stimulation of hindpaw, middle third for CQ injection into calf). For all of these
1028 analyses, markers from previously-assessed channels were hidden as the channels
1029 were analysed in sequence, to prevent bias.

1030 For comparison of tdTomato and eGFP or mCherry expression with
1031 neurochemical markers of inhibitory interneuron populations in AAV.flex.eGFP-

1032 injected NPY::Cre;Ai9 or AAV.flex.hM3Dq-mCherry-injected NPY::Cre mice,
1033 respectively, all cells expressing the neurochemical markers and fluorescent
1034 protein(s) in laminae I and II were marked throughout the whole section thickness.
1035 Each channel was again assessed separately and sequentially, with markers from
1036 previously-assessed channels hidden to prevent bias. Only cells with the maximal
1037 profile of their soma contained within the z stack were counted. mCherry-positive
1038 cells in whole-mounted DRGs from AAV.flex.hM3Dq-mCherry-injected NPY::Cre
1039 mice that underwent SNI surgery were counted using the same method.

1040 For analysis of inhibitory synapses onto GRPR-INs, 9 mTFP-labelled cells in total
1041 were selected from tissue of 3 AAV-Brainbow2-injected GRPR^{CreERT2} mice
1042 immunostained for mTFP, VGAT, gephyrin and NPY or Dynorphin B (3 per animal
1043 for Dynorphin B and 2, 3 and 4 cells for NPY analyses). Cell selection was
1044 performed before the staining for axonal markers was visualised and was based on
1045 the completeness of dendritic labelling and separation from other nearby mTFP-
1046 labelled neurons. The selected cells were scanned through a 63x oil-immersion lens
1047 (numerical aperture 1.4) at a z-separation of 0.3 µm. Z-series were obtained from as
1048 much of the dendritic tree as was visible in the section. For analysis, the mTFP and
1049 gephyrin channels were initially viewed and the cell bodies and dendritic trees were
1050 traced based on the mTFP signal. The locations of all gephyrin puncta associated
1051 with the cell body and dendritic tree were then plotted. The VGAT channel was then
1052 viewed and the presence or absence of an apposed VGAT-immunoreactive bouton
1053 was noted for each gephyrin punctum. Finally, the remaining channel (corresponding
1054 to NPY or Dynorphin B) was revealed and the presence or absence of peptide
1055 staining was noted for each of the VGAT boutons that contacted a gephyrin punctum
1056 on the selected cell. To determine the frequency of all boutons arising from inhibitory
1057 interneurons that were positive for each of the neuropeptides, we sampled from
1058 those VGAT-immunoreactive boutons in the vicinity of the mTFP-labelled cell. A 4 x
1059 4 µm grid was applied within a box drawn to include the entire dendritic tree of the
1060 cell. Only the VGAT channel was viewed initially and in each successive grid square,
1061 the VGAT-immunoreactive bouton nearest the bottom right of the square was
1062 selected. The presence or absence of NPY or DynorphinB was then recorded for
1063 each of these selected VGAT-immunoreactive boutons.

1064 For comparison of *Cre* and *Npy* mRNA in FISH sections, all NucBlue profiles
1065 within a single optical section were marked throughout laminae I-III. The *Cre* and
1066 *Npy* channels were then viewed separately and sequentially and cells were marked
1067 as positive if they contained ≥ 4 labelled transcript particles. Markers from the mRNA
1068 channel that was assessed first were hidden during assessment of the second
1069 channel to prevent bias.

1070

1071 **Quantification and statistical analysis**

1072 Data are reported as mean \pm SEM, unless stated otherwise. Statistical analyses
1073 were performed using Prism software (v7,v8 & v9,GraphPad Software, CA, USA).
1074 Behavioural and anatomical analyses involving drug treatments were analysed blind
1075 to treatment group. Behavioural analyses involving AAV.flex.TeLC.eGFP-mediated
1076 silencing and AAV.flex.eGFP-injected controls were analysed blind to the AAV
1077 injected. The statistical tests used for each experiment, including tests for multiple
1078 comparisons, are given in the appropriate figure legends. A p value of <0.05 was
1079 considered significant, and significance markers are denoted within figures as
1080 follows: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.

1081

1082 **Data and materials availability**

1083 Upon acceptance of this manuscript, all data will be made accessible from the
1084 Enlighten: Research Data open repository hosted at the University of Glasgow. This
1085 study did not generate any new materials, reagents or code.

1086

1087

1088 **ACKNOWLEDGMENTS**

1089 This research was funded in whole, or in part, by the Wellcome Trust (Grant
1090 numbers 102645/Z/13/Z and 219433/Z/19/Z), the Biotechnology and Biological
1091 Sciences Research Council (Grant numbers BB/N006119/1, BB/P007996/1) and the
1092 Medical Research Council (Grant numbers MR/S002987/1, MR/T01072X/1 and
1093 MR/V033638/1). For the purpose of Open Access, the authors have applied a CC
1094 BY public copyright licence to any Author Accepted Manuscript version arising from
1095 this submission. We are grateful to R Kerr, C Watt and I Plenderleith for expert
1096 technical assistance, to Yan-Gang Sun for the gift of GRPR^{CrERT2} and GRPR^{FlpO}

1097 mice, to Dr Philippe Ciofi for the Dynorphin B antibody and to Dr Mark Hoon for
1098 helpful discussion.

1099

1100

1101 **AUTHOR CONTRIBUTIONS**

1102 K.A.B., E.P., M.G.-M., A.C.D., A.H.C., A.M.B., G.A.W., J.S.R. and A.J.T. conceived
1103 the project and designed experiments. A.J.T. and J.S.R. obtained funding. K.A.B.,
1104 E.P., M.G.-M., A.C.D., A.H.C., A.M.B. and D.I.H. performed experiments. K.A.B.,
1105 E.P., M.G.-M., A.C.D., A.H.C., A.M.B., M.E.J. and A.C.-B. analysed data. M.W.
1106 provided reagents. K.A.B., A.C.D., A.H.C., A.M.B., G.A.W. and A.J.T. wrote the
1107 paper. All of the authors provided feedback and contributed to editing of the
1108 manuscript.

1109

1110 **COMPETING INTERESTS**

1111 The authors declare no competing interests.

1112

1113

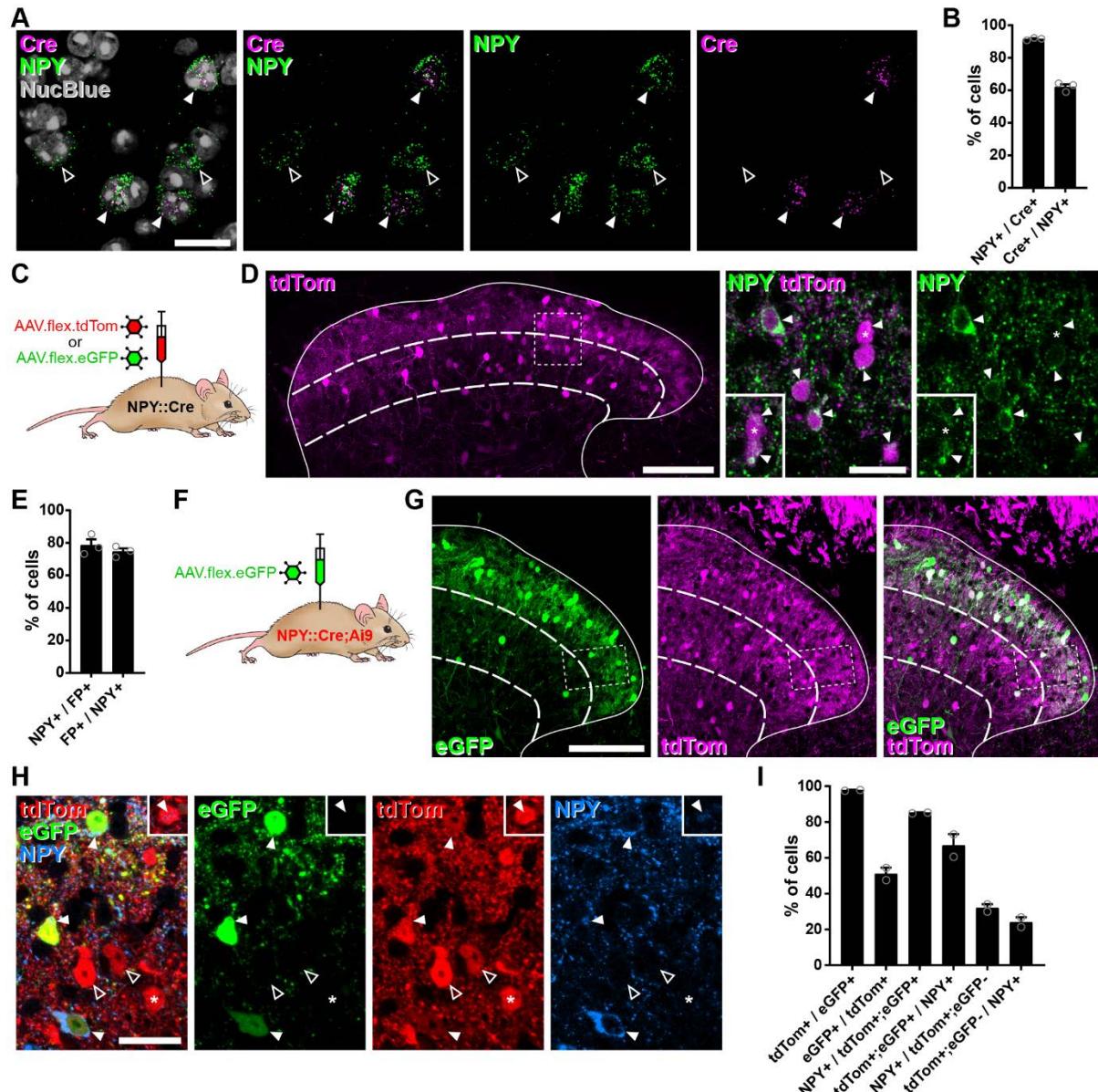
1114 **REFERENCES**

1. Abraira, V.E., and Ginty, D.D. (2013). The sensory neurons of touch. *Neuron* 79, 618-639. 10.1016/j.neuron.2013.07.051.
2. Todd, A.J. (2010). Neuronal circuitry for pain processing in the dorsal horn. *Nature reviews. Neuroscience* 11, 823-836. 10.1038/nrn2947.
3. Mishra, S.K., and Hoon, M.A. (2015). Transmission of pruriceptive signals. *Handbook of experimental pharmacology* 226, 151-162. 10.1007/978-3-662-44605-8_8.
4. Braz, J., Solorzano, C., Wang, X., and Basbaum, A.I. (2014). Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. *Neuron* 82, 522-536. 10.1016/j.neuron.2014.01.018.
5. Cevikbas, F., and Lerner, E.A. (2020). Physiology and Pathophysiology of Itch. *Physiol Rev* 100, 945-982. 10.1152/physrev.00017.2019.
6. Beyer, C., Roberts, L.A., and Komisaruk, B.R. (1985). Hyperalgesia induced by altered glycinergic activity at the spinal cord. *Life Sci* 37, 875-882.
7. Foster, E., Wildner, H., Tudeau, L., Haueter, S., Ralvenius, W.T., Jegen, M., Johannsson, H., Hosli, L., Haenraets, K., Ghanem, A., et al. (2015). Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. *Neuron* 85, 1289-1304. 10.1016/j.neuron.2015.02.028.
8. Sivilotti, L., and Woolf, C.J. (1994). The contribution of GABA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. *Journal of neurophysiology* 72, 169-179.

- 1137 9. Yaksh, T.L. (1989). Behavioral and autonomic correlates of the tactile evoked
1138 allodynia produced by spinal glycine inhibition: effects of modulatory receptor
1139 systems and excitatory amino acid antagonists. *Pain* 37, 111-123.
- 1140 10. Boyle, K.A., Gutierrez-Mecinas, M., Polgar, E., Mooney, N., O'Connor, E.,
1141 Furuta, T., Watanabe, M., and Todd, A.J. (2017). A quantitative study of
1142 neurochemically defined populations of inhibitory interneurons in the
1143 superficial dorsal horn of the mouse spinal cord. *Neuroscience* 363, 120-133.
1144 10.1016/j.neuroscience.2017.08.044.
- 1145 11. Häring, M., Zeisel, A., Hochgerner, H., Rinwa, P., Jakobsson, J.E.T.,
1146 Lonnerberg, P., La Manno, G., Sharma, N., Borgius, L., Kiehn, O., et al.
1147 (2018). Neuronal atlas of the dorsal horn defines its architecture and links
1148 sensory input to transcriptional cell types. *Nature neuroscience* 21, 869-880.
1149 10.1038/s41593-018-0141-1.
- 1150 12. Sathyamurthy, A., Johnson, K.R., Matson, K.J.E., Dobrott, C.I., Li, L., Ryba,
1151 A.R., Bergman, T.B., Kelly, M.C., Kelley, M.W., and Levine, A.J. (2018).
1152 Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal
1153 Cord Neurons and Their Activity during Behavior. *Cell Rep* 22, 2216-2225.
1154 10.1016/j.celrep.2018.02.003.
- 1155 13. Polgár, E., Sardella, T.C., Tiong, S.Y., Locke, S., Watanabe, M., and Todd,
1156 A.J. (2013). Functional differences between neurochemically defined
1157 populations of inhibitory interneurons in the rat spinal dorsal horn. *Pain* 154,
1158 2606-2615. 10.1016/j.pain.2013.05.001.
- 1159 14. Boyle, K.A., Gradwell, M.A., Yasaka, T., Dickie, A.C., Polgar, E., Ganley,
1160 R.P., Orr, D.P.H., Watanabe, M., Abraira, V.E., Kuehn, E.D., et al. (2019).
1161 Defining a Spinal Microcircuit that Gates Myelinated Afferent Input:
1162 Implications for Tactile Allodynia. *Cell reports* 28, 526-540 e526.
1163 10.1016/j.celrep.2019.06.040.
- 1164 15. Petitjean, H., Pawlowski, S.A., Fraine, S.L., Sharif, B., Hamad, D., Fatima, T.,
1165 Berg, J., Brown, C.M., Jan, L.Y., Ribeiro-da-Silva, A., et al. (2015). Dorsal
1166 horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve
1167 injury. *Cell reports* 13, 1246-1257. 10.1016/j.celrep.2015.09.080.
- 1168 16. Huang, J., Polgar, E., Solinski, H.J., Mishra, S.K., Tseng, P.Y., Iwagaki, N.,
1169 Boyle, K.A., Dickie, A.C., Kriegbaum, M.C., Wildner, H., et al. (2018). Circuit
1170 dissection of the role of somatostatin in itch and pain. *Nature neuroscience*
1171 21, 707-716. 10.1038/s41593-018-0119-z.
- 1172 17. Duan, B., Cheng, L., Bourane, S., Britz, O., Padilla, C., Garcia-Campmany, L.,
1173 Krashes, M., Knowlton, W., Velasquez, T., Ren, X., et al. (2014). Identification
1174 of spinal circuits transmitting and gating mechanical pain. *Cell* 159, 1417-
1175 1432. 10.1016/j.cell.2014.11.003.
- 1176 18. Bourane, S., Duan, B., Koch, S.C., Dalet, A., Britz, O., Garcia-Campmany, L.,
1177 Kim, E., Cheng, L., Ghosh, A., Ma, Q., and Goulding, M. (2015). Gate control
1178 of mechanical itch by a subpopulation of spinal cord interneurons. *Science*
1179 350, 550-554. 10.1126/science.aac8653.
- 1180 19. Koch, S.C., Acton, D., and Goulding, M. (2018). Spinal Circuits for Touch,
1181 Pain, and Itch. *Annual review of physiology* 80, 189-217. 10.1146/annurev-
1182 physiol-022516-034303.
- 1183 20. Pan, H., Fatima, M., Li, A., Lee, H., Cai, W., Horwitz, L., Hor, C.C., Zaher, N.,
1184 Cin, M., Slade, H., et al. (2019). Identification of a Spinal Circuit for
1185 Mechanical and Persistent Spontaneous Itch. *Neuron* 103, 1135-1149 e1136.
1186 10.1016/j.neuron.2019.06.016.

- 1187 21. Acton, D., Ren, X., Di Costanzo, S., Dalet, A., Bourane, S., Bertocchi, I., Eva, C., and Goulding, M. (2019). Spinal Neuropeptide Y1 Receptor-Expressing
1188 Neurons Form an Essential Excitatory Pathway for Mechanical Itch. *Cell reports* 28, 625-639 e626. 10.1016/j.celrep.2019.06.033.
- 1189 22. Liu, M.Z., Chen, X.J., Liang, T.Y., Li, Q., Wang, M., Zhang, X.Y., Li, Y.Z., Sun, Q., and Sun, Y.G. (2019). Synaptic control of spinal GRPR+ neurons by local
1190 and long-range inhibitory inputs. *Proceedings of the National Academy of Sciences of the United States of America* 116, 27011-27017.
1191 10.1073/pnas.1905658116.
- 1192 23. Chen, S., Gao, X.F., Zhou, Y., Liu, B.L., Liu, X.Y., Zhang, Y., Barry, D.M., Liu, K., Jiao, Y., Bardoni, R., et al. (2020). A spinal neural circuitry for converting
1193 touch to itch sensation. *Nature communications* 11, 5074. 10.1038/s41467-
1194 020-18895-7.
- 1195 24. Chen, X.J., and Sun, Y.G. (2020). Central circuit mechanisms of itch. *Nature communications* 11, 3052. 10.1038/s41467-020-16859-5.
- 1196 25. Cameron, D., Polgar, E., Gutierrez-Mecinas, M., Gomez-Lima, M., Watanabe, M., and Todd, A.J. (2015). The organisation of spinoparabrachial neurons in
1197 the mouse. *Pain* 156, 2061-2071. 10.1097/j.pain.0000000000000270.
- 1198 26. Iwagaki, N., Ganley, R.P., Dickie, A.C., Polgár, E., Hughes, D.I., Del Rio, P.,
1199 Revina, Y., Watanabe, M., Todd, A.J., and Riddell, J.S. (2016). A combined
1200 electrophysiological and morphological study of neuropeptide Y-expressing
1201 inhibitory interneurons in the spinal dorsal horn of the mouse. *Pain* 157, 598-
1202 612. 10.1097/j.pain.0000000000000407.
- 1203 27. Kokai, E., Alsulaiman, W.A.A., Dickie, A.C., Bell, A.M., Goffin, L., Watanabe, M., Gutierrez-Mecinas, M., and Todd, A.J. (2022). Characterisation of deep
1204 dorsal horn projection neurons in the spinal cord of the Phox2a::Cre mouse
1205 line. *Molecular pain* *in press*.
- 1206 28. Polgár, E., Sardella, T.C., Watanabe, M., and Todd, A.J. (2011). Quantitative
1207 study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal
1208 horn. *The Journal of comparative neurology* 519, 1007-1023.
1209 10.1002/cne.22570.
- 1210 29. Solway, B., Bose, S.C., Corder, G., Donahue, R.R., and Taylor, B.K. (2011). Tonic inhibition of chronic pain by neuropeptide Y. *Proceedings of the
1211 National Academy of Sciences of the United States of America* 108, 7224-
1212 7229. 10.1073/pnas.1017719108.
- 1213 30. Tashima, R., Koga, K., Yoshikawa, Y., Sekine, M., Watanabe, M., Tozaki-
1214 Saitoh, H., Furue, H., Yasaka, T., and Tsuda, M. (2021). A subset of spinal
1215 dorsal horn interneurons crucial for gating touch-evoked pain-like behavior.
1216 *Proceedings of the National Academy of Sciences of the United States of
1217 America* 118. 10.1073/pnas.2021220118.
- 1218 31. Larsson, M. (2017). Pax2 is persistently expressed by GABAergic neurons
1219 throughout the adult rat dorsal horn. *Neuroscience letters* 638, 96-101.
1220 10.1016/j.neulet.2016.12.015.
- 1221 32. Smith, K.M., Boyle, K.A., Madden, J.F., Dickinson, S.A., Jobling, P., Callister, R.J., Hughes, D.I., and Graham, B.A. (2015). Functional heterogeneity of
1222 calretinin-expressing neurons in the mouse superficial dorsal horn:
1223 implications for spinal pain processing. *The Journal of physiology* 593, 4319-
1224 4339. 10.1113/JP270855.
- 1225 33. Honore, P., Rogers, S.D., Schwei, M.J., Salak-Johnson, J.L., Luger, N.M.,
1226 Sabino, M.C., Clohisy, D.R., and Mantyh, P.W. (2000). Murine models of

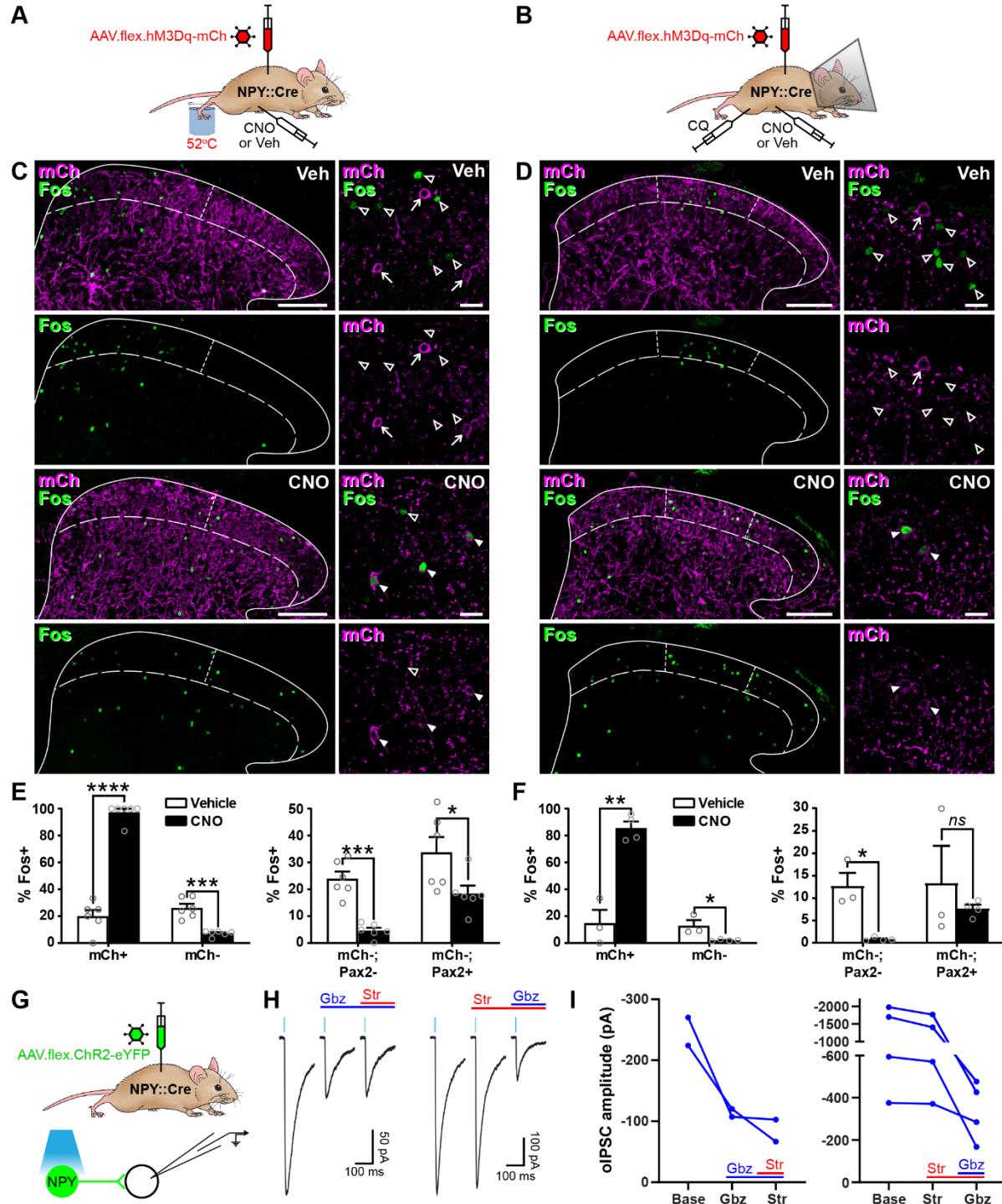
- 1237 inflammatory, neuropathic and cancer pain each generates a unique set of
1238 neurochemical changes in the spinal cord and sensory neurons.
1239 *Neuroscience* 98, 585-598. 10.1016/s0306-4522(00)00110-x.
- 1240 34. Bell, A.M., Gutierrez-Mecinas, M., Polgar, E., and Todd, A.J. (2016). Spinal
1241 neurons that contain gastrin-releasing peptide seldom express Fos or
1242 phosphorylate extracellular signal-regulated kinases in response to
1243 intradermal chloroquine. *Molecular pain* 12. 10.1177/1744806916649602.
- 1244 35. Gutierrez-Mecinas, M., Bell, A.M., Marin, A., Taylor, R., Boyle, K.A., Furuta,
1245 T., Watanabe, M., Polgár, E., and Todd, A.J. (2017). Preprotachykinin A is
1246 expressed by a distinct population of excitatory neurons in the mouse
1247 superficial spinal dorsal horn including cells that respond to noxious and
1248 pruritic stimuli. *Pain* 158, 440-456. 10.1097/j.pain.0000000000000778.
- 1249 36. Rowan, S., Todd, A.J., and Spike, R.C. (1993). Evidence that neuropeptide Y
1250 is present in GABAergic neurons in the superficial dorsal horn of the rat spinal
1251 cord. *Neuroscience* 53, 537-545. 0306-4522(93)90218-5 [pii].
- 1252 37. Gomez, J.L., Bonaventura, J., Lesniak, W., Mathews, W.B., Sysa-Shah, P.,
1253 Rodriguez, L.A., Ellis, R.J., Richie, C.T., Harvey, B.K., Dannals, R.F., et al.
1254 (2017). Chemogenetics revealed: DREADD occupancy and activation via
1255 converted clozapine. *Science* 357, 503-507. 10.1126/science.aan2475.
- 1256 38. Intondi, A.B., Zadina, J.E., Zhang, X., and Taylor, B.K. (2010). Topography
1257 and time course of changes in spinal neuropeptide Y immunoreactivity after
1258 spared nerve injury. *Neuroscience* 165, 914-922.
1259 10.1016/j.neuroscience.2009.10.052.
- 1260 39. Wakisaka, S., Kajander, K.C., and Bennett, G.J. (1991). Increased
1261 neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following
1262 peripheral axotomy. *Neuroscience letters* 124, 200-203.
- 1263 40. Wakisaka, S., Kajander, K.C., and Bennett, G.J. (1992). Effects of peripheral
1264 nerve injuries and tissue inflammation on the levels of neuropeptide Y-like
1265 immunoreactivity in rat primary afferent neurons. *Brain research* 598, 349-
1266 352.
- 1267 41. Duchen, L.W., and Scaravilli, F. (1977). Quantitative and electron microscopic
1268 studies of sensory ganglion cells of the Sprawling mouse. *Journal of*
1269 *neurocytology* 6, 465-481. 10.1007/bf01178229.
- 1270 42. Lawson, S.N. (1979). The postnatal development of large light and small dark
1271 neurons in mouse dorsal root ganglia: a statistical analysis of cell numbers
1272 and size. *Journal of neurocytology* 8, 275-294. 10.1007/bf01236123.
- 1273 43. Nelson, T.S., Fu, W., Donahue, R.R., Corder, G.F., Hokfelt, T., Wiley, R.G.,
1274 and Taylor, B.K. (2019). Facilitation of neuropathic pain by the NPY Y1
1275 receptor-expressing subpopulation of excitatory interneurons in the dorsal
1276 horn. *Scientific reports* 9, 7248. 10.1038/s41598-019-43493-z.
- 1277 44. Nelson, T.S., Sinha, G.P., Santos, D.F.S., Jukkola, P., Prasoon, P., Winter,
1278 M.K., McCarson, K.E., Smith, B.N., and Taylor, B.K. (2022). Spinal
1279 neuropeptide Y Y1 receptor-expressing neurons are a pharmacotherapeutic
1280 target for the alleviation of neuropathic pain. *Proceedings of the National
1281 Academy of Sciences of the United States of America* 119, e2204515119.
1282 10.1073/pnas.2204515119.
- 1283 45. King, T., Vera-Portocarrero, L., Gutierrez, T., Vanderah, T.W., Dussor, G., Lai,
1284 J., Fields, H.L., and Porreca, F. (2009). Unmasking the tonic-aversive state in
1285 neuropathic pain. *Nature neuroscience* 12, 1364-1366. 10.1038/nn.2407.


- 1286 46. Mishra, S.K., and Hoon, M.A. (2013). The cells and circuitry for itch responses
1287 in mice. *Science* **340**, 968-971. 10.1126/science.1233765.
- 1288 47. Sun, Y.G., and Chen, Z.F. (2007). A gastrin-releasing peptide receptor
1289 mediates the itch sensation in the spinal cord. *Nature* **448**, 700-703.
1290 *nature06029* [pii] 10.1038/nature06029.
- 1291 48. Sun, Y.G., Zhao, Z.Q., Meng, X.L., Yin, J., Liu, X.Y., and Chen, Z.F. (2009).
1292 Cellular basis of itch sensation. *Science* **325**, 1531-1534. 1174868 [pii]
1293 10.1126/science.1174868.
- 1294 49. Kardon, A.P., Polgár, E., Hachisuka, J., Snyder, L.M., Cameron, D., Savage,
1295 S., Cai, X., Karnup, S., Fan, C.R., Hemenway, G.M., et al. (2014). Dynorphin
1296 acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord.
1297 *Neuron* **82**, 573-586. 10.1016/j.neuron.2014.02.046.
- 1298 50. Ross, S.E., Mardinly, A.R., McCord, A.E., Zurawski, J., Cohen, S., Jung, C.,
1299 Hu, L., Mok, S.I., Shah, A., Savner, E.M., et al. (2010). Loss of inhibitory
1300 interneurons in the dorsal spinal cord and elevated itch in *Bhlhb5* mutant
1301 mice. *Neuron* **65**, 886-898. S0896-6273(10)00142-X [pii]
1302 10.1016/j.neuron.2010.02.025.
- 1303 51. Brewer, C.L., Styczynski, L.M., Serafin, E.K., and Baccei, M.L. (2020).
1304 Postnatal maturation of spinal dynorphin circuits and their role in
1305 somatosensation. *Pain* **161**, 1906-1924. 10.1097/j.pain.0000000000001884.
- 1306 52. Zhang, X., Bao, L., Xu, Z.Q., Kopp, J., Arvidsson, U., Elde, R., and Hokfelt, T.
1307 (1994). Localization of neuropeptide Y Y1 receptors in the rat nervous system
1308 with special reference to somatic receptors on small dorsal root ganglion
1309 neurons. *Proceedings of the National Academy of Sciences of the United
1310 States of America* **91**, 11738-11742.
- 1311 53. Nelson, T.S., and Taylor, B.K. (2021). Targeting spinal neuropeptide Y1
1312 receptor-expressing interneurons to alleviate chronic pain and itch. *Progress
1313 in neurobiology* **196**, 101894. 10.1016/j.pnurobio.2020.101894.
- 1314 54. Polgár, E., Dickie, A.C., Gutierrez-Mecinas, M., Bell, A.M., Boyle, K.A., Quillet,
1315 R., Ab Rashid, E., Clark, R.A., German, M.T., Watanabe, M., et al. (2022).
1316 *Grpr* expression defines a population of superficial dorsal horn vertical cells
1317 that have a role in both itch and pain. *Pain* **164**, 149-170.
- 1318 55. Lu, Y., and Perl, E.R. (2005). Modular organization of excitatory circuits
1319 between neurons of the spinal superficial dorsal horn (laminae I and II). *The
1320 Journal of neuroscience : the official journal of the Society for Neuroscience*
1321 **25**, 3900-3907.
- 1322 56. Lu, Y., Dong, H., Gao, Y., Gong, Y., Ren, Y., Gu, N., Zhou, S., Xia, N., Sun,
1323 Y.Y., Ji, R.R., and Xiong, L. (2013). A feed-forward spinal cord glycinergic
1324 neural circuit gates mechanical allodynia. *The Journal of clinical investigation*
1325 **123**, 4050-4062. 10.1172/JCI70026.
- 1326 57. Peirs, C., and Seal, R.P. (2016). Neural circuits for pain: Recent advances
1327 and current views. *Science* **354**, 578-584. 10.1126/science.aaf8933.
- 1328 58. Polgár, E., Shehab, S.A., Watt, C., and Todd, A.J. (1999). GABAergic
1329 neurons that contain neuropeptide Y selectively target cells with the
1330 neuropeptide Y receptor in laminae III and IV of the rat spinal cord. *The Journal
1331 of neuroscience : the official journal of the Society for Neuroscience* **19**, 2637-
1332 2646.
- 1333 59. Intondi, A.B., Dahlgren, M.N., Eilers, M.A., and Taylor, B.K. (2008). Intrathecal
1334 neuropeptide Y reduces behavioral and molecular markers of inflammatory or
1335 neuropathic pain. *Pain* **137**, 352-365. 10.1016/j.pain.2007.09.016.

- 1336 60. Miranda, C.O., Hegedus, K., Wildner, H., Zeilhofer, H.U., and Antal, M.
1337 (2022). Morphological and neurochemical characterization of glycinergic
1338 neurons in laminae I-IV of the mouse spinal dorsal horn. *The Journal of
1339 comparative neurology* *530*, 607-626. 10.1002/cne.25232.
- 1340 61. Albisetti, G.W., Ganley, R.P., Pietrafesa, F., Werynska, K., Magalhaes de
1341 Sousa, M., Sipione, R., Scheurer, L., Bosl, M.R., Pelczar, P., Wildner, H., and
1342 Zeilhofer, H.U. (2022). Inhibitory Kcnip2 neurons of the spinal dorsal horn
1343 control behavioral sensitivity to environmental cold. *Neuron*.
1344 10.1016/j.neuron.2022.10.008.
- 1345 62. Yadav, A., Matson, K.J.E., Li, L., Hua, I., Petrescu, J., Kang, K., Alkaslasi,
1346 M.R., Lee, D.I., Hasan, S., Galuta, A., et al. (2022). A Cellular Taxonomy of
1347 the Adult Human Spinal Cord. *BioRxiv* preprint.
1348 <https://doi.org/10.1101/2022.03.25.485808>.
- 1349 63. Baron, R., Maier, C., Attal, N., Binder, A., Bouhassira, D., Cruccu, G.,
1350 Finnerup, N.B., Haanpaa, M., Hansson, P., Hullemann, P., et al. (2017).
1351 Peripheral neuropathic pain: a mechanism-related organizing principle based
1352 on sensory profiles. *Pain* *158*, 261-272. 10.1097/j.pain.0000000000000753.
- 1353 64. Gerfen, C.R., Paletzki, R., and Heintz, N. (2013). GENSAT BAC cre-
1354 recombinase driver lines to study the functional organization of cerebral
1355 cortical and basal ganglia circuits. *Neuron* *80*, 1368-1383.
1356 10.1016/j.neuron.2013.10.016.
- 1357 65. Mu, D., Deng, J., Liu, K.F., Wu, Z.Y., Shi, Y.F., Guo, W.M., Mao, Q.Q., Liu,
1358 X.J., Li, H., and Sun, Y.G. (2017). A central neural circuit for itch sensation.
1359 *Science* *357*, 695-699. 10.1126/science.aaf4918.
- 1360 66. Krashes, M.J., Shah, B.P., Madara, J.C., Olson, D.P., Strochlic, D.E.,
1361 Garfield, A.S., Vong, L., Pei, H., Watabe-Uchida, M., Uchida, N., et al. (2014).
1362 An excitatory paraventricular nucleus to AgRP neuron circuit that drives
1363 hunger. *Nature* *507*, 238-242. 10.1038/nature12956.
- 1364 67. Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M., and Yaksh, T.L.
1365 (1994). Quantitative assessment of tactile allodynia in the rat paw. *Journal of
1366 neuroscience methods* *53*, 55-63.
- 1367 68. Dixon, W.J. (1980). Efficient analysis of experimental observations. *Annu Rev
1368 Pharmacol Toxicol* *20*, 441-462. 10.1146/annurev.pa.20.040180.002301.
- 1369 69. Brenner, D.S., Golden, J.P., and Gereau, R.W.t. (2012). A novel behavioral
1370 assay for measuring cold sensation in mice. *PloS one* *7*, e39765.
1371 10.1371/journal.pone.0039765.
- 1372 70. Friard, O., and Gamba, M. (2016). BORIS: a free, versatile open-source
1373 event-logging software for video/audio coding and live observations. *Methods
1374 Ecol Evol* *7*, 1325-1330. 10.1111/2041-210x.12584.
- 1375 71. Cooper, A.H., Hedden, N.S., Corder, G., Lamerand, S.R., Donahue, R.R.,
1376 Morales-Medina, J.C., Selan, L., Prasoon, P., and Taylor, B.K. (2022).
1377 Endogenous mu-opioid receptor activity in the lateral and capsular
1378 subdivisions of the right central nucleus of the amygdala prevents chronic
1379 postoperative pain. *Journal of neuroscience research* *100*, 48-65.
1380 10.1002/jnr.24846.
- 1381 72. Dickie, A.C., Bell, A.M., Iwagaki, N., Polgar, E., Gutierrez-Mecinas, M., Kelly,
1382 R., Lyon, H., Turnbull, K., West, S.J., Etlin, A., et al. (2019). Morphological
1383 and functional properties distinguish the substance P and gastrin-releasing
1384 peptide subsets of excitatory interneuron in the spinal cord dorsal horn. *Pain*
1385 *160*, 442-462. 10.1097/j.pain.0000000000001406.

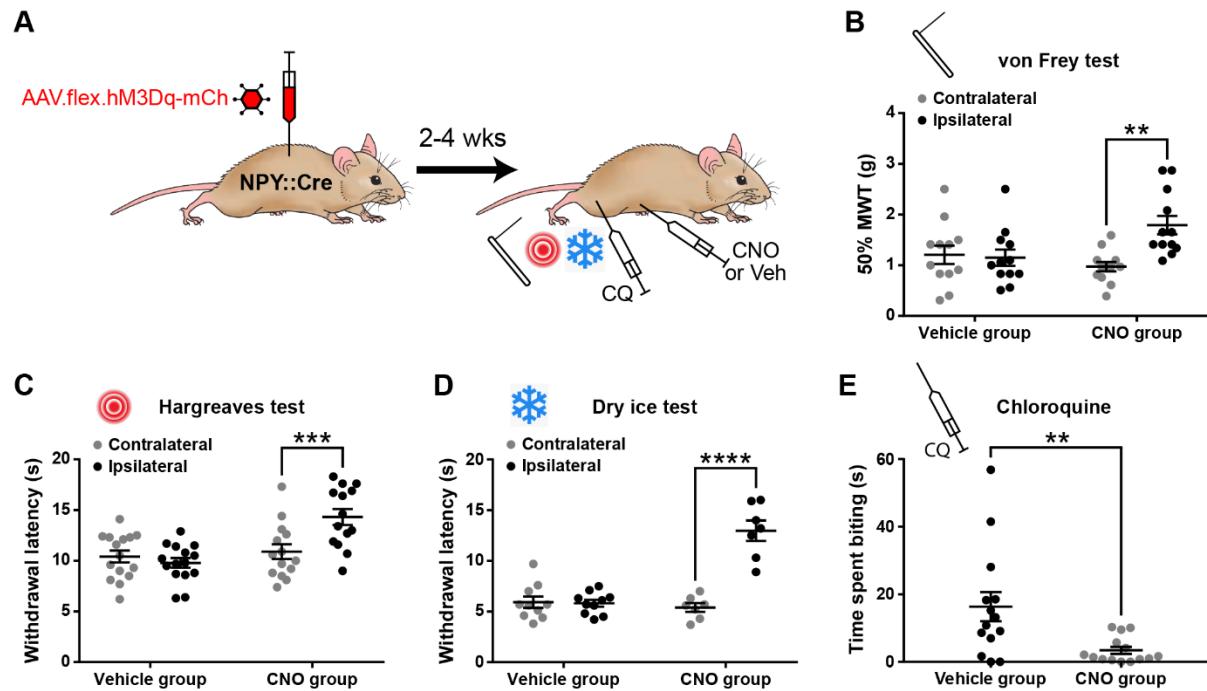
- 1386 73. Ting, J.T., Daigle, T.L., Chen, Q., and Feng, G. (2014). Acute Brain Slice
1387 Methods for Adult and Aging Animals: Application of Targeted Patch Clamp
1388 Analysis and Optogenetics. In Patch-Clamp Methods and Protocols, M.
1389 Martina, and S. Taverna, eds. (Springer New York), pp. 221-242.
1390 10.1007/978-1-4939-1096-0_14.
- 1391 74. Petreanu, L., Mao, T., Sternson, S.M., and Svoboda, K. (2009). The
1392 subcellular organization of neocortical excitatory connections. *Nature* **457**,
1393 1142-1145. 10.1038/nature07709.
- 1394 75. Polgár, E., Gray, S., Riddell, J.S., and Todd, A.J. (2004). Lack of evidence for
1395 significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in
1396 the chronic constriction injury model. *Pain* **111**, 144-150.
1397 10.1016/j.pain.2004.06.011 S0304395904002994 [pii].

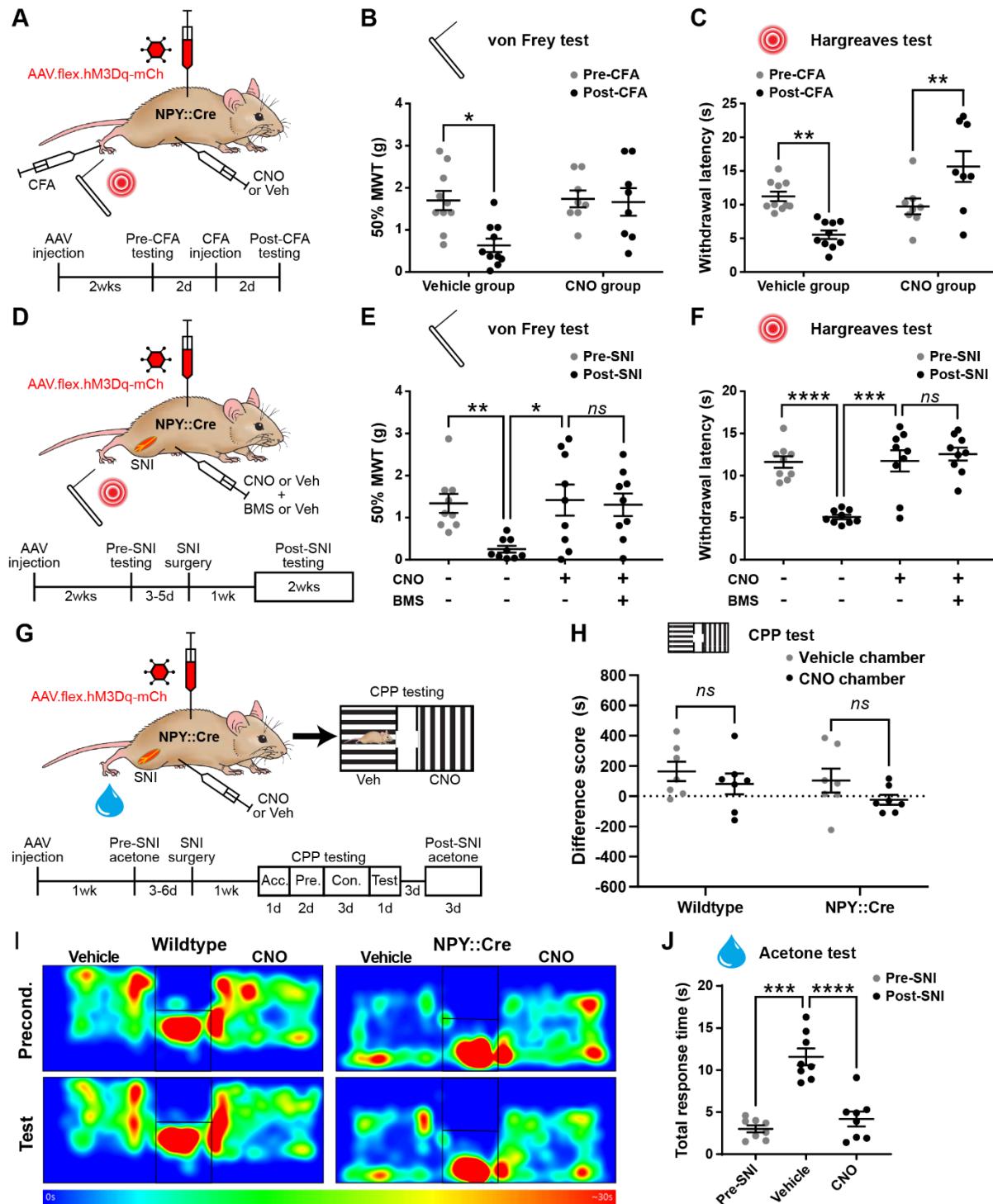
1398 **MAIN FIGURES**


1399

1400

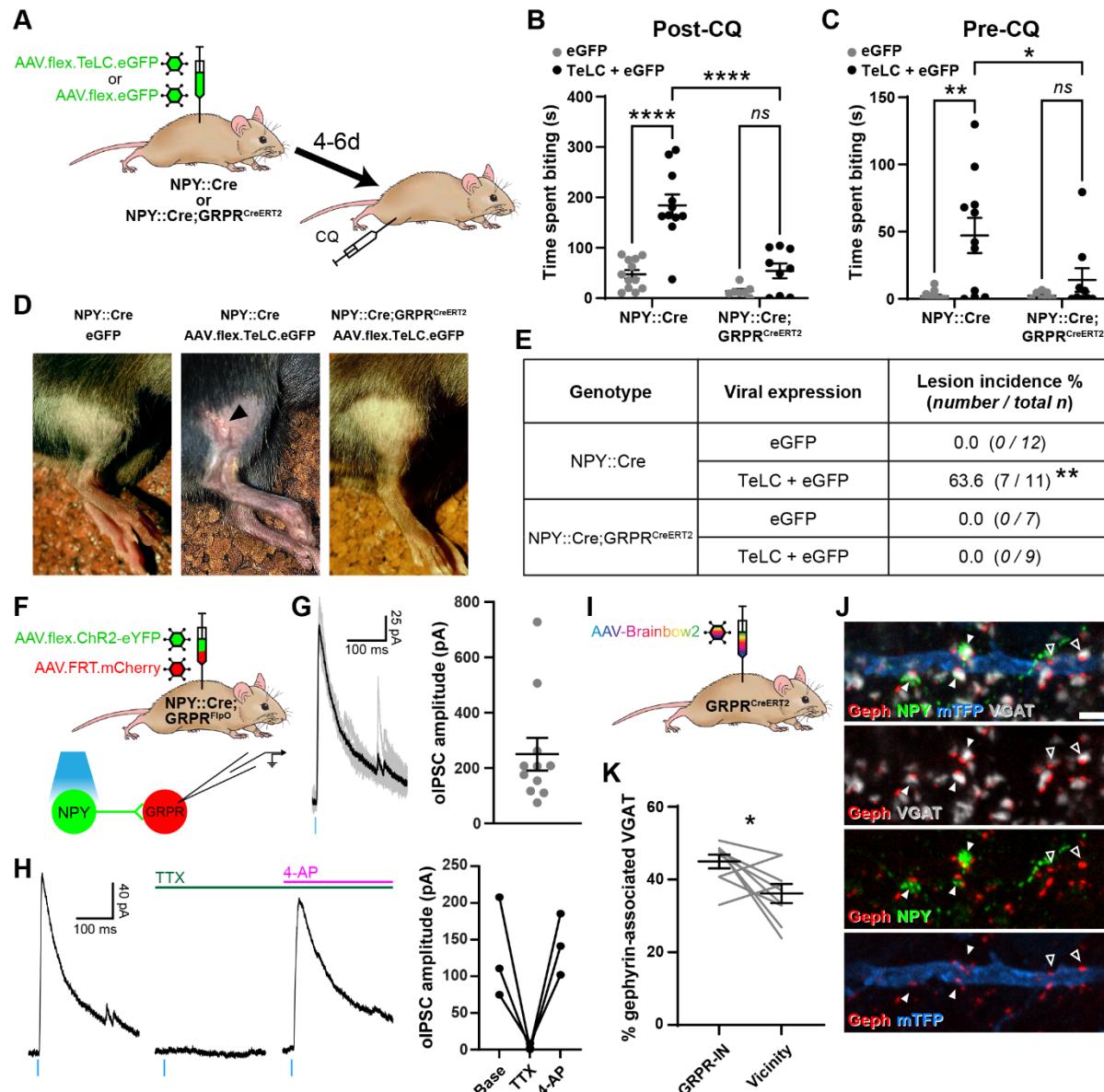
1401 **Figure 1. Cre-dependent AAV injections in young adult NPY::Cre mice target**
1402 **dorsal horn inhibitory NPY interneurons and avoid transient NPY-expressing**
1403 **cells. (A)** In situ hybridisation for *Cre* (magenta) and *Npy* (green) mRNA in the mid-
1404 lumbar dorsal horn. Sections were counterstained with NucBlue (grey) to reveal
1405 nuclei. Three *Cre*-positive cells are also positive for *Npy* (filled arrowheads), and
1406 there are two cells that are positive for *Npy* only (open arrowheads). Scale bar =
1407 20 μ m. **(B)** Quantification of co-expression of *Cre* and *Npy* mRNA in laminae I-III (n =
1408 3 mice). **(C)** The experimental approach used to generate the data presented in **D**
1409 and **E**. **(D)** Co-expression of tdTomato (tdTom; magenta) and NPY (green)


1410 immunoreactivity in mid-lumbar dorsal horn of an NPY::Cre mouse injected with
1411 AAV.flex.tdTom in adulthood. Low power image shows tdTomato-positive cells
1412 throughout laminae I-III (scale bar = 100 μ m). High power images (corresponding to
1413 the box in the low power image) demonstrate the high degree of co-localisation of
1414 tdTomato expression and NPY immunoreactivity (filled arrowheads; scale bar =
1415 20 μ m). Insets show clearer NPY labelling in a different z-plane for the cell marked
1416 with an asterisk and the cell immediately below it. (E) Quantification of co-expression
1417 of fluorescent protein (FP) and NPY in laminae I-III of NPY::Cre mice injected with
1418 AAV.flex.tdTom or AAV.flex.eGFP at adulthood (n = 3 mice; 2 injected with
1419 AAV.flex.tdTomato and 1 with AAV.flex.eGFP). (F) The experimental approach taken
1420 for the data presented in **G-I**. (G) Expression of tdTomato and eGFP in mid-lumbar
1421 dorsal horn of an NPY::Cre;Ai9 mouse injected with AAV.flex.eGFP in adulthood.
1422 eGFP-positive cells (green) are a subset of a broader population of tdTomato-
1423 positive cells (magenta; scale bar = 100 μ m). (H) High power images corresponding
1424 to boxed area in **G** showing three tdTom+/eGFP+ (red and green, respectively)
1425 double-labelled cells (filled arrowheads) that are also NPY immunoreactive (blue).
1426 Open arrowheads mark two cells positive for tdTomato only. The asterisk marks a
1427 tdTomato-positive/eGFP-negative cell that is also NPY immunoreactive, though this
1428 is only apparent in a different z-plane (insets). Scale bar = 20 μ m. (I) Quantification of
1429 co-expression of tdTomato, eGFP and NPY in laminae I-III of NPY::Cre;Ai9 mice
1430 injected with AAV.flex.eGFP at adulthood (n = 2 mice). Solid lines in low power
1431 images in **D** and **G** denote the grey/white matter border, curved dashed lines denote
1432 the boundaries of lamina III and dashed boxes denote the regions shown in
1433 corresponding high power images. Data are shown as individual values with mean \pm
1434 SEM.


1435

1436 **Figure 2. Activation of inhibitory NPY interneurons reduces activity in dorsal**
 1437 **horn circuits recruited by noxious and pruritic stimuli. (A, B)** The experimental
 1438 approaches used to generate the data presented in **C, E**, and **D, F**, respectively. **(C,**
 1439 **D)** Low power images show mCherry expression (mCh; magenta) and Fos
 1440 immunoreactivity (green) in L4 (**C**) or L3 (**D**) dorsal horn of NPY::Cre mice that had
 1441 been injected with AAV.flex.hM3Dq-mCherry and treated with vehicle control (Veh)
 1442 or CNO 30 minutes prior to a noxious heat stimulus (immersion of the hindpaw in

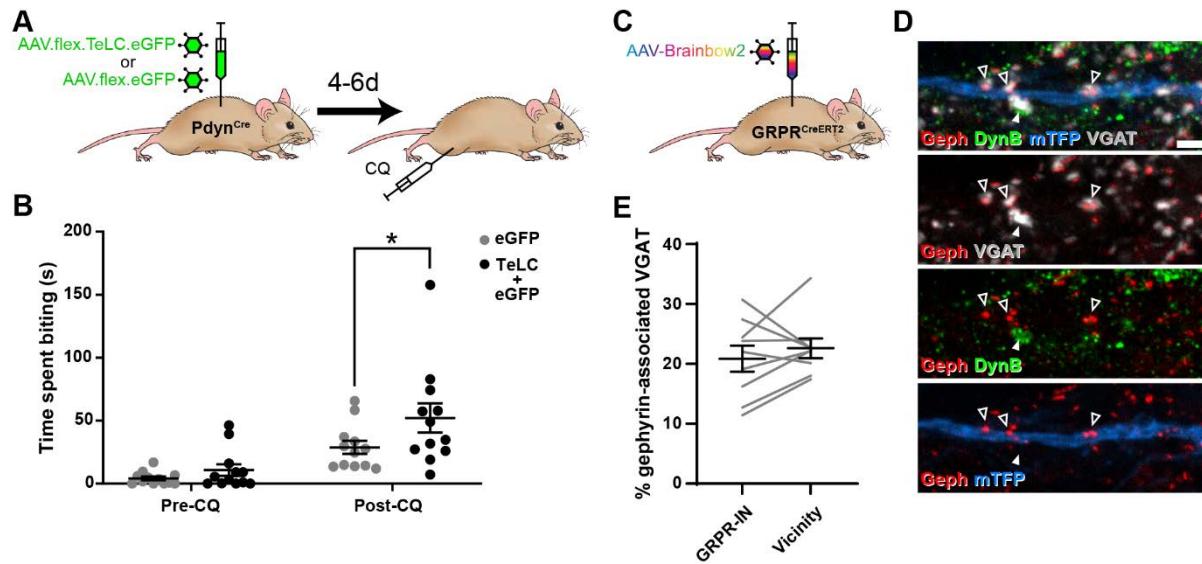
1443 52°C water; **C**) or a pruritic stimulus (intradermal injection of 100 µg chloroquine, CQ,
1444 dissolved in 10 µl PBS into the calf; **D**) and perfusion-fixed 2 hours post-stimulation.
1445 In vehicle-treated animals, Fos expression is observed in the somatotopically-
1446 relevant area of the superficial laminae (left of short dashed line in **C**; between short
1447 dashed lines in **D**). In CNO-treated animals, Fos expression is observed in hM3Dq-
1448 mCherry-expressing cells, but is reduced in surrounding hM3Dq-mCherry-negative
1449 cells within the somatotopically-relevant area. This is demonstrated in the high
1450 magnification images (to the right of the main image in each case), where filled
1451 arrowheads mark examples of hM3Dq-mCherry-expressing cells immunoreactive for
1452 Fos, open arrowheads mark Fos-positive cells that lack hM3Dq-mCherry and arrows
1453 mark hM3Dq-mCherry-expressing cells that are negative for Fos. Scale bars; 100
1454 µm (low power images), 20 µm (high power images). Solid lines in **C** and **D** denote
1455 the grey/white matter border, curved dashed lines denote the lamina II/III border. (**E**,
1456 **F**) Left-hand graphs show quantification of the proportion of hM3Dq-mCherry-
1457 positive (mCh+) and -negative (mCh-) cells that display Fos immunoreactivity in
1458 vehicle- or CNO-treated mice that received a noxious heat (**E**; n = 3 mice for vehicle,
1459 4 for CNO) or pruritic (**F**; n = 6 for both groups) stimulus. Right-hand graphs in **E** and
1460 **F** show quantification of the proportion of hM3Dq-mCherry-negative cells that display
1461 Fos immunoreactivity, separated into excitatory (Pax2-) and inhibitory (Pax2+)
1462 populations. Analyses were performed within the somatotopically-relevant areas of
1463 laminae I and II. (**G**) The experimental approach used to generate the data
1464 presented in **H** and **I**. (**H**) Representative oIPSCs recorded in unlabelled (ChR2-
1465 eYFP-negative) cells in spinal cord slices from NPY::Cre mice that had received
1466 intraspinal injections of AAV.flex.ChR2-YFP. Recordings were made in the absence
1467 and presence of gabazine (Gbz) and strychnine (Str). Traces show an average of 6
1468 stimuli, light blue bars denote period of optogenetic stimulation. Note that in the
1469 presence of high intracellular Cl- concentration, IPSCs appear as inward currents. (**I**)
1470 Quantification of the mean peak amplitude of oIPSCs recorded in the absence
1471 (Base) and presence of gabazine and strychnine. Data are shown as mean ± SEM.
1472 *p < 0.05, ***p < 0.001; unpaired t-test with Holm-Šidák correction for multiple
1473 comparisons. Data are shown as individual values with mean ± SEM in (**E** and **F**)
1474 and individual values in (**I**).


1475 **Figure 3. Activation of inhibitory NPY interneurons increases acute
1476 nociceptive thresholds and reduces pruritogen-evoked itch behaviour. (A) The
1477 experimental approach used to generate the data presented in B-E. (B-D)**
1478 AAV.flex.hM3Dq-mCherry spinal-injected NPY::Cre mice display an increased
1479 mechanical withdrawal threshold (MWT) (B; n = 12 vehicle group, 12 CNO group)
1480 and increased withdrawal latencies to radiant heat (C; n = 15 vehicle group, 14 CNO
1481 group) and to cold (D; n = 10 vehicle group, 7 CNO group) of the ipsilateral hindpaw
1482 following CNO injection, but not vehicle control injection. (E) AAV.flex.hM3Dq-
1483 mCherry spinal-injected mice spend significantly less time biting the calf region in the
1484 30 minutes following intradermal injection of chloroquine when injected with CNO,
1485 compared to vehicle-treated controls (n = 14 vehicle group, 14 CNO group). Data are
1486 shown as individual values with mean \pm SEM. **p < 0.01, ***p < 0.001, ****p <
1487 0.0001; repeated-measures 2-way ANOVA with Šidák's post-test in (B-D); unpaired
1488 t-test in (E).

1490

1491 **Figure 4. Activation of inhibitory NPY interneurons blocks mechanical and**
 1492 **thermal hypersensitivity in models of inflammatory and neuropathic pain. (A)**
 1493 The experimental approach taken to generate the data presented in **B** and **C**. **(B, C)**
 1494 Vehicle control-treated AAV.flex.hM3Dq-mCherry spinal-injected NPY::Cre mice
 1495 display marked reductions in mechanical withdrawal threshold (MWT) (**B**) and
 1496 withdrawal latency to radiant heat (**C**) of the ipsilateral paw 2 days after intraplantar
 1497 injection of complete Freund's adjuvant (CFA). Both mechanical and thermal

1498 hypersensitivity are blocked in CNO-treated mice (n = 10 vehicle group, 8 CNO
1499 group). **(D)** The experimental approach taken for the data presented in **E** and **F**.
1500 Drug treatments were administered using a crossover design (n = 9). **(E, F)** Marked
1501 reductions in mechanical withdrawal threshold (MWT) (**E**) and withdrawal latency to
1502 radiant heat (**F**) are observed following spared nerve injury (SNI). These are blocked
1503 by CNO treatment, and this blockade persists in the presence of the Y1 antagonist
1504 BMS 193885 (BMS). **(G)** The experimental approach taken for the data presented in
1505 **H - J**. Acc. = acclimation; Pre. = pre-conditioning; Con. = conditioning. **(H)** Neither
1506 wildtype control nor AAV.flex.hM3Dq-mCherry spinal-injected NPY::Cre mice
1507 displayed a conditioned place preference (CPP) to CNO following SNI (n = 7). **(I)**
1508 Heat maps of a representative mouse from each group demonstrating position and
1509 time spent in each chamber during preconditioning and post-conditioning test days.
1510 **(J)** A marked increase in the time spent responding to application of acetone to the
1511 ipsilateral paw (shaking, lifting and/or licking) is seen in vehicle-treated
1512 AAV.flex.hM3Dq-mCherry spinal-injected NPY::Cre mice following SNI. This cold
1513 hypersensitivity is blocked when the same mice are treated with CNO. Data are
1514 shown as individual values with mean \pm SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p
1515 < 0.0001; repeated-measures 2-way ANOVA with Šidák's post-test in **(B, C, H)**,
1516 repeated-measures 1-way ANOVA with Šidák's post-test in **(E, F & J)**.

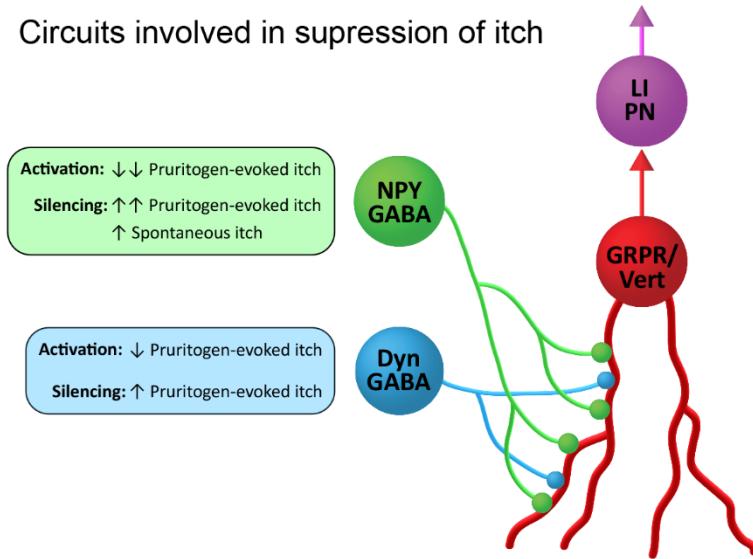


1517

1518 **Figure 5. Increased itch caused by silencing NPY interneurons operates**
 1519 **through a circuit involving GRPR-expressing excitatory interneurons. (A)** The
 1520 experimental approach used to generate the data presented in **B-E**. **(B)** Silencing of
 1521 NPY-INs by viral expression of tetanus toxin light chain (TeLC) in
 1522 AAV.flex.TeLC.eGFP spinal-injected NPY::Cre mice results in a significant
 1523 enhancement of chloroquine-evoked itch (Post-CQ), compared to that seen in
 1524 AAV.flex.eGFP-injected controls. This enhancement of CQ-evoked itch is
 1525 significantly reduced when NPY- and GRPR-INs are simultaneously silenced by
 1526 injecting AAV.flex.TeLC.eGFP into NPY::Cre;GRPR^{CreERT2} mice. The numbers of
 1527 mice per group are as outlined in the table in **E**. **(C)** Silencing of NPY-INs by TeLC
 1528 also results in the development of spontaneous itch behaviour as assessed over 30
 1529 minutes prior to CQ administration (Pre-CQ). This spontaneous itch is also

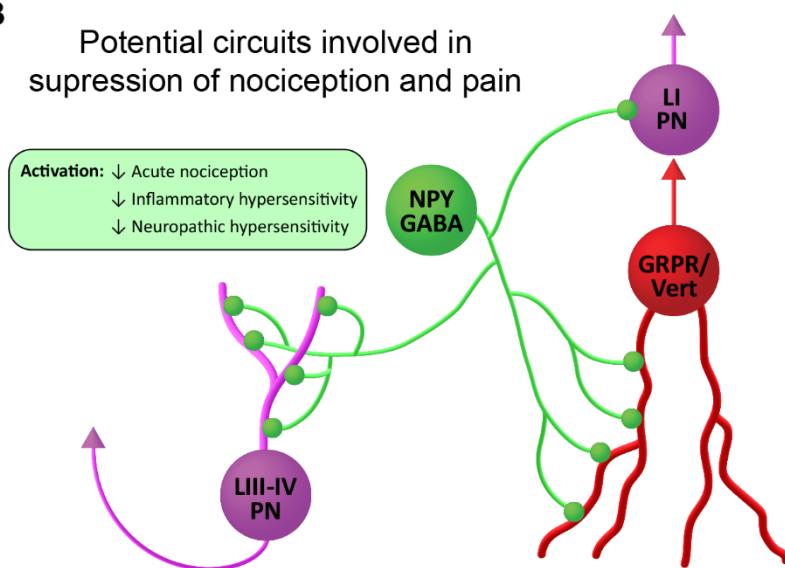
1530 significantly reduced when GRPR-INs are simultaneously silenced. (D)
1531 Representative images of a skin lesion on the calf of an AAV.flex.TeLC.eGFP-
1532 injected NPY::Cre mouse (arrowhead, middle image), and the lack of lesions in
1533 AAV.flex.eGFP-injected NPY::Cre or AAV.flex.TeLC.eGFP-injected
1534 NPY::Cre;GRPR^{CreERT2} mice. (E) Table outlining the incidence of lesions in
1535 AAV.flex.eGFP- or AAV.flex.TeLC.eGFP-injected NPY::Cre or NPY::Cre;
1536 GRPR^{CreERT2} mice. Lesions were observed in approximately two-thirds of
1537 AAV.flex.TeLC.eGFP-injected NPY::Cre mice, but never in AAV.flex.TeLC.eGFP-
1538 injected NPY::Cre; GRPR^{CreERT2} mice, nor in AAV.flex.eGFP-injected control groups.
1539 (F) The experimental approach used to generate the data presented in G and H. (G)
1540 Optogenetic activation of NPY-INs induces monosynaptic oIPSCs in GRPR-INs.
1541 Representative traces of oIPSCs recorded in a GRPR neuron are shown on the left,
1542 with 6 individual oIPSCs in grey and an averaged trace in black. Quantification of the
1543 mean peak amplitude of oIPSCs recorded in 11 GRPR-INs is shown on the right. For
1544 all 11 cases, all 6 light stimuli resulted in oIPSCs with no failures. (H) Example traces
1545 from a GRPR-IN (left) show that oIPSCs are blocked by TTX and reinstated by 4-AP;
1546 quantification of mean peak oISPC amplitude from 3 GRPR-INs is shown on the
1547 right. (I) The experimental approach used to generate the data presented in J and K.
1548 (J) Filled arrowheads mark three examples of NPY-immunoreactive (green)
1549 inhibitory boutons synapsing onto dendrite of a Brainbow-labelled GRPR-IN (mTFP,
1550 blue). Inhibitory synapses were defined as VGAT-positive profiles (grey) in contact
1551 with gephyrin puncta (red). Open arrowheads mark two examples of NPY-negative
1552 inhibitory synapses on the Brainbow-labelled dendrite. Scale bar = 2µm. (K)
1553 Quantification of the percentage of inhibitory synapses on to 9 GRPR-INs, or in the
1554 vicinity of those cells, at which the presynaptic VGAT bouton is NPY-
1555 immunoreactive. Data are shown as individual values with mean ± SEM in (B, C and
1556 G), individual values in (H) and individual matched values with mean ± SEM in (K).
1557 *p < 0.05, **p < 0.01, ****p < 0.0001; 2-way ANOVA with Tukey's post-test in (B and
1558 C), Fisher's exact test with Bonferroni correction in (E) and Wilcoxon matched pairs
1559 test in (K).

1560


1561

1562 **Figure 6. Toxin-mediated silencing of Dynorphin-expressing inhibitory**
1563 **interneurons enhances pruritogen-evoked itch.**

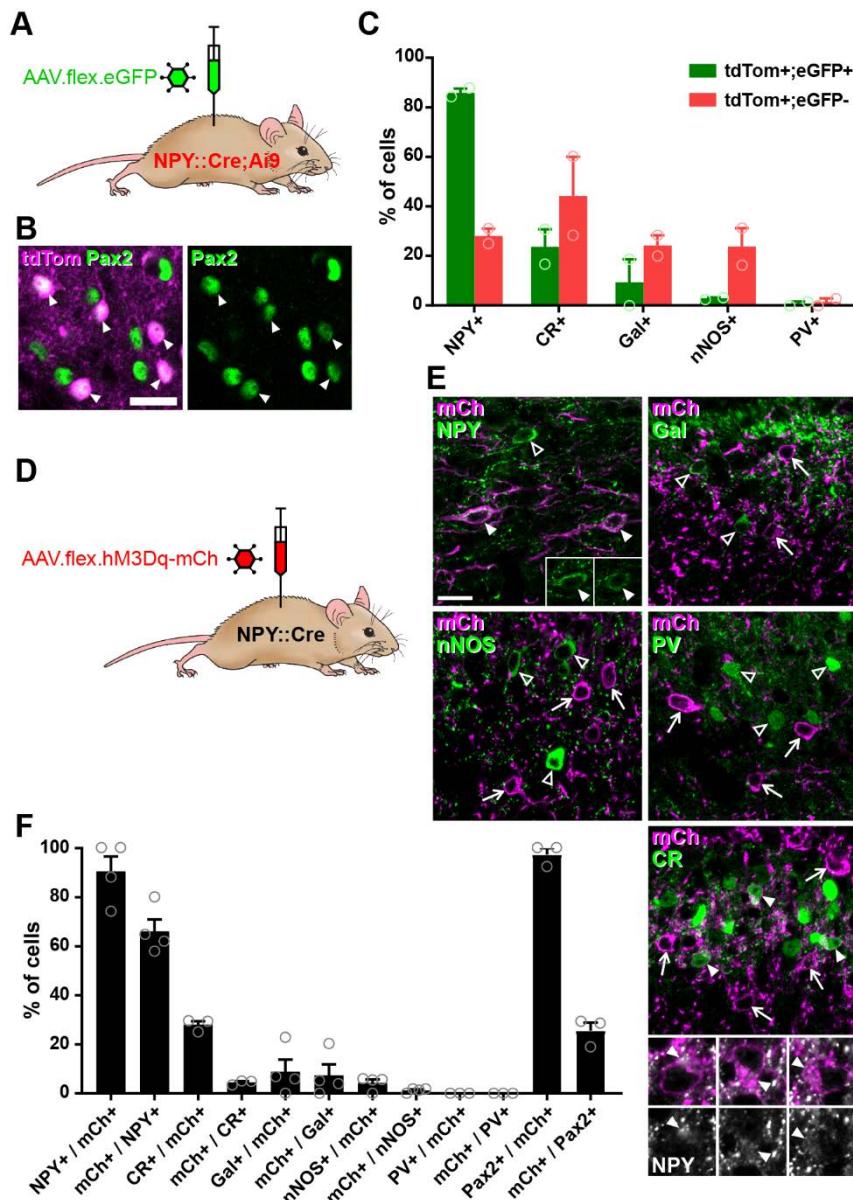
1564 (A) The experimental approach used to generate the data presented in B. (B) (C) The experimental approach used to generate the data presented in D and E. (D) Filled arrowhead marks an example of a DynB-expressing (green) inhibitory bouton synapsing onto dendrite of a Brainbow-labelled GRPR-IN (mTFP, blue). Inhibitory synapses were defined as VGAT-positive profiles (grey) in contact with gephyrin puncta (red). Open arrowheads mark three examples of DynB-negative inhibitory synapses on the Brainbow-labelled dendrite. Scale bar = 2 μ m. (E) Quantification of the percentage of total inhibitory synapses on to 9 GRPR-INS, or in the vicinity of those cells, that contain DynB. No significant difference was observed between these proportions ($p=0.3438$; Wilcoxon matched pairs test). Data are shown as individual values with mean \pm SEM in (B) and individual matched values with mean \pm SEM in (E).


A

Circuits involved in suppression of itch

B

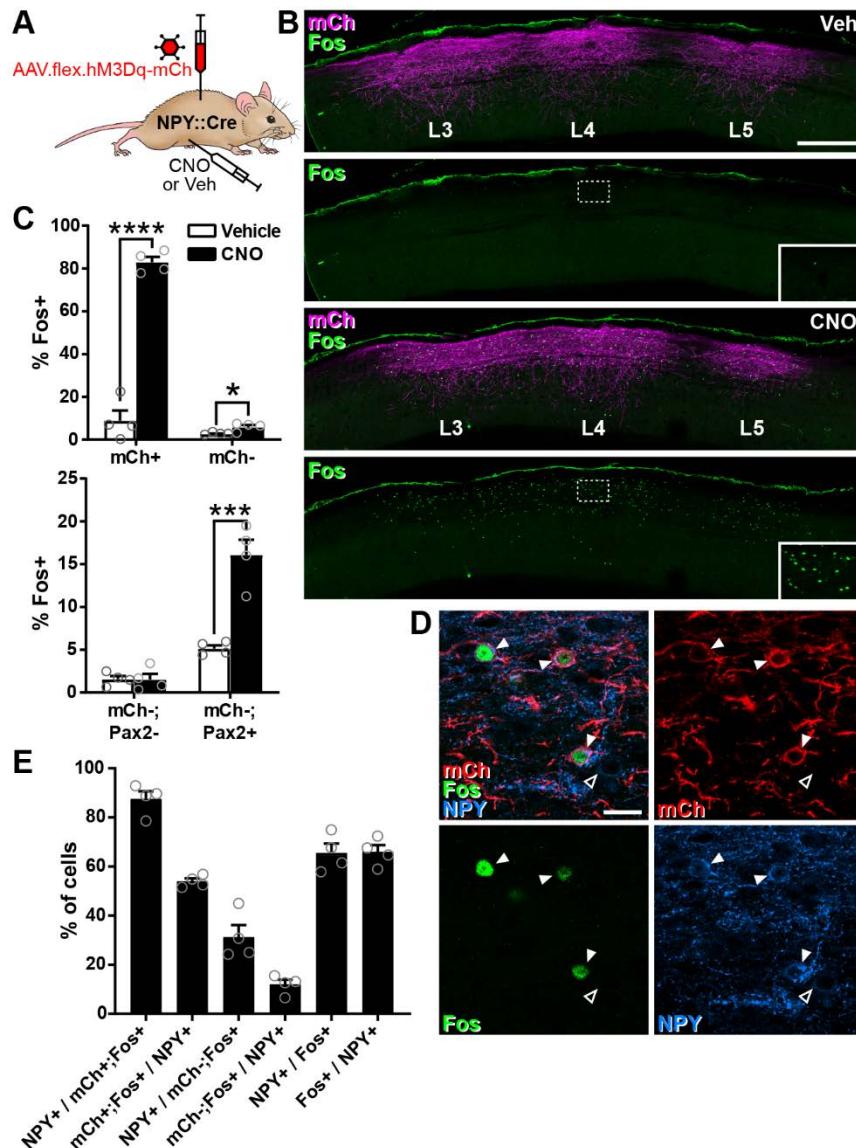
Potential circuits involved in suppression of nociception and pain


1581

1582

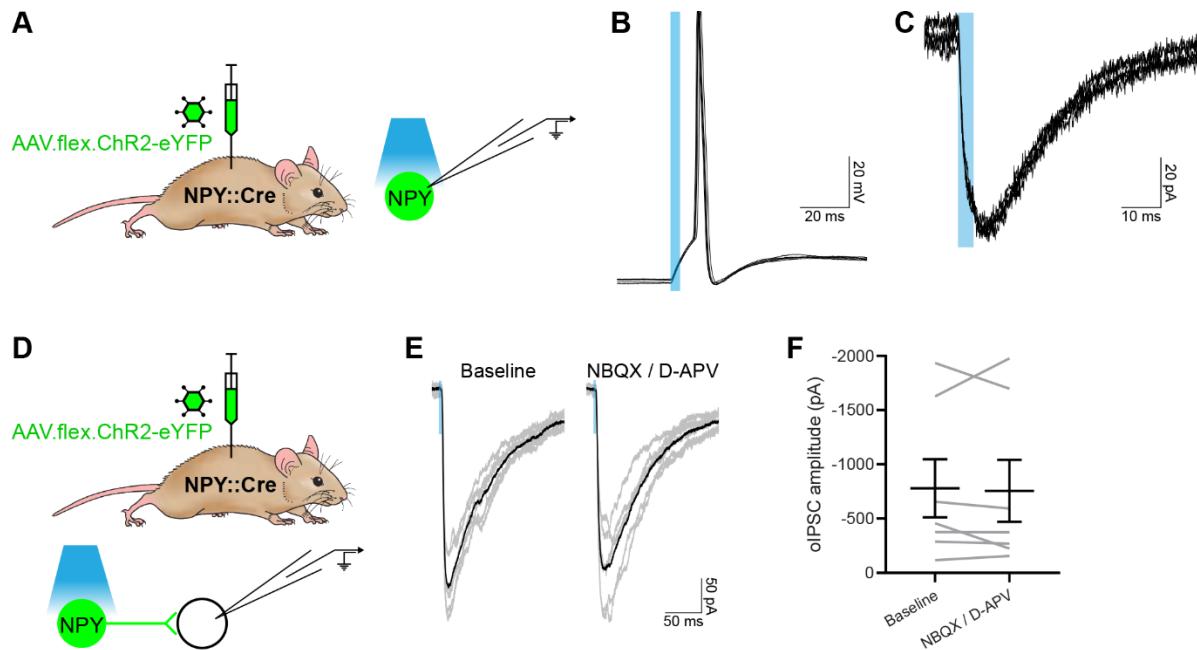
1583 **Figure 7. Suggested roles of NPY-expressing inhibitory interneurons in spinal**
1584 **itch and pain circuits. (A)** Circuits involved in suppression of itch. NPY-INs provide
1585 a high proportion (45%) of the inhibitory synapses on GRPR-expressing excitatory
1586 interneurons. The GRPR cells have vertical (Vert) morphology and are thought to
1587 transmit itch- and pain-related information to spinal projection neurons in lamina I (LI
1588 PNs). Pruritogen-evoked itch is markedly reduced by NPY-IN activation, while
1589 silencing of NPY-INs enhances pruritogen-evoked itch and results in spontaneous
1590 itch. Dyn-INs also provide inhibitory input to GRPR cells, but only account for ~20%
1591 of their inhibitory synapses. Silencing of Dyn-INs increases pruritogen-evoked itch,
1592 but to a lesser degree than NPY-IN silencing, and without the appearance of

1593 spontaneous itch. Activation of Dyn-INs has previously been shown to reduce itch in
1594 response to a range of pruritogens (see Huang et al. 2018). **(B)** Potential circuits
1595 involved in suppression of nociception and pain. Vertical cells are thought to be
1596 involved in the transmission of both normal and pathological pain signals through
1597 their input to LI PNs. Chemogenetic activation of GRPR-expressing vertical cells
1598 elicits both itch- and pain-related behaviours (Polgár et al 2022). NPY-INs may
1599 therefore act to suppress acute nociception, as well as inflammatory and neuropathic
1600 hypersensitivity, via inhibition of vertical cells. Additionally, NPY-INs have previously
1601 been shown to directly innervate nociceptive projection neurons of the anterolateral
1602 system in lamina I and laminae III-IV (LIII-IV PN).

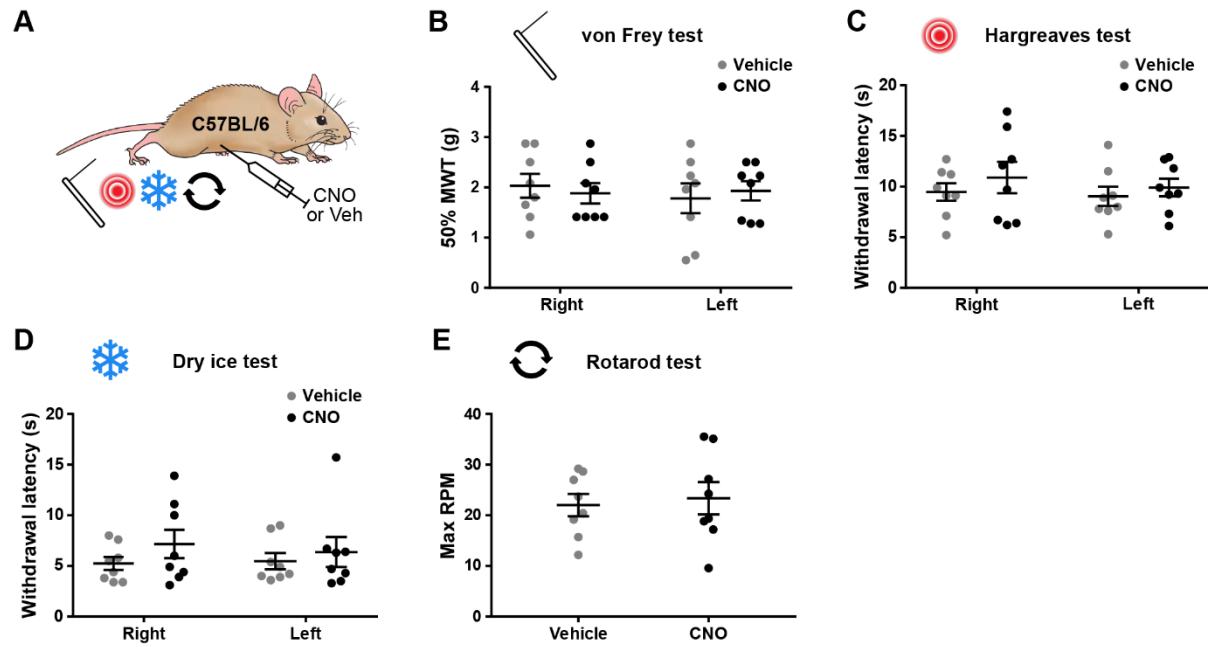

1603 **FIGURE SUPPLEMENTS**

1604

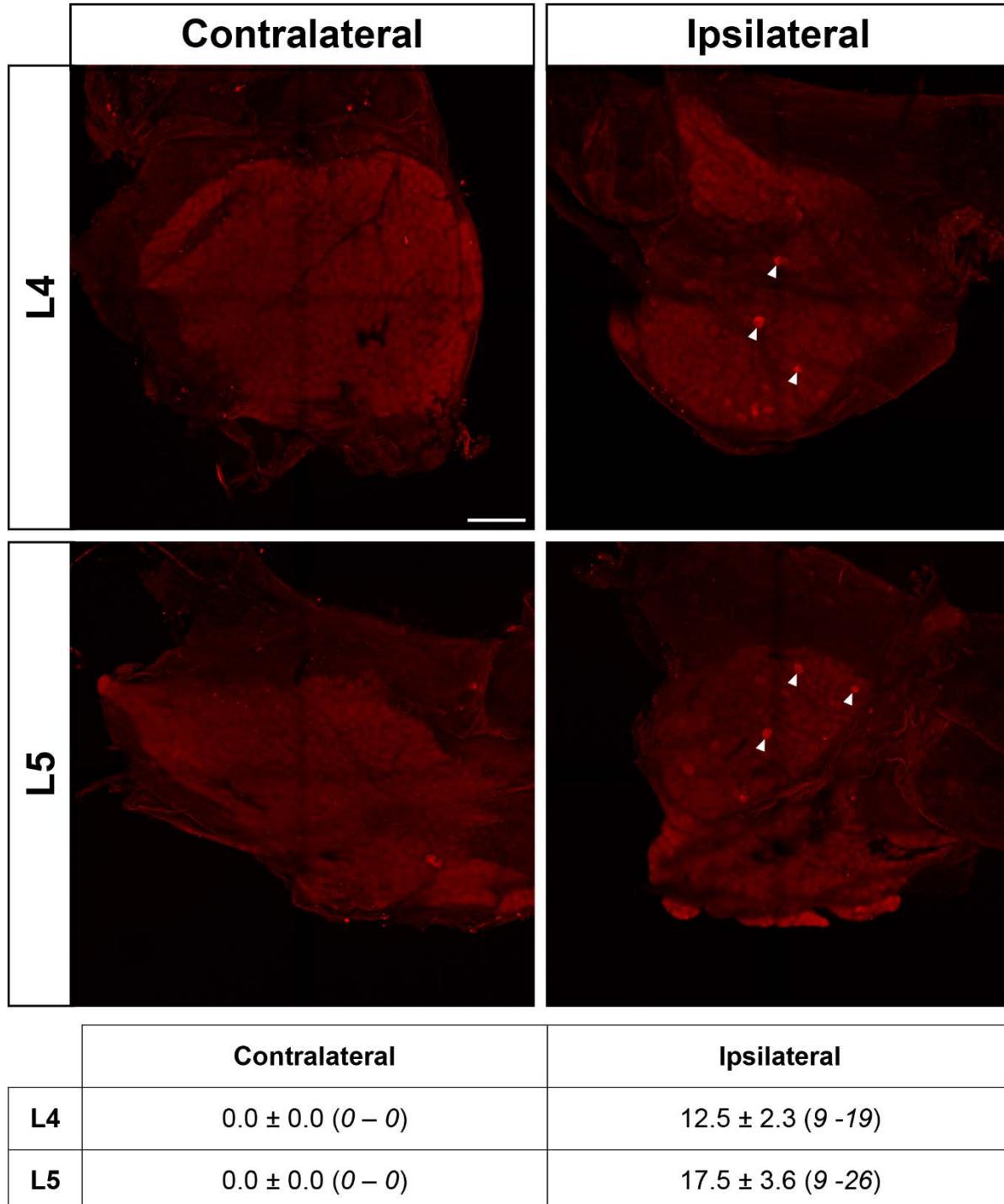
1605 **Figure 1 – figure supplement 1. Cre-dependent AAV injections in young adult**
1606 **NPY::Cre mice target dorsal horn inhibitory NPY interneurons and avoid**
1607 **transient NPY-expressing cells. (A)** The experimental approach used to generate
1608 the data shown in **B** and **C**. **(B)** Co-expression of tdTomato (tdTom; magenta) and
1609 Pax2 (green) in the mid-lumbar dorsal horn of an adult NPY::Cre;Ai9 mouse. All
1610 tdTomato-positive cells are also Pax2 immunoreactive (filled arrowheads; scale bar =
1611 20 μ m). **(C)** Quantification of the proportion of tdTom+;eGFP+ double-labelled cells
1612 and tdTomato-positive, eGFP-negative cells (tdTom+;eGFP-) that express various
1613 inhibitory interneuron neurochemical markers in laminae I and II of NPY::Cre;Ai9
1614 mice that were injected with AAV.flex.eGFP in adulthood (n = 2 mice). **(D)** The


1615 experimental approach used to generate the data shown in **E** and **F**. **(E)** Micrographs
1616 demonstrating the distribution of hM3Dq-mCherry expression (mCh, magenta) and
1617 immunoreactivity for various inhibitory interneuron neurochemical markers (green) in
1618 mid-lumbar dorsal horn of an NPY::Cre mouse injected with AAV.flex.hM3Dq-
1619 mCherry in adulthood (Gal, galanin; nNOS, neuronal nitric oxide synthase; PV,
1620 parvalbumin; CR, calretinin). Arrows mark cells labelled with mCherry only, open
1621 arrowheads mark cells positive for the neurochemical marker only and filled
1622 arrowheads mark cells that express both hM3Dq-mCherry and the neurochemical
1623 marker. Insets in the NPY image show NPY staining only for the cells marked with
1624 filled arrowheads to demonstrate the NPY immunoreactivity in these cells. Higher
1625 magnification images below the CR image show NPY immunoreactivity (grey) in the
1626 cells marked with filled arrowheads. Scale bar = 20 μ m. **(F)** Quantification of co-
1627 expression of hM3Dq-mCherry and the various inhibitory interneuron neurochemical
1628 markers in laminae I and II of NPY::Cre mice injected with AAV.flex.hM3Dq-mCherry
1629 in adulthood (n = 3 mice). Data are shown as individual values with mean \pm SEM.

1630

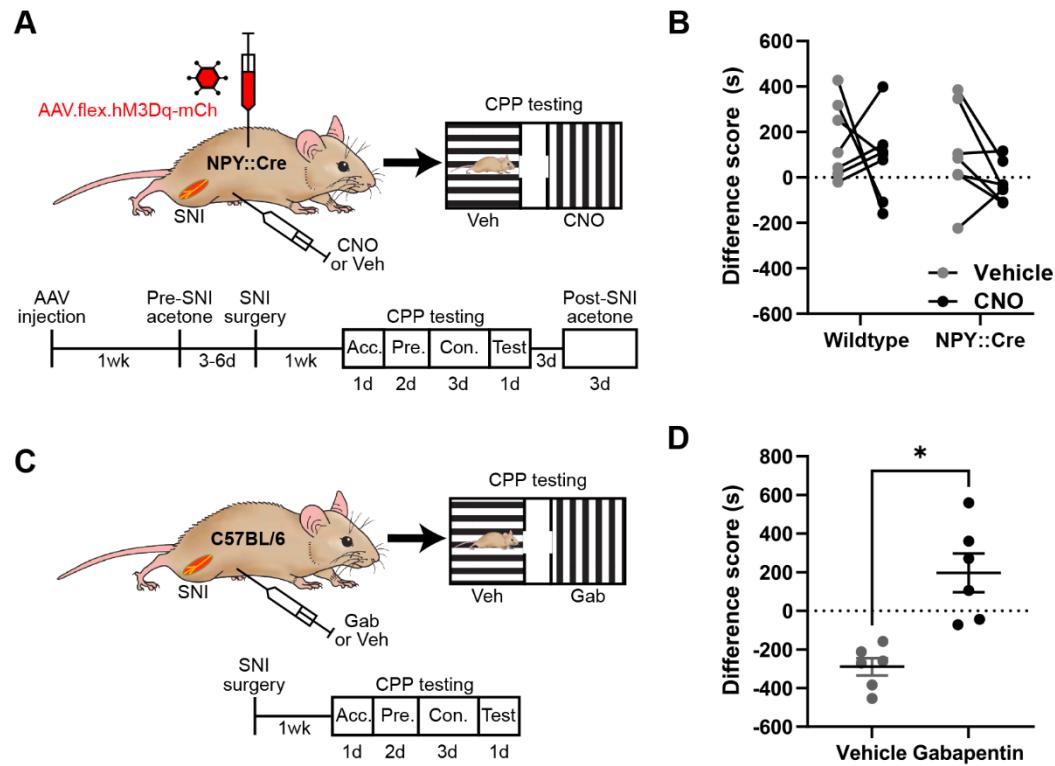

1631 **Figure 2 – figure supplement 1. CNO-mediated activation of dorsal horn**
1632 **inhibitory NPY interneurons in NPY::Cre mice injected with AAV.flex.hM3Dq-**
1633 **mCherry. (A)** The experimental approach used to generate the data shown in this
1634 figure. **(B)** Sagittal sections through the ipsilateral side of the L3-5 spinal cord
1635 segments of NPY::Cre mice injected with AAV.flex.hM3Dq-mCherry at L3, L4 and L5
1636 levels and treated with vehicle control (Veh) or CNO two hours prior to perfusion
1637 fixation. hM3Dq-mCherry expression (mCh, magenta) can be seen extending
1638 through the L3-5 dorsal horn in both animals. Fos-positive cells (green) are
1639 infrequent in the vehicle-treated animal, but are numerous in the CNO-treated mouse
1640 and correspond to the area of hM3Dq-mCh expression. Dashed boxes indicate the
1641 areas shown at higher magnification in the insets. Scale bar = 500 μ m. **(C)** Top
1642 graph shows quantification of the proportion of hM3Dq-mCherry-positive (mCh+) and

1643 -negative (mCh-) cells in laminae I-III that display Fos immunoreactivity in vehicle- or
1644 CNO-treated mice. Bottom graph shows quantification of the proportion of hM3Dq-
1645 mCherry-negative cells in laminae I-III that display Fos immunoreactivity in vehicle-
1646 or CNO-treated mice, separated into excitatory (Pax2-) and inhibitory (Pax2+)
1647 populations. *p < 0.05, ***p < 0.001, ****p < 0.0001; unpaired t-test with Holm-Šidák
1648 correction for multiple comparisons.; n = 4. (D) Example confocal image
1649 demonstrating co-expression of hM3Dq-mCh (red), Fos (green) and NPY (blue) in L4
1650 dorsal horn of an NPY::Cre mouse that had been injected with AAV.flex.hM3Dq-
1651 mCherry and treated with CNO 2 hours prior to perfusion fixation. Three hM3Dq-
1652 mCherry-positive cells that are immunoreactive for both Fos and NPY are highlighted
1653 (filled arrowheads). A weakly NPY-positive cell that lacks both hM3Dq-mCherry and
1654 Fos expression can also be seen (open arrowhead). Scale bar = 20 μ m. (E)
1655 Quantification of co-expression of hM3Dq-mCherry, Fos and NPY in laminae I-III in
1656 the L4 segment of mice treated with CNO two hours prior to perfusion fixation (n =
1657 4). Data are shown as individual values with mean \pm SEM.

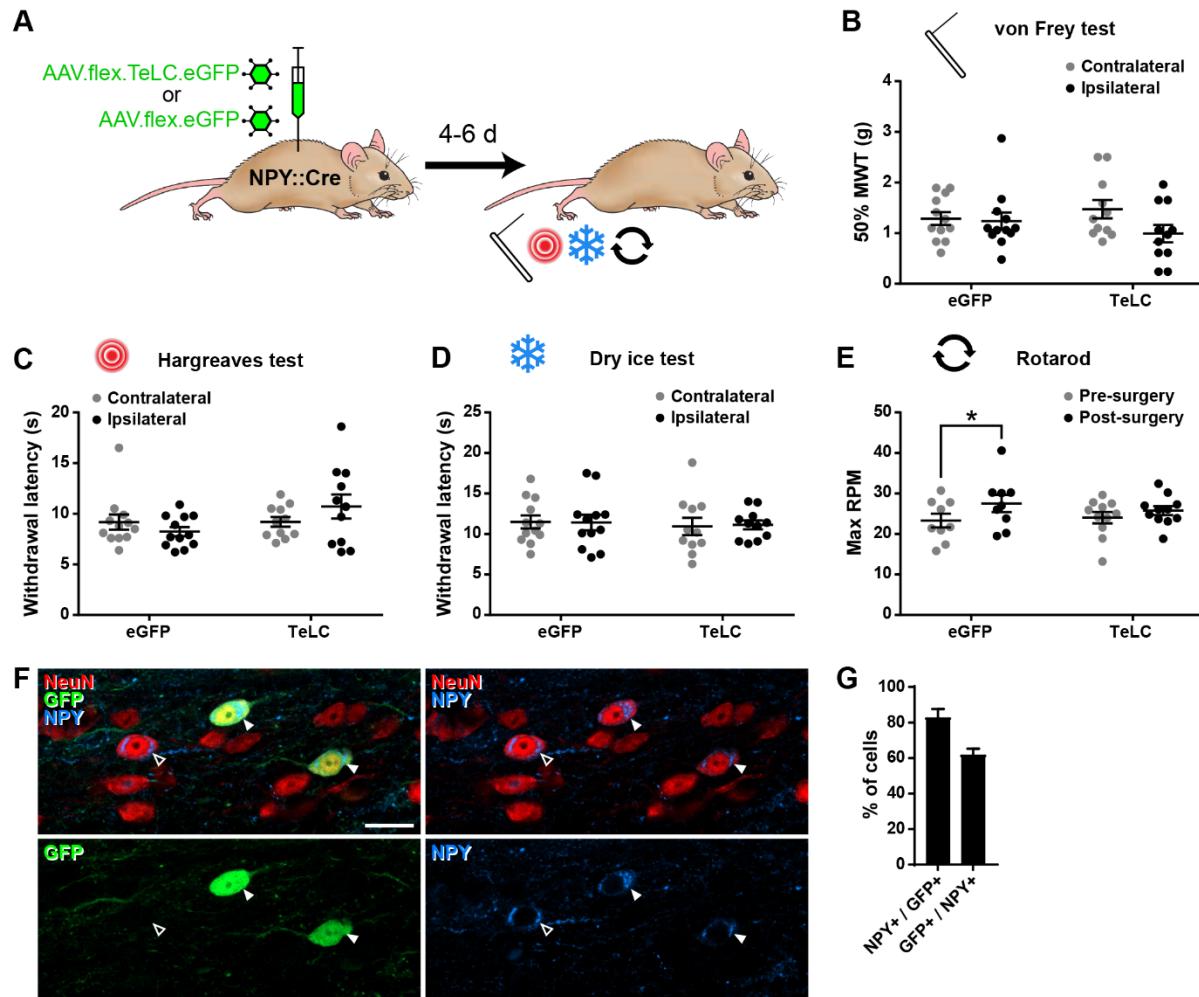

1658

1659 **Figure 2 – figure supplement 2. Characterisation of optogenetic activation of**
1660 **NPY-INs. (A)** The experimental approach used to generate data presented in **B** and
1661 **C.** **(B, C)** Representative traces showing optogenetically evoked action potential
1662 firing **(B)** and currents **(C)** in an NPY-IN labelled with ChR2-eYFP. Each trace
1663 displays 6 stimuli. **(D)** The experimental approach used to generate data presented
1664 in **E** and **F.** **(E)** Representative traces of oIPSCs recorded in unlabelled (ChR2-
1665 eYFP-negative) cells in the absence (Baseline) and presence of NBQX and D-APV,
1666 6 individual oIPSCs are shown in grey and an averaged trace in black. **(F)**
1667 Quantification of the mean peak amplitude of oIPSCs recorded in the absence and
1668 presence of NBQX and D-APV. Blue boxes in **B, C** and **E** denote the period of
1669 optogenetic stimulation. Data are shown as individual matched values with mean \pm
1670 SEM.

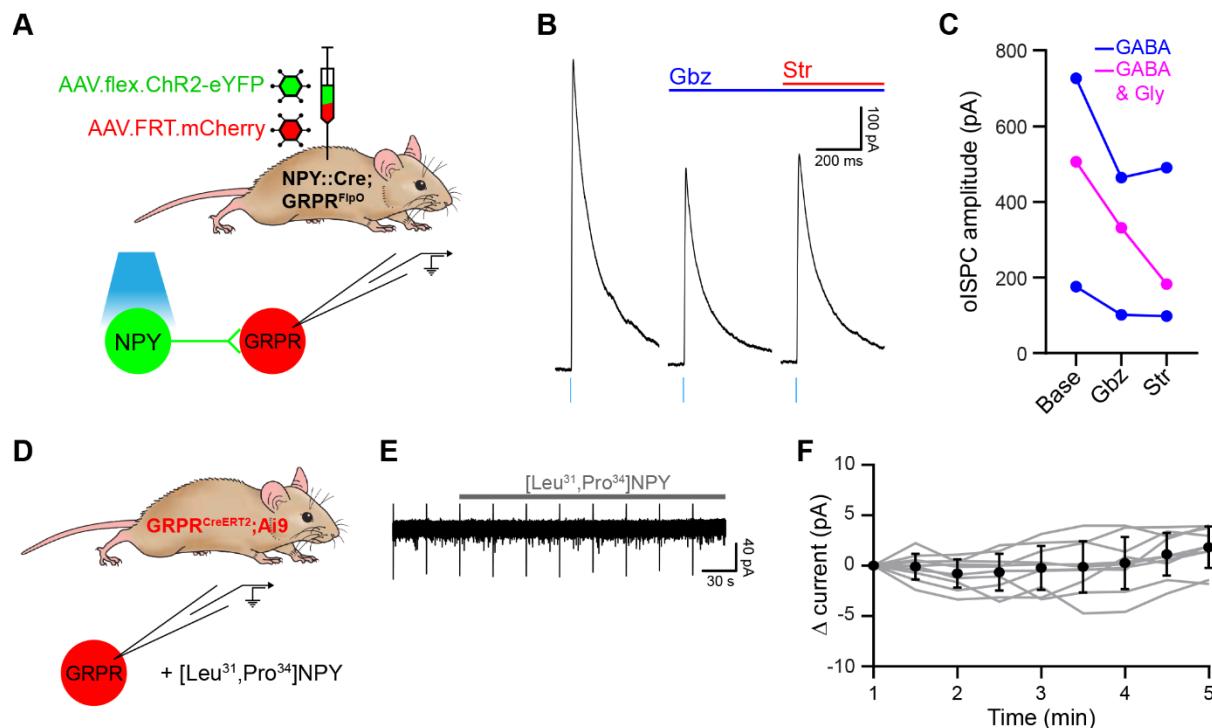
1671


1672 **Figure 3 – figure supplement 1. Injection of 5 mg/kg clozapine-N-oxide does**
1673 **not result in off-target behavioural effects. (A)** The experimental approach used
1674 to generate data presented in this figure. Eight naïve wildtype C57BL/6 mice were
1675 injected with 5 mg/kg CNO or vehicle control using a cross-over experimental design
1676 and tested for mechanical withdrawal thresholds (MWT; **B**), as well as withdrawal
1677 latencies to heat (**C**) and cold (**D**) on both hindpaws. General motor co-ordination
1678 was assessed using the accelerating rotarod test (**E**). No significant differences were
1679 seen between treatments for either paw in any of the nociceptive tests (repeated-
1680 measures 2-way ANOVA with Šidák's post-test), or in the maximum RPM in the
1681 accelerating rotarod test (paired t test). Data are shown as individual values with
1682 mean \pm SEM.

1683

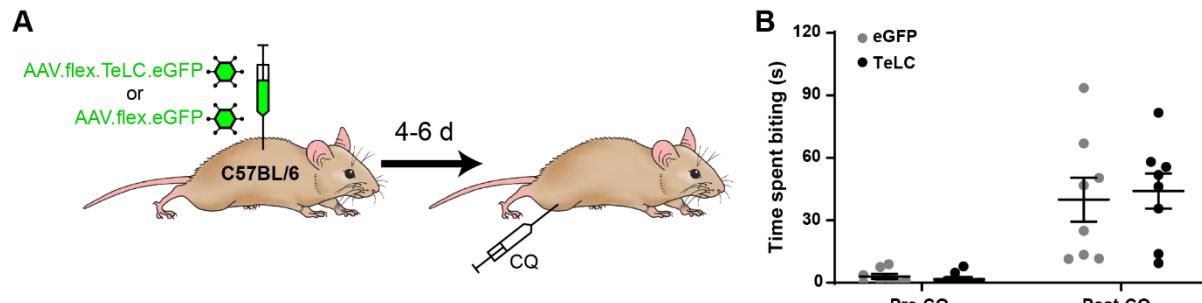

1684 **Figure 4 – figure supplement 1. Spared nerve injury results in minimal**
1685 **ipsilateral hM3Dq expression in L4/5 DRG of AAV.flex.hM3Dq-mCherry spinal-**
1686 **injected NPY::Cre mice.** Maximum-intensity projections of confocal image stacks
1687 from contralateral and ipsilateral (with regards to AAV injection and spared nerve
1688 injury) L4 and L5 whole-mount dorsal root ganglia (DRG) from an AAV.flex.hM3Dq-
1689 mCherry spinal-injected NPY::Cre mouse perfused 4 weeks following SNI surgery.
1690 As expected, no hM3Dq-mCherry-positive cells were detected in the contralateral

1691 DRGs. On the ipsilateral side, a small number of hM3Dq-mCherry-positive cells were
1692 observed in both L4 and L5 DRGs (filled arrowheads mark examples). Scale bar =
1693 200 μ m. The table shows quantification of mCherry-labelled cells on the contralateral
1694 and ipsilateral sides (n = 4; values are mean \pm SEM (*range*)).



1695

1696 **Figure 4 – figure supplement 2. Gabapentin administration, but not**
1697 **chemogenetic activation of NPY-INs, induces conditioned place preference**
1698 **following spared nerve injury. (A)** The experimental approach taken to generate
1699 the data presented in **(B)**. **(B)** Neither wildtype control nor AAV.flex.hM3Dq-mCherry
1700 spinal-injected NPY::Cre mice displayed a conditioned place preference (CPP) to i.p.
1701 CNO following SNI (n = 7; RM 2-way ANOVA). Data per individual mouse, also
1702 presented in Figure 4H. **(C)** The experimental approach taken to generate the data
1703 presented in **(D)**. **(D)** Wildtype mice display CPP to i.p. gabapentin administration
1704 following SNI (n = 6; *p = 0.016; paired t-test). Acc. = acclimation; Pre. = pre-
1705 conditioning; Con. = conditioning. Data are shown as individual matched values in
1706 **(B)** and individual values with mean \pm SEM in **(D)**.



1723 injections of AAV.flex.TeLC.eGFP. Two NeuN-immunoreactive cells (red) that co-
1724 express GFP (green) and NPY (blue) are marked with filled arrowheads. Another
1725 NPY-positive cell that does not express GFP is marked with an open arrowhead.
1726 Scale bar = 20 μ m. **(G)** Quantification of the overlap between GFP and NPY
1727 immunoreactivity in laminae I-III of the L4 segment of 4 NPY::Cre mice that received
1728 spinal injections of AAV.flex.TeLC.eGFP. Data are shown as individual values with
1729 mean \pm SEM in **(B-E)** and mean \pm SEM in **(G)**.

1730

1731 **Figure 5 – figure supplement 2. NPY-INs generate GABAergic and glycinergic**
1732 **inhibition of GRPR-INs. (A)** The experimental approach used to generate data
1733 presented in **B** and **C**. **(B)** Representative oIPSCs recorded in a GRPR-IN in the
1734 absence and presence of gabazine (Gbz) and strychnine (Str). Traces show an
1735 average of 6 stimuli, light blue bars denote period of optogenetic stimulation. **(C)**
1736 Quantification of the mean peak amplitude of oIPSCs recorded in the absence
1737 (Base) and presence of gabazine and strychnine. **(D)** The experimental approach
1738 used to generate data shown in **E** and **F**. **(E)** Representative trace recorded in a
1739 GRPR-IN prior to and during application of the NPY Y1R receptor agonist,
1740 [Leu³¹,Pro³⁴]-neuropeptide Y. **(F)** Quantification of the change in current recorded
1741 during the application of [Leu³¹,Pro³⁴]-Neuropeptide Y, compared to the mean
1742 current measured during the 1 minute baseline period. All cells tested (n=10) were
1743 classified as non-responders as they did not display an outward current of at least
1744 5pA. Grey lines denote trajectories for individual cells, black dots and bars denote
1745 mean ± SD.

1746

1747 **Figure 6 – figure supplement 1. Injection of AAV.flex.TeLC.eGFP does not**
1748 **cause exaggerated itch in wild-type mice. (A)** The experimental approach used to
1749 generate data shown in **B**. AAV.flex.eGFP (eGFP) or AAV.flex.TeLC.eGFP (TeLC)
1750 were injected into the L3 segments of wild-type mice (n = 8 for both groups), and
1751 itch-related behaviour was assessed 4-6 days later. **(B)** No differences were
1752 observed in the time spent biting the calf between the eGFP and TeLC groups in the
1753 30 minutes prior to (Pre-CQ) or following (Post-CQ) injection of chloroquine (p =
1754 0.9891 and 0.8919, respectively, repeated-measures 2-way ANOVA with Šidák's
1755 post-test). Data are shown as individual values with mean \pm SEM.