

How often are male mosquitoes attracted to humans?

Véronique Paris^{1*}, Christopher Hardy², Ary A. Hoffmann^{1,3}, Perran A. Ross^{1,3*}

¹School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia

²CSIRO Environment, Canberra, Australian Capital Territory 2601, Australia

³Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark

*Corresponding authors: veronique_paris@hotmail.de, perran.ross@unimelb.edu.au

Keywords: *Aedes*, disease control, host-seeking behaviour, human-bait collection

Abstract

Many mosquito species live close to humans where females feed on human blood. While male mosquitoes do not feed on blood, it has long been recognized that males of some species can be attracted to human hosts. To investigate the frequency of male mosquito attraction to humans, we conducted a literature review and human-baited field trials, as well as laboratory experiments involving males and females of three common *Aedes* species. Our literature review indicated that male attraction to humans is limited to a small number of species, including *Ae. aegypti* and *Ae. albopictus*. In our human-baited field collections, only 4 out of 13 species captured included males. In laboratory experiments, we found that male *Ae. notoscriptus* and *Ae. vigilax* showed no attraction to humans, while male *Ae. aegypti* exhibited persistent attraction for up to 30 minutes. Both male and female *Ae. aegypti* displayed similar preferences for different human subjects, suggesting that male *Ae. aegypti* respond to similar cues as females. Additionally, we found that mosquito repellents applied to human skin effectively repelled male mosquitoes. These findings shed light on mosquito behaviour and have implications for mosquito control programs, particularly those involving the release or monitoring of the male mosquito population.

1. Introduction

Many insect species exhibit distinct behavioural differences between sexes, often as adaptations in behaviour such as mating, foraging, territoriality and feeding that affect the relative contribution of the sexes to their offspring [1–3]. For example, mate acquisition behaviour in male insects is typically associated with territoriality [4], lekking displays [5], and locating sites where females emerge [6]. Females, on the other hand, more rarely actively search for mates but may focus on accepting males following courtship and nuptial gifts [7–9].

In blood-sucking insects like mosquitoes, males feed on nectar while most females require blood to reproduce and thus have behavioural adaptations for host-seeking and blood-feeding [10,11]. The evolution of blood-feeding in insects is believed to have occurred through different routes, such as accidental biting of vertebrates by plant-sucking insects, which then developed the ability to digest and utilize protein-rich blood [12]. Another possibility is that blood-feeding evolved through the close association between chewing insects and vertebrates, where insects became accustomed to recognizing and biting vertebrates [13]. As blood became crucial for these insects, parallel evolution occurred between insects and their hosts, with the insect developing preference for specific hosts based on cues that optimize reproduction [14]. Anthropophilic mosquitoes exhibit a strong drive to seek out human hosts for blood-feeding and use a combination of cues to locate their target at different spatial scales [15,16]. Once CO₂ indicates the presence of a human on a broad spatial scale, host cues such as heat and odours are used to detect the host once in closer proximity. Mosquitoes feeding on non-human animals also use habitat cues like fresh animal faeces [17]. While CO₂ is generally considered a host cue [18], there is considerable evidence that it primarily functions as a habitat cue by indicating the general area inhabited by potential hosts [19].

The study of host-seeking behaviour in mosquitoes has traditionally focused on females, as they are the primary vectors of disease transmission. How male mosquitoes recognize habitat and host cues remain understudied. However, as the utilization of *Wolbachia*-infected [20] or sterilized males [21] as a control strategy for reducing mosquito populations becomes increasingly prevalent, understanding the behaviour of male mosquitoes is of growing importance. This is because the efficacy of these methods hinges upon the ability of

released males to locate and reproduce with wild females. Male mosquitoes have sophisticated auditory and olfactory systems [11] used to locate females [22,23], nectar and other sugar sources [24], and conspecific males [25]. Despite their inability to blood feed, field observations report that males of *Aedes aegypti* [26–29] and *Ae. albopictus* [30] are attracted to humans, with males swarming around and landing on humans. Capture rates of males in both species also increase when traps are baited with CO₂ or human odour mimics [31–33]. Amos *et al* [34] confirmed the attraction of *Ae. aegypti* to humans experimentally under semi-field conditions. In contrast, studies on other mosquito species frequently report no attraction of males to humans and traps that use human cues. For example, studies on *Ae. notoscriptus* have reported exceptionally low capture rate of males through CO₂-baited BG traps [35,36], indicating that there may be differences in male behaviour between mosquito species. These may be due to species differences in mating strategies and/or sensory abilities, although the inability to detect male attraction in some cases may be a consequence of study designs which fail to detect male attraction [34].

Species differences in male attraction to humans provide a basis for further investigations into the underlying mechanisms governing this behaviour and how they vary across mosquito species. Species differences are also of applied importance as releases of incompatible or sterile male mosquitoes start to be used to suppress mosquito species; public acceptance of this strategy may be problematic if males are attracted to humans. To investigate species differences, we conducted a literature review of previous observations from field collections that employ human-baited methods, and we present results of our own human-baited field collections of both male and female mosquitoes from various regions in Australia. We also evaluated the attraction of male and female mosquitoes of three common *Aedes* species to human hosts in laboratory experiments. For species that exhibited human attraction by males, we determined whether preferences for specific human hosts are similar for males and females and tested the effectiveness of mosquito repellents on male mosquitoes.

2. Methods

2.1. Literature review

We compiled observations on male mosquito attraction to humans from studies on human-baited field collections. We looked for studies that presented catches of both males and females across any mosquito species. We searched the terms “human landing catch mosquito male” as well as “human bait mosquito male” on the Google Scholar platform on September 16, 2022. We went through the first 600 results for each search term to identify references and then also searched for relevant references within the articles. We then searched the Web of Science platform on June 12, 2023, and went through all 492 results for “human landing catch mosquito” and 60 results for “human bait mosquito male”. Studies retained needed to identify mosquitoes to the species level, present numbers of caught mosquitoes for both sexes and present results separated by capturing technique. A study must also have collected mosquitoes through Human Landing Catches (HLC), Human Baited Traps (HBT) or Human Baited Collections (HBC) under field conditions (Figure S1). If these criteria were met, we extracted data on the location of the study, capture method, mosquito species and the number of each sex collected from the text, figures and tables within the article as well as supplementary material. If studies included any interventions or other treatments (e.g., repellents, insecticides, non-human baits), we took care to only extract numbers of catches from control and baseline sites.

2.2. Human-baited field trials

We performed human-baited trials in Victoria (VIC), New South Wales (NSW), Australian Capital Territory (ACT), South Australia (SA) and Queensland (QLD) Australia. Detailed information about the location and year of the collections can be found in Table S5 and Figure S2. We ran a total of 115 trials from 2014 – 2022 with 13 different participants (5 female, 8 male; aged 21 – 60) collecting mosquitoes for 0.5 to 1 hr duration at a private residence or public space at any time of the day. Participants were sitting on a chair or bench, exposing both legs from the knee downwards. Mosquitoes were collected when landing or hovering around exposed skin, using mechanical aspirators (Spider & Insect Vac, Select IP Australia Pty Ltd, n = 21), electric rackets (Pestill USB Rechargeable Mosquito & Fly Swatter, Kogan Australia Pty Ltd, n = 23), or tube collection (n = 71). Keys from Dobrorwsky (1965) were used to morphologically identify the species and sex of collected mosquitoes.

Mosquitoes that could not be confidently identified to species level were excluded from the study.

2.3. *Aedes* laboratory experiments

2.3.1. Mosquito strains and maintenance

Laboratory colonies were established from field collections from Cairns, Australia in 2019 (*Ae. aegypti*) and Brisbane, Australia in 2014 (*Ae. notoscriptus*) or 2020 (*Ae. vigilax*). *Aedes aegypti* and *Ae. notoscriptus* were reared at 26°C and a 12:12 cycle with a 1 hr dawn and dusk period. Adults were maintained in 30 x 30 x 30 cm BugDorm-1 cages and provided with 70% sucrose solution and females were blood fed using human volunteers (ethics approval from The University of Melbourne 0723847). We collected and partially dried eggs, before hatching them in 3 L of Reverse Osmosis (RO) water containing a total of 0.2 g baker's yeast. Mosquito larvae were reared on fish food (TetraMin Tropical Fish Food, Tetra, Melle, Germany) and pupae allowed to emerge into cages. *Aedes vigilax* were reared under identical conditions but adults were maintained in a BugDorm® M4590 Insect rearing cage (93 x 44 x 32 cm) and larvae were reared in 30% saltwater solution (API Aquarium salt, USA).

2.3.2. Male attraction to humans – *Aedes* species comparison

We conducted experiments on mosquito attraction to humans using three species: *Ae. aegypti*, *Ae. notoscriptus*, and *Ae. vigilax*. The experiments were conducted in a 3 x 3 m tent under constant light levels and at room temperature. Each trial involved releasing 100 males, aged between 1 and 2 weeks, that had previously been allowed to mate, into the tent. The males were given 30 minutes to acclimate before the experiment began. The experiments were filmed using GoPro Hero 10 cameras placed at either end of the tent, with white panels (84.1 x 118.9 cm) as a background. In each trial, one side was baited with a human subject, while the other side was left unbaited as a control. Subjects stood facing the camera with their bare feet and shins in the field of view, with this position remaining consistent across trials. Subjects did not wear any perfume. The side of the baited and unbaited treatment was alternated for each trial. The number of trials, human subjects, and number of days the experiments are summarized in Table S1. The same batch of males was used for multiple trials on the same day but replaced daily. Treatments were recorded for

30 mins using the time-lapse function immediately after the human subject assumed their position inside the tent. The number of mosquitoes in view of the camera was scored every 20 s, distinguishing between males that were in flight and males that landed on the human subject. For data analysis, we calculated the average number of male mosquitoes in each category over the entire trial period.

2.3.3. Mosquito preferences for different human subjects

In our experiments we found that *Ae. aegypti* males exhibit preferences towards certain human subjects (see Figure S3). While previous research has demonstrated differential attraction of female *Ae. aegypti* mosquitoes to different human hosts [16,37,38], this has not yet been quantitatively reported in males. We conducted additional experiments in which we used a consistent set of five human subjects (coded A-E) who stood in pairs in opposite positions in the tent setup described in 2.3.2. The subjects were filmed for 5 minutes on each side before the sides were swapped and the procedure was repeated. This was done for each pairwise combination of the five subjects (20 combinations in total), with a fresh batch of males being used for each day of four separate days. The footage was scored as described in 2.3.2. For data analysis, we calculated the average number of male mosquitoes in view (combining flight and landed) over the 5 minutes of each trial for each human subject.

We then tested all pairwise combinations of the same five human subjects for their attraction to female *Ae. aegypti* and *Ae. notoscriptus*. We used a two-port olfactometer (30 x 30 x 30 cm) similar to those used in previous studies by Ross et al [39] and Amos et al [34]. The mosquitoes used in this experiment were 6-7 days post-emergence and had been allowed to mate prior to the experiment. We released approximately 50 females into the set-up and allowed them to acclimatise for approximately one minute. A box fan placed at the opposite end of the cage drew air through two traps into the cage. Pairs of subjects placed one hand each in front of one of the traps. After 5 minutes, we closed the entrance to the traps and counted the number of females in each trap and individuals remaining in the cage. The combinations of subjects and sides were randomized until all 20 pairwise comparisons between subjects and sides were completed. We repeated the experiment

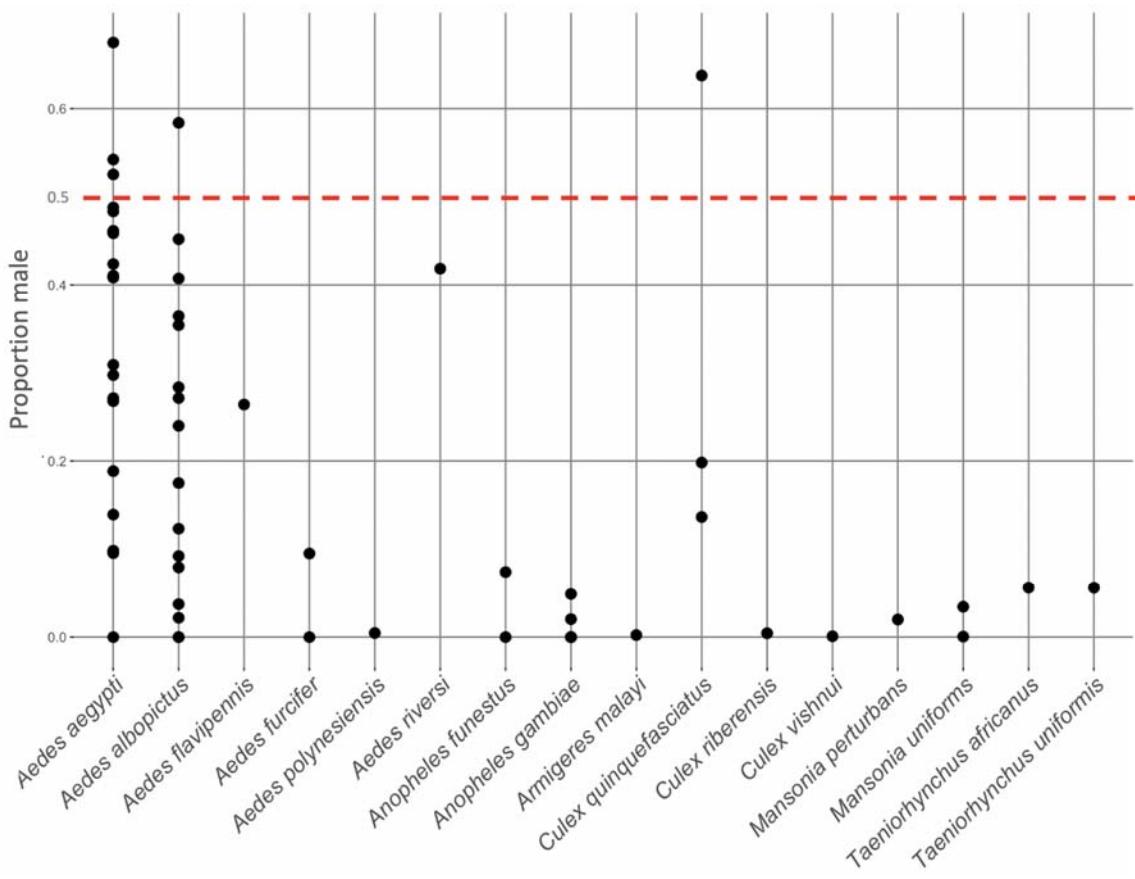
using the same 5 subjects for another four days using a fresh batch of females each day for a total of 10 replicates (5 per side). *Aedes vigilax* females were not assessed in this experiment due to relatively low rates of attraction to humans observed in a pilot trial using this olfactometer design.

Prior to data analysis, we calculated a preference index for each person to reflect the relative attraction of each subject by dividing the number of mosquitoes attracted to one human subject by the number of mosquitoes attracted to both subjects. We determined the average preference index for all replicates of each human subject. Statistical analyses were performed using the preference index averaged across replicates.

2.3.4. Effect of mosquito repellent on male mosquitoes that show attraction to humans

After we confirmed that male *Ae. aegypti* show attraction to humans in our tent experiments, we tested whether they are repelled by a commercial mosquito repellent (Aerogard tropical strength insect repellent, Reckitt Benckiser, NSW, Australia) containing 191 g/kg Diethyltoluamide and 40 g/kg N-Octyl Bicycloheptene Dicarboximide. We used the same tent setup as described in 2.3.2. The repellent was applied to the knees downwards to one of the two human subjects positioned on either site of the tent within 5 min before the trial began. The number of males in view was recorded every 20 s for 10 minutes. The person wearing the repellent and the sides of the treatment and control were randomized. We ran 20 trials over 5 days with a rotation of 9 human subjects, with the batch of 100 *Ae. aegypti* males replaced each day. The footage was scored as described in 2.3.2. For data analysis, we calculated the average number of male mosquitoes in view (combining flight and landed) over the 5 minutes of each trial.

2.4. Data analysis


All statistical analyses were conducted using R (v. 4.1.2) [40]. Wilcoxon-signed-rank tests were used to assess differences in male attraction between three *Aedes* species. The influence of human subject on the number of male and female *Ae. aegypti* and female *Ae. notoscriptus* attracted to humans were assessed by first calculating a preference index for

each person to reflect their relative attraction. This involved dividing the number of mosquitoes attracted to one human subject by the number of mosquitoes attracted to both subjects, which was then averaged across the replicates. We then performed an ANOVA, followed by Tukey's post-hoc tests using this averaged index to test for differences between human subjects. To validate the results obtained through the preference indices, we also build Generalized Linear Mixed-Effects Models using the original data, including the replicate number as a random factor, followed by Tukey's post-hoc tests. Using the preference indexes (without averaging), we applied Jonckheere-Terpstra tests to determine whether mosquito attraction to one subject was affected by the attractiveness of the other human subject used in a pairwise comparison (ranked apriori by their overall attractiveness). We also ran Mantel tests to compare the matrices of preferences obtained with different groups of mosquitoes to assess whether patterns of preferences differed between species and sexes. Finally, we used a t-test to determine whether the application of mosquito repellent significantly reduced the attraction of male *Ae. aegypti* to humans.

3. Results

3.1. Literature review

Our literature review identified 50 studies containing evidence of male mosquito attraction to humans across species using human-baited field collections. A further 355 studies did not meet all our inclusion criteria (Figure S1), including 179 studies that were excluded because they did not specify the sex of the collected mosquitoes.

Figure 1 Proportion of males collected across mosquito species from the literature review of human-baited field collections. Dots show the proportion of males collected out of the total catch, with each dot representing a single study. The red dashed line indicates an equal ratio between male and female catches (0.5 proportion). Data are only presented for species with catches having $n > 50$ individuals and where males were collected. See table S4 for the complete dataset.

In the 50 studies involving 137 different mosquito species meeting the inclusion criteria, male catches were reported for 17 species. Among these, only five species (*Ae. aegypti*, *Ae. albopictus*, *Ae. flavipennis*, *Ae. riversi* and *Cx. quinquefasciatus*) reported greater than 10% male catches. The evidence for male attraction to humans by *Ae. aegypti* and *Ae. albopictus* was robust, with male catches recorded in 20(out of 21) and 17 (out of 19) studies respectively (Figure 1, Table 1).

Table 1 Numbers of females and males collected across mosquito species from the literature review of human-baited field collections. HLC = Human landing catch, HBT = Human baited trap, HBC = Human baited collection. We only present data for species with catches $n > 50$ individuals. Average proportion males was calculated by determining the proportion of males out of the total catch for each study, then averaging this proportion across studies. See table S4 for the complete dataset which includes proportions for each individual study.

Species	Total males collected	Total females collected	Average proportion males	Collection method	# studies
Species with male catches					
<i>Aedes aegypti</i>	5880	12001	0.36	HLC, HBT	21
<i>Aedes albopictus</i>	7548	19667	0.19	HLC, HBT, HBC	19
<i>Aedes flavipennis</i>	14	39	0.26	HLC	1
<i>Aedes furcifer</i>	2	1987	0.05	HLC	2
<i>Aedes polynesiensis</i>	43	9225	0.005	HBC	1
<i>Aedes riversi</i>	90	125	0.42	HBC	1
<i>Anopheles fuenstus</i>	278	3703	0.025	HLC, HBT	3
<i>Anopheles gambiae</i>	115	15819	0.01	HLC, HBT	5
<i>Armigera malayi</i>	2	869	0.002	HLC	1
<i>Culex quinquefasciatus</i>	711	1267	0.23	HLC, HBT	4
<i>Culex riberensis</i>	1	226	0.004	HBC	1
<i>Culex vishnui</i>	3	2983	0.001	HLC	1
<i>Mansonia perturbans</i>	246	12056	0.02	HLC, HBT	1
<i>Mansonia uniformis</i>	3	1747	0.03	HLC	2
<i>Taeniorhynchus</i> <i>africanus</i>	17	185	0.06	HBT	1
<i>Taeniorhynchus</i> <i>uniformis</i>	144	2418	0.06	HBT	1
Species without male catches					
<i>Aedes africanus</i>	0	98		HLC	1
<i>Aedes poicilius</i>	0	125		HLC	1
<i>Aedes serratus</i>	0	125		HLC	1

<i>Anopheles albimanus</i>	0	4474	HLC	1
<i>Anopheles aquasalis</i>	0	5175	HLC	2
<i>Anopheles darlingi</i>	0	631	HLC	1
<i>Anopheles flavirostris</i>	0	61	HLC	1
<i>Anopheles implexus</i>	0	108	HLC	1
<i>Anopheles pharoensis</i>	0	1803	HLC, HBT	2
<i>Anopheles ziemanni</i>	0	191	HLC	1
<i>Culex annulioris</i>	0	410	HLC	2
<i>Culex atratus</i>	0	465	HLC	1
<i>Culex bastagarius</i>	0	320	HLC	1
<i>Culex clastrieri</i>	0	2541	HLC	1
<i>Culex eastor</i>	0	1085	HLC	1
<i>Culex pedroi</i>	0	65	HLC	1
<i>Culex sccettiae</i>	0	532	HBC	1
<i>Culex taeniopus</i>	0	335	HLC	1
<i>Culex theobaldi</i>	0	127	HLC	1
<i>Culex vaxus</i>	0	182	HLC	1
<i>Culex vomerifer</i>	0	2366	HLC	1
<i>Culex ybarmis</i>	0	248	HLC	1
<i>Downsiomyia</i>	0	199	HLC	1
<i>Ganapathi</i>				
<i>Mansonia africana</i>	0	5644	HLC, HBT	3
<i>Mansonia fucopennata</i>	0	2154	HLC	2
<i>Psorophora amazonia</i>	0	350	HLC	1
<i>Psorophora ferox</i>	0	59	HLC, HBT	2

1

2 **3.2. Human baited field collections**

3 We conducted human-baited field trials in Australia in both temperate and tropical regions
4 between 2014 and 2022. Over this period, we collected 13 mosquito species as shown in Table
5 2.

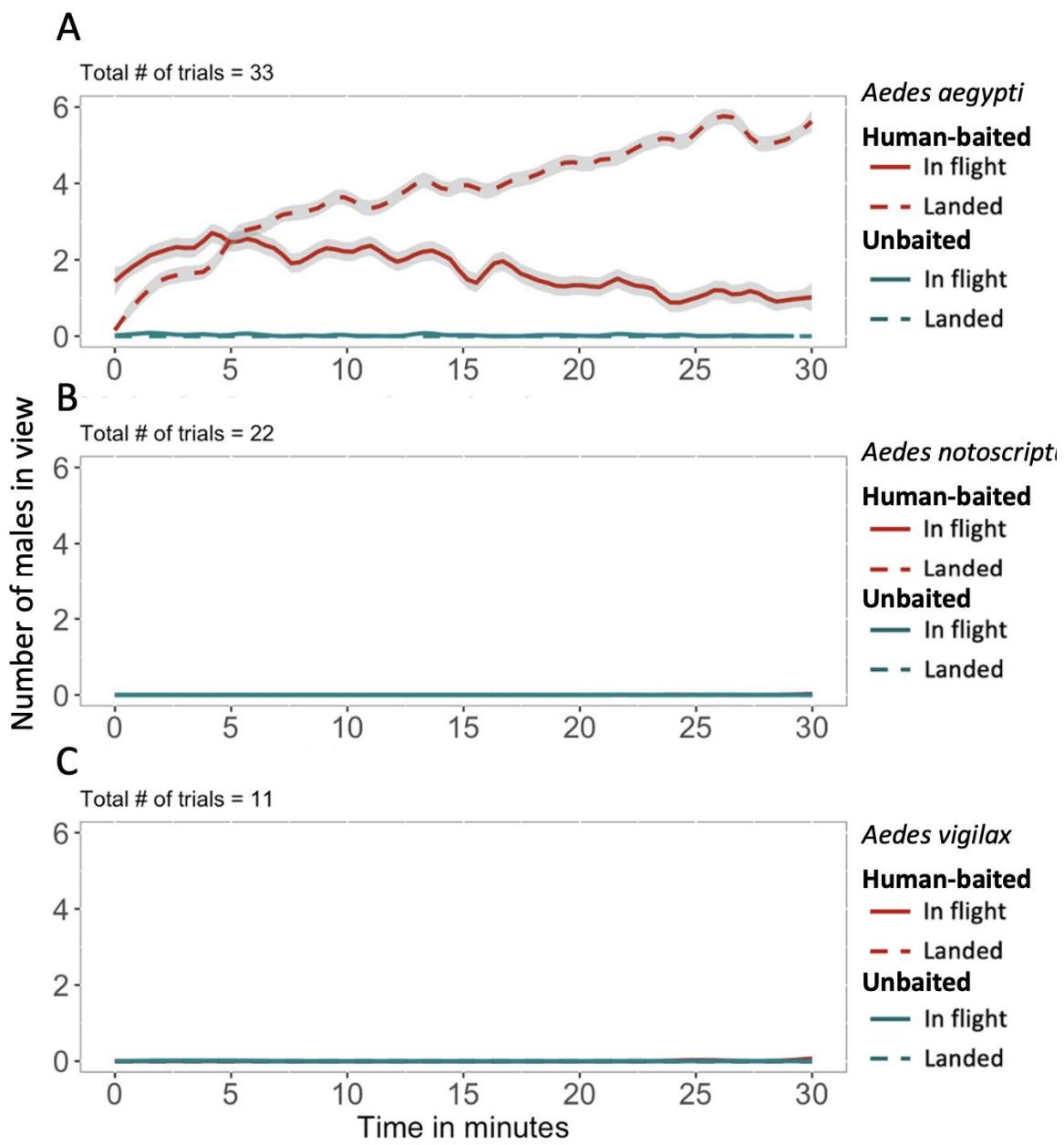
6 **Table 2 Summary of human-baited field collections targeting male mosquitoes in Australia.**

7 Detailed information about collections can be found in Table S5. Köppen climate-zone codes: Am = Tropical
8 Monsoon; Cfa = Humid subtropical; Cfb = Marina west coast; Csb: Mediterranean.

Species	Males collected	Females collected	State	Köppen climate- zone
<i>Aedes aegypti</i>	89	140	QLD	Am
<i>Aedes notoscriptus</i>	0	441	NSW	Cfa
	0	1501	ACT	Cfb
	0	223	VIC	Cfb
	0	1	SA	Csb
	0	94	QLD	Am
<i>Aedes alboannulatus</i>	0	5	ACT	Cfb
	0	5	NSW	Cfa
	0	1	VIC	Cfb
<i>Aedes vigilax</i>	0	19	NSW	Cfa
	0	2	QLD	Am
<i>Aedes vittiger</i>	0	3	ACT	Cfb
	0	3	QLD	Am
<i>Aedes procax</i>	0	16	NSW	Cfa
<i>Aedes rubrithorax</i>	0	1	ACT	Cfb
	0	21	VIC	Cfb
<i>Culex orbostiensis</i>	0	2	NSW	Cfa

	0	5	QLD	Am
<i>Culex</i>	5	11	VIC	Cfb
<i>quinquefasciatus</i>				
<i>Culex molestus</i>	0	2	VIC	Cfb
	0	9	NSW	Cfa
<i>Culex annulirostris</i>	0	5	ACT	Cfb
	0	34	NSW	Cfa
	2	38	VIC	Cfb
	1	24	VIC	Cfb
	0	1	SA	Csb
	0	2	ACT	Cfb
<i>Anopheles</i>	1	1	VIC	Cfb
<i>annulipes</i>				
	0	2	ACT	Cfb
<i>Coquillettidia</i>	0	2	ACT	Cfb
<i>lienalis</i>				

9


10 We found evidence of male attraction of *Ae. aegypti* to humans in our field collections, with
11 males collected in 16/22 catches that captured this species. We also collected males from three
12 other species (*Cx. quinquefasciatus*, *Cx. annulirostris*, and *An. annulipes*) but overall numbers
13 were low. *Aedes notoscriptus* was by far the most prevalent mosquito captured, but no male
14 individuals were collected despite recording thousands of females of this species.

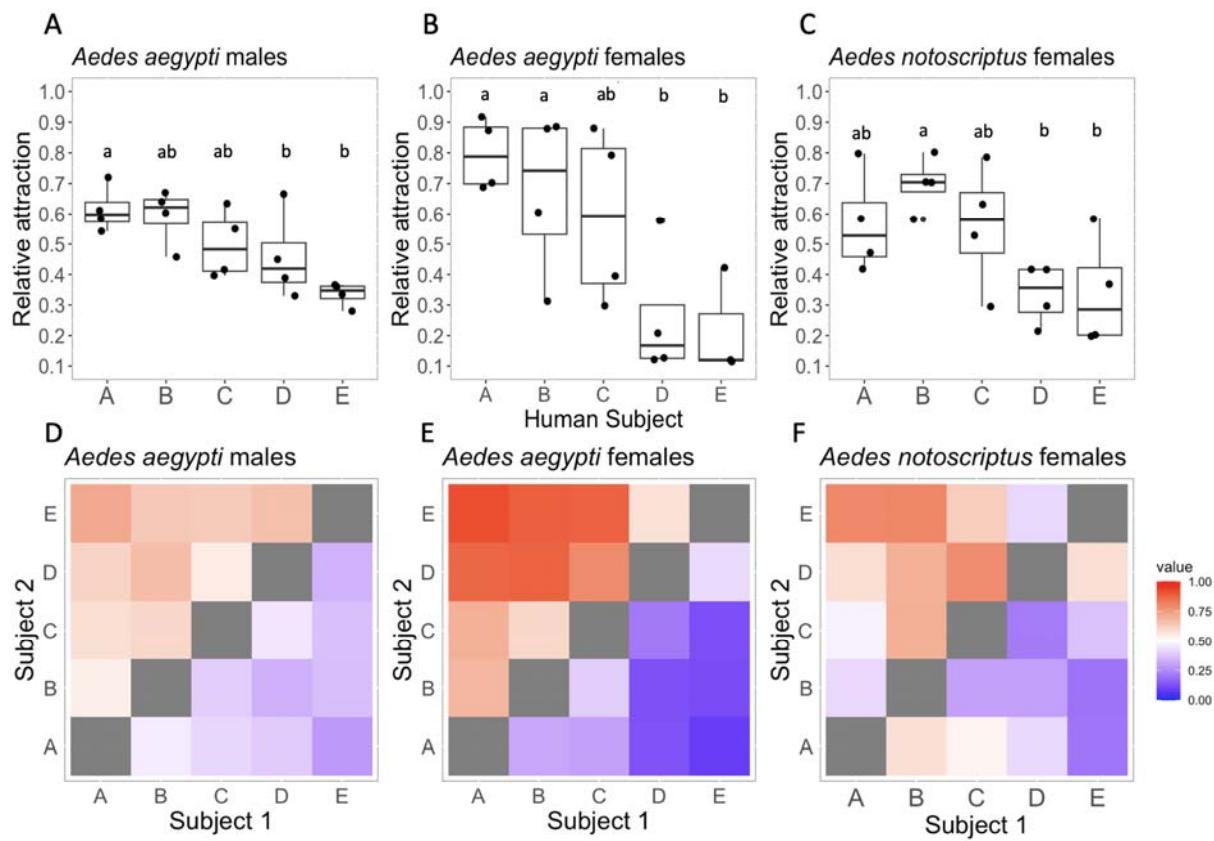
15

16 **3.3. Species-specific attraction of male *Aedes* mosquitoes to humans under laboratory
17 conditions**

18 In human-baited tent trials, we found no convincing evidence of attraction to humans in male
19 *Ae. notoscriptus* or *Ae. vigilax*, with 5 or fewer observations of mosquitoes across all trials in
20 each of the human-baited and unbaited treatments (Figure 2). Males of both species were
21 inactive in the presence of human subjects and typically rested on the walls of the tent.
22 However, we observed consistent attraction to humans in *Ae. aegypti* (Figure 2). The number of

23 males observed in human-baited treatments after 30 min was significantly higher than in
24 unbaited treatments across all tested human subjects (Wilcoxon signed-rank test: landed: $z =$
25 1.072 , $p < 0.001$; in flight: $z = 7.755$, $p < 0.001$; total: $z = 1.056$, $p < 0.001$). Attraction was
26 persistent, with males observed in flight around human subjects for the entire 30 minutes.
27 Additionally, we observed an increasing number of males that had landed on the subject
28 throughout the trials (Figure 2). While human subjects were not compared directly in this
29 experiment, mosquito observations were much higher for some subjects, suggesting
30 differential attraction (Figure S3).

31


32 **Figure 2 Comparison of male attraction to humans for three *Aedes* species in tent trials.**
33 The number of male mosquitoes of *Aedes aegypti* (A), *Aedes notoscriptus* (B) and *Aedes vigilax*
34 (C) observed in view of a camera every 20 s. Mosquitoes that were in-flight and landed are
35 shown with solid and dashed lines respectively. Human-baited treatments are indicated in red,
36 with unbaited controls shown in blue. 95% confidence intervals are shown in grey. Data were
37 averaged across all human subjects, with data for *Ae. aegypti* males presented separately for each
38 human volunteer in Figure S3.
39

40 **3.4 Mosquito preferences for different human subjects**

41 We observed significant host preferences among male and female *Ae. aegypti* and female *Ae.*
42 *notoscriptus* in pairwise comparisons between five human subjects (ANOVA: *Ae. aegypti* males:
43 $F = 5.019$, $df = 4, 15$, $p = 0.008$; *Ae. aegypti* females: $F = 5.81$, $df = 4, 15$, $p = 0.005$; *Ae*
44 *notoscriptus* females: $F = 4.137$, $df = 4, 15$, $p = 0.018$). Although less pronounced, male *Ae.*
45 *aegypti* showed a preference for the same human subjects as female *Ae. aegypti* (Figure 3).
46 Tukey's posthoc tests showed that significantly more mosquitoes were attracted to certain
47 human subjects over others (*Ae. aegypti* males: Subject A vs Subject E: $p = 0.009$; Subject B vs
48 Subject E: $p = 0.017$; *Ae. aegypti* females: Subject A vs Subject D: $p = 0.025$; Subject A vs Subject
49 E: $p = 0.04$; *Ae. notoscriptus* females: Subject B vs Subject D: $p = 0.035$; Subject B vs. Subject E: p
50 = 0.03) (Figure 3). We found similar results when analysing the original data prior to calculation
51 of indices (GLMER: *Ae. aegypti* males: $df = 157$, $p < 0.001$; *Ae. aegypti* females: $df = 157$, $p <$
52 0.001 ; *Ae. notoscriptus* females: $df = 119$, $p < 0.001$). Tukey's posthoc tests showed that
53 significantly more mosquitoes were attracted to certain human subjects over others (*Ae.*
54 *aegypti* males: Subject A vs Subject E: $p = 0.039$; *Ae. aegypti* females: Subject A vs Subject D: $p =$
55 0.039 ; Subject A vs Subject E: $p = 0.045$; *Ae. notoscriptus* females: Subject B vs Subject D: $p =$
56 0.047 ; Subject B vs. Subject E: $p = 0.041$).

57

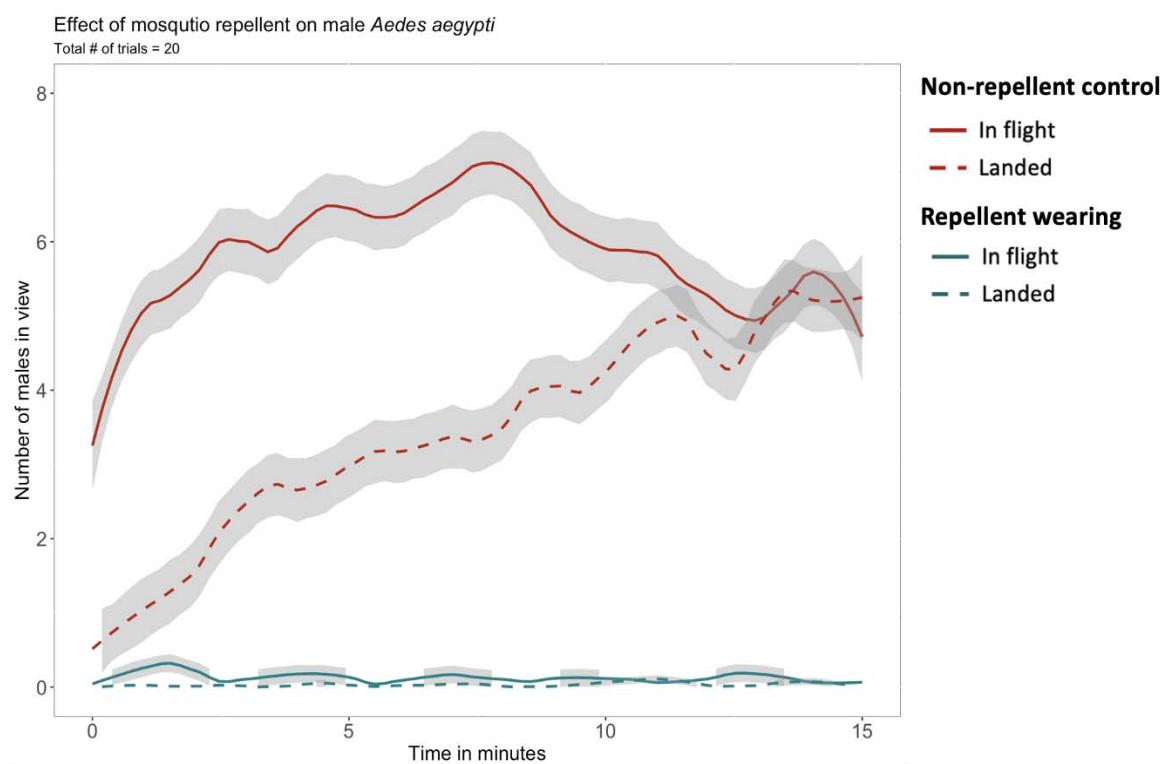
58 Jonckheere-Terpstra tests comparing preference index values for the focus subject against the
59 other subjects ranked in order of overall attractiveness showed that the attractiveness to one
60 subject was not influenced by the other human subject present in the pairwise comparison; this
61 lack of dependence on the other subject was found for *Ae. aegypti* females and males as well as
62 for *Ae. notoscriptus* females (Table S3). Mantel tests on preference index matrices between *Ae.*
63 *aegypti* males and females as well as *Ae. notoscriptus* females were positive but not significant
64 (Table S3), suggesting a similar pattern of preferences for human subjects among the three
65 groups.

66

67 **Figure 3 Relative attraction of female *Aedes notoscriptus* and male and female *Aedes aegypti* to different human subjects in pairwise comparisons.** The upper row (A-C) shows boxplots of relative attraction between the five human subjects across *Ae. aegypti* males (A) and females (B) and *Ae. notoscriptus* males (C). The preference index was calculated by dividing the number of mosquitoes attracted to one human subject over the number of mosquitoes attracted to both subjects. Dots represent the mean attraction of the relevant subject to the other four subjects across 8 replicate trials. Comparisons with significant ($P < 0.05$) pairwise differences are indicated by different letters. The lower row (D-F) presents heat maps displaying the preference index in pairwise comparisons between human subjects. Preference indices are shown on a 0-1 scale, with higher values (red) indicating stronger attraction to subject 1, lower values (blue) indicating stronger attraction to subject 2, and 0.5 (white) indicating no preferential attraction between pairs of human subjects.

79

80


81

82

83

84 **3.5 Effect of mosquito repellent on male mosquitoes that show attraction to humans**

85 Commercial mosquito repellent applied to exposed skin was effective in reducing the attraction
86 of male *Ae. aegypti* to human subjects (Figure 4). Significantly fewer mosquitoes landed on the
87 exposed skin of human subjects wearing repellent (t-test: $t = 6.51$, $df = 8$, $p < 0.001$).
88 Furthermore, fewer male *Ae. aegypti* mosquitoes were observed flying in field of view of the
89 camera towards humans wearing repellent compared to untreated subjects (t-test: $t = 8.18$, df
90 = 8, $p < 0.001$).

91

92 **Figure 4 Effect of mosquito repellent applied to exposed skin on swarming and landing by**
93 **male *Aedes aegypti*.** The number of male *Ae. aegypti* in view of a camera was recorded every 20
94 s. Mosquitoes that were in-flight and landed are shown with solid and dashed lines respectively.
95 Repellent-wearing treatments are indicated in red, with non-repellent controls shown in blue.
96 95% confidence intervals are shown in grey. Data were pooled across all human subjects.

97

98

99

100 **Discussion**

101 In this study we presented an integrated approach that combines a literature review with our
102 own field collections and laboratory experiments to investigate the phenomenon of male
103 mosquito attraction to humans. The literature review indicated that male attraction to humans
104 is apparent in only a limited number of species, including *Ae. aegypti* and *Ae. albopictus*. Our
105 human-baited field collections were consistent with the review, where we observed clear
106 evidence for attraction to humans in male *Ae. aegypti* only among the 13 captured mosquito
107 species. Subsequently, in laboratory experiments, we assessed the attraction of male
108 mosquitoes from different species and found that *Ae. notoscriptus* and *Ae. vigilax* males
109 exhibited no discernible attraction to humans, whereas male *Ae. aegypti* consistently displayed
110 attraction for the full duration of the trials. Remarkably, both male and female *Ae. aegypti*
111 demonstrated similar preferences for different human subjects, suggesting that male *Ae.*
112 *aegypti* respond to similar cues as their female counterparts. Additionally, we found that
113 repellent not only reduces landing of male mosquitoes on humans but also decreases swarming
114 behaviour. Even though males do not bite, they can still be regarded as a nuisance, as reported
115 in some communities ([https://www.todayonline.com/voices/project-wolbachia-residents-are-
116 killing-helpful-mosquitoes-which-can-be-nuisance](https://www.todayonline.com/voices/project-wolbachia-residents-are-killing-helpful-mosquitoes-which-can-be-nuisance)).

117

118 Our literature review revealed a scarcity of observational data on male mosquito attraction to
119 humans. This is primarily due to the limited reporting of male catches in field studies specifically
120 designed to capture or assess their attraction (e.g., 39–41). The diverse nature of the results
121 made a traditional meta-analysis inappropriate, leading us to classify our approach as a
122 literature review. Human landing catches (HLC) were commonly employed for mosquito
123 collection in the field (46), but they can introduce bias by collecting more females than males.
124 Males, even if attracted to humans, often fly around without landing, resulting in a higher
125 collection rate of females. Furthermore, variations in HLC execution across studies make it
126 challenging to ensure comparability of results. Most of the screened studies primarily focused
127 on collecting female mosquitoes or testing female attraction to different traps or hosts, with
128 limited consideration given to males or reporting of male catch data. Additionally, many studies

129 lacked clear information on whether reported catch numbers encompassed all observed
130 species or only those relevant to the study, potentially leading to under-sampling of certain
131 species. This lack of clarity may contribute to an overrepresentation of species like *Ae. aegypti*
132 and *Ae. albopictus*, which are commonly recognized as nuisance or vector species. Therefore,
133 caution should be exercised when interpreting the findings of our literature review. Despite
134 these limitations, we identified a distinct pattern in male attraction to humans, with highly
135 anthropophilic and invasive species (e.g., *Ae. aegypti*, *Ae. albopictus*, *Cx. quinquefasciatus*)
136 displaying greater attraction compared to species with broader host preferences and lower
137 invasiveness (Figure 1, Table 1). Our own field collections targeting males support these
138 findings, as we consistently observed male attraction in *Ae. aegypti*, while other species
139 showed either minimal or no male attraction (Table 2).

140 Our laboratory experiments comparing different *Aedes* species provide clear evidence that
141 male attraction to humans is a species-specific phenomenon. Male *Ae. aegypti* persistently
142 swarmed and landed on humans, while *Ae. notoscriptus* and *Ae. vigilax* displayed no attraction
143 (Figure 2). Our results also indicate that male *Ae. aegypti* exhibit varying levels of attraction
144 towards different human participants (Figure 3; Figure S3), a phenomenon well documented in
145 female mosquitoes of different species [41,42], including *Ae. aegypti* [15,37,38,43,44].
146 Consistent preferences for specific human subjects were found across females of *Ae. aegypti*
147 and *Ae. notoscriptus*, indicating that these species respond to similar host-specific cues. These
148 findings are noteworthy as *Ae. notoscriptus* feeds on a broader range of hosts [45] compared to
149 *Ae. aegypti*, and it is important to acknowledge that blood feeding patterns may not necessarily
150 reflect host preferences as they could also be influenced by host availability [46].

151
152 Male *Ae. aegypti* demonstrated similar individual host preferences as female *Ae. aegypti*
153 (Figure 3). The attraction of mosquitoes to humans is a complex process that depends on
154 multiple cues being identified and integrated even at long distances [47]. Our data suggest that
155 components of this process may be similar across males and females. Mosquito genome studies
156 have identified several receptor families that detect volatile chemicals [48–50]. Studies
157 investigating the *Ae. gambiae* ionototropic receptor family have revealed that the expression of

158 receptors was largely similar between the sexes, but males generally have a lower expression
159 level of all receptors [51], suggesting that they may be responsive to the same chemical
160 compounds as females, but at a reduced sensitivity. Amos et al [34] described long-range
161 attraction of *Ae. aegypti* males but no detectable short-range attraction, suggesting that males
162 can integrate multiple cues associated with humans for long distance attraction, but sexes
163 respond differently to close distance cues which can be different to cues required for long
164 distance integration [47]. At close distances males may respond to different cues (e.g., room for
165 swarming). Recent research has revealed that preferences in female *Ae. aegypti* for specific
166 humans is influenced by their skin-derived carboxylic acid levels [38], and males may also
167 detect this odour cue since they show a similar preference to different humans in our
168 experiments (Figure 3). While our results show a similar preference pattern between male and
169 female *Ae. aegypti*, it is important to note that male and female attraction were measured in
170 different ways (tent trials vs. a two-port olfactometer) which could have introduced differences
171 in overall preference levels.

172
173 The species-specific attraction to humans shown by male mosquitoes raises intriguing questions
174 about the evolution of this behavioural variation. Males of several species, including *Ae.*
175 *albopictus* and *Ae. aegypti* aggregate in swarms near hosts in nature [27,29,30,52]. Females
176 entering these swarms are engaged by males, leading to copulation [30]. Both species are
177 active and bite during the day, which might lead to host seeking and mating behaviour being
178 coupled processes [52,53]. Males of *Ma. uniformis* and *Ma. africana* also reportedly orient
179 towards non-human animals in search of females for mating [54,55]. In *Anopheline* and *Culicine*
180 mosquitoes, swarming behaviour does not require hosts [56,57]. *Anopheles gambiae* form large
181 swarms in the absence of host animals, likely relying on visual cues [57]. This species exhibits
182 nocturnal feeding and crepuscular mating patterns, and the separation of feeding and mating at
183 different times may factor into the lack of male attraction to hosts. Males of other species may
184 target different habitats for mating; for instance, *Ae. polynesiensis* mates near larval habitats
185 and exhibits higher insemination rates there than *Ae. aegypti* [58]. In species such as *Ae.*
186 *communis* and *Ae. stimulans*, swarming is a pre-requisite for mating and has been observed in

187 large walk-in cages, with mating pairs forming in flight [59]. These observations point to a
188 diversity of mating strategies and help explain the lack of males collected for many of the
189 species in our literature review and field collections.

190

191 Developing an understanding of male mating behaviour is important because successful mating
192 with wild females is critical for mass-reared male mosquitoes released for disease control
193 efforts [60–62]. However, being able to facilitate the right circumstances for this when planning
194 releases is a challenge without knowing the factors that influence mating behaviour. Male
195 mosquito release programs need to consider what species-specific mating and host-seeking
196 behaviour their target species displays. For example, releases with mosquitoes including *Ae.*
197 *aegypti* should consider that the presence of humans may be important for inducing mating,
198 while releases of *An. gambiae* should focus on other factors and areas away from humans that
199 induce this behaviour. Finding the right species-specific swarming marker or cues will be useful
200 for the development of efficient male trap techniques to benefit surveillance.

201

202 Mating behaviour is also important in the establishment and maintenance of laboratory
203 colonies. For example, Watson et al [63] argued that difficulties to establish *Ae. notoscriptus*
204 colonies in the laboratory stems from mating behaviour that cannot easily be facilitated in
205 cages. Understanding these behaviours can help researchers to identify the best methods for
206 maintaining colonies, such as using bigger cages with larger numbers of males to induce
207 swarming, adding swarm markers such as plants or providing host odours if the species shows
208 male attraction to hosts. Furthermore, understanding the mating behaviour of mosquitoes can
209 help researchers to investigate the evolution of different mating strategies and how they
210 influence the population dynamics of mosquitoes, as well as the underlying genetic and
211 physiological mechanisms that drive these behaviours.

212

213 **Conclusion**

214

215 In conclusion, our study presented a comprehensive examination of male mosquito attraction

216 to human hosts through a combination of literature review, field collections, and laboratory
217 experiments. We demonstrated species-specific attraction patterns, with male *Ae. aegypti*
218 showing persistent attraction and landing on humans, while other species such as *Ae.*
219 *notoscriptus* and *Ae. vigilax* exhibited no significant attraction. The effectiveness of mosquito
220 repellents on male mosquitoes attracted to humans was also evaluated, showing promising
221 results in reducing landing and swarming behaviour. Further investigations are needed to
222 explore the efficacy of repellents on male mosquitoes that have been sterilized using various
223 methods, such as *Wolbachia* infection or exposure to x-rays. Additionally, our findings
224 underscore the importance of understanding species-specific mating behaviour and its
225 implications for mosquito control efforts, such as targeted release programs and laboratory
226 colony maintenance. Further research on male mosquito attraction, mating behaviour, and the
227 underlying genetic and physiological mechanisms will contribute to our knowledge of mosquito
228 population dynamics and aid in the development of effective control strategies.

229

230 **Acknowledgements**

231

232 The authors would like to thank Sophie Collier, Jessica Home, Ashritha Dorai, Eloïse Ansermin,
233 Courtney Brown, Sian McDonald, Nick Bell, Xinyue Gu, Ella Yeatman, Sonia Sharma, John Black,
234 Nancy Endersby-Harshman, Jake Brown, Allister Small, and Xuefen Xu for their help with
235 experiments and field collections. We also thank Brendan Trewin for providing *Ae. vigilax* eggs,
236 as well as Leon Hugo who provided *Ae. notoscriptus* eggs. This research was supported by the
237 Robert Johanson and Anne Swann Fund (to PAR) as part of the Big Science Pitch at the
238 University of Melbourne. VP was financially supported by the Australian Government Research
239 Training Program Scholarship. PAR was supported from Aalborg University to AAH. AAH was
240 funded by the National Health and Medical Research Council Partnership Project grant 1196396
241 'Stopping Buruli ulcer in Victoria'.

242

243 **Data accessibility**

244

245 Data can be accessed here: <https://datadryad.org/stash/share/ypDPmDRfv1kkG4Nhc2VROhT-V35Pl9RLakX4C6eLRfE> (Data accessible after publication here:
246 <https://doi.org/10.5061/dryad.tb2rbp04x>)
247
248

249 References

250

- 251 1. Thornhill R, Gwynne DT. 1986 The evolution of sexual differences in insects. *Am. Sci.* **74**,
252 382-389.
- 253 2. Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW. 2010 Sex differences in
254 phenotypic plasticity affect variation in sexual size dimorphism in insects: From
255 physiology to evolution. *Annu. Rev. Entomol.* **55**, 227-245. (doi:10.1146/annurev-ento-
256 112408-085500)
- 257 3. Hopkins BR, Kopp A. 2021 Evolution of sexual development and sexual dimorphism in
258 insects. *Curr. Opin. Genet. Dev.* **69**, 43-46. (doi:10.1016/j.gde.2021.02.011)
- 259 4. Polak M. 1993 Competition for landmark territories among male *Polistes canadensis* (L.)
260 (hymenoptera: Vespidae): Large-size advantage and alternative mate-acquisition tactics.
261 *Behav. Ecol.* **4**, 325-331. (doi:10.1093/beheco/4.4.325)
- 262 5. Papadopoulos NT, Carey JR, Liedo P, Müller HG, Sentürk D. 2009 Virgin females compete
263 for mates in the male lekking species *Ceratitis capitata*. *Physiol. Entomol.* **34**, 238-254.
264 (doi:10.1111/j.1365-3032.2009.00680.x)
- 265 6. Alcock J, Jones CE, Buchmann SL. 1976 Location before emergence of the female bee,
266 *Centris pallida*, by its male (Hymenoptera: Anthophoridae). *J. Zool.* **179**, 189-199.
267 (doi:10.1111/j.1469-7998.1976.tb02290.x)
- 268 7. Albo MJ, Costa FG. 2010 Nuptial gift-giving behaviour and male mating effort in the
269 Neotropical spider *Paratrechalea ornata* (Trehaleidae). *Anim. Behav.* **79**, 132-144.
270 (doi:10.1016/j.anbehav.2010.01.018)
- 271 8. Boggs CL. 2018 Male nuptial gifts: Phenotypic consequences and evolutionary
272 implications. *Insect Reproduction*, PCR Press, 215-242. (doi:10.1201/9781351073608)
- 273 9. Brockmann HJ, Thornhill R, Alcock J. 1984 The Evolution of Insect Mating Systems. *Florida*

274 *Entomol.* **67**. (doi:10.2307/3494121)

275 10. Jové V, Gong Z, Hol FJH, Zhao Z, Sorrells TR, Carroll TS, Prakash M, McBride CS, Vosshall
276 LB. 2020 Sensory Discrimination of Blood and Floral Nectar by *Aedes aegypti* Mosquitoes.
277 *Neuron* **108**, 1163-1180. (doi:10.1016/j.neuron.2020.09.019)

278 11. Bowen MF. 1991 The sensory physiology of host-seeking behavior in mosquitoes. *Annu.*
279 *Rev. Entomol.* **36**, 139-158. (doi:10.1146/annurev.en.36.010191.001035)

280 12. Waage JK. 1979 The evolution of insect/vertebrate associations. *Biol. J. Linn. Soc.* **12**,
281 187-114. (doi:10.1111/j.1095-8312.1979.tb00055.x)

282 13. Hall DW, J. LM. 1992 Biology of Blood-Sucking Insects. *Florida Entomol.* **75**.
283 (doi:10.2307/3495636)

284 14. Lyimo IN, Ferguson HM. 2009 Ecological and evolutionary determinants of host species
285 choice in mosquito vectors. *Trends Parasitol.* **25** 189-196. (doi:10.1016/j.pt.2009.01.005)

286 15. Rose NH *et al.* 2020 Climate and Urbanization Drive Mosquito Preference for Humans.
287 *Curr. Biol.* **30**. (doi:10.1016/j.cub.2020.06.092)

288 16. McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, Ignell R, Vosshall LB.
289 2014 Evolution of mosquito preference for humans linked to an odorant receptor.
290 *Nature* **515**, 222-227. (doi:10.1038/nature13964)

291 17. Cooperband MF, McElfresh JS, Millar JG, Cardé RT. 2008 Attraction of female *Culex*
292 *quinquefasciatus* Say (Diptera: Culicidae) to odors from chicken feces. *J. Insect Physiol.*
293 **54**, 1184-1192. (doi:10.1016/j.jinsphys.2008.05.003)

294 18. Cardé RT, Gibson G, Cardé TR, Gibson G. 2010 Host finding by female mosquitoes: mechanisms
295 of orientation to host odours and other cues. In *Olfac. Vector. Interact.*, 115-142.

296

297 19. Webster B, Cardé RT. 2017 Use of habitat odour by host-seeking insects. *Biol. Rev.* **92**,
298 1241-1249. (doi:10.1111/brv.12281)

299 20. Hoffmann AA, Ross PA, Rašić G. 2015 Wolbachia strains for disease control: Ecological
300 and evolutionary considerations. *Evol. Appl.* **8**, 751-768. (doi:10.1111/eva.12286)

301 21. Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K. 2015 Back to the future: the sterile
302 insect technique against mosquito disease vectors. *Curr. Opin. Insect Sci.* **10**, 156-162.

303 (doi:10.1016/j.cois.2015.05.011)

304 22. Cator LJ, Arthur BJ, Harrington LC, Hoy RR. 2009 Harmonic convergence in the love songs
305 of the dengue vector mosquito. *Science* **323**, 1077-1079. (doi:10.1126/science.1166541)

306 23. Menda G, Nitzany EI, Shambl PS, Wells A, Harrington LC, Miles RN, Hoy RR. 2019 The
307 Long and Short of Hearing in the Mosquito *Aedes aegypti*. *Curr. Biol.* **29**, 709-714.
308 (doi:10.1016/j.cub.2019.01.026)

309 24. Barredo E, DeGennaro M. 2020 Not Just from Blood: Mosquito Nutrient Acquisition from
310 Nectar Sources. *Trends Parasitol.* **36**, 473-484. (doi:10.1016/j.pt.2020.02.003)

311 25. Cabrera M, Jaffe K. 2007 An aggregation pheromone modulates lekking behavior in the
312 vector mosquito *Aedes aegypti* (Diptera: Culicidae). *J. Am. Mosq. Control Assoc.* **23**, 1-10.
313 (doi:10.2987/8756-971X(2007)23[1:AAPMLB]2.0.CO;2)

314 26. Lumsden WHR. 1957 The activity cycle of domestic *Aedes* (stegomyia) *aegypti* (L.) (Dipt.,
315 Culicid.) in Southern Province, Tanganyika. *Bull. Entomol. Res.* **48**, 769-782.
316 (doi:10.1017/S0007485300002881)

317 27. McClelland GAH. 1959 Observations on the Mosquito, *Aedes* (Stegomyia) *aegypti* (L.), in
318 East Africa. I.—The Biting Cycle in an Outdoor Population at Entebbe, Uganda. *Bull.*
319 *Entomol. Res.* **50**, 227-235. (doi:10.1017/S0007485300054547)

320 28. Yasuno M, Tonn RJ. 1970 A study of biting habits of *Aedes aegypti* in Bangkok, Thailand.
321 *Bull. World Health Organ.* **43**, 319.

322 29. Hartberg WK. 1971 Observations on the mating behaviour of *Aedes aegypti* in nature.
323 *Bull. World Health Organ.* **45**, 847.

324 30. Gubler DJ, Bhattacharya NC. 1972 Swarming and mating of *Aedes* (S.) *albopictus* in
325 nature. *Mosq. News.* **32**, 219-223.

326 31. Pombi M, Jacobs F, Verhulst NO, Caputo B, Della Torre A, Takken W. 2014 Field
327 evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide
328 for sampling host-seeking *Aedes albopictus* adults in Rome, Italy. *Parasites and Vectors* **7**,
329 1-5. (doi:10.1186/s13071-014-0580-9)

330 32. Roiz D, Duperier S, Roussel M, Boussès P, Fontenille D, Simard F, Paupy C. 2016 Trapping
331 the tiger: Efficacy of the novel BG-sentinel 2 with several attractants and carbon dioxide

332 for collecting *Aedes albopictus* (Diptera: Culicidae) in southern France. *J. Med. Entomol.*
333 **53**, 460-465. (doi:10.1093/jme/tjv184)

334 33. Amos BA, Ritchie SA, Cardé RT. 2020 Attraction versus capture II: Efficiency of the BG-
335 sentinel trap under semifield conditions and characterizing response behaviors of male
336 *Aedes aegypti* (Diptera: Culicidae). *J. Med. Entomol.* **57**, 1539-1549.
337 (doi:10.1093/jme/tjaa065)

338 34. Amos BA, Hoffmann AA, Staunton KM, Lau MJ, Burkot TR, Ross PA. 2022 Long-Range But
339 Not Short-Range Attraction of Male *Aedes aegypti* (Diptera: Culicidae) Mosquitoes to
340 Humans. *J. Med. Entomol.* **59**. (doi:10.1093/jme/tjab164)

341 35. Watson TM, Saul A, Kay BH. 2000 *Aedes notoscriptus* (Diptera: Culicidae) survival and
342 dispersal estimated by mark-release-recapture in Brisbane, Queensland, Australia. *J.*
343 *Med. Entomol.* **37**, 380-4.

344 36. Trewin B, Pagendam DE, Darbro JM, Health Q, Devine GJ. 2019 Urban Landscape
345 Features Influence the Movement and Distribution of the Australian Container-Inhabiting
346 Mosquito Vectors *Aedes aegypti* (Diptera: Culicidae) and *Aedes notoscriptus*. *Artic. J.*
347 *Med. Entomol.* **75**, 443-453. (doi:10.1093/jme/tjz187)

348 37. Fernández-Grandon GM, Gezan SA, Armour JAL, Pickett JA, Logan JG. 2015 Heritability of
349 attractiveness to mosquitoes. *PLoS One* **10**, 1-10. (doi:10.1371/journal.pone.0122716)

350 38. De Obaldia ME, Morita T, Dedmon LC, Boehmle DJ, Jiang CS, Zeledon E V., Cross JR,
351 Vosshall LB. 2022 Differential mosquito attraction to humans is associated with skin-
352 derived carboxylic acid levels. *Cell* **185**. (doi:10.1016/j.cell.2022.09.034)

353 39. Ross PA, Lau MJ, Hoffmann AA. 2019 Does membrane feeding compromise the quality of
354 *Aedes aegypti* mosquitoes? *PLoS One* **14**, e0224268. (doi:10.1371/journal.pone.0224268)

355 40. R Core Team. 2021 R core team (2021). *R A Lang. Environ. Stat. Comput. R Found. Stat.*
356 *Comput. Vienna, Austria. URL* <http://www.R-project.org>.

357 41. Dekker T, Steib B, Cardé RT, Geier M. 2002 L-lactic acid: A human-signifying host cue for
358 the anthropophilic mosquito *Anopheles gambiae*. *Med. Vet. Entomol.* **16**, 91-98.
359 (doi:10.1046/j.0269-283x.2002.00345.x)

360 42. Knols BGJ, Jong R De, Takken W. 1995 Differential attractiveness of isolated humans to

361 mosquitoes in Tanzania. *Trans. R. Soc. Trop. Med. Hyg.* **89**, 604-606. (doi:10.1016/0035-
362 9203(95)90406-9)

363 43. Acree F, Turner RB, Gouck HK, Beroza M, Smith N. 1968 l-lactic acid: A mosquito
364 attractant isolated from humans. *Science*. **161**, 1346-1347.
365 (doi:10.1126/science.161.3848.1346)

366 44. Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA. 2000 Analysis of human skin
367 emanations by gas chromatography/mass spectrometry. 2. Identification of volatile
368 compounds that are candidate attractants for the yellow fever mosquito (*Aedes aegypti*).
369 *Anal. Chem.* **72**, 747-756. (doi:10.1021/ac990963k)

370 45. Kay BH, Boyd AM, Ryan PA, Hall RA. 2007 Mosquito feeding patterns and natural
371 infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia.
372 *Am. J. Trop. Med. Hyg.* **76**. (doi:10.4269/ajtmh.2007.76.4.17)

373 46. Fikrig K, Harrington LC. 2021 Understanding and interpreting mosquito blood feeding
374 studies: the case of *Aedes albopictus*. *Trends Parasitol.* **37**, 959-975.
375 (doi:10.1016/j.pt.2021.07.013)

376 47. McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB. 2014 Multimodal
377 integration of carbon dioxide and other sensory cues drives mosquito attraction to
378 humans. *Cell* **156**, 1060-1071. (doi:10.1016/j.cell.2013.12.044)

379 48. Nene V *et al.* 2007 Genome sequence of *Aedes aegypti*, a major arbovirus vector. *Science*
380 **316**, 1718-1723. (doi:10.1126/science.1138878)

381 49. Holt RA *et al.* 2002 The genome sequence of the malaria mosquito *Anopheles gambiae*.
382 *Science* **298**, . (doi:10.1126/science.1076181)

383 50. Arensburger P *et al.* 2010 Sequencing of *Culex quinquefasciatus* establishes a platform
384 for mosquito comparative genomics. *Science* **330**, 86-88. (doi:10.1126/science.1191864)

385 51. latrou K, Biessmann H. 2008 Sex-biased expression of odorant receptors in antennae and
386 palps of the African malaria vector *Anopheles gambiae*. *Insect Biochem. Mol. Biol.* **38**,
387 268-274. (doi:10.1016/j.ibmb.2007.11.008)

388 52. Jones MDR. 1981 The programming of circadian flight-activity in relation to mating and
389 the gonotrophic cycle in the mosquito, *Aedes aegypti*. *Physiol. Entomol.* **6**, 307-331.

390 (doi:10.1111/j.1365-3032.1981.tb00275.x)

391 53. Kamgang B, Nchoutpouen E, Simard F, Paupy C. 2012 Notes on the blood-feeding
392 behavior of *Aedes albopictus* (Diptera: Culicidae) in Cameroon. *Parasites and Vectors* **5**,
393 1-4. (doi:10.1186/1756-3305-5-57)

394 54. Gilles M, Wilkes T. 1957 Long range orientation of *Mansonia* (Mansonoides) males to
395 animal hosts. *Mosq. News*

396 55. McIver SB, Wilkes TJ, Gillies MT. 1980 Attraction to mammals of male *Mansonia*
397 (Mansonoides) (Diptera: Culicidae). *Bull. Entomol. Res.* **70**, 11-16.
398 (doi:10.1017/S0007485300009718)

399 56. Charlwood JD, Thompson R, Madsen H. 2003 Observations on the swarming and mating
400 behaviour of *Anopheles funestus* from southern Mozambique. *Malar. J.* **2**, 1-10.

401 57. Charlwood JD, Jones MDR. 1980 Mating in the mosquito, *Anopheles gambiae* s.l. II.
402 Swarming behaviour. *Physiol. Entomol.* **5**. (doi:10.1111/j.1365-3032.1980.tb00241.x)

403 58. Russell RC, Webb CE, Davies N. 2005 *Aedes aegypti* (L.) and *Aedes polynesiensis* marks
404 (Diptera: Culicidae) in Moorea, French Polynesia: A study of adult population structures
405 and pathogen (*Wuchereria bancrofti* and *Dirofilaria immitis*) infection rates to indicate
406 regional and seasonal epidemiological risk for dengue and filariasis. *J. Med. Entomol.* **42**,
407 1045-1056. (doi:10.1093/jmedent/42.6.1045)

408 59. McDaniel IN. 1986 Swarming and mating of univoltine *Aedes* mosquitoes in the
409 laboratory. *J. Am. Mosq. Control Assoc.* **2**, 321-324.

410 60. Harris AF *et al.* 2012 Successful suppression of a field mosquito population by sustained
411 release of engineered male mosquitoes. *Nat. Biotechnol.* **30**. (doi:10.1038/nbt.2350)

412 61. Benedict MQ, Robinson AS. 2003 The first releases of transgenic mosquitoes: An
413 argument for the sterile insect technique. *Trends Parasitol.* **19**, 349-355.
414 (doi:10.1016/S1471-4922(03)00144-2)

415 62. Zhang X, Liu Q, Zhu H. 2020 Modeling and dynamics of *Wolbachia*-infected male releases
416 and mating competition on mosquito control. *J. Math. Biol.* **81**, 243-276.
417 (doi:10.1007/s00285-020-01509-7)

418 63. Watson TM, Marshall KL, Kay BH. 2000 Colonization and laboratory biology of *Aedes*

419 *notoscriptus* from Brisbane, Australia. *J. Am. Mosq. Control Assoc.* **16**, 138–142.
420
421