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Abstract

The heterogeneity of colorectal cancer (CRC) contributes to substantial

differences in patient response to standard therapies. The consensus molecular

subtypes (CMS) of CRC is the most widely-used gene expression-based

classification and has contributed to a better understanding of disease

heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity

restricts its clinical application, stressing the necessity of further characterizing

the composition and architecture of CRC. Here, we used Spatial

Transcriptomics (ST) in combination with single-cell RNA sequencing

(scRNA-seq) to decipher the spatially resolved cellular and molecular

composition of CRC. In addition to mapping the intratumoral heterogeneity of

CMS and their microenvironment, we identified cell communication events in

the tumor-stroma interface of CMS2 carcinomas. This includes tumor

growth-inhibiting as well as -activating signatures, such as the potential

regulation of the ETV4 transcriptional activity by DCN or the PLAU-PLAUR

ligand-receptor interaction. Our data show the power of ST to bring the

CMS-based classification of CRC to another level and thereby gain useful

molecular insights for personalized therapy.
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1. Introduction

CRC is a leading cause of cancer-related death worldwide with over 1.85 million

diagnosed cases and 850 000 deaths annually1. CRC mortality rates have

decreased in recent years as a result of treatments tailored to the molecular and

pathological features of the different groups of patients2. However, the

inter-patient and intra-tumor heterogeneity of CRC entails different responses

to standard treatments, such as chemotherapy or immunotherapy, and provides

a profound clinical hurdle3. CRC heterogeneity encompasses differences at the

genomic, epigenomic and transcriptomic level as well as variations of the

stroma and immune landscape, i.e. the composition of the tumor

microenvironment (TME)4.

In 2015, the CRC subtyping consortium performed an integrative analysis on

different large-scale gene expression datasets encompassing over 4000 CRC

patients. Their study resulted in a gene expression-based subtyping

classification of CRC into four CMS with distinguishing features5. CMS1 is

hypermutated, microsatellite unstable and characterized by strong immune

activation. CMS2 and CMS3 are epithelial subtypes, with CMS2 displaying

marked WNT and MYC signaling activation, whereas CMS3 presents noticeable

metabolic dysregulations. CMS4 features a prominent TGFβ activation, stromal

invasion and angiogenesis2. The CMS classification framework is widely used

and contributed to a better understanding of the diversity of CRC and disease

prognosis. Nevertheless, its clinical impact on decision-making for CRC patients

is still limited for several reasons6,7. First, the CMS classification system fails to

assign up to 13% of the CRC tumors, which are thought to display mixed or

transitioning CMS phenotypes8. Moreover, it relies on bulk sequencing of CRC

tumors, which lacks the resolution to comprehensively define the cell content

and disentangle the heterogeneity of CRC tumors and their intricate TME9.

Indeed, the CMS classification displays large intra-tumor heterogeneity as

revealed by the assignment of different subtypes to samples extracted from the

same CRC patient10,11. Recently, several studies applied scRNA-seq on CRC

samples to further reveal the diversity of and the dynamic relationships

between cellular components of CRC tumors and their TME7,9,12–14. These
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analyses disclosed CMS features at the individual tumor cell level and stressed

the high prevalence of multiple CMS phenotypes in the same patient7,9,12.

Nevertheless, the spatial distribution and complex network of cellular

interactions between the different CMS and their respective TMEs are still

poorly understood.

Recent technological advances in next-generation sequencing- and

imaging-based approaches have established the power of ST to systematically

measure gene expression levels throughout tissue space15. In oncology, this

technology adds another dimension to the classical histological readouts by

enabling the integration of morphology, spatial localization and transcriptomic

profile. Accordingly, ST paves the way towards a better understanding of cancer

heterogeneity, TME composition, and complex cellular interactions. In this

context, ST has been employed to study breast cancer16, prostate cancer17,

melanoma18 and CRC. Concerning CRC, Wu et al.19 used ST to support their

results obtained with scRNA-seq, describing immune pressure-driven evolution

of metastasis and response to neoadjuvant chemotherapy. The ST data

generated in that study were integrated with bulk transcriptomics of CRC

patients by Peng et al.20 to explore the crosstalk between cancer-associated

fibroblast and other components of the TME. In line with this, Qi et al21.

revealed the interaction between FAP+ fibroblast and SPP1+ macrophages by

using scRNA-seq and supporting their results with ST. In addition, Zhang et al.22

applied ST to study inflammatory patterns in proficient mismatch repair CRC.

In these publications, the use of ST was mainly intended to support the results

obtained with other technologies and did not specifically address the CMS of

CRC.

In this work, we intend to improve our understanding of the spatial properties

and heterogeneity of the CMS of CRC by applying ST on 14 samples from a

heterogeneous cohort of seven CRC patients. Using a deconvolution-based

approach, we first spatially characterized the cell type composition of the CRC

tumors and their microenvironment. We associated the different CMS with

distinctive molecular and morphological features and demonstrated the power

of ST to dissect tumor heterogeneity. When we explored cell-to-cell

4

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.01.23.525135doi: bioRxiv preprint 

https://paperpile.com/c/a1C07B/3mehx+xtlb0+q0a6Z
https://paperpile.com/c/a1C07B/kNN7V
https://paperpile.com/c/a1C07B/kqq5h
https://paperpile.com/c/a1C07B/xeDfB
https://paperpile.com/c/a1C07B/xj9AU
https://paperpile.com/c/a1C07B/FDOos
https://paperpile.com/c/a1C07B/eFaqY
https://paperpile.com/c/a1C07B/GLSZQ
https://paperpile.com/c/a1C07B/68ULp
https://doi.org/10.1101/2023.01.23.525135
http://creativecommons.org/licenses/by-nd/4.0/


communication events at the tumor-stroma interface in CMS2 carcinomas, we

revealed well characterized and novel interactions including tumor

growth-inhibiting as well as -activating signatures. Importantly, we supported

our findings by analyzing an external ST CRC dataset. Overall, our results pave

the way for a better understanding of CRC heterogeneity that builds on the

current CMS characterization. We anticipate that future studies can take

advantage of the power of ST to stratify treatments tailored to individual

patients and thereby help the use of personalized and/or combinatorial therapy

in CRC.

2. Results

2.1. ST and scRNA-seq-based deconvolution reliably reveal
CRC cell type composition

We processed fresh-frozen (FF) resection samples obtained from seven CRC

patients for ST using 10x Genomics VISIUM aiming at exploring spatial

molecular heterogeneity in CRC (Fig. 1a, Table 1). We considered two serial

sections per patient to generate technical replicates. Overall, quality control

displayed favorable metrics with a median number of genes per spot ranging

from 1233 to 5457 (Supplementary Fig. S1 and Methods). We evaluated the

similarity between technical replicates and the heterogeneity among samples

from different patients at the morphologic and transcriptomic level (Fig. 1b and

Methods). The pathologists examined and annotated the samples regarding

tissue type and cellular morphology.

To spatially map cellular composition per spot in our set of CRC samples, we

applied the Cell2Location deconvolution method23 using as reference a recently

published scRNA-seq dataset12 (Methods and Supplementary Table 1). In their

study, Lee and colleagues explored the cellular landscape of different CRC

subtypes, characterizing in detail cellular composition and suggesting

intercellular interactions. They independently analyzed samples from a Korean

cohort (23 patients) and a Belgian cohort (6 patients). Here, we focused on

results obtained using the more comprehensive Korean cohort, which contains

65,362 well-annotated non-neoplastic-, CMS-classified neoplastic, immune-,
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stromal-, and endothelial cells. We note that the data and annotations from the

Belgian cohort led to overall comparable results (Supplementary Note 1).

We then assessed the results of the deconvolution by exploring the similarity of

the estimated cell type abundances per spot between technical replicates. First,

we found highly comparable proportions between replicates when considering

the major cell types present across samples (Fig. 1c and Supplementary Table 1).

In contrast, proportions greatly differed across individuals: for instance, samples

from patient S7_Rec/Sig comprised <= 5% tumor cells. This is consistent with

the histology profile of this patient mainly containing non-neoplastic tissue, as

described in Table 1. We next examined the correlation of cell subtype

abundances in anatomical structures of variable size that were considered

equivalent between replicates based on their gene expression profiles (Fig. 1d,

Supplementary Table 1 and Methods). Excluding a single low quality sample

(Methods), Pearson’s correlation coefficients were above 0.9, highlighting the

similarity between technical replicates in the deconvolution results.

To further determine the accuracy of the deconvolution, we evaluated whether

the predicted cell types are located at their corresponding anatomic tissue

compartment. To achieve this, the pathologists manually assigned a category to

each spot based on the tissue type and composition (Methods). Then, we

computed proportions of the major cell types abundances in these different

tissue categories (Supplementary Fig. S2). As expected, non-neoplastic epithelial

cells were the most abundant in the non-neoplastic epithelium (89%), whereas T

and B cells were the prevalent types in the immune cell aggregates (IC) located

at the lamina propria (83%) and at the stromal or muscularis region (68%). In

tumor-annotated spots, the most predominant categories were tumor cells

(36%), T cells (26%) and B cells (25%). At the cell subtype level, non-neoplastic

mucosal cells, such as mature enterocytes type 1 and 2, goblet cells and

stem-like transiently amplifying (TA) cells, were significantly enriched in spots

labeled as non-neoplastic epithelium, lamina propria or mixed (Fig. 1e and

Methods). In contrast, tumor cells, CD19+CD20+ B cells and CD8+ T cells were

mainly enriched in spots classified as tumor or tumor-stroma mixed. Other

immune cells, including CD4+ T-cells, were mostly enriched in spots identified

as immune-cell rich in stromal regions and/or IC. To frame these global results
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in our individual samples, we visualized the estimated number of different cell

subtypes, overlaid with the pathologists’ tissue annotations (Figs. 1f-h and

Supplementary Figs. S3-S9).

In summary, the estimated cell type abundances were highly comparable

between technical replicates and their spatial distribution was in line with the

pathologists’ assessment for all analyzed samples, demonstrating the reliability

of the ST data and our deconvolution results. Consequently, we further used

these to spatially characterize the CMS signatures and the TME in our set of

CRC samples.

2.2. Spatially resolved consensus molecular subtyping of CRC
and their key molecular features

Deconvolution-based estimates of CMS tumor cell proportions revealed a

predominance of CMS2 cells in the S2_Col_R (94%), S4_Col_Sig (98%), S5_Rec

(81%) and S6_Rec (90%) patients (Fig. 2a); hereafter referred to as CMS2 tumors.

A mixed abundance of CMS1 and CMS2 tumors was identified in the S1_Cec

(49% and 41% respectively) and S3_Col_R (65% and 29% respectively) patients;

hereafter designated mixed CMS1-CMS2 tumors. Of note, S1_Cec harbored a

BRAFV600E mutation (see Table 1), in line with previous findings linking this

mutation to the CMS1 phenotype5. In addition, we detected CMS3 tumor cell

signatures in the S1_Cec (10%) and S5_Rec (16%) patients. In the non-neoplastic

S7_Rec/Sig sample, the few spots displaying a tumorigenic signal were mainly

classified as CMS3 (60%) and, to a lesser extent, as CMS1 (19%). This is in

agreement with the study by Lee et al12, in which CMS3 tumor cells were also

observed to co-occur with CMS1 or CMS2. The CMS4 signatures were minor

and multifocally distributed in our samples, but overlapped with anatomical

regions displaying an invasive phenotype, suggesting an accurate spatial

mapping. Supplementary Figs. S10-S16 show the overlay of the pathologists’

tissue annotations with the estimated abundance of the different CMS tumor

cells across our set of samples.

As an alternative approach towards CMS classification, we applied CMScaller24

on pseudo-bulk RNA-seq generated by either pooling together all the spots or
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only the tumor-annotated spots for each sample (Supplementary Fig. S17 and

Methods). The patients with mixed CMS1-CMS2 tumors were both labeled as

CMS1, suggesting that their large content of T and B cells (see Fig. 1c) was

driving their classification towards CMS1 rather than the immune-deprived

CMS2. Surprisingly, the S6_Rec patient was classified as CMS4 despite

containing almost only CMS2-like tumor cells (90% of the total tumorigenic

abundance) according to the deconvolution. The non-neoplastic S7_Rec/Sig

sample was also categorized as CMS4. The high stromal content of these two

patients may be driving these results, as suggested by previous studies reporting

that CMS4 classification is highly influenced by marker genes of

cancer-associated fibroblast and other stromal cells9,25,26. From the remaining

patients classified as CMS2 by the deconvolution, uniquely S5_Rec was

consistently classified as CMS2 by CMScaller. S2_Col_R and S4_Col_Sig were

categorized as diverse subtypes in different replicates. These results underline

how adjacent tissue components influence CMS classification approaches based

on bulk transcriptomics, highlighting the importance of relying on scRNA-seq

and ST to improve the characterization of CRC tumors.

In order to characterize the TME composition in our samples, we examined

their immune and stromal cell proportions (Figs. 2b-e). As described above,

mixed CMS1-CMS2 contained larger proportions of T and B cells than the other

samples, as expected from the immune-rich phenotype associated with CMS15.

Their most abundant subtypes were CD8+T and CD19+CD20+ B cells, whereas

they contained lower proportions of regulatory T cells (Tregs) as compared to

CMS2 samples. Tregs inhibit antitumor immunity27 and therefore their

presence in the surroundings of the CMS2 carcinomas may prevent immune

infiltration. Myofibroblasts were the predominant stromal cell type in mixed

CMS1-CMS2 tumors, whereas stromal cell types in CMS2 neoplasms were more

heterogeneous. These results are in line with Lee et al.12 and Khaliq et al.9 who

also reported a dominance of myofibroblast in CMS1 and CMS4 tissues.

Next, to associate these results with histological and spatial features, we

computed the enrichment or depletion of the different cell subtypes in the

tissue compartments defined by pathologists’ spot annotations (Fig. 2f and

Methods). This analysis revealed the association of CMS1 and CMS2 signatures

8
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with the tumor-annotated spots. Of note, CMS3 signatures were confined to the

non-neoplastic mucosa in all of our samples. This result can be attributed to the

normal-like gene expression patterns of CMS3 tumors described in Guiney et

al.5. Immune cells were predominantly associated with the stroma in CMS2,

whereas in mixed CMS1-CMS2 tumors, CD19+CD20+ B cells and CD8+ T cells

were also found in the neoplastic tissue. These results were further supported by

an integrative co-localization analysis of the different cell subtypes based on

their abundance maps (Supplementary Fig. S18 and Methods).

The overlay of the pathologists' tissue annotations with the deconvolution

results further revealed co-localization of CMS1 and CMS2 signatures in the

S1_Cec and S3_Col_R samples (Figs. 2g-h). In S3_Col_R, a stronger CMS2 or

CMS1 signature was associated with tubular or solid growth pattern respectively,

as described in Thanki et al.28 (see Supplementary Fig. S12). As expected,

immune cells, such as CD8+ T and CD19+CD20+ B cells, were abundant in the

CMS1- and devoid in the CMS2-predominant region (Figs. 2i-j). In the

non-neoplastic S7_Rec sample, the CMS1 signature was confined to the rectal

gland, whereas CMS3 was associated with the mucosa (see Supplementary Fig.

S16). We also delineated stromal 2 signatures as spatially adjacent to tumor

lobes. Larger stroma bundles displayed a myofibroblast and a minor stromal 3

signature (Supplementary Fig. S19). Selected features of the TME of individual

tumors and semiquantitative pathologists’ gradings are detailed in

Supplementary Table 2.

To identify further molecular features associated with the different CMS in a

spatially resolved manner, we performed an integrative analysis across all

samples and explored the per spot correlation between tumor abundance and

transcription factor (TF) and pathway activities (Figs. 2k-l and Methods). For the

CMS1 tumor cells, we captured the expected correlation with JAK-STAT29 (Fig.

2m) and immune-related pathways, such as the TNF⍺30 and NFkB. In addition, a

correlation with the EGFR and MAPK pathway was identified. The activation of

the MAPK pathway is well known in the hypermutated CMS131. For the CMS2

tumor cells, we found the expected correlation with the WNT and VEGF

pathways32 (Figs. 2n-p). At the TF activity level, CMS2 abundance was associated

with high expression of MYC-regulated genes5, whereas lower transcriptional
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MYC activities were detected in the non-neoplastic mucosa containing CMS3

signatures (Figs. 2q-s). Noteworthy, E2F4 and MYC TF activity maps displayed

similar patterns suggesting an interplay between these TFs in the regulation of

target genes implicated in CMS233 (Fig. 2t and Supplementary Fig. S20).

Hence, our deconvolution-based approach spatially mapped the different CMS

and TME cell types, revealing their association to key molecular and histological

features. In addition, we showed the ability of ST to detect and characterize

spatially heterogeneous CMS phenotypes.

2.3. ST maps the inter-patient and intra-patient heterogeneity of
CMS2 tumors

ST enables the exploration of the transcriptomic diversity of tumors and their

TME at an unprecedented level. While the integrative analysis of our samples

captured the core molecular features of the different CMS subtypes, we

subsequently performed an in-depth assessment of individual samples to

delineate the inter-patient and intra-tumor heterogeneity of our four CMS2

carcinomas (S2_Col_R; S4_Col_Sig; S5_Rec; S6_Rec).

In order to depict inter-patient heterogeneity between CMS2 tumors, we first

extracted all tumor-annotated spots (Supplementary Fig. S21 and Methods).

These spots possessed CMS2-dominated transcriptomes as their CMS2 cell

abundance ranged from 65% to 84% of the total estimated number of cells

(Supplementary Fig. S22). Nevertheless, there were noticeable differences

between patients, as revealed by differential gene expression, pathway and TF

activity analyses (Figs. 3a-d, Methods and Supplementary Table 3). This

observation is in accordance with previous studies suggesting that CMS2 tumors

are highly heterogeneous9,34. In tumors obtained from the S4_Col_Sig and

S5_Rec patients, genes involved in mTORC1 signaling, a known player in the

progression of normal to neoplastic cells in CRC at early stages of the

tumorigenesis35, were overrepresented. However, genes participating in the

mTORC1 pathway were differentially expressed between these two patients

(Supplementary Table 3), suggesting alternative signaling cascades. For instance,
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NUPR1, which was shown to promote metastasis in CRC by activating the

PTEN/AKT/mTOR signaling pathway36 was only highly expressed in CMS2

tumor cells derived from the S4_Col_Sig patient (Fig. 3b). At the pathway level,

we identified lower EGFR signaling activity in the tumor spots originating from

the S2_Col_R and S4_Col_Sig patients (Fig. 3c and Supplementary Fig. S23).

KRAS mutations were screened and not detected in these patients (see Table 1),

in line with the assumption that the EGFR signaling pathway is usually activated

in CMS2 tumors at the expense of KRAS mutations37. FOXM1 displayed higher

transcriptional activity in S6_Rec, when compared to the tumor spots derived

from the other patients (Fig. 3d and Supplementary Fig S24). This signal might

be related to residual stromal cells in spots annotated as tumor and is consistent

with the pseudo-bulk classification of this tumor as CMS4.

Multiple factors, such as the inherent heterogeneity of CMS2 tumor cells or

their different anatomical origin can account for these inter-patient

transcriptomic differences. The composition and spatial organization of the

TME may also have a major impact on their transcriptomic profile. ST enables

assessing the latter in a unique manner. Towards this end, we selected the spots

surrounding CMS2 tumors and explored their cell type abundance profiles for

each sample (Fig. 3e and Methods). Then, using these spots, we generated

pseudo-bulk RNA-seq data and evaluated differential pathway activity among

patients (Fig. 3f and Methods). Interestingly, we observed a depletion in the

number of myofibroblasts for the S5_REC patient (Supplementary Fig. S25a).

This might explain the lower activity of the TGFβ pathway38 in the tumor and

surrounding regions and be indicative of earlier tumor stages with reduced

stromal content. We also detected an enrichment of mature enterocytes type 2,

highlighting the close morphological and spatial association of non-neoplastic

and neoplastic cells in this sample (Supplementary Fig. S25b), and underlining

the potential of ST to assess surgical margins. On the other hand, S4_Col_Sig

displayed a higher proportion of SPP1+ macrophages (Supplementary Fig. S25c),

which are key to creating an immunosuppressive TME39. This could relate to

the lower activities of immune response associated pathways such as NFkB and

TNFa signaling observed in the tumor of this patient.
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CMS2 tumors can also exhibit a large degree of heterogeneity within the same

patient. To illustrate and characterize this intra-tumor heterogeneity, we first

selected the S2_Col_R_Rep1 sample and categorized its tumor annotated spots

in three different regions based on their distance to non-tumor annotated spots

(Methods). The regions were termed as peripheral-, intermediate -and central

tumor. In this manner, we established a zonation model allowing us to

investigate the genes and processes that are more active in the tumor boundary

or in its internal solid area. Differential gene expression analysis between these

zones revealed the anticipated overrepresentation of genes involved in EMT

and angiogenesis in the peripheral tumor40 (Supplementary Fig. S26a,

Supplementary Table 4 and Methods). In this region, we detected high

expression of several fibroblast-specific genes, such as FBLN1 or COL3A1

(Supplementary Fig. S27), which could originate from few reminiscent stromal

cells located in tumor-annotated spots. A more intriguing result is the

upregulation of SPARC (Fig. 3g), a gene whose expression in cancer cells (not in

stromal cells) was recently shown to control tumor progression and prognosis in

CRC41. In the central solid tumor, we identified several upregulated genes known

to be involved in hypoxic response and cholesterol homeostasis (Supplementary

Fig. 26b and Supplementary Table 4), in accordance with the low oxygen

conditions expected in this region42. Fig. 3h shows the spatial expression pattern

of SCD, which we consider of particular interest as its upregulation in hypoxic

tumors is linked to the metabolic reprogramming required to promote growth

and metastasis of cancer cells43, including CRC44. Additional examples of

upregulated genes in the central tumor were INSIG1 and MELTF

(Supplementary Fig. S28), whose role in cancer is not yet clearly defined.

We then selected the S5_Rec_Rep1 sample and sub-clustered the

tumor-annotated spots using gene expression at enhanced resolution (Fig. 3i

and Methods). The clustering revealed three different regions defined by various

differentially expressed genes (Supplementary Fig. S29), biological processes

(Supplementary Fig. S30 and Supplementary Table 5) and pathway activities

(Methods). Of note, some tumor-associated pathways, such as EGFR and MAPK,

displayed marked differences between subclusters (Supplementary Figs. S31a-b).

On the other hand, the activity patterns of WNT and VEGF pathways, hallmarks
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of CMS2 tumors, presented a more homogeneous distribution among

subclusters (Supplementary Figs. S31c-d). We further detected increased TGFβ

pathway activity in subcluster number 1 (Fig. 3j), pointing to the tumor regions

that most likely proliferate and undergo metastatic processes45.

Together, our results illustrate the ability of ST to delineate the inter- and

intra-tumor heterogeneity of CMS2 carcinomas and to define the composition

of their TME. This is crucial to better understand differential patient response

to treatments such as immunotherapy. In addition, the differential spatial

patterns of key molecular processes involved in cancer progression, such as high

TGFβ pathway activity, can help designing tailored treatments or new

combination therapies.

2.4. ST charts cell-to-cell communication processes modulating
CMS2 tumor progression

ST reveals the cellular organization within tissues, providing a unique

opportunity to study cell communication events. Accordingly, we explored such

processes occurring in the tumor-stroma interface and their potential role in

CMS2 tumor progression. In addition, we independently used the scRNA-seq

data from Lee et al.12 to support and refine our results.

In the previous section, we used ST to highlight and characterize the

heterogeneity of CMS2 tumors and their TME at the transcriptome level. To

study common biological processes across our CMS2 tumor samples, we

hypothesized that some transcriptional programs modulating tumor

progression may display higher similarity than individual gene expression

patterns. We consequently merged the spots from our four samples displaying

an unequivocal CMS2 phenotype (S2_Col_R; S4_Col_Sig; S5_Rec; S6_Rec),

and clustered them based on their TF activity profiles (Methods). Indeed, the

UMAP embedding and clustering revealed higher similarity than that of gene

expression-based results (Fig. 4a and Supplementary Fig. S32). Cluster 0,

hereafter referred to as the tumor cluster, contained spots mainly annotated as

tumor (49%) and tumor&stroma_IC med to high (26%) across replicates and patients
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(Fig. 4d and Supplementary Figs. S33-S34). In the same line, cluster 1, hereafter

referred to as the TME cluster, included spots predominantly annotated as

stromal regions (63% as stroma_fibroblastic_IC med to high and 20% as

tumor&stroma_IC med to high), which were lying in the neighborhood of the

tumor in every sample (Fig. 4d, Supplementary Figs. S33-S34). As expected, we

found MYC and E2F4 among the most differentially activated TFs in the tumor

cluster (Fig. 4b, Supplementary Fig. S35 and Methods). In the TME cluster, we

identified several TFs known to play a pivotal role in cancer progression such as

JUN46 and ETS147 (Fig. 4c and Supplementary Fig. S35). Of note, cluster 6 also

presented higher transcriptional activity of MYC and E2F4 (Supplementary

Figs. S34-S35) and spots mainly annotated as tumor (50%) and tumor&stroma_IC

med to high (30%) (Fig. 4d). However, almost all the spots belonging to cluster 6

come from the S6_Rec patient (see Supplementary Figs. S32-S34). It was

therefore not considered for subsequent analysis.

To study cell communication events, we first selected highly expressed ligands

in the tumor and TME clusters (Methods). We then used Misty48 to estimate the

potential influence of the expression of these ligands on modulating the activity

of TFs that are operating in the TME, such as the aforementioned JUN and ETS1

(Fig. 4e and Methods). To place these results into a mechanistic context, we

inferred the most likely signaling cascades connecting the top predicted

ligand-TF associations (black squares in Fig. 4e). To do so, we first investigated

inter-cellular ligand-receptor interactions between the tumor and the TME

clusters (Fig. 4f and Methods). Then, using a network-based approach, we

connected the top predicted ligand-receptor interactions with our set of active

TFs in the TME (Fig. 4g and Methods). To define the cell types involved in these

processes, we independently computed TF activity and inferred ligand-receptor

interactions on the patients classified as CMS2 in the scRNA-seq dataset

published by Lee et al.12 (Figs. 5a-d, Supplementary Fig. 36 and Methods).

We predicted that the stroma-secreted DCN may modulate the transcriptional

activity of ETV4, MEIS1 and SPI1 (Figs. 4e, 5e-f and Supplementary Figs. S37a-c).

ETV4 is known to promote tumor invasion in CRC by regulating the expression

of metalloproteinases49. As revealed by our network-based analysis (Fig. 4g), this
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regulation occurs in response to the MAPK signaling pathway, which is in turn

activated by the binding of EGF to its putative EGFR receptor50. Substantial

abundance of DCN can obstruct that interaction, as it directly binds to EGFR

and downregulates its expression, preventing tumor progession51. Our

ligand-receptor analysis identified the DCN-EGFR interaction targeting stromal

or CMS2 tumor cells (Figs. 4f, 5c-d). In line with these findings, the average

transcriptional activity of ETV4 appears to be lower in cell types targeted by the

interaction, such as myofibroblasts, than in non-targeted cells, like macrophages

(Fig. 5a). The family of MEIS TFs can act as tumor suppressors or oncogenes

under different cellular conditions and cancer types and their target genes are

widely misregulated in CRC52. Our results suggest that DCN may influence the

transcriptional activity of MEIS1 through the downstream signaling of the SRC

kinase family (Fig. 4g), which is known to promote metastasis and cause

chemotherapeutic drug resistance in CRC53. Finally, SPI1 participates in the

transcription of several genes involved in immune cell differentiation and

tumor progression54. Our network-based analysis revealed that DCN may

modulate the activity of SPI1 via the well-characterized STAT-mediated EGFR

signaling axis55 (Fig. 4g). Of note, we identified additional interactions where

DCN is known to play a protective role in tumor progression. Namely, DCN

interacts with the MET receptor to inhibit tumor growth and angiogenesis and

promotes inflammation via interactions with TLR2 and TLR4 receptors56

(Supplementary Fig. 37d) . Given its eminent protective role, high expression

levels of DCN in stromal cells around CMS2 carcinomas could be expected to be

indicative of non-proliferative tumor regions. On the other hand, DCN

expression levels may also be associated with a protective response against

tumor progression associated events, such as intense metastatic activities (Fig

5g). In sum, our results provide mechanistic insights about how DCN expression

may modulate signaling cascades involved in CRC tumor progression.

We also found that the expression of the transmembrane protein RNF43 may

modulate the activity of several TFs operating in the TME, including JUN and

TEAD4 (Figs. 4e, 5h-i and Supplementary Figs. S38a-b). Previous studies in

colorectal and pancreatic cancer suggest that RNF43 possesses a tumor

suppressor role through the inhibition of the WNT signaling pathway. Indeed,

15

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.01.23.525135doi: bioRxiv preprint 

https://paperpile.com/c/a1C07B/xCAAX
https://paperpile.com/c/a1C07B/kiGYT
https://paperpile.com/c/a1C07B/hAY4h
https://paperpile.com/c/a1C07B/rxsRZ
https://paperpile.com/c/a1C07B/Yd7cZ
https://paperpile.com/c/a1C07B/PZGUm
https://paperpile.com/c/a1C07B/HT9J7
https://doi.org/10.1101/2023.01.23.525135
http://creativecommons.org/licenses/by-nd/4.0/


overexpressed RNF43 was shown to target the WNT receptors of the Frizzled

family57–59 for degradation. JUN plays a well-known role in neoplastic

transformation and is activated via the non-canonical WNT pathway60. The

TEAD family (TEAD1-4) of TFs are key components of the Hippo signaling

pathway and bind to YAP to promote the transcription of genes involved in cell

migration and angiogenesis61. Interestingly, YAP is also a negative regulator of

the WNT pathway62. Our network-based analysis revealed the interaction

between YAP1 and TEAD4 and also other crucial components of the WNT

pathway, such as the disheveled family of proteins (DVL-1 and DVL-3) (Fig. 4g).

Interestingly, we consistently predicted an interaction between RNF43 and

FZD2 in both the ST (Fig. 4f and Supplementary Fig. S38c) and scRNA-seq data

targeting stromal 3 cell populations (Fig. 5c and Supplementary Fig. 38d).

However, this interaction is well-documented to occur in the intracellular

domain of RNF43 in tumor cells63, with few studies reporting a potential

extracellular interaction64. It is therefore likely that the ligand-receptor analysis

is capturing indirect expression associations. Taken together, higher expression

levels of RNF43 may lead to increased degradation of the receptors of the WNT

pathway. As a consequence, the transcriptional activity of TFs downstream of

these receptors is affected and may be indicative of tumor regions with lower

metastatic activity (Fig. 5j). Noteworthy, these particular biological processes

may not directly result from cellular interactions at the tumor-stroma interface.

We further predicted other ligand-TF associations with potential protective

roles against tumor progression. For instance, the THBS2 secreted ligand was

predicted to have an influence on the activity of STAT1 (Fig. 4e and

Supplementary Figs. S39a-b). THBS2 is known to have anti-tumor progression

properties by interacting with CD36 to promote anti-angiogenic processes (Fig.

4f and Supplementary Figs. S36, S39c-d)65. On the other hand, we found other

modulations suggestive to promote tumor cell growth and migration. For

example, the expression of MMP1, a matrix metalloproteinase involved in

cancer progression through degradation of the extracellular matrix66, was

predicted to have an effect on the activity of the FOS TF (Fig. 4e and

Supplementary Figs. S40a-b). Another interesting result is the predicted

interaction of the secreted ligand PLAU with its putative receptor PLAUR (Fig.
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4f and Supplementary Figs. S41a-b). The binding of PLAU and PLAUR is known

to trigger the degradation of extracellular matrix components, promoting

tumor invasiveness67. We predicted this interaction to be occurring between

myofibroblast cells (source of the interaction) and macrophages or conventional

dendritic cells (cDCs) (target of the interaction) (Fig. 5b and Supplementary Figs.

S41c-d). This is in line with a study in prostate cancer, associating PLAU-PLAUR

interaction with macrophage infiltration68. Finally, we also found that the

CXCL14 chemokine may potentially have a downstream impact in the

transcriptional activity of MAF (Fig. 4e), which has been shown to regulate the

immunosuppressive function of tumor-associated macrophages69. Interestingly,

a stabilized dimeric peptide containing part of CXCL14 amino acid residues has

been proposed as an anticancer treatment70.

Taken together, our analysis revealed ligands potentially modulating the activity

of TFs known to play a pivotal role in CMS2 tumor progression, highlighting

the power of ST to study cell communication processes in CRC.

2.5. External ST CRC data confirms deconvolution-based
subtyping, heterogeneity patterns and predicted cell
communication events

To further validate our results, we used independent CRC ST data from a recent

publication with morphological features suggestive of CMS219. This ST dataset

contains four samples from primary CRC tumors and their corresponding four

liver metastases. Two of the patients were untreated (Unt) and the other two

were treated with neoadjuvant chemotherapy (Tre).

We first applied our deconvolution-based approach to characterize this set of

samples. Of note, the deconvolution was also applied to the samples originating

from the liver. Consequently, some cell types from the scRNA-seq reference are

not expected to match liver tissue, mainly the non-neoplastic intestinal

epithelial cells. The proportions of the major cell types present in the tissues

(Fig. 6a) revealed a very reduced tumor content in the ST-colon2_Unt,

ST-colon3_Tre and ST-liver3_Tre samples, in accordance with their histology.

For these samples, only around 4% percent of the total cell abundance was
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mapped to tumor cells. All the samples, including the liver metastases,

presented a dominant CMS2 phenotype with over 80% of the total tumor cells

mapped to this subtype (Figs. 6b-c and Supplementary Figs. S42-S45). In

agreement with our previous results, CMS3 signatures were confined to the

non-neoplastic mucosa and CMS4 signals were minor and multifocally

distributed. The abundance of CMS1 tumor cells was almost negligible in these

samples. Interestingly, CMS2 signals were substantial and overlapped with the

histology of the liver tumors suggesting a conservation of the CMS phenotype

in metastasis. (Fig. 6d and Supplementary Figs. S46-S49). To further

characterize these samples, we explored their relative content of the different

types of T cells, B cells, myeloid cells and the main stromal cells

(Supplementary Figs. S50-53).

Next, we additionally classified these samples by applying CMScaller24 on

pseudo-bulk RNA-seq generated by pooling together all their spots

(Supplementary Fig. S54 and Methods). Interestingly, only ST-colon1-Unt,

ST-liver1-Unt and ST-liver2-Unt were classified as CMS2. The colon samples

with minor tumor content, ST-colon2-Unt and ST-colon3-Tre, were labeled as

CMS4, suggesting that their stromal content was driving their classification. The

liver sample with reduced tumor content, ST-liver3-Tre, was not assigned to any

CMS. The ST-colon4-Tre and ST-liver4-Tre samples were respectively classified

as CMS3 and CMS1, despite their large abundance of CMS2 tumor cells revealed

by the deconvolution results. For ST-colon4-Tre, we hypothesized that its large

content of non-neoplastic intestinal epithelium is driving the classification

towards CMS3 (see Supplementary Fig. S45). The high content of resident

macrophages in the liver tissue may be associated with the classification of

ST-liver4-Tre as CMS1 (Supplementary Fig. S55). In summary, we emphasized

again the lack of resolution of bulk-transcriptomics based classification systems

to describe CRC heterogeneity.

We then spatially mapped the main CRC associated molecular features and

examined their correlations with CMS cell abundance jointly considering

primary and hepatic metastatic tumors (Figs. 6e-f and Methods). We focused

our analysis on CMS2 given the limited number of cells estimated for the

remaining subtypes. At the pathway level, we confirmed the activation of the
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WNT and VEGF pathways in CMS2 rich regions (Fig. 6g and Supplementary

Fig. S56a). Regarding transcriptional activity, we corroborated the activation of

the MYC and E2F4 TFs in CMS2 tumors (Fig. 6h and Supplementary Fig. S56b).

Besides these well-known CMS2 features, we also found correlations between

the number of estimated CMS2 cells and the activity of the MAPK pathway and

the NR2C2 TF (Figs. 6i-j), in line with the findings in our set of samples (see

Figs. 2k-l). These results are particularly interesting as their role in CMS2

tumors is not clearly defined.

We finally used this external dataset to corroborate selected cell-to-cell

communication processes of those described above, i.e. the previously predicted

ligand-TF regulations. For this purpose, we first computed Misty scores on the

primary CRC tumors (Fig. 6k and Methods). The results supported the

modulation of the transcriptional activity of JUN and members of the TEAD

family by the expression of RNF43 (Figs. 6l-m). Moreover, we captured again the

potential influence of DCN expression on the transcriptional activity of ETV4

(Supplementary Figs. S57a-b). We also confirmed that the CXCL14 chemokine

may potentially have a downstream impact in the transcriptional activity of

MAF (Supplementary Figs. S57c-d). Next, we computed Misty scores on the liver

metastatic tumors (Supplementary Fig. S58 and Methods). Our results indicate

that the modulation of the transcriptional activity of ETV4 and JUN by DCN

and RNF43, respectively, are preserved after metastasis (Figs. 6n-o and

Supplementary Fig. S59). These findings are in accordance with and can provide

new mechanistic insights to a recent study describing the protective role of

DCN in hepatic metastasis of CRC71.

Overall, we confirmed the main results of our study in an independent ST CRC

dataset. The deconvolution of these external samples validated the spatial

molecular and morphological features of the CMS, particularly of CMS2. We

also corroborated a part of the previously inferred cell communication

processes involved in tumor progression. Moreover, we depicted the

conservation of the CMS2 phenotype and of some ligand-TF regulations in

CRC liver metastasis.
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3. Discussion

The clinical need for accurate CRC patient stratification led to the development

of several gene expression-based classification systems, such as the CMS5 or the

CRC intrinsic subtypes (CRIS)72. The CMS classification system is broadly used

and has helped to understand the different molecular mechanisms underlying

CRC and disease prognosis73. Nevertheless, CMS intra-tumor heterogeneity

hampers its clinical application, underlining the necessity of further

characterizing the cellular composition and architecture of CRC and its

microenvironment.

To complement our understanding of CRC CMS, we used ST combined with

scRNA-seq through cell type deconvolution to delineate subtype inherent

transcriptomic and morphological features. Our spatial alignment of CMS

signatures with pathologists' annotations, distinctly confined CMS1 and CMS2

cells to the neoplastic areas. Interestingly, the CMS1-CMS2 mixed S3_Col_R

sample revealed a co-localization of CMS1-CMS2 cells indicating their

coexistence. CMS1 signals were predominant in the diffuse-growing tumor,

whereas CMS2 signatures were accentuated in a defined region showing a

tubular growth pattern, in line with morphological features described by Thanki

et al.28. These results stress the ability of ST to characterize mixed or

transitioning CMS phenotypes and to reveal features that cannot be described

using bulk- or scRNA-seq. In all the analyzed samples, CMS3 signatures were

exclusively detected in the non-neoplastic mucosa, which can be associated with

the previously described normal-like expression patterns of CMS35. The

EMT-associated CMS4 signals were minor, but overlapped with tumor regions

displaying an invasive phenotype. Their limited abundance across the analyzed

samples is in line with the very low number of tumor-like epithelial cells

showing a CMS4 phenotype reported in previous publications7 and in our

scRNA-seq reference12. Indeed, previous studies have proposed that CMS4

defines a transcriptional state or a stromal cell signature, rather than tumor

cells74. Larger datasets are required to confirm whether ST can provide new

insights into the nature of CMS4 tumors or can be used to delimitate the most

invasive parts of other CRC subtypes.
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The discrepancies in the CMS categorization between the deconvolution- and

the bulk-based approaches, underline the large influence of adjacent tissue

components on tumor classification. This is illustrated by both replicates of the

S6_Rec patient, which were classified as CMS2 by the deconvolution and

assigned to CMS4 by CMScaller24. Histologically, this sample is composed of

small tumor islands surrounded by large stroma bundles. This morphology

hampers the separation of the tumor components for bulk RNA sequencing,

whereas ST can provide a detailed assessment of them. The CMS4 classification

of stroma-rich tumors is in accordance with previous studies reporting that the

CMS4 signature is highly influenced by marker genes of cancer-associated

fibroblasts and other stromal cells9,25,26. The external ST-colon4_Tre sample,

which was categorized as CMS2 by deconvolution and classified as CMS3 by

CMScaller24, represents another example. This case raises concern about the

potential influence of the non-neoplastic mucosa, containing CMS3 signals as

described above, in bulk-based CMS classification systems.

Overall, our results underline the potential of ST in CRC characterization,

enabling the spatial correlation of morphological tumor, stroma and

non-neoplastic tissue patterns with corresponding transcriptomic features.

Nevertheless, limitations inherent to our deconvolution-based approach should

be acknowledged. The deconvolution partially failed to map stromal cells in the

regions annotated as such by the pathologists. This effect is pronounced in the

S3_Col_R sample and was observed regardless of the scRNA-seq dataset used as

reference. This might be related to the lack of this specific stroma cell type in

the scRNA-seq reference datasets. It can also correspond to a more general issue

related with a potential loss of sensitivity in the deconvolution results in

anatomical regions where the number of transcripts per spot was lower due to

tissue inherent properties or technical and processing variabilities, as illustrated

in Supplementary Figs. S60-S62. Another aspect of the deconvolution that

requires critical consideration is the impact of the scRNA-seq dataset used as

reference. In our study, we compared the results yielded by two reference

datasets that were annotated using the same criteria12. As described in

Supplementary Note 1, the overall deconvolution results were similar between
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references, but notable differences for particular cell types, such as CMS1, were

observed. We hypothesized that the most comprehensive Korean dataset could

lead to more accurate cell type specific signatures for deconvolution purposes.

Additionally, the differences in the genetic background between both cohorts

can contribute to these discrepancies.

We also explored the power of ST to explore inter- and intra-tumor

heterogeneity and cell communication processes in CMS2 carcinomas.

Regarding CMS2 heterogeneity, our results defined patient specific signaling

cascades for the mTORC1 and EGFR pathway, and suggested specific features in

stromal, immune-rich and tumor regions that might be relevant for

personalized treatment approaches. For cell communication processes, we

explored ligand-receptor interactions at the tumor-stroma interface potentially

involved in tumor progression. To support our results and to identify the

specific cell types involved in these processes, we estimated in parallel

ligand-receptor interactions and TF activity on the scRNA-seq dataset from the

Lee et al. publication12. By using this approach, we revealed signaling cascades

modulating the interplay between CMS2 tumor cells and their TME

(mesenchymal or vascular stroma components and immune cells), which are

crucial for tumor progression and immune phenotyping. Interestingly, some of

our results suggested a protective response mitigating tumor growth, such as the

potential effect of DCN expression on the transcriptional activity of ETV4

through its binding to the EGFR receptor.. On the other hand, we inferred

modulations that seem to promote tumor growth and invasiveness. For

instance, myofibroblast cells secreted the PLAU ligand that was predicted to

target the PLAUR receptor in SPP1+ macrophages, which are known to be

associated with EMT in CRC21,75. Overall, our results revealed several well

characterized and novel cell-to-cell interactions, highlighting the potential of ST

to delineate potential therapeutic targets for specific CMS subtypes.

Nevertheless, the ligand-TF modulations predicted in this study need to be

further investigated. They were inferred by modeling the spatial maps of TF

activity using gene expression of ligands as a proxy. Therefore, some of the

results may not represent direct causal regulation as a consequence of the

complex network of cellular interactions and alternative signaling cascades in

22

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.01.23.525135doi: bioRxiv preprint 

https://paperpile.com/c/a1C07B/xtlb0
https://paperpile.com/c/a1C07B/GLSZQ+myZ07
https://doi.org/10.1101/2023.01.23.525135
http://creativecommons.org/licenses/by-nd/4.0/


cancers. In a similar line, the ligand-receptor interaction analysis can also

capture indirect gene expression associations, as may be the case for the

predicted RNF43-FZD2 interaction, which is mostly reported as intracellular in

the literature.

We finally supported our key findings using an independent ST CRC dataset

comprising four CRC samples from primary tumors and their corresponding

liver metastatic samples. Interestingly, our deconvolution approach delineated

the primary, but also the metastatic carcinomas, as CMS2. In these liver tumors,

we captured the CMS2 main molecular features, like the activation of the WNT

pathway or high expression of MYC-regulated genes, and preserved cell

communication events as the modulation of the transcriptional activity of ETV4

by DCN. This suggested that the CMS2 phenotype was recovered to some

extent after migration of the primary CRC cells to sites of metastasis. Systematic

and organ specific assessment of the active common pathways in primary and

metastatic carcinomas might support treatment strategies for stage IV tumors.

In conclusion, our study highlights how ST, coupled with scRNA-seq, provides a

novel dimension to explore patient conserved and specific molecular features of

CRC and its CMS by characterizing the spatial arrangement of the different cell

types composing tumors and their TME. We acknowledge that the limited

number of samples and patients in our study hampers a comprehensive analysis

of CRC heterogeneity. Moreover, we are working with 2-dimensional sections of

tumors, whereas a 3-dimensional view is required to fully describe and

characterize them. However, we envision that our proof-of-concept work

delineates the potential of ST to contribute to patient-specific treatment

approaches. On the one hand, more refined patient stratification strategies can

be designed by taking into account the composition and spatial distribution of

the cells composing the tumor and the TME, and its integration with

morphological features extracted from the corresponding histological images.

On the other hand, intra-tumor spatial heterogeneity can reveal tumor

progression related processes that are anatomically restricted or more

pronounced in a particular region. This can fuel the development of new

treatment strategies, such as combinational therapies or spatially restricted
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medication, potentially leading to improvements in drug-efficacy and dosage

reductions. In this regard, the foreseeable improvements in the resolution,

reduction of processing costs per sample and clinical validation of ST

technologies will facilitate the detailed analysis of larger CRC cohorts towards

personalized oncology.

4. Methods

4.1 Collection of CRC samples
Human CRC tissues (<8 months storage) and annotated data were obtained and

experimental procedures were performed within the framework of the non

profit foundation HTCR, including the informed patient’s consent76. Tissues

were cut on a Cryostat (CryoStar NX70, Thermo Scientific) at 10 um.

Pathologists performed quality and comparability assessment of FF material

using an H&E stained slide.

4.2 Sample preparation

RNA from all samples was extracted using the Arcturus® PicoPure® RNA

Isolation Kit (Applied Biosystems™, KIT0204). For cell lysis, a 10 um section of

the sample was resuspended in a 200 ul extraction buffer. Total RNA was

extracted following the instructions of the manual. RNA integrity number (RIN)

was assessed using the 2100 Bioanalyzer system (Agilent Technologies, Inc.) with

a Agilent RNA 6000 Pico Kit (Agilent Technologies, Inc., 5067-1513). Samples

with RIN above 7.0 were used.

Tissue optimization was carried out according to the manufacturer's

instructions (VISIUM Spatial Tissue Optimization User Guide_RevC). Image

acquisition was performed on the Hamamatsu NanoZoomer S 360 C13220

series at 40x magnification and the coverslip was removed afterwards by

immersing the slide in a 3x Saline-Sodium Citrate buffer. The stained tissue

sections were permeabilized using a time course to test for the optimal

permeabilization time. After performing a fluorescent cDNA synthesis, the
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tissue was removed. Finally the fluorescent cDNA was imaged using a Zeiss Axio

Scan.Z1 with a Plan Apochromat 20x/0.8 M objective, a ET-Gold FISH filter (ex

538-551 nm/em 556-560 nm) and 100 ms exposure time.

For the gene expression analysis, 10 um thick sections of the samples were

placed with a random distribution over four chilled 10x Genomics VISIUM

Gene Expression slides containing four capture areas each. The sections were

similarly stained with H&E and subsequently imaged as described above. To

release the mRNA, the sections were permeabilized for 30 min as defined by

tissue optimization. For further processing, the cDNA was amplified according

to the manufacturer's protocol

(CG000239_VisiumSpatialGeneExpression_UserGuide_RevC). Double indexed

libraries were prepared. The libraries were quality controlled using a 2100

Bioanalyzer system with Agilent High Sensitivity DNA Kit (Agilent

Technologies, Inc., 5067-4626) and quantified with Qubit™ 1X dsDNA HS Assay

Kit (Invitrogen, Q33230) on a Qubit 4 Fluorometer (Invitrogen, Q33238). The

libraries were loaded onto the NovaSeq 6000 (Illumina) at a concentration of

250 pM. A NovaSeq S1 v 1.5 or SP v 1.5 Reagent Kit (100 cycles) (Illumina,

20028319 and 20028401) was used. For paired end-dual indexed sequencing,

the following read protocol was used: read 1: 28 cycles; i7 index read: 10 cycles;

i5 index read: 10 cycles; and read 2: 90 cycles. All libraries were sequenced at a

minimum of 50000 reads per covered spot.

Raw sequencing data were demultiplexed using the mkfastq function from Space

Ranger (v. 1.2.0). Demultiplexed data were mapped to the human reference

GRCh38 with spaceranger count. Spots under tissue folds, artifacts and at the

tissue boundary were manually removed using the 10X Loupe browser (v. 5.1.0).

4.3 Histopathological annotations and spot categorization
H&E stained tissue sections were annotated by the pathologists using Q-Path

software (v. 0.2.3)77. Spot categorization was performed by the pathologists using

the 10X Loupe browser (v. 5.1.0). Categories and corresponding criteria are listed

in Supplementary table 6.
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4.4 Grading of CMS signatures

Grading of CMS signatures in the tumor tissue was performed

semi-quantitatively according to the number of spots with positive signature

and the percentage of positive cells per spot. This grading was done in an

individual replicate per patient (S1_Cec_Rep1, S2_Col_R_Rep1,

S3_Col_R_Rep1, S4_Col_Sig_Rep1, S5_Rec_Rep1, S6_Rec_Rep2 and

S7_Rec/Sig_Rep1) according to the scheme detailed in Supplementary table 2.

4.5 Bioinformatic analysis

4.5.1 ST data pre-processing

We used the Seurat78, Scanpy79 and SingleCellExperiment80 packages to load the

output of the Space Ranger pipeline and process the ST data. We evaluated the

quality of the ST data by determining the average number of reads, UMIs and

genes per spot covered by tissue and compared it with those from spots non

covered by tissue. We found substandard quality for the S1_Cec_Rep2 sample

as revealed by its low numbers of unique molecular identifier (UMI) counts and

genes in spots covered by tissue (Supplementary Fig. S1). Consequently, this

sample was either treated carefully or excluded from integrative analysis. For

each individual sample, we filtered out spots for which the number of UMI

counts detected were below 500 or above 45000. In addition, spots containing a

fraction of more than 0.5 mitochondrial genes were not considered in the

analysis. We normalized the UMI counts from the remaining spots using

SCTransform81.

4.5.2 Sample integration, batch correction and dimensionality reduction

To jointly represent the CRC samples in the same low dimensional space

(UMAP embedding), correct from batch effects and integrate samples and

technical replicates for downstream analysis, we used Harmony, which is a

robust and efficient algorithm designed to integrate scRNA-seq datasets82. We
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ran Harmony with default parameters allowing a maximum number of 20

interactions (max.iter.harmony = 20) and correcting per individual samples. Of

note, Harmony was either applied to batch-correct for all the spots derived

from all the samples or to batch-correct only the tumor annotated spots from a

subset of samples (CMS2 tumor samples).

4.5.3 Deconvolution of the ST datasets

ST datasets derived from 10x Genomics VISIUM technology currently lack

single cell resolution. Therefore, the gene expression values detected per spot

originate from a variable number of different cells, i.e. every spot can be

considered as a mini-bulk RNAseq dataset. Consequently, a deconvolution

approach is required to estimate the different cell types and their proportions

across spots.

To this end, we used the recently proposed Cell2Location (v 0.0.5)23 method.

Cell2location first creates gene expression signatures of cell types from a

scRNA-seq reference. We adopted as scRNA-Seq reference a comprehensive

dataset from a recent publication exploring the cellular landscape of the

different CRC subtypes and their microenvironment12. The annotations from

the original publication at the cell subtype level (Supplementary Table 1) were

used to generate the signature using the run_regression function with the

following parameters: n_epochs=100, minibatch_size=1024, learning_rate=0.01 and

train_proportion=0.9. These signatures are subsequently used to assess cell type

abundances in the ST data using the run_cell2location with selection_specificity=

0.20. This parameter determines the number of genes used to establish the

signature per cell type (Supplementary Table 1). Additional parameters were set

as follows: n_iter=40000, cells_per_spot=8, factors_per_spot=9, combs_per_spot: 5,

mean= 1/2 and sd= 1/4.
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4.5.4 Consistency of deconvolution results between technical replicates

To evaluate the consistency of the deconvolution between technical replicates,

we batch-corrected their transcriptomic profiles using Harmony82 as described

above. Then, we clustered the Harmony embeddings using the Louvain

algorithm as encoded in the FindClusters function from the Seurat package. We

chose a series of large resolution parameters (ranging from 1 to 2 increasing by

0.1 steps) to obtain fine-grain clusters that can match with anatomical regions

displaying similar cell type distribution patterns across replicates. Finally, we

computed the mean number of UMIs estimated by Cell2Location per cell type

and cluster, and applied Pearson’s correlation to evaluate their similarity

between technical replicates.

4.5.5 Enrichment/depletion of cell types in different anatomical regions

The enrichment (depletion) in the abundance of the deconvolution-estimated

cell types in different pathologist-assigned tissue categories was assessed

following a similar procedure to be one described in Andersson et al.16. Briefly,

the estimated cell type proportions per spot were 10 000 times randomly

shuffled with respect to their spatial location. Then, we computed the average

cell type proportions per permutation and tissue type. The mean value of

differences between the real and the permuted average proportions divided by

the standard deviation of these differences was used as the enrichment score for

the different tissue categories.

4.5.6 Cell-type colocalization analysis

Deconvolution results were subsequently used to assess cell-colocalization using

non-negative matrix factorization as described in Cell2Location tutorials

(https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.

html#Identifying-cellular-compartments-/-tissue-zones-using-matrix-factorisat

ion-(NMF)). As suggested by the authors, we examined results for different

numbers of factors. We chose R=3 and R=7 as good representatives between

strong co-localization signals and distinctive anatomical regions.
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4.5.7 Pathway activity

We estimated pathway activity per spot and at subspot resolution (see section

4.5.13) using PROGENy83,84. PROGENy computes pathway activity by accounting

for the expression of genes which are more responsive to perturbations on

those pathways. The PROGENy model comprises 14 pathways, namely: Wnt,

VEGF, Trail, TNFα, TGFβ, PI3K, p53, NFkB, MAPK, JAK/STAT, Hypoxia,

Estrogen, Androgen and EGFR. In our setup, we ran PROGENy using the top

500 most responsive genes per pathway.

In addition, we also computed pathway activities in pseudo-bulk generated

from our ST samples (see section 4.5.11). We again used the top 500 most

responsive genes per pathway. In this case, we set the scale parameter to TRUE to

allow direct comparison of pathway activities between samples.

4.5.8 Transcription factor activity

We computed TF activity per spot using the Viper85 algorithm coupled with

regulons extracted from DoRothEA86. In DoRothEA, every TF–target

interaction is assigned a confidence score based on the reliability of its source,

which ranges from A (most reliable) to E (least reliable). In this study, we

selected interactions with confidence scores A, B and C and computed the

activity for TFs with at least four different targets expressed per spot.

The activity profiles of the different TFs were additionally used to cluster the

spots from our four CMS2 tumor samples. To do so, the TF activity scores from

these samples were first merged and subsequently scaled and centered. Then,

the standard procedure to compute clustering using the Seurat package was

followed. Briefly, we computed a Principal Component Analysis (PCA)

dimensionality reduction on the scaled TF activities per spot followed by the

computation of the 20 nearest neighbors. Finally, we applied the Louvain

algorithm with a resolution parameter of 0.5 to group the spots into different

clusters according to their TF activity profile. We identified TF with a

differential activity profile among the different clusters using Receiver
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Operating Characteristic (ROC) analysis as implemented in the Seurat’s

FindAllMarkers function. We only considered TF whose activity was computed

in at least 25% of the spots per cluster and with a log2 fold-change greater than 1.

Of note, we used the same procedure to compute TF activity per cell on the

scRNA-seq dataset from Lee et al.12.

4.5.9 Canonical correlation analysis

We used the cc function from the CCA package87 to compute canonical

correlation between the cell type proportions per spot and pathway or TF

activity per spot. This canonical correlation analysis was first performed for

every individual CRC sample. To capture global correlations across samples, we

performed an integrative analysis by merging spots coming from all the

different samples (excluding S1_Cec_Rep2) into matrices and computing the

canonical correlation on them.

4.5.10 Selection of tumor surrounding spots

We applied the GetTissueCoordinates function from the Seurat package to get the

spatial coordinates of the spots in the different CRC samples. We subsequently

computed the Euclidean distance between every pair of spots. Finally, we

selected as tumor surrounding spots those lying within a distance smaller or

equal to 2 from a tumor annotated spot. Spots fulfilling these criteria but

annotated as tumors were removed.

4.5.11 Pseudo-bulk generation

We generated pseudo-bulk from the ST samples using the sumCountsAcrossCells

function from the Scater package88. Here, counts were normalized by the total

number of reads (counts per million normalization). We used the filterByExpr

function from the edgeR package89 to filter out genes with less than 50 counts

per sample.
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4.5.12 Definition of different anatomical regions in tumor annotated spots

The distance between every tumor annotated spot and non-tumor annotated

spots was calculated as described in section 4.5.10. We then defined the different

tumor anatomical regions for the S2_Col_R_Rep1 sample based on the

following criteria:

● Peripheral Tumor: tumor spots in direct contact with at least a non-tumor

annotated spot. Their Euclidean distance to a non-tumor annotated spot

is smaller than 2.

● Central Tumor: tumor spots in the most solid and internal region of the

tumor. Their Euclidean distance to a non-tumor annotated spot is greater

than 2.5.

● Intermediary Tumor: tumor spots that we consider as a transition region

between the inner and outer tumor. Their Euclidean distance to a

non-tumor annotated spot is greater or equal to 2 and smaller than 2.5.

4.5.13 Clustering and enhanced gene expression at the sub spot level

We applied BayesSpace90 to cluster at the subspot level and increase the gene

expression resolution of our CMS2 tumor annotated spots in the S5_Rec_Rep1

sample. To do so, BayesSpace uses the neighborhood structure in spatial

transcriptomic data. Of note, the preprocessing of the ST raw data was

conducted following the recommendations of BayesSpace authors. This

procedure is slightly different from the one described in previous sections.

Briefly, the ST data was processed using the SingleCellExperiment package and

raw counts were log normalized using the logNormCounts function from the

Scuttle package88. Then, the Scran91 package was used to model the variance of

the log-expression profiles for each gene and select the 2000 most variable

genes. We performed a PCA using the Scater88 package.

Using BayesSpace, we subsequently computed the spatial clustering and the

enhanced clustering with default parameters, excepting the jitter_scale

parameter which was set to 3. Finally, we enhanced the gene expression of all

31

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.01.23.525135doi: bioRxiv preprint 

https://paperpile.com/c/a1C07B/YK59C
https://paperpile.com/c/a1C07B/WUCwY
https://paperpile.com/c/a1C07B/BhDxV
https://paperpile.com/c/a1C07B/WUCwY
https://doi.org/10.1101/2023.01.23.525135
http://creativecommons.org/licenses/by-nd/4.0/


the genes expressed in the considered spots using the enhanceFeatures function

with default parameters.

4.5.14 Differential gene expression analysis

The CMS2 tumor regions extracted from the different samples were integrated

into the same Seurat78 object. We used the Wilcoxon Rank Sum test to identify

differentially expressed genes between the groups of spots coming from

different patients as implemented in the Seurat’s FindAllMarkers function. We set

a log2 fold-change threshold of 0.25 and only positive markers were retrieved.

Some specific criteria were followed for the analyses conducted in section 2.3:

● To describe inter-patient heterogeneity, the differential gene expression

analysis was performed between the different patients (two replicates per

patient considered). We filtered results by only considering genes that are

overexpressed in tumor annotated spots versus non-tumor annotated

spots. To do so, we took advantage of the pathologists’ annotations and

used the Seurat’s FindMarkers with the same parameters described above

for the FindAllMarkers function. Ribosomal and mitochondrial genes were

removed due to the fact that they can be overrepresented in tumor

necrotic regions.

● To describe intra-tumor heterogeneity, the differential expression

analysis was carried out between the different anatomical regions of the

tumor in the S2_Col_R_Rep1 sample (see section 4.5.12) with no further

considerations.

● Another differential gene expression analysis was conducted on the

enhanced gene expression between the different enhanced clusters

generated by BayesSpace (see section 4.5.13) on the S5_Rec_Rep1 sample.

We selected for further analysis genes with an adjusted p-value smaller

than 0.01 in the Wilcoxon Rank Sum test. Ribosomal and mitochondrial

genes were excluded from the analysis.
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4.5.15 Gene set overrepresentation analysis

Differentially expressed genes were subsequently used for gene set

overrepresentation analysis using the Hallmark annotations from MSigDB92.

The Hallmark gene sets contain 50 well-defined biological states or processes.

We used the enricher function from the clusterProfiler93 package to carry out the

analysis. We set a minimal size of the genes annotated for testing to five,

excepting for the analysis between different patients where it was set to three.

Background genes were adjusted accordingly to the global set of genes

expressed in the different contexts.

4.5.16 Ligand modulation of TF activity

As a first step and taking as reference the TF activity-based clustering, we

selected ligands which are overexpressed in the tumor and TME with respect to

the other anatomical regions across all our CRC samples. To do so, we applied

the Seurat’s FindMarkers function with a log2 fold-change threshold of 0.5 and

only positive markers were retrieved. We matched our set of overexpressed

genes against the set of proteins annotated as ligands in the Omnipath94

database. Additionally, we filtered out ligands that are not detected in at least

10% of the tumor and TME spots in every individual sample.

In the second place, we chose TFs with a higher differential activity profile in

the TME regions across all the samples according to the clustering approach

described in section 4.5.8. In particular, we selected those TFs that are

considered as markers of the TME cluster when using the Seurat’s

FindAllMarkers function (AUC ≥ 0.75).

We then applied Misty48 to investigate the potential effect of the expression of

the selected ligands in modulating the transcriptional activity of the chosen TFs.

Specifically, we created an intrinsic view (intraview) describing ligand gene

expression and a local niche view (juxtaview) using TF activity with a neighbor.thr

=2 aiming at capturing effects in the direct neighborhood of each spot. This

criteria is based on the fact that many cancer relevant ligands are membrane
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bound and that the majority of secreted ligands cannot travel long distances.

Following this approach, Misty was first individually applied to every sample.

Then, the individual results were collected and aggregated using Misty’s

collect_results function in order to obtain the most robust common signals across

samples. Ligand-TF associations with an aggregated importance greater than 1

were considered for further analysis. Of note, when running Misty on the

external dataset, the ST-colon3-Tre and ST-liver3-Tre samples were excluded

from the analysis due to their very reduced tumor content.

4.5.17 Prediction of Ligand-Receptor interactions

We used LIANA95 to estimate the most likely ligand-receptor interactions

between the different spatial clusters defined by their TF activity profiles. It is to

note that the interactions were computed for every pair of clusters, but for

subsequent analysis and visualization we focused on the interactions between

the clusters labeled as 0 (Tumor) and 1 (TME). LIANA computes an aggregated

score for every potential ligand-receptor interaction based on the results of

different methods. In our particular case, we ran LIANA with default settings

and used OmniPath94 as a source of prior knowledge in human ligand-receptor

interactions. For further analysis, we considered interactions involving Misty’s

predicted ligands with an aggregated rank smaller than 0.01, as this value can be

seen as analogous to a p-value 96. We also ran LIANA on the scRNA-seq dataset

from Lee et al.12 using the same procedure.

4.5.18 Inference of signaling networks

We used a network-based approach to infer the most likely signaling cascades

linking LIANA’s predicted ligand-receptor interactions to their targeted TFs

according to Misty’s predictions. To do so, we first built an intra-cellular

signaling network by retrieving protein-protein interactions from Omnipath94.

Then, for every ligand, we selected their predicted receptors and targeted TFs.

We subsequently connected every receptor to every corresponding TF by

selecting the shortest path between them in the signaling network. All the

resultant shortest paths were merged into a network together with the
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previously predicted ligand-receptor interactions. Finally, for every gene in the

predicted network, we computed its average expression in the TME cluster, as

defined by TF activity profiles (see section 4.5.8), across all the CMS2 samples.

Cytoscape97 was utilized for the visualization of the network.

4.5.19 Metastasis Score

We retrieved a list of genes linked to metastatic processes from CancerSEA98

and computed their score per spot using the Seurat’s AddModuleScore function.

We set the ctrl parameter, i.e. number of control features selected from the same

bin per analyzed feature, to 20.

5. Data availability
The output of Space Ranger, including processed count data matrices and

histological images, for the ST data generated in this study is available at

https://doi.org/10.5281/zenodo.7551712. In addition, this repository also contains

the spot categorization made by the pathologists. The processed scRNA-seq and

metadata used for the deconvolution and for further characterization of the cell

communication processes are available via the GEO database under the

accession codes GSE132465 and GSE14473512. The processed data from the

external ST CRC dataset used to support our findings was downloaded from

http://www.cancerdiversity.asia/scCRLM19.

6. Code availability
The scripts containing all the code used to generate the results presented in this

study are available at https://github.com/alberto-valdeolivas/ST_CRC_CMS.

Their associated notebooks containing additional results and information about

the versions of the different packages used are available at

https://doi.org/10.5281/zenodo.7440182. Finally, Intermediary object files to

reproduce the analysis are available at https://doi.org/10.5281/zenodo.7551712.
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11. Figures & Tables

Sample
number Localization Diagnosis Pre-

treatment
Lymph

node/liver
metastasis

Mutation
Growth pattern

and Immune
cells

S1_Cec
A551763 Cecum

Adenocarcinoma,
mucinous, moderately

differentiated
no yes/yes

BRAF
V600E

Mucinous, IC low

S2_Col_R
A595688 Colon (right)

Adenocarcinoma,
moderately

differentiated
no yes/yes

no KRAS
mutations

Tubular to
cribriform, IC low

S3_Col_R
A416371 Colon (right)

Adenocarcinoma,
areas with moderate

and poor differentiation no yes/no

- 2 tumor types: I)
tubular, IC low;

II) extended
solid, IC high

S4_Col_Sig
A120838 Colon (Sigma)

Adenocarcinoma,
moderately

differentiated
no yes/no

no KRAS
mutations

Tubular to
cribriform, IC low

S5_Rec
A121573 Rectum

Adenocarcinoma,
moderately

differentiated*
no yes/yes

- Tubular to
cribriform, IC low

S6_Rec
A938797 Rectum

Adenocarcinoma,
moderately

differentiated*
no no/no

- Tubular, IC
medium

S7_Rec/Sig
A798015* Sigma/Rectum non-neoplastic tissue na na - na

Table 1: Selected clinical information for the samples included in this study.

*sample contains non neoplastic tissue; na: not applicable; - mutation profile was not assessed, IC:

Immune cell content.
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Figure 1: Study outline and deconvolution results matching histopathological annotations with

high correlation between replicates.

(a) Study outline displaying the anatomical localization of our set of CRC samples, their spatial

transcriptomics processing and the deconvolution-based approach to characterize spatial features

of CMS.

(b) UMAP embedding of the gene expression measurements per spot split by technical replicates.

Colors represent the different patients.

(c) Proportions of major cell classes per sample as estimated by the results of the deconvolution

approach. The right hand side of the plot displays the number of analyzed spots per sample.

(d) Pearson’s correlation coefficients of the cell subtype abundance in small anatomical regions of

variable size that were considered equivalent between technical replicates for all the patients.

(e) Enrichment/depletion plot describing the association between cell type abundance as predicted

by the deconvolution (x-axis) and the different anatomical regions as annotated by the

pathologists (y-axis). The dot size represents the enrichment score (Methods), while the color

represents enrichment (red) or depletion (blue).

(f-h) Spatial mapping of the predicted number of mature enterocytes type I, stem-like TA and

CD4+ T cells per spot matching the pathologists’ tissue annotation and expected cell type

localization as illustrated for sample S6_Rec_Rep2.
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Figure 2: Consensus molecular subtyping of our set of CRC samples, characterization of their

TME and spatially resolved mapping of their histological and molecular features.

(a-e) Cell type proportions per sample as estimated by the results of the deconvolution. The number

of spots containing an abundance of at least 20% of the specified cell types is also displayed.

(f) Enrichment/depletion assessment of selected cell types (x-axis) in CMS2 and mixed

CMS1-CMS2 tumors in the different tissue compartments defined by the pathologists’ spot

classification (y-axis).

(g-j) Spatial mapping of the predicted abundance of CMS1, CMS2, CD19+CD20+ B cells and

CD8+ T-cells abundances overlaid with the pathologists’ tissue annotation in the S3_Col_R_Rep1

sample. Note the absence of CD19+CD20+ B cell and CD8+ T cells and the minor CMS1 signatures

in regions of the tubulopapillary tumor (see Supplementary Fig. S12).

(k) Per spot Pearson’s cross-correlation across all the samples between TF activities and CMS cell

abundances. For visualization purposes, the 10 most highly correlated TFs in absolute value per

CMS are shown.

(l) Per spot Pearson’s cross-correlation across all the samples between pathway activities and CMS

cell abundances.

(m) Spatial mapping of the JAK-STAT pathway activity in sample S3_Col_R_Rep1 sample. Note

the co-localization with the CMS1 signature.

(n-p) Overlay of the predicted spatial CMS2 cell abundance, WNT pathway activity and VEGF

pathway activity with the pathologists' tissue annotations in the S2_Col_R_Rep1 sample.

(q-t) Overlay of the predicted spatial CMS2 cell abundance, CMS3 cell abundance, MYC and

E2F4 TF activities with the pathologists' tissue annotations in the S5_Rec_Rep1 sample.
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Figure 3: Inter- and intra-patient heterogeneity in CMS2 tumors and their TME in terms of cell

composition and different molecular features.

(a-d) UMAP embeddings of the gene expression measurements in tumor annotated spots which

were colored by different criteria: a) per patient, b) per the expression of the NUPR1 gene, c) per

activity of the EGFR pathway and d) per activity of the FOXM1 TF.

(e) Cell type proportions in the tumor-surrounding spots per sample as estimated by the results of

the deconvolution approach. The number of tumor-surrounding spots for the different samples is

also displayed.

(f) Differential pathway activity computed on pseudo-bulk RNA-seq generated from the

tumor-surrounding spots for the different samples.

(g-h) Gene expression gradients of SPARC and SCD in the different anatomical regions of

tumor-annotated spots in the S2_Col_R_Rep1 sample. A Wilcoxon rank sum test was conducted

to assess the significance of the gene expression variation (p-value adjusted).

(i) Overlay of the spatial mapping of the clustering at subspot enhanced resolution of the

tumor-annotated spots  with the pathologists' tissue annotations in the S5_Rec_Rep1 sample.

(j) Spatial mapping and violin plots per group of the TGFb pathway activity at the enhanced

subspot resolution in the S5_Rec_Rep1 sample. A Kruskal-Wallis statistical test was performed to

assess whether the pathway activities in the different subclusters originated from the same

distribution (p-value).
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Figure 4: Clustering based on TF activities to study cell communication events at the

tumor-stroma interface of CMS2 tumors. The signaling cascades triggered by those events and

leading to transcriptional activities related to tumor progression were also investigated.

(a-c) UMAP embedding of the TF activity profiles for our set of CMS2 samples. The spots were

colored following different criteria: a) per cluster group, b) per activity of the MYC TF, and c) per

activity of the ETS1 TF.

d) Number of spots belonging to the different categories of pathologist’s annotations and clusters as

inferred from the TF activity profiles.

(e) Misty results showing the potential importance of ligands (rows) expression on TF (columns)

activity. The ligand-TFs relationships with an importance score over 1 are represented as black

slots and were further investigated.

(f) Top ligand-receptor interactions at the tumor stroma interface predicted by LIANA. The left

panel shows the source of the interaction (ligands) and the right the target (receptors).

(g) Signaling cascades potentially linking ligands (V shape) to their downstream TF targets

(triangles) according to Misty predictions. The downstream signaling cascades go first through the

top predicted receptors by LIANA and then to intermediary signaling proteins (ellipses). The color

of the nodes indicates the average expression of these genes in the TME cluster. Network edges can

represent stimulatory (arrows) or inhibitory (squares) interactions.
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Figure 5: Transcription factor activity and ligand-receptor interactions in the scRNA-seq from

Lee et al. Spatial maps showing gene expression, TF activity and a score for selected

tumor-associated processes.

(a) Average TF activity per cell type. The percentage of cells of a given type where the TF is active

is represented by the size of the circle.

(b-d) Ligand-receptor interactions between the different cell types overlapping with the

interactions predicted in our ST data. The left panel shows the source of the interaction (ligands)

and the right the target (receptors): b) target cell types are myeloid cells, c) target cell types are the

major stromal cell populations, and d) target cell types are the different CMS tumor cell types.

(e-g) Overlay of the DCN gene expression, the predicted ETV4 TF activity and the metastasis

score with the pathologists’s tissue annotations in the S2_Col_R_Rep1 sample.

(h-j) Overlay of the RNF43 gene expression, the predicted JUN TF activity and the metastasis

score with the pathologists’s tissue annotations in the S6_Rec_Rep2 sample.
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Figure 6: Characterization and analysis of an external ST CRC dataset to support the results in

our internal set of samples.

(a) Proportions of major cell classes per sample as estimated by the results of the deconvolution.

The right hand side of the plot displays the number of analyzed spots per sample.

(b) CMS tumor cell type proportions per sample as estimated by the results of the deconvolution

approach. The number of spots containing an abundance of at least 20% of tumor cells subtypes is

also displayed.

(c-d) Overlay of the spatial mapping of the predicted CMS2 tumor cell abundance with the

pathologists’s tissue annotations in the ST-colon1_Unt and ST-liver1_Unt samples.

(e) Per spot Pearson’s cross-correlation across all the samples between pathway activities and CMS

cell abundances.

(f) Per spot Pearson’s cross-correlation across all the samples between TF activities and CMS cell

abundances. For visualization purposes, the 10 most highly correlated TFs in absolute value per

CMS are shown.

(g) Overlay of the spatial mapping of the predicted WNT pathway activity with the pathologists’s

tissue annotations in the ST-colon1_Unt sample.

(h) Overlay of the spatial mapping of the predicted MYC TF activity with the pathologists’s tissue

annotations in the ST-colon2_Unt sample.

(i) Overlay of the spatial mapping of the predicted MAPK pathway activity with the pathologists’s

tissue annotations in the ST-liver1_Unt sample.

(j) Overlay of the spatial mapping of the predicted NR2C2 TF activity with the pathologists’s

tissue annotations in the ST-liver2_Unt sample.

(k) Misty results showing the potential importance of ligands (rows) expression on TF (columns)

activity when considering the samples from primary CRC tumors. The ligand-TFs relationships

with an importance score over 1 are represented as black slots and were considered as relevant.

(l-m) Overlay of the spatial mapping of the RNF43 gene expression and the predicted TEAD1 TF

activity with the pathologists’s tissue annotations in the ST-colon4_Tre sample.

(n-o) Overlay of the spatial mapping of the DCN gene expression and the predicted ETV4 TF

activity with the pathologists’s tissue annotations in the ST-liver4_Unt.
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