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Abstract 
Striatal dopamine is important in paranoid attributions, although its computational role 
in social inference remains elusive. We employed a simple game theoretic paradigm 
and computational model of intentional attributions to investigate the effects of 
dopamine D2/D3 antagonism on ongoing mental state inference following social 
outcomes. Haloperidol, compared to placebo, enhanced the impact of partner 
behaviour on beliefs about the harmful intent of partners, and increased learning from 
recent encounters. These alterations caused significant changes to model covariation 
and negative correlations between self-interest and harmful intent attributions. Our 
findings suggest haloperidol improves belief flexibility about others and simultaneously 
reduces the self-relevance of social observations. Our results may reflect the role of 
D2/D3 dopamine in supporting self-relevant mentalisation. Our data and model bridge 
theory between general and social accounts of value representation. We demonstrate 
initial evidence for the sensitivity of our model and short social paradigm to drug 
intervention and clinical dimensions, allowing distinctions between mechanisms that 
operate across traits and states. 
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Introduction 

Dysregulated striatal dopamine has been identified as a key causal component in 
psychosis. Influential work proposed that striatal dopamine mediates aberrant salience 
leading to atypical perceptual experiences [1-3] more recent social-developmental 
models have highlighted the role of dopamine as a key point of convergence for a 
number of causal social and developmental factors, such as trauma, genetic 
vulnerability, and cannabis use [4]. This has been supported by molecular and 
neuroimaging studies suggesting that developmental adversities (e.g., [5,6]) increases 
pre-synaptic turnover of dopamine in striatal regions that may fuel the onset [7-9] and 
exacerbation [10,11] of psychosis symptoms.  

Antipsychotics are the first-line treatment for psychosis and have good evidence for 
their efficacy [12]. While they are thought to enact their therapeutic efficacy via D2/D3 
dopamine antagonism, the exact mechanism by which their pharmacological effect 
reduces symptoms through the modulation of neurocognitive processes is still poorly 
understood. Although recent work on the links between striatal hyperdopaminergia 
and psychosis has been important in identifying important risk factors and has offered 
important hypotheses for the causes of psychosis and psychotic symptoms at the 
neurobiological level, it has not been able to explain how they alter cognition beyond 
citing salience as a key mechanism. The end point of such causal pathways in 
psychiatry are likely to be dynamic, multi-dimensional, context-sensitive cognitive 
processes [13]. Computational modelling is an approach that allows these dynamic 
cognitive processes to be mathematically implemented and has the potential to 
connect mechanism more effectively to psychiatric phenomenology [14,15], offering 
precise accounts of complex behaviour that are more amenable to formal testing, 
refutation and refinement. Within this framework, dopaminergic alterations have been 
linked to computational processes such as belief updating [16,17], expectations of 
belief volatility [18-20], and model-based control [21].  

One particularly disabling core symptom of psychosis is paranoia, the unfounded belief 
that others are trying to cause you harm [22,23]. Psychologically, paranoia is 
characterised by heightened sensitivities to interpersonal threat [24], attributing 
negative outcomes to external, personal causes [25], and overly complex 
mentalisation [26-27]. Developing computational theories to bridge the gap between 
the phenomenology and the neurocognitive mechanisms of paranoia requires 
particular considerations. Computational approaches in the social domain must 
sufficiently account for large, and often recursive, action spaces [28]. These structural 
principles are appropriate for psychiatric symptoms which inherently involve 
alterations to interpersonal beliefs concerning the self and others [29].  

Models of intentional attributions – explicit inferences about the mental state of others 
- allow for analyses that are theoretically related to ongoing paranoia. Current models 
include mechanistic explanations for perceived changes in the harmful intent and self-
interest that might motivate the actions of another. Prior work suggests high trait 
paranoia is associated with rigid priors about the harmful intent of partners, and a belief 
that a partner’s actions are not consistent with their true intentions [30,31]. Several 
predictions can be made concerning the influence of dopamine D2/D3 antagonism on 
paranoia. Synthetic, in silico models [32], neuroimaging evidence [33], prior 
predictions [31], and parallel psychopharmacological work [21,34] predict that D2/D3 
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antagonism will increase belief flexibility and improve consistency of the self’s model 
of others, which in turn should reduce self-relevant attributions of harmful intent 
following social outcomes. However, this has yet to be tested. 

While key binding sites of most antipsychotics are thought to work through their action 
at D2/D3 dopamine receptors, how they influence the cognitive processes of paranoia 
is unknown. Given the experimental evidence and synthetic predictions on the role of 
D2/D3 dopamine antagonism on improvements in belief updating, reductions in 
harmful intent, increases in prosocial behaviours, and the impact of high trait paranoia 
on the consistency of a self’s model of others, it follows that the mechanism of action 
of D2/D3 antagonism on harmful intent attributions may occur through an increase in 
belief flexibility and the consistency of a self’s model of others. Following from our 
preregistered behavioural experiment [35], we further examine the causal influence of 
D2/D3 dopamine receptor antagonism on computational mechanisms governing 
intentional attributions within a simple game theoretic context. Using a formal model 
of intentional attributions and an iterative Dictator game [30,31], we test the impact of 
haloperidol, a D2/D3 antagonist, and L-DOPA, a presynaptic dopamine potentiator, on 
paranoid beliefs using past data [35].  

Primarily we assessed whether haloperidol alters key computational processes 
involved in mental state inferences, allowing distinctions between trait representational 
changes (priors) and state learning processes (policy flexibility, uncertainty) along 
each attributional dimension (harmful intent and self-interest). Given the absence of 
any consistent descriptive effects of L-DOPA in this experiment we modelled the data 
under an assumption that there would be no opposing effects on model parameters 
under LDOPA vs. haloperidol. 

Methods 

Participants 

This study was approved by KCL ethics board (HR-16/17-0603). All data were 
collected between August 2018 and August 2019. Participants were recruited through 
adverts in the local area, adverts on social media, in addition to adverts circulated via 
internal emails. 

Eighty-six participants were preliminarily phone screened. 35 participants were given 
a full medical screen. Thirty healthy males were recruited to take part in the full 
procedure. Two failed to complete all experimental days, leaving 28 participants for 
analysis. Inclusion criteria were that participants were healthy males, between the 
ages of 18 and 55. Participants were excluded if they had any evidence or history of 
clinically significant medical or psychiatric illness; if their use of prescription or non-
prescription drugs was deemed unsuitable by the medical team; if they had any 
condition that may have inhibited drug absorption (e.g. gastrectomy), a history of 
harmful alcohol or drug use determined by clinical interview, use of tobacco or nicotine 
containing products in excess of the equivalent of five cigarettes per day, a positive 
urine drug screen, or were unwilling or unable to comply with the lifestyle guidelines. 
Participants were excluded who, in the opinion of the medical team and investigator, 
had any medical or psychological condition, or social circumstance, which would 
impair their ability to participate reliably in the study, or who may increase the risk to 
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themselves or others by participating. Some of these criteria were determined through 
telephone check for non-sensitive information (age, gender, general understanding of 
the study, and overall health) before their full screening visit. 

Procedure 

This study was part of a larger study that assessed the role of dopaminergic 
modulation on personality, beliefs, and social interaction. Here, we focus on the role 
of dopamine antagonism and pre-synaptic increases in the attribution of mental state 
inferences during a Dictator game (described below; see Figure 1a). 

The full procedure for participant screening is documented in a prior publication [35]. 
Briefly, participants who passed the brief phone screening were invited to attend an 
on-site screening day (see above). Participants were tested for drugs of abuse 
(SureScreen Diagnostics Ltd) and alcohol (breath test) prior to each experimental day 
and were excluded if any test was positive. Participants were given at least 7 days, 
but no more than two months, in between experimental days to allow for drug washout.  

On experimental days, participants were randomised to be initially administered either 
a placebo or 3mg haloperidol in two capsules, and 10mg of domperidone (to reduce 
known side effects of vomiting and nausea that can appear in some recipients) in one 
capsule (3 caps total). After half an hour, participants were dosed a second time with 
either 150mg of co-beneldopa (herein referred to as L-DOPA) or placebo in two 
capsules. Participants would never receive haloperidol and L-DOPA in the same day.  

The Sharing Game 

Participants were asked to play a within-subjects, multi-trial modification on the 
Dictator game design used in previous studies to assess paranoia [35,36], hereafter 
called ‘The Sharing Game’ (Figure 1b). In the game, participants played six trials 
against three different types of partner who are assigned the role of Dictator. In each 
trial, participants were told that they have a total of £0.10 and their partner (the 
Dictator) had the choice to take half (£0.05) or all (£0.10) the money from the 
participant. Partner policies were one of three types: always take half of the money, 
have a 50:50 chance to take half or all of the money, or always take all of the money. 
These policies were labelled as fair, partially fair, and unfair, respectively. The order 
that participants were matched with partners was randomised. Each partner had a 
corresponding cartoon avatar with a neutral expression to support the notion that each 
of the six trials was with the same partner. 

After each trial, participants were asked to rate on a scale of 1–100 (initialised at 50) 
to what degree they believed that their partner was motivated (a) by a desire to earn 
more (self-interest), and (b) by a desire to reduce their bonus in the trial (harmful 
intent). From the participants perspective, the actions of the partner can be framed as 
either arising from motivations that concern the gain of value for the partner 
irrespective of the participant (other-relevant) or arising from motivations that concern 
the loss of value for the participant (self-relevant). 

After making all 36 attributions (two trial attributions for each of the six trials over three 
partners), participants were put in the role of the Dictator for six trials—whether to 
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make a fair or unfair split of £0.10. Participants were first asked to choose an avatar 
from nine different cartoon faces before deciding on their six different splits. These 
Dictator decisions were not used for analysis but were collected to match subsequent 
participants with decisions from real partners. Participants were paid a baseline 
payment for their completion, plus any bonus they won from the game. 

Analysis 

Behavioural data has been previously published [35]. Here, we apply three 
computational hypotheses which could explain the data, centred around a Bayesian 
model [31] developed to explain mental state inference dynamics during social 
observation, where recursive, strategic social action is not a process of interest [29]. 
We note that previous work showed a Bayesian instantiation of this attributional model 
outperformed associative model variants [31]. Model 1 allowed separate uncertainties 
and likelihood weights for each attribution, identical to our prior work [31]; this model 
demonstrated that trait paranoia increased belief rigidity and self-other inconsistency, 
and by extension, may serve as a useful assay to test the mechanisms of haloperidol 
which is theorised to reduced paranoia. In line with general theories of belief updating 
[37], Model 2 hypothesised that beliefs would be updating with the same likelihood 
weight. Model 3 hypothesised that prior beliefs share a single uncertainty free 
parameter over each distribution, allowing for a simpler hypothesis that prior 
uncertainties may be represented by a single dimension, giving a more parsimonious 
account of the data. Descriptions of the parameters within the winning model are in 
Table 1. 

The winning model uses eight parameters that calibrate an agent's initial and ongoing 
beliefs about others. It encodes the agent's prior expectations of harm, pHI!, and self-
interest,	pSI!, and the certainty of these expectations, uPri. Three parameters 
implement the agent’s internal likelihood of a partner acting with self-interest or harm 
based on their behaviour, influencing belief updates (w!, w"#, w$#). A noise parameter 
(uπ) indicates the agent's uncertainty over the representation of their partner. The 
model also includes a belief persistence parameter, η, for agents to either persist with 
their most recent beliefs or re-set them to the prior expectations (above) upon 
encountering new partners, with higher values indicating less resetting. See table 1 
for further details. 

All computational models were fitted using a Hierarchical Bayesian Inference (HBI) 
algorithm which allows hierarchical parameter estimation while assuming random 
effects for group and individual model responsibility [38]. This process is shown to be 
most robust to outliers versus non-hierarchical inference or standard hierarchical 
inference with fixed effects, and minimises parameter and model confusion [38]. 
Parameters were estimated using the HBI in native space drawing from broad priors 
(𝜇% = 0, 𝜎% = 6.5; where 𝑚 = {𝑚&, 𝑚', 𝑚(}). This process was run independently for 
each drug condition due to the dependency of observations between conditions (the 
same participants were in each condition). Parameters were transformed into model-
relevant space for analysis. All models and hierarchical fitting was implemented in 
Matlab (Version R2022B). All other analyses were conducted in R (version 4.2.3; 
x86_64 build) running on Mac OS (Ventura 13.0). All statistics are reported as: (X, 
95%CI: Y, Z), where X is the regression coefficient, and Y and Z are the 95% lower 
and upper confidence intervals (CI), respectively. All dependent regressors were 
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centred and scaled. To consider the uncertainty of estimates we conducted Bayesian 
paired sample t-tests to assess individual-level parameter changes. This used JAGS 
as a backend MCMC sampler [39]; differences in the mean are additionally reported 
with their corresponding effect sizes (Cohen’s d) and posterior 95%HDI (High Density 
Interval). The raw output of this is listed in Table S1. Bayesian paired sample t-tests 
were also used to assess differences between attributional coupling over time. To 
note, in the original behavioural analysis [35] we excluded one extra participant due to 
their extreme trait psychometric paranoia score (leaving 27 participants), however trait 
paranoia was not the subject of this analysis, and hierarchical model fitting constrains 
group behaviour during parameter estimation. Nevertheless, for transparency, we 
include analytic estimates with the original 27 individual included for comparison. This 
did not change conclusions (Table S2). 

We also sought to examine model covariance. Exploratory factor analysis used 
oblique rotation, including all parameter estimates for each individual within placebo 
and haloperidol conditions. Optimal factors were determined from observation of the 
scree plot and cross-validated model accuracy (Figure S9). Cross-validation used 10 
folds with three repeats within a logistic general linear model. Parameter loadings and 
individual factor scores >|0.4| were retained for analysis.  
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Figure 1. Experimental design and model space. (A) Participants were entered into 
a double-blind, placebo-controlled, within-subject experimental design. (B) 
Participants engaged in a three-partner version of the sharing game. Here, partners 
were assigned the role of Dictator and on each trial could either take £0.10 for 
themselves (unfair outcome) or take £0.05 and give the participant £0.05 (fair 
outcome). Participant reported two types of attributional intent concerning the 
motivations of the partner after each outcome. These included harmful intent 
attributions and self-interest attributions. Partner order was randomised, and partner 
change was signalled. (C) Model space used to test whether dopamine manipulations 
were best explained by the full model (M1), a model that constrained policy updating 
to a single sensitivity parameter for each attribution (M2), or a model that constrained 
prior uncertainty to a single parameter (M3; Table 1). White filled objects are free 
parameters. Grey shaded objects are probability distributions.  
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Table 1. Winning model parameters and their role in the model. By using model 
fitting procedures modellers can invert the model to approximate the parameter values 
that may give rise to the observed data. This includes the hidden, prior beliefs of each 
participant given the variance and magnitude of observed attributions. Using fitted 
parameter values to simulate each participant allows for generation of pseudo-
experimental data - in this case, an agent’s reported intentional attributions, which we 
can directly compare with the real data. This also approximates the prior beliefs of 
each participant given the variance and magnitude of observed attributions. 𝑁𝐵 = 
number of bins discretising the variable represents each attribution; in this case each 
distribution is comprised of 9 bins. 𝐵𝑖𝑛 = binomial distribution with an added precision 
parameter, i.e. in the case of HI: 𝑝(𝐻𝐼))*!	~	𝐵𝑖𝑛(𝐻𝐼; 𝒑𝑯𝑰𝟎, 𝒖𝑷𝒓𝒊, 𝑁𝐵) =
𝑝(𝐻𝐼))*!	~	𝐵(𝐻𝐼; 𝒑𝑯𝑰𝟎, 𝑁𝐵)&/𝒖𝑷𝒓𝒊.  

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2024. ; https://doi.org/10.1101/2023.05.02.539031doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.02.539031
http://creativecommons.org/licenses/by/4.0/


 
Parameter Generative Purpose 

𝒑𝑯𝑰𝟎 Magnitude of the prior that the actions of others are generally 
motivated by harmful intent (HI) toward the self, 𝑝(𝐻𝐼))*!	. 
Increasing this parameter increases the belief that a partner is 
motived by harmful intent before any actions are observed. 

𝒑𝑺𝑰𝟎 Magnitude of the prior that the actions of others are generally 
motivated by self-interest (SI) irrespective of the self, 
𝑝(𝑆𝐼))*!.	Increasing this parameter increases the belief that a 
partner is motived by self-interest before any actions are observed. 

𝒖𝑷𝒓𝒊 Uncertainty over priors. Increasing this parameter broadens the 
prior distribution of both 𝑝(𝐻𝐼))*! and 𝑝(𝑆𝐼))*!. 

Prior 

𝑝(𝐻𝐼))*!		~	𝐵𝑖𝑛(𝐻𝐼; 𝒑𝑯𝑰𝟎, 𝒖𝑷𝒓𝒊, 𝑁𝐵) 
𝑝(𝑆𝐼))*!		~	𝐵𝑖𝑛(𝑆𝐼; 𝒑𝑺𝑰𝟎, 𝒖𝑷𝒓𝒊, 𝑁𝐵) 
𝑝(𝐻𝐼, 𝑆𝐼))*! =	𝑝(𝐻𝐼))*!𝑝(𝑆𝐼))*! 

𝑁𝐵 = 9 
𝒘𝟎 Intercept of the likelihood matrix, 𝜋123, that calibrates the magnitude 

of attributional change when a fair or unfair action is made by a 
partner.  

𝒘𝑯𝑰 Impact on beliefs that an outcome (r) is motivated by harmful intent. 
Increasing this parameter leads to greater influence of a partner’s 
behaviour on attributions of harmful intent (belief flexibility). 

𝒘𝑺𝑰 Impact on beliefs that an outcome (r) is motivated by self-interest. 
Increasing this parameter leads to greater influence of a partner’s 
behaviour on attributions of self-interest (belief flexibility). 

Likelihood 

𝜋123(𝑟 = 0;𝐻𝐼, 𝑆𝐼) = 	𝜎(𝒘𝟎 + [𝒘𝑯𝑰 ∗ 𝐻𝐼 − 𝛿] + [𝒘𝑺𝑰 ∗ 𝑆𝐼 − 	𝛿]) 
𝜋123(𝑟 = 0.5; 𝐻𝐼, 𝑆𝐼) = 1 − 𝜋123(𝑟 = 0;𝐻𝐼, 𝑆𝐼) 

𝛿 =
𝑁𝐵 + 1
2 	 

𝜎(𝑥) =
1

1 + 𝑒78 

Update 𝑝(𝐻𝐼, 𝑆𝐼)Y ) =	
𝜋123(𝑟; 𝐻𝐼, 𝑆𝐼)𝑝(𝐻𝐼, 𝑆𝐼))7&

∑ 𝜋123(𝑟; 𝐻𝐼′, 𝑆𝐼′)𝑝(𝐻𝐼′, 𝑆𝐼′))7&9:;,=:;
	 

𝒖𝝅 The consistency with which partners were believed to act in 
accordance with their character. Higher values reduce consistency, 
causing a partner’s behaviour to have less impact on beliefs. 

Consistency 
rule 

𝑝(𝐻𝐼, 𝑆𝐼)) ∝ 	𝑝(𝐻𝐼, 𝑆𝐼)Y )	 &𝒖𝝅 + 	𝜉 
𝜉 = 0.02/𝑁𝐵'	 

𝜼 Controls the mixture of prior and posterior beliefs used as a starting 
point for each new encounter. Higher values indicate more reliance 
on information gathered from the last encounter, rather than 
reverting to prior beliefs. The product from the below equation, 
𝑝(𝐻𝐼, 𝑆𝐼)aaaaaaaaaaaa)*@ replaces 𝑝(𝐻𝐼, 𝑆𝐼))7& when beginning a new encounter. 

Change 
point 

𝑝(𝐻𝐼, 𝑆𝐼)aaaaaaaaaaaa)*@ =	𝑝(𝐻𝐼, 𝑆𝐼))*!	 ∗ [1 − 𝜼] +	𝑝(𝐻𝐼, 𝑆𝐼))*@ ∗ 	𝜼 
𝐶 = 𝑓𝑖𝑛𝑎𝑙	𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑎𝑛	𝑜𝑡ℎ𝑒𝑟	𝑖𝑛	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
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Results 

Behavioural results 

Behavioural results were published previously [35]. To summarise, when averaged 
over all Dictators, haloperidol caused a reduction in harmful intent attributions versus 
placebo (-0.17, 95%CI: -0.28, -0.05), but L-DOPA did not. Haloperidol also increased 
self-interest attributions versus placebo (0.16, 95%CI: 0.05, 0.27), but L-DOPA did not. 
Unfair and partially fair Dictators both elicited higher harmful intent (Partially fair = 0.28, 
95%CI: 0.16, 0.40; Unfair = 0.75, 95%CI: 0.63, 0.87) and self-interest attributions 
(Partially fair = 0.59, 95%CI: 0.63, 0.87; Unfair = 1.16, 95%CI: 1.05, 1.27) versus fair 
Dictators. 

Model comparison and recovery 

Bayesian hierarchical fitting and comparison identified that at the group level (Figure 
2A), participants under placebo and haloperidol were best fitted by model 3. This 
model assumed agents use a single uncertainty over both attributional priors, although 
used separate likelihood weights to update their beliefs about their partners’ policy. In 
contrast, participants under L-DOPA were best fit by model 2. This model assumes 
participants hold individual uncertainties over their prior beliefs, although use the same 
likelihood weight to update both attributional dimensions. Importantly, model 
parameters under L-DOPA were not opposing haloperidol changes vs. placebo, 
supporting behavioural analyses (see Figure S10). 

For each condition we examined model generative performance and reliability. We 
extracted parameters for each individual under each condition according to the model 
that bore most responsibility for their behaviour (Figure 2B). We then simulated data 
for each participant with their individual-level parameters for each condition and model 
and re-estimated model comparison, recovered each model, generated attributions for 
each trial and dictator condition, and fitted regression models for main effects. 
Bayesian hierarchical fitting and comparison on simulated data demonstrated 
excellent similarity to group and individual level model responsibility and exceedance 
probabilities from real data (Figure S1A). Likewise, individual level parameters 
demonstrated excellent recovery (all Pearson r values > 0.71, p values ~ 0; Figure 
S1B, C & D). Simulated and real attributions demonstrated excellent recovery across 
all drug and dictator conditions (all Pearson r values > 0.62, p values ~ 0; Figure S1E). 
Simulated attributions also recovered the main effects of drug and dictator condition 
on attributional dynamics: haloperidol demonstrated reductions in harmful intent 
versus placebo (-0.26, 95%CI: -0.36, -0.16), but L-DOPA did not, and haloperidol 
increased self-interest attributions versus placebo (0.26, 95%CI: 0.15, 0.37), but L-
DOPA did not. 

We were most interested in examining the effect of haloperidol versus placebo in order 
to understand the mechanism behind the observed descriptive behavioural results. As 
model 3 achieved group-level dominance across both placebo and haloperidol 
conditions we were able to directly compare all individual-level, winning model 
parameters between-conditions {𝑝𝐻𝐼!, 𝑝𝑆𝐼!, 𝑢𝑃𝑟𝑖, 𝑢𝜋, 𝜂, 𝑤!, 𝑤9: , 𝑤=:} (Table 1; see 
below). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2024. ; https://doi.org/10.1101/2023.05.02.539031doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.02.539031
http://creativecommons.org/licenses/by/4.0/


 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2024. ; https://doi.org/10.1101/2023.05.02.539031doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.02.539031
http://creativecommons.org/licenses/by/4.0/


Figure 2. Model comparison, recovery, and generative performance.  

(A) Model responsibility across all three drug conditions. Greater model responsibility 
at the group and individual level indicates that a particular formulation was the most 
likely generative model to explain the data. Ex. Prob = Exceedance probability that a 
single model best defines group behaviour. Freq = Model frequency that each model 
is the best fitting model for participants. (B) Model recovery. All recovery analyses 
used n=28 synthetic participants – one for each real parameter set approximated from 
the data. The HBI algorithm correctly identified the correct model for most participants 
with trivial differences between model frequencies. (C) Correlation matrix of common 
parameters across all drug conditions for simulated (y axis) and real (x axis) data. All 
correlations were over 0.71 (p values < 0.001). ‘X’ indicates a non-significant 
association. (D) Individual correlations between common parameters across 
haloperidol and placebo conditions for simulated (y axis) and real (x axis) data. All 
correlations were over 0.71 (p values < 0.001). Black lines indicate the linear model of 
perfect association (r=1). (E) Individual correlations between common parameters 
across all drug conditions for simulated (y axis) and real (x axis) data. Black lines 
indicate the linear model of perfect association (r =1). (F) Top panel: Correlation 
between simulated and real harmful intent (left) and self-interest (right) attributions 
across all Dictator policies. Bottom panel: Simulated harmful intent (left) and self-
interest (right) attributions for each drug condition and Dictator policy. 
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Haloperidol reduces the influence of priors and the precision of harmful intent  

We examined the differences between individual level parameters within-subjects for 
haloperidol versus placebo (Figure 3A; see Figure S4 [Supplementary Materials] for 
effect sizes). This suggested that haloperidol increased reliance on learning about a 
partner just encountered, relative to pre-existing prior beliefs about partners in general 
(𝜂; mean diff. = 0.15, 95%HDI: 0.03, 0.26; effect size = 0.66, 95%HDI: 0.22, 1.10). 
Haloperidol did not influence the consistency with which partners were believed to act 
in accordance with their character (𝑢𝜋). 

Haloperidol increased learning flexibility over harmful intent attributions only. 
Haloperidol increased the impact of partner behaviour on harmful intent attributions 
(𝑤9:; mean diff. = 0.10, 95%HDI: 0.06, 0.13; effect size = 1.20, 95%HDI: 0.64, 1.75), 
but not over self-interest (𝑤=:); a partner’s actions had more impact on a participant’s 
beliefs about their true motivations of intentional harm. Haloperidol also caused the 
intercept of the policy matrix to be drawn toward 0, allowing greater updating parity for 
each unfair or fair partner action (𝑤!; mean diff. = 0.58, 95%HDI: 0.01, 1.10; effect size 
= 0.43, 95%HDI: 0.02, 0.82). The 𝑤! effect size should be treated with caution; the 
posterior distribution is within the region of practical equivalence (Figure S4).  

We sought to further probe the model-based implications of drug differences on 
attributional flexibility in detail. Simulations on the marginal effect of 𝑤9: on attributional 
dynamics are suggestive of its role in modulating the precision (1/s2; inverse variance) 
of attributions over all trials, irrespective of Dictator policy (Figure 3B). To establish 
this we used a regression model including 𝑤9: as a linear term and 𝑤! as a quadratic 
term – this was most parsimonious compared to using 𝑤! as a linear term (AIC = 568 
vs. 1123). There was a main effect of 𝑤9: on the precision of harmful intent attributions 
(-6.13, 95%CI: -6.28, -5.97; effect size = -0.88, 95%CI: -0.92, -0.85). There was a 
small effect of 𝑤! within the same model (-0.06, 95%CI: -0.064, -0.056, effect size = -
0.11, 95%CI: -0.14, -0.08). There was a significant but small interaction of 𝑤! and 𝑤9: 
on the precision of harmful intent (-0.22, 95%CI: -0.25, -0.20; effect size = -0.05, -0.08, 
-0.02). Importantly, increased 𝑤9: reduced harmful intent attributions (-0.93, 95%CI: -
0.95, -0.92; effect size = -0.13, 95%CI: -0.14, -0.13) through reductions in the precision 
of harmful intent.  

We found evidence that a greater 𝑤9: (cf. effect of haloperidol) may reduce precision 
most under conditions of ambiguity. Specifically, the precision of harmful intent 
attributions is lower in partially fair vs fair Dictators (-0.24, -0.33, -0.15; effect size = -
0.24, 95%CI: -0.33, -0.15), but unfair vs fair Dictators produced equivalent precision. 
Dictator policy interacts with 𝑤9:: higher 𝑤9: is associated with lower precision under 
partially fair vs. fair dictators (-0.77, 95%CI: -1.42, -0.42; effect size = -0.11, 95%CI: -
0.21, -0.02). Thus, higher 𝑤9: accentuates flexibility within and between partners, but 
most in ambiguous social contexts where paranoia often flourishes. There was no 
interaction for unfair dictators vs. fair dictators (Figure S5). 

Haloperidol had no net significant influence on 𝑝𝐻𝐼!, 𝑢𝑃𝑟𝑖, or 𝑝𝑆𝐼! (see Table S1). 
Individual parameter analysis suggests that haloperidol has a predominant net 
influence on the flexibility of belief updating about a specific context, here, that of our 
task. Under the influence of haloperidol, participants’ assumptions about each new 
encounter are more amenable to change under the influence of recent encounters. 
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Figure 3. Influence of haloperidol on the winning model.  

(A) Bayesian t-test results in assessing the difference and uncertainty (distribution of 
values) of the change in mean (∆𝜇) in parameter estimates between placebo and 
haloperidol. Red distributions indicate that the High-Density Interval (HDI) of the mean 
difference in distributions do not cross 0, suggesting reasonable certainty that the 
mean difference is not an artefact of statistical noise. ‘d’ values indicate the median 
effect size (Cohen’s d) for each mean difference (See Figure S4 for distributions). The 
red box indicates parameters where effect size distributions were most robust, where 
the 95%HDI and lay outside of the region of probable equivalence with the null 
hypothesis. (B) Simulations of the marginal effect of likelihood parameters on the 
precision (1/s2; inverse variance) of harmful intent (red) and self-interest (black) 
attributions over all trials, controlling for Dictator style. Vertical lines are indicative of 
the median individual parameter estimates from both haloperidol and placebo groups, 
with the blue arrow indicating the difference from placebo to haloperidol. For trial-wise 
and within-Dictator precision changes see Figure S3; to note, simulations are 
consistent with the notion that 𝑤9: increases flexibility within and between contexts, 
accentuating smooth learning. To note, there was no significant correlation between 
𝑤!,	𝑤=: , and 𝑤9: in our parameter estimation from our real data (ps > 0.05; Figure S2) 
suggesting independent contributions of each to attributional dynamics. (C) Factor 
loading of each parameter on flexibility (factor 1) and learning (factor 2) dimensions. 
A loading filter of |0.4| was applied. Both of these factors were able to discriminate 
most effectively between drug conditions.	𝑤=: 	is not featured in this plot as it was not 
meaningfully loaded onto either factor. (D) Factor scores for each individual participant 
(n=28) for both haloperidol (red) and placebo (blue) conditions ordered from low to 
high factor loading. The panels on the right of each graph demonstrate the marginal 
loading across participants. (E) Candyfloss plot of joint factor scores for each individual 
participant. Grey lines indicate that the same participant was responsible for each 
connected point under placebo (blue) and haloperidol (red) (F) Receiver Operating 
Characteristic curve describing the sensitivity and specificity of the combination of 
flexibility and learning factors on differentiating drug conditions. Area Under the Curve 
= 0.91. Sensitivity = 0.8. Specificity = 0.78. 
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Alterations to single parameters drive model covariation that differentiates haloperidol 
from placebo 

From our analysis we can conclude that the model is accounting for the true observed 
data relatively well. Isolated parameter changes between conditions suggest this effect 
is primarily driven by increases in the impact of partner behaviour on beliefs about 
harmful intent, 𝑤9:, and increased learning from experience, 𝜂. Considered separately, 
these key parameters did not fully explain how the model accounted for behaviour 
changes induced by haloperidol (Figure S4). We therefore sought to identify, through 
exploratory factor analysis, meaningful patterns over the covariation induced by 
Haloperidol. 

We found that three factors best accounted for the data (Figure S9) with the first 
demonstrating the greatest eigenvalue (factor 1=2.82; factor 2=1.36; factor 3=1.13). 
K-fold cross-validation within a logistic model demonstrated that a two-factor solution 
provided the best median accuracy to discriminate between drug condition (mean 
accuracy = 0.86) and had the lowest AIC (40.3; see Fig S9). Each factor was able to 
predict drug condition independently (Factor 1 = 1.52, 95%CI: 0.50, 2.91; Factor 2 = 
3.08, 95%CI: 1.72, 5.03), and there was a large effect found between conditions using 
Bayesian paired t-tests (factor 1: mean diff. = 0.76, 95%HDI = 0.37, 1.17; effect size 
= 0.94, 95%HDI = 0.35, 1.59; factor 2: mean diff. = 1.34, 95%HDI = 0.87, 1.85; effect 
size = 1.23, 95%HDI = 0.64, 1.84; Figure 3F). 

Factor 1 (Flexibility; Figure 3C) was typified by high values of 𝑤9:, and greater 
consistency between beliefs that a partner’s actions are indicative of their true 
motivations, 𝑢A. Factor 2 (Learning; Figure 3C) comprised high values of 𝜂, larger 
intercepts over the policy matrix, 𝑤!, and higher values over priors 𝑝𝑆𝐼!. 𝑝𝐻𝐼! and 𝑢BCD 
were oppositely loaded onto each factor and would likely nullify each other in cases 
where participants scored strongly on both (Figure 3E). We note that 𝑝𝐻𝐼!, and 𝑢BCD 
load with slightly more absolute value on the Flexibility factor. For completeness, the 
third factor was comprised exclusively of 𝑤=: above a cut-off of |0.4| (loading = 0.99), 
although was not found to be a meaningful factor in differentiating drug scores 
following cross-validation and logistic model comparison. 

Haloperidol compresses the dimensionality of partner policies 

Finally, we explored the impact of haloperidol on attributional coupling: the 
dependency between intentional attributions over time. This allows analysis into the 
dependency of different intentional components. To calculate this we estimated 
Spearman correlations between harmful intent and self-interest for each trial across 
the sample, controlling for the type of Dictator policy affiliated. This revealed that while 
harmful intent and self-interest are attributed independently of one another under 
placebo (mean r[sd] = 0.03 [0.07]) replicating prior work [35], under haloperidol they 
are negatively associated (mean r[sd] = -0.22 [0.08]), and this difference is significant 
(mean diff. = -0.26, 95%CI: -0.32, -0.20; effect size = 2.22, 95%HDI: 1.22, 3.24). This 
relationship was replicated using simulated model predictions (mean diff. = -0.25, 
95%CI: -0.34, -0.17; effect size = -1.53, 95%HDI: -2.28, -0.78); see Figure 4A. There 
was evidence that the negative association induced under haloperidol decays over 
time (Pearson r = 0.52, p = 0.029). The same is not true under placebo (see Figure 
4A). This interaction was not significant (regression coef. = -0.06, 95%CI: -0.12, 0.03). 
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In sum, haloperidol causes harmful intent and self-interest attributions to become less 
independent. This means that under haloperidol participants are more likely to believe 
someone must be more self-interested if they are perceived to be less intentionally 
harmful.  
 
 

 

Figure 4. Association of mental state attributions between drug condition.  

(A) In both real and simulated data, haloperidol (red) versus placebo (blue) induced a 
trial-wise negative association between harmful intent and self-interest which decayed 
over time. The right panel shows the marginal effect of trial-wise correlations between 
conditions. *** = p<0.001. (B) There was a general negative association between 
harmful intent and self-interest (Pearson correlation) found under haloperidol (red) for 
average attributions across all 18 trials. This was not true for placebo (blue). (C) 
Summary of main effects between drug conditions on self and other oriented 
intentional attributions following social outcomes. Both trial-wise and averaged 
associative analyses indicate that other-oriented attributions concerning self-interest 
of others (black) and self-oriented attributions concerning the harmful intent of others 
(red) are independent under placebo (PLAC) but coupled under haloperidol (HALO). 
Under haloperidol this coupling is biased toward exaggeration of other-oriented 
attributions and diminishment of self-oriented attributions. 
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Discussion 

We sought to identify the computational mechanisms that explain how 
pharmacological alteration of dopamine function alters attributions of harmful intent, 
an important feature of paranoia, given our previous findings that haloperidol reduced 
harmful intent attributions and increased self-interest attributions in healthy 
participants (see [35] for previously published behavioural analysis). Here, we tested 
different computational hypotheses to account more mechanistically for these effects. 
The data were best fit by a model utilising a common uncertainty parameter over 
priors, but separate likelihood weights for updating attributions. Using this model, we 
found evidence that haloperidol reduced the precision of harmful intent (but not self-
interest) attributions allowing more belief flexibility between partners. Haloperidol also 
increased the impact of learning from each encounter; participants relied less on their 
prior beliefs about the population as a whole. These individual parameter effects were 
embedded within covariational model alterations that together accounted for 
attributional change under haloperidol. These changes also caused self-interest and 
harmful-intent attributions to become negatively associated, suggesting a 
compression of attributions into a single interpersonal dimension under haloperidol. 
Together our findings indicate haloperidol promotes flexibility regarding attributions of 
harmful intent to others by reducing the perceived relevance of the actions of others 
to the self (Figure 5). In clinical environments this may allow space to reframe beliefs. 

Our findings indicate a reduction in the influence of priors and more flexible beliefs 
under haloperidol. Previous research links tonic dopamine at D2/D3 receptors to 
efficient encoding of meaningful stimuli and Bayes optimality [33], cognitive control 
[40], and sustained attention [41]. Under the model-based, model-free control 
framework [42], recent work showed D2/D3 antagonism increased model-based 
control and decision flexibility [21] and increased belief flexibility during a trust game 
[34]. This may be particularly useful in ‘climbing out’ of paranoia, where one is reluctant 
to take in positive information about others for fear of ‘false reassurance’. At face value 
our results conform with previous work: under haloperidol, posteriors are more flexible 
and less influenced by priors, suggesting more confidence in beliefs about the 
motivation of partners. However, this general account does not explain why our data 
show asymmetric decreases in harmful intent and increases in self-interest. 

One hypothesis is that haloperidol reduces the perceived self-relevance of outcomes 
under uncertainty. Social interaction rapidly increases the complexity of possible 
actions that may be taken. Humans try to reduce this uncertainty by relying on 
available heuristics, such as using self-preferences as an easily accessible prior belief 
about others [43-45]. When ambiguity increases, greater uncertainty about others 
[30,31,19] and environments [20] can increase the perception of social threat. Our 
analysis suggests that haloperidol may attenuate the relationship between uncertainty 
and attributions of harmful intent by reducing the perceived self-relevance of others’ 
actions; attributions of harmful intent, by definition, are inferences about the relevance 
of threat to the self from another. Given the role of the striatum and medial prefrontal 
cortex in regulating threat evaluation under stress [46], this reduction in self-relevance 
may also interact with common neural implementations of self-other modelling [47]; 
haloperidol may modulate the degree to which information is modelled as self- or 
other-relevant. The degree to which D2/D3 dopamine receptor function is specific to 
harmful intent or all attributions that are relevant to the self (e.g. altruistic intent of 
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another) can be tested by including an extra dimension within our model; there are a 
number of hypotheses that can be made with such a modification (see Figure S7).  

This pattern leads to a further, complementary proposition: haloperidol may reduce 
self-relevance through reductions in the complexity or depth of recursive mentalising 
(how a self thinks about another’s model of the self). In general, the ability to 
recursively mentalise is computationally expensive [48-50]. Humans try to use cheaper 
strategies when possible. Recursive mentalising is context dependent: in simple, 
competitive social scenarios humans are more likely to plan ahead more deeply and 
entertain recursive beliefs about another’s model of the self [51]. Mentalisation gone 
awry has also been posited as a core driver of relationship difficulties in clinical 
populations: paranoia in borderline personality disorder and psychosis are explained 
as hyper-mentalisation – the inference of overly complex mental states based on 
sparse data [26,27,52,53]. An alteration in mechanisms that support self-relevant 
mentalising may explain our findings. This notion is consistent with reported 
amotivation under haloperidol (individuals are less concerned by outcomes), the role 
of D2/D3 receptors in promoting cognitive control [40,41], and prior work on the causal 
role of D2/D3 antagonism in trust behaviours [34]; reductions in the immediate value 
(and therefore relevance) for the self may facilitate longer term reciprocal trust 
behaviours without any need to engage deliberate reasoning about future outcomes. 
A core test of the hypothesis that D2/D3 dopamine is crucial for self-relevant, recursive 
mentalisation is to use models of hierarchical mentalisation in future experiments that 
allow estimation of recursive depth in joint social contexts. 

The data presented here may be relevant beyond psychiatry. In behavioural 
economics, there have been several studies on the role of dopamine, reward, and 
decision making in both social and non-social contexts [54]. Increasing dopamine 
availability has been shown to increase risky non-social decisions when self-gain is at 
stake [55], suggesting that dopamine may inflate the attributed value of outcomes to 
the self. Our data imply that this role of dopamine in modulating monetary value to the 
self may reflect a broader role in representing the self-relevance of stimuli. The 
direction of this relationship (self-relevance precedes self-value, or vice versa) is a 
fruitful target for future research. Our data may also be relevant to the role of dopamine 
in moral behaviour. In one study, boosting D2/D3 dopamine with pramipexole reduced 
generosity, especially with close others [56]. Our data complements this work, 
suggesting that D2/D3 dopamine is involved in calibrating the valuation of self-gain in 
social decision-making.  

On a theoretical level, our formal model distinguishes between computational changes 
that result from prior representational biases (e.g., higher trait paranoia) and acute 
state changes during social interaction where potential harm from others is a possibility 
(Figure 5). Previous modelling with the same task [30] or a reversal variant of the task 
[31] provided evidence that trait paranoia increases the magnitude of priors over 
harmful intent, the subsequent increase in the belief that the actions of others are not 
reflective of their true motivations and a reduced willingness to believe that changes 
to a partner’s behaviour are motivated by changes to their harmful intent. Naturally, 
this suggested that prior representations bias how social behaviour is interpreted. On 
the other hand, the present models suggest that haloperidol acts through increased 
reliance and impact of likelihoods on the formation of beliefs. Creating 
phenomenologically plausible formal models that are sensitive to different 
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explanations of behavioural data has been a core aspiration of computational 
psychiatry [13,14]. Models like ours may be useful in distinguishing between longer 
term development and near-term alterations in learning that may explain paranoia. 
Model parameters are constant at the timescale of tasks while potentially evolving at 
the timescale of personal development, illness and recovery, while learning and 
inference can be dissected in the timescale of task conditions and trials. Much like 
prior work distinguishing interventions of representational change (psychotherapy) 
and emotion modulation (antidepressants; [57]) our model may support similar 
distinctions following intervention. We thus hypothesise that successful therapeutic 
use of haloperidol in paranoia will be associated with large changes in likelihood 
parameters described above but may leave intact, at least in the short term, prior 
beliefs about the harmful intent of others. D2/D3 independent processes may underpin 
ongoing vulnerability and may require further psychosocial learning. In our case, our 
task may only pick up long term representational (prior) changes following extended 
pharmacological therapy, or in combination with psychological therapy.  

We note some limitations. First, we did not use a patient population which means the 
extent to which the findings generalise to a population with persecutory delusions, 
rather than non-delusional paranoia, remains unclear. Likewise, in this first study we 
only included males to avoid hormonal heterogeneity, which might affect drug 
response and indeed the precise expression of dopaminergic mechanisms [58]. 
However, this important limitation must be addressed in future studies with studies 
powered to examine the computational structure of antipsychotic medication in people 
of different hormonal status and gender. Second, we did not include any non-social 
comparator (e.g. model-based decision making or volatile environments) when 
assessing the role of haloperidol on cognition. This leaves a divide between how 
dopamine influences non-social cognition and mental state inferences. Prior work 
suggests some shared variance between more foundational computations (e.g. 
decision temperature, belief updating) and paranoia [20,31,33]. Replicating the 
present work with non-social comparators of our social task, e.g. using a slot machine 
partner, may help understand the relations between formal theories of general 
decision making and how this is expressed at a recursive and intentional level in the 
same individuals. Third, we did not use a design that probes how dopamine may 
facilitate generalisation of social knowledge outside of our game theory task. Prior 
work has demonstrated that representations about learned partners can pass on from 
one context to another [48]; once a representation is learned using computationally 
intensive resources, a cheaper, heuristic model can be used. This relates to the 
question of whether an associative model of updating may be more efficient once a 
policy is known, and given our findings, whether haloperidol causes a faster transition. 
Finally, despite the difference in model responsibility, we did not find any influence of 
L-DOPA on behaviour. This may be due to an insufficient dose or translation of L-
DOPA leading to an increase in dopamine release, or the unspecific postsynaptic 
binding that may result from any successfully increased dopamine release as a 
consequence of L-DOPA.  
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Figure 5. Summary of experimental parameter changes from current and past 
work.  

(A) Experimentally observed effects on our model. Overall illustration of the impact of 
haloperidol on model parameters are illustrated in green. Prior results from the impact 
of high trait paranoia [30,31] are illustrated in red.  
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