bioRxiv preprint doi: https://doi.org/10.1101/2023.05.02.539031; this version posted February 2, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

D2/D3 dopamine supports the precision of mental state
inferences and self-relevance of joint social outcomes

Barnby, J.M."?* Bell, V.3, Deeley, Q.2, Mehta, M.2, Moutoussis, M.*°,

Author affiliations:
' Department of Psychology, Royal Holloway, University of London, London, UK

2 King’s College London, Cultural and Social Neuroscience Group, Department of
Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, University of
London, London, UK

3 Clinical, Educational, and Health Psychology, University College London, UK
4 Wellcome Centre for Human Neuroimaging, University College London, London, UK.

5 Max-Planck — UCL Centre for Computational Psychiatry and Ageing, University
College London, London, UK.

*Corresponding Author

Abstract

Striatal dopamine is important in paranoid attributions, although its computational role
in social inference remains elusive. We employed a simple game theoretic paradigm
and computational model of intentional attributions to investigate the effects of
dopamine D2/D3 antagonism on ongoing mental state inference following social
outcomes. Haloperidol, compared to placebo, enhanced the impact of partner
behaviour on beliefs about the harmful intent of partners, and increased learning from
recent encounters. These alterations caused significant changes to model covariation
and negative correlations between self-interest and harmful intent attributions. Our
findings suggest haloperidol improves belief flexibility about others and simultaneously
reduces the self-relevance of social observations. Our results may reflect the role of
D2/D3 dopamine in supporting self-relevant mentalisation. Our data and model bridge
theory between general and social accounts of value representation. We demonstrate
initial evidence for the sensitivity of our model and short social paradigm to drug
intervention and clinical dimensions, allowing distinctions between mechanisms that
operate across traits and states.
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Introduction

Dysregulated striatal dopamine has been identified as a key causal component in
psychosis. Influential work proposed that striatal dopamine mediates aberrant salience
leading to atypical perceptual experiences [1-3] more recent social-developmental
models have highlighted the role of dopamine as a key point of convergence for a
number of causal social and developmental factors, such as trauma, genetic
vulnerability, and cannabis use [4]. This has been supported by molecular and
neuroimaging studies suggesting that developmental adversities (e.g., [5,6]) increases
pre-synaptic turnover of dopamine in striatal regions that may fuel the onset [7-9] and
exacerbation [10,11] of psychosis symptoms.

Antipsychotics are the first-line treatment for psychosis and have good evidence for
their efficacy [12]. While they are thought to enact their therapeutic efficacy via D2/D3
dopamine antagonism, the exact mechanism by which their pharmacological effect
reduces symptoms through the modulation of neurocognitive processes is still poorly
understood. Although recent work on the links between striatal hyperdopaminergia
and psychosis has been important in identifying important risk factors and has offered
important hypotheses for the causes of psychosis and psychotic symptoms at the
neurobiological level, it has not been able to explain how they alter cognition beyond
citing salience as a key mechanism. The end point of such causal pathways in
psychiatry are likely to be dynamic, multi-dimensional, context-sensitive cognitive
processes [13]. Computational modelling is an approach that allows these dynamic
cognitive processes to be mathematically implemented and has the potential to
connect mechanism more effectively to psychiatric phenomenology [14,15], offering
precise accounts of complex behaviour that are more amenable to formal testing,
refutation and refinement. Within this framework, dopaminergic alterations have been
linked to computational processes such as belief updating [16,17], expectations of
belief volatility [18-20], and model-based control [21].

One particularly disabling core symptom of psychosis is paranoia, the unfounded belief
that others are trying to cause you harm [22,23]. Psychologically, paranoia is
characterised by heightened sensitivities to interpersonal threat [24], attributing
negative outcomes to external, personal causes [25], and overly complex
mentalisation [26-27]. Developing computational theories to bridge the gap between
the phenomenology and the neurocognitive mechanisms of paranoia requires
particular considerations. Computational approaches in the social domain must
sufficiently account for large, and often recursive, action spaces [28]. These structural
principles are appropriate for psychiatric symptoms which inherently involve
alterations to interpersonal beliefs concerning the self and others [29].

Models of intentional attributions — explicit inferences about the mental state of others
- allow for analyses that are theoretically related to ongoing paranoia. Current models
include mechanistic explanations for perceived changes in the harmful intent and self-
interest that might motivate the actions of another. Prior work suggests high trait
paranoia is associated with rigid priors about the harmful intent of partners, and a belief
that a partner’s actions are not consistent with their true intentions [30,31]. Several
predictions can be made concerning the influence of dopamine D2/D3 antagonism on
paranoia. Synthetic, in silico models [32], neuroimaging evidence [33], prior
predictions [31], and parallel psychopharmacological work [21,34] predict that D2/D3
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antagonism will increase belief flexibility and improve consistency of the self’'s model
of others, which in turn should reduce self-relevant attributions of harmful intent
following social outcomes. However, this has yet to be tested.

While key binding sites of most antipsychotics are thought to work through their action
at D2/D3 dopamine receptors, how they influence the cognitive processes of paranoia
is unknown. Given the experimental evidence and synthetic predictions on the role of
D2/D3 dopamine antagonism on improvements in belief updating, reductions in
harmful intent, increases in prosocial behaviours, and the impact of high trait paranoia
on the consistency of a self's model of others, it follows that the mechanism of action
of D2/D3 antagonism on harmful intent attributions may occur through an increase in
belief flexibility and the consistency of a self's model of others. Following from our
preregistered behavioural experiment [35], we further examine the causal influence of
D2/D3 dopamine receptor antagonism on computational mechanisms governing
intentional attributions within a simple game theoretic context. Using a formal model
of intentional attributions and an iterative Dictator game [30,31], we test the impact of
haloperidol, a D2/D3 antagonist, and L-DOPA, a presynaptic dopamine potentiator, on
paranoid beliefs using past data [35].

Primarily we assessed whether haloperidol alters key computational processes
involved in mental state inferences, allowing distinctions between trait representational
changes (priors) and state learning processes (policy flexibility, uncertainty) along
each attributional dimension (harmful intent and self-interest). Given the absence of
any consistent descriptive effects of L-DOPA in this experiment we modelled the data
under an assumption that there would be no opposing effects on model parameters
under LDOPA vs. haloperidol.

Methods
Participants

This study was approved by KCL ethics board (HR-16/17-0603). All data were
collected between August 2018 and August 2019. Participants were recruited through
adverts in the local area, adverts on social media, in addition to adverts circulated via
internal emails.

Eighty-six participants were preliminarily phone screened. 35 participants were given
a full medical screen. Thirty healthy males were recruited to take part in the full
procedure. Two failed to complete all experimental days, leaving 28 participants for
analysis. Inclusion criteria were that participants were healthy males, between the
ages of 18 and 55. Participants were excluded if they had any evidence or history of
clinically significant medical or psychiatric illness; if their use of prescription or non-
prescription drugs was deemed unsuitable by the medical team; if they had any
condition that may have inhibited drug absorption (e.g. gastrectomy), a history of
harmful alcohol or drug use determined by clinical interview, use of tobacco or nicotine
containing products in excess of the equivalent of five cigarettes per day, a positive
urine drug screen, or were unwilling or unable to comply with the lifestyle guidelines.
Participants were excluded who, in the opinion of the medical team and investigator,
had any medical or psychological condition, or social circumstance, which would
impair their ability to participate reliably in the study, or who may increase the risk to
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themselves or others by participating. Some of these criteria were determined through
telephone check for non-sensitive information (age, gender, general understanding of
the study, and overall health) before their full screening visit.

Procedure

This study was part of a larger study that assessed the role of dopaminergic
modulation on personality, beliefs, and social interaction. Here, we focus on the role
of dopamine antagonism and pre-synaptic increases in the attribution of mental state
inferences during a Dictator game (described below; see Figure 1a).

The full procedure for participant screening is documented in a prior publication [35].
Briefly, participants who passed the brief phone screening were invited to attend an
on-site screening day (see above). Participants were tested for drugs of abuse
(SureScreen Diagnostics Ltd) and alcohol (breath test) prior to each experimental day
and were excluded if any test was positive. Participants were given at least 7 days,
but no more than two months, in between experimental days to allow for drug washout.

On experimental days, participants were randomised to be initially administered either
a placebo or 3mg haloperidol in two capsules, and 10mg of domperidone (to reduce
known side effects of vomiting and nausea that can appear in some recipients) in one
capsule (3 caps total). After half an hour, participants were dosed a second time with
either 150mg of co-beneldopa (herein referred to as L-DOPA) or placebo in two
capsules. Participants would never receive haloperidol and L-DOPA in the same day.

The Sharing Game

Participants were asked to play a within-subjects, multi-trial modification on the
Dictator game design used in previous studies to assess paranoia [35,36], hereafter
called ‘The Sharing Game’ (Figure 1b). In the game, participants played six trials
against three different types of partner who are assigned the role of Dictator. In each
trial, participants were told that they have a total of £0.10 and their partner (the
Dictator) had the choice to take half (£0.05) or all (£0.10) the money from the
participant. Partner policies were one of three types: always take half of the money,
have a 50:50 chance to take half or all of the money, or always take all of the money.
These policies were labelled as fair, partially fair, and unfair, respectively. The order
that participants were matched with partners was randomised. Each partner had a
corresponding cartoon avatar with a neutral expression to support the notion that each
of the six trials was with the same partner.

After each trial, participants were asked to rate on a scale of 1-100 (initialised at 50)
to what degree they believed that their partner was motivated (a) by a desire to earn
more (self-interest), and (b) by a desire to reduce their bonus in the trial (harmful
intent). From the participants perspective, the actions of the partner can be framed as
either arising from motivations that concern the gain of value for the partner
irrespective of the participant (other-relevant) or arising from motivations that concern
the loss of value for the participant (self-relevant).

After making all 36 attributions (two trial attributions for each of the six trials over three
partners), participants were put in the role of the Dictator for six trials—whether to
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make a fair or unfair split of £0.10. Participants were first asked to choose an avatar
from nine different cartoon faces before deciding on their six different splits. These
Dictator decisions were not used for analysis but were collected to match subsequent
participants with decisions from real partners. Participants were paid a baseline
payment for their completion, plus any bonus they won from the game.

Analysis

Behavioural data has been previously published [35]. Here, we apply three
computational hypotheses which could explain the data, centred around a Bayesian
model [31] developed to explain mental state inference dynamics during social
observation, where recursive, strategic social action is not a process of interest [29].
We note that previous work showed a Bayesian instantiation of this attributional model
outperformed associative model variants [31]. Model 1 allowed separate uncertainties
and likelihood weights for each attribution, identical to our prior work [31]; this model
demonstrated that trait paranoia increased belief rigidity and self-other inconsistency,
and by extension, may serve as a useful assay to test the mechanisms of haloperidol
which is theorised to reduced paranoia. In line with general theories of belief updating
[37], Model 2 hypothesised that beliefs would be updating with the same likelihood
weight. Model 3 hypothesised that prior beliefs share a single uncertainty free
parameter over each distribution, allowing for a simpler hypothesis that prior
uncertainties may be represented by a single dimension, giving a more parsimonious
account of the data. Descriptions of the parameters within the winning model are in
Table 1.

The winning model uses eight parameters that calibrate an agent's initial and ongoing
beliefs about others. It encodes the agent's prior expectations of harm, pHI,, and self-
interest, pSl,, and the certainty of these expectations, uPri. Three parameters
implement the agent’s internal likelihood of a partner acting with self-interest or harm
based on their behaviour, influencing belief updates (w,, wyi, wg;). A noise parameter
(um) indicates the agent's uncertainty over the representation of their partner. The
model also includes a belief persistence parameter, ), for agents to either persist with
their most recent beliefs or re-set them to the prior expectations (above) upon
encountering new partners, with higher values indicating less resetting. See table 1
for further details.

All computational models were fitted using a Hierarchical Bayesian Inference (HBI)
algorithm which allows hierarchical parameter estimation while assuming random
effects for group and individual model responsibility [38]. This process is shown to be
most robust to outliers versus non-hierarchical inference or standard hierarchical
inference with fixed effects, and minimises parameter and model confusion [38].
Parameters were estimated using the HBI in native space drawing from broad priors
(4m = 0, 0, = 6.5; where m = {my, m,, m3}). This process was run independently for
each drug condition due to the dependency of observations between conditions (the
same participants were in each condition). Parameters were transformed into model-
relevant space for analysis. All models and hierarchical fitting was implemented in
Matlab (Version R2022B). All other analyses were conducted in R (version 4.2.3;
x86_64 build) running on Mac OS (Ventura 13.0). All statistics are reported as: (X,
95%CI: Y, Z), where X is the regression coefficient, and Y and Z are the 95% lower
and upper confidence intervals (Cl), respectively. All dependent regressors were
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centred and scaled. To consider the uncertainty of estimates we conducted Bayesian
paired sample t-tests to assess individual-level parameter changes. This used JAGS
as a backend MCMC sampler [39]; differences in the mean are additionally reported
with their corresponding effect sizes (Cohen’s d) and posterior 95%HDI (High Density
Interval). The raw output of this is listed in Table S1. Bayesian paired sample t-tests
were also used to assess differences between attributional coupling over time. To
note, in the original behavioural analysis [35] we excluded one extra participant due to
their extreme trait psychometric paranoia score (leaving 27 participants), however trait
paranoia was not the subject of this analysis, and hierarchical model fitting constrains
group behaviour during parameter estimation. Nevertheless, for transparency, we
include analytic estimates with the original 27 individual included for comparison. This
did not change conclusions (Table S2).

We also sought to examine model covariance. Exploratory factor analysis used
oblique rotation, including all parameter estimates for each individual within placebo
and haloperidol conditions. Optimal factors were determined from observation of the
scree plot and cross-validated model accuracy (Figure S9). Cross-validation used 10
folds with three repeats within a logistic general linear model. Parameter loadings and
individual factor scores >|0.4| were retained for analysis.
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Figure 1. Experimental design and model space. (A) Participants were entered into
a double-blind, placebo-controlled, within-subject experimental design. (B)
Participants engaged in a three-partner version of the sharing game. Here, partners
were assigned the role of Dictator and on each trial could either take £0.10 for
themselves (unfair outcome) or take £0.05 and give the participant £0.05 (fair
outcome). Participant reported two types of attributional intent concerning the
motivations of the partner after each outcome. These included harmful intent
attributions and self-interest attributions. Partner order was randomised, and partner
change was signalled. (C) Model space used to test whether dopamine manipulations
were best explained by the full model (M1), a model that constrained policy updating
to a single sensitivity parameter for each attribution (M2), or a model that constrained
prior uncertainty to a single parameter (M3; Table 1). White filled objects are free
parameters. Grey shaded objects are probability distributions.



https://doi.org/10.1101/2023.05.02.539031
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.02.539031; this version posted February 2, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Table 1. Winning model parameters and their role in the model. By using model
fitting procedures modellers can invert the model to approximate the parameter values
that may give rise to the observed data. This includes the hidden, prior beliefs of each
participant given the variance and magnitude of observed attributions. Using fitted
parameter values to simulate each participant allows for generation of pseudo-
experimental data - in this case, an agent’s reported intentional attributions, which we
can directly compare with the real data. This also approximates the prior beliefs of
each participant given the variance and magnitude of observed attributions. NB =
number of bins discretising the variable represents each attribution; in this case each
distribution is comprised of 9 bins. Bin = binomial distribution with an added precision
parameter, i.e. in the case of HI: p(HD)*™°~ Bin(HI;pHIy, uPri,NB) =
p(HI)'=° ~ B(HI; pHI,, NB)/¥PTt,
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Parameter | Generative Purpose
pHI, Magnitude of the prior that the actions of others are generally

motivated by harmful intent (HI) toward the self, p(HI)*=° .
Increasing this parameter increases the belief that a partner is
motived by harmful intent before any actions are observed.
pSI, Magnitude of the prior that the actions of others are generally
motivated by self-interest (Sl) irrespective of the self,
p(S1)t=°. Increasing this parameter increases the belief that a
partner is motived by self-interest before any actions are observed.
uPri Uncertainty over priors. Increasing this parameter broadens the
prior distribution of both p(HI)*=° and p(SI)*=°.

p(HD'=° ~ Bin(HI; pHI,, uPri,NB)

p(SD'=° ~ Bin(SI; pSly, uPri, NB)

Prior p(HI, SN0 = p(HN="p(SD'="
NB =9
Wy Intercept of the likelihood matrix, m,,,, that calibrates the magnitude
of attributional change when a fair or unfair action is made by a
partner.
Wyi Impact on beliefs that an outcome (r) is motivated by harmful intent.

Increasing this parameter leads to greater influence of a partner’s
behaviour on attributions of harmful intent (belief flexibility).
Wg Impact on beliefs that an outcome (r) is motivated by self-interest.
Increasing this parameter leads to greater influence of a partner’s
behaviour on attributions of self-interest (belief flexibility).
Tgen(r = 0; HI,SI) = o(wq + [wy, x HI — 8] + [wg; * SI — 6])
Mgen(r = 0.5;HI,SI) = 1 — 1y, (r = 0; HI, SI)

o NB +1
Likelihood o= >
_ 1
o(x) = 1+e>

T[gen(r;' HI, Sl)p(HI' Sl)t_l
D HILST ngen(r; HI',SINp(HI',SI")t=1
um The consistency with which partners were believed to act in

accordance with their character. Higher values reduce consistency,
causing a partner’s behaviour to have less impact on beliefs.

Update p(HI,SI)t =

. _ 1
Consistency p(HI,SD)t o< p(HI,SI)" um + &
rule £ = 0.02/NB?
n Controls the mixture of prior and posterior beliefs used as a starting

point for each new encounter. Higher values indicate more reliance
on information gathered from the last encounter, rather than
reverting to prior beliefs. The product from the below equation,
p(HI, SD*=C replaces p(HI,SI)*~! when beginning a new encounter.
Change p(HI,SD*=¢ = p(HI,SD*=° % [1 —n] + p(HI, S * n

point C = final action of an other in an interaction



https://doi.org/10.1101/2023.05.02.539031
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.02.539031; this version posted February 2, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Results
Behavioural results

Behavioural results were published previously [35]. To summarise, when averaged
over all Dictators, haloperidol caused a reduction in harmful intent attributions versus
placebo (-0.17, 95%CI: -0.28, -0.05), but L-DOPA did not. Haloperidol also increased
self-interest attributions versus placebo (0.16, 95%CI: 0.05, 0.27), but L-DOPA did not.
Unfair and partially fair Dictators both elicited higher harmful intent (Partially fair = 0.28,
95%Cl: 0.16, 0.40; Unfair = 0.75, 95%ClI: 0.63, 0.87) and self-interest attributions
(Partially fair = 0.59, 95%CI: 0.63, 0.87; Unfair = 1.16, 95%ClI: 1.05, 1.27) versus fair
Dictators.

Model comparison and recovery

Bayesian hierarchical fitting and comparison identified that at the group level (Figure
2A), participants under placebo and haloperidol were best fitted by model 3. This
model assumed agents use a single uncertainty over both attributional priors, although
used separate likelihood weights to update their beliefs about their partners’ policy. In
contrast, participants under L-DOPA were best fit by model 2. This model assumes
participants hold individual uncertainties over their prior beliefs, although use the same
likelihood weight to update both attributional dimensions. Importantly, model
parameters under L-DOPA were not opposing haloperidol changes vs. placebo,
supporting behavioural analyses (see Figure S10).

For each condition we examined model generative performance and reliability. We
extracted parameters for each individual under each condition according to the model
that bore most responsibility for their behaviour (Figure 2B). We then simulated data
for each participant with their individual-level parameters for each condition and model
and re-estimated model comparison, recovered each model, generated attributions for
each trial and dictator condition, and fitted regression models for main effects.
Bayesian hierarchical fitting and comparison on simulated data demonstrated
excellent similarity to group and individual level model responsibility and exceedance
probabilities from real data (Figure S1A). Likewise, individual level parameters
demonstrated excellent recovery (all Pearson r values > 0.71, p values ~ O; Figure
S1B, C & D). Simulated and real attributions demonstrated excellent recovery across
all drug and dictator conditions (all Pearson r values > 0.62, p values ~ 0; Figure S1E).
Simulated attributions also recovered the main effects of drug and dictator condition
on attributional dynamics: haloperidol demonstrated reductions in harmful intent
versus placebo (-0.26, 95%ClI: -0.36, -0.16), but L-DOPA did not, and haloperidol
increased self-interest attributions versus placebo (0.26, 95%CI: 0.15, 0.37), but L-
DOPA did not.

We were most interested in examining the effect of haloperidol versus placebo in order
to understand the mechanism behind the observed descriptive behavioural results. As
model 3 achieved group-level dominance across both placebo and haloperidol
conditions we were able to directly compare all individual-level, winning model
parameters between-conditions {pHI,, pSI,, uPri,um,n, wy, wy;, ws;t (Table 1; see
below).
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Figure 2. Model comparison, recovery, and generative performance.

(A) Model responsibility across all three drug conditions. Greater model responsibility
at the group and individual level indicates that a particular formulation was the most
likely generative model to explain the data. Ex. Prob = Exceedance probability that a
single model best defines group behaviour. Freq = Model frequency that each model
is the best fitting model for participants. (B) Model recovery. All recovery analyses
used n=28 synthetic participants — one for each real parameter set approximated from
the data. The HBI algorithm correctly identified the correct model for most participants
with trivial differences between model frequencies. (C) Correlation matrix of common
parameters across all drug conditions for simulated (y axis) and real (x axis) data. All
correlations were over 0.71 (p values < 0.001). X' indicates a non-significant
association. (D) Individual correlations between common parameters across
haloperidol and placebo conditions for simulated (y axis) and real (x axis) data. All
correlations were over 0.71 (p values < 0.001). Black lines indicate the linear model of
perfect association (r=1). (E) Individual correlations between common parameters
across all drug conditions for simulated (y axis) and real (x axis) data. Black lines
indicate the linear model of perfect association (r =1). (F) Top panel: Correlation
between simulated and real harmful intent (left) and self-interest (right) attributions
across all Dictator policies. Bottom panel: Simulated harmful intent (left) and self-
interest (right) attributions for each drug condition and Dictator policy.
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Haloperidol reduces the influence of priors and the precision of harmful intent

We examined the differences between individual level parameters within-subjects for
haloperidol versus placebo (Figure 3A; see Figure S4 [Supplementary Materials] for
effect sizes). This suggested that haloperidol increased reliance on learning about a
partner just encountered, relative to pre-existing prior beliefs about partners in general
(n; mean diff. = 0.15, 95%HDI: 0.03, 0.26; effect size = 0.66, 95%HDI: 0.22, 1.10).
Haloperidol did not influence the consistency with which partners were believed to act
in accordance with their character (urn).

Haloperidol increased learning flexibility over harmful intent attributions only.
Haloperidol increased the impact of partner behaviour on harmful intent attributions
(wy;; mean diff. = 0.10, 95%HDI: 0.06, 0.13; effect size = 1.20, 95%HDI: 0.64, 1.75),
but not over self-interest (wg;); a partner’s actions had more impact on a participant’s
beliefs about their true motivations of intentional harm. Haloperidol also caused the
intercept of the policy matrix to be drawn toward 0, allowing greater updating parity for
each unfair or fair partner action (w,; mean diff. = 0.58, 95%HDI: 0.01, 1.10; effect size
= 0.43, 95%HDI: 0.02, 0.82). The w, effect size should be treated with caution; the
posterior distribution is within the region of practical equivalence (Figure S4).

We sought to further probe the model-based implications of drug differences on
attributional flexibility in detail. Simulations on the marginal effect of wy; on attributional
dynamics are suggestive of its role in modulating the precision (1/c?; inverse variance)
of attributions over all trials, irrespective of Dictator policy (Figure 3B). To establish
this we used a regression model including wy; as a linear term and w, as a quadratic
term — this was most parsimonious compared to using w, as a linear term (AIC = 568
vs. 1123). There was a main effect of wy; on the precision of harmful intent attributions
(-6.13, 95%ClI: -6.28, -5.97; effect size = -0.88, 95%CI: -0.92, -0.85). There was a
small effect of w, within the same model (-0.06, 95%CI: -0.064, -0.056, effect size = -
0.11, 95%CI: -0.14, -0.08). There was a significant but small interaction of w, and wy;
on the precision of harmful intent (-0.22, 95%CI: -0.25, -0.20; effect size = -0.05, -0.08,
-0.02). Importantly, increased wy; reduced harmful intent attributions (-0.93, 95%CI: -
0.95, -0.92; effect size = -0.13, 95%ClI: -0.14, -0.13) through reductions in the precision
of harmful intent.

We found evidence that a greater wy; (cf. effect of haloperidol) may reduce precision
most under conditions of ambiguity. Specifically, the precision of harmful intent
attributions is lower in partially fair vs fair Dictators (-0.24, -0.33, -0.15; effect size = -
0.24, 95%CI: -0.33, -0.15), but unfair vs fair Dictators produced equivalent precision.
Dictator policy interacts with wy;: higher wy; is associated with lower precision under
partially fair vs. fair dictators (-0.77, 95%ClI: -1.42, -0.42; effect size = -0.11, 95%CI: -
0.21, -0.02). Thus, higher wy; accentuates flexibility within and between partners, but
most in ambiguous social contexts where paranoia often flourishes. There was no
interaction for unfair dictators vs. fair dictators (Figure S95).

Haloperidol had no net significant influence on pHI,, uPri, or pSI, (see Table S1).
Individual parameter analysis suggests that haloperidol has a predominant net
influence on the flexibility of belief updating about a specific context, here, that of our
task. Under the influence of haloperidol, participants’ assumptions about each new
encounter are more amenable to change under the influence of recent encounters.
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Figure 3. Influence of haloperidol on the winning model.

(A) Bayesian t-test results in assessing the difference and uncertainty (distribution of
values) of the change in mean (Au) in parameter estimates between placebo and
haloperidol. Red distributions indicate that the High-Density Interval (HDI) of the mean
difference in distributions do not cross 0, suggesting reasonable certainty that the
mean difference is not an artefact of statistical noise. ‘d’ values indicate the median
effect size (Cohen’s d) for each mean difference (See Figure S4 for distributions). The
red box indicates parameters where effect size distributions were most robust, where
the 95%HDI and lay outside of the region of probable equivalence with the null
hypothesis. (B) Simulations of the marginal effect of likelihood parameters on the
precision (1/c?; inverse variance) of harmful intent (red) and self-interest (black)
attributions over all trials, controlling for Dictator style. Vertical lines are indicative of
the median individual parameter estimates from both haloperidol and placebo groups,
with the blue arrow indicating the difference from placebo to haloperidol. For trial-wise
and within-Dictator precision changes see Figure S3; to note, simulations are
consistent with the notion that wy; increases flexibility within and between contexts,
accentuating smooth learning. To note, there was no significant correlation between
wy, W, and wy; in our parameter estimation from our real data (ps > 0.05; Figure S2)
suggesting independent contributions of each to attributional dynamics. (C) Factor
loading of each parameter on flexibility (factor 1) and learning (factor 2) dimensions.
A loading filter of |0.4| was applied. Both of these factors were able to discriminate
most effectively between drug conditions. wg; is not featured in this plot as it was not
meaningfully loaded onto either factor. (D) Factor scores for each individual participant
(n=28) for both haloperidol (red) and placebo (blue) conditions ordered from low to
high factor loading. The panels on the right of each graph demonstrate the marginal
loading across participants. (E) Candyfloss plot of joint factor scores for each individual
participant. Grey lines indicate that the same participant was responsible for each
connected point under placebo (blue) and haloperidol (red) (F) Receiver Operating
Characteristic curve describing the sensitivity and specificity of the combination of
flexibility and learning factors on differentiating drug conditions. Area Under the Curve
= 0.91. Sensitivity = 0.8. Specificity = 0.78.
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Alterations to single parameters drive model covariation that differentiates haloperidol
from placebo

From our analysis we can conclude that the model is accounting for the true observed
data relatively well. Isolated parameter changes between conditions suggest this effect
is primarily driven by increases in the impact of partner behaviour on beliefs about
harmful intent, wy;, and increased learning from experience, n. Considered separately,
these key parameters did not fully explain how the model accounted for behaviour
changes induced by haloperidol (Figure S4). We therefore sought to identify, through
exploratory factor analysis, meaningful patterns over the covariation induced by
Haloperidol.

We found that three factors best accounted for the data (Figure S9) with the first
demonstrating the greatest eigenvalue (factor 1=2.82; factor 2=1.36; factor 3=1.13).
K-fold cross-validation within a logistic model demonstrated that a two-factor solution
provided the best median accuracy to discriminate between drug condition (mean
accuracy = 0.86) and had the lowest AIC (40.3; see Fig S9). Each factor was able to
predict drug condition independently (Factor 1 = 1.52, 95%CI: 0.50, 2.91; Factor 2 =
3.08, 95%CI: 1.72, 5.03), and there was a large effect found between conditions using
Bayesian paired t-tests (factor 1: mean diff. = 0.76, 95%HDI = 0.37, 1.17; effect size
= 0.94, 95%HDI = 0.35, 1.59; factor 2: mean diff. = 1.34, 95%HDI = 0.87, 1.85; effect
size = 1.23, 95%HDI = 0.64, 1.84; Figure 3F).

Factor 1 (Flexibility; Figure 3C) was typified by high values of wy;, and greater
consistency between beliefs that a partner’'s actions are indicative of their true
motivations, u,. Factor 2 (Learning; Figure 3C) comprised high values of n, larger
intercepts over the policy matrix, w,, and higher values over priors pSi,. pHI, and up,;
were oppositely loaded onto each factor and would likely nullify each other in cases
where participants scored strongly on both (Figure 3E). We note that pHI,, and up,;
load with slightly more absolute value on the Flexibility factor. For completeness, the
third factor was comprised exclusively of wg; above a cut-off of |0.4| (loading = 0.99),
although was not found to be a meaningful factor in differentiating drug scores
following cross-validation and logistic model comparison.

Haloperidol compresses the dimensionality of partner policies

Finally, we explored the impact of haloperidol on attributional coupling: the
dependency between intentional attributions over time. This allows analysis into the
dependency of different intentional components. To calculate this we estimated
Spearman correlations between harmful intent and self-interest for each trial across
the sample, controlling for the type of Dictator policy affiliated. This revealed that while
harmful intent and self-interest are attributed independently of one another under
placebo (mean p[sd] = 0.03 [0.07]) replicating prior work [35], under haloperidol they
are negatively associated (mean p[sd] = -0.22 [0.08]), and this difference is significant
(mean diff. =-0.26, 95%ClI: -0.32, -0.20; effect size = 2.22, 95%HDI: 1.22, 3.24). This
relationship was replicated using simulated model predictions (mean diff. = -0.25,
95%Cl: -0.34, -0.17; effect size = -1.53, 95%HDI: -2.28, -0.78); see Figure 4A. There
was evidence that the negative association induced under haloperidol decays over
time (Pearson r = 0.52, p = 0.029). The same is not true under placebo (see Figure
4A). This interaction was not significant (regression coef. =-0.06, 95%ClI: -0.12, 0.03).
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In sum, haloperidol causes harmful intent and self-interest attributions to become less
independent. This means that under haloperidol participants are more likely to believe
someone must be more self-interested if they are perceived to be less intentionally
harmful.
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Figure 4. Association of mental state attributions between drug condition.

(A) In both real and simulated data, haloperidol (red) versus placebo (blue) induced a
trial-wise negative association between harmful intent and self-interest which decayed
over time. The right panel shows the marginal effect of trial-wise correlations between
conditions. *** = p<0.001. (B) There was a general negative association between
harmful intent and self-interest (Pearson correlation) found under haloperidol (red) for
average attributions across all 18 trials. This was not true for placebo (blue). (C)
Summary of main effects between drug conditions on self and other oriented
intentional attributions following social outcomes. Both trial-wise and averaged
associative analyses indicate that other-oriented attributions concerning self-interest
of others (black) and self-oriented attributions concerning the harmful intent of others
(red) are independent under placebo (PLAC) but coupled under haloperidol (HALO).
Under haloperidol this coupling is biased toward exaggeration of other-oriented
attributions and diminishment of self-oriented attributions.
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Discussion

We sought to identify the computational mechanisms that explain how
pharmacological alteration of dopamine function alters attributions of harmful intent,
an important feature of paranoia, given our previous findings that haloperidol reduced
harmful intent attributions and increased self-interest attributions in healthy
participants (see [35] for previously published behavioural analysis). Here, we tested
different computational hypotheses to account more mechanistically for these effects.
The data were best fit by a model utilising a common uncertainty parameter over
priors, but separate likelihood weights for updating attributions. Using this model, we
found evidence that haloperidol reduced the precision of harmful intent (but not self-
interest) attributions allowing more belief flexibility between partners. Haloperidol also
increased the impact of learning from each encounter; participants relied less on their
prior beliefs about the population as a whole. These individual parameter effects were
embedded within covariational model alterations that together accounted for
attributional change under haloperidol. These changes also caused self-interest and
harmful-intent attributions to become negatively associated, suggesting a
compression of attributions into a single interpersonal dimension under haloperidol.
Together our findings indicate haloperidol promotes flexibility regarding attributions of
harmful intent to others by reducing the perceived relevance of the actions of others
to the self (Figure 5). In clinical environments this may allow space to reframe beliefs.

Our findings indicate a reduction in the influence of priors and more flexible beliefs
under haloperidol. Previous research links tonic dopamine at D2/D3 receptors to
efficient encoding of meaningful stimuli and Bayes optimality [33], cognitive control
[40], and sustained attention [41]. Under the model-based, model-free control
framework [42], recent work showed D2/D3 antagonism increased model-based
control and decision flexibility [21] and increased belief flexibility during a trust game
[34]. This may be particularly useful in ‘climbing out’ of paranoia, where one is reluctant
to take in positive information about others for fear of ‘false reassurance’. At face value
our results conform with previous work: under haloperidol, posteriors are more flexible
and less influenced by priors, suggesting more confidence in beliefs about the
motivation of partners. However, this general account does not explain why our data
show asymmetric decreases in harmful intent and increases in self-interest.

One hypothesis is that haloperidol reduces the perceived self-relevance of outcomes
under uncertainty. Social interaction rapidly increases the complexity of possible
actions that may be taken. Humans try to reduce this uncertainty by relying on
available heuristics, such as using self-preferences as an easily accessible prior belief
about others [43-45]. When ambiguity increases, greater uncertainty about others
[30,31,19] and environments [20] can increase the perception of social threat. Our
analysis suggests that haloperidol may attenuate the relationship between uncertainty
and attributions of harmful intent by reducing the perceived self-relevance of others’
actions; attributions of harmful intent, by definition, are inferences about the relevance
of threat to the self from another. Given the role of the striatum and medial prefrontal
cortex in regulating threat evaluation under stress [46], this reduction in self-relevance
may also interact with common neural implementations of self-other modelling [47];
haloperidol may modulate the degree to which information is modelled as self- or
other-relevant. The degree to which D2/D3 dopamine receptor function is specific to
harmful intent or all attributions that are relevant to the self (e.g. altruistic intent of
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another) can be tested by including an extra dimension within our model; there are a
number of hypotheses that can be made with such a modification (see Figure S7).

This pattern leads to a further, complementary proposition: haloperidol may reduce
self-relevance through reductions in the complexity or depth of recursive mentalising
(how a self thinks about another's model of the self). In general, the ability to
recursively mentalise is computationally expensive [48-50]. Humans try to use cheaper
strategies when possible. Recursive mentalising is context dependent: in simple,
competitive social scenarios humans are more likely to plan ahead more deeply and
entertain recursive beliefs about another’'s model of the self [51]. Mentalisation gone
awry has also been posited as a core driver of relationship difficulties in clinical
populations: paranoia in borderline personality disorder and psychosis are explained
as hyper-mentalisation — the inference of overly complex mental states based on
sparse data [26,27,52,53]. An alteration in mechanisms that support self-relevant
mentalising may explain our findings. This notion is consistent with reported
amotivation under haloperidol (individuals are less concerned by outcomes), the role
of D2/D3 receptors in promoting cognitive control [40,41], and prior work on the causal
role of D2/D3 antagonism in trust behaviours [34]; reductions in the immediate value
(and therefore relevance) for the self may facilitate longer term reciprocal trust
behaviours without any need to engage deliberate reasoning about future outcomes.
A core test of the hypothesis that D2/D3 dopamine is crucial for self-relevant, recursive
mentalisation is to use models of hierarchical mentalisation in future experiments that
allow estimation of recursive depth in joint social contexts.

The data presented here may be relevant beyond psychiatry. In behavioural
economics, there have been several studies on the role of dopamine, reward, and
decision making in both social and non-social contexts [54]. Increasing dopamine
availability has been shown to increase risky non-social decisions when self-gain is at
stake [55], suggesting that dopamine may inflate the attributed value of outcomes to
the self. Our data imply that this role of dopamine in modulating monetary value to the
self may reflect a broader role in representing the self-relevance of stimuli. The
direction of this relationship (self-relevance precedes self-value, or vice versa) is a
fruitful target for future research. Our data may also be relevant to the role of dopamine
in moral behaviour. In one study, boosting D2/D3 dopamine with pramipexole reduced
generosity, especially with close others [56]. Our data complements this work,
suggesting that D2/D3 dopamine is involved in calibrating the valuation of self-gain in
social decision-making.

On a theoretical level, our formal model distinguishes between computational changes
that result from prior representational biases (e.g., higher trait paranoia) and acute
state changes during social interaction where potential harm from others is a possibility
(Figure 5). Previous modelling with the same task [30] or a reversal variant of the task
[31] provided evidence that trait paranoia increases the magnitude of priors over
harmful intent, the subsequent increase in the belief that the actions of others are not
reflective of their true motivations and a reduced willingness to believe that changes
to a partner’s behaviour are motivated by changes to their harmful intent. Naturally,
this suggested that prior representations bias how social behaviour is interpreted. On
the other hand, the present models suggest that haloperidol acts through increased
reliance and impact of likelihoods on the formation of beliefs. Creating
phenomenologically plausible formal models that are sensitive to different
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explanations of behavioural data has been a core aspiration of computational
psychiatry [13,14]. Models like ours may be useful in distinguishing between longer
term development and near-term alterations in learning that may explain paranoia.
Model parameters are constant at the timescale of tasks while potentially evolving at
the timescale of personal development, illness and recovery, while learning and
inference can be dissected in the timescale of task conditions and trials. Much like
prior work distinguishing interventions of representational change (psychotherapy)
and emotion modulation (antidepressants; [57]) our model may support similar
distinctions following intervention. We thus hypothesise that successful therapeutic
use of haloperidol in paranoia will be associated with large changes in likelihood
parameters described above but may leave intact, at least in the short term, prior
beliefs about the harmful intent of others. D2/D3 independent processes may underpin
ongoing vulnerability and may require further psychosocial learning. In our case, our
task may only pick up long term representational (prior) changes following extended
pharmacological therapy, or in combination with psychological therapy.

We note some limitations. First, we did not use a patient population which means the
extent to which the findings generalise to a population with persecutory delusions,
rather than non-delusional paranoia, remains unclear. Likewise, in this first study we
only included males to avoid hormonal heterogeneity, which might affect drug
response and indeed the precise expression of dopaminergic mechanisms [58].
However, this important limitation must be addressed in future studies with studies
powered to examine the computational structure of antipsychotic medication in people
of different hormonal status and gender. Second, we did not include any non-social
comparator (e.g. model-based decision making or volatile environments) when
assessing the role of haloperidol on cognition. This leaves a divide between how
dopamine influences non-social cognition and mental state inferences. Prior work
suggests some shared variance between more foundational computations (e.g.
decision temperature, belief updating) and paranoia [20,31,33]. Replicating the
present work with non-social comparators of our social task, e.g. using a slot machine
partner, may help understand the relations between formal theories of general
decision making and how this is expressed at a recursive and intentional level in the
same individuals. Third, we did not use a design that probes how dopamine may
facilitate generalisation of social knowledge outside of our game theory task. Prior
work has demonstrated that representations about learned partners can pass on from
one context to another [48]; once a representation is learned using computationally
intensive resources, a cheaper, heuristic model can be used. This relates to the
question of whether an associative model of updating may be more efficient once a
policy is known, and given our findings, whether haloperidol causes a faster transition.
Finally, despite the difference in model responsibility, we did not find any influence of
L-DOPA on behaviour. This may be due to an insufficient dose or translation of L-
DOPA leading to an increase in dopamine release, or the unspecific postsynaptic
binding that may result from any successfully increased dopamine release as a
consequence of L-DOPA.
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Figure 5. Summary of experimental parameter changes from current and past
work.

(A) Experimentally observed effects on our model. Overall illustration of the impact of
haloperidol on model parameters are illustrated in green. Prior results from the impact
of high trait paranoia [30,31] are illustrated in red.
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