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Abstract

Technological advances have generated tremendous amounts of high-throughput omics data.
Integrating data from multiple cohorts and diverse omics types from new and previously
published studies can offer a holistic view of a biological system and aid in deciphering its
critical players and key mechanisms. In this protocol, we describe how to use Transkingdom
Network Analysis (TKNA), a unique causal-inference analytical framework that can perform
meta-analysis of cohorts and detect master regulators among measured parameters that govern
pathological or physiological responses of host-microbiota (or any multi-omic data) interactions
in a particular condition or disease.
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TKNA first reconstructs the network that represents a statistical model capturing the complex
relationships between the different omics of the biological system. Here, it selects differential
features and their per-group correlations by identifying robust and reproducible patterns of fold
change direction and sign of correlation across several cohorts. Next, a causality-sensitive
metric, statistical thresholds, and a set of topological criteria are used to select the final edges
that form the transkingdom network. The second part of the analysis involves interrogating the
network. Using the network’s local and global topology metrics, it detects nodes that are
responsible for control of given subnetwork or control of communication between kingdoms
and/or subnetworks.

The underlying basis of the TKNA approach involves fundamental principles including laws of
causality, graph theory and information theory. Hence, TKNA can be used for causal inference
via network analysis of any host and/or microbiota multi-omics data. This quick and easy-to-run
protocol requires very basic familiarity with the Unix command-line environment.

Introduction

Complex relationships between genetics and epigenetics are the basis of human health and
disease. Advances in experimental and computational capabilities have brought a wide variety of
high-throughput data to the study of biological systems. A large amount of technological effort is
devoted to increasing throughput, reducing financial and personnel costs, and increasing
experimental and computational efficiencies. As such, there is a clear interest in computational
methods and software that can integrate different types of omics data and perform association
analyses to identify important players and mechanisms (e.g., mixOmics). TKNA, however, is a
unique causal-inference analytical framework that can perform meta-analysis and identify the
regulatory relationships between entities. This approach, for example, was used in a study of
antibiotic-resistant microbes? to identify key host genes, microbes and molecular mechanisms in
type 2 diabetes?. TKNA has also been used to characterize the role of the microbiome in cervical
cancer, lymphoma and melanoma®®. Please note that while the word “integration” refers to two
very different analyses in other software, we have used it in the following way throughout the
paper: meta-analysis is the integration of data from several independent datasets, whereas
network reconstruction involves integration that establishes statistical dependencies between
multiple types of omics data.

In this protocol, we describe in detail how to use TKNA to detect master regulators (causal
factors) among microbes and microbial genes, host pathways and host genes, and other measured
variables that govern pathological or physiological responses of host-microbiota interactions in a
particular condition or disease. Note that although the TKNA approach was developed to
investigate host-microbiota interactions, its underlying basis involves fundamental principles
including laws of causality, graph theory and information theory. Hence, TKNA can be used for
causal inference via network analysis of any multi-omics data collected whether those data were
measured in the same samples or measured in different organs from the same biological
replicates of animals (humans, mice, other animals) and/or environmental niches.

Overview of the procedure
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The TKNA pipeline consists of three major sections (Figure 1). Section 1 reconstructs the
network. This involves importing the data, performing calculations/meta-analysis, and filtering
the data as specified by the user. Specifically, differentially expressed/abundant variables (genes,
microbes, metabolites, etc.) between classes (e.g., disease and control) are found, based on user-
defined statistical criteria. Next, per-group correlations are performed within and between each
type of omics/kingdom separately. To override the default comparison and correlation methods,
appropriate parametric or non-parametric methods can be selected by the user. TKNA identifies
robust and reproducible patterns of fold change direction (increased or decreased) and sign of
correlation coefficient (positive or negative) across several cohorts (or experimental replicates).
Following this, correlations are further filtered based on a causality-reflecting metric, correlation
inequalities’, where within-class correlations with the opposite sign of coefficient than would be
expected by the fold change direction of the variables in the edge are removed (i.e., if both
variables of the edge are increased or decreased in the disease class compared to the control
class, the expected per-group sign of correlation coefficient between those variables is positive
and therefore negative correlations between them would be removed; for variables with opposite
fold change direction in disease vs control the expected per-group sign of correlation coefficient
is negative and therefore positive correlations between them would be removed). Finally, TKNA
calculates a set of topological criteria, including network density, the deviation of observed
positive:negative correlations from expected, and the proportion of unexpected correlations’
(PUC). The user employs these metrics to determine the quality of the reconstructed network by
comparison to “typical” networks (networks we have reconstructed and published previously
using a variety of omic data>®%). If the network is deemed suitable for downstream analysis, the
user moves on to the network analysis step. Otherwise, the user changes their statistical
thresholds and performs another reconstruction as described above. Of note, one of the output
files of this step is a comma-separated value (CSV) file of the network, which the user can
visualize using an external program such as Cytoscape®®.
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metabolomic,
phenotypic, etc.
input data
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Figure 1. Flowchart of the TKNA pipeline.

Section 2 is the interrogation/analysis of the reconstructed network. Here, the user has the
option to identify clusters of nodes in the network using the Louvain®® or Infomap*® algorithms.
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Using external recommended software (Table 3), they can then perform enrichment analysis of
the clusters to identify biological pathways/functions to which the nodes in the cluster contribute.
Regardless of whether cluster identification is performed, the next step in TKNA is to calculate
node and network properties. While many different topological properties are calculated, key
among these are node properties that indicate regulatory nodes in the network. This includes
calculating bipartite betweenness centrality?’ (BiBC), a global node topology metric, to find the
nodes participating highest in the information flow between subnetworks or user-defined regions
(e.g.,, microbe and host subnetworks) of the network. Degree is a key local node property that is
calculated, which is a measure of how many other nodes to which a single node connects. High
BiBC and high degree reflect “bottleneck™ and “hub” nodes, respectively. Consequently, a node
with a high degree and BiBC is considered to be a strong regulatory candidate in the network.
Optionally, the user can also calculate shortest path lengths between each pair of nodes in two
separate subnetworks. Since these calculations use the number of edges but not their strength
(e.g., sign and magnitude of correlations), two subnetworks with a smaller average shortest path
length are predicted to interact more (but not necessarily more strongly) than subnetworks that
are farther away from one another. To wrap up section 2 and evaluate the probability of a given
node to show nonrandom values of degree and BiBC, TKNA reconstructs many random networks
(10,000 by default) with the same number of nodes and edges as the reconstructed network and
compares the top degree/BiBC nodes of those random networks to the reconstructed network.

Section 3 of TKNA creates publication-ready figures from the above analysis of the user’s
reconstructed network. Multiple high-quality figures are created in this step, including dot plots
of degree distribution (Figure 7a) and dot plots of nodes and their calculated properties (Figure
7b). The abundance (e.g., microbiome) or expression levels (e.g, transcriptome), etc. of the top
regulatory candidates are also automatically generated (Figure 7c), as well as a 2D density plots
(Figure 7d) that have the observed values of the top regulatory nodes from the reconstructed
network overlayed on top of them. Additionally, CSV files are created with all the necessary
information if the user wishes to use an alternative visualization or plotting software.

Procedure
Pre-requirements for using TKNA

Currently, TKNA is only supported on Unix (e.g., Mac, Linux) based devices. From a Unix
device, a user will need to have access to git on their terminal and have an SSH key for their
GitHub account (see https://docs.github.com/en/authentication/connecting-to-github-with-
ssh/adding-a-new-ssh-key-to-your-github-account for more information). If the user does not
already have git downloaded, he or she can do so using the commands found on github’s
documentation at https://github.com/git-guides/install-git.

Software Setup

1. Obtain TkNA
Download the TKNA code from https://github.com/CAnBioNet/TKNA.qgit and enter its directory.
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git clone git@github.com:CAnBioNet/TkNA.git
cd TKNA

2. Install Miniconda

We highly recommend that users manage their installation using conda as their package
management software. If it is not already installed on the system, you can install Miniconda
(which contains both python and conda) from https://docs.conda.io/en/latest/miniconda.html.
Since TKNA was written and tested in Python version 3.8.10, we recommend the user installs the
Python 3.8 Miniconda version. Computationally proficient users can run TKNA with other
python versions, however, installing and troubleshooting with python versions other than v3.8.10
is outside the scope of this protocol, and it is upon the user to install the required libraries.

3. Set up the TKNA environment
Create a new Python 3.8.10 conda environment. Install the python packages specified in the
requirements.txt file included with the source code.

conda create -n TkNA python=3.8.10
pip install -r requirements.txt

Data Preprocessing

4. Normalize data

It is known that non-normalized data leads to bias in the structure of correlation networks!®1°, As
such, prior to running TKNA, the user needs to perform any appropriate normalization(s) for their

dataset. Normalization is not performed in TKNA, so data can be normalized using but not
limited to the methods listed in Table 1.

Omics type Normalization method Software or Package

Transcriptome Reads per million (relativization); Affy (R)?; BRB Array
RPKM; FPKM; Quantile; Lowess; tools; DESeq2 (R)#; EdgeR

(RNA-Seq) Trimmed Mean of M-values (TMM); | (R)??

Relative Log Expression (RLE)

Microbiome Reads per million (relativization); Qiime223, metagenomeSeq

(amplicon or Rarefaction; CSS; Quantile (R)?*

shotgun)

Metabolomics Normalization to internal standard; MetabR (R)?, ProteoMM
normalization to urine output; (R)?°, OpenMS*°,
normalization to total spectral area; pyOpenMS (python)3!
probabilistic quotient
normalization?®; Bridge
normalization; Median run
normalization?®, EigenMS
normalization®’
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Proteomics Linear regression normalization; proteiNorm?®?, OpenMS*,
Local regression normalization; pyOpenMS (python)3!
Variance stabilization normalization;
Quantile normalization,

Table 1. Common normalization methods for various omics types.

5. Format data

Following normalization, we recommend the data be organized into a directory and arranged as
shown in Figure 2. After cloning the repo, the user will see all folders on their terminal, then
will need to manually create a project folder for each project, with a folder to hold the input and
output files inside.
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reconstruction ———— 1 ——— run.py
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requir txt
— README.txt
data file(s)
data mapping file(s)

— input ———— type mapping file

<user project name> metadata .json file

config .json file

—_ output
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Figure 2. Structure of the TkNA repository, including all folders and the main scripts required
for the user to reference in their commands. We recommend the user creates a directory for
their project like the one at the bottom of the figure, where all the input files are stored and
where they will direct the output files to write to in their commands.

Examples of each input files can be found in the repo at
https://github.com/CAnBioNet/TkKNA/tree/main/example_datasets_and_commands/microbiome_
and_phenotype/input (referred to below as microbiome_and_phenotype/input/ for simplicity).
There are five main file types required to run the TKNA pipeline:

a. Processed (normalized and log2 transformed) data tables

Each data table associated with an experiment present in the data must be log2 transformed
prior to the pipeline. Pseudocounts can be added to all values to avoid negative numbers after
log transformation. The data table must be formatted as in comma-separated value (CSV)
format with one column per experimental unit (i.e., sample) and one row per variable (e.g., a
gene, microbe, or phenotype). Experimentl.csv and Experiment2.csv in the
microbiome_and_phenotype/input/ folder on github are examples of these files. The variable
names must not contain any characters other than letters, numbers, underscores, and spaces.
If the user’s data contains any other characters such as commas, we recommend giving them
a new unique alphanumeric ID and using a separate reference file to keep track of their new
and old names.

b. Sample mapping file

Each experimental unit present in the data must be associated with an experimental class (e.g.
Disease, Control), identified by a text string. These associations are specified as lists of
comma-separated values, with the left column containing the name of the experimental unit
and the right column containing the class. All names must match exactly across data files.
Currently, TKNA is designed to only work with two classes at a time. Note: In the pipeline,
the sample mapping file is called “treatmentMapFile” in the metadata .json file (Figure 3a)
and the sample groups to compare are the ones used in “comparisonTreatments” in the config
Jjson (Figure 3b) file. Experimentl_group_map.csv in the
microbiome_and_phenotype/input/ folder on github is an example of this file.

c¢. Omics type mapping file

Each variable (e.g., microbe, gene, metabolite, etc.) present is associated with a type of omic
data, identified by a text string. These associations are specified as lists of comma-separated
values, with the left column containing the variable and the right column containing its type.
All names must match exactly across data files. type_map.csv in the
microbiome_and_phenotype/input/ folder on github is an example of this file.

d. config file

The dataset must contain a file named config. json in the JavaScript Object Notation
(JSON) format, as shown in Figure 3. This file defines the statistical and meta-analysis
criteria to apply when reconstructing the network. More in-depth information and examples
for this file can be found in Step 7 - Reconstruct network. config.json in the
microbiome_and_phenotype/input/ folder on github is an example of this file.
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e. Metadata file

The dataset must also contain a file named metadata. json in JSON format, as shown in
Figure 3. This file describes each experiment present in the data and indicates the names and
locations of the necessary files. As such, the names in this file must match exactly the names
of the files being used in the analysis. metadata.json in the
microbiome_and_phenotype/input/ folder on github is an example of this file. At the top-
most level, the metadata consists of 3 sections:

i. Project name
A name to which the project will be referred by.

ii. Experiment/Cohort/Dataset(s) details

A list of experiments/cohorts/datasets (which we will refer to as “experiments’) whose
data is present in the project. Each experiment contains a “name”, the relative path to the
CSV file containing its data table (“datafile”), and the sample mapping file name
(“treatmentMapFile”) (Figure 3a).

iii. Type map
The omics type mapping file “measurableTypeMapFile” for all of the variables present in
the data.

In Figure 3a, the users have a single experiment in their project (as seen in the metadata
file) with two classes they would like to compare: Disease and Control (as seen in the
config file). They have then specified which comparison statistical thresholds to apply
(“differencePValueThresholds”) for individual p-value, Fisher’s combined (meta-
analysis) p-value, and the Benjamini-Hochberg FDR (called “corrected” in the config
file). Additionally, they have specified they want to perform the correlations only in the
Disease class (“networkTreatment”) and specified the edge statistical criteria
(“correlationPValueThresholds”) towards the bottom of the file.

The user for Figure 3b has a more complicated project, with four total datasets, as well
as an additional “pheno” variable type in their input data (genes and phenotypes), so they
have added the additional “pheno” variable to the file. They have set the same
comparison thresholds for both variable types, although matching thresholds are not
required. Down below, they have specified they want to find only edges that are
consistent in the Disease class of three of the four experiments (as can be seen by the 0.75
for “correlationFilterPercentAgreementThreshold” and the “metatreatments” sections).
Then they specified the edge thresholds for each pair of data types (gene-gene, gene-
pheno, and pheno-pheno). Please note that filtering edges for the same direction across
only a fraction of datasets/groups is not typically a good strategy, especially when using a
small number of datasets/groups (less than five) but was done in this example for
simplicity. We recommend using “correlationFilterPercentAgreementThreshold” option
as a last resort and only by expert users. In other words, the default of
“correlationFilterMethod” keeps edges that are consistent across all datasets/groups (i.e.,
the same sign of correlations). This is critical to avoid situations where an edge’s
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direction is decided by most of datasets/groups with non-significant correlation
coefficients instead of the fewer datasets/groups with strong significant correlation
coefficients but with opposite sign to those in the majority of the datasets/groups. Also
note that the structure of .json files is highly specific and the addition of extra characters
in the files may cause issues.

a

Structure for a more complex
run, multiple experiments and
multiple data types

Structure for a basic run, one
experiment and one data type

leTypeMapFile": "type_map, csv"

metatdata.json

config.json

Figure 3. Example metadata and configuration (config) .json files. a) The structure required to
run the network reconstruction code for a single dataset. b) The structure required for more com-
plex data with multiple experiments and/or data types.

Data Import

6. Import data
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Once all the required files have been uploaded, the next step is to import the data into a
consolidated format for downstream processing, using the script
reconstruction/intake_data.py.

Usage
python ./reconstruction/intake_data.py --data-dir <data
directory> --out-file <output file>
Example command
python reconstruction/intake data.py --data-dir
./project_folder/input/ --out-file
./project_folder/output/all_data_and_metadata.cdf
Inputs
- -data-dir: Path to the directory containing all experimental file(s), metadata file(s),
and config file(s)
--out-file: path to file (with .cdf extension) that will be created
Outputs
e Assingle .cdf file containing most information required for the next step

Network Reconstruction

7. Reconstruct network

Network reconstruction is then performed with the script reconstruction/run. py, which
references the JSON configuration file (Figure 3). An overview of the network reconstruction
process can be found in Figure 4.

Usage
python ./reconstruction/run.py --data-source <file_name> --
config-file <config file> --out-file <zip directory>
Example command
python ./reconstruction/run.py --data-source
./project_folder/output/all _data_and_metadata.cdf --config-file
./project_folder/input/config.json --out-file
./project_folder/output/network_output.zip
Inputs
- -data-source: Path to the .cdf file created using intake_data.py
--config-file: Path to the config file used for intake data.py
- -out-file: path to zipped directory that will be created
Outputs
e A single zipped directory containing the analysis performed
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Figure 4. Schematic of how a basic network is reconstructed from two independent datasets. a)
An experimental design that works well for the TKNA pipeline, allowing for meta-analysis with
robustness of findings across experiments. Note that a minimum of five samples per class per ex-
periment is recommended. b) Comparisons of each variable between the two classes (defined by
user) are performed. A p-value (either from a Student’s t-test or Mann-Whitney test) and fold
change are calculated for each variable in each experiment. Meta-analysis is then conducted by
calculating the Fisher’s combined meta-analysis p-value and FDR. c) The variables are filtered to
remove those that did not pass the user-defined p-value, combined p-value, or FDR. Addition-
ally, only variables that are the same direction of fold change across the two experiments are re-
tained. d) Following the filtering in c, correlations between the remaining variables are per-
formed per-group. A p-value (either Spearman or Pearson) and rho coefficient are calculated for
each pair of remaining variables. Meta-analysis is then conducted by calculating the Fisher’s
combined meta-analysis p-value and FDR. e) Correlations are filtered and those that did not pass
the user-defined p-value, combined p-value, or FDR are removed. Additionally, correlations that
are not consistent in direction (positive or negative) are removed. Unexpected correlations (a
positive correlation between two nodes of opposite fold change direction or a negative correla-

tion between two nodes of the same fold change direction) are also removed. The reconstructed
network is comprised of the remaining nodes and edges.

Reconstruction takes place in the following steps. For each step, the available configuration
options are described. For more specific examples of the config file, please refer to Figure 3.

i. Establish differentially expressed/abundant variables (genes, microbes,
metabolites, etc.) between classes (e.g., disease and control).
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Setting the appropriate statistical thresholds to apply while reconstructing the network
is the most critical step in determining the size and quality of the resulting network.
Thus, it is crucial that the user sets statistical thresholds that are best suited for the
type of data they are using. For finding differentially expressed/abundant variables
between classes, we recommend that the user initially uses the default thresholds
supplied in the code: p-value < 0.2, Fisher’s combined (meta-analysis) p-value <
0.05, and Benjamini-Hochberg FDR < 0.1. If the reconstructed network is not of
sufficient quality (see step 9 “Assessing network quality”) or size (an experienced
user may consider the network too small) then the user can select different thresholds

to apply.

At this stage of the analysis, it is not recommended to relax thresholds more than the
following: individual p-value, 0.5; Fisher’s combined p value, 0.1; and FDR, 0.2.
Note that relaxed thresholds can be used at this stage because a considerable
proportion of variables will be further eliminated in the next step of the analysis when
edges are established.

Required config parameter: comparisonTreatments
A list containing the names of exactly two groups. Fold change is computed with
respect to the first of the two, meaning “control” would be the denominator in the
below example.

Example: “comparisonTreatments®: [“control”, “disease”]

Optional config parameter: differenceMethod
The method to use for calculating correlations, either Mann-Whitney or Student’s
t-test (for data with equal variance).

Choices: mannwhitney, independentttest
Default: mannwhitney

Example: “differenceMethod”: “mannwhitney”

Optional config parameter : differencePValueThresholds
A mapping between each kind of statistic and its threshold. Can contain:

individual: Minimum p-value across all experiments
Default: 0.2

combined: p-value combined across experiments (e.g., via Fisher’s method)
Default: 0.05

corrected: p-value after correction (e.g., via FDR)
Default: 0.1

NOTE: We strongly recommend using more than one dataset for the TKNA
analysis. However, if the user only has one dataset, the combined p-value is the
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same as the individual p-value and the same threshold value should be used for
both.

Example: “differencePValueThresholds”: {“individual”: 0.1,
“combined”: 0.02, “corrected” 0.15}

Optionally, for each kind of statistic, thresholds can be specified per type of
variable.

Example: “differencePValueThresholds”: {“corrected”: {“gene”:
0.1, “phenotype”: 0.15}}

ii. ldentify robust and reproducible patterns for fold change direction across
several experimental replicates (if user has multiple independent experiments)

Optional config parameter : foldChangeType
Calculate fold change using the median or the mean.

Choices: median, mean
Default: median

Example: “foldChangeType”: “mean”
Optional config parameter : foldChangeFilterMethod
Choose how strictly the fold changes of variables must be consistent across

experiments.

Choices: allsamesign, percentagreement
Default: allsamesign

Example: “foldChangeFilterMethod”: “percentagreement”

If using percent agreement, the following option may also be specified:

foldChangeFilterPercentAgreementThreshold
A fraction of experiments which must agree in fold change direction for a
variable to pass the filter. While full concordance would mean 1.0, when
relaxed thresholding is needed we recommend using values of 0.75 or higher.

Example: “foldChangeFilterPercentAgreement”: 0.8

iii. Determine significant correlations for a treatment within and between each type
of variable (e.g., gene-gene, gene-microbe, microbe-microbe, etc.) separately.

To calculate correlations between the previously identified differentially
expressed/abundant variables between classes, we recommend that the user initially
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uses the default thresholds supplied in the code: p-value < 0.2, Fisher’s combined
(meta-analysis) p-value < 0.05, and Benjamini-Hochberg FDR < 0.1. At this stage of
analysis, it is not recommended to relax thresholds more than the following:
individual p-value, 0.5; Fisher’s combined p value, 0.05; and FDR, 0.15.

The groups of samples from which a network is reconstructed can be specified in two
ways. The simplest way is to specify the name of a single class (e.g., disease) for
networkTreatment. In this case, correlations will be calculated within this group for
each experiment, then meta-analysis will be performed between the experiments. If
one wants to include samples from different classes in the meta-analysis, the
parameter metatreatments can be specified instead. See below for more details on
the use of metatreatments, and see section “Experimental Design”, as well as
Figure 8, for details on when to apply them and in what manner.

If you are reconstructing the network from a single class (either in one experiment or
across multiple experiments):

config parameter : networkTreatment

The name of a class to produce a network from. Either this or
metatreatments must be specified.

Example: “networkTreatment”: “disease”

Otherwise, if you are reconstructing the network from multiple different groups (e.g.,
two different disease groups from one experiment and another disease groups from a
second experiment):

config parameter: metatreatments

A description of “metatreatments” to use for creating the network. Either this
or networkTreatment must be specified.

Each metatreatment consists of (experiment, class) pairs. Correlations are
calculated for each metatreatment using all of the data specified for it. Meta-
analysis will then be performed across all of the specified metatreatments.

Example:

“metatreatments”: {
“metatreatmentl”: [[“experiment_1, “disease_17]],
“metatreatment2”: [[“experiment_2”, “disease_17]],
“metatreatment3”: [[“experiment_2”, “disease_27]]
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The above example corresponds to meta-analysis option #3 in Figure 8. Note
that using “correlationFilterPercentAgreementThreshold” along with this
option can have unintended consequences as discussed previously (e.g., two
non-significant positive correlations from disease 1 could win over one
significant negative correlation from disease 2, marking the edge to be
positive instead of being discarded as would have happened with the default
threshold of “correlationFilterMethod”: “allsamesign™).

Optional config parameter: correlationMethod
The method to use for calculating correlations.

Choices: spearman, pearson
Default: spearman

Optional config parameter: correlationPValueThresholds
A mapping between each kind of statistic and its threshold. Can contain:

individual: Maximum raw p-value across all experiments

Default: 0.2

combined: p-value combined across experiments (e.g., via Fisher’s method)
Default: 0.05

corrected: p-value after correction (FDR via Benjamini-Hochberg)
Default: 0.1

Example: “correlationPValueThresholds”: {“individual”:
0.1, “combined”: 0.02, “corrected” 0.15}

Optionally, for each kind of statistic, thresholds can be specified per
combination of types of variables.

Example:

“correlationPValueThresholds”: {“corrected”: {
“(gene, gene)”: 0.1,
“(gene, phenotype)”: 0.15,
“(phenotype, phenotype)”: 0.2

3}

iv. Identify robust and reproducible patterns for correlation direction across
several cohorts (or experimental replicates).

Optional config parameter: correlationFilterMethod

Choose how strictly the correlations of variables must be consistent across
experiments.


https://doi.org/10.1101/2023.02.22.529449
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529449; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Choices: allsamesign, percentagreement
Default: allsamesign

Example: “correlationFilterMethod”: “percentagreement”
If using percentagreement, the following option may also be specified:

correlationFilterPercentAgreementThreshold
A fraction (greater than 0.75 and less than 1) of experiments which must
agree in sign of correlation coefficient for a variable to pass the filter.

Example: “correlationFilterPercentAgreementThreshold”: 0.8

v. Eliminate edges that are not related to causes underlying the transition between
classes (e.g., between disease and control)

This step is performed automatically. The edges removed are defined as “unexpected
correlations”’. The edges labeled as unexpected can be found in the
correlations_bw_signif_measurables.csv file.

8. Write computed data to tables
Write the output to tables in CSV format using the script reconstruction/to_csv.py.

Usage
python ./reconstruction/to_csv.py --data-file <zip file> --
config-file <config file> --out-dir <output directory>
Example command

python ./reconstruction/to_csv.py --data-file

./project_folder/output/network_output.zip --config-file

./project_folder/input/config.json --out-dir

./project_folder/output/network_output

Inputs

--data-file: .zip file created with run.py

--config-file: Path to the config file used for intake data.py

- -out-dir: Path to the directory to output results to

Outputs

e all comparisons.csv: contains all comparisons performed in the analysis, is not
filtered for any significant variables.

e correlations_bw signif measurables.csv: all correlations between variables
that passed the comparison thresholds. Correlations in this file are not filtered for
statistical or causality criteria, but it contains all p-values, whether each edge is
unexpected, and whether each edge makes it into the final network after applying
statistical and causality criteria.

e network_output_comp.csv: whole network with nodes/edges under the user-
defined statistical thresholds, and edges consistent in direction retained (unless
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otherwise specified in the configuration file). Unexpected edges are also removed
from this file.

e node_comparisons.csv: comparisons that were performed and found to be
statistically significant (less than the user-defined statistical thresholds).

e config values.txt: All the user-specified options for making the network.

Network quality assessment

Once the network has been reconstructed, the next step is to determine whether the network is
suitable for downstream analysis. If the network is not suitable for downstream analysis, the user
will need to modify their statistical thresholds to reconstruct a better-suited network.

While as yet there is no completely automated method of network optimization, we recommend
the user evaluates three network properties that are calculated with TKNA: 1) the proportion of
unexpected correlations (PUC); 2) density (the number of edges in the network over the number
of edges in a full graph of the same size); and 3) the deviation of the ratio of positive/negative
edges from the expected value. In Table 2 we provide the ranges of each of these criteria from
previously published networks that can guide the user’s decision process. Note that microbiome
data usually presents higher PUC values than diverse host omics data (e.g., transcriptomes,
metabolomes, etc.). The user can also compare their values with those of published networks
using Figure 5.
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Figure 5. a) Density of within-omic and between-omic edges in published networks. Each point
represents a previously published network. Density is calculated as the number of observed
edges over the number of possible edges between all nodes of that type. The blue bar indicates
the average of each —omic type. b) The deviation from the expected positive/negative edge ratio
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of published networks. Each point represents a previously published network. The blue bar indi-
cates the average.

We encourage new users to use the default statistical thresholds for reconstructing their initial
network, then adjust the thresholds accordingly after assessing the network quality. Suggestions
for alterations in thresholds based on the resulting network assessment properties can be found in

Table 2.

Network property

Potential range

If value is too
high...

If value is too
low...

Departure of ratio

positive:negative edges

See figure 4a

Try alternative
normalization

Try alternative
normalization

Density

Dependent on -
omic type, see
figure 4b

Reduce statistical
thresholds (p-
values or FDR) for
edges

Relax statistical
thresholds (p-
values or FDR) for
edges

Table 2. Suggestions for alterations in thresholds based on the resulting network assessment
properties.

9. Assessing Network Quality

Usage
python ./analysis/assess_network.py --file <network file>
Example command
python ./ analysis/assess _network.py --file ./project_folder/out-
put/network_output/correlations_bw_signif_measurables.csv
Inputs
--file: correlations _bw _signif measurables.csv file created with to_csv.py
Outputs
e network _quality assessment.txt: Contains the calculations (also sent to stand-
ard output) on the quality of the reconstructed network. Outputs to the same directory
the input file is stored in.
e network.pickle: A pickled file containing the network. Used as input to future
steps. Outputs to the same directory the input file is stored in.

Network analysis

Once the user has reconstructed a network from the input data, they can move on to the network
analysis stage. In this stage, the user can optionally find clusters (also called subnetworks or
modules) of nodes and use alternative tools to determine if these clusters are enriched for
particular biological processes. Users can then further interrogate the network to find key
regulatory nodes in the network.

10 (OPTIONAL)
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a. Identifying clusters of nodes

One commonly performed technique in network analysis is to identify regions in the network
where nodes are clustered together. TKNA allows for the use of two popular algorithms,
Infomap®® and the Louvain®® method, to detect clusters in the network. Examples of node clusters
can be found in Figure 6b.

Infomap
Usage
python ./analysis/infomap_assignment.py --pickle <file.pickle>
Example command
python ./analysis/infomap_assignment.py --pickle ./pro-
ject folder/output/network output/network.pickle
Inputs
--pickle: network.pickle file output by assess_network.py
Output
e network_infomap_partition.csv: CSV file containing the name of the node in
column 1 and the subnetwork number it was assigned in column 2.

Louvain
Usage
python ./analysis/ Louvain_partition.py --pickle <file.pickle>
Example command
Python ./analysis/Louvain_partition.py --pickle ./pro-
ject_folder/output/network_output/network.pickle
Inputs
--pickle: network.pickle file output by assess_network.py
Output
e network_infomap_partition.csv: CSV file containing the name of the node in
column 1 and the subnetwork it was assigned in column 2.

b. Perform functional enrichment analysis for groups of nodes

Following clustering, a user can then perform functional enrichment of either 1) the clusters
identified via Infomap/Louvain (or externally via MCODE, CLUSTERVIZ, etc.) or 2) any other
predefined groups (e.g., microbes, genes), allowing for a biological interpretation of the nodes in
that cluster. Single cell RNA-Seq data can also be used to infer cell type information for the
genes in the network. Here, cell type is inferred for a gene based on its presence either as a cell
cluster’s conserved gene marker or cell cluster specific differentially expressed gene.
Additionally, highest average expression of a gene in a specific cell cluster among all clusters
can also be used as a genes cell type identity®. These enrichment methods are not part of TKNA
codes and will need to be performed using external software. Examples of common functional
enrichment methods for different omics data are listed in Table 3.
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ments;

Over representation
analysis;

Biochemical Path-
ways;

Signaling pathways;
Regulatory pathways;
Protein -protein inter-
actions

Omics type Enrichment method | Software or Package
Transcriptome Gene ontologies or Cytoscape;
(RNA-Seq) Functional enrich- Metascape; Innat-

eDB;
GSEA;
KEGG;
Reactome;
STRING

Microbiome (am-
plicon or shotgun)

Comprehensive func-
tional content

MicrobiomeAnalyst
PICRUSt

Metabolome Pathways MetaboAnalyst

Proteome Gene ontologies or KEGG;
Functional enrich- Reactome;
ments; STRING

Pathways

Table 3. Examples of common functional enrichment methods for different omics data.
11. Finding regulatory nodes in the network

This step calculates topological properties for the networks, subnetworks, and nodes*. Network
properties that are calculated by TKNA include the number of nodes in the network, number of
edges, mean degree, average clustering coefficient, the size (number of nodes) of the giant
component compared to the size of the whole graph, the number of connected components, mean
closeness centrality, degree assortativity®, maximum modularity'®, network fragmentation®, and
Freeman centralization®”. Subnetwork properties include the mean degree of the
subnetworks/clusters (either pre-defined by the user or identified in the optional step 10) in the
network. Finally, calculated node properties include degree, clustering coefficient, closeness
centrality, eigenvalue centrality, betweenness centrality, number of second neighbors, and
bipartite betweenness centrality (BiBC)*’. Two of those properties, degree and BiBC, are used to
predict nodes with potential regulatory roles in the network. Degree is the number of other nodes
a single node connects to. Accordingly, high degree nodes called hubs control the biological
pathway/cluster to which they belong.

BiBC is a measure of the bottleneck-ness of a node (i.e., which node serves as the best ‘bridge’)
between two pre-defined groups?’; it is essentially betweenness centrality restricted to particular
subsets of the network (i.e., two subgraphs/clusters of biological interest). A node with a high
BiBC likely mediates the communication between the selected pathways/clusters. To compute
BiBC, the user will need to provide a list of nodes, as well as which cluster they belong to in the
network. If the user wishes to perform the BiBC calculation between types of nodes (for
example, genes and microbes), they can supply the original sample mapping file. Alternatively,
if the user wishes to use the clusters identified with Infomap or Louvain (Step 10, optional), they
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can supply the output of Step 10 and select two group numbers from the second column as their
clusters to use for the BiBC calculation. Examples of nodes with a high degree and a high BiBC

can be seen in Figure 6a.

High degree,
High BiBC ™

*-... Low degree,

Micrabes Genes Low BIBC

H O

Figure 6. a) Examples of nodes in a network that are not regulatory (low degree and low BiBC)
and nodes that are regulatory (high degree and high BiBC). Squares are microbes and circles are
genes. b) Example of clustering in the same network using the Louvain or Infomap algorithms.

Usage
python ./analysis/calc_network_properties.py --pickle
<file.pickle> --bibc --bibc-groups <choice> --bibc-calc-type
<choice> --node-map <file.csv> --node-groups <group 1> <group 2>
Example command
python ./analysis/calc-network-properties.py --pickle ./pro-
ject_folder/output/network_output/network.pickle --bibc --bibc-
groups node_types --bibc-calc-type rbc --node-map ./pro-
ject_folder/input/map_file.csv --node-groups micro pheno
Inputs and arguments
--pickle: network.pickle file created with assess_network.py
- -bibc: Flag for whether to compute Bipartite Betweenness Centrality (BiBC). This is
highly recommended and also required for future steps
--bibc-groups: Choice for what to compute BiBC on, either distinct groups
(node_types) or on the two most modular regions of the network (found using the Lou-

vain method)
--bibc-calc-type: Choice for whether to normalize based on the number of nodes in

each group (rbc) or not (bibc)
- -node-map: CSV file containing the name of nodes in the first column and the type of
the node (gene, phenotype, microbe, etc.) in the second column
--node-groups: Required if node_types is specified for --bibc-groups. It’s the
two groups of nodes to calculate BiBC/RBC on. The types must be present in the - -
node-map file

Outputs
e network _properties.txt: Tab-delimited .txt file of calculated network properties

e subnetwork_properties.txt: Tab-delimited .txt file of calculated subnetwork

properties
e node_properties.txt: Tab-delimited .txt file of calculated node properties
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Shortest path calculations

The user can optionally then calculate the distance path between two pathways
(subnetworks/clusters) by calculating the shortest path between each member of those clusters
and taking the average of those values. Pathways closer to one another potentially interact more
than those that are further away.

Usage
python ./analysis/find all shortest paths bw_subnets.py --network
<file.pickle> --node-map <map.csv> --node-groups <groupl>
<group2>
Example command
python ./analysis/find_all_shortest_paths_bw_subnets.py --network
./project_folder/output/network_output/network.pickle --node-map
./project_folder/input/map_file.csv --node-groups gene pheno
Inputs
- -network: network.pickle file output by assess_network.py
- -node-map: Mapping file (CSV) of nodes and their subnetworks
- -node-groups: The two groups in the mapping file you want to find the shortest paths
between
Output
e shortest_path_bw_<groupl> and_<group2> results.csv: CSV file contain-
ing the name of each node in each pair in columns 1 and 2, as well as the shortest path
length between that pair in column 3 and the number of shortest paths for the pair in
column 4

By combining the information about shortest path and BiBC, users can infer interactions between
pathways (subnetworks/clusters) as well as causal relations between them, as has been done in
our recent study*?.

Estimating probability to find top nodes (degree, BiBC) randomly

The next step in TKNA is to determine the likelihood of finding the top nodes (degree, BiBC)
randomly in the reconstructed network by comparing to size-matched random networks with the
same number of nodes and edges'®. Later on in the pipeline, the user can visualize how top nodes
of their reconstructed network compares to the top nodes of these random networks through the
creation of a 2D density plot (Figure 5d).

12. Creating random networks

This step creates all the random networks and saves them to be analyzed in the next step. Note
that due to the complexity of the BiBC calculation, if your network is very large (thousands of
nodes and tens of thousands of edges) this step (as well as the next step) can take up to several
days. Therefore, we recommend not running this step interactively and instead submitting to a
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server. If that is not possible, the creation and analysis of random networks can be skipped as it is
not required for the visualization of the BiBC and degree calculations. However, Step 17
“Create 2D density plot” cannot be run if the random network steps are skipped.

Usage
python ./random_networks/create_random_networks.py --template-
network <file.pickle> --networks-file <file.zip>

Example command
python ./random_networks/create_random_networks.py --template-
network ./project_folder/output/network_output/network.pickle --
networks-file ./project_folder/output/network output/all ran-
dom_nws.zip

Inputs
--template-network: The pickled network file output by assess_network.py
--networks-file: .zip folder to output all random networks to
- -num-networks: optional; number of random networks to create

Outputs
e A single .zip file containing all created networks

13. Analyze random networks

Each randomly generated network is then analyzed to calculate the degree and BiBC of each
node in the network.

Usage
python ./random_networks/compute_network stats.py --networks-file
<file.zip> --bibc-groups <choice> --bibc-calc-type <choice> --
stats-file <file.zip> --node-map <file.csv> --node-groups
<groupl> <group2>

Example command
python ./random_networks/compute_network stats.py --networks-file
./project_folder/output/network_output/all random_nws.zip --bibc-
groups node_types --bibc-calc-type rbc --stats-file ./pro-
ject_folder/output/network output/random_network analysis.zip --
node-map ./project_folder/input/map_file.csv --node-groups gene
pheno

Inputs
- -networks-file: .zip file created with create_random_networks.py that con-
tains all random networks previously created
--bibc-groups: Group nodes for BiBC based on type or modularity
--bibc-calc-type: Compute raw BiBC or normalize (rbc)
--stats-file: .zip file to output the network stats to
- -node-map: CSV file mapping nodes to their types. Required if node_types is speci-
fied for --bibc-groups.
--node-groups: Two types of nodes to use for BiBC grouping. Required if
node_types is specified for --bibc-groups
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Outputs
e A single .zip file with degree/BiBC results of all random networks

14. Condense random network results into a single output file

The results of the analysis are then summarized in a single output file containing the node with
the highest degree value and its associated BiBC (or vice versa) in the each of the networks.

Usage
python ./random_networks/synthesize network stats.py --network-
stats-file <file.zip’> --synthesized-stats-file <file.csv>
Example command
python ./random_networks/synthesize network stats.py --network-
stats-file ./project_folder/output/network_output/random_net-
work_analysis.zip --synthesized-stats-file ./project_folder/out-
put/network_output/random_networks_synthesized.csv
Inputs
--network-stats-file: .zip file created with compute_network_stats.py
--synthesized-stats-file: Name of the CSV file that will be created
Outputs
e A single .csv file that contains the top node, sorted first by BiBC and then by
Node_degrees (unless otherwise specified with - -flip-priority), for each of the
random networks

Plot results
15. Create degree distribution and dot plots

In this step, the user specifies which two node properties they would like to visualize for the
nodes of the network, as well as how many top nodes to focus on and label. Additionally, the - -
top-num-per-type argument is used to specify how many top nodes per data type to zoom in
on and label in the resulting plots. Examples of these visualizations can be seen in Figure 7.

Usage
python ./visualization/dot_plots.py --pickle <file.pickle> --
node-props <file.txt> --network-file <file.csv> --propx BiBC --
propy Node_degrees --top-num <integer> --top-num-per-type <inte-
ger>

Example command
python ./visualization/dot_plots.py --pickle ./pro-
ject_folder/output/network output/network.pickle --node-props
./project_folder/output/network output/node-properties.txt --net-
work-file ./project_folder/output/network output/network out-
put_comp.csv --propx BiBC --propy Node degrees --top-num 5 --top-
num-per-type 3

Inputs
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--pickle: pickled file created with assess_network. py

--node-props: node_properties.txt file created with calc_network_proper-

ties.py

--network-file: network_output comp.csv file created with to_csv.py

- -propx: Node property to plot on X-axis

- -propy: Node property to plot on Y-axis.

- -top-num: Number of nodes you want to zoom in to on the property v property plot

--top-num-per-type: The number of nodes to plot for each data type when zoomed

in on the plot

Default outputs

e degree_distribution_dotplot.png: Distribution of the number of nodes which
each degree in the network

e <propx>_v_<propy>_distribution.png: A dot plot of user-specified node prop-
erties

e <propx>_v_<propy>_distribution_<node_type> nodes_only.png: Same as
previous plot, but with just the nodes from each data type. There will be one plot pro-
duced for each data type

e <propx>_v_<propy>_distribution_top_<top-num>_nodes.png: Same as the
second plot, but zoomed in on the top nodes

e <propx>_v_<propy>_distribution_top_<top-num-per-
type>_nodes_<data_type>_ only.png: same as third plot, but zoomed in on the
top nodes per data type.

16. Create abundance plots

This step creates abundance/expression plots of the top nodes in the network, which are the same
nodes that were labeled in the previous step. These figures can be grouped according to class
(called ‘Treatment’ in the program) or Experiment.

Usage
python ./visualization/plot_abundance.py --pickle <file.pickle> -
-abund-data <list of files> --metadata <list of files> --color-
group <choice> --x-axis <choice>

Example command
python ./visualization/plot_abundance.py --pickle ./pro-
ject_folder/output/network output/inputs_for_down-
stream_plots.pickle --abund-data ./project_folder/input/Exptl.csv
./project_folder/input/Expt2.csv --metadata ./project_folder/in-
put/Exptl meta.csv ./project_folder/input/Expt2_meta.csv --color-
group Treatment --x-axis Experiment

Inputs
--pickle: inputs_for_downstream_plots.pickle file output by
dot_plots.py
--abund_data: List of data files containing expressions/abundances
- -metadata: List of metadata files containing Experiment/Treatment columns
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--color-group: Variable to color the plot by
- -x-axis: Variable you wish to group the data by on the x-axis
Outputs
e One boxplot for each of the top nodes (found in dot_plots.py) as well as additional plots
if specified with the optional argument - -nodes-to-plot

17. Create 2D density plot

The last step of TKNA is to create a 2D density plot using the random network results from step
14. This step will take the nodes that were labeled in step 15 and plot them on top of the density
plot. It also labels the nodes with the names and probability of a randomly generated network
having a node with a higher degree and BiBC than each plotted node.

Usage
python ./visualization/plot_density.py --rand-net <file.csv> --
pickle <file.pickle>
Example command
python ./visualization/plot_density.py --rand-net ./pro-
ject_folder/output/network_output/random_networks_synthesized.csv
--pickle ./project_folder/output/network output/inputs_for_down-
stream_plots.pickle
Inputs
--rand-net: file output by synthesize network_ stats.py
--pickle: inputs_for_downstream_plots.pickle file output by
dot_plots.py
Default outputs
e density plot with_top nodes from_dotplots.png: contour plot with the top
nodes (found in dot_plots. py) from the real reconstructed network overlaid on top
e density plot with_top <data_type> nodes_only.png: Same as previous,
but contains just one data type per output file
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Figure 7. a) Degree distribution plot b) Left: Example node property visualization, where each
point represents a node in the reconstructed network. Right: Same graph, zoomed in on the top 5
microbe BiBC nodes c¢) Example abundance/expression plot of the top BiBC node found in b.
Legend is the two classes that were in the dataset. In this case, a class of samples named ‘high’
was compared to a class named ‘low’ d) 2D density plot of the 10,000 random networks with the
top nodes from b overlaid.

Applications of the method

Although this methodology was originally designed to uncover the interactions between different
taxonomic kingdoms, this approach is also used for the analysis of more general types of multi-
omics data. For example, TKNA can be used to analyze the interaction between genetic and
transcriptional data, metabolites, proteins, and phenotypes, as well as various omics data from
different organs from the same host.

Comparison with other methods

The TKNA approach relies on performing meta-analysis across several experiments to identify
robust patterns of fold-change and correlations across multiple cohorts. By default, it uses
Fisher’s method to combine p-values from several independent tests. Other general R packages
(e.g., meta®, netmeta®®, mixmeta“®) offer several methods for meta-analysis that can be used
along with the principles of TKNA. Additional R packages (e.g., MixOmics*, MOFA24243,
iClusterPlus*#) use sophisticated statistical methods to combine multiple -omics data measured
from the same patients. However, their application to several cohorts simultaneously or to unique
-omics data (where the data composition or distributional assumptions are not met) can be
challenging. TKNA provides a framework to achieve simultaneous integration of multiple -omics
types and cohorts.

While many tools claim a gene or microbe to be “important” based on association analysis,
TKNA specifically identifies causal relationships rather than only associations.

One of the most popular approaches to determine causality thus far is an application of the
Mendelian Randomization*>#® (MR) method for the inference of microbes causally contributing
to a given host trait. Although this method has a robust theoretical framework, it has two main
drawbacks. First, because it is based on differences in causal signals between alleles present in
the normal human population, it requires huge sample sizes (e.g., thousands, akin to GWAS) that
are often not available, particularly when working with mice. Second, allelic differences in
humans explain a very small proportion of microbiome variability, which then limits the
approach’s utility to a small handful of microbes clearly regulated by common polymorphisms.

More recently, a variety of regression approaches to causal inference in microbiome experiments
have been developed, most of which are based on (linear) structural equation models, which have
been around in one form or another for more than a century. The Sparse Microbial Causal
Mediation Model (SparseMCMM)*’ is a recent example. While promising, these group of
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methods have not been tested in new studies that would experimentally validate model
inferences. These approaches deal with the large number of possible covariates (host genes or
genetic markers) via either regularization or PCA-type transformation to a reduced set of
covariates, potentially making interpretation of gene mediators difficult. Finally, these methods
ignore any structure to the covariates (gene-gene interactions) or the microbes (taxa-taxa
interactions).

Experimental design

TKNA requires collection of data from at least two classes (e.g., disease, control). We
recommend using at least five biological replicates per sample group when several independent
datasets are available. However, ten replicates would be optimal. In regard to statistical
consideration, we strongly recommended using two or more independent
cohorts/experiments/datasets, which allow for the implementation of meta-analysis ensuring the
robustness of inferences from TKkNA. We recommend using a standard meta-analysis approach
that combines data of the same type from different experiments to identify differentially
abundant features (nodes in the network) and correlations from the same class (e.g., “disease”)
for establishing edges in the network. However, if the number of available datasets is limited,
TKNA allows one to determine edges common across different classes (e.g., “disease”,
“control”), either from the same or separate experiments, (See Step 7 in the procedure) (Figure
8). This approach increases the power of network reconstruction. However, it is efficient under
the strong assumption that differences between classes (e.g., “disease” and “control”) are
predominantly limited to the levels of measured variables (e.g., genes, metabolites, etc.) while
there are very few edges that are reliably different between networks reconstructed from
different classes.

Based on our experience, this assumption holds true for host data such as gene expression and
metabolomics, but usually is unreasonable for microbiome data. However, even for host gene-
gene interactions this approach still comes with the cost of losing a few edges specific for
individual classes (e.g., relationships that are only present in the disease class). Accordingly,
some information related to the biological mechanism underlying a transition from one class to
another (e.g., from healthy to disease) might be lost*8-0,
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Figure 8. Example configurations of experimental classes for meta-analysis of edges. a) An
example study, in which the user has two experiments. In experiment 1, there are two classes:
control and disease. In experiment 2 there are three classes: the same control class as experiment
1, the same disease class as experiment 1, and a second disease class, not present in experiment
1. b) Different options for meta-analysis. Option 1: The ideal (recommended) option for meta-
analysis, in which the same disease groups from both experiments are used. Option 2: Same as
option 1 except uses the control groups. Option 3: Use all three disease groups to find the
underlying edges that are present in the disease, regardless of potential differences between D1
and D2. Option 4: Use all five groups. This option presents the highest statistical power and
generalizability, finding the edges present across all conditions (classes).

Inferred pathways and top nodes are biologically informative under any circumstances.
However, for causal inference, if additional information allows for the implementation of an
“instrumental variable”®?, the directionality of interactions between kingdoms or pathways can
be also established. For example, when studying the effects of antibiotics on a host, it is a
reasonable assumption that these effects are mostly mediated by microbes®*3; thus microbes in
the network can serve as instrumental variables in this case.

Expertise needed to implement the protocol

The target audience for this protocol is researchers working in the host and/or microbiome field
with limited computational and statistical expertise. Our method can be used in biological and
biomedical research across multiple disciplines ranging from the establishment of new cellular
and molecular targets of treatment to fundamental biological questions. This protocol does not
require programming expertise; however, users should be comfortable running programs from
the command line in the Unix environment and should learn a bit about the JSON file format in
order to be able to customize and modify the program’s options.

Limitations
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A basic understanding of statistics is expected from the user to understand the suitability of the
software to their experimental setup and any inherent limitations of the approach. For example,
Fisher’s method is the default method implemented by this software for combining p-values
from independent tests with the same null hypothesis. However, if the same control group is used
in calculating the effects of different treatments (or over time), the effect sizes are non-
independent. Since the tool cannot automatically detect this dependence and will proceed with
the analysis, the user will need to realize that alternative methods to conduct a meta-analysis with
non-independent effect sizes® will be more suitable in this case.

The only aspect of the TKNA approach that can be considered as a critical limitation is related to
the fact that it requires an appropriate study design for better inference of causal structure of the
investigated biological process (this is not unique to TKNA but would be a limitation of any
causal inference approach). For example, to define the directionality of a process, as with any
other causal inference application (including those mentioned above), it requires study designs
that would confer with the assumptions needed for mediation analysis®® or for instrumental
variable analysis®. Since most standard biomedical experiments are designed as “double blind
randomized studies” or contain an instrumental variable, TKNA is very powerful for causal
inference from multi-omic data.

Materials

Required hardware

Memory usage and storage space are primarily correlated with the number of correlations that
pass the filters (i.e., the number of edges in the reconstructed network). They are therefore also
indirectly correlated with the number of variables that pass the filters for differential expression.
As a baseline, 8GB of memory and 10GB of free storage is recommended, but more may be
required by larger networks (Figure 9).

Benchmarking

Considering the exponential increase in the number of correlations required as the number of
differentially abundant variables linearly increases, we ran the network reconstruction section of
the TKNA pipeline using various numbers of differentially abundant variables (between 250 to
2000) (Figure 9). The reconstruction was performed using 8 cores and 16 GB of RAM. The
approximately 2,000,000 correlations required for the largest of these datasets took less than 7
minutes to run.
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Figure 9. Amount of time (primary axis) and storage space (secondary axis) required to
reconstruct a network as a function of the number of differentially abundant variables.

Required software and modules

e Miniconda with python 3.8.10 - https://docs.conda.io/en/latest/miniconda.html

e git (as well as a GitHub account) - https://github.com/git-quides/install-git

e Cytoscape - https://cytoscape.org/download.html

e All required modules are in the requirements.txt file in the repository. See step 3 in
“Software setup” for how to create a virtual environment and install all the necessary
modules to run TKNA.

e Text editing software such as Notepad++, Atom, BBEdit, Gedit, and/or a source-code
editor (recommended) such as Visual Studio Code (also known as VS Code) for creating
the input files. VS Code aids in the process of writing JSON files.

Troubleshooting
While this pipeline was tested extensively to ensure compatibility across different environments,
it’s not possible to account for all the possible errors one can run into. We have compiled a list
below of the most common errors one may run into when running the TKNA pipeline.
e Error: No module named
o Solution: make sure all the modules and the correct versions are installed from the
requirements.txt file.
e Error: Figure legend does not have colors labeled, but instead have the data points labeled
in the legend
o Solution: make sure all the modules and the correct versions are installed from the
requirements.txt file. Specifically, check the matplotlib and seaborn versions.

Anticipated results

Through using TKNA, a user should expect to be able to reconstruct and interrogate a network
from multi-omic (or single-omic) data. Users can then identify key players (microbes, genes,
etc.) that are responsible for the communication between subnetworks. These subnetworks can
either be pre-identified by the user or found using community detection algorithms via the
Louvain or Infomap algorithms. Functional enrichment of these subnetworks can be performed
using external software (not part of TkKNA). The nodes that have a high degree and/or high BiBC
are key regulatory nodes that contribute to the interaction between these enriched pathways.


https://docs.conda.io/en/latest/miniconda.html
https://github.com/git-guides/install-git
https://doi.org/10.1101/2023.02.22.529449
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529449; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Additionally, these findings can be visualized through the use of the TkNA software, including
plots for the top nodes based on BiBC and degree, as well as abundance plots of these top nodes
and a 2D density plot comparing these top nodes to the top nodes of randomly generated
networks. Examples of this data (including all necessary input files and expected output files) for
easy-to-understand toy network can be found on the GitHub repo at
https://github.com/CAnBioNet/TkKNA/tree/main/example_datasets_and_commands/toy_network.
We have also uploaded more complex data that includes both microbiome and phenotypic data to
https://github.com/CAnBioNet/ TKNA/tree/main/example_datasets and_commands/microbiome
and_phenotype. All input and expected output files are included for that dataset as well.

Code availability
The TkNA pipeline is publicly available at https://github.com/CAnBioNet/ TKNA.

Contributions

NS, AM conceived the original version of transkingdom network analysis.
NKN, MM, RRR, AKD, NS, GT, KB, AM designed current TkKNA framework.
NKN, MM implemented the coding part of TKNA workflow.

RRR, JP prepared parts of TKNA workflow which requires additional software.
AMB, JWP, SSP performed the validation.

NKN, RRR, AMB prepared the simulated data.

RRR prepared the experimental data.

NKN, AMB prepared the figures.

NKN, MM, RRR, JP wrote the paper.

AMB, JWP, SSP, JP, AKD, NS, GT, KB, AM edited the paper.

NS, GT, KB, AM supervised various aspects of this study.

Acknowledgements

The funding that supports this work is Al1157369 (AM), DK103761 (NS), DK107603 (AM) and
BC011153 (GT). SP and MM were supported by the summer fellowships from the College of
Pharmacy at Oregon State University.

References:

1. Morgun, A., et al. Uncovering effects of antibiotics on the host and microbiota using
transkingdom gene networks. Gut, gutjnl-2014-308820 (2015).

2. Rodrigues, R.R., et al. Transkingdom interactions between Lactobacilli and hepatic
mitochondria attenuate western diet-induced diabetes. Nature communications 12, 1-15
(2021).

3. Davar, D., et al. Fecal microbiota transplant overcomes resistance to anti—PD-1 therapy

in melanoma patients. Science 371, 595-602 (2021).

4. Lam, K.C., et al. Microbiota triggers STING-type | IFN-dependent monocyte
reprogramming of the tumor microenvironment. Cell 184, 5338-5356. €5321 (2021).

5. McCulloch, J.A., et al. Intestinal microbiota signatures of clinical response and immune-
related adverse events in melanoma patients treated with anti-PD-1. Nature Medicine 28,
545-556 (2022).


https://github.com/CAnBioNet/TkNA/tree/main/example_datasets_and_commands/toy_network
https://github.com/CAnBioNet/TkNA/tree/main/example_datasets_and_commands/microbiome_and_phenotype
https://github.com/CAnBioNet/TkNA/tree/main/example_datasets_and_commands/microbiome_and_phenotype
https://doi.org/10.1101/2023.02.22.529449
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529449; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

available under aCC-BY-NC 4.0 International license.

Spencer, C.N., et al. Dietary fiber and probiotics influence the gut microbiome and
melanoma immunotherapy response. Science 374, 1632-1640 (2021).

Yambartsev, A., et al. Unexpected links reflect the noise in networks. Biology direct 11,
1-12 (2016).

Rodrigues, R.R., et al. Antibiotic-induced alterations in gut microbiota are associated
with changes in glucose metabolism in healthy mice. Frontiers in microbiology 8, 2306
(2017).

Shulzhenko, N., et al. CVID enteropathy is characterized by exceeding low mucosal IgA
levels and interferon-driven inflammation possibly related to the presence of a
pathobiont. Clinical Immunology 197, 139-153 (2018).

Kahalehili, H.M., et al. Dietary indole-3-carbinol activates AhR in the gut, alters Th17-
microbe interactions, and exacerbates insulitis in NOD mice. Frontiers in Immunology
11, 606441 (2021).

Zhang, Y., et al. Improvements in metabolic syndrome by xanthohumol derivatives are
linked to altered gut microbiota and bile acid metabolism. Molecular nutrition & food
research 64, 1900789 (2020).

Li, Z., et al. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked
by Mmp12+ macrophages. Journal of Experimental Medicine 219, e20220017 (2022).
Morgun, A., et al. Uncovering effects of antibiotics on the host and microbiota using
transkingdom gene networks. Gut 64, 1732-1743 (2015).

Shannon, P., et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome research 13, 2498-2504 (2003).

Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment
2008, P10008 (2008).

Rosvall, M., Axelsson, D. & Bergstrom, C.T. The map equation. The European Physical
Journal Special Topics 178, 13-23 (2009).

Dong, X., et al. Reverse enGENEering of regulatory networks from big data: a roadmap
for biologists. Bioinformatics and biology insights 9, BBI. S12467 (2015).

Chunikhina, E., et al. The C-SHIFT algorithm for normalizing covariances. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (2022).

Valikangas, T., Suomi, T. & Elo, L.L. A systematic evaluation of normalization methods
in quantitative label-free proteomics. Briefings in bioinformatics 19, 1-11 (2018).
Gautier, L., Cope, L., Bolstad, B.M. & Irizarry, R.A. affy—analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics 20, 307-315 (2004).

Love, M.1., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome biology 15, 1-21 (2014).

Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. bioinformatics 26, 139-
140 (2010).

Bolyen, E., et al. Reproducible, interactive, scalable and extensible microbiome data
science using QIIME 2. Nature biotechnology 37, 852-857 (2019).

Paulson, J.N., Pop, M. & Bravo, H.C. metagenomeSeq: Statistical analysis for sparse
high-throughput sequencing. Bioconductor package 1, 191 (2013).


https://doi.org/10.1101/2023.02.22.529449
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529449; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

25.  Saccenti, E. Correlation patterns in experimental data are affected by normalization
procedures: consequences for data analysis and network inference. Journal of Proteome
Research 16, 619-634 (2017).

26.  WauIff, J.E. & Mitchell, M.W. A comparison of various normalization methods for
LC/MS metabolomics data. Advances in Bioscience and Biotechnology 9, 339 (2018).

27. Karpievitch, Y.V., et al. Normalization of peak intensities in bottom-up MS-based
proteomics using singular value decomposition. Bioinformatics 25, 2573-2580 (2009).

28. Ernest, B., Gooding, J.R., Campagna, S.R., Saxton, A.M. & Voy, B.H. MetabR: an R
script for linear model analysis of quantitative metabolomic data. BMC research notes 5,
1-10 (2012).

29.  Karpievitch, Y., Stuart, T. & Mohamed, S. ProteoMM: multi-dataset model-based
differential expression proteomics analysis platform. R package version 1, 34 (2019).

30. Rost, H.L., et al. OpenMS: a flexible open-source software platform for mass
spectrometry data analysis. Nature methods 13, 741-748 (2016).

31. Rost, H.L., Schmitt, U., Aebersold, R. & Malmstrém, L. pyOpenMS: a Python-based
interface to the OpenMS mass-spectrometry algorithm library. Proteomics 14, 74-77
(2014).

32. Graw, S., et al. proteiNorm—A user-friendly tool for normalization and analysis of TMT
and label-free protein quantification. ACS omega 5, 25625-25633 (2020).

33. Padiadpu, J., et al. Suppression of Betacellulin expression is a key mechanism for omega-
3 fatty acid mediated attenuation of nonalcoholic steatohepatitis. bioRxiv, 2022.2010.
2003.510635 (2022).

34. Newman, M. Networks, (Oxford university press, 2018).

35. Newman, M.E. Assortative mixing in networks. Physical review letters 89, 208701
(2002).

36. Borgatti, S.P. The key player problem, (na, 2003).

37. Freeman, L.C. Centrality in social networks: Conceptual clarification. Social network:
critical concepts in sociology. Londres: Routledge 1, 238-263 (2002).

38. Balduzzi, S., Ricker, G. & Schwarzer, G. How to perform a meta-analysis with R: a
practical tutorial. BMJ Ment Health 22, 153-160 (2019).

39.  Schwarzer, G., Carpenter, J.R. & Riicker, G. Meta-analysis with R, (Springer, 2015).

40. Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An extended mixed-effects
framework for meta-analysis. Statistics in Medicine 38, 5429-5444 (2019).

41, Rohart, F., Gautier, B., Singh, A. & L& Cao, K.-A. mixOmics: An R package for ‘omics
feature selection and multiple data integration. PLoS computational biology 13, e1005752
(2017).

42.  Argelaguet, R., et al. MOFA+: a statistical framework for comprehensive integration of
multi-modal single-cell data. Genome biology 21, 1-17 (2020).

43.  Argelaguet, R., et al. Multi-Omics Factor Analysis—a framework for unsupervised
integration of multi-omics data sets. Molecular systems biology 14, e8124 (2018).

44, Mo, Q. & Shen, R. iClusterPlus: integrative clustering of multiple genomic data sets.
(2013).

45, Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal
inference in epidemiological studies. Human molecular genetics 23, R89-R98 (2014).


https://doi.org/10.1101/2023.02.22.529449
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529449; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

46.  Smith, G.D. & Ebrahim, S. Mendelian randomization: genetic variants as instruments for
strengthening causal inference in observational studies. in Biosocial surveys (National
Academies Press (US), 2008).

47.  Wang, C., Hu, J., Blaser, M.J. & Li, H. Estimating and testing the microbial causal
mediation effect with high-dimensional and compositional microbiome data.
Bioinformatics 36, 347-355 (2020).

48.  Skinner, J., et al. Construct and compare gene coexpression networks with DAPfinder
and DAPview. BMC bioinformatics 12, 1-8 (2011).

49, Thomas, L.D., Vyshenska, D., Shulzhenko, N., Yambartsev, A. & Morgun, A.
Differentially correlated genes in co-expression networks control phenotype transitions.
F1000Research 5(2016).

50. Braun, R., Cope, L. & Parmigiani, G. Identifying differential correlation in gene/pathway
combinations. BMC bioinformatics 9, 1-17 (2008).

51.  Baiocchi, M., Cheng, J. & Small, D.S. Instrumental variable methods for causal
inference. Statistics in medicine 33, 2297-2340 (2014).

52.  Cheung, M.W.-L. A guide to conducting a meta-analysis with non-independent effect
sizes. Neuropsychology review 29, 387-396 (2019).

53.  VanderWeele, T.J. Mediation analysis: a practitioner's guide. Annual review of public
health 37, 17-32 (2016).


https://doi.org/10.1101/2023.02.22.529449
http://creativecommons.org/licenses/by-nc/4.0/

