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Abstract  

Technological advances have generated tremendous amounts of high-throughput omics data. 

Integrating data from multiple cohorts and diverse omics types from new and previously 

published studies can offer a holistic view of a biological system and aid in deciphering its 

critical players and key mechanisms. In this protocol, we describe how to use Transkingdom 

Network Analysis (TkNA), a unique causal-inference analytical framework that can perform 

meta-analysis of cohorts and detect master regulators among measured parameters that govern 

pathological or physiological responses of host-microbiota (or any multi-omic data) interactions 

in a particular condition or disease.  
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TkNA first reconstructs the network that represents a statistical model capturing the complex 

relationships between the different omics of the biological system. Here, it selects differential 

features and their per-group correlations by identifying robust and reproducible patterns of fold 

change direction and sign of correlation across several cohorts. Next, a causality-sensitive 

metric, statistical thresholds, and a set of topological criteria are used to select the final edges 

that form the transkingdom network. The second part of the analysis involves interrogating the 

network. Using the network’s local and global topology metrics, it detects nodes that are 

responsible for control of given subnetwork or control of communication between kingdoms 

and/or subnetworks. 

 

The underlying basis of the TkNA approach involves fundamental principles including laws of 

causality, graph theory and information theory. Hence, TkNA can be used for causal inference 

via network analysis of any host and/or microbiota multi-omics data. This quick and easy-to-run 

protocol requires very basic familiarity with the Unix command-line environment. 

 

Introduction 

Complex relationships between genetics and epigenetics are the basis of human health and 

disease. Advances in experimental and computational capabilities have brought a wide variety of 

high-throughput data to the study of biological systems. A large amount of technological effort is 

devoted to increasing throughput, reducing financial and personnel costs, and increasing 

experimental and computational efficiencies. As such, there is a clear interest in computational 

methods and software that can integrate different types of omics data and perform association 

analyses to identify important players and mechanisms (e.g., mixOmics). TkNA, however, is a 

unique causal-inference analytical framework that can perform meta-analysis and identify the 

regulatory relationships between entities. This approach, for example, was used in a study of 

antibiotic-resistant microbes1 to identify key host genes, microbes and molecular mechanisms in 

type 2 diabetes2. TkNA has also been used to characterize the role of the microbiome in cervical 

cancer, lymphoma and melanoma3-6. Please note that while the word “integration” refers to two 

very different analyses in other software, we have used it in the following way throughout the 

paper: meta-analysis is the integration of data from several independent datasets, whereas 

network reconstruction involves integration that establishes statistical dependencies between 

multiple types of omics data. 

 

In this protocol, we describe in detail how to use TkNA to detect master regulators (causal 

factors) among microbes and microbial genes, host pathways and host genes, and other measured 

variables that govern pathological or physiological responses of host-microbiota interactions in a 

particular condition or disease. Note that although the TkNA approach was developed to 

investigate host-microbiota interactions, its underlying basis involves fundamental principles 

including laws of causality, graph theory and information theory. Hence, TkNA can be used for 

causal inference via network analysis of any multi-omics data collected whether those data were 

measured in the same samples or measured in different organs from the same biological 

replicates of animals (humans, mice, other animals) and/or environmental niches.  

Overview of the procedure 
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The TkNA pipeline consists of three major sections (Figure 1). Section 1 reconstructs the 

network. This involves importing the data, performing calculations/meta-analysis, and filtering 

the data as specified by the user. Specifically, differentially expressed/abundant variables (genes, 

microbes, metabolites, etc.) between classes (e.g., disease and control) are found, based on user-

defined statistical criteria. Next, per-group correlations are performed within and between each 

type of omics/kingdom separately. To override the default comparison and correlation methods, 

appropriate parametric or non-parametric methods can be selected by the user. TkNA identifies 

robust and reproducible patterns of fold change direction (increased or decreased) and sign of 

correlation coefficient (positive or negative) across several cohorts (or experimental replicates). 

Following this, correlations are further filtered based on a causality-reflecting metric, correlation 

inequalities7, where within-class correlations with the opposite sign of coefficient than would be 

expected by the fold change direction of the variables in the edge are removed (i.e., if both 

variables of the edge are increased or decreased in the disease class compared to the control 

class, the expected per-group sign of correlation coefficient between those variables is positive 

and therefore negative correlations between them would be removed; for variables with opposite 

fold change direction in disease vs control the expected per-group sign of correlation coefficient 

is negative and therefore positive correlations between them would be removed). Finally, TkNA 

calculates a set of topological criteria, including network density, the deviation of observed 

positive:negative correlations from expected, and the proportion of unexpected correlations7 

(PUC). The user employs these metrics to determine the quality of the reconstructed network by 

comparison to “typical” networks (networks we have reconstructed and published previously 

using a variety of omic data5,8-13). If the network is deemed suitable for downstream analysis, the 

user moves on to the network analysis step. Otherwise, the user changes their statistical 

thresholds and performs another reconstruction as described above. Of note, one of the output 

files of this step is a comma-separated value (CSV) file of the network, which the user can 

visualize using an external program such as Cytoscape14.  

 

Figure 1. Flowchart of the TkNA pipeline. 

Section 2 is the interrogation/analysis of the reconstructed network. Here, the user has the 

option to identify clusters of nodes in the network using the Louvain15 or Infomap16 algorithms. 
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Using external recommended software (Table 3), they can then perform enrichment analysis of 

the clusters to identify biological pathways/functions to which the nodes in the cluster contribute. 

Regardless of whether cluster identification is performed, the next step in TkNA is to calculate 

node and network properties. While many different topological properties are calculated, key 

among these are node properties that indicate regulatory nodes in the network. This includes 

calculating bipartite betweenness centrality17 (BiBC), a global node topology metric, to find the 

nodes participating highest in the information flow between subnetworks or user-defined regions 

(e.g.,, microbe and host subnetworks) of the network. Degree is a key local node property that is 

calculated, which is a measure of how many other nodes to which a single node connects. High 

BiBC and high degree reflect “bottleneck” and “hub” nodes, respectively. Consequently, a node 

with a high degree and BiBC is considered to be a strong regulatory candidate in the network. 

Optionally, the user can also calculate shortest path lengths between each pair of nodes in two 

separate subnetworks. Since these calculations use the number of edges but not their strength 

(e.g., sign and magnitude of correlations), two subnetworks with a smaller average shortest path 

length are predicted to interact more (but not necessarily more strongly) than subnetworks that 

are farther away from one another. To wrap up section 2 and evaluate the probability of a given 

node to show nonrandom values of degree and BiBC, TkNA reconstructs many random networks 

(10,000 by default) with the same number of nodes and edges as the reconstructed network and 

compares the top degree/BiBC nodes of those random networks to the reconstructed network. 

Section 3 of TkNA creates publication-ready figures from the above analysis of the user’s 

reconstructed network. Multiple high-quality figures are created in this step, including dot plots 

of degree distribution (Figure 7a) and dot plots of nodes and their calculated properties (Figure 

7b). The abundance (e.g., microbiome) or expression levels (e.g, transcriptome), etc. of the top 

regulatory candidates are also automatically generated (Figure 7c), as well as a 2D density plots 

(Figure 7d) that have the observed values of the top regulatory nodes from the reconstructed 

network overlayed on top of them. Additionally, CSV files are created with all the necessary 

information if the user wishes to use an alternative visualization or plotting software. 

 

Procedure 

 

Pre-requirements for using TkNA 

 

Currently, TkNA is only supported on Unix (e.g., Mac, Linux) based devices. From a Unix 

device, a user will need to have access to git on their terminal and have an SSH key for their 

GitHub account (see https://docs.github.com/en/authentication/connecting-to-github-with-

ssh/adding-a-new-ssh-key-to-your-github-account for more information). If the user does not 

already have git downloaded, he or she can do so using the commands found on github’s 

documentation at https://github.com/git-guides/install-git. 

 

Software Setup 

 

1. Obtain TkNA 

Download the TkNA code from https://github.com/CAnBioNet/TkNA.git and enter its directory. 
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git clone git@github.com:CAnBioNet/TkNA.git  
cd TkNA 
 
2. Install Miniconda 

We highly recommend that users manage their installation using conda as their package 

management software. If it is not already installed on the system, you can install Miniconda 

(which contains both python and conda) from https://docs.conda.io/en/latest/miniconda.html. 

Since TkNA was written and tested in Python version 3.8.10, we recommend the user installs the 

Python 3.8 Miniconda version. Computationally proficient users can run TkNA with other 

python versions, however, installing and troubleshooting with python versions other than v3.8.10 

is outside the scope of this protocol, and it is upon the user to install the required libraries. 

 

 
3. Set up the TkNA environment 

Create a new Python 3.8.10 conda environment. Install the python packages specified in the 

requirements.txt file included with the source code. 

 
conda create -n TkNA python=3.8.10 
pip install -r requirements.txt 
 
Data Preprocessing 

 
4. Normalize data 

It is known that non-normalized data leads to bias in the structure of correlation networks18,19. As 

such, prior to running TkNA, the user needs to perform any appropriate normalization(s) for their 

dataset. Normalization is not performed in TkNA, so data can be normalized using but not 

limited to the methods listed in Table 1. 

Omics type Normalization method Software or Package 

Transcriptome 

(RNA-Seq) 

Reads per million (relativization); 

RPKM; FPKM; Quantile; Lowess; 

Trimmed Mean of M-values (TMM); 

Relative Log Expression (RLE) 

Affy (R)20; BRB Array 

tools; DESeq2 (R)21; EdgeR 

(R)22 

Microbiome 

(amplicon or 

shotgun) 

Reads per million (relativization); 

Rarefaction; CSS; Quantile 

Qiime223, metagenomeSeq 

(R)24  

Metabolomics Normalization to internal standard; 

normalization to urine output; 

normalization to total spectral area; 

probabilistic quotient 

normalization25; Bridge 

normalization; Median run 

normalization26, EigenMS 

normalization27 

MetabR (R)28, ProteoMM 

(R)29, OpenMS30, 

pyOpenMS (python)31 
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Proteomics Linear regression normalization; 

Local regression normalization; 

Variance stabilization normalization; 

Quantile normalization,  

proteiNorm32, OpenMS30, 

pyOpenMS (python)31 

 

Table 1. Common normalization methods for various omics types. 

 
5. Format data 

Following normalization, we recommend the data be organized into a directory and arranged as 

shown in Figure 2. After cloning the repo, the user will see all folders on their terminal, then 

will need to manually create a project folder for each project, with a folder to hold the input and 

output files inside. 
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Figure 2. Structure of the TkNA repository, including all folders and the main scripts required 

for the user to reference in their commands. We recommend the user creates a directory for 

their project like the one at the bottom of the figure, where all the input files are stored and 

where they will direct the output files to write to in their commands. 

 

Examples of each input files can be found in the repo at   

https://github.com/CAnBioNet/TkNA/tree/main/example_datasets_and_commands/microbiome_

and_phenotype/input (referred to below as microbiome_and_phenotype/input/ for simplicity). 

There are five main file types required to run the TkNA pipeline: 

 
a. Processed (normalized and log2 transformed) data tables 

Each data table associated with an experiment present in the data must be log2 transformed 

prior to the pipeline. Pseudocounts can be added to all values to avoid negative numbers after 

log transformation. The data table must be formatted as in comma-separated value (CSV) 

format with one column per experimental unit (i.e., sample) and one row per variable (e.g., a 

gene, microbe, or phenotype). Experiment1.csv and Experiment2.csv in the 

microbiome_and_phenotype/input/ folder on github are examples of these files. The variable 

names must not contain any characters other than letters, numbers, underscores, and spaces. 

If the user’s data contains any other characters such as commas, we recommend giving them 

a new unique alphanumeric ID and using a separate reference file to keep track of their new 

and old names. 

 
b. Sample mapping file 

Each experimental unit present in the data must be associated with an experimental class (e.g. 

Disease, Control), identified by a text string. These associations are specified as lists of 

comma-separated values, with the left column containing the name of the experimental unit 

and the right column containing the class. All names must match exactly across data files. 

Currently, TkNA is designed to only work with two classes at a time. Note: In the pipeline, 

the sample mapping file is called “treatmentMapFile” in the metadata .json file (Figure 3a) 

and the sample groups to compare are the ones used in “comparisonTreatments” in the config 

.json (Figure 3b) file. Experiment1_group_map.csv in the 

microbiome_and_phenotype/input/ folder on github is an example of this file. 

 
c. Omics type mapping file 

Each variable (e.g., microbe, gene, metabolite, etc.) present is associated with a type of omic 

data, identified by a text string. These associations are specified as lists of comma-separated 

values, with the left column containing the variable and the right column containing its type. 

All names must match exactly across data files. type_map.csv in the 

microbiome_and_phenotype/input/ folder on github is an example of this file. 

 

d. config file 

The dataset must contain a file named config.json in the JavaScript Object Notation 

(JSON) format, as shown in Figure 3. This file defines the statistical and meta-analysis 

criteria to apply when reconstructing the network. More in-depth information and examples 

for this file can be found in Step 7 - Reconstruct network. config.json in the 

microbiome_and_phenotype/input/ folder on github is an example of this file. 
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e. Metadata file 

The dataset must also contain a file named metadata.json in JSON format, as shown in 

Figure 3. This file describes each experiment present in the data and indicates the names and 

locations of the necessary files. As such, the names in this file must match exactly the names 

of the files being used in the analysis. metadata.json in the 

microbiome_and_phenotype/input/ folder on github is an example of this file. At the top-

most level, the metadata consists of 3 sections: 

 
i. Project name 

A name to which the project will be referred by. 

 
ii. Experiment/Cohort/Dataset(s) details 

A list of experiments/cohorts/datasets (which we will refer to as “experiments”) whose 

data is present in the project. Each experiment contains a “name”, the relative path to the 

CSV file containing its data table (“datafile”), and the sample mapping file name 

(“treatmentMapFile”) (Figure 3a).   

 
iii. Type map 

The omics type mapping file “measurableTypeMapFile” for all of the variables present in 

the data. 

 

In Figure 3a, the users have a single experiment in their project (as seen in the metadata 

file) with two classes they would like to compare: Disease and Control (as seen in the 

config file). They have then specified which comparison statistical thresholds to apply 

(“differencePValueThresholds”) for individual p-value, Fisher’s combined (meta-

analysis) p-value, and the Benjamini-Hochberg FDR (called “corrected” in the config 

file). Additionally, they have specified they want to perform the correlations only in the 

Disease class (“networkTreatment”) and specified the edge statistical criteria 

(“correlationPValueThresholds”) towards the bottom of the file. 

 

The user for Figure 3b has a more complicated project, with four total datasets, as well 

as an additional “pheno” variable type in their input data (genes and phenotypes), so they 

have added the additional “pheno” variable to the file. They have set the same 

comparison thresholds for both variable types, although matching thresholds are not 

required. Down below, they have specified they want to find only edges that are 

consistent in the Disease class of three of the four experiments (as can be seen by the 0.75 

for “correlationFilterPercentAgreementThreshold” and the “metatreatments” sections). 

Then they specified the edge thresholds for each pair of data types (gene-gene, gene-

pheno, and pheno-pheno). Please note that filtering edges for the same direction across 

only a fraction of datasets/groups is not typically a good strategy, especially when using a 

small number of datasets/groups (less than five) but was done in this example for 

simplicity. We recommend using “correlationFilterPercentAgreementThreshold” option 

as a last resort and only by expert users. In other words, the default of 

“correlationFilterMethod” keeps edges that are consistent across all datasets/groups (i.e., 

the same sign of correlations). This is critical to avoid situations where an edge’s 
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direction is decided by most of datasets/groups with non-significant correlation 

coefficients instead of the fewer datasets/groups with strong significant correlation 

coefficients but with opposite sign to those in the majority of the datasets/groups. Also 

note that the structure of .json files is highly specific and the addition of extra characters 

in the files may cause issues. 

 
Figure 3. Example metadata and configuration (config) .json files. a) The structure required to 

run the network reconstruction code for a single dataset. b) The structure required for more com-

plex data with multiple experiments and/or data types.  

 
Data Import 

 
6. Import data 
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Once all the required files have been uploaded, the next step is to import the data into a 

consolidated format for downstream processing, using the script 

reconstruction/intake_data.py. 

 
Usage 

python ./reconstruction/intake_data.py --data-dir <data 
directory> --out-file <output file> 

Example command 

python reconstruction/intake_data.py --data-dir 
./project_folder/input/ --out-file 
./project_folder/output/all_data_and_metadata.cdf 

Inputs 

--data-dir: Path to the directory containing all experimental file(s), metadata file(s), 

and config file(s)  

--out-file: path to file (with .cdf extension) that will be created 

Outputs 

• A single .cdf file containing most information required for the next step 

 

Network Reconstruction 

 

7. Reconstruct network 

Network reconstruction is then performed with the script reconstruction/run.py, which 

references the JSON configuration file (Figure 3). An overview of the network reconstruction 

process can be found in Figure 4. 

 

Usage 

python ./reconstruction/run.py --data-source <file_name> --
config-file <config file> --out-file <zip directory> 

Example command 

python ./reconstruction/run.py --data-source 
./project_folder/output/all_data_and_metadata.cdf --config-file 
./project_folder/input/config.json --out-file 
./project_folder/output/network_output.zip 

Inputs 

--data-source: Path to the .cdf file created using intake_data.py 

--config-file: Path to the config file used for intake_data.py 
--out-file: path to zipped directory that will be created 

Outputs 

• A single zipped directory containing the analysis performed 
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Figure 4. Schematic of how a basic network is reconstructed from two independent datasets. a) 

An experimental design that works well for the TkNA pipeline, allowing for meta-analysis with 

robustness of findings across experiments. Note that a minimum of five samples per class per ex-

periment is recommended. b) Comparisons of each variable between the two classes (defined by 

user) are performed. A p-value (either from a Student’s t-test or Mann-Whitney test) and fold 

change are calculated for each variable in each experiment. Meta-analysis is then conducted by 

calculating the Fisher’s combined meta-analysis p-value and FDR. c) The variables are filtered to 

remove those that did not pass the user-defined p-value, combined p-value, or FDR. Addition-

ally, only variables that are the same direction of fold change across the two experiments are re-

tained. d) Following the filtering in c, correlations between the remaining variables are per-

formed per-group. A p-value (either Spearman or Pearson) and rho coefficient are calculated for 

each pair of remaining variables. Meta-analysis is then conducted by calculating the Fisher’s 

combined meta-analysis p-value and FDR. e) Correlations are filtered and those that did not pass 

the user-defined p-value, combined p-value, or FDR are removed. Additionally, correlations that 

are not consistent in direction (positive or negative) are removed. Unexpected correlations (a 

positive correlation between two nodes of opposite fold change direction or a negative correla-

tion between two nodes of the same fold change direction) are also removed. The reconstructed 

network is comprised of the remaining nodes and edges. 

 

Reconstruction takes place in the following steps. For each step, the available configuration 

options are described. For more specific examples of the config file, please refer to Figure 3.  

 

i. Establish differentially expressed/abundant variables (genes, microbes, 

metabolites, etc.) between classes (e.g., disease and control).  
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Setting the appropriate statistical thresholds to apply while reconstructing the network 

is the most critical step in determining the size and quality of the resulting network. 

Thus, it is crucial that the user sets statistical thresholds that are best suited for the 

type of data they are using. For finding differentially expressed/abundant variables 

between classes, we recommend that the user initially uses the default thresholds 

supplied in the code: p-value < 0.2, Fisher’s combined (meta-analysis) p-value < 

0.05, and Benjamini-Hochberg FDR < 0.1. If the reconstructed network is not of 

sufficient quality (see step 9 “Assessing network quality”) or size (an experienced 

user may consider the network too small) then the user can select different thresholds 

to apply. 

 

At this stage of the analysis, it is not recommended to relax thresholds more than the 

following: individual p-value, 0.5; Fisher’s combined p value, 0.1; and FDR, 0.2. 

Note that relaxed thresholds can be used at this stage because a considerable 

proportion of variables will be further eliminated in the next step of the analysis when 

edges are established. 

 

Required config parameter: comparisonTreatments 

A list containing the names of exactly two groups. Fold change is computed with 

respect to the first of the two, meaning “control” would be the denominator in the 

below example. 

 

Example: “comparisonTreatments”: [“control”, “disease”] 

 
Optional config parameter: differenceMethod 

The method to use for calculating correlations, either Mann-Whitney or Student’s 

t-test (for data with equal variance). 

 

Choices: mannwhitney, independentttest 

Default: mannwhitney 
 

Example: “differenceMethod”: “mannwhitney” 
 

Optional config parameter : differencePValueThresholds 

 A mapping between each kind of statistic and its threshold. Can contain: 

 

individual: Minimum p-value across all experiments 

Default: 0.2 

combined: p-value combined across experiments (e.g., via Fisher’s method) 

Default: 0.05 

corrected: p-value after correction (e.g., via FDR) 

Default: 0.1 

 

 NOTE: We strongly recommend using more than one dataset for the TkNA 

analysis. However, if the user only has one dataset, the combined p-value is the 
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same as the individual p-value and the same threshold value should be used for 

both.  

 

Example: “differencePValueThresholds”: {“individual”: 0.1, 
“combined”: 0.02, “corrected” 0.15} 

 
Optionally, for each kind of statistic, thresholds can be specified per type of 

variable. 

Example: “differencePValueThresholds”: {“corrected”: {“gene”: 
0.1, “phenotype”: 0.15}} 

 

ii. Identify robust and reproducible patterns for fold change direction across 

several experimental replicates (if user has multiple independent experiments) 

 

Optional config parameter : foldChangeType 

 Calculate fold change using the median or the mean. 

  

Choices: median, mean 

Default: median 

 

Example: “foldChangeType”: “mean” 

 

Optional config parameter : foldChangeFilterMethod 

Choose how strictly the fold changes of variables must be consistent across 

experiments. 

 

Choices: allsamesign, percentagreement 

Default: allsamesign 

 

Example: “foldChangeFilterMethod”: “percentagreement” 
 

If using percent agreement, the following option may also be specified: 

 

foldChangeFilterPercentAgreementThreshold 
A fraction of experiments which must agree in fold change direction for a 

variable to pass the filter. While full concordance would mean 1.0, when 

relaxed thresholding is needed we recommend using values of 0.75 or higher. 

 

 

Example: “foldChangeFilterPercentAgreement”: 0.8 

 
iii. Determine significant correlations for a treatment within and between each type 

of variable (e.g., gene-gene, gene-microbe, microbe-microbe, etc.) separately.  

To calculate correlations between the previously identified differentially 

expressed/abundant variables between classes, we recommend that the user initially 
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uses the default thresholds supplied in the code: p-value < 0.2, Fisher’s combined 

(meta-analysis) p-value < 0.05, and Benjamini-Hochberg FDR < 0.1. At this stage of 

analysis, it is not recommended to relax thresholds more than the following: 

individual p-value, 0.5; Fisher’s combined p value, 0.05; and FDR, 0.15. 

The groups of samples from which a network is reconstructed can be specified in two 

ways. The simplest way is to specify the name of a single class (e.g., disease) for 

networkTreatment. In this case, correlations will be calculated within this group for 

each experiment, then meta-analysis will be performed between the experiments. If 

one wants to include samples from different classes in the meta-analysis, the 

parameter metatreatments can be specified instead. See below for more details on 

the use of metatreatments, and see section “Experimental Design”, as well as 

Figure 8, for details on when to apply them and in what manner. 

If you are reconstructing the network from a single class (either in one experiment or 

across multiple experiments): 

config parameter : networkTreatment 

The name of a class to produce a network from. Either this or 

metatreatments must be specified. 

Example: “networkTreatment”: “disease” 

Otherwise, if you are reconstructing the network from multiple different groups (e.g., 

two different disease groups from one experiment and another disease groups from a 

second experiment): 

config parameter: metatreatments 

A description of “metatreatments” to use for creating the network. Either this 

or networkTreatment must be specified. 

Each metatreatment consists of (experiment, class) pairs. Correlations are 

calculated for each metatreatment using all of the data specified for it. Meta-

analysis will then be performed across all of the specified metatreatments. 

Example: 

“metatreatments”: { 
“metatreatment1”: [[“experiment_1”, “disease_1”]], 
“metatreatment2”: [[“experiment_2”, “disease_1”]], 
“metatreatment3”: [[“experiment_2”, “disease_2”]]  

} 
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The above example corresponds to meta-analysis option #3 in Figure 8. Note 

that using “correlationFilterPercentAgreementThreshold” along with this 

option can have unintended consequences as discussed previously (e.g., two 

non-significant positive correlations from disease 1 could win over one 

significant negative correlation from disease 2, marking the edge to be 

positive instead of being discarded as would have happened with the default 

threshold of “correlationFilterMethod”: “allsamesign”). 

 
Optional config parameter: correlationMethod 

The method to use for calculating correlations. 

 

Choices: spearman, pearson 

Default: spearman 
 

Optional config parameter: correlationPValueThresholds 

A mapping between each kind of statistic and its threshold. Can contain: 

 

individual: Maximum raw p-value across all experiments 

Default: 0.2 

combined: p-value combined across experiments (e.g., via Fisher’s method) 

Default: 0.05 

corrected: p-value after correction (FDR via Benjamini-Hochberg) 

Default: 0.1 

 

Example: “correlationPValueThresholds”: {“individual”: 
0.1, “combined”: 0.02, “corrected” 0.15} 

 
Optionally, for each kind of statistic, thresholds can be specified per 

combination of types of variables. 

 

Example: 

 

“correlationPValueThresholds”: {“corrected”: { 

 “(gene, gene)”: 0.1, 

 “(gene, phenotype)”: 0.15, 

 “(phenotype, phenotype)”: 0.2 

}} 

 

iv. Identify robust and reproducible patterns for correlation direction across 

several cohorts (or experimental replicates). 

 

Optional config parameter: correlationFilterMethod 

Choose how strictly the correlations of variables must be consistent across 

experiments. 
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Choices: allsamesign, percentagreement 

Default: allsamesign 

 

Example: “correlationFilterMethod”: “percentagreement” 

 

If using percentagreement, the following option may also be specified: 

 

correlationFilterPercentAgreementThreshold 
A fraction (greater than 0.75 and less than 1) of experiments which must 

agree in sign of correlation coefficient for a variable to pass the filter. 

 

Example: “correlationFilterPercentAgreementThreshold”: 0.8 

 

v. Eliminate edges that are not related to causes underlying the transition between 

classes (e.g., between disease and control) 
 

This step is performed automatically. The edges removed are defined as “unexpected 

correlations”7. The edges labeled as unexpected can be found in the  

correlations_bw_signif_measurables.csv file. 
 

8. Write computed data to tables 
Write the output to tables in CSV format using the script reconstruction/to_csv.py. 
 

Usage 
python ./reconstruction/to_csv.py --data-file <zip file> --
config-file <config file> --out-dir <output directory> 

Example command 
python ./reconstruction/to_csv.py --data-file 
./project_folder/output/network_output.zip --config-file 
./project_folder/input/config.json --out-dir 
./project_folder/output/network_output 

Inputs 

--data-file: .zip file created with run.py 

--config-file: Path to the config file used for intake_data.py 

--out-dir: Path to the directory to output results to 
Outputs 

• all_comparisons.csv: contains all comparisons performed in the analysis, is not 

filtered for any significant variables. 
• correlations_bw_signif_measurables.csv: all correlations between variables 

that passed the comparison thresholds. Correlations in this file are not filtered for 

statistical or causality criteria, but it contains all p-values, whether each edge is 

unexpected, and whether each edge makes it into the final network after applying 

statistical and causality criteria. 
• network_output_comp.csv: whole network with nodes/edges under the user-

defined statistical thresholds, and edges consistent in direction retained (unless 
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otherwise specified in the configuration file). Unexpected edges are also removed 

from this file. 
• node_comparisons.csv: comparisons that were performed and found to be 

statistically significant (less than the user-defined statistical thresholds).  
• config_values.txt: All the user-specified options for making the network. 

 

Network quality assessment 

Once the network has been reconstructed, the next step is to determine whether the network is 

suitable for downstream analysis. If the network is not suitable for downstream analysis, the user 

will need to modify their statistical thresholds to reconstruct a better-suited network.  

 

While as yet there is no completely automated method of network optimization, we recommend 

the user evaluates three network properties that are calculated with TkNA: 1) the proportion of 

unexpected correlations (PUC); 2) density (the number of edges in the network over the number 

of edges in a full graph of the same size); and 3) the deviation of the ratio of positive/negative 

edges from the expected value. In Table 2 we provide the ranges of each of these criteria from 

previously published networks that can guide the user’s decision process. Note that microbiome 

data usually presents higher PUC values than diverse host omics data (e.g., transcriptomes, 

metabolomes, etc.). The user can also compare their values with those of published networks 

using Figure 5.  

 

 
Figure 5. a) Density of within-omic and between-omic edges in published networks. Each point 

represents a previously published network. Density is calculated as the number of observed 

edges over the number of possible edges between all nodes of that type. The blue bar indicates 

the average of each –omic type. b) The deviation from the expected positive/negative edge ratio 
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of published networks. Each point represents a previously published network. The blue bar indi-

cates the average. 

 

 

We encourage new users to use the default statistical thresholds for reconstructing their initial 

network, then adjust the thresholds accordingly after assessing the network quality. Suggestions 

for alterations in thresholds based on the resulting network assessment properties can be found in 

Table 2.  

Network property Potential range If value is too 
high… 

If value is too 
low… 

Departure of ratio 

positive:negative edges 

See figure 4a Try alternative 

normalization  

Try alternative 

normalization  

Density Dependent on -

omic type, see 

figure 4b 

Reduce statistical 

thresholds (p-

values or FDR) for 
edges 

Relax statistical 

thresholds (p-

values or FDR) for 
edges 

 

Table 2. Suggestions for alterations in thresholds based on the resulting network assessment 

properties. 

9. Assessing Network Quality 

Usage 

 python ./analysis/assess_network.py --file <network file>  
Example command 

 python ./ analysis/assess_network.py --file ./project_folder/out-
put/network_output/correlations_bw_signif_measurables.csv  

Inputs 

 --file: correlations_bw_signif_measurables.csv file created with to_csv.py 

Outputs 

• network_quality_assessment.txt: Contains the calculations (also sent to stand-

ard output) on the quality of the reconstructed network. Outputs to the same directory 

the input file is stored in. 

• network.pickle: A pickled file containing the network. Used as input to future 

steps. Outputs to the same directory the input file is stored in. 

Network analysis 

Once the user has reconstructed a network from the input data, they can move on to the network 

analysis stage. In this stage, the user can optionally find clusters (also called subnetworks or 

modules) of nodes and use alternative tools to determine if these clusters are enriched for 

particular biological processes. Users can then further interrogate the network to find key 

regulatory nodes in the network. 

10 (OPTIONAL)  
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a. Identifying clusters of nodes 

One commonly performed technique in network analysis is to identify regions in the network 

where nodes are clustered together. TkNA allows for the use of two popular algorithms, 

Infomap16 and the Louvain15 method, to detect clusters in the network. Examples of node clusters 

can be found in Figure 6b. 

Infomap 

Usage 

python ./analysis/infomap_assignment.py --pickle <file.pickle> 
Example command 

python ./analysis/infomap_assignment.py --pickle ./pro-
ject_folder/output/network_output/network.pickle 

Inputs 

--pickle: network.pickle file output by assess_network.py 

Output 

• network_infomap_partition.csv: CSV file containing the name of the node in 

column 1 and the subnetwork number it was assigned in column 2.  

 
Louvain 

Usage 

python ./analysis/ Louvain_partition.py --pickle <file.pickle>  
Example command 

Python ./analysis/Louvain_partition.py --pickle ./pro-
ject_folder/output/network_output/network.pickle  

Inputs 

--pickle: network.pickle file output by assess_network.py 

Output 

• network_infomap_partition.csv: CSV file containing the name of the node in 

column 1 and the subnetwork it was assigned in column 2.  

b. Perform functional enrichment analysis for groups of nodes 

Following clustering, a user can then perform functional enrichment of either 1) the clusters 

identified via Infomap/Louvain (or externally via MCODE, CLUSTERVIZ, etc.) or 2) any other 

predefined groups (e.g., microbes, genes), allowing for a biological interpretation of the nodes in 

that cluster. Single cell RNA-Seq data can also be used to infer cell type information for the 

genes in the network. Here, cell type is inferred for a gene based on its presence either as a cell 

cluster’s conserved gene marker or cell cluster specific differentially expressed gene. 

Additionally, highest average expression of a gene in a specific cell cluster among all clusters 

can also be used as a genes cell type identity33. These enrichment methods are not part of TkNA 

codes and will need to be performed using external software. Examples of common functional 

enrichment methods for different omics data are listed in Table 3. 
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Omics type Enrichment method Software or Package 

Transcriptome 

(RNA-Seq) 

Gene ontologies or 

Functional enrich-

ments; 

Over representation 

analysis; 

Biochemical Path-

ways; 

Signaling pathways; 

Regulatory pathways; 

Protein -protein inter-

actions 

Cytoscape; 

Metascape; Innat-

eDB;  

GSEA; 

KEGG;  

Reactome; 

STRING 

Microbiome (am-

plicon or shotgun) 

Comprehensive func-

tional content 

MicrobiomeAnalyst 

PICRUSt 

Metabolome Pathways MetaboAnalyst 

Proteome Gene ontologies or 

Functional enrich-

ments; 

Pathways 

KEGG;  

Reactome; 

STRING 

Table 3. Examples of common functional enrichment methods for different omics data. 

11. Finding regulatory nodes in the network 

This step calculates topological properties for the networks, subnetworks, and nodes34. Network 

properties that are calculated by TkNA include the number of nodes in the network, number of 

edges, mean degree, average clustering coefficient, the size (number of nodes) of the giant 

component compared to the size of the whole graph, the number of connected components, mean 

closeness centrality, degree assortativity35, maximum modularity15, network fragmentation36, and 

Freeman centralization37. Subnetwork properties include the mean degree of the 

subnetworks/clusters (either pre-defined by the user or identified in the optional step 10) in the 

network. Finally, calculated node properties include degree, clustering coefficient, closeness 

centrality, eigenvalue centrality, betweenness centrality, number of second neighbors, and 

bipartite betweenness centrality (BiBC)17. Two of those properties, degree and BiBC, are used to 

predict nodes with potential regulatory roles in the network. Degree is the number of other nodes 

a single node connects to. Accordingly, high degree nodes called hubs control the biological 

pathway/cluster to which they belong.  

BiBC is a measure of the bottleneck-ness of a node (i.e., which node serves as the best ‘bridge’) 

between two pre-defined groups17; it is essentially betweenness centrality restricted to particular 

subsets of the network (i.e., two subgraphs/clusters of biological interest). A node with a high 

BiBC likely mediates the communication between the selected pathways/clusters. To compute 

BiBC, the user will need to provide a list of nodes, as well as which cluster they belong to in the 

network. If the user wishes to perform the BiBC calculation between types of nodes (for 

example, genes and microbes), they can supply the original sample mapping file. Alternatively, 

if the user wishes to use the clusters identified with Infomap or Louvain (Step 10, optional), they 
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can supply the output of Step 10 and select two group numbers from the second column as their 

clusters to use for the BiBC calculation. Examples of nodes with a high degree and a high BiBC 

can be seen in Figure 6a.  

 

Figure 6. a) Examples of nodes in a network that are not regulatory (low degree and low BiBC) 

and nodes that are regulatory (high degree and high BiBC). Squares are microbes and circles are 

genes. b) Example of clustering in the same network using the Louvain or Infomap algorithms. 

Usage 

python ./analysis/calc_network_properties.py --pickle 
<file.pickle> --bibc --bibc-groups <choice> --bibc-calc-type 
<choice> --node-map <file.csv> --node-groups <group 1> <group 2> 

Example command 

python ./analysis/calc-network-properties.py --pickle ./pro-
ject_folder/output/network_output/network.pickle --bibc --bibc-
groups node_types --bibc-calc-type rbc --node-map ./pro-
ject_folder/input/map_file.csv --node-groups micro pheno 

Inputs and arguments 

--pickle: network.pickle file created with assess_network.py 

--bibc: Flag for whether to compute Bipartite Betweenness Centrality (BiBC). This is 

highly recommended and also required for future steps 

--bibc-groups: Choice for what to compute BiBC on, either distinct groups 

(node_types) or on the two most modular regions of the network (found using the Lou-

vain method) 

--bibc-calc-type: Choice for whether to normalize based on the number of nodes in 

each group (rbc) or not (bibc) 

--node-map: CSV file containing the name of nodes in the first column and the type of 

the node (gene, phenotype, microbe, etc.) in the second column 

--node-groups: Required if node_types is specified for --bibc-groups. It’s the 

two groups of nodes to calculate BiBC/RBC on. The types must be present in the --
node-map file 

Outputs 

• network_properties.txt: Tab-delimited .txt file of calculated network properties 

• subnetwork_properties.txt: Tab-delimited .txt file of calculated subnetwork 

properties 

• node_properties.txt: Tab-delimited .txt file of calculated node properties 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.02.22.529449doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529449
http://creativecommons.org/licenses/by-nc/4.0/


 

Shortest path calculations  

The user can optionally then calculate the distance path between two pathways 

(subnetworks/clusters) by calculating the shortest path between each member of those clusters 

and taking the average of those values. Pathways closer to one another potentially interact more 

than those that are further away. 

 

Usage 

python ./analysis/find_all_shortest_paths_bw_subnets.py --network 
<file.pickle> --node-map <map.csv> --node-groups <group1> 
<group2> 

Example command 

python ./analysis/find_all_shortest_paths_bw_subnets.py --network 
./project_folder/output/network_output/network.pickle --node-map 
./project_folder/input/map_file.csv --node-groups gene pheno 

Inputs 

--network: network.pickle file output by assess_network.py 

--node-map: Mapping file (CSV) of nodes and their subnetworks 

--node-groups: The two groups in the mapping file you want to find the shortest paths 

between 

Output 

• shortest_path_bw_<group1>_and_<group2>_results.csv: CSV file contain-

ing the name of each node in each pair in columns 1 and 2, as well as the shortest path 

length between that pair in column 3 and the number of shortest paths for the pair in 

column 4 

By combining the information about shortest path and BiBC, users can infer interactions between 

pathways (subnetworks/clusters) as well as causal relations between them, as has been done in 

our recent study12. 

Estimating probability to find top nodes (degree, BiBC) randomly 

The next step in TkNA is to determine the likelihood of finding the top nodes (degree, BiBC) 

randomly in the reconstructed network by comparing to size-matched random networks with the 

same number of nodes and edges10. Later on in the pipeline, the user can visualize how top nodes 

of their reconstructed network compares to the top nodes of these random networks through the 

creation of a 2D density plot (Figure 5d).  

12. Creating random networks 

This step creates all the random networks and saves them to be analyzed in the next step. Note 

that due to the complexity of the BiBC calculation, if your network is very large (thousands of 

nodes and tens of thousands of edges) this step (as well as the next step) can take up to several 

days. Therefore, we recommend not running this step interactively and instead submitting to a 
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server. If that is not possible, the creation and analysis of random networks can be skipped as it is 

not required for the visualization of the BiBC and degree calculations. However, Step 17 

“Create 2D density plot” cannot be run if the random network steps are skipped. 

Usage 

python ./random_networks/create_random_networks.py --template-
network <file.pickle> --networks-file <file.zip>   

Example command 

python ./random_networks/create_random_networks.py --template-
network ./project_folder/output/network_output/network.pickle --
networks-file ./project_folder/output/network_output/all_ran-
dom_nws.zip   

Inputs 

--template-network: The pickled network file output by assess_network.py 

--networks-file: .zip folder to output all random networks to  

--num-networks: optional; number of random networks to create 

Outputs 

• A single .zip file containing all created networks 

13. Analyze random networks 

Each randomly generated network is then analyzed to calculate the degree and BiBC of each 

node in the network.  

Usage 

python ./random_networks/compute_network_stats.py --networks-file 
<file.zip> --bibc-groups <choice> --bibc-calc-type <choice> --
stats-file <file.zip> --node-map <file.csv> --node-groups 
<group1> <group2>  

Example command 

python ./random_networks/compute_network_stats.py --networks-file 
./project_folder/output/network_output/all_random_nws.zip --bibc-
groups node_types --bibc-calc-type rbc --stats-file ./pro-
ject_folder/output/network_output/random_network_analysis.zip --
node-map ./project_folder/input/map_file.csv --node-groups gene 
pheno 

Inputs 

--networks-file: .zip file created with create_random_networks.py that con-

tains all random networks previously created 

--bibc-groups: Group nodes for BiBC based on type or modularity 

--bibc-calc-type: Compute raw BiBC or normalize (rbc) 

--stats-file: .zip file to output the network stats to 

--node-map: CSV file mapping nodes to their types. Required if node_types is speci-

fied for --bibc-groups. 

--node-groups: Two types of nodes to use for BiBC grouping. Required if 

node_types is specified for --bibc-groups.   
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Outputs 

• A single .zip file with degree/BiBC results of all random networks 

14. Condense random network results into a single output file 

The results of the analysis are then summarized in a single output file containing the node with 

the highest degree value and its associated BiBC (or vice versa) in the each of the networks. 

Usage 

python ./random_networks/synthesize_network_stats.py --network-
stats-file <file.zip’> --synthesized-stats-file <file.csv>   

Example command 

python ./random_networks/synthesize_network_stats.py --network-
stats-file ./project_folder/output/network_output/random_net-
work_analysis.zip --synthesized-stats-file ./project_folder/out-
put/network_output/random_networks_synthesized.csv 

Inputs 

--network-stats-file: .zip file created with compute_network_stats.py 

--synthesized-stats-file: Name of the CSV file that will be created  

Outputs 

• A single .csv file that contains the top node, sorted first by BiBC and then by 

Node_degrees (unless otherwise specified with --flip-priority), for each of the 

random networks 

Plot results 

15. Create degree distribution and dot plots 

In this step, the user specifies which two node properties they would like to visualize for the 

nodes of the network, as well as how many top nodes to focus on and label. Additionally, the --
top-num-per-type argument is used to specify how many top nodes per data type to zoom in 

on and label in the resulting plots. Examples of these visualizations can be seen in Figure 7.  

Usage 

python ./visualization/dot_plots.py --pickle <file.pickle> --
node-props  <file.txt> --network-file <file.csv> --propx BiBC --
propy Node_degrees --top-num <integer> --top-num-per-type <inte-
ger> 

Example command 

python ./visualization/dot_plots.py --pickle ./pro-
ject_folder/output/network_output/network.pickle --node-props 
./project_folder/output/network_output/node-properties.txt --net-
work-file ./project_folder/output/network_output/network_out-
put_comp.csv --propx BiBC --propy Node_degrees --top-num 5 --top-
num-per-type 3  

Inputs 
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--pickle: pickled file created with assess_network.py 

--node-props: node_properties.txt file created with calc_network_proper-
ties.py 

--network-file: network_output_comp.csv file created with to_csv.py  

--propx: Node property to plot on X-axis 

--propy: Node property to plot on Y-axis. 

--top-num: Number of nodes you want to zoom in to on the property v property plot 

--top-num-per-type: The number of nodes to plot for each data type when zoomed 

in on the plot 

Default outputs 

• degree_distribution_dotplot.png: Distribution of the number of nodes which 

each degree in the network 

• <propx>_v_<propy>_distribution.png: A dot plot of user-specified node prop-

erties 

• <propx>_v_<propy>_distribution_<node_type>_nodes_only.png: Same as 

previous plot, but with just the nodes from each data type. There will be one plot pro-

duced for each data type 

• <propx>_v_<propy>_distribution_top_<top-num>_nodes.png: Same as the 

second plot, but zoomed in on the top nodes  

• <propx>_v_<propy>_distribution_top_<top-num-per-
type>_nodes_<data_type>_only.png: same as third plot, but zoomed in on the 

top nodes per data type.  

16. Create abundance plots 

This step creates abundance/expression plots of the top nodes in the network, which are the same 

nodes that were labeled in the previous step. These figures can be grouped according to class 

(called ‘Treatment’ in the program) or Experiment. 

Usage 

python ./visualization/plot_abundance.py --pickle <file.pickle> -
-abund-data <list of files> --metadata <list of files> --color-
group <choice> --x-axis <choice>  

Example command 

python ./visualization/plot_abundance.py --pickle ./pro-
ject_folder/output/network_output/inputs_for_down-
stream_plots.pickle --abund-data ./project_folder/input/Expt1.csv 
./project_folder/input/Expt2.csv --metadata ./project_folder/in-
put/Expt1_meta.csv ./project_folder/input/Expt2_meta.csv --color-
group Treatment --x-axis Experiment  

Inputs 

--pickle: inputs_for_downstream_plots.pickle file output by 

dot_plots.py 

--abund_data: List of data files containing expressions/abundances 

--metadata: List of metadata files containing Experiment/Treatment columns 
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--color-group: Variable to color the plot by 

--x-axis: Variable you wish to group the data by on the x-axis 

Outputs 

• One boxplot for each of the top nodes (found in dot_plots.py) as well as additional plots 

if specified with the optional argument --nodes-to-plot 

17. Create 2D density plot 

The last step of TkNA is to create a 2D density plot using the random network results from step 

14. This step will take the nodes that were labeled in step 15 and plot them on top of the density 

plot. It also labels the nodes with the names and probability of a randomly generated network 

having a node with a higher degree and BiBC than each plotted node. 

Usage 

python ./visualization/plot_density.py --rand-net <file.csv> --
pickle <file.pickle> 

Example command 

python ./visualization/plot_density.py --rand-net ./pro-
ject_folder/output/network_output/random_networks_synthesized.csv 
--pickle ./project_folder/output/network_output/inputs_for_down-
stream_plots.pickle 

Inputs 

--rand-net: file output by synthesize_network_stats.py 

--pickle: inputs_for_downstream_plots.pickle file output by 

dot_plots.py 

Default outputs 

• density_plot_with_top_nodes_from_dotplots.png: contour plot with the top 

nodes (found in dot_plots.py) from the real reconstructed network overlaid on top 

• density_plot_with_top_<data_type>_nodes_only.png: Same as previous, 

but contains just one data type per output file 
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Figure 7. a) Degree distribution plot b) Left: Example node property visualization, where each 

point represents a node in the reconstructed network. Right: Same graph, zoomed in on the top 5 

microbe BiBC nodes c) Example abundance/expression plot of the top BiBC node found in b. 

Legend is the two classes that were in the dataset. In this case, a class of samples named ‘high’ 

was compared to a class named ‘low’ d) 2D density plot of the 10,000 random networks with the 

top nodes from b overlaid. 

 

Applications of the method 

Although this methodology was originally designed to uncover the interactions between different 

taxonomic kingdoms, this approach is also used for the analysis of more general types of multi-

omics data. For example, TkNA can be used to analyze the interaction between genetic and 

transcriptional data, metabolites, proteins, and phenotypes, as well as various omics data from 

different organs from the same host. 

 

Comparison with other methods 

The TkNA approach relies on performing meta-analysis across several experiments to identify 

robust patterns of fold-change and correlations across multiple cohorts. By default, it uses 

Fisher’s method to combine p-values from several independent tests. Other general R packages 

(e.g., meta38, netmeta39, mixmeta40) offer several methods for meta-analysis that can be used 

along with the principles of TkNA. Additional R packages (e.g., MixOmics41, MOFA242,43, 

iClusterPlus44) use sophisticated statistical methods to combine multiple -omics data measured 

from the same patients. However, their application to several cohorts simultaneously or to unique 

-omics data (where the data composition or distributional assumptions are not met) can be 

challenging. TkNA provides a framework to achieve simultaneous integration of multiple -omics 

types and cohorts.  

While many tools claim a gene or microbe to be “important” based on association analysis, 

TkNA specifically identifies causal relationships rather than only associations.  

One of the most popular approaches to determine causality thus far is an application of the 

Mendelian Randomization45,46 (MR) method for the inference of microbes causally contributing 

to a given host trait. Although this method has a robust theoretical framework, it has two main 

drawbacks. First, because it is based on differences in causal signals between alleles present in 

the normal human population, it requires huge sample sizes (e.g., thousands, akin to GWAS) that 

are often not available, particularly when working with mice. Second, allelic differences in 

humans explain a very small proportion of microbiome variability, which then limits the 

approach’s utility to a small handful of microbes clearly regulated by common polymorphisms.  

More recently, a variety of regression approaches to causal inference in microbiome experiments 

have been developed, most of which are based on (linear) structural equation models, which have 

been around in one form or another for more than a century. The Sparse Microbial Causal 

Mediation Model (SparseMCMM)47 is a recent example. While promising, these group of 
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methods have not been tested in new studies that would experimentally validate model 

inferences. These approaches deal with the large number of possible covariates (host genes or 

genetic markers) via either regularization or PCA-type transformation to a reduced set of 

covariates, potentially making interpretation of gene mediators difficult. Finally, these methods 

ignore any structure to the covariates (gene-gene interactions) or the microbes (taxa-taxa 

interactions).  

Experimental design 

TkNA requires collection of data from at least two classes (e.g., disease, control). We 

recommend using at least five biological replicates per sample group when several independent 

datasets are available. However, ten replicates would be optimal. In regard to statistical 

consideration, we strongly recommended using two or more independent 

cohorts/experiments/datasets, which allow for the implementation of meta-analysis ensuring the 

robustness of inferences from TkNA. We recommend using a standard meta-analysis approach 

that combines data of the same type from different experiments to identify differentially 

abundant features (nodes in the network) and correlations from the same class (e.g., “disease”) 

for establishing edges in the network. However, if the number of available datasets is limited, 

TkNA allows one to determine edges common across different classes (e.g., “disease”, 

“control”), either from the same or separate experiments, (see Step 7 in the procedure) (Figure 

8). This approach increases the power of network reconstruction. However, it is efficient under 

the strong assumption that differences between classes (e.g., “disease” and “control”) are 

predominantly limited to the levels of measured variables (e.g., genes, metabolites, etc.) while 

there are very few edges that are reliably different between networks reconstructed from 

different classes.  

Based on our experience, this assumption holds true for host data such as gene expression and 

metabolomics, but usually is unreasonable for microbiome data. However, even for host gene-

gene interactions this approach still comes with the cost of losing a few edges specific for 

individual classes (e.g., relationships that are only present in the disease class). Accordingly, 

some information related to the biological mechanism underlying a transition from one class to 

another (e.g., from healthy to disease) might be lost48-50. 
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Figure 8. Example configurations of experimental classes for meta-analysis of edges. a) An 

example study, in which the user has two experiments. In experiment 1, there are two classes: 

control and disease. In experiment 2 there are three classes: the same control class as experiment 

1, the same disease class as experiment 1, and a second disease class, not present in experiment 

1. b) Different options for meta-analysis. Option 1: The ideal (recommended) option for meta-

analysis, in which the same disease groups from both experiments are used. Option 2: Same as 

option 1 except uses the control groups. Option 3: Use all three disease groups to find the 

underlying edges that are present in the disease, regardless of potential differences between D1 

and D2. Option 4: Use all five groups. This option presents the highest statistical power and 

generalizability, finding the edges present across all conditions (classes).  

Inferred pathways and top nodes are biologically informative under any circumstances. 

However, for causal inference, if additional information allows for the implementation of an 

“instrumental variable”51, the directionality of interactions between kingdoms or pathways can 

be also established. For example, when studying the effects of antibiotics on a host, it is a 

reasonable assumption that these effects are mostly mediated by microbes8,13; thus microbes in 

the network can serve as instrumental variables in this case. 

Expertise needed to implement the protocol 

 

The target audience for this protocol is researchers working in the host and/or microbiome field 

with limited computational and statistical expertise. Our method can be used in biological and 

biomedical research across multiple disciplines ranging from the establishment of new cellular 

and molecular targets of treatment to fundamental biological questions. This protocol does not 

require programming expertise; however, users should be comfortable running programs from 

the command line in the Unix environment and should learn a bit about the JSON file format in 

order to be able to customize and modify the program’s options. 

 

Limitations 
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A basic understanding of statistics is expected from the user to understand the suitability of the 

software to their experimental setup and any inherent limitations of the approach. For example, 

Fisher’s method is the default method implemented by this software for combining p-values 

from independent tests with the same null hypothesis. However, if the same control group is used 

in calculating the effects of different treatments (or over time), the effect sizes are non-

independent. Since the tool cannot automatically detect this dependence and will proceed with 

the analysis, the user will need to realize that alternative methods to conduct a meta-analysis with 

non-independent effect sizes52 will be more suitable in this case.  

The only aspect of the TkNA approach that can be considered as a critical limitation is related to 

the fact that it requires an appropriate study design for better inference of causal structure of the 

investigated biological process (this is not unique to TkNA but would be a limitation of any 

causal inference approach). For example, to define the directionality of a process, as with any 

other causal inference application (including those mentioned above), it requires study designs 

that would confer with the assumptions needed for mediation analysis53 or for instrumental 

variable analysis51. Since most standard biomedical experiments are designed as “double blind 

randomized studies” or contain an instrumental variable, TkNA is very powerful for causal 

inference from multi-omic data.  

 

Materials 

 

Required hardware 

Memory usage and storage space are primarily correlated with the number of correlations that 

pass the filters (i.e., the number of edges in the reconstructed network). They are therefore also 

indirectly correlated with the number of variables that pass the filters for differential expression. 

As a baseline, 8GB of memory and 10GB of free storage is recommended, but more may be 

required by larger networks (Figure 9).  

 

Benchmarking 

Considering the exponential increase in the number of correlations required as the number of 

differentially abundant variables linearly increases, we ran the network reconstruction section of 

the TkNA pipeline using various numbers of differentially abundant variables (between 250 to 

2000) (Figure 9). The reconstruction was performed using 8 cores and 16 GB of RAM. The 

approximately 2,000,000 correlations required for the largest of these datasets took less than 7 

minutes to run. 
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Figure 9. Amount of time (primary axis) and storage space (secondary axis) required to 

reconstruct a network as a function of the number of differentially abundant variables.  

 

Required software and modules 

• Miniconda with python 3.8.10 - https://docs.conda.io/en/latest/miniconda.html 

• git (as well as a GitHub account) - https://github.com/git-guides/install-git 

• Cytoscape - https://cytoscape.org/download.html 

• All required modules are in the requirements.txt file in the repository. See step 3 in 

“Software setup” for how to create a virtual environment and install all the necessary 

modules to run TkNA. 

• Text editing software such as Notepad++, Atom, BBEdit, Gedit, and/or a source-code 

editor (recommended) such as Visual Studio Code (also known as VS Code) for creating 

the input files. VS Code aids in the process of writing JSON files. 

 

Troubleshooting 

While this pipeline was tested extensively to ensure compatibility across different environments, 

it’s not possible to account for all the possible errors one can run into. We have compiled a list 

below of the most common errors one may run into when running the TkNA pipeline. 

• Error: No module named _______  

o Solution: make sure all the modules and the correct versions are installed from the 

requirements.txt file.  

• Error: Figure legend does not have colors labeled, but instead have the data points labeled 

in the legend 

o Solution: make sure all the modules and the correct versions are installed from the 

requirements.txt file. Specifically, check the matplotlib and seaborn versions. 

 

Anticipated results 

Through using TkNA, a user should expect to be able to reconstruct and interrogate a network 

from multi-omic (or single-omic) data. Users can then identify key players (microbes, genes, 

etc.) that are responsible for the communication between subnetworks. These subnetworks can 

either be pre-identified by the user or found using community detection algorithms via the 

Louvain or Infomap algorithms. Functional enrichment of these subnetworks can be performed 

using external software (not part of TkNA). The nodes that have a high degree and/or high BiBC 

are key regulatory nodes that contribute to the interaction between these enriched pathways. 
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Additionally, these findings can be visualized through the use of the TkNA software, including 

plots for the top nodes based on BiBC and degree, as well as abundance plots of these top nodes 

and a 2D density plot comparing these top nodes to the top nodes of randomly generated 

networks. Examples of this data (including all necessary input files and expected output files) for 

easy-to-understand toy network can be found on the GitHub repo at 

https://github.com/CAnBioNet/TkNA/tree/main/example_datasets_and_commands/toy_network.  

We have also uploaded more complex data that includes both microbiome and phenotypic data to 

https://github.com/CAnBioNet/TkNA/tree/main/example_datasets_and_commands/microbiome_

and_phenotype. All input and expected output files are included for that dataset as well. 

 

Code availability 

The TkNA pipeline is publicly available at https://github.com/CAnBioNet/TkNA. 
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