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Abstract

The heterogeneity of colorectal cancer (CRC) contributes to substantial
differences in patient response to standard therapies. The consensus molecular
subtypes (CMS) of CRC is the most widely-used gene expression-based
classification and has contributed to a better understanding of disease
heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity
restricts its clinical application, stressing the necessity of further characterizing
the composition and architecture of CRC. Here, we wused Spatial
Transcriptomics (ST) in combination with single-cell RNA sequencing
(scRNA-seq) to decipher the spatially resolved cellular and molecular
composition of CRC. In addition to mapping the intratumoral heterogeneity of
CMS and their microenvironment, we identified cell communication events in
the tumor-stroma interface of CMS2 carcinomas. This includes tumor
growth-inhibiting as well as -activating signatures, such as the potential
regulation of the ETV4 transcriptional activity by DCN or the PLAU-PLAUR
ligand-receptor interaction. Our data show the power of ST to bring the
CMS-based classification of CRC to another level and thereby gain useful

molecular insights for personalized therapy.
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1. Introduction

CRC is a leading cause of cancer-related death worldwide with over 1.85 million
diagnosed cases and 850000 deaths annually. CRC mortality rates have
decreased in recent years as a result of treatments tailored to the molecular and
pathological features of the different groups of patients?. However, the
inter-patient and intra-tumor heterogeneity of CRC entails different responses
to standard treatments, such as chemotherapy or immunotherapy, and provides
a profound clinical hurdle®. CRC heterogeneity encompasses differences at the
genomic, epigenomic and transcriptomic level as well as variations of the
stroma and immune landscape, i.e. the composition of the tumor

microenvironment (TME)*.

In 2015, the CRC subtyping consortium performed an integrative analysis on
different large-scale gene expression datasets encompassing over 4000 CRC
patients. Their study resulted in a gene expression-based subtyping
classification of CRC into four CMS with distinguishing features’. CMSI is
hypermutated, microsatellite unstable and characterized by strong immune
activation. CMS2 and CMS3 are epithelial subtypes, with CMS2 displaying
marked WNT and MYC signaling activation, whereas CMS3 presents noticeable
metabolic dysregulations. CMS4 features a prominent TGFB activation, stromal
invasion and angiogenesis®>. The CMS classification framework is widely used
and contributed to a better understanding of the diversity of CRC and disease
prognosis. Nevertheless, its clinical impact on decision-making for CRC patients
is still limited for several reasons®’. First, the CMS classification system fails to
assign up to 13% of the CRC tumors, which are thought to display mixed or
transitioning CMS phenotypes®. Moreover, it relies on bulk sequencing of CRC
tumors, which lacks the resolution to comprehensively define the cell content
and disentangle the heterogeneity of CRC tumors and their intricate TME®.
Indeed, the CMS classification displays large intra-tumor heterogeneity as
revealed by the assignment of different subtypes to samples extracted from the
same CRC patient'®!. Recently, several studies applied scRNA-seq on CRC
samples to further reveal the diversity of and the dynamic relationships

between cellular components of CRC tumors and their TME”*?" These
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analyses disclosed CMS features at the individual tumor cell level and stressed
the high prevalence of multiple CMS phenotypes in the same patient’%'2
Nevertheless, the spatial distribution and complex network of cellular
interactions between the different CMS and their respective TMEs are still

poorly understood.

Recent technological advances in next-generation sequencing- and
imaging-based approaches have established the power of ST to systematically
measure gene expression levels throughout tissue space®. In oncology, this
technology adds another dimension to the classical histological readouts by
enabling the integration of morphology, spatial localization and transcriptomic
profile. Accordingly, ST paves the way towards a better understanding of cancer
heterogeneity, TME composition, and complex cellular interactions. In this
context, ST has been employed to study breast cancer'é, prostate cancerV,
melanoma®™ and CRC. Concerning CRC, Wu et al.'” used ST to support their
results obtained with scRNA-seq, describing immune pressure-driven evolution
of metastasis and response to neoadjuvant chemotherapy. The ST data
generated in that study were integrated with bulk transcriptomics of CRC
patients by Peng et al.?® to explore the crosstalk between cancer-associated
fibroblast and other components of the TME. In line with this, Qi et al®.
revealed the interaction between FAP' fibroblast and SPP1* macrophages by
using scRNA-seq and supporting their results with ST. In addition, Zhang et al.??
applied ST to study inflammatory patterns in proficient mismatch repair CRC.
In these publications, the use of ST was mainly intended to support the results
obtained with other technologies and did not specifically address the CMS of
CRC.

In this work, we intend to improve our understanding of the spatial properties
and heterogeneity of the CMS of CRC by applying ST on 14 samples from a
heterogeneous cohort of seven CRC patients. Using a deconvolution-based
approach, we first spatially characterized the cell type composition of the CRC
tumors and their microenvironment. We associated the different CMS with
distinctive molecular and morphological features and demonstrated the power

of ST to dissect tumor heterogeneity. When we explored -cell-to-cell
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communication events at the tumor-stroma interface in CMS2 carcinomas, we
revealed well characterized and novel interactions including tumor
growth-inhibiting as well as -activating signatures. Importantly, we supported
our findings by analyzing an external ST CRC dataset. Overall, our results pave
the way for a better understanding of CRC heterogeneity that builds on the
current CMS characterization. We anticipate that future studies can take
advantage of the power of ST to stratify treatments tailored to individual
patients and thereby help the use of personalized and/or combinatorial therapy
in CRC.

2. Results

2.1. ST and scRNA-seq-based deconvolution reliably reveal
CRC cell type composition

We processed fresh-frozen (FF) resection samples obtained from seven CRC
patients for ST using 10x Genomics VISIUM aiming at exploring spatial
molecular heterogeneity in CRC (Fig. la, Table 1). We considered two serial
sections per patient to generate technical replicates. Overall, quality control
displayed favorable metrics with a median number of genes per spot ranging
from 1233 to 5457 (Supplementary Fig. S1 and Methods). We evaluated the
similarity between technical replicates and the heterogeneity among samples
from different patients at the morphologic and transcriptomic level (Fig. 1b and
Methods). The pathologists examined and annotated the samples regarding

tissue type and cellular morphology.

To spatially map cellular composition per spot in our set of CRC samples, we
applied the Cell2Location deconvolution method?® using as reference a recently
published scRNA-seq dataset'? (Methods and Supplementary Table 1). In their
study, Lee and colleagues explored the cellular landscape of different CRC
subtypes, characterizing in detail cellular composition and suggesting
intercellular interactions. They independently analyzed samples from a Korean
cohort (23 patients) and a Belgian cohort (6 patients). Here, we focused on
results obtained using the more comprehensive Korean cohort, which contains

65,362 well-annotated non-neoplastic-, CMS-classified neoplastic, immune-,
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stromal-, and endothelial cells. We note that the data and annotations from the

Belgian cohort led to overall comparable results (Supplementary Note 1).

We then assessed the results of the deconvolution by exploring the similarity of
the estimated cell type abundances per spot between technical replicates. First,
we found highly comparable proportions between replicates when considering
the major cell types present across samples (Fig. 1c and Supplementary Table 1).
In contrast, proportions greatly differed across individuals: for instance, samples
from patient S7_Rec/Sig comprised <= 5% tumor cells. This is consistent with
the histology profile of this patient mainly containing non-neoplastic tissue, as
described in Table 1. We next examined the correlation of cell subtype
abundances in anatomical structures of variable size that were considered
equivalent between replicates based on their gene expression profiles (Fig. 1d,
Supplementary Table 1 and Methods). Excluding a single low quality sample
(Methods), Pearson’s correlation coefficients were above 0.9, highlighting the

similarity between technical replicates in the deconvolution results.

To further determine the accuracy of the deconvolution, we evaluated whether
the predicted cell types are located at their corresponding anatomic tissue
compartment. To achieve this, the pathologists manually assigned a category to
each spot based on the tissue type and composition (Methods). Then, we
computed proportions of the major cell types abundances in these different
tissue categories (Supplementary Fig. S2). As expected, non-neoplastic epithelial
cells were the most abundant in the non-neoplastic epithelium (89%), whereas T
and B cells were the prevalent types in the immune cell aggregates (IC) located
at the lamina propria (83%) and at the stromal or muscularis region (68%). In
tumor-annotated spots, the most predominant categories were tumor cells
(86%), T cells (26%) and B cells (25%). At the cell subtype level, non-neoplastic
mucosal cells, such as mature enterocytes type 1 and 2, goblet cells and
stem-like transiently amplifying (TA) cells, were significantly enriched in spots
labeled as non-neoplastic epithelium, lamina propria or mixed (Fig. le and
Methods). In contrast, tumor cells, CD19*CD20* B cells and CD8" T cells were
mainly enriched in spots classified as tumor or tumor-stroma mixed. Other
immune cells, including CD4* T-cells, were mostly enriched in spots identified

as immune-cell rich in stromal regions and/or IC. To frame these global results
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in our individual samples, we visualized the estimated number of different cell
subtypes, overlaid with the pathologists’ tissue annotations (Figs. 1f-h and

Supplementary Figs. S3-S9).

In summary, the estimated cell type abundances were highly comparable
between technical replicates and their spatial distribution was in line with the
pathologists’ assessment for all analyzed samples, demonstrating the reliability
of the ST data and our deconvolution results. Consequently, we further used
these to spatially characterize the CMS signatures and the TME in our set of
CRC samples.

2.2. Spatially resolved consensus molecular subtyping of CRC
and their key molecular features

Deconvolution-based estimates of CMS tumor cell proportions revealed a
predominance of CMS2 cells in the S2_Col_R (94%), S4_Col_Sig (98%), S5_Rec
(81%) and S6_Rec (90%) patients (Fig. 2a); hereafter referred to as CMS2 tumors.
A mixed abundance of CMS1 and CMS2 tumors was identified in the S1_Cec
(49% and 41% respectively) and S3_Col_R (65% and 29% respectively) patients;
hereafter designated mixed CMS1-CMS2 tumors. Of note, S1_Cec harbored a
BRAF"%E mutation (see Table 1), in line with previous findings linking this
mutation to the CMSI1 phenotype’. In addition, we detected CMS3 tumor cell
signatures in the S1_Cec (10%) and S5_Rec (16%) patients. In the non-neoplastic
S7_Rec/Sig sample, the few spots displaying a tumorigenic signal were mainly
classified as CMS3 (60%) and, to a lesser extent, as CMSI (19%). This is in
agreement with the study by Lee et al?, in which CMS8 tumor cells were also
observed to co-occur with CMS1 or CMS2. The CMS4 signatures were minor
and multifocally distributed in our samples, but overlapped with anatomical
regions displaying an invasive phenotype, suggesting an accurate spatial
mapping. Supplementary Figs. S10-S16 show the overlay of the pathologists’
tissue annotations with the estimated abundance of the different CMS tumor

cells across our set of samples.

As an alternative approach towards CMS classification, we applied CMScaller?*

on pseudo-bulk RNA-seq generated by either pooling together all the spots or
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only the tumor-annotated spots for each sample (Supplementary Fig. S17 and
Methods). The patients with mixed CMS1-CMS2 tumors were both labeled as
CMS], suggesting that their large content of T and B cells (see Fig. 1c) was
driving their classification towards CMSI rather than the immune-deprived
CMS2. Surprisingly, the S6_Rec patient was classified as CMS4 despite
containing almost only CMS2-like tumor cells (90% of the total tumorigenic
abundance) according to the deconvolution. The non-neoplastic S7_Rec/Sig
sample was also categorized as CMS4. The high stromal content of these two
patients may be driving these results, as suggested by previous studies reporting
that CMS4 classification is highly influenced by marker genes of
cancer-associated fibroblast and other stromal cells***?®. From the remaining
patients classified as CMS2 by the deconvolution, uniquely S5_Rec was
consistently classified as CMS2 by CMScaller. S2_Col_R and S4_Col_Sig were
categorized as diverse subtypes in different replicates. These results underline
how adjacent tissue components influence CMS classification approaches based
on bulk transcriptomics, highlighting the importance of relying on scRNA-seq

and ST to improve the characterization of CRC tumors.

In order to characterize the TME composition in our samples, we examined
their immune and stromal cell proportions (Figs. 2b-e). As described above,
mixed CMS1-CMS2 contained larger proportions of T and B cells than the other
samples, as expected from the immune-rich phenotype associated with CMSY°.
Their most abundant subtypes were CD8T and CD19*CD20" B cells, whereas
they contained lower proportions of regulatory T cells (Tregs) as compared to
CMS2 samples. Tregs inhibit antitumor immunity?” and therefore their
presence in the surroundings of the CMS2 carcinomas may prevent immune
infiltration. Myofibroblasts were the predominant stromal cell type in mixed
CMSI-CMS2 tumors, whereas stromal cell types in CMS2 neoplasms were more
heterogeneous. These results are in line with Lee et al.”? and Khaliq et al.® who

also reported a dominance of myofibroblast in CMS1 and CMS4 tissues.

Next, to associate these results with histological and spatial features, we
computed the enrichment or depletion of the different cell subtypes in the
tissue compartments defined by pathologists’ spot annotations (Fig. 2f and

Methods). This analysis revealed the association of CMS1 and CMS2 signatures
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with the tumor-annotated spots. Of note, CMS3 signatures were confined to the
non-neoplastic mucosa in all of our samples. This result can be attributed to the
normal-like gene expression patterns of CMS8 tumors described in Guiney et
al’. Immune cells were predominantly associated with the stroma in CMS2,
whereas in mixed CMSI1-CMS2 tumors, CD19*CD20* B cells and CD8" T cells
were also found in the neoplastic tissue. These results were further supported by
an integrative co-localization analysis of the different cell subtypes based on

their abundance maps (Supplementary Fig. S18 and Methods).

The overlay of the pathologists' tissue annotations with the deconvolution
results further revealed co-localization of CMSI and CMS2 signatures in the
S1_Cec and S3_Col_R samples (Figs. 2g-h). In S3_Col_R, a stronger CMS2 or
CMSI1 signature was associated with tubular or solid growth pattern respectively,
as described in Thanki et al.?® (see Supplementary Fig. S12). As expected,
immune cells, such as CD8" T and CD19'CD20" B cells, were abundant in the
CMSI- and devoid in the CMS2-predominant region (Figs. 2i-j). In the
non-neoplastic S7_Rec sample, the CMSI signature was confined to the rectal
gland, whereas CMS3 was associated with the mucosa (see Supplementary Fig.
S16). We also delineated stromal 2 signatures as spatially adjacent to tumor
lobes. Larger stroma bundles displayed a myofibroblast and a minor stromal 3
signature (Supplementary Fig. S19). Selected features of the TME of individual
tumors and semiquantitative pathologists’ gradings are detailed in

Supplementary Table 2.

To identify further molecular features associated with the different CMS in a
spatially resolved manner, we performed an integrative analysis across all
samples and explored the per spot correlation between tumor abundance and
transcription factor (TF) and pathway activities (Figs. 2k-1 and Methods). For the
CMSI tumor cells, we captured the expected correlation with JAK-STAT® (Fig.
2m) and immune-related pathways, such as the TNFa?® and NFkB. In addition, a
correlation with the EGFR and MAPK pathway was identified. The activation of
the MAPK pathway is well known in the hypermutated CMSI1®". For the CMS2
tumor cells, we found the expected correlation with the WNT and VEGF
pathways®? (Figs. 2n-p). At the TF activity level, CMS2 abundance was associated

with high expression of MYC-regulated genes’, whereas lower transcriptional
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MYC activities were detected in the non-neoplastic mucosa containing CMS3
signatures (Figs. 2q-s). Noteworthy, E2F4 and MYC TF activity maps displayed
similar patterns suggesting an interplay between these TFs in the regulation of

target genes implicated in CMS2% (Fig. 2t and Supplementary Fig. S20).

Hence, our deconvolution-based approach spatially mapped the different CMS
and TME cell types, revealing their association to key molecular and histological
features. In addition, we showed the ability of ST to detect and characterize

spatially heterogeneous CMS phenotypes.

2.3. ST maps the inter-patient and intra-patient heterogeneity of
CMS2 tumors

ST enables the exploration of the transcriptomic diversity of tumors and their
TME at an unprecedented level. While the integrative analysis of our samples
captured the core molecular features of the different CMS subtypes, we
subsequently performed an in-depth assessment of individual samples to
delineate the inter-patient and intra-tumor heterogeneity of our four CMS2
carcinomas (S2_Col_R; S4_Col_Sig; S5_Rec; S6_Rec).

In order to depict inter-patient heterogeneity between CMS2 tumors, we first
extracted all tumor-annotated spots (Supplementary Fig. S21 and Methods).
These spots possessed CMS2-dominated transcriptomes as their CMS2 cell
abundance ranged from 65% to 84% of the total estimated number of cells
(Supplementary Fig. S22). Nevertheless, there were noticeable differences
between patients, as revealed by differential gene expression, pathway and TF
activity analyses (Figs. 3a-d, Methods and Supplementary Table 3). This
observation is in accordance with previous studies suggesting that CMS2 tumors
are highly heterogeneous®®*. In tumors obtained from the S4_Col_Sig and
S5_Rec patients, genes involved in mTORCI signaling, a known player in the
progression of normal to neoplastic cells in CRC at early stages of the
tumorigenesis®, were overrepresented. However, genes participating in the
mTORC1 pathway were differentially expressed between these two patients

(Supplementary Table 3), suggesting alternative signaling cascades. For instance,
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NUPR1, which was shown to promote metastasis in CRC by activating the
PTEN/AKT/mTOR signaling pathway®® was only highly expressed in CMS2
tumor cells derived from the S4_Col_Sig patient (Fig. 3b). At the pathway level,
we identified lower EGFR signaling activity in the tumor spots originating from
the S2_Col_R and S4_Col_Sig patients (Fig. 3c and Supplementary Fig. S23).
KRAS mutations were screened and not detected in these patients (see Table 1),
in line with the assumption that the EGFR signaling pathway is usually activated
in CMS2 tumors at the expense of KRAS mutations®”. FOXM1 displayed higher
transcriptional activity in S6_Rec, when compared to the tumor spots derived
from the other patients (Fig. 3d and Supplementary Fig S24). This signal might
be related to residual stromal cells in spots annotated as tumor and is consistent

with the pseudo-bulk classification of this tumor as CMS4.

Multiple factors, such as the inherent heterogeneity of CMS2 tumor cells or
their different anatomical origin can account for these inter-patient
transcriptomic differences. The composition and spatial organization of the
TME may also have a major impact on their transcriptomic profile. ST enables
assessing the latter in a unique manner. Towards this end, we selected the spots
surrounding CMS2 tumors and explored their cell type abundance profiles for
each sample (Fig. 3e and Methods). Then, using these spots, we generated
pseudo-bulk RNA-seq data and evaluated differential pathway activity among
patients (Fig. 3f and Methods). Interestingly, we observed a depletion in the
number of myofibroblasts for the S5_REC patient (Supplementary Fig. S25a).
This might explain the lower activity of the TGFp pathway®® in the tumor and
surrounding regions and be indicative of earlier tumor stages with reduced
stromal content. We also detected an enrichment of mature enterocytes type 2,
highlighting the close morphological and spatial association of non-neoplastic
and neoplastic cells in this sample (Supplementary Fig. S25b), and underlining
the potential of ST to assess surgical margins. On the other hand, S4_Col_Sig
displayed a higher proportion of SPP1* macrophages (Supplementary Fig. S25¢),
which are key to creating an immunosuppressive TME?®. This could relate to
the lower activities of immune response associated pathways such as NFkB and

TNFa signaling observed in the tumor of this patient.
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CMS2 tumors can also exhibit a large degree of heterogeneity within the same
patient. To illustrate and characterize this intra-tumor heterogeneity, we first
selected the S2_Col_R_Repl sample and categorized its tumor annotated spots
in three different regions based on their distance to non-tumor annotated spots
(Methods). The regions were termed as peripheral-, intermediate -and central
tumor. In this manner, we established a zonation model allowing us to
investigate the genes and processes that are more active in the tumor boundary
or in its internal solid area. Differential gene expression analysis between these
zones revealed the anticipated overrepresentation of genes involved in EMT
and angiogenesis in the peripheral tumor’® (Supplementary Fig. S26a,
Supplementary Table 4 and Methods). In this region, we detected high
expression of several fibroblast-specific genes, such as FBLN1 or COL3A1
(Supplementary Fig. S27), which could originate from few reminiscent stromal
cells located in tumor-annotated spots. A more intriguing result is the
upregulation of SPARC (Fig. 3g), a gene whose expression in cancer cells (not in
stromal cells) was recently shown to control tumor progression and prognosis in
CRC*". In the central solid tumor, we identified several upregulated genes known
to be involved in hypoxic response and cholesterol homeostasis (Supplementary
Fig. 26b and Supplementary Table 4), in accordance with the low oxygen
conditions expected in this region*?. Fig. 3h shows the spatial expression pattern
of SCD, which we consider of particular interest as its upregulation in hypoxic
tumors is linked to the metabolic reprogramming required to promote growth
and metastasis of cancer cells*, including CRC*. Additional examples of
upregulated genes in the central tumor were INSIGI and MELTF

(Supplementary Fig. S28), whose role in cancer is not yet clearly defined.

We then selected the S5_Rec_Repl sample and sub-clustered the
tumor-annotated spots using gene expression at enhanced resolution (Fig. 3i
and Methods). The clustering revealed three different regions defined by various
differentially expressed genes (Supplementary Fig. S29), biological processes
(Supplementary Fig. S30 and Supplementary Table 5) and pathway activities
(Methods). Of note, some tumor-associated pathways, such as EGFR and MAPK,
displayed marked differences between subclusters (Supplementary Figs. S31a-b).
On the other hand, the activity patterns of WNT and VEGF pathways, hallmarks
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of CMS2 tumors, presented a more homogeneous distribution among
subclusters (Supplementary Figs. S31c-d). We further detected increased TGFp
pathway activity in subcluster number 1 (Fig. 8j), pointing to the tumor regions

that most likely proliferate and undergo metastatic processes*.

Together, our results illustrate the ability of ST to delineate the inter- and
intra-tumor heterogeneity of CMS2 carcinomas and to define the composition
of their TME. This is crucial to better understand differential patient response
to treatments such as immunotherapy. In addition, the differential spatial
patterns of key molecular processes involved in cancer progression, such as high
TGFB pathway activity, can help designing tailored treatments or new

combination therapies.

2.4. ST charts cell-to-cell communication processes modulating
CMS2 tumor progression

ST reveals the cellular organization within tissues, providing a unique
opportunity to study cell communication events. Accordingly, we explored such
processes occurring in the tumor-stroma interface and their potential role in
CMS2 tumor progression. In addition, we independently used the scRNA-seq

data from Lee et al.”? to support and refine our results.

In the previous section, we used ST to highlight and characterize the
heterogeneity of CMS2 tumors and their TME at the transcriptome level. To
study common biological processes across our CMS2 tumor samples, we
hypothesized that some transcriptional programs modulating tumor
progression may display higher similarity than individual gene expression
patterns. We consequently merged the spots from our four samples displaying
an unequivocal CMS2 phenotype (S2_Col_R; S4_Col_Sig; S5_Rec; S6_Rec),
and clustered them based on their TF activity profiles (Methods). Indeed, the
UMAP embedding and clustering revealed higher similarity than that of gene
expression-based results (Fig. 4a and Supplementary Fig. S32). Cluster O,
hereafter referred to as the tumor cluster, contained spots mainly annotated as

tumor (49%) and tumor&stroma_IC med to high (26%) across replicates and patients
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(Fig. 4d and Supplementary Figs. S33-S34). In the same line, cluster 1, hereafter
referred to as the TME cluster, included spots predominantly annotated as
stromal regions (63% as stroma_fibroblastic_IC med to high and 20% as
tumor&stroma_IC med to high), which were lying in the neighborhood of the
tumor in every sample (Fig. 4d, Supplementary Figs. S33-S34). As expected, we
found MYC and E2F4 among the most differentially activated TFs in the tumor
cluster (Fig. 4b, Supplementary Fig. S35 and Methods). In the TME cluster, we
identified several TFs known to play a pivotal role in cancer progression such as
JUN*¢ and ETS1¥ (Fig. 4c and Supplementary Fig. S35). Of note, cluster 6 also
presented higher transcriptional activity of MYC and E2F4 (Supplementary
Figs. S34-S35) and spots mainly annotated as tumor (50%) and tumor&stroma_IC
med to high (30%) (Fig. 4d). However, almost all the spots belonging to cluster 6
come from the S6_Rec patient (see Supplementary Figs. S32-S34). It was

therefore not considered for subsequent analysis.

To study cell communication events, we first selected highly expressed ligands
in the tumor and TME clusters (Methods). We then used Misty*® to estimate the
potential influence of the expression of these ligands on modulating the activity
of TFs that are operating in the TME, such as the aforementioned JUN and ETSI
(Fig. 4e and Methods). To place these results into a mechanistic context, we
inferred the most likely signaling cascades connecting the top predicted
ligand-TF associations (black squares in Fig. 4e). To do so, we first investigated
inter-cellular ligand-receptor interactions between the tumor and the TME
clusters (Fig. 4f and Methods). Then, using a network-based approach, we
connected the top predicted ligand-receptor interactions with our set of active
TFs in the TME (Fig. 4g and Methods). To define the cell types involved in these
processes, we independently computed TF activity and inferred ligand-receptor
interactions on the patients classified as CMS2 in the scRNA-seq dataset
published by Lee et al."? (Figs. 5a-d, Supplementary Fig. 36 and Methods).

We predicted that the stroma-secreted DCN may modulate the transcriptional
activity of ETV4, MEISI and SPI1 (Figs. 4e, 5e-f and Supplementary Figs. S37a-c).
ETV4 is known to promote tumor invasion in CRC by regulating the expression

of metalloproteinases*. As revealed by our network-based analysis (Fig. 4g), this
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regulation occurs in response to the MAPK signaling pathway, which is in turn
activated by the binding of EGF to its putative EGFR receptor®. Substantial
abundance of DCN can obstruct that interaction, as it directly binds to EGFR
and downregulates its expression, preventing tumor progession’. Our
ligand-receptor analysis identified the DCN-EGFR interaction targeting stromal
or CMS2 tumor cells (Figs. 4f, 5c-d). In line with these findings, the average
transcriptional activity of ETV4 appears to be lower in cell types targeted by the
interaction, such as myofibroblasts, than in non-targeted cells, like macrophages
(Fig. 5a). The family of MEIS TFs can act as tumor suppressors or oncogenes
under different cellular conditions and cancer types and their target genes are
widely misregulated in CRC*. Our results suggest that DCN may influence the
transcriptional activity of MEISI through the downstream signaling of the SRC
kinase family (Fig. 4g), which is known to promote metastasis and cause
chemotherapeutic drug resistance in CRC®. Finally, SPIl1 participates in the
transcription of several genes involved in immune cell differentiation and
tumor progression®*. Our network-based analysis revealed that DCN may
modulate the activity of SPIl via the well-characterized STAT-mediated EGFR
signaling axis® (Fig. 4g). Of note, we identified additional interactions where
DCN is known to play a protective role in tumor progression. Namely, DCN
interacts with the MET receptor to inhibit tumor growth and angiogenesis and
promotes inflammation via interactions with TLR2 and TLR4 receptors®
(Supplementary Fig. 37d) . Given its eminent protective role, high expression
levels of DCN in stromal cells around CMS2 carcinomas could be expected to be
indicative of non-proliferative tumor regions. On the other hand, DCN
expression levels may also be associated with a protective response against
tumor progression associated events, such as intense metastatic activities (Fig
5g). In sum, our results provide mechanistic insights about how DCN expression

may modulate signaling cascades involved in CRC tumor progression.

We also found that the expression of the transmembrane protein RNF43 may
modulate the activity of several TFs operating in the TME, including JUN and
TEAD4 (Figs. 4e, 5h-i and Supplementary Figs. S38a-b). Previous studies in
colorectal and pancreatic cancer suggest that RNF43 possesses a tumor

suppressor role through the inhibition of the WNT signaling pathway. Indeed,
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overexpressed RNF43 was shown to target the WNT receptors of the Frizzled
57-59

family for degradation. JUN plays a well-known role in neoplastic
transformation and is activated via the non-canonical WNT pathway®. The
TEAD family (TEADI-4) of TFs are key components of the Hippo signaling
pathway and bind to YAP to promote the transcription of genes involved in cell
migration and angiogenesis®. Interestingly, YAP is also a negative regulator of
the WNT pathway®. Our network-based analysis revealed the interaction
between YAPl and TEAD4 and also other crucial components of the WNT
pathway, such as the disheveled family of proteins (DVL-1 and DVL-3) (Fig. 4g).
Interestingly, we consistently predicted an interaction between RNF43 and
FZD2 in both the ST (Fig. 4f and Supplementary Fig. S38c) and scRNA-seq data
targeting stromal 3 cell populations (Fig. 5c and Supplementary Fig. 38d).
However, this interaction is well-documented to occur in the intracellular
domain of RNF43 in tumor cells®®, with few studies reporting a potential
extracellular interaction®. It is therefore likely that the ligand-receptor analysis
is capturing indirect expression associations. Taken together, higher expression
levels of RNF43 may lead to increased degradation of the receptors of the WNT
pathway. As a consequence, the transcriptional activity of TFs downstream of
these receptors is affected and may be indicative of tumor regions with lower
metastatic activity (Fig. 5j). Noteworthy, these particular biological processes

may not directly result from cellular interactions at the tumor-stroma interface.

We further predicted other ligand-TF associations with potential protective
roles against tumor progression. For instance, the THBS2 secreted ligand was
predicted to have an influence on the activity of STAT1 (Fig. 4e and
Supplementary Figs. S39a-b). THBS2 is known to have anti-tumor progression
properties by interacting with CD36 to promote anti-angiogenic processes (Fig.
4f and Supplementary Figs. S36, S39c-d)®. On the other hand, we found other
modulations suggestive to promote tumor cell growth and migration. For
example, the expression of MMPI, a matrix metalloproteinase involved in
cancer progression through degradation of the extracellular matrix®, was
predicted to have an effect on the activity of the FOS TF (Fig. 4e and
Supplementary Figs. S40a-b). Another interesting result is the predicted
interaction of the secreted ligand PLAU with its putative receptor PLAUR (Fig.
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4f and Supplementary Figs. S41la-b). The binding of PLAU and PLAUR is known
to trigger the degradation of extracellular matrix components, promoting
tumor invasiveness”. We predicted this interaction to be occurring between
myofibroblast cells (source of the interaction) and macrophages or conventional
dendritic cells (cDCs) (target of the interaction) (Fig. 5b and Supplementary Figs.
S41c-d). This is in line with a study in prostate cancer, associating PLAU-PLAUR
interaction with macrophage infiltration®. Finally, we also found that the
CXCL14 chemokine may potentially have a downstream impact in the
transcriptional activity of MAF (Fig. 4e), which has been shown to regulate the
immunosuppressive function of tumor-associated macrophages®. Interestingly,
a stabilized dimeric peptide containing part of CXCLI14 amino acid residues has

been proposed as an anticancer treatment’’.

Taken together, our analysis revealed ligands potentially modulating the activity
of TFs known to play a pivotal role in CMS2 tumor progression, highlighting

the power of ST to study cell communication processes in CRC.

2.5. External ST CRC data confirms deconvolution-based
subtyping, heterogeneity patterns and predicted cell
communication events

To further validate our results, we used independent CRC ST data from a recent
publication with morphological features suggestive of CMS2". This ST dataset
contains four samples from primary CRC tumors and their corresponding four
liver metastases. Two of the patients were untreated (Unt) and the other two

were treated with neoadjuvant chemotherapy (77e).

We first applied our deconvolution-based approach to characterize this set of
samples. Of note, the deconvolution was also applied to the samples originating
from the liver. Consequently, some cell types from the scRNA-seq reference are
not expected to match liver tissue, mainly the non-neoplastic intestinal
epithelial cells. The proportions of the major cell types present in the tissues
(Fig. 6a) revealed a very reduced tumor content in the ST-colon2_Unt,
ST-colond_Tre and ST-liver3_Tre samples, in accordance with their histology.

For these samples, only around 4% percent of the total cell abundance was
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mapped to tumor cells. All the samples, including the liver metastases,
presented a dominant CMS2 phenotype with over 80% of the total tumor cells
mapped to this subtype (Figs. 6b-c and Supplementary Figs. S42-S45). In
agreement with our previous results, CMS3 signatures were confined to the
non-neoplastic mucosa and CMS4 signals were minor and multifocally
distributed. The abundance of CMSI tumor cells was almost negligible in these
samples. Interestingly, CMS2 signals were substantial and overlapped with the
histology of the liver tumors suggesting a conservation of the CMS phenotype
in metastasis. (Fig. 6d and Supplementary Figs. S46-S49). To further
characterize these samples, we explored their relative content of the different
types of T cells, B cells, myeloid cells and the main stromal -cells

(Supplementary Figs. S50-53).

Next, we additionally classified these samples by applying CMScaller’* on
pseudo-bulk RNA-seq generated by pooling together all their spots
(Supplementary Fig. S54 and Methods). Interestingly, only ST-colonl-Unt,
ST-liverl-Unt and ST-liver2-Unt were classified as CMS2. The colon samples
with minor tumor content, ST-colon2-Unt and ST-colon3-Tre, were labeled as
CMS4, suggesting that their stromal content was driving their classification. The
liver sample with reduced tumor content, ST-liver3-Tre, was not assigned to any
CMS. The ST-colon4-Tre and ST-liver4-Tre samples were respectively classified
as CMS3 and CMSI, despite their large abundance of CMS2 tumor cells revealed
by the deconvolution results. For ST-colon4-Tre, we hypothesized that its large
content of non-neoplastic intestinal epithelium is driving the classification
towards CMS3 (see Supplementary Fig. S45). The high content of resident
macrophages in the liver tissue may be associated with the classification of
ST-liver4-Tre as CMSI1 (Supplementary Fig. S55). In summary, we emphasized
again the lack of resolution of bulk-transcriptomics based classification systems

to describe CRC heterogeneity.

We then spatially mapped the main CRC associated molecular features and
examined their correlations with CMS cell abundance jointly considering
primary and hepatic metastatic tumors (Figs. 6e-f and Methods). We focused
our analysis on CMS2 given the limited number of cells estimated for the

remaining subtypes. At the pathway level, we confirmed the activation of the
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WNT and VEGF pathways in CMS2 rich regions (Fig. 6g and Supplementary
Fig. S56a). Regarding transcriptional activity, we corroborated the activation of
the MYC and E2F4 TFs in CMS2 tumors (Fig. 6h and Supplementary Fig. S56b).
Besides these well-known CMS2 features, we also found correlations between
the number of estimated CMS2 cells and the activity of the MAPK pathway and
the NR2C2 TF (Figs. 6i-j), in line with the findings in our set of samples (see
Figs. 2k-1). These results are particularly interesting as their role in CMS2

tumors is not clearly defined.

We finally used this external dataset to corroborate selected cell-to-cell
communication processes of those described above, i.e. the previously predicted
ligand-TF regulations. For this purpose, we first computed Misty scores on the
primary CRC tumors (Fig. 6k and Methods). The results supported the
modulation of the transcriptional activity of JUN and members of the TEAD
family by the expression of RNF43 (Figs. 61-m). Moreover, we captured again the
potential influence of DCN expression on the transcriptional activity of ETV4
(Supplementary Figs. S57a-b). We also confirmed that the CXCL14 chemokine
may potentially have a downstream impact in the transcriptional activity of
MAF (Supplementary Figs. S57c-d). Next, we computed Misty scores on the liver
metastatic tumors (Supplementary Fig. S58 and Methods). Our results indicate
that the modulation of the transcriptional activity of ETV4 and JUN by DCN
and RNF43, respectively, are preserved after metastasis (Figs. 6n-o and
Supplementary Fig. S59). These findings are in accordance with and can provide
new mechanistic insights to a recent study describing the protective role of

DCN in hepatic metastasis of CRC"™.

Overall, we confirmed the main results of our study in an independent ST CRC
dataset. The deconvolution of these external samples validated the spatial
molecular and morphological features of the CMS, particularly of CMS2. We
also corroborated a part of the previously inferred cell communication
processes involved in tumor progression. Moreover, we depicted the
conservation of the CMS2 phenotype and of some ligand-TF regulations in

CRC liver metastasis.
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3. Discussion

The clinical need for accurate CRC patient stratification led to the development
of several gene expression-based classification systems, such as the CMS?® or the
CRC intrinsic subtypes (CRIS)”2. The CMS classification system is broadly used
and has helped to understand the different molecular mechanisms underlying
CRC and disease prognosis’. Nevertheless, CMS intra-tumor heterogeneity
hampers its clinical application, underlining the necessity of further
characterizing the cellular composition and architecture of CRC and its

microenvironment.

To complement our understanding of CRC CMS, we used ST combined with
scRNA-seq through cell type deconvolution to delineate subtype inherent
transcriptomic and morphological features. Our spatial alignment of CMS
signatures with pathologists' annotations, distinctly confined CMS1 and CMS2
cells to the neoplastic areas. Interestingly, the CMSI-CMS2 mixed S3_Col_R
sample revealed a co-localization of CMS1-CMS2 cells indicating their
coexistence. CMSI signals were predominant in the diffuse-growing tumor,
whereas CMS2 signatures were accentuated in a defined region showing a
tubular growth pattern, in line with morphological features described by Thanki

et al.?8,

These results stress the ability of ST to characterize mixed or
transitioning CMS phenotypes and to reveal features that cannot be described
using bulk- or scRNA-seq. In all the analyzed samples, CMS3 signatures were
exclusively detected in the non-neoplastic mucosa, which can be associated with
the previously described normal-like expression patterns of CMS3’. The
EMT-associated CMS4 signals were minor, but overlapped with tumor regions
displaying an invasive phenotype. Their limited abundance across the analyzed
samples is in line with the very low number of tumor-like epithelial cells
showing a CMS4 phenotype reported in previous publications’ and in our
scRNA-seq reference?. Indeed, previous studies have proposed that CMS4
defines a transcriptional state or a stromal cell signature, rather than tumor
cells. Larger datasets are required to confirm whether ST can provide new

insights into the nature of CMS4 tumors or can be used to delimitate the most

invasive parts of other CRC subtypes.
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The discrepancies in the CMS categorization between the deconvolution- and
the bulk-based approaches, underline the large influence of adjacent tissue
components on tumor classification. This is illustrated by both replicates of the
S6_Rec patient, which were classified as CMS2 by the deconvolution and
assigned to CMS4 by CMScaller?®. Histologically, this sample is composed of
small tumor islands surrounded by large stroma bundles. This morphology
hampers the separation of the tumor components for bulk RNA sequencing,
whereas ST can provide a detailed assessment of them. The CMS4 classification
of stroma-rich tumors is in accordance with previous studies reporting that the
CMS4 signature is highly influenced by marker genes of cancer-associated
fibroblasts and other stromal cells®**?. The external ST-colon4_Tre sample,
which was categorized as CMS2 by deconvolution and classified as CMS3 by
CMScaller?, represents another example. This case raises concern about the
potential influence of the non-neoplastic mucosa, containing CMS3 signals as

described above, in bulk-based CMS classification systems.

Overall, our results underline the potential of ST in CRC characterization,
enabling the spatial correlation of morphological tumor, stroma and
non-neoplastic tissue patterns with corresponding transcriptomic features.
Nevertheless, limitations inherent to our deconvolution-based approach should
be acknowledged. The deconvolution partially failed to map stromal cells in the
regions annotated as such by the pathologists. This effect is pronounced in the
S3_Col_R sample and was observed regardless of the scRNA-seq dataset used as
reference. This might be related to the lack of this specific stroma cell type in
the scRNA-seq reference datasets. It can also correspond to a more general issue
related with a potential loss of sensitivity in the deconvolution results in
anatomical regions where the number of transcripts per spot was lower due to
tissue inherent properties or technical and processing variabilities, as illustrated
in Supplementary Figs. S60-S62. Another aspect of the deconvolution that
requires critical consideration is the impact of the scRNA-seq dataset used as
reference. In our study, we compared the results yielded by two reference
datasets that were annotated using the same criteria'®Z. As described in

Supplementary Note 1, the overall deconvolution results were similar between
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references, but notable differences for particular cell types, such as CMSI1, were
observed. We hypothesized that the most comprehensive Korean dataset could
lead to more accurate cell type specific signatures for deconvolution purposes.
Additionally, the differences in the genetic background between both cohorts

can contribute to these discrepancies.

We also explored the power of ST to explore inter- and intra-tumor
heterogeneity and cell communication processes in CMS2 carcinomas.
Regarding CMS2 heterogeneity, our results defined patient specific signaling
cascades for the mTORCI and EGFR pathway, and suggested specific features in
stromal, immune-rich and tumor regions that might be relevant for
personalized treatment approaches. For cell communication processes, we
explored ligand-receptor interactions at the tumor-stroma interface potentially
involved in tumor progression. To support our results and to identify the
specific cell types involved in these processes, we estimated in parallel
ligand-receptor interactions and TF activity on the scRNA-seq dataset from the
Lee et al. publication. By using this approach, we revealed signaling cascades
modulating the interplay between CMS2 tumor cells and their TME
(mesenchymal or vascular stroma components and immune cells), which are
crucial for tumor progression and immune phenotyping. Interestingly, some of
our results suggested a protective response mitigating tumor growth, such as the
potential effect of DCN expression on the transcriptional activity of ETV4
through its binding to the EGFR receptor.. On the other hand, we inferred
modulations that seem to promote tumor growth and invasiveness. For
instance, myofibroblast cells secreted the PLAU ligand that was predicted to
target the PLAUR receptor in SPP1" macrophages, which are known to be
associated with EMT in CRCZ#”. Overall, our results revealed several well
characterized and novel cell-to-cell interactions, highlighting the potential of ST
to delineate potential therapeutic targets for specific CMS subtypes.
Nevertheless, the ligand-TF modulations predicted in this study need to be
further investigated. They were inferred by modeling the spatial maps of TF
activity using gene expression of ligands as a proxy. Therefore, some of the
results may not represent direct causal regulation as a consequence of the

complex network of cellular interactions and alternative signaling cascades in
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cancers. In a similar line, the ligand-receptor interaction analysis can also
capture indirect gene expression associations, as may be the case for the
predicted RNF43-FZD2 interaction, which is mostly reported as intracellular in

the literature.

We finally supported our key findings using an independent ST CRC dataset
comprising four CRC samples from primary tumors and their corresponding
liver metastatic samples. Interestingly, our deconvolution approach delineated
the primary, but also the metastatic carcinomas, as CMS2. In these liver tumors,
we captured the CMS2 main molecular features, like the activation of the WNT
pathway or high expression of MYC-regulated genes, and preserved cell
communication events as the modulation of the transcriptional activity of ETV4
by DCN. This suggested that the CMS2 phenotype was recovered to some
extent after migration of the primary CRC cells to sites of metastasis. Systematic
and organ specific assessment of the active common pathways in primary and

metastatic carcinomas might support treatment strategies for stage IV tumors.

In conclusion, our study highlights how ST, coupled with scRNA-seq, provides a
novel dimension to explore patient conserved and specific molecular features of
CRC and its CMS by characterizing the spatial arrangement of the different cell
types composing tumors and their TME. We acknowledge that the limited
number of samples and patients in our study hampers a comprehensive analysis
of CRC heterogeneity. Moreover, we are working with 2-dimensional sections of
tumors, whereas a 3-dimensional view is required to fully describe and
characterize them. However, we envision that our proof-of-concept work
delineates the potential of ST to contribute to patient-specific treatment
approaches. On the one hand, more refined patient stratification strategies can
be designed by taking into account the composition and spatial distribution of
the cells composing the tumor and the TME, and its integration with
morphological features extracted from the corresponding histological images.
On the other hand, intra-tumor spatial heterogeneity can reveal tumor
progression related processes that are anatomically restricted or more
pronounced in a particular region. This can fuel the development of new

treatment strategies, such as combinational therapies or spatially restricted
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medication, potentially leading to improvements in drug-efficacy and dosage
reductions. In this regard, the foreseeable improvements in the resolution,
reduction of processing costs per sample and clinical validation of ST
technologies will facilitate the detailed analysis of larger CRC cohorts towards

personalized oncology.

4. Methods

4.1 Collection of CRC samples

Human CRC tissues (<8 months storage) and annotated data were obtained and
experimental procedures were performed within the framework of the non
profit foundation HTCR, including the informed patient’s consent™. Tissues
were cut on a Cryostat (CryoStar NX70, Thermo Scientific) at 10 um.
Pathologists performed quality and comparability assessment of FF material

using an H&E stained slide.

4.2 Sample preparation

RNA from all samples was extracted using the Arcturus® PicoPure® RNA
Isolation Kit (Applied Biosystems™, KIT0204). For cell lysis, a 10 um section of
the sample was resuspended in a 200 ul extraction buffer. Total RNA was
extracted following the instructions of the manual. RNA integrity number (RIN)
was assessed using the 2100 Bioanalyzer system (Agilent Technologies, Inc.) with
a Agilent RNA 6000 Pico Kit (Agilent Technologies, Inc., 5067-1513). Samples
with RIN above 7.0 were used.

Tissue optimization was carried out according to the manufacturer's
instructions (VISIUM Spatial Tissue Optimization User Guide_RevC). Image
acquisition was performed on the Hamamatsu NanoZoomer S 360 C13220
series at 40x magnification and the coverslip was removed afterwards by
immersing the slide in a 3x Saline-Sodium Citrate buffer. The stained tissue
sections were permeabilized using a time course to test for the optimal

permeabilization time. After performing a fluorescent cDNA synthesis, the
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tissue was removed. Finally the fluorescent cDNA was imaged using a Zeiss Axio
Scan.Z1 with a Plan Apochromat 20x/0.8 M objective, a ET-Gold FISH filter (ex
538-551 nm/em 556-560 nm) and 100 ms exposure time.

For the gene expression analysis, 10 um thick sections of the samples were
placed with a random distribution over four chilled 10x Genomics VISIUM
Gene Expression slides containing four capture areas each. The sections were
similarly stained with H&E and subsequently imaged as described above. To
release the mRNA, the sections were permeabilized for 80 min as defined by
tissue optimization. For further processing, the cDNA was amplified according
to the manufacturer's protocol
(CG000239_VisiumSpatialGeneExpression_UserGuide_RevC). Double indexed
libraries were prepared. The libraries were quality controlled using a 2100
Bioanalyzer system with Agilent High Sensitivity DNA Kit (Agilent
Technologies, Inc., 5067-4626) and quantified with Qubit™ 1X dsDNA HS Assay
Kit (Invitrogen, Q33230) on a Qubit 4 Fluorometer (Invitrogen, Q33238). The
libraries were loaded onto the NovaSeq 6000 (Illumina) at a concentration of
250 pM. A NovaSeq S1 v 1.5 or SP v 1.5 Reagent Kit (100 cycles) (Illumina,
20028319 and 20028401) was used. For paired end-dual indexed sequencing,
the following read protocol was used: read 1: 28 cycles; i7 index read: 10 cycles;
i5 index read: 10 cycles; and read 2: 90 cycles. All libraries were sequenced at a

minimum of 50000 reads per covered spot.

Raw sequencing data were demultiplexed using the mkfastq function from Space
Ranger (v. 1.2.0). Demultiplexed data were mapped to the human reference
GRCh38 with spaceranger count. Spots under tissue folds, artifacts and at the

tissue boundary were manually removed using the 10X Loupe browser (v. 5.1.0).

4.3 Histopathological annotations and spot categorization

H&E stained tissue sections were annotated by the pathologists using Q-Path
software (v. 0.2.8)”. Spot categorization was performed by the pathologists using
the 10X Loupe browser (v. 5.1.0). Categories and corresponding criteria are listed

in Supplementary table 6.
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4.4 Grading of CMS signatures

Grading of CMS signatures in the tumor tissue was performed
semi-quantitatively according to the number of spots with positive signature
and the percentage of positive cells per spot. This grading was done in an
individual  replicate = per  patient (S1_Cec_Repl, S2_Col_R_Repl,
S3_Col_R_Repl, S4_Col_Sig_Repl, S5_Rec_Repl, S6_Rec_Rep2 and
S7_Rec/Sig_Repl) according to the scheme detailed in Supplementary table 2.

4.5 Bioinformatic analysis

4.5.1 ST data pre-processing

We used the Seurat”, Scanpy” and SingleCellExperiment®® packages to load the
output of the Space Ranger pipeline and process the ST data. We evaluated the
quality of the ST data by determining the average number of reads, UMIs and
genes per spot covered by tissue and compared it with those from spots non
covered by tissue. We found substandard quality for the S1_Cec_Rep2 sample
as revealed by its low numbers of unique molecular identifier (UMI) counts and
genes in spots covered by tissue (Supplementary Fig. S1). Consequently, this
sample was either treated carefully or excluded from integrative analysis. For
each individual sample, we filtered out spots for which the number of UMI
counts detected were below 500 or above 45000. In addition, spots containing a
fraction of more than 0.5 mitochondrial genes were not considered in the
analysis. We normalized the UMI counts from the remaining spots using

SCTransform?..

4.5.2 Sample integration, batch correction and dimensionality reduction

To jointly represent the CRC samples in the same low dimensional space
(UMAP embedding), correct from batch effects and integrate samples and
technical replicates for downstream analysis, we used Harmony, which is a

robust and efficient algorithm designed to integrate scRNA-seq datasets®. We
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ran Harmony with default parameters allowing a maximum number of 20
interactions (max.iter.harmony = 20) and correcting per individual samples. Of
note, Harmony was either applied to batch-correct for all the spots derived
from all the samples or to batch-correct only the tumor annotated spots from a

subset of samples (CMS2 tumor samples).

4.5.3 Deconvolution of the ST datasets

ST datasets derived from 10x Genomics VISIUM technology currently lack
single cell resolution. Therefore, the gene expression values detected per spot
originate from a variable number of different cells, i.e. every spot can be
considered as a mini-bulk RNAseq dataset. Consequently, a deconvolution
approach is required to estimate the different cell types and their proportions

across spots.

To this end, we used the recently proposed Cell2Location (v 0.0.5)*® method.
Cell2location first creates gene expression signatures of cell types from a
scRNA-seq reference. We adopted as scRNA-Seq reference a comprehensive
dataset from a recent publication exploring the cellular landscape of the
different CRC subtypes and their microenvironment'?. The annotations from
the original publication at the cell subtype level (Supplementary Table 1) were
used to generate the signature using the run_regression function with the
following parameters: n_epochs=100, minibatch_size=1024, learning_rate=0.01 and
train_proportion=0.9. These signatures are subsequently used to assess cell type
abundances in the ST data using the run_ cell2location with selection_ specificity=
0.20. This parameter determines the number of genes used to establish the
signature per cell type (Supplementary Table 1). Additional parameters were set
as follows: n_iter=40000, cells_per_spot=8, factors_per_spot=9, combs_per_spot: 5,
mean=1/2 and sd= 1/4.
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4.5.4 Consistency of deconvolution results between technical replicates

To evaluate the consistency of the deconvolution between technical replicates,
we batch-corrected their transcriptomic profiles using Harmony®? as described
above. Then, we clustered the Harmony embeddings using the Louvain
algorithm as encoded in the FindClusters function from the Seurat package. We
chose a series of large resolution parameters (ranging from 1 to 2 increasing by
0.1 steps) to obtain fine-grain clusters that can match with anatomical regions
displaying similar cell type distribution patterns across replicates. Finally, we
computed the mean number of UMIs estimated by Cell2Location per cell type
and cluster, and applied Pearson’s correlation to evaluate their similarity

between technical replicates.

4.5.5 Enrichment/depletion of cell types in different anatomical regions

The enrichment (depletion) in the abundance of the deconvolution-estimated
cell types in different pathologist-assigned tissue categories was assessed
following a similar procedure to be one described in Andersson et al.'. Briefly,
the estimated cell type proportions per spot were 10 000 times randomly
shuffled with respect to their spatial location. Then, we computed the average
cell type proportions per permutation and tissue type. The mean value of
differences between the real and the permuted average proportions divided by
the standard deviation of these differences was used as the enrichment score for

the different tissue categories.

4.5.6 Cell-type colocalization analysis

Deconvolution results were subsequently used to assess cell-colocalization using
non-negative matrix factorization as described in Cell2Location tutorials
(https:/cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.
html#Identifying-cellular-compartments-/-tissue-zones-using-matrix-factorisat
ion-(NMF)). As suggested by the authors, we examined results for different

numbers of factors. We chose R=3 and R=7 as good representatives between

strong co-localization signals and distinctive anatomical regions.
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4.5.7 Pathway activity

We estimated pathway activity per spot and at subspot resolution (see section
4.5.18) using PROGENy**# PROGENy computes pathway activity by accounting
for the expression of genes which are more responsive to perturbations on
those pathways. The PROGENy model comprises 14 pathways, namely: Wnt,
VEGF, Trail, TNFe, TGFp, PI3K, p53, NFkB, MAPK, JAK/STAT, Hypoxia,
Estrogen, Androgen and EGFR. In our setup, we ran PROGENYy using the top

500 most responsive genes per pathway.

In addition, we also computed pathway activities in pseudo-bulk generated
from our ST samples (see section 4.5.11). We again used the top 500 most
responsive genes per pathway. In this case, we set the scale parameter to TRUE to

allow direct comparison of pathway activities between samples.

4.5.8 Transcription factor activity

We computed TF activity per spot using the Viper® algorithm coupled with
regulons extracted from DoRothEA®. In DoRothEA, every TF-target
interaction is assigned a confidence score based on the reliability of its source,
which ranges from A (most reliable) to E (least reliable). In this study, we
selected interactions with confidence scores A, B and C and computed the

activity for TFs with at least four different targets expressed per spot.

The activity profiles of the different TFs were additionally used to cluster the
spots from our four CMS2 tumor samples. To do so, the TF activity scores from
these samples were first merged and subsequently scaled and centered. Then,
the standard procedure to compute clustering using the Seurat package was
followed. Briefly, we computed a Principal Component Analysis (PCA)
dimensionality reduction on the scaled TF activities per spot followed by the
computation of the 20 nearest neighbors. Finally, we applied the Louvain
algorithm with a resolution parameter of 0.5 to group the spots into different
clusters according to their TF activity profile. We identified TF with a

differential activity profile among the different clusters using Receiver
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Operating Characteristic (ROC) analysis as implemented in the Seurat’s
FindAllMarkers function. We only considered TF whose activity was computed

in at least 25% of the spots per cluster and with a log, fold-change greater than 1.

Of note, we used the same procedure to compute TF activity per cell on the

scRNA-seq dataset from Lee et al.'%.

4.5.9 Canonical correlation analysis

We used the cc function from the CCA package® to compute canonical
correlation between the cell type proportions per spot and pathway or TF
activity per spot. This canonical correlation analysis was first performed for
every individual CRC sample. To capture global correlations across samples, we
performed an integrative analysis by merging spots coming from all the
different samples (excluding S1_Cec_Rep2) into matrices and computing the

canonical correlation on them.
4.5.10 Selection of tumor surrounding spots

We applied the GetTissueCoordinates function from the Seurat package to get the
spatial coordinates of the spots in the different CRC samples. We subsequently
computed the Euclidean distance between every pair of spots. Finally, we
selected as tumor surrounding spots those lying within a distance smaller or
equal to 2 from a tumor annotated spot. Spots fulfilling these criteria but

annotated as tumors were removed.

4.5.11 Pseudo-bulk generation

We generated pseudo-bulk from the ST samples using the sumCountsAcrossCells
function from the Scater package®. Here, counts were normalized by the total
number of reads (counts per million normalization). We used the filterByExpr
function from the edgeR package® to filter out genes with less than 50 counts

per sample.
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4.5.12 Definition of different anatomical regions in tumor annotated spots

The distance between every tumor annotated spot and non-tumor annotated
spots was calculated as described in section 4.5.10. We then defined the different
tumor anatomical regions for the S2_Col_R_Repl sample based on the
following criteria:
e Peripheral Tumor: tumor spots in direct contact with at least a non-tumor
annotated spot. Their Euclidean distance to a non-tumor annotated spot
is smaller than 2.
e Central Tumor: tumor spots in the most solid and internal region of the
tumor. Their Euclidean distance to a non-tumor annotated spot is greater
than 2.5.
e Intermediary Tumor: tumor spots that we consider as a transition region
between the inner and outer tumor. Their Euclidean distance to a

non-tumor annotated spot is greater or equal to 2 and smaller than 2.5.

4.5.13 Clustering and enhanced gene expression at the sub spot level

We applied BayesSpace® to cluster at the subspot level and increase the gene
expression resolution of our CMS2 tumor annotated spots in the S5_Rec_Repl
sample. To do so, BayesSpace uses the neighborhood structure in spatial
transcriptomic data. Of note, the preprocessing of the ST raw data was
conducted following the recommendations of BayesSpace authors. This
procedure is slightly different from the one described in previous sections.
Briefly, the ST data was processed using the SingleCellExperiment package and
raw counts were log normalized using the logNormCounts function from the
Scuttle package®. Then, the Scran® package was used to model the variance of
the log-expression profiles for each gene and select the 2000 most variable

genes. We performed a PCA using the Scater®® package.
Using BayesSpace, we subsequently computed the spatial clustering and the

enhanced clustering with default parameters, excepting the jitter_scale

parameter which was set to 3. Finally, we enhanced the gene expression of all
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the genes expressed in the considered spots using the enhanceFeatures function

with default parameters.

4.5.14 Differential gene expression analysis

The CMS2 tumor regions extracted from the different samples were integrated
into the same Seurat’”® object. We used the Wilcoxon Rank Sum test to identify
differentially expressed genes between the groups of spots coming from
different patients as implemented in the Seurat’s FindAlIMarkers function. We set
a log, fold-change threshold of 0.25 and only positive markers were retrieved.

Some specific criteria were followed for the analyses conducted in section 2.3:

e To describe inter-patient heterogeneity, the differential gene expression
analysis was performed between the different patients (two replicates per
patient considered). We filtered results by only considering genes that are
overexpressed in tumor annotated spots versus non-tumor annotated
spots. To do so, we took advantage of the pathologists’ annotations and
used the Seurat’s FindMarkers with the same parameters described above
for the FindAllMarkers function. Ribosomal and mitochondrial genes were
removed due to the fact that they can be overrepresented in tumor
necrotic regions.

e To describe intra-tumor heterogeneity, the differential expression
analysis was carried out between the different anatomical regions of the
tumor in the S2_Col_R_Repl sample (see section 4.5.12) with no further
considerations.

e Another differential gene expression analysis was conducted on the
enhanced gene expression between the different enhanced clusters
generated by BayesSpace (see section 4.5.13) on the S5_Rec_Repl sample.
We selected for further analysis genes with an adjusted p-value smaller
than 0.01 in the Wilcoxon Rank Sum test. Ribosomal and mitochondrial

genes were excluded from the analysis.
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4.5.15 Gene set overrepresentation analysis

Differentially expressed genes were subsequently used for gene set
overrepresentation analysis using the Hallmark annotations from MSigDB%,
The Hallmark gene sets contain 50 well-defined biological states or processes.
We used the enricher function from the clusterProfiler®® package to carry out the
analysis. We set a minimal size of the genes annotated for testing to five,
excepting for the analysis between different patients where it was set to three.
Background genes were adjusted accordingly to the global set of genes

expressed in the different contexts.

4.5.16 Ligand modulation of TF activity

As a first step and taking as reference the TF activity-based clustering, we
selected ligands which are overexpressed in the tumor and TME with respect to
the other anatomical regions across all our CRC samples. To do so, we applied
the Seurat’s FindMarkers function with a log, fold-change threshold of 0.5 and
only positive markers were retrieved. We matched our set of overexpressed
genes against the set of proteins annotated as ligands in the Omnipath®
database. Additionally, we filtered out ligands that are not detected in at least

10% of the tumor and TME spots in every individual sample.

In the second place, we chose TFs with a higher differential activity profile in
the TME regions across all the samples according to the clustering approach
described in section 4.5.8. In particular, we selected those TFs that are
considered as markers of the TME cluster when using the Seurat’s
FindAllMarkers function (AUC > 0.75).

We then applied Misty*® to investigate the potential effect of the expression of
the selected ligands in modulating the transcriptional activity of the chosen TFs.
Specifically, we created an intrinsic view (intraview) describing ligand gene
expression and a local niche view (juxtaview) using TF activity with a neighbor.thr
=2 aiming at capturing effects in the direct neighborhood of each spot. This

criteria is based on the fact that many cancer relevant ligands are membrane
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bound and that the majority of secreted ligands cannot travel long distances.
Following this approach, Misty was first individually applied to every sample.
Then, the individual results were collected and aggregated using Misty’s
collect_results function in order to obtain the most robust common signals across
samples. Ligand-TF associations with an aggregated importance greater than 1
were considered for further analysis. Of note, when running Misty on the
external dataset, the ST-colon3-Tre and ST-liver3-Tre samples were excluded

from the analysis due to their very reduced tumor content.

4.5.17 Prediction of Ligand-Receptor interactions

We used LIANA% to estimate the most likely ligand-receptor interactions
between the different spatial clusters defined by their TF activity profiles. It is to
note that the interactions were computed for every pair of clusters, but for
subsequent analysis and visualization we focused on the interactions between
the clusters labeled as O (Tumor) and 1 (TME). LIANA computes an aggregated
score for every potential ligand-receptor interaction based on the results of
different methods. In our particular case, we ran LIANA with default settings
and used OmniPath® as a source of prior knowledge in human ligand-receptor
interactions. For further analysis, we considered interactions involving Misty’s
predicted ligands with an aggregated rank smaller than 0.01, as this value can be
seen as analogous to a p-value %. We also ran LIANA on the scRNA-seq dataset

from Lee et al."”? using the same procedure.

4.5.18 Inference of signaling networks

We used a network-based approach to infer the most likely signaling cascades
linking LIANA’s predicted ligand-receptor interactions to their targeted TFs
according to Misty’s predictions. To do so, we first built an intra-cellular
signaling network by retrieving protein-protein interactions from Omnipath®.
Then, for every ligand, we selected their predicted receptors and targeted TFs.
We subsequently connected every receptor to every corresponding TF by
selecting the shortest path between them in the signaling network. All the

resultant shortest paths were merged into a network together with the
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previously predicted ligand-receptor interactions. Finally, for every gene in the
predicted network, we computed its average expression in the TME cluster, as
defined by TF activity profiles (see section 4.5.8), across all the CMS2 samples.

Cytoscape® was utilized for the visualization of the network.

4.5.19 Metastasis Score

We retrieved a list of genes linked to metastatic processes from CancerSEA%
and computed their score per spot using the Seurat’s AddModuleScore function.
We set the ctrl parameter, i.e. number of control features selected from the same

bin per analyzed feature, to 20.

5. Data availability

The output of Space Ranger, including processed count data matrices and
histological images, for the ST data generated in this study is available at

https:/doi.org/10.5281/zenodo.7551712. In addition, this repository also contains

the spot categorization made by the pathologists. The processed scRNA-seq and
metadata used for the deconvolution and for further characterization of the cell
communication processes are available via the GEO database under the
accession codes GSE132465 and GSE144735 The processed data from the

external ST CRC dataset used to support our findings was downloaded from

http:/www.cancerdiversity.asia/scCRIL.M".

6. Code availability

The scripts containing all the code used to generate the results presented in this

study are available at https:/github.com/alberto-valdeolivas/ST CRC_CMS.

Their associated notebooks containing additional results and information about
the versions of the different packages used are available at

https:/doi.org/10.5281/zenodo.7440182. Finally, Intermediary object files to

reproduce the analysis are available at https:/doi.org/10.5281/zenodo.7551712.
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11. Figures & Tables

Growth pattern

Sample Localization Diagnosis Pre- Lymr_)h Mutation and Immune
number treatment node/liver
. cells
metastasis
S1 Cec Adenocarcinoma, BRAF Mucinous, IC low
iy Cecum mucinous, moderately no yeslyes V600E
A551763 . .
differentiated
Adenocarcinoma, no KRAS Tubular to
S2 Col R . ) _
Colon (right) moderately no yeslyes mutations cribriform, IC low
A595688 . .
differentiated
Adenocarcinoma, - 2 tumor types: I)
S§3_Col_R - areas with moderate tubular, IC low;
A416371 Colon (right) and poor differentiation no yes/no Il) extended
solid, IC high
S4_Col_Sig . Adenocarcinoma, no KRAS Tubular to
S onon Colon (Sigma) moderately no yes/no mutations | cribriform, IC low
A120838 . .
differentiated
Adenocarcinoma, - Tubular to
S5 Rec _
Rectum moderately no yeslyes cribriform, IC low
A121573 . ; .
differentiated
S6_Rec Adenocarcinoma, - Tubulgr, IC
Rectum moderately no no/no medium
A938797 . i N
differentiated
S7_Rec/Sig | . non-neoplastic tissue - na
A798015* Sigma/Rectum na na

Table 1: Selected clinical information for the samples included in this study.

*sample contains non neoplastic tissue; na: not applicable; - mutation profile was not assessed, IC:

Immune cell content.
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Figure 1: Study outline and deconvolution results matching histopathological annotations with
high correlation between replicates.

(a) Study outline displaying the anatomical localization of our set of CRC samples, their spatial
transcriptomics processing and the deconvolution-based approach to characterize spatial features
of CMS.

(b) UMAP embedding of the gene expression measurements per spot split by technical replicates.
Colors represent the different patients.

(c) Proportions of major cell classes per sample as estimated by the results of the deconvolution
approach. The right hand side of the plot displays the number of analyzed spots per sample.

(d) Pearson’s correlation coefficients of the cell subtype abundance in small anatomical regions of
variable size that were considered equivalent between technical replicates for all the patients.

(e) Enrichment/depletion plot describing the association between cell type abundance as predicted
by the deconvolution (x-axis) and the different anatomical regions as annotated by the
pathologists (y-axis). The dot size represents the enrichment score (Methods), while the color
represents enrichment (red) or depletion (blue).

(f-h) Spatial mapping of the predicted number of mature enterocytes type I, stem-like TA and
CD4+ T cells per spot matching the pathologists’ tissue annotation and expected cell type
localization as illustrated for sample S6_Rec_ Rep2.
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Figure 2: Consensus molecular subtyping of our set of CRC samples, characterization of their
TME and spatially resolved mapping of their histological and molecular features.

(a-e) Cell type proportions per sample as estimated by the results of the deconvolution. The number
of spots containing an abundance of at least 207 of the specified cell types is also displayed.

(f) Enrichment/depletion assessment of selected cell types (x-axis) in CMS2 and mixed
CMS1-CMS2 tumors in the different tissue compartments defined by the pathologists’ spot
classification (y-axis).

(g-7) Spatial mapping of the predicted abundance of CMS1, CMS2, CD19°CD20" B cells and
CD8" T-cells abundances overlaid with the pathologists’ tissue annotation in the S8_ Col_R_ Repl
sample. Note the absence of CD19°CD20" B cell and CD8" T cells and the minor CMS1 signatures
in regions of the tubulopapillary tumor (see Supplementary Fig. S12).

(k) Per spot Pearson’s cross-correlation across all the samples between TF activities and CMS cell
abundances. For visualization purposes, the 10 most highly correlated TFs in absolute value per
CMS are shown.

(1) Per spot Pearson’s cross-correlation across all the samples between pathway activities and CMS
cell abundances.

(m) Spatial mapping of the JAK-STAT pathway activity in sample S8_ Col_ R_ Repl sample. Note
the co-localization with the CMS1 signature.

(n-p) Overlay of the predicted spatial CMS2 cell abundance, WNT pathway activity and VEGF
pathway activity with the pathologists' tissue annotations in the S2_ Col_R_ Repl sample.

(q-t) Overlay of the predicted spatial CMS2 cell abundance, CMS3 cell abundance, MYC and
E2F4 TF activities with the pathologists’ tissue annotations in the S5_Rec_ Repl sample.
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Figure 3: Inter- and intra-patient heterogeneity in CMS2 tumors and their TME in terms of cell
composition and different molecular features.

(a-d) UMAP embeddings of the gene expression measurements in tumor annotated spots which
were colored by different criteria: a) per patient, b) per the expression of the NUPRI gene, c) per
activity of the EGFR pathway and d) per activity of the FOXM1 TF.

(e) Cell type proportions in the tumor-surrounding spots per sample as estimated by the results of
the deconvolution approach. The number of tumor-surrounding spots for the different samples is
also displayed.

(f) Differential pathway activity computed on pseudo-bulk RNA-seq generated from the
tumor-surrounding spots for the different samples.

(g-h) Gene expression gradients of SPARC and SCD in the different anatomical regions of
tumor-annotated spots in the S2_Col_R_ Repl sample. A Wilcoxon rank sum test was conducted
to assess the significance of the gene expression variation (p-value adjusted).

(1) Owverlay of the spatial mapping of the clustering at subspot enhanced resolution of the
tumor-annotated spots with the pathologists' tissue annotations in the S5_Rec_ Repl sample.

(j) Spatial mapping and violin plots per group of the TGFb pathway activity at the enhanced
subspot resolution in the S5_Rec_Repl sample. A Kruskal-Wallis statistical test was performed to
assess whether the pathway activities in the different subclusters originated from the same

distribution (p-value).
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Figure 4: Clustering based on TF activities to study cell communication events at the
tumor-stroma interface of CMS2 tumors. The signaling cascades triggered by those events and
leading to transcriptional activities related to tumor progression were also investigated.

(a-c) UMAP embedding of the TF activity profiles for our set of CMS2 samples. The spots were
colored following different criteria: a) per cluster group, b) per activity of the MYC TF, and c) per
activity of the ETS1 TF.

d) Number of spots belonging to the different categories of pathologist’s annotations and clusters as
inferred from the TF activity profiles.

(e) Misty results showing the potential importance of ligands (rows) expression on TF (columns)
activity. The ligand-TFs relationships with an importance score over 1 are represented as black
slots and were further investigated.

(f) Top ligand-receptor interactions at the tumor stroma interface predicted by LIANA. The lefi
panel shows the source of the interaction (ligands) and the right the target (receptors).

(g) Signaling cascades potentially linking ligands (V shape) to their downstream TF targets
(triangles) according to Misty predictions. The downstream signaling cascades go first through the
top predicted receptors by LIANA and then to intermediary signaling proteins (ellipses). The color
of the nodes indicates the average expression of these genes in the TME cluster. Network edges can

represent stimulatory (arrows) or inhibitory (squares) interactions.
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Figure 5: Transcription factor activity and ligand-receptor interactions in the scRNA-seq from
Lee et al. Spatial maps showing geme expression, TF activity and a score for selected
tumor-associated processes.

(a) Average TF activity per cell type. The percentage of cells of a given type where the TF is active
1s represented by the size of the circle.

(b-d) Ligand-receptor interactions between the different cell types overlapping with the
interactions predicted in our ST data. The lefi panel shows the source of the interaction (ligands)
and the right the target (receptors): b) target cell types are myeloid cells, ¢) target cell types are the
major stromal cell populations, and d) target cell types are the different CMS tumor cell types.

(e-g) Overlay of the DCN gene expression, the predicted ETV4 TF activity and the metastasis
score with the pathologists’s tissue annotations in the S2_ Col_R_ Repl sample.

(h-j) Overlay of the RNF43 gene expression, the predicted JUN TF activity and the metastasis

score with the pathologists’s tissue annotations in the S6_Rec_ Rep2 sample.
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Figure 6: Characterization and analysis of an external ST CRC dataset to support the results in
our internal set of samples.

(a) Proportions of major cell classes per sample as estimated by the results of the deconvolution.
The right hand side of the plot displays the number of analyzed spots per sample.

(b) CMS tumor cell type proportions per sample as estimated by the results of the deconvolution
approach. The number of spots containing an abundance of at least 207 of tumor cells subtypes is
also displayed.

(c-d) Overlay of the spatial mapping of the predicted CMS2 tumor cell abundance with the
pathologists’s tissue annotations in the ST-colonl_Unt and ST-liver1_Unt samples.

(e) Per spot Pearson’s cross-correlation across all the samples between pathway activities and CMS
cell abundances.

(f) Per spot Pearson’s cross-correlation across all the samples between TF activities and CMS cell
abundances. For visualization purposes, the 10 most highly correlated TFs in absolute value per
CMS are shown.

(g) Overlay of the spatial mapping of the predicted WNT pathway activity with the pathologists’s
tissue annotations in the ST-colonl_Unt sample.

(h) Overlay of the spatial mapping of the predicted MYC TF activity with the pathologists’s tissue
annotations in the ST-colon2_ Unt sample.

(1) Overlay of the spatial mapping of the predicted MAPK pathway activity with the pathologists’s
tissue annotations in the ST-liverl_ Unt sample.

(j) Owverlay of the spatial mapping of the predicted NR2C2 TF activity with the pathologists’s
tissue annotations in the ST-liver2_Unt sample.

(k) Misty results showing the potential importance of ligands (rows) expression on TF (columns)
activity when considering the samples from primary CRC tumors. The ligand-TFs relationships
with an importance score over 1 are represented as black slots and were considered as relevant.
(I-m) Overlay of the spatial mapping of the RNF43 gene expression and the predicted TEAD1 TF
activity with the pathologists’s tissue annotations in the ST-colon4_ Tre sample.

(n-0) Overlay of the spatial mapping of the DCN gene expression and the predicted ETV4 TF

activity with the pathologists’s tissue annotations in the ST-liver4_ Unt.
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