

1 Structural insight into guanylyl cyclase receptor hijacking of the 2 kinase–Hsp90 regulatory mechanism

4 Nathanael A Caveney^{1,*}, Naotaka Tsutsumi^{1,2,3}, K Christopher Garcia^{1,2,*}

6 ¹Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine,
7 Stanford, CA 94305, USA

8 ²Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA

9 ³Present address: Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University,
10 Okayama, Japan.

11 *Correspondence: ncaveney@stanford.edu, kcggarcia@stanford.edu

13 Abstract

15 Membrane receptor guanylyl cyclases play a role in many important facets of human
16 physiology, from regulating blood pressure to intestinal fluid secretion. The structural
17 mechanisms which influence these important physiological processes have yet to be explored.
18 We present the 3.9 Å resolution cryo-EM structure of the human membrane receptor guanylyl
19 cyclase GC-C in complex with Hsp90 and its co-chaperone Cdc37, providing insight into the
20 mechanism of Cdc37 mediated binding of GC-C to the Hsp90 regulatory complex. As a
21 membrane protein and non-kinase client of Hsp90–Cdc37, this work shows the remarkable
22 plasticity of Cdc37 to interact with a broad array of clients with significant sequence variation.
23 Further, this work shows how membrane receptor guanylyl cyclases hijack the regulatory
24 mechanisms used for active kinases to facilitate their regulation. Given the known druggability
25 of Hsp90, these insights can guide the further development of membrane receptor guanylyl
26 cyclase-targeted therapeutics and lead to new avenues to treat hypertension, inflammatory
27 bowel disease, and other membrane receptor guanylyl cyclase-related conditions.

29 Introduction

31 Cyclic GMP (cGMP) is an important second messenger for signaling in mammalian
32 physiology, with roles in platelet aggregation, neurotransmission, sexual arousal, gut
33 peristalsis, bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac
34 hypertrophy, oocyte maturation, and blood pressure regulation (Potter, 2011). Largely, cGMP
35 is produced in response to the activation of guanylyl cyclases (GC), a class of receptors that
36 contains both heteromeric soluble receptors (α_1 , α_2 , β_1 and β_2 in humans) and five homomeric
37 membrane receptors (GC-A, GC-B, GC-C, GC-E, GC-F in humans). Of note are the
38 membrane receptor guanylyl cyclases (mGC) GC-A and GC-B, also known as natriuretic
39 peptide receptor A and B (NPR-A and NPR-B), respectively, and GC-C, all of which have been
40 a focus of therapeutic development. In the case of NPR-A and B, their role in regulating blood
41 pressure in response to natriuretic peptide hormones (ANP, BNP, CNP) has led to the
42 exploration of agonists for use in the treatment of cardiac failure (Kobayashi et al., 2012).
43 Meanwhile, GC-C is the target of clinically approved laxative agonists, linaclotide and
44 plecanatide (Miner, 2020; Yu & Rao, 2014), which increase intestinal fluid secretion.

46 These membrane receptor GCs consist of an extracellular ligand binding domain
47 (ECD), which acts as a conformational switch to drive intracellular rearrangements to activate
48 the receptor (X. L. He et al., 2001a); a transmembrane region (TM); a kinase homology domain

49 or pseudokinase domain (PK); a dimerization domain; and a guanylyl cyclase (GC) domain,
50 which acts to produce cGMP. The PK domain is largely thought to be involved in scaffolding
51 and physical transduction of the extracellular rearrangements to the GC domain, in some
52 respects similar to the role of the PK domain in the Janus kinases of the cytokine signaling
53 system (Glassman et al., 2022). In addition, the PK domains of mGCs are regulated through
54 phosphorylation (Potter & Garbers, 1992; Potter & Hunter, 1998; Vaandrager et al.,
55 1993) and via association with heat shock proteins (Hsp) (Kumar et al., 2001).

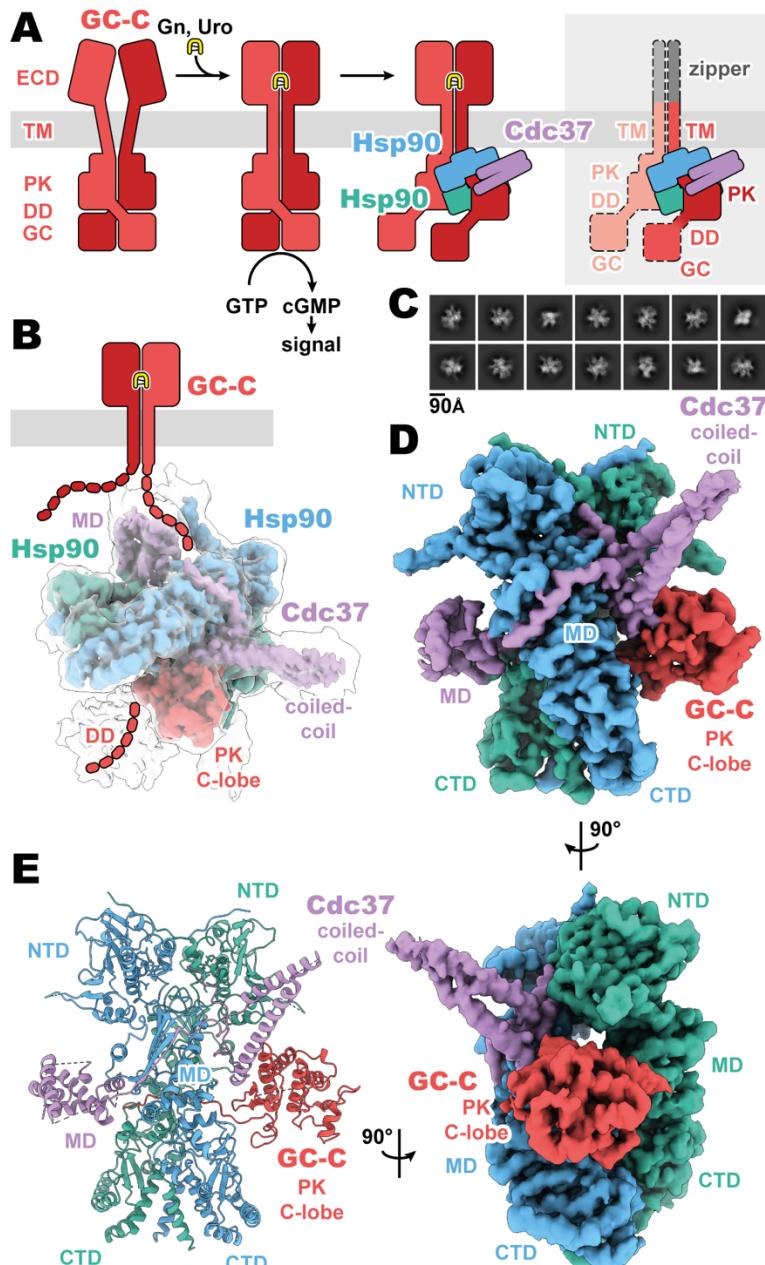
56

57 While the role of the phosphorylation state on mGC activity has been explored in
58 relative detail, how the heat shock protein 90 (Hsp90) is able to regulate mGC activity is largely
59 unknown. It has been shown that GC-A activity can be regulated through the association of
60 Hsp90 and the co-chaperone Cdc37 (Kumar et al., 2001). The chaperone Cdc37 is known to
61 assist in the Hsp90 regulation of around 60% of active kinases, both in soluble and membrane
62 receptor form (Taipale et al., 2012). Given the sequence and structural similarities between
63 the PK domains of mGCs and the active kinase domains which Hsp90–Cdc37 regulates, it is
64 possible that mGCs have evolved to hijack the regulatory mechanisms that are more broadly
65 deployed for active kinases.

66

67 Here we report the 3.9 Å resolution structure of the GC-C–Hsp90–Cdc37 regulatory
68 complex. In this structure, the core dimer of Hsp90 forms its canonical closed conformation,
69 while Cdc37 and the C-lobe of the GC-C PK domain asymmetrically decorate the complex.
70 The client (GC-C) is unfolded into the channel formed at the interface between the Hsp90
71 dimers. To our knowledge, this is the first structure of a membrane protein client of Hsp90 and
72 the first structure of a non-kinase client of the Hsp90–Cdc37 regulatory system. This work
73 provides pivotal understanding of the mechanism and structural basis of kinase fold
74 recruitment to the Hsp90–Cdc37 regulatory complex. This increased understanding can guide
75 the further development of mGC-targeted therapeutics and lead to new avenues to treat
76 hypertension, inflammatory bowel disease (IBD), and other mGC-related conditions. In
77 addition, the general insights into recruitment of Hsp90–Cdc37 clients can guide the further
78 development of Hsp90 targeting therapeutics in cancer treatment.

79


80 **Results**

81

82 **Structure of the GC-C–Hsp90–Cdc37 regulatory complex**

83

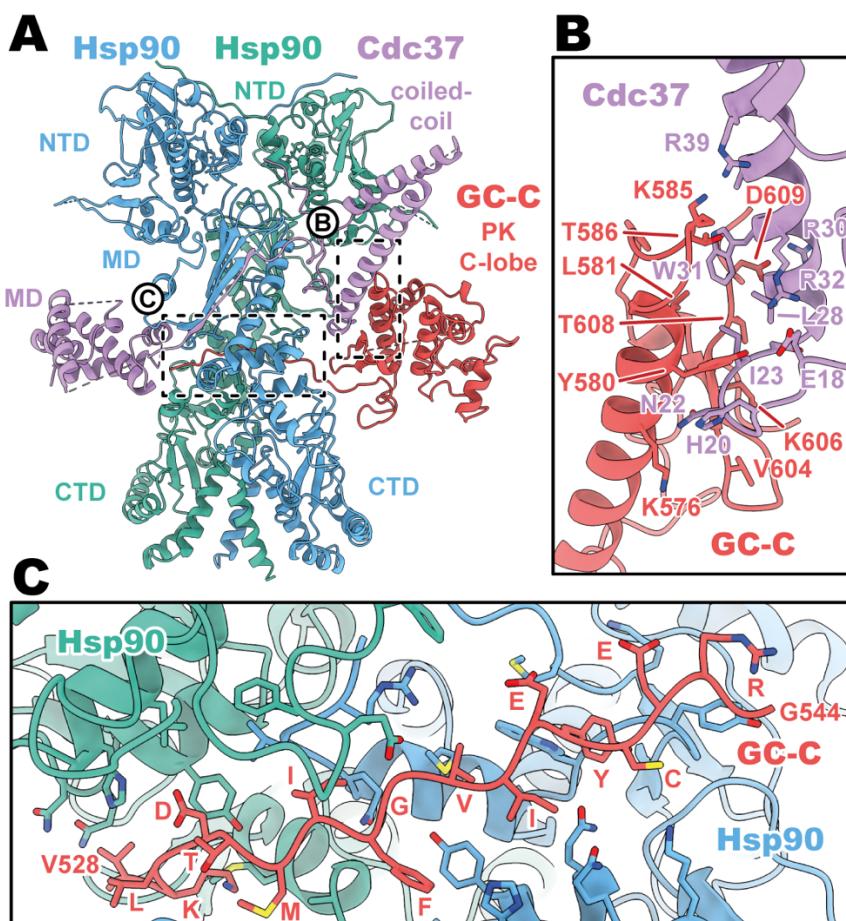
84 Membrane receptor guanylyl cyclases have been largely recalcitrant to structural
85 analysis by x-ray crystallography and electron microscopy, apart from various crystal
86 structures of both liganded and unliganded ECDs (X. L. He et al., 2001b; X. lin He et al., 2006;
87 Ogawa et al., 2004, 2010; van den Akker et al., 2000). Given the relative disparity of our
88 structural understanding, we sought to develop a stable construct to image and gain crucial
89 understanding of the regulatory and functional aspects of mGCs which occur intracellularly.
90 By replacing the ligand-responsive ECD with a homodimeric leucine zipper, we mimic the
91 ligand activated geometry of the ECD (X. L. He et al., 2001b), while reducing complexity of
92 the imaged complex and increasing stability (Figure 1A). This complex was recombinantly
93 expressed in mammalian cells, purified with anti-FLAG affinity chromatography, and vitrified
94 on grids for cryoEM analysis.

95
96 **Figure 1. Composition and cryoEM structure of the GC-C–Hsp90–Cdc37 regulatory**
97 **complex.** (A) Cartoon representation of the components of GC-C signaling and Hsp90–Cdc37
98 regulation and the zippered and activated GC-C. GC-C is colored in red, guanylin/uroguanylin
99 (Gn/Uro) in yellow, Hsp90 in blue and teal, and Cdc37 in purple. Extracellular domains (ECD),
100 transmembrane domain (TM), pseudokinase domain (PK), dimerization domain (DD), and
101 guanylyl cyclase domain (GC) are labelled. In the rightmost cartoon, the regions unobserved
102 in the cryoEM density are in a lighter shade with a dashed outline. (B) The refined and
103 sharpened cryoEM density map of GC-C–Hsp90–Cdc37, colored as in A, with a transparent
104 overlay of an unsharpened map with additional DD density resolved. Cdc37 coil-coiled and
105 middle domain (MD) are labelled. (C) Reference free 2D averages for the GC-C–Hsp90–
106 Cdc37 complex. (D) The refined and sharpened cryoEM density map of GC-C–Hsp90–Cdc37,
107 colored as in A and B, labelled with all domains as in A and B, with the addition of Hsp90 N-
108 terminal domain (NTD), middle domain (MD), and C-terminal domain (CTD). (E) Ribbon
109 representation of a model of GC-C–Hsp90–Cdc37 complex, colored and labelled as in A, B,
110 and C.

111 The purified sample had a substantial portion of imaged particles for which the native
112 regulatory heat shock protein, Hsp90, and its co-chaperone, Cdc37, are bound. The *Cricetulus*
113 *griseus* HSP90 β and Cdc37 show remarkable sequence conservation in comparison to the
114 human equivalents, at 99.7 and 94.2% identity, respectively. This native pulldown strategy
115 contrasts with the structures of Hsp90–Cdc37 in complex with soluble kinases (García-Alonso
116 et al., 2022; Oberoi et al., 2022; Verba et al., 2016), for which Hsp90 and Cdc37 had to be
117 overexpressed to obtain complex suitable for imaging. Three-dimensional reconstruction of
118 our GC-C–Hsp90–Cdc37 particles generated a 3.9 Å resolution map of the regulatory complex
119 (Figure 1, Figure 1—figure supplements 1 and 2). A second, unsharpened map from
120 subsequent heterogenous refinement resolves additional density for the dimerization domain,
121 extending outward from the PK domain (Figure 1B, Figure 1—figure supplement 1).

122 The resultant GC-C–Hsp90–Cdc37 complex is a hetero-tetramer formed by one
123 resolved monomer of the GC-C receptor bound to a dimer of Hsp90 and one Cdc37 co-
124 chaperone (Figure 1D). As observed with most Hsp90–client structures, the bulk of the
125 complex is composed of the C2 pseudosymmetric, ATP bound, closed state Hsp90 dimer.
126 Building on this dimeric core, the Cdc37 protrudes outward from one side with its characteristic
127 long, coiled-coil, α -hairpin. On one face of the Hsp90 dimer core, Cdc37 interacts with the PK
128 domain of GC-C, while an extended β -sheet wraps around to the other face, lying across and
129 extending a β -sheet in the middle domain (MD^{Hsp90}) of one Hsp90 monomer. At the opposite
130 face, the globular and α -helical Cdc37 middle domain (MD^{Cdc37}) is formed. The C-lobe of the
131 GC-C PK domain packs against the N-terminal region of Cdc37 on one face of the dimeric
132 Hsp90 core, with the N-lobe unfolding through the dimer core to interface with the MD^{Cdc37} on
133 the opposite face. N-terminal to the PK N-lobe is the TM region, density for which was
134 unobserved in our reconstructions. C-terminal to the PK C-lobe, we observe some poorly
135 resolved density for the likely mobile dimerization domain in our unsharpened map. This would
136 precede the GC domain, which is not observed in the density of our reconstructions (Figure
137 1B). Together, we can use our understanding of mGC topology and our reconstruction to orient
138 the complex as it would sit on a membrane (Figure 1B), providing insight into how Hsp90 is
139 able to access and regulate membrane protein clients. No density is observed for the second
140 GC-C of the dimer, though it is sterically unlikely that an additional regulatory complex is
141 forming on the second GC-C in a concurrent fashion, given the large size of the first Hsp90–
142 Cdc37 and the requisite proximity of the second GC-C. In addition, this disruption of the native
143 state of GC-C, as observed in our structure, would likely leave GC domains out of each other's
144 proximity, precluding their catalytic activity while Hsp90 is bound.

145
146 **Cdc37 mediated GC-C recruitment and Hsp90 loading**


147 Despite the recognized plasticity of Cdc37 co-chaperone binding to approximately 60%
148 of kinases (Taipale et al., 2012), the importance of the Hsp90–Cdc37 complex for
149 pseudokinase domain-containing proteins in the human proteome is not well studied. Thus,
150 the structural basis for how Cdc37 can recruit GC-C to the Hsp90 regulatory complex is of
151 particular interest. In our structures, we see that Cdc37 is displacing the N-lobe of the
152 pseudokinase domain of GC-C, binding to the C-lobe at the N–C interface, and guiding the
153 unfolded N-lobe into the Hsp90 dimer (Figure 2). The Cdc37–GC-C interface is relatively
154 modest in size, with a calculated mean surface area of 689 Å² (as calculated by PISA
155 (Krissinel & Henrick, 2007)). This interface is partly driven to form via charge
156 complementarity, with positive contributions from a cluster of arginine residues on Cdc37
157 and negative contributions from a cluster of glutamate residues on GC-C.

159 (R30, 32, 39) at the periphery of the interaction interface interacting with D609 and the polar
160 residues Y580 and T586 (Figure 2B). Beyond this, the interface is likely largely driven via
161 shape-complementarity, due to a minimal contribution from hydrogen bonding, salt-bridge
162 formation, and aromatic packing contributions – in line with the ability of Cdc37 to chaperone
163 such a diverse array of clients and client sequences.

164

165 As the unfolded PK N-lobe extends away from Cdc37, it enters the channel formed at
166 the interface between the dimer of Hsp90 (Figure 2C). Here, GC-C residues 528 to 544
167 (VKLDTMIFGVIEYCERG) lie across the upper region of the Hsp90 CTDs, which form the floor
168 of the channel. These CTDs form the bulk of the interaction interface as the unfolded N-lobe
169 passes through this channel, yet there are minor contributions from the loop regions of the β -
170 sheet from the MD^{Hsp90} which extend downward into this channel region. The unfolded region
171 is relatively poorly resolved in the density, with some reconstructions from earlier refinement
172 having no resolvable density in this channel region – indicative of the low stability and high
173 mobility for the unfolded N-lobe as it passes through this region.

174

175

176 **Figure 2. Cdc37 mediated GC-C recruitment and Hsp90 loading interfaces.** (A) Ribbon
177 representation of a model of GC-C–Hsp90–Cdc37 complex. GC-C is colored in red, Hsp90 in
178 blue and teal, and Cdc37 in purple. Pseudokinase (PK), coil-coiled, middle (MD), C-terminal
179 (CTD), and N-terminal (NTD) domains are labelled. (B) The Cdc37–GC-C interface in ribbon
180 representation, with interacting residues drawn in sticks, colored as in A. (C) The unfolded N-
181 lobe of GC-C PK domain as it passes between the Hsp90 dimer, in ribbon representation, with
182 interacting residues drawn in sticks, colored as in A and B. This region's sequence is:
183 VKLDTMIFGVIEYCERG.

184 **Conservation of Cdc37 mediated Hsp90 regulation**

185
186 The core structural principles of Cdc37 mediated client recruitment to Hsp90 appear
187 to remain constant across its large range of client diversity. Across other client–Hsp90–Cdc37
188 complexes with canonical soluble kinase clients (Cdk4, RAF1, B-raf) (García-Alonso et al.,
189 2022; Oberoi et al., 2022; Verba et al., 2016), we see a conserved role for Cdc37 in client
190 recruitment by associating with the C-lobe at the N-, C-lobe interface (Figure 2—figure
191 supplement 1A, B). In these complexes, we see high levels of structural conservation for the
192 Hsp90–Cdc37 (Ca RMSDs of 1.4–3.3 Å for Hsp90 and 1.5–2.5 Å for Cdc37), while the client is
193 structurally most homogenous at the interface with Cdc37, though less structurally conserved
194 overall (Ca RMSDs of 3.5–11.6 Å). Perhaps unsurprisingly, GC-C is one of the most divergent
195 of these clients from a sequence perspective (Figure 2—figure supplement 1C), with sequence
196 homology between the GC-C PK domain and the other client kinase domains ranging from 19
197 to 25% identity and 31 to 41% homology. This highlights the plasticity required of this system
198 which can service such a vast array of clients across a broad range of sequence variation, yet
199 more restricted fold architecture.

200
201 **Discussion**

202
203 The present cryoEM structure of GC-C–Hsp90–Cdc37 resolves the loading of GC-C,
204 via its PK domain and interaction with Cdc37, to the Hsp90 core dimer (Figure 1, 2). This
205 complex shows significant structural similarity to the mechanism that regulates soluble active
206 kinases (García-Alonso et al., 2022; Oberoi et al., 2022; Verba et al., 2016) and presumably
207 membrane receptor kinases in the human proteome. This structural and mechanistic
208 conservation is largely driven by the co-chaperone Cdc37, which serves as the central binding
209 platform for these clients by associating to the fold of the kinase (or pseudokinase in the case
210 of mGC) domain, relatively independent of sequence identity. A model whereby recruitment is
211 largely driven by both the fold complementarity and the specific stability properties of the
212 kinase fold has been proposed previously (Taipale et al., 2012). In this model, instability of a
213 fully folded kinase domain results in partial unfolding of the C-lobe, leading Cdc37 to bind the
214 partially unfolded state. Given the lack of functional and sequence conservation for GC-C as
215 a client of Cdc37, our data largely fits with this model for client recruitment. It is likely that the
216 pseudokinase domains of mGC have largely evolved to facilitate regulatory mechanisms for
217 these receptors, both via their phosphorylation and by hijacking the regulatory mechanisms
218 used by active soluble and membrane receptor kinases.

219
220 In the case of GC-A, previous work has shown that it associates with the Hsp90–Cdc37
221 complex to regulate GC activity (Kumar et al., 2001). The authors showed that adding
222 geldanamycin, an Hsp90 inhibitor, reduces the overall cGMP output of cells in response to
223 ANP stimulation while also reducing the association of the Hsp90 to GC-A. While this initially
224 may seem counterintuitive, this data fits with a model of ligand-induced activity potentiating
225 the instability of the PK domain, which then facilitates binding of the regulatory complex to “re-
226 fold” GC-A for further catalysis and cGMP production – in a core regulatory complex
227 structurally similar to that which we observe for GC-C in this work (Figure 2—figure
228 supplement 2). In the case of the Hsp90 inhibitor, this would release the Hsp90 and only allow
229 full catalytic activity for the receptor until the receptor falls into the partially unfolded state, as
230 the Hsp90 would no longer be able to re-engage at the C-lobe when inhibited (Figure 2—figure
231 supplement 2).

232
233 Interestingly there may be an additional layer of regulation involved, with crosstalk
234 between the phosphorylation and Hsp90 regulatory mechanisms of mGC. The phosphatase
235 PP5 is known to interact with the Hsp90–Cdc37 system and dephosphorylate Hsp90, Cdc37,
236 and the system's kinase clients (Oberoi et al., 2022). PP5 has been implicated in this role for
237 mGC (Chinkers, 1994), though this interaction was unable to be detected by a pull-down in a
238 second study (Kumar et al., 2001). In this way, mGC association with the Hsp90–Cdc37
239 complex could result in multiple fates and resultant activity profiles for the receptor. When the
240 PK of an activated mGC falls into a destabilized state, this would result in the recruitment of
241 the Hsp90–Cdc37. First, the regulatory complex could refold the receptor to maintain the
242 activity of the receptor (Figure 2—figure supplement 2 i). In another scenario, the Hsp90–
243 Cdc37 complex could additionally recruit PP5 to dephosphorylate the mGC (Figure 2—figure
244 supplement 2 ii). Particularly in the case of GC-A and GC-B, and to some extent GC-C (Potter
245 & Garbers, 1992; Potter & Hunter, 1998; Vaandrager et al., 1993), this would impair the
246 signaling activity of the mGC, though this could be rescued through the kinase re-association
247 and phosphorylation. In a final scenario, the binding of the Hsp90–Cdc37 complex could result
248 in the association of ubiquitin E3 ligases (Schopf et al., 2017) (Figure 2—figure supplement 2
249 iii), which would ubiquitinate the mGC client, leading to the removal of the receptor.

250
251 The regulation of mGC is influenced by a network of factors working in harmony to ensure
252 proper signaling and physiological response for these important receptors. The structure of
253 the core regulatory complex shown in this work is key to many facets of mGC regulation. We
254 hope that the structural basis for the Hsp90 regulatory platform for mGC will drive renewed
255 investigation into these diverse mechanisms and lead to the therapeutic manipulation of these
256 mechanisms to improve mGC targeting therapies.

257
258 **Methods**

260 **Cloning and protein expression**

261 For cryo-EM studies, a construct containing an HA secretion signal (MKTIIIALSYIFCLVFA), a
262 FLAG peptide (DYKDDDD), linker and 3C cleavage site (KGSLEVLFQGPG), GCN4
263 homodimeric zipper (RMKQLEDKVEELLSKNYHLENEVARLKKLVGER), human GC-C
264 regions corresponding to the small extracellular linker region, TM, and GC domain (residues
265 399-1,053), a second linker and 3C cleavage site (AAALEVLFQGPGAA), a Protein C epitope
266 tag (EDQVDPRRLIDGK), and an 8x His tag were cloned into a pD649 mammalian expression
267 vector. This construct contains all domains of the native GC-C, with the exception of the ECD.
268 Protein was expressed using ExpiCHO Expression System Kit (Thermo Fisher). Briefly,
269 ExpiCHO cells were maintained in ExpiCHO Expression Media at 37°C with 5% CO₂ and
270 gentle agitation, and transiently transfected by the expression construct and cultured
271 according to the manufacturer's protocol. Cells were pelleted and stored at -80°C.

272
273 **Protein purification**

274 Cells were resuspended in 20 mM HEPES-Na pH 8.0, 300 mM NaCl, 1 mM TCEP, protease
275 inhibitor cocktail (Sigma), and benzonase (Sigma). Cells were lysed by Dounce homogenizer
276 and cellular debris were pelleted by low-speed centrifugation at 500 x g. Membranes were
277 collected by centrifugation at 46,000 x g and stored at -80°C until use. Membranes were
278 thawed and solubilized with the addition of 1% n-dodecyl β-D-maltoside (DDM) and 0.1%

279 cholesteryl hemisuccinate (CHS) (10:1) (Anatrace). Debris and unsolubilized membranes
280 were pelleted by centrifugation at 46,000 x g. The supernatant was subsequently used in
281 FLAG affinity chromatography. The supernatant was applied to M1 anti-FLAG resin. The resin
282 was washed with 20 bed volumes of 20 mM HEPES-Na pH 8.0, 300 mM NaCl, 1 mM TCEP,
283 0.005% lauryl maltose neopentyl glycol (LMNG), 0.0005% CHS (10:1) (Anatrace), and 5 mM
284 ATP. The protein complex was eluted with the addition of 200 µg/mL of FLAG peptide
285 (DYKDDDD) (GenScript). Protein was subsequently concentrated to >2 mg/mL and used for
286 cryo-EM imaging.

287

288 **Cryo-electron microscopy**

289 Aliquots of 3 µL of complex were applied to glow-discharged 300 mesh UltrAuFoil® (1.2/1.3)
290 grids. The grids were blotted for 3 seconds at 100% humidity with an offset of 3 and plunge
291 frozen into liquid ethane using a Vitrobot Mark IV (Thermo Fisher). Grid screening and dataset
292 collection occurred at Stanford cEMc on a 200 kV Glacios microscope (Thermo Fisher)
293 equipped with a K3 camera (Gatan). Movies were collected at a magnification corresponding
294 to a 0.9273 Å per physical pixel. The dose was set to a total of 58.8 electrons per Å².
295 Automated data collection was carried out using SerialEM with a nominal defocus range set
296 from -0.8 to -2.0 µm.

297

298 **Image processing**

299 All processing was performed in cryoSPARC (Punjani et al., 2017) unless otherwise noted
300 (Figure 1—figure supplement 1). 8,788 movies were motion corrected using patch motion
301 correction. The contrast transfer functions (CTFs) of the flattened micrographs were
302 determined using patch CTF and an initial stack of particles was picked using Topaz picker
303 (Bepler et al., 2019). Successive rounds of reference-free 2D classification were performed to
304 generate a particle stack of 165,635 particles. These particles were then used in ab-initio
305 reconstruction, followed by non-uniform refinement (Punjani et al., 2020) and finally local
306 refinement with a loose mask around the entire complex. This resulted in a 3.9 Å
307 reconstruction of the GC-C–Hsp90–Cdc37 complex. These particles were also used in a 4
308 class heterogenous refinement to pull out a volume containing some resolved density for the
309 dimerization domain of GC-C.

310

311 **Model building and refinement**

312 The Cdk4–Hsp90β–Cdc37 (PDB 5FWK), PP5–B-Raf–Hsp90β–Cdc37 (PDB 7ZR5), and
313 AlphaFold models for GC-C (Jumper et al., 2021; Mirdita et al., 2022) were docked into the
314 map using UCSF Chimera X (Pettersen et al., 2021). A resultant hybrid model was then
315 manually curated to contain the correct *Cricetulus griseus* sequences for Hsp90β–Cdc37 and
316 run through Namdinator (Kidmose et al., 2019). This was followed by automated refinement
317 using Phenix real space refine (Adams et al., 2010) and manual building in Coot (Emsley &
318 Cowtan, 2004). The final model produced a favorable MolProbity score of 2.14 (Chen et al.,
319 2010) with 0.4% Ramachandran outliers (Table 1). Model building and refinement software
320 was installed and configured by SBGrid (Morin et al., 2013).

321

322

323 **Data Availability**

324

325 Cryo-EM maps and atomic coordinates for the GC-C–Hsp90–Cdc37 complex have been
326 deposited in the EMDB (EMD-XXXXX) and PDB (XXXX). Material availability: The plasmids
327 used in this study are available from KCG (kcgarcia@stanford.edu) by request.

328

329 **Acknowledgements**

330

331 We thank Liz Montabana and Stanford cEMc for microscope access for data collection. We
332 thank Paul LaPointe and Kevin Jude for insightful discussion of Hsp90 structure and regulatory
333 mechanisms. NAC is a CIHR postdoctoral fellow. KCG is an investigator with the Howard
334 Hughes Medical Institute. KCG is supported by National Institutes of Health grant R01-
335 AI51321, the Mathers Foundation, and the Ludwig Foundation.

336

337 **Author Contributions**

338

339 NAC contributed to conceptualization, methodology, investigation, analysis, writing – original
340 draft, review, and editing. NT contributed to conceptualization, methodology, investigation,
341 writing – review, and editing. KGC contributed to conceptualization, supervision, writing –
342 review and editing, and funding acquisition.

343

344 **Competing Interests**

345

346 The authors declare no competing interests.

347

348 **References**

349

350 Adams, P. D., Afonine, P. V., Bunkóczki, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung,
351 L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read,
352 R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., & Zwart, P. H. (2010). PHENIX: A
353 comprehensive Python-based system for macromolecular structure solution. *Acta
354 Crystallographica Section D: Biological Crystallography*, 66(2), 213–221.
355 <https://doi.org/10.1107/S0907444909052925>

356 Aiyer, S., Zhang, C., Baldwin, P. R., & Lyumkis, D. (2021). Evaluating Local and Directional
357 Resolution of Cryo-EM Density Maps. *Methods in Molecular Biology*, 2215, 161–187.
358 [https://doi.org/10.1007/978-1-0716-0966-8_8/COVER](https://doi.org/10.1007/978-1-0716-0966-8_8)

359 Bepler, T., Morin, A., Rapp, M., Brasch, J., Shapiro, L., Noble, A. J., & Berger, B. (2019). Positive-
360 unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. *Nature
361 Methods*, 16(11), 1153–1160. <https://doi.org/10.1038/s41592-019-0575-8>

362 Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L.
363 W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for
364 macromolecular crystallography. *Acta Crystallographica Section D: Biological Crystallography*,
365 66(1), 12–21. <https://doi.org/10.1107/S0907444909042073>

366 Chinkers, M. (1994). Targeting of a distinctive protein-serine phosphatase to the protein kinase-like
367 domain of the atrial natriuretic peptide receptor. *Proceedings of the National Academy of
368 Sciences*, 91(23), 11075–11079. <https://doi.org/10.1073/PNAS.91.23.11075>

369 Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. *Acta
370 Crystallographica Section D: Biological Crystallography*, 60(12 I), 2126–2132.
371 <https://doi.org/10.1107/S0907444904019158>

372 García-Alonso, S., Mesa, P., Ovejero, L. de la P., Aizpurua, G., Lechuga, C. G., Zarzuela, E.,
373 Santiveri, C. M., Sanclemente, M., Muñoz, J., Musteanu, M., Campos-Olivas, R., Martínez-
374 Torrecuadrada, J., Barbacid, M., & Montoya, G. (2022). Structure of the RAF1-HSP90-CDC37
375 complex reveals the basis of RAF1 regulation. *Molecular Cell*, 82(18), 3438–3452.e8.
376 <https://doi.org/10.1016/J.MOLCEL.2022.08.012>

377 Glassman, C. R., Tsutsumi, N., Saxton, R. A., Lupardus, P. J., Jude, K. M., & Christopher Garcia, K.
378 (2022). Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric
379 activation. *Science*, 376(6589), 163–169. <https://doi.org/10.1126/science.abn8933>

380 He, X. L., Chow, D. C., Martick, M. M., & Garcia, K. C. (2001a). Allosteric activation of a spring-loaded
381 natriuretic peptide receptor dimer by hormone. *Science*, 293(5535), 1657–1662.
382 [https://doi.org/10.1126/SCIENCE.1062246/SUPPL_FILE/1062246S2_THUMB.GIF](https://doi.org/10.1126/SCIENCE.1062246)

383 He, X. L., Chow, D. C., Martick, M. M., & Garcia, K. C. (2001b). Allosteric activation of a spring-loaded
384 natriuretic peptide receptor dimer by hormone. *Science*, 293(5535), 1657–1662.
385 https://doi.org/10.1126/SCIENCE.1062246/SUPPL_FILE/1062246S2_THUMB.GIF

386 He, X. lin, Dukkipati, A., & Garcia, K. C. (2006). Structural Determinants of Natriuretic Peptide
387 Receptor Specificity and Degeneracy. *Journal of Molecular Biology*, 361(4), 698–714.
388 <https://doi.org/10.1016/J.JMB.2006.06.060>

389 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
390 Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J.,
391 Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., ... Hassabis, D. (2021). Highly
392 accurate protein structure prediction with AlphaFold. *Nature*, 596(7873), 583–589.
393 <https://doi.org/10.1038/s41586-021-03819-2>

394 Kidmose, R. T., Juhl, J., Nissen, P., Boesen, T., Karlsen, J. L., & Pedersen, B. P. (2019). Namdinator
395 - Automatic molecular dynamics flexible fitting of structural models into cryo-EM and
396 crystallography experimental maps. *IUCrJ*, 6(4), 526–531.
397 <https://doi.org/10.1107/S2052252519007619/EH5002SUP3.PDF>

398 Kobayashi, D., Yamaguchi, N., Takahashi, O., Deshpande, G. A., & Fukui, T. (2012). Human Atrial
399 Natriuretic Peptide Treatment for Acute Heart Failure: A Systematic Review of Efficacy and
400 Mortality. *Canadian Journal of Cardiology*, 28(1), 102–109.
401 <https://doi.org/10.1016/j.cjca.2011.04.011>

402 Krissinel, E., & Henrick, K. (2007). Inference of Macromolecular Assemblies from Crystalline State.
403 *Journal of Molecular Biology*, 372(3), 774–797. <https://doi.org/10.1016/j.jmb.2007.05.022>

404 Kumar, R., Grammatikakis, N., & Chinkers, M. (2001). Regulation of the Atrial Natriuretic Peptide
405 Receptor by Heat Shock Protein 90 Complexes. *Journal of Biological Chemistry*, 276(14),
406 11371–11375. <https://doi.org/10.1074/jbc.M010480200>

407 Miner, P. B. (2020). Plecanatide for the treatment of constipation-predominant irritable bowel
408 syndrome. <Https://Doi.Org/10.1080/17474124.2020.1722101>, 14(2), 71–84.
409 <Https://doi.org/10.1080/17474124.2020.1722101>

410 Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold:
411 making protein folding accessible to all. *Nature Methods*, 19(6), 679–682.
412 <Https://doi.org/10.1038/s41592-022-01488-1>

413 Morin, A., Eisenbraun, B., Key, J., Sanschagrin, P. C., Timony, M. A., Ottaviano, M., & Sliz, P. (2013).
414 Collaboration gets the most out of software. *ELife*, 2013(2). <Https://doi.org/10.7554/ELIFE.01456>

415 Oberoi, J., Guiu, X. A., Outwin, E. A., Schellenberger, P., Roumeliotis, T. I., Choudhary, J. S., & Pearl,
416 L. H. (2022). HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation.
417 *Nature Communications* 2022 13:1, 13(1), 1–13. <Https://doi.org/10.1038/s41467-022-35143-2>

418 Ogawa, H., Qiu, Y., Ogata, C. M., & Misono, K. S. (2004). Crystal structure of hormone-bound atrial
419 natriuretic peptide receptor extracellular domain. Rotation mechanism for transmembrane signal
420 transduction. *Journal of Biological Chemistry*, 279(27), 28625–28631.
421 <Https://doi.org/10.1074/JBC.M313222200/ATTACHMENT/31436558-57B4-4F07-AC3C-698401425198/MMC1.ZIP>

422 Ogawa, H., Qiu, Y., Philo, J. S., Arakawa, T., Ogata, C. M., & Misono, K. S. (2010). Reversibly bound
423 chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric
424 regulation and a conserved structural motif for the chloride-binding site. *Protein Science*, 19(3),
425 544–557. <Https://doi.org/10.1002/PRO.332>

426 Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., &
427 Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and
428 developers. *Protein Science*, 30(1), 70–82. <Https://doi.org/10.1002/pro.3943>

429 Potter, L. R. (2011). Guanylyl cyclase structure, function and regulation. *Cellular Signalling*, 23(12),
430 1921–1926. <Https://doi.org/10.1016/J.CELLSIG.2011.09.001>

431 Potter, L. R., & Garbers, D. L. (1992). Dephosphorylation of the guanylyl cyclase-A receptor causes
432 desensitization. *Journal of Biological Chemistry*, 267(21), 14531–14534.
433 [Https://doi.org/10.1016/S0021-9258\(18\)42069-8](Https://doi.org/10.1016/S0021-9258(18)42069-8)

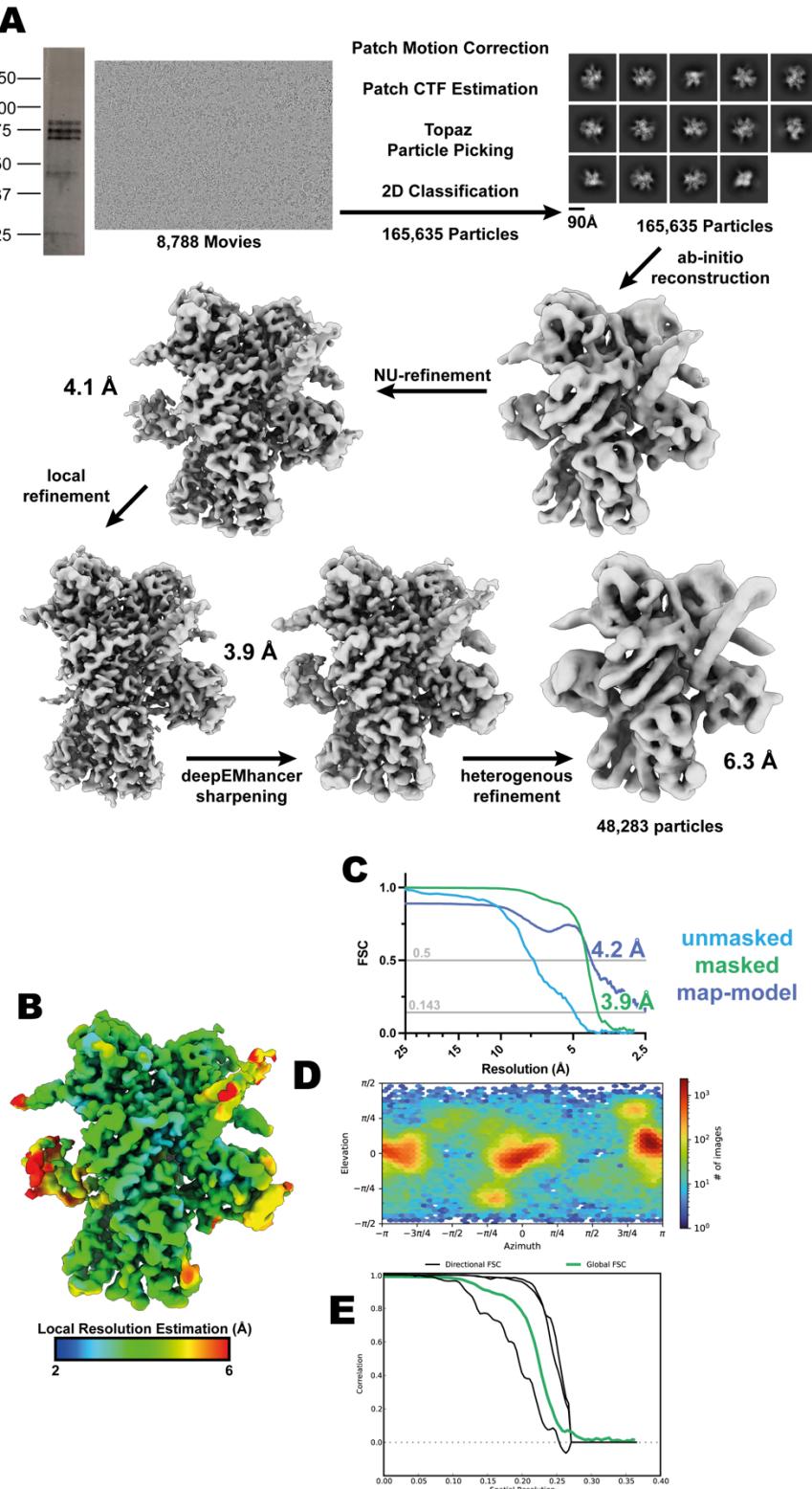
434 Potter, L. R., & Hunter, T. (1998). Identification and Characterization of the Major Phosphorylation
435 Sites of the B-type Natriuretic Peptide Receptor. *Journal of Biological Chemistry*, 273(25),
436 15533–15539. <Https://doi.org/10.1074/JBC.273.25.15533>

437 Punjani, A., Rubinstein, J. L., Fleet, D. J., & Brubaker, M. A. (2017). CryoSPARC: Algorithms for rapid
438 unsupervised cryo-EM structure determination. *Nature Methods*, 14(3), 290–296.
439 <Https://doi.org/10.1038/nmeth.4169>

440 Punjani, A., Zhang, H., & Fleet, D. J. (2020). Non-uniform refinement: adaptive regularization
441 improves single-particle cryo-EM reconstruction. *Nature Methods*, 17(12), 1214–1221.
442 <Https://doi.org/10.1038/s41592-020-00990-8>

443 Schopf, F. H., Biebl, M. M., & Buchner, J. (2017). The HSP90 chaperone machinery. *Nature Reviews
444 Molecular Cell Biology* 2017 18:6, 18(6), 345–360. <Https://doi.org/10.1038/nrm.2017.20>

445 Taipale, M., Krykbaeva, I., Koeva, M., Kayatekin, C., Westover, K. D., Karras, G. I., & Lindquist, S.
446 (2012). Quantitative Analysis of Hsp90-Client Interactions Reveals Principles of Substrate
447 Recognition. *Cell*, 150(5), 987–1001. <Https://doi.org/10.1016/J.CELL.2012.06.047>


448 Vaandrager, A. B., van der Wiel, E., & de Jonge, H. R. (1993). Heat-stable enterotoxin activation of
449 immunopurified guanylyl cyclase C. Modulation by adenine nucleotides. *Journal of Biological
450 Chemistry*, 268(26), 19598–19603. [Https://doi.org/10.1016/S0021-9258\(19\)36558-5](Https://doi.org/10.1016/S0021-9258(19)36558-5)

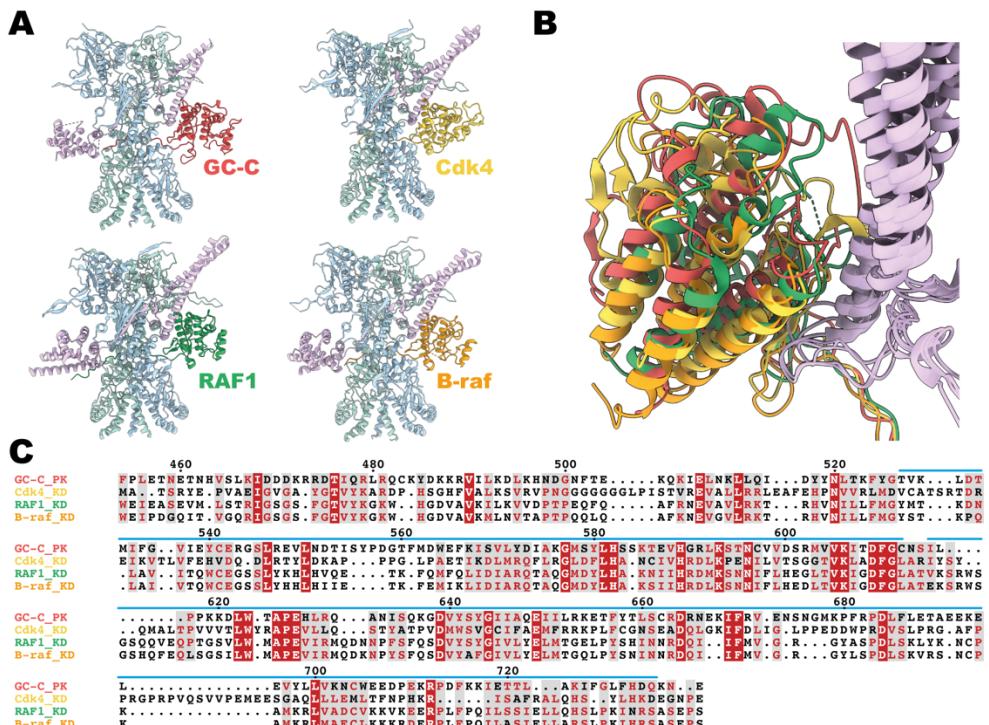
451 van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., & Yee, V. C. (2000). Structure of the
452 dimerized hormone-binding domain of a guanylyl cyclase-coupled receptor. *Nature* 2000
453 406:6791, 406(6791), 101–104. <Https://doi.org/10.1038/35017602>

454 Verba, K. A., Wang, R. Y. R., Arakawa, A., Liu, Y., Shirouzu, M., Yokoyama, S., & Agard, D. A.
455 (2016). Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an
456 unfolded kinase. *Science*, 352(6293), 1542–1547.
457 Https://doi.org/10.1126/SCIENCE.AAF5023/SUPPL_FILE/AAF5023S4.MOV

458 Yu, S. W. B., & Rao, S. S. C. (2014). Advances in the management of constipation-predominant
459 irritable bowel syndrome: The role of linaclotide. *Therapeutic Advances in Gastroenterology*,
460 7(5), 193–205.
461 Https://doi.org/10.1177/1756283X14537882/ASSET/IMAGES/LARGE/10.1177_1756283X14537882-FIG2.JPG


462
463
464
465

466
467


Figure 1—figure supplement 1. GC-C–Hsp90–Cdc37 complex cryoEM data processing.

468 (A) Workflow for cryoEM data processing. SDS-PAGE gel, representative micrograph,
469 reference free 2D averages, and cryoEM maps at the various stages of processing. (B) Local
470 resolution estimation of the finalised cryoEM map. (C) FSC curve of the reconstruction using
471 gold-standard refinement calculated from unmasked and masked half maps. Map-model FSC
472 curve. (D) Orientational distribution of the reconstruction. (E) Directional FSC curves from
473 3DFSC (Aiyer et al., 2021).

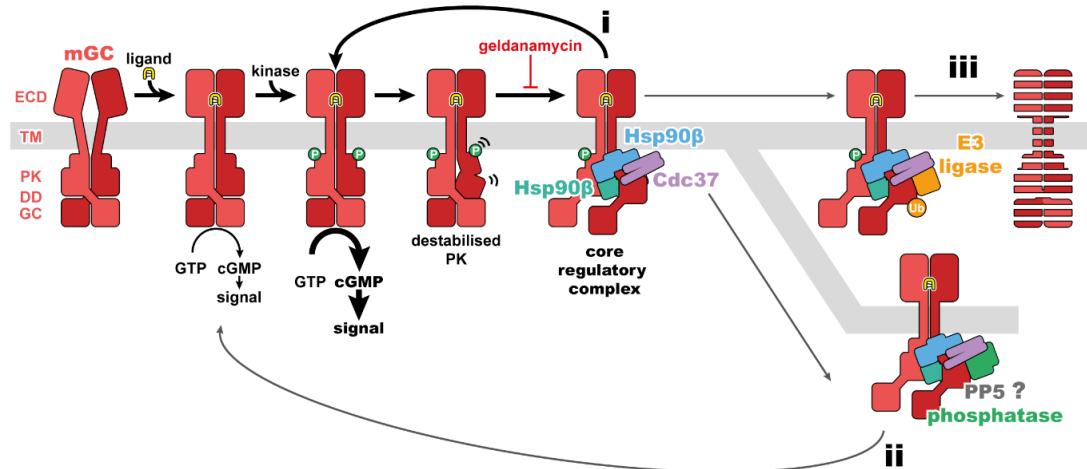

474
475
476
477

Figure 1—figure supplement 2. Representative density of GC-C–Hsp90–Cdc37. (A)
Representative density of Hsp90. **(B)** Representative density of Cdc37. **(C)** Representative density of GC-C.

478
479
480
481
482
483
484
485
486
487
488

Figure 2—figure supplement 1. Conservation of Cdc37 mediated Hsp90 regulation. (A)
Representative density of Hsp90. **(B)** Representative density of Cdc37. **(C)** Representative density of GC-C.

489
490
491
492
493
494
495
496

Figure 2—figure supplement 2. Regulatory mechanisms for mGC activity. A schematic of mGC ligand induced activity, phosphorylation, and destabilization, leading to formation of the mGC–Hsp90–Cdc37 complex structurally characterized in this work. This core regulatory complex would then lead to refolding of the PK and reactivation of the receptor (i), recruitment of PP5 and dephosphorylation of the receptor (ii), or recruitment of E3 ligases and removal of the receptor (iii). An mGC is depicted in red, ligand in yellow, Hsp90 in blue and teal, Cdc37 in purple, a phosphatase in green, and an E3 ligase in orange.

497 **Table 1. CryoEM data collection, refinement, and validation statistics.**

GC-C-Hsp90-Cdc37 complex		GC-C-Hsp90-Cdc37 complex
PDB XXXX		with DD density
EMD-XXXXX		
Data collection and processing		
Nominal magnification	45,000	
Acceleration voltage (kV)	200	
Electron exposure (e ⁻ /Å ²)	58.8	
Defocus range (μm)	0.8 to 2.0	
Pixel size (Å)	0.9273	
Symmetry imposed	C1	
Final particle images	165,635	48,283
Map resolution FSC threshold	0.143	
Map resolution (Å)	3.9	6.3
Refinement		
Initial model used (PDB)	5FWK, 7ZR5, AlphaFold	
Model resolution FSC threshold (Å)	0.5	
Model resolution (Å)	4.2	
Model Composition		
Non-hydrogen atoms	13,478	
Protein residues	1,654	
Ligands	2	
B-factors (Å ²)		
Protein	119.49	
Ligand	102.85	
R.m.s. deviations		
Bond lengths (Å)	0.004	
Bond angles (°)	0.914	
Validation		
MolProbity score	2.14	
Clashscore	13.88	
Rotamer outliers (%)	0.67	
Ramachandran plot		
Favoured (%)	92.0	
Allowed (%)	7.6	
Outliers (%)	0.4	

498