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Abstract

Motivation: The prediction of RNA structure canonical base pairs
from a single sequence, especially pseudoknotted ones, remains challeng-
ing in a thermodynamic models that approximates the energy of the local
3D motifs joining canonical stems. It has become more and more appar-
ent in recent years that the structural motifs in the loops, composed of
non-canonical interactions, are essential for the final shape of the molecule
enabling its multiple functions. Our capacity to predict accurate 3D struc-
tures is also limited when it comes to the organization of the large intricate
network of interactions that form inside those loops.
Results: We previously developed the integer programming framework
RNAMoIP (RNAMotifs over Integer Programming) to reconcile RNA sec-
ondary structure and local 3D motif information available in databases.
We further develop our model to now simultaneously predict the canon-
ical base pairs (with pseudoknots) from base pair probability matrices
with or without alignment. We benchmarked our new method over the
all non-redundant RNAs below 150 nucleotides. We show that the joined
prediction of canonical base pairs structure and local conserved motifs (i)
improves the ratio of well-predicted interactions in the secondary struc-
ture, (ii) predicts well canonical and Wobble pairs at the location where
motifs are inserted, (iii) is greatly improved with evolutionary information
and (iv) non-canonical motifs at kink-turn locations.
Availability: The source code of the framework is available at https:

//gitlab.info.uqam.ca/cbe/RNAMoIP and an interactive web server at
https://rnamoip.cbe.uqam.ca/

1 Introduction

The rise of RNA therapeutics [1, 2] is due to technical and computa-
tional advances in our understanding of RNA sequence-structure-function
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paradigm. While the prediction of all-atoms RNA structure from sequence
still remains a challenge [3], many different approaches have allowed to
reach interesting results in various facets of the problem.

Taking advantage of the hierarchical folding of RNA, the secondary
structure composed of strong stems of canonical and Wobble base pairs
form first [4], many efficient theoretical approaches have been developed
to predict this secondary structure. Nonetheless, the most accurate and
feasible models as in the ViennaRNA package [5] or RNAstructure [6] as-
sume that there are no crossing interactions, no pseudoknots, since that
assumption adds complexity and decreases accuracy in the thermody-
namic parameters making it often impractical to use. Yet pseudoknots
are abundant and important. To predict accurate secondary structure
with them would be invaluable for the main 3D reconstruction tools that
rely on that secondary structure [7].

The prediction of RNA with pseudoknots is in all generality in the
nearest neighbour model NP-Hard [8]. The dynamic programming algo-
rithm solving exactly the minimal free energy (MFE) structure problem
and with the most general classes of pseudoknots is PKnots [9] with pro-
hibitive complexity in time of O(n6) and space of O(n4). Instead of exact
methods, heuristics have also been developed as HotKnots [10]. Reducing
the set of achievable pseudoknot configurations (while keeping known im-
portant ones) combined with sparsification techniques Knotty [11] is able
to achieve a time complexity of Θ(n3 + Z) (with in practice Z < O(n4)).
While deep neural networks as SPOT-RNA [12] on the subjects have
been published, rigorous benchmarks show that they still lack genera-
bility [13, 14]. By formulating the problem as an Integer Programming
problem IPknot [15] has proven to be effective to predict general pseu-
doknotted secondary structures when maximising base pair probabilities
generated by RNAfold [5], leveraging fast general solvers and without sac-
rificing possible outputs. Methods as BiokoP [16] developed a different
approach by targeting Pareto fronts with Integer Programming, showing
that the pseudoknotted structure can be predicted with greater accuracy
when combining the MFE and MEA.

More recent work improved IPknot using clever heuristic to solve
long sequences in reasonable time, combining a dynamic threshold with a
linear-time approximation of the RNA folding partition [17].

Beyond the secondary structure RNA are composed of many differ-
ent important interactions. The Leontis-Westhof (LF) classification [18]
defines 12 types of possible base pairs, between any nucleotides. When
describing the loops between the rigid stems using those non-canonical
interactions, different methods have shown that conserved sub structures
are present and important [19, 20, 21]. These databases of motifs can
be leverage for not only more accurate structure prediction, but also to
include geometric information beyond canonical and Wobble base pairs.

In previous work we used conserved structural motifs to select an op-
timal secondary structure and ease all-atoms 3D reconstruction [22, 23].
Subsequently a different group developed BiORSEO [24] that computes
the Pareto front of an objective function balancing structures with pseu-
doknots and motifs insertions. They enforce stricter constraints on the
motif insertions. As discussed later, interior loop and multiloop motifs
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are composed of non-sequential strands, which when inserted are con-
nected by base pairs with BiORSEO. It is not the case in RNAMoIP. The
size of the Pareto front becomes also prohibitive to compute at a faster
pace.

In this paper we expand on our IP framework RNAMoIP [22] to achieve
the simultaneous prediction of secondary structure with pseu-
doknots and structural motifs insertion with or without align-
ments incorporating ideas from IPknot [15], using a newly designed local
structural modules dataset computed from [25].

In Sec. 2.3 the unified IP equations are presented. We discuss in
Sec. 3.9 how a sequence alignment can be used, a feature implemented
in our software. We benchmark the secondary structure prediction on
all known non-redundant RNAs with a determined pseudoknotted struc-
ture below 150 nucleotides in Sec. 3.4, and how the predictions fare for
the canonical and non-canonical interactions inside the motifs in Sec. 3.5
and 3.6. We then evaluate how a good sequence alignment can improve
the prediction in Sec. 3.9 with a set of hand aligned structures by Rfam.
We conclude on analysis in Sec. 3.10 by looking specifically at the kink-
turn motif that was present in 4 previous structures and how using an
alignment or not influences its prediction.

2 Methods

Let ω an RNA sequence, and Ω its secondary structure. A base pair (i, j) ∈
Ω must be canonical (G-C or A-U) or Wobble (G-U), and have j − i > 3.
The Leontis-Westhof (LW) classification of RNA base pairs [18] defines 12
different geometries possible combining two edges between Watson-Crick
(W), Hoogsteen (H), Sugar (S) and an orientations cis (c) or trans (t). The
canonical and Wobble base pairs are all of type cis Watson-Crick/Watson-
Crick (cWW). Generally any combination of nucleotides can form any type
of base pair. Stability in the nearest neighbour model is obtained from
stacked base pairs [26], forbidding lonely base pairs implies formally that
if (i, j) ∈ Ω ⇒ (i− 1, j + 1) ∈ Ω or (i+ 1, j − 1) ∈ Ω.

The secondary structure Ω can be decomposed in an ensemble of
pseudoknot-free structures Ω1, . . . ,Ωm. Ωq is pseudoknot-free if there is
no crossing between any base pairs, formally for all (i, j), (k, l) ∈ Ωq ⇒
i < k < l < j or k < i < j < l.

The workflow of our framework is presented in Fig. 1:

1. Given a sequence ω and a secondary structure Ω simultaneously:
(a) Decomposed Ω in pseudoknot-free structures, for each compute

a constrained version of a classic folding algorithm to obtain a
base pairing probability matrix (if no structure is provided, the
algorithm runs without constraints once), sum all the matrices.

(b) Find all possible motifs location using pattern match in the
input sequence ω.

2. Solve the IP model to find the optimal combination of base pairs
with pseudoknots and motifs given our objective function detail in
Sec. 2.3.3.

3. Iterate until:
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(a) Two iterations give the identical solution.

(b) A threshold in the number of iterations or time is reached.

2.1 Structural motifs

The validation of structure prediction using motifs database is challenging
to ensure that the benchmark is not biased. We decided to use the same
database as in the first version of RNAMoIP built in 2012 [22]. Additional
measures to avoid overfitting are discussing in Sec. 3.3.

This database is based on the detection of similar networks of inter-
actions among all RNA 3D structures [21]. The entire dataset is built
upon 398 unique common subgraphs (or RINs - Recurrent Interaction
Networks), that can be divided into 5278 different nucleotide sequences.
Those sequences are composed of multiple strands, which can represent
motifs like hairpins, interior loops, and multi-loops.

2.2 Base pair probabilities

Different tools as the ones provided by ViennaRNA [5] and RNAstruc-
ture [6] can accurately, in a thermodynamic setting, utilize the most recent
set of nearest neighbor parameters to compute base pairing probabilities
for pseudoknot-free structures. Following the model of IPknot [15], the
secondary structure Ω is decomposed in an ensemble of pseudoknot-free
structures Ω1, . . . ,Ωm. For each, a base pair probability (BPP) matrix
can be computed such that the base pairs in that sub-structure are en-
forced as hard constraints, and any position in another sub-structure are
forbidden to pair. In the IP formulation, the weight of the base pair (i, j)
will be the pseudo-probability p(i, j) = p1i,j + · · · + pmi,j . Note that dur-
ing the evaluation of the BPPs the base pairings are considered as hard
constrained, they must be preserved, there is no such condition in the IP
model.

2.3 Integer Programming Model

The integer programming model is quite complex and we reproduce here
all equations for sake of completeness. Sec. 2.3.1 describes how the mo-
tifs are encoded. The Sec. 2.3.2 lists all the model variables. Then the
objective function is detailed in Sec. 2.3.3. The constraints in regards
to the base pairs placement are in Sec. 2.3.4 and the ones regarding the
motifs insertion are in Sec. 2.3.5. All modifications to the original
equations of RNAMoIP are in green, and the complete model is in
Supp. Mat. 6.1.

2.3.1 Input

We denote an RNA sequence as ω and Ω as a secondary structure compat-
ible with it. ωi is the nucleotide at position i and must be in {A,C,G,U}.
The structure can be empty and may contain crossing interactions. We
use n = |ω| as the length of the sequence.
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Figure 1: The RNAMoIP workflow Left top: the sequence with a structure
(which can be empty). The structure is decomposed in pseudoknot-free sub-
structures, for each a constrained BPP is computed, and they are all summed
together. Left bottom: a database of structural motifs containing hairpins,
interior loops and bulges, and k-way junctions. Right: outputs an optimal com-
bination between a secondary structure with pseudoknots and motifs inserted
in sequence compatible locations. Each motif strand must stack or overlap by
1 position a base pair in the secondary structure.

Each motif in the database can be composed of a set of different se-
quence strands (e.g., an interior loop has two strands). The equation will
differentiate between hairpins (1 strand), interior loops and bulges (two
strands), and k-way junctions (3 or more strands). Motj is the set of
motifs with j-strands and each is composed of its list of strands. For any
motif x ∈ Mot, the length |x| represents how many nucleotides it contains.
Formally, a position xb

a in a strand can be A, C, G, U or the wild card *,
and we have:

Motj = {x | x := [(x1
1, · · · , x1

k1
), · · · , (xj

1, · · · , x
j
kj
)]

and ∃ a match of x in ω}

The strands are ordered in the 5′ to 3′ order of the sequence they are
extracted from. The model needs to know where the i − th strand of
any motif composed of j-parts can be inserted. These can be of different
lengths, so the ensemble Seqji will be a set of triplets with the name of
the motif and the first and last positions where the i− th strand of that
motif can be inserted. The same strand can be placed in many different
places. Formally:

Seqji = {(x, a, a+ ki − 1) |

x ∈ Motj and xi
1, . . . , x

i
ki

= ωa, . . . , ωa+ki−i}.
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2.3.2 Variables

To keep in line with the previous implementation of RNAMoIP, two type
of binary variables are being tracked. First, 4 things needs to be kept
track for the motifs: (1) x the name of the motif (2) if it is the i-th strand
of that motif, and (3,4) the interval k, l where it is inserted. This will
be kept done by the variable Cx,i

k,l representing the insertion of the i-th
component of the motif x at position (k, l) of the sequence. One such
variable exists for every element of every set Seqji . Second, for every pair
of position where the BPP is above a certain threshold, the model needs
to know if it is instantiated and at which level. Each level will contain a
pseudoknot-free structure, and will have to be crossing a base pair in each
level below it. The binary variable Dq

u,v will be 1 if there is a base pair
between ωu and ωv at level q. The set B will contain all pairs of positions
(u, v) with a potential base pair.

2.3.3 Objective

Intuitively, we want to maximize the pseudo-base pair probabilities as the
amount of information in the sequence. The IPknot objective function is
based on the MEA and tries to maximize an approximate gain that does
not take into account positions unpaired in the pseudoknotted secondary
structure. With RNAMoIP we enhance the objective function by giving
a bonus to unpaired positions that are known to fit into an insertable
motif, compensating some of the necessary simplifications of the model.
In [22], this is achieved by maximizing the square of the length of the
motifs inserted, which will push to insert the smallest amount of largest
motifs possible. As in Sec. 2.3.1 the number of nucleotides in motif x
is denoted |x|. For each potential base pair between positions (u, v) the
pseudo-BPPs probability p(u, v) (see Sec. 2.2) is used. As in the first
version of RNAMoIP, the factor of 10 is added to normalize the scale
between the pairing probabilities and the motifs insertion, which allows
the α parameter to be calibrated more easily. A parameter α will be used
to combine the pseudo-BPPs maximisation and motifs insertion. A weight
βq is used to balance the different level of pseudoknots. Following IPknot
we select β1 = 0.5, β2 = 0.25, β3 = 0.125 and β4 = 0.0625. Formally, the
objective function is:

max α
∑

x∈Motj

 (|x|) 2 ×
∑

(x,k,l)∈Seq
j
1

Cx,1
k,l



+ 10(1− α)×
∑

(u,v)∈B

m∑
q=1

Dq
u,v p(u, v) βq (1)

Motif length

Motif inserted at position (k, l)

Base pair (u, v)

Probability of the base pair (u, v)

Weight of level q
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2.3.4 Base pairs constraints

The first three equations will ensure that each position is only in one
base pair (Eq. 2), that each level q contains a pseudoknot-free structure
(Eq. 3), and that base pairs are added to a level if and only if they cross
another base pair in every lower level (Eq. 4). Two additional properties
we enforce are that base pairs must be stacked on the same level (Eqs. 5
and 6) and that at least 25% of positions must be in a base pair (Eq. 7).
Note that naturally, due to the weights in the objective function, most of
the base pairs will concentrate on lower levels.

∀1 < u < n :

m∑
q

∑
(ũ,ṽ)∈B

ũ=u∨ṽ=u

Dq
ũ,ṽ ≤ 1 (2)

∀1 < q ≤ m, ∀1 ≤ i < j < k < l ≤ n : Dq
i,j +Dq

k,l ≤ 1 (3)

∀1 < q ≤ m, ∀(u, v) ∈ B :

B∑
i<u<j<v

Dq−1
i,j +

B∑
u<ĩ<v<j̃

Dq−1

ĩ,j̃
≥ Dq

ũ,ṽ, (4)

∀1 < q ≤ m, ∀1 < i < n :∑
(u,v)∈B

u=i−1∨u=i+1

1−
∑

(u,v)∈B
u=i−1∨u=i+1

Dq
u,v ≥

∑
(u,v)∈B

u=i

1−
∑

(u,v)∈B
u=i

Dq
u,v (5)

∀1 < q ≤ m, ∀1 < i < n :∑
(u,v)∈B

v=i−1∨v=i+1

1−
∑

(u,v)∈B
v=i−1∨v=i+1

Dq
u,v ≥

∑
(u,v)∈B

v=i

1−
∑

(u,v)∈B
v=i

Dq
u,v (6)

2

m∑
q

∑
(u,v)∈B

Dq
u,v ≥ ωn (7)

2.3.5 Motifs constraints

Following the original formulation of RNAMoIP, we reproduce here all the
equations necessary for the insertion of motifs. While most of them are
exactly similar, there is a notable difference. One of the main conditions
for the insertion of any strand is that it must be stacked or overlapping
the last base pair of a strand. Since the motifs database is defined over
the loops of a pseudoknot-free secondary structure, only the base pairs in
the first level are considered. We give a brief overview of each equation
but more details can be found in [22].

Finally, to unify both models, it is important to avoid clashes between
the motifs and base pairs at the different levels. This is the role of Eq. 8.
Since the structural motifs are defined on the secondary structure, we
insert them in relation to the base pairs in D1 and forbid other base pairs
to form inside them. We assume that motifs are a cohesive geometric unit.
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∀ 1 < i ≤ j, ∀(x, k, l) ∈ Seqji :
m∑

q=1

∑
(u,v)∈B
k≤u≤l∨
k≤v≤l

Dq
u,v ≤

(
1− Cx,i

k,l

)
·

m∑
q=1

∑
(u,v)∈B
k≤u≤l∨
k≤v≤l

1 (8)

2.4 Incorporating evolutionary information from
sequence alignments

Sequence alignment contain large amount of evolutionary information that
can be leveraged for better prediction. When an alignment is provided to
RNAMoIP the execution logic is slightly adapted in two ways to take this
new data into account.

First, instead of relying on RNAfold, the base pairings probabilities
matrix is calculated taking the alignment into account using RNAali-
fold [27] which is part of the ViennaRNA Package.

Second, each motif insertion score is weighted in function of its compat-
ibility with the alignment. A motif can now be inserted if it (a) perfectly
matches the input sequence at that position, or (b) is at most at Ham-
ming distance 1 of at least 50% of the alignment at these positions. In
the objective function (Eq. 1) the term Cx,1

k,l representing motif x inserted
in position k, l is now weighted by the sum for each strand of the fraction
of its match with the alignment. Details are shown in Sup. Mat. 6.4.

3 Results

3.1 Implementation

The Integer Programming framework is implemented in Python 3, with an
interface to facilitate usage with different solvers. In this study we used the
open-source solver Or-Tools [28], giving better performance. Instructions
are also provided to use the open source IP solver CBC [29] through
the MIP library [30], or the proprietary Gurobi [31] solver. We ran our
benchmarks on Ubuntu 21.04 on an Intel Xeon Processor W-2295 with
512GB 8x64GB DDR4 2933. The source code, data, and results, are
available at https://gitlab.info.uqam.ca/cbe/RNAMoIP.

3.2 Dataset

For benchmarking, all RNA structures between 20 and 150 nucleotides
in the PDB [32] were selected, filtering for identical sequences. To avoid
molecular redundancies, we kept one structure per non-redundant class as
defined by the BGSU RNA Structure Atlas [33] v3.208.

The canonical base pairs in the secondary structure can be decon-
voluted in different ways into a main knot-free structure and an en-
semble of pseudoknots of increasing complexity [34]. A reference sec-
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ondary structure from which pseudoknots are defined was determined us-
ing RNApdbee [35]. The benchmark dataset is composed of the remaining
101 structures with at least a single pseudoknot.

3.3 Solver

Version 2.6.4 of ViennaRNA is used to compute the base pair probability
matrices. The terminating conditions are set to a maximum of 3 iterations,
or two iterations with the same results. A time of 104s was allotted for
each prediction and sequences. While many optimal solutions can exist
for one IP formulation only the first one achieved was used.

To avoid overfitting, before each sequence prediction all motifs be-
longing to any structure in the same RNA Structure Atlas v3.208 non-
redundant class were removed [33].

3.4 Motifs insertion improve secondary structure
prediction

To evaluate the capacity of RNAMoIP to predict the secondary structure,
the set of True Positives (TP) consists of canonical and Wobble base pairs.
The Positive Predicted Value (PPV: TP

TP+FP
), sensitivity (STY: TP

TP+FN
)

and F1 ( 2·PPV ·STY
PPV +STY

) are used as metrics and shown in Fig. 2. We com-
pare the results of RNAfold and RNAMoIP with different values of α.
When α = 0, no motifs are considered, and the model is equivalent to IP-
knot. Note that RNAfold STY cannot reach 1, since only pseudoknotted
structures are in the benchmark set, but RNAfold cannot predict crossing
interactions. And this is what we observe, where it has lower STY than
almost all values of α. On the other hand, RNAfold predictions are in
general more sensitive than the IP model, especially when no motifs are
used. The average values over all finished models are shown in Table 1.
The optimal F1, balancing the amount of base pairs predicted and their
sensitivity, is achieved with α = 0.15, complementing the base pairs with
motifs information.

RNAfold α = 0 α = 0.05 α = 0.1 α = 0.15
PPV 0.63 0.57 0.621 0.652 0.671
STY 0.598 0.683 0.667 0.629 0.626
F1 0.607 0.616 0.638 0.636 0.642

Table 1: Predictions results summary.

The statistics shown previously are computed over all the secondary
structures. Our models allow up to 2 crossing levels between the base
pairs yet 95 of the benchmarked structures have only 1 level of crossing
interactions. No over-prediction of the pseudoknots level was observed, as
shown in Table 2. Pseudoknots are in fact usually under-predicted. When
no motifs are inserted, around 15% of structures have a pseudoknot level
too low, up to 50% when motifs are added to the model. Nonetheless,
the improvement in PPV and of over 10% in F1 measure indicates that
although no pseudoknot is predicted the structure is much more accurate.
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(a) PPV & STY (b) F1

Figure 2: Pseudoknots prediction accuracy. Comparing results for
RNAfold (cannot predict crossing interactions), without motifs insertion (α =
0), and for different values of α. When α > 0, all base pairs inserted in the
same motifs are counted as true positives.

α 0 0.05 0.1 0.15
PK lvl too low 25 51 62 68
PK lvl correct 76 50 39 33

Table 2: Predicting pseudoknot lvl. As α is increased, we underestimate
the lvl of pseudoknots that are present in the structure. The complexity of the
IP model increases and makes it more challenging to find a feasible optimal
solution in time.

3.5 Recovering canonical andWobble interactions
in the motifs

For each motif inserted, we retrieved from the RNA structure atlas all
canonical and Wobble interactions at the inserted positions to build our
positive examples. Note that these interactions can be crossing inside the
loops and do not need to be stacked, therefore they are not necessarily part
of the secondary structure. Since a motif sequence in our database can
match different sub-structures, the one with the best structural match was
used in this and the subsequent section. The same metrics as previously,
PPV, STY (available in Supp. Mat. Fig. S1), and F1 are computed
and averaged over all motifs in all structures. Inside the motifs, an F1
value around 40% is achieved, a slightly lower precision for predicting
the canonical and Wobble pairs in the motifs than the pseudoknotted
secondary structure, as shown in Fig. 3.

3.6 Non-canonical interactions remain challeng-
ing to predict

In the minority and hard to predict, non-canonical interactions have been
shown to be necessary for many RNA functions. RNAMoIP maximizes the
insertion of motifs based solely on a sequence match and the structural
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Figure 3: Prediction accuracy of canonical and Wobble interactions in
motifs. For α values of 0.05, 0.1, 0.15 that more than half of the canonical and
Wobble base pairs in the motifs are correctly predicted, and 40% of them are
generally captured.

context. We expect similar loops in different RNA to adopt the same
topology, but it is not given since each motif inserted comes from an
RNA from a different redundancy class. As in the previous section, for
each motif the positive set consists in the ensemble of all non-canonical
interactions between inserted positions. The distribution of F1 is shown
in Fig. 4 (PPV and STY in Supp. Mat. Fig. S2) highlighting how the
motifs as of now are still limited to predict this finer grain information.

While looking dramatic, it can be explained in two different ways.
First, their number is really low, as shown in Fig. S3. The Y-axis shows
that at these positions rarely more than 4 non-canonical interactions are
present per RNA, and rarely more than 2 found in the inserted motifs.
Second, this is underestimating the non-canonical interactions since many
cannot be predicted by our model. On top of those that are at locations
where no motifs are predicted, many can be linking motifs together, but
those cannot be found in the dataset used.

3.7 Performance

Integer programming is known to be NP-complete, but decades of op-
timization have allowed to leverage efficient implementations to express
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Figure 4: Predicting non-canonical base pairs in motifs. True positives
are the non-canonical base pairs at positions where one motif is inserted in the
sequence. They are composing at most 15% of the interactions in the inserted
motifs, and are hard to predict (see Fig. S3 in Supp. Mat.).

complex models. We remind that a maximum of 104s was enforced and
the 14 sequences without a solution at the time cutoff with α = 0.1 were
discarded. We show in Fig. S8 the execution time in seconds. More heuris-
tics as the ones developed by IPknot for long sequences could be used, at
the cost of a decrease in the accuracy. We expect that the optimal gains
would be achieved by optimizing the location where we allow motifs to be
inserted.

3.8 Tools Comparison

When benchmarked only on the canonical and Wobble base pairs, while a
value of α = 0.15 seems to give marginally better results 1 in the secondary
structures, it is a bit worse inside the motifs 3. We therefore selected
α = 0.1 as default parameter value.

We evaluated in Fig. 5 RNAMoIP with α = 0.1 against 11 other
tools: RNAfold [5], our implementation of IPknot [15] (i.e., α = 0),
PKnots [9], HotKnots [10] Knotty [11], SPOT-RNA [12], MXfold2 [36],
LinearFold [37], pAliKiss [38], BiokoP [16] and BiORSEO [24]. While
in the task of predicting base pairs of the secondary structure RNAMoIP
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clearly outperforms most of the competitors. When compared with Knotty
it produces as good results while providing more information in the form
of motifs inserted. Since we can not re-train SPOT-RNA, it was run on
the subset of the test sequences that did not share a BGSU RNA Structure
Atlas redundancy class with its training set. We show in the supplemen-
tary material the results when run over the entire set, and we can see
how the overfitting greatly improves its result. As mentioned in recent
papers [13, 14], if more data was available, a benchmark based on Rfam
families would probably decrease further the results.

Figure 5: Tools comparison of F1 scores. RNAMoIP with parameter
α = 0.1 is compared with 13 other tools. Knotty does not provide additional
geometric information. SPOT-RNA is evaluated on the subset of sequences, not
in its training set.

3.9 Including alignments increases predictability

Our model was extended in Sec. 2.4 to incorporate evolutionary informa-
tion as sequence alignments. The Rfam database [39] is a repository of
curated structured RNA families and has recently started providing hand
aligned PDB structures. As of January 2023 they are 40 Rfam families
alignments with 201 PDB structures aligned. Out of those, they belong
to 23 different families (as defined by RNA Structure Atlas). The rep-
resentative of each family was selected, or a random for the two families
with a structure in an alignment but not its representative. The name of
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the 23 structures are provided in the directory with the code in the results
folder. We describe in Supp. Mat. 6.4 how we modified the procedure.

To the best of our knowledge, only pAliKiss [38] can use an alignment
to predict secondary structures with pseudoknots. Due to the limited
amount of tools and data, only 23 structures, we used as baseline RNAal-
ifold [5]—which doesn’t take into account pseudoknots—and evaluated
the number of base pairs statistically supported by the alignment using
R-scape [40]. We show the comparisons with RNAMoIP in Fig. S6. We
compare with RNAfold and RNAMoIP on these sequences without the
alignments in Fig. S5.

Figure 6: Alignment-based secondary structure prediction accuracy.
Result of the alignment’s dataset with the help of the alignment informations.
pAliKiss and R-scape were also added for comparison.

A drastic increase in PPV is observed as much for RNAalifold vs
RNAfold as for RNAMoIP. R-scape indicates that only a fraction of the
base pairs are directly supported by the sequence alignment. We see that
with a sequence alignment, there isn’t a significant improvement brought
by the motifs under our scheme. The F1 distributions for RNAMoIP at
α = 0 where no motif is taken into account or α = 0.1 are almost simi-
lar, and increasing α slowly decreases the F1 value. These results are of
equivalent quality to the ones returned by pAliKiss. We note that pA-
liKiss produced in 60% of the cases multiple solutions, up to 47, but as
shown there is no observable difference between its best and a random
structure. Incorporating motif prediction using our simple scheme does
not decrease accuracy while providing additional information, as we will
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(a) 3V7E-
C

(b)
4AOB-A

(c)
4KQY-A

(d) 5FJC-
A

Motifs inserted on the kink-turn with alignment.

(e) 3V7E-
C

(f)
4AOB-A

(g)
4KQY-A

(h) 5FJC-
A

Motifs inserted on the kink-turn without alignment.

Figure 7: For the 4 PDB with a kink-turn the representation of it’s group and
colored the position where RNAMoIP predicted motifs on the kink-turn as the
exact base pair.

explore in the next section.

3.10 Kink-turn

A particularly interesting geometrically complex local motif is the kink-
turn [41, 42] which is linked to many different biological processes [43].
Since they greatly constrain the structure they are key pieces completely
ignored in the secondary structure representation.

The RNA Structure Atlas [20] maintains different classes of kink-turn
as all their occurrences in known RNA structures. From the previous set
of 23 structures with alignments, 4 have a kink-turn annotated in them
all in group IL 29549.4, in PDB and chains 3V7E-C, 4AOB-A, 4KQY-A,
and 5FJC-A. Since all four belong to the same group, they are represented
with the same non-canonical diagram.

We investigate where motifs are predicted at the position of the kink
turn with and without the alignment in Fig.7. In both cases, different
interior loop are colored as green or blue, and hairpins as orange. When
exactly the right base pair was predicted, it is also colored, the other ones
inside the predicted motifs are omitted.

We observe immediately that there is always an interior loop match-
ing on each strand of the kink-turn, in green. The prediction without
alignment seem to be more cohesive, having always a match on all the
position forming a cycle with the triangular pattern. But we can see us-
ing the alignment that the match on 5FJC chain A recover 3 out of the
4 non Watson–Crick/Watson–Crick base pairs. Since the non-canonical
interaction do not necessitate an exact match to reflect similar geome-
tries [44] a more in depth study out of the scope of the present work is
needed. Nonetheless, RNAMoIP predicts relevant geometric information
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that cannot be represented by the secondary structure at the kink-turn
location.

4 Webserver and visualisation

In an effort to make the program more accessible, a web server was de-
veloped and made available at https://rnamoip.cbe.uqam.ca. Users can
submitted their own sequences and can adjust the RNAMoIP parameters,
as the α or the maximum level of pairs crossing. After the predictions are
completed asynchronously, a dashboard presents various information re-
lated to the predicted structures. The structures with the different motifs
inserted are shown in a clickable 2D layout built from Varna [45]. All
occurrences that correspond to each motif found are shown in their re-
spective tab, with all their canonical and non-canonical interactions as
a dynamic 3D visualisation allowing superposition of the different occur-
rences of the motifs.

5 Conclusion

In this work, an integer programming framework allowing simultaneous
prediction of the secondary structure with pseudoknots, and insertion
of structural motifs, is presented. The implementation in RNAMoIP
is benchmarked over the 101 non-redundant pseudoknotted RNAs with
known structure. We show that combining the approach of IPknot to
construct pseudoknotted structures based on the base pair probability
matrix obtained by the standard thermodynamic model, implemented in
the ViennaRNA, with the insertion of known conserved structural motifs,
allows to: (1) increase the accuracy of the prediction of secondary struc-
ture with pseudoknots, (2) generates accurate knowledge about canonical
and Wobble interactions present inside structural motifs, which might not
belong to the secondary structure, (3) improves drastically under a simple
scheme to incorporate evolutionary information from multiple sequence
alignment as validate with 23 independent structures aligned by Rfam,
and (4) predict non-canonical interaction motifs at kink-turn locations.

Two main limitations are highlighted by our work. First, motifs can
be inserted now based on a perfect sequence match. More advanced prob-
abilistic techniques, as RMDetect [46], JAR3D [47] or BayesPairing [48],
would allow to integrate a more rigorous term in the objective function,
as match motifs with altered sequence, increasing diversity and therefore
the range of predictable structure. Second, the database of motifs only
incorporates loops (i.e., hairpin, interior loops, multi-loops). These ap-
proaches can directly use multiple sequence alignment which would not
only increase the general base pairs as shown in this work, but would
probably show a more significant boost from incorporating the motifs.

Advances in structural molecular biology are pushing against the lim-
itation of the nearest neighbour model. While the biological importance
of networks of non-canonical interactions are becoming more and more
evident, the capacity to predict them lags far behind. The IP programs
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remains a promising direction for RNA structure determination due to
the flexibility of their formulation allowing to go above the nearest neigh-
bour model. Expending to more complex conserved structures, as groups
of interacting and conserved loops containing pseudoknots described in
Carnaval [21, 25] would allow to take fully advantage of the IP formula-
tion and extend the notion of pseudoknots prediction to all non-canonical
interactions. This flexible formulation will also allow to give specific rules
to help incorporate chemical modifications and other features that are
absent from the nearest neighbour model.References
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Denise, and Jérôme Waldispühl. Finding recurrent RNA struc-
tural networks with fast maximal common subgraphs of edge-colored
graphs. PLoS computational biology, 17(5):e1008990, 2021.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.03.09.531928doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531928
http://creativecommons.org/licenses/by-nc/4.0/


[26] Douglas H Turner and David H Mathews. NNDB: the nearest neigh-
bor parameter database for predicting stability of nucleic acid sec-
ondary structure. Nucleic Acids Research, 38(suppl 1):D280–D282,
2010.

[27] Stephan H. Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas R.
Gruber, and Peter F. Stadler. RNAalifold: improved consensus struc-
ture prediction for RNA alignments. BMC Bioinformatics, 9(1):1–13,
December 2008.

[28] OR-Tools. OR-Tools | Google Developers, August 2021. [Online;
accessed 18. Oct. 2022].

[29] coin or. Cbc, April 2022. [Online; accessed 26. Apr. 2022].

[30] Federal University of Ouro Preto Departament of Computing, ICEB.
Python MIP Documentation — Python-MIP documentation, Jan
2021. [Online; accessed 15. Apr. 2022].

[31] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual,
v9.5.0, 2022.

[32] H M Berman, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weis-
sig, I N Shindyalov, and P E Bourne. The protein data bank. Nucleic
Acids Research, 28(1):235–42, Jan 2000.

[33] BGSU RNA group. Representative Sets of RNA 3D Structures , Apr
2022. [Online; accessed 15. Apr. 2022].

[34] Sandra Smit, Kristian Rother, Jaap Heringa, and Rob Knight. From
knotted to nested RNA structures: a variety of computational meth-
ods for pseudoknot removal. RNA, 14(3):410–416, 2008.

[35] Tomasz Zok, Maciej Antczak, Michal Zurkowski, Mariusz Popenda,
Jacek Blazewicz, Ryszard W Adamiak, and Marta Szachniuk.
RNApdbee 2.0: multifunctional tool for RNA structure annotation.
Nucleic Acids Research, 46(W1):W30–W35, 04 2018.

[36] Kengo Sato, Manato Akiyama, and Yasubumi Sakakibara. RNA sec-
ondary structure prediction using deep learning with thermodynamic
integration. Nat. Commun., 12(941):1–9, February 2021.

[37] Liang Huang, He Zhang, Dezhong Deng, Kai Zhao, Kaibo Liu,
David A. Hendrix, and David H. Mathews. LinearFold: linear-
time approximate RNA folding by 5’-to-3’ dynamic programming
and beam search. Bioinformatics, 35(14):i295–i304, July 2019.

[38] Stefan Janssen and Robert Giegerich. The RNA shapes studio. Bioin-
formatics, 31(3):423–425, February 2015.

[39] Ioanna Kalvari, Eric P. Nawrocki, Nancy Ontiveros-Palacios, et al.
Rfam 14: expanded coverage of metagenomic, viral and microRNA
families. Nucleic Acids Research, 49(D1):D192–D200, January 2021.

[40] Elena Rivas, Jody Clements, and Sean R Eddy. A statistical test
for conserved RNA structure shows lack of evidence for structure in
lncRNAs. Nature methods, 14(1):45–48, 2017.

[41] Daniel J Klein, T Martin Schmeing, Peter B Moore, and Thomas A
Steitz. The kink-turn: a new RNA secondary structure motif. The
EMBO journal, 20(15):4214–4221, 2001.

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.03.09.531928doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531928
http://creativecommons.org/licenses/by-nc/4.0/


[42] Shigeyoshi Matsumura, Yoshiya Ikawa, and Tan Inoue. Biochemical
characterization of the kink-turn RNA motif. Nucleic Acids Research,
31(19):5544–5551, 2003.

[43] Lin Huang and David MJ Lilley. The kink-turn in the structural
biology of RNA. Quarterly reviews of Biophysics, 51, 2018.

[44] Jesse Stombaugh, Craig L Zirbel, Eric Westhof, and Neocles B Leon-
tis. Frequency and isostericity of RNA base pairs. Nucleic Acids
Research, 37(7):2294–2312, 2009.
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6 Supplementary material

6.1 Full Integer Programming Model

The hairpins insertion that are composed of only one strand are con-
strained by Eq. 9, which was modified to only consider base pairs in level
1. The insertion of interior loops and bulges must first ensure that strands
are placed in acceptable positions (Eq. 10) and that the motif must fill at
least 2 unpaired positions, ensuring information is added to the system
(Eq. 11).

∀(x,k,l)∈Seq11
:

Cx,1
k,l ≤

∑
(u,v)∈B

k−1≤u≤k∧
l≤v≤l+1

(D1
u,v) +

∑
(x̃,k̃,l̃)∈Seq21

l̃=k−1

C x̃,1

k̃,l̃
+

∑
(x̃,k̃,l̃)∈Seq22

k̃=l+1

C x̃,2

k̃,l̃
(9)

∀(u, v) ∈ B, ∀x ∈ Mot2 :

− n(1−D1
u,v) ≤∑

(x,k,l)∈Seq21
l<u∨v<k

Cx,1
k,l −

∑
(x,k,l)∈Seq22
l<u∨v<k

Cx,2
k,l ≤ n(1−D1

u,v) (10)

∀(x, k, l) ∈ Seq21 ,∀(x, k̃, l̃) |

k̃ > l ∧ 2 ·
∑

(u,v)∈B
k≤u≤l∧k̃≤v≤l̃

1 +
∑

(u,v)∈B
k≤u≤l⊕k̃≤v≤l̃

1 ≥ l − k + l̃ − k̃ + 1 ∈ Seq22 :

Cx,1
k,l + Cx,2

k̃,l̃
≤ 1 (11)

The k-way junctions admissibility of insertion is decided in Eq. 12,
ensuring that each strand can be reached without crossing the base pairs
in the first level. This is equivalent to Eq. 10 for the interior loops.

∀j ≥ 3, ∀(u, v) ∈ B : −n(1−D1
u,v) ≤

(j − 1) ·
∑

(x,k,l)∈Seq
j
1

u≤k≤l≤v

Cx,1
k,l −

∑
1<i≤j

(x,k,l)∈Seq
j
i

u≤k≤l≤v

Cx,i
k,l ≤ n(1−D1

u,v) (12)

An important feature of RNA structure is that their sequence is or-
dered, from the 5′ to the 3′ end, and that it is not symmetric. In a motif,
an order is defined over the strands following that direction. The model
constrains where a strand in a motif can be placed given the insertion
of the previous (Eq. 13) or next (Eq. 14) strand of the same motif. An
important consideration is that at the end there must exist a mutually
exclusive decomposition of the strands such that each inserted motif is
complete, even if many copies are found (Eq. 15).

∀ 1 < i ≤ j, ∀(x, k, l) ∈ Seqji : Cx,i
k,l ≤

∑
(x,k̃,l̃)∈Seq

j
i−1

l̃<k−5

Cx,i−1

k̃,l̃
(13)
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∀ 1 ≤ i < j, ∀(x, k, l) ∈ Seqji : Cx,i
k,l ≤

∑
(x,k̃,l̃)∈Seq

j
i+1

l+5<k̃

Cx,i+1

k̃,l̃
(14)

∀ j > 1, ∀x ∈ Motj , ∀1 < i ≤ j :∑
(x,k,l)∈Seq

j
1

Cx,1
k,l −

∑
(x,k̃,l̃)∈Seq

j
i

Cx,i

k̃,l̃
= 0 (15)

6.2 Predicting canonical interactions in motifs

(a) PPV (b) STY

Figure S1: Predicting canonical and Wobble interactions in motifs.
For α values of 0.05, 0.1, 0.15 that more than half of the canonical and Wobble
base pairs in the motifs are correctly predicted, and 40% of them are generally
captured.
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6.3 Predicting non-canonical interactions in mo-
tifs

(a) PPV (b) STY

Figure S2: Prediction accuracy of non-canonical base pairs in motifs.
True positives are the non-canonical base pairs at positions where one motif is
inserted in the sequence. They are composing at most 15% of the interactions
in the inserted motifs, and are hard to predict.

Figure S3: Non-canonical in-
teractions distribution of the
number of non-canonical inter-
actions that are observed at mo-
tifs inserted locations. On the
y-axis the number in the real
structure, on the x-axis how
many are annotated in the in-
serted motif.
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6.4 RNAMoIP on alignments

Due to the nature of the sequence alignment, we relax the procedure to
insert motifs as follows. RNAMoIP predicts the structure of 1 sequence
that can be enhanced with an alignment. All columns that are gaps in
the sequence of interest are discarded. Therefore, for a motif component
Cx,1

k,l the position k, l are the same in the structure for which we are doing
the prediction, and the alignment.

We first identify for each sequence, without gaps, positions where each
motifs can fit. For each of these, we count in the alignment the fraction
of other sequences that are at most at a Hamming distance of 1. If that
ratio is above 50% we consider that the motif can be inserted at these
positions. Formally, we define a function

found in(Cx,1
k,l ) → [0, 1]

such that: found in(Cx,1
k,l ) returns the fraction of subsequences in the align-

ment between positions k, l that are at most at Hamming distance one
from the motif Cx,1. Then we can have the normalizing function:

sim(Cx,1
k,l ) =


1 if the motif matches exactly the sequence in k,l

0 if found in(Cx,1
k,l ) < 0.5

found in(Cx,1
k,l ) else

.
Finally the updated objective function when an alignment is provided

becomes:

max α
∑

x∈Motj

 (|x|) 2 ×
∑

(x,k,l)∈Seq
j
1

Cx,1
k,l sim(Cx,1

k,l )



+ 10(1− α)×
∑

(u,v)∈B

m∑
q=1

Dq
u,v p(u, v) βq (16)

Motif length

Motif inserted at position (k, l)

Base pair (u, v)

Probability of the base pair (u, v)

Weight of level q

Weight of motif due to alignment
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Figure S4: Alignment-free secondary structure prediction accuracy.
Result of the alignment’s dataset without using the alignment informations.

(a) PPV (b) STY

Figure S5: Alignment-free secondary structure prediction accuracy.
Result of the alignment’s dataset without using the alignment informations.

(a) PPV (b) STY

Figure S6: Alignment-based secondary structure prediction accuracy.
Result of the alignment’s dataset with the help of the alignment informations.
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6.5 Complete tool analysis

Figure S7: Tools comparison of F1 scores. Include two versions of SPOT-
RNA. As in Fig 6 SPOT-RNA is evaluated on the subset of sequences not in
its training set. We also show the results on the entire dataset, highlight the
overfitting if not careful in the separation of test and train set.

6.6 Computation time benchmark
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Figure S8: Execution Time-based on nucleotide count of the sequence
at α = 0.1. A maximum of 104s was allowed, and 14 sequences didn’t return a
solution in that time.
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