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11  Abstract

12 Brain iron overload and decreased integrity of the dopaminergic system have been independently
13 reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in
14 high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related
15  trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-
16  like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a
17 mutual interaction between these two fundamental components. Still, a direct in-vivo study testing
18  the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan
19  is rare. Using PET and MRI data from the DyNAMIC study (n=180, age=20-79, %50 female), we
20  showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum,
21  suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older
22 individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the
23 most demanding task, which in turn was related to poorer working-memory performance. Together,
24 our findings suggest that the combination of elevated iron load and reduced D1DR contribute to
25  disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for

26 future intervention.

27 Keywords: Dopamine, Iron, Working memory, Age, BOLD

28  Highlights

29 e  First study demonstrating the association between regional iron and dopamine D1DR in adult
30 humans.

31 e Theinterplay between age-related elevated iron and diminished D1DR explained lower task-
32 related brain activity, which in turn was related to poorer task performance.

33 e Qurfindings iron-DA coupling can help progress the understanding of the mechanisms

34 behind DA-related neurodegeneration.
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35 1 Introduction

36  Aging is associated with cognitive decline (Gorbach et al., 2017; Salthouse, 2012) and concomitant
37 alterations in structural, functional, and molecular properties of the brain (Andrews-Hanna et al.,
38 2007; Backman et al., 2000; Gorbach et al., 2017; Zimmerman et al., 2006). Elevated iron content and
39  decreased integrity of the dopaminergic system are typically reported as independent brain
40  substrates of age-related cognitive decline (Backman et al., 2006, 2011; Cools & D’Esposito, 2011;
41 Daugherty et al., 2015; Gustavsson et al., 2022; Hallgren & Sourander, 1958; Kalpouzos, 2018; Landau
42 et al., 2009; Nyberg, Andersson, et al., 2009; Salami et al., 2019). Intracellular non-heme iron is
43  involved in several fundamental neurobiological processes, including dopamine (DA) metabolism
44  (Hare & Double, 2016; Mills et al., 2010). More specifically, iron is a cofactor of tyrosine hydroxylase
45  during DA synthesis, indicating a critical role of iron in DA metabolism as well as in the development
46  of the dopaminergic system (Erikson et al., 2001; Ortega et al., 2007; Unger et al., 2014; Zucca et al.,

47  2017).

48 Iron is stored in the ferritin protein which keeps it from harming brain cells and is released upon
49  metabolic demand. However, unbound iron accumulates with advancing aging and exerts
50 detrimental effects on cellular integrity. Elevated iron content contributes to poorer myelin integrity
51  (Steiger et al.,, 2016) and grey-matter atrophy (Daugherty & Raz, 2015, 2016), as well as altered
52  frontostriatal activity (Kalpouzos et al., 2017; Rodrigue et al., 2020; Salami et al., 2021) along with
53 disrupted functional connectivity in aging (Salami et al., 2018). Similar to consequences of elevated
54  iron in aging, disruption of the DA system contributes to age-related neurocognitive impairment
55  (Backman et al., 2006, 2011; Cools & D’Esposito, 2011; Landau et al., 2009; Nyberg, Dahlin, et al.,
56 2009; Rieckmann et al., 2011; Salami et al., 2019). Given DA and iron are co-localized in high
57  concentrations in the striatum, age-related iron dyshomeostasis combined with disturbance of the

58 DA system may become harmful for brain integrity and cognition. Direct in-vivo studies testing the
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59  synergistic effects between the dopaminergic system and iron on brain function and cognition in

60  aging arerare.

61  Past studies suggest that iron may cause neurotoxicity through DA oxidation, which may in turn
62 contribute to loss of dopaminergic neurons (Hald & Lotharius, 2005; Hare & Double, 2016; Youdim et
63  al., 1993; Zucca et al., 2017). Animal studies have demonstrated that iron-induced damage causing
64 DA depletion (Poetini et al., 2018) and deterioration of dopaminergic cells (Kaur et al., 2003) could be
65  restored after iron chelation. In contrast, a longitudinal study showed that dopaminergic cell death
66 precedes iron elevation in parkinsonian monkey (He et al., 2003). A study with young, middle-aged,
67  and older rhesus monkeys reported an association between iron and stimulus-evoked levels of DA
68  (Cass et al., 2007), with older monkeys exhibiting more iron accumulation and less DA release.
69  Although it remains unclear whether elevated iron is the cause or consequence of DA degeneration,
70 it is relatively well acknowledged in animal studies that these two key chemical components of the

71 brain interact with each other (Hare & Double, 2016).

72  As opposed to ample animal studies on iron-DA coupling, evidence for such an association across the
73 adult lifespan in humans is scarce. A recent longitudinal study showed that developmental changes in
74 pre-synaptic, but not post-synaptic, DA receptors were positively associated with iron accumulation
75  through adolescence and young adulthood (Larsen et al., 2020). Still, iron and DA play ambivalent
76 roles during early and later adulthood (Johansson et al., 2022; Kalpouzos et al., 2017; Salami et al.,
77 2021). Recent work showed that older individuals with genetic predisposition for lower DA (by proxy
78 of the COMT Vall58Met genetic polymorphism) accumulated more iron in the dorsolateral
79 prefrontal cortex (DLPFC) and striatum over 3 years (Gustavsson et al., 2022). Postsynaptic DA
80  markers, particularly DA D1-like receptor (D1DRs) which are the most abundantly expressed receptor
81  subtypes, are among the most age-sensitive DA systems (Karrer et al.,, 2019). Moreover, the
82  activation of D1 and D2 receptors alleviates oxidative stress-induced inflammatory responses (Shao

83 et al., 2013; Yan et al.,, 2015; Zhu et al., 2018). Hence, with diminished DADRs, the capacity of the
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84  protective response counteracting oxidative stress and neuroinflammation due to iron overload is

85 lessened, and may lead to increased damage and ferroptosis (Hald & Lotharius, 2005).

86  Motivated by the lack of human studies, we investigated the relationship between dopaminergic
87  receptors and iron content, and their interactions on brain function and cognition. Using the largest
88 D1DR dataset across the world, we studied 180 healthy individuals (20-79 years old) who underwent
89 D1DR Positron Emission Tomography (PET) assessment using [“'C]SCH23390, iron approximation
90 made with magnetic resonance imaging (MRI) based quantitative susceptibility mapping (QSM;
91 (Langkammer et al., 2012)), and functional magnetic resonance imaging (fMRI) while performing a
92  working-memory task. We first examined regional variation in the link between D1DR and iron
93  content with the hypothesis that greater iron content is related to lower D1DR, with a possible
94  interaction with age (C.f. Salami et al., 2021; Kalpouzos et al.,2018). We targeted DLPFC and striatum,
95  because of abundantly expressed D1DR (Shohamy & Adcock, 2010), pronounced age-related D1DR
96  differences (Karrer et al., 2017), and association between COMT polymorphism (i.e., a dopaminergic
97 gene) and iron accumulation reported in these regions (Gustavsson et al.,, 2022). Given the
98 association of iron and DA to neural circuits of working memory (c.f., Salami et al., 2021; Salami et al.,
99  2019), we predicted an interactive effect of iron and D1DR on load-dependent BOLD modulation and
100  working memory processing (Gustavsson et al., 2022; Spence et al., 2020). To this end, we applied
101  multivariate partial-least squares (PLS; ((McIntosh & Lobaugh, 2004)) which enables a simultaneous
102 analysis of iron content, D1DR, age, on BOLD associations across all task conditions in a data-driven
103  fashion. If these variables are simultaneously related to neural circuits of WM, PLS should reveal a
104  single network showing that older individuals with elevated iron and decreased D1DR (i.e., toxic iron-
105 DA coupling) exhibit lower task-related BOLD-response, particularly within the frontoparietal
106  network. However, if D1DR and iron differentially modulate BOLD response (c.f., Salami et al., 2019;

107 Salami et al., 2021), PLS should reveal different networks.

108 2 Materials and methods
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109  This study uses data from the DopamiNe Age Connectome Cognition (DyNAMIC) project approved by
110  the Umea University Regional Ethical Board. All participants signed informed consent prior to data

111  collection (for details about DyNAMIC, see Nordin et al., 2022).

112 2.1 Participants

113  One-hundred and eighty adults (mean age 49.8 £ 17.4 years; range 20-79; 90 females) from Ume3,
114  Sweden, were recruited to participate in the project and underwent the full protocol, including
115  cognitive testing, MRI, and PET assessments. All participants were native Swedish speakers, right-
116  handed, and had no history of neurological illnesses. Of the sample of 180 participants, 3 dropped
117 out of PET scanning, 4 were excluded due to incidental brain abnormalities, 3 due to failed
118  reconstruction of QSM images. Additionally, brain and behavioural data were screened for univariate
119  and multivariate outliers. Univariate outliers were defined as values greater or less than 3.29 SD from
120  the mean (Tabachnick & Fidell, 2013) and excluded as pairwise deletions per ROIs and modality.
121 Multivariate outliers were identified according to Mahalanobis distance (p < 0.001; Tabachnick &
122 Fidell, 2013). As a result, five participants were identified as univariate outliers on their iron (n=3) or
123 D1DR (n=2) values, and three were multivariate outliers. Thus, data from 162 individuals were used
124 in the analyses involving iron content and D1D1R. Furthermore, three outliers were identified based

125  on their online WM performance and excluded from analyses.

126 2.2 Neuroimaging acquisition and pre-processing

127 Participants underwent positron emission tomography on a Discovery 690 PET/CT scanner (General
128 Electric) and MRI on a Discovery MR750 3.0 T scanner (General Electric) equipped with a 32-channel

129 phased-array head coil at two separate occasions at Umea University Hospital.

130  2.2.1 PET acquisition

131 PET was conducted to assess whole-brain D1DR using radioligand [*'C]SCH23390 at rest (for details

132 see Nordin et al., 2022). The scanning session started with a low-dose CT image, followed by an
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133  intravenous bolus injection of the radioligand. Participants were instructed to lay still and stay awake
134  with eyes open. An individually fitted thermoplastic mask was attached to the bed surface during

135  scanning to minimize head movement.
136  2.2.2 Structural MR acquisition

137 High-resolution anatomical T1-weighted images were acquired using 3D fast-spoiled gradient echo
138  sequence with the following parameters: 176 sagittal slices, slice thickness = 1 mm, voxel size 0.49 x
139 0.49 x 1 mm’, repetition time (TR) = 8.2 ms, echo time (TE) = 3.2 ms, flip angle = 12°, field of view

140  (FOV) =250 x 250 mm, no spacing.
141 2.2.3 Iron acquisition

142 Images for iron estimation was obtained using a 3D multi-echo gradient-recalled echo sequence
143 (meGRE). The parameters were as follows: 124 axial slices, voxel size 1 x 1 x 1.2 mm>, TR = 31 ms, flip
144  angle = 17°, FOV = 256 x 256 mm, no spacing. The first TE was 1.78 ms followed by seven additional

145 TEs with a 2.87 ms interval.
146  2.2.4 Functional MR acquisition

147 The functional images were sampled using single-shot multiband EPI sequence with 37 axial slices,
148 voxel size 1.95x 1.95x 3.9 mm3, 0.5 mm spacing, TR =2.000 ms, TE = 30 ms, flip angle = 80°, and FOV

149 =250 x 250 mm. Ten dummy scans were collected at the start of the sequence.
150  2.2.5In-scanner working memory task

151 A numerical N-back task was administered in the scanner (Salami et al., 2018). A sequence of single
152  numbers appeared on the screen for 1.5s, with an interstimulus interval of 0.5s. During every item
153 presentation, subjects indicated whether the digit on the screen was the same as the one shown 1, 2,
154  or 3 digits back by pressing one of the two adjacent buttons with the index (Yes response) or middle
155  finger (No response). Each working-memory load condition (1-, 2-, and 3-back) was presented over

156 nine blocks in random order (interblock interval, 22 s) with each block consisting of 10 trials. For
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157  every block, 10 trials were performed with four matches (requiring a “yes” response) and six
158  nonmatches (requiring a “no” response). The N-back blocks were counterbalanced and trial sequence
159  wasthe same for all participants. The maximum score for each condition was 81, 72, 63, respectively.
160  Performance was calculated as an error-adjusted discrimination score by subtracting the proportion
161  of false alarms (i.e., a wrong answer judged to be correct, or, in other terms, answering Yes, when
162  the correct answer is No) from the proportion of correct hits (i.e., answering Yes when the correct

163  answeris Yes).
164  2.2.6 PET processing

165 PET data obtained with [*'C]SCH23390 was processed with the following steps: To estimate receptor
166  availability (i.e., D1DR) in targeted regions, binding potential relative to non-displaceable binding in a
167  reference region (BPyp; Innis et al., 2007) was used with cerebellum as reference. The processing of
168  the PET data included correction for head movement by using frame-to-frame image co-registration,
169  and co-registered with Tl-weighted MRI data with re-slicing to MRI voxel size using Statistical
170 Parametric Mapping (SPM12: Wellcome Trust Centre for Neuroimaging,
171 http://www fil.ion.ucl.ac.uk/spm/). To model the regional time-activity course (TAC) data we used

172 simplified reference tissue model (SRTM; Lammertsma & Hume, 1996).
173  2.2.7 MRI processing

174 Quantitative susceptibility mapping. Processing of QSM is referred from Gustavsson et al. (2022).
175  Approximation of iron content was inferred from susceptibility values derived from QSM images.
176  Morphology-enabled dipole inversion (MEDI; T. Liu et al., 2011) is a method for QSM estimation that
177  selects the solution that minimizes the discrepancy in the number of voxels belonging to edges
178  between the susceptibility image and the magnitude image. Here, we used the recommended
179  nonlinear variant of MEDI proposed by Liu et al. (2013). Initially, the total field map was estimated
180 from the complex meGRE images by performing a nonlinear least square fitting on a voxel-by-voxel

181  basis. The resulting frequency map was then spatially unwrapped using a guided region-growing
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182  unwrapping algorithm (Xu & Cumming, 1999). The background fields, the superimposed field
183  contributions that are not caused by the sources inside the brain and mainly generated by air-tissue
184  interference, were eliminated using a nonparametric technique based on Projection onto Dipole
185 Fields (PDF: Liu et al., 2011). Finally, the corrected frequency map was used as input for the field-to-
186 source inverse problem to calculate susceptibility maps. The MEDI  Toolbox

187  (http://weill.cornell.edu/mri/pages/qsm.html) was used to calculate QSM images.

188 Due to the singularity of dipole kernel at the centre of k-space, the generated QSM images contain
189 relative susceptibility values, which may not necessarily be comparable across subjects. To address
190 this issue, a region of the corticospinal tract was selected as a zero-reference region due to its
191 resilience to age-related degeneration (de Groot et al.,, 2015) and stable susceptibility across
192  adulthood (Li et al., 2014). Using white-matter areas as reference regions has previously been
193 recommended due to their low standard deviations of susceptibility, indicating low inter-subject
194  variation similar (Straub et al., 2017) or even lower than CSF (Deistung et al., 2013). The process of

195  zero-referencing is described in detail by Garzén and colleagues (2017).

196  Automated segmentation of cortical and deep gray-matter structures was performed with the
197  Freesurfer image analysis suite — version 6 (http://surfer.nmr.mgh.harva rd.edu/) using T1-weighted

198 images (Fischl et al., 2002; Fischl, Salat, et al., 2004; Fischl, Van Der Kouwe, et al., 2004).

199 Next, QSM and the segmentation results were resampled to the native structural space. Then,
200  statistics including average and standard deviation were computed on the QSM maps. We merged
201  segmented rostral and caudal middle frontal regions from the left and right hemispheres to form
202 DLPFC (Fig. 1A), and the left and right caudate and putamen to form striatum (supplementary

203  materials Fig. 1A).

204  Prior to computing statistics on the QSM maps, the boundary of segmentations was eroded by one
205  voxel, and a fraction (15%) of the most extreme values was removed to avoid the influence of high

206  signal from neighbouring vessels and obtain more robust estimates (Garzén et al., 2017).
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207  2.2.8 Functional MRI processing

208  Pre-processing of the fMRI data, performed in SPM12 software, included slice-timing correction and
209  motion correction by unwarping and re-alignment to the first image of each volume. The fMRI
210  volumes were then normalized to a sample-specific template generated using Diffeomorphic
211  Anatomical Registration using Exponentiated Lie algebra (DARTEL: Ashburner, 2007), affine
212 alignment to MNI standard space, and spatial smoothing with a 6-mm full width at half maximum

213 (FWHM) Gaussian kernel (voxel size = 2 x 2 x 2 mm?).

214  The pre-processed fMRI data were analysed with spatiotemporal PLS (MclIntosh et al., 2004,
215 Mcintosh & Lobaugh, 2004) to assess the BOLD association with iron, D1DR, and age across the three
216 experimental WM conditions (1-, 2-, and 3-back). PLS determines time-varying distributed patterns of
217  neural activity as a function of experimental variables (1-, 2-, and 3-back) and regional iron and
218 D1DR. This technique allows for the identification of patterns/networks, which reflect association
219  changes across all regions of the brain simultaneously, rather than assemblies of independent
220  regions, thus ruling out the need for multiple-comparison correction. A detailed description of
221  spatiotemporal PLS analysis for fMRI data has been given in previous reports (Garrett et al., 2010;

222 Grady & Garrett, 2014; Salami et al., 2010, 2012, 2014).

223 The onset of each stimulus within each block of images (1-, 2-, and 3-back) was averaged across
224 blocks for each condition. A cross-block correlation matrix was computed as the correlation between
225  neural activity across experimental conditions (1-, 2-, and 3-back) and variables of interest (age,
226  DIDR, iron) across different regions. Then, the correlation matrix was decomposed using singular
227  value decomposition (SVD), to identify a set of orthogonal latent variables (LVs) representing linear

228  combinations of the original variables:
229 SvD CORR = usv

230  This decomposition produces a left singular vector of regional susceptibility weights (U), a right

231  singular vector of BOLD weights (V), and a diagonal matrix of singular values (S). This analysis

10
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232 produces orthogonal LVs that optimally represent relations between the variables of interest (age,
233 D1DR, iron) and BOLD. Note that PLS is not mathematically susceptible to collinearity similar to the
234 multiple regression approach (Leibovitch et al., 1999). Each LV contains a spatial pattern exhibiting
235  the brain regions whose activity shows the strongest simultaneous relations to the input variables. To
236  obtain a summary measure of each participant’s expression of a particular LV pattern, subject-
237  specific “brain scores” are computed by multiplying each voxel’s (i) weight (V) from each LV (j) by the

238 BOLD value in that voxel for person (m), and summing over all (n) brain voxels:

n

Z VL]BOLDLm

i=l
239

240  Taken together, a brain score represents the degree to which each subject contributes to the

241 multivariate spatial pattern captured by a latent variable.

242 The statistical significance of each LV was assessed using permutation testing. This procedure
243  involved reshuffling the rows of the data matrix and recalculating the LVs of the reshuffled matrix
244 using the same SVD approach. The number of times a permuted singular value exceeds the original
245  singular value yields the probability of significance of the original LV (MciIntosh et al., 1996). In the
246  present study, 1000 permutations were performed. In addition, the stability of voxel saliencies
247  contributing to each LV was determined with bootstrap estimation of standard errors (SEs), using
248 1000 bootstrap samples (Efron & Tibshirani, 1986). The Bootstrap Ratio (BSR: the ratio between
249  voxel saliences and estimated SEs) was computed and voxels with BSR > 3.29 (similar to a Z-score of
250  3.29, corresponding to p = 0.001) were considered reliable. All reliable clusters comprised contiguous
251  voxels, with a distance between clusters of at least 10 mm. Moreover, the upper and lower
252  percentiles of the bootstrap distribution were used to generate 95% confidence intervals (Cls)
253  around the correlation scores to facilitate interpretation (McIntosh & Lobaugh, 2004). For instance, a

254  significant difference between correlation scores in different conditions is indicated by non-

11
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255  overlapping Cls. Similarly, brain or correlation scores were considered unreliable when Cls

256  overlapped with zero.

257  PLS uses all conditions of an experiment and variables of interest at once, thus offering an additional
258  dimension by simultaneously considering both similarities and differences across the experimental
259 variables. If the variables of interest (i.e., age, iron content, D1DR) are similarly related to brain
260  regions, PLS reveals a pattern with reliable loadings (with/without quantitative differences) for all
261  variables. If a single variable dominates the pattern, PLS should reveal a reliable loading for that
262  variable only. Alternatively, if different variables (e.g., D1DR and iron) differentially modulate BOLD
263  response (e.g., Load-dependent effects of dopamine on BOLD as shown in Salami et al., (2019) versus
264  load-independent effect of iron on BOLD shown in Salami et al., 2021), PLS may reveal two distinctive

265 networks.

266 2.3 Additional statistical analyses

267 To assess age-effects on cognitive performance, a multivariate analysis of covariance (MANCOVA)
268  was conducted with WM load-conditions as dependent variables and age-groups (younger (age 20-
269  39) vs. middle-aged (age 40-59) vs. older (age 60-79)) as between-subjects factors. Follow-up
270  independent t-tests were conducted to assess significant differences between age groups. To assess
271  the relationship between iron content and D1DR, we conducted partial correlation analyses for each
272 region of interest with iron content and D1DR as dependent variables, controlling for age. As control
273  analyses, we performed the same analyses but included sex, education, and regional grey-matter

274 volume as covariates.

275 3. Results

276 3.1 Demographics

277 Demographic information along with data on body mass index (BMI), brain volumes, D1DR, and N-

278  back performance are presented in Table 1.

12
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280 Table 1. Participant characteristics
Mean SD
281 N (Women) 162 (79)
Age 50 17
Age range 20-78
282 MMSE 28.8 1.1
BMI 25.2 3.9
283 Education 15 3.4
Volume®
284 DLPFC 20478 2696
Striatum 11473 1282
285 Iron®
DLPFC 0.0430 0.0140
Striatum 0.0998 0.0286
286 D1DR
DLPFC 0.3582 0.0690
287 Striatum 1.6130 0.2182
WM performance
288 1-back accuracy® 75.18 6.65
1-back (H-FA)* 0.86
289 2-back accuracy 60.99 8.77
2-back (H-FA) 0.72
3-back accuracy 48.10 9.57
290 3-back (H-FA) 0.59
Note. MMSE = Mini Mental State Examination,
291 DLPFC = Dorsolateral prefrontal cortex, SD = Standard deviation.

“Volume (mL) adjusted for total intracranial volume
b Approximation of iron, based on susceptibility in parts per million

292
¢ Accuracy calculated as the sum of correct responses
7 proportion of false alarms (FA) subtracted from proportion of hits
293
(H)
294 The MANCOVA

295 conducted on N-Back performance showed a significant main effect on load conditions (Fy1s5 =
296  228.24, p < 0.001, Wilk's A = 0.253, partial n> = 0.747), and an age-group effect on load conditions
297 (Fa,310 =9.43, p <0.001, Wilk's A = 0.795, partial n® =0.108). Post-hoc analysis for the lowest WM load
298  (1-back) showed that the older participants performed less accurately compared to both middle-
299  aged (tgs = -3.974, p < 0.001) and younger participants (t;; = -5.707, p < 0.001). There was no
300 significant difference between younger and middle-aged participants (p = 0.07). For 2-back, older

301  participants performed significantly poorer compared to both middle-aged (tios = -4.015, p < 0.001)
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302  and younger participants (tss = -8.905, p < 0.001). Middle-aged participants performed significantly
303  poorer compared to younger participants (tss = -4.176, p < 0.001). Lastly, for highest WM load (3-
304  back), older participants performed significantly poorer compared to both middle-aged (tios = -5.300
305 p < 0.001) and younger participants (t;o, = -7.950, p < 0.001). Middle-aged participants performed

306  significantly poorer compared to younger participants (t;o5s = -2.921, p = 0.004).

307  3.21Iron content in DLPFC, but not in striatum, was negatively associated with D1DR

308  Both striatal and DLPFC iron increased with advancing age (striatum: r = 0.551, p < 0.001; DLPFC: r =
309 0.244, p =0.002). D1DRs in both regions decreased with advancing age (striatum: r =-0.62, p < 0.001;

310 DLPFC: r =-0.565, p = <0.001).

311  The partial correlation analysis for iron content and D1DR in DLPFC showed a significant negative
312 association across the whole sample (r = -0.272, p < 0.001), suggesting that greater iron content was
313 linked to lower D1DR (Fig. 1B). Further group level analyses revealed that this correlation was
314  similarly expressed across different age groups (Younger: r = -0.10, p = 0.48; Middle-aged: r =-0.30, p
315 = 0.026; Older: r = -0.37, p = 0.006). However, striatal iron content was unrelated to D1DR across the
316  whole sample (r =-0.101, p = 0.20; supplementary materials, Fig. 1B). No significant association was
317  observed within each age groups (Ps > 0.05), except for a trend-level link in the older individuals (r = -

318  0.24, p =0.08).

319
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321 Figure 1. The relationship between iron content and D1DR in dorsolateral prefrontal cortex. (A)

322 Surface map representing distribution of cortical iron (susceptibility in parts per million; left column)
323 and D1DR ([*'C]SCH23390 BPyp; right column) with dorsolateral prefrontal cortex (DLPFC) outlined.
324 (B) Scatterplot depicting the association between greater iron content and lower D1DR in DLPFC. All

325  values are z-transformed residuals adjusting for age.
326

327 3.3 Iron-D1DR couplings in DLPFC modulates WM-related BOLD in a load-dependent fashion

328 Given the iron-D1DR link in DLPFC, we next investigated whether iron-D1DR coupling modulated
329 neural correlates of PFC-related function across the adult lifespan. We used behavioural PLS to assess
330 the presence of multivariate spatial patterns of task-related BOLD response dependent on age, iron
331  content, and D1DR across load conditions during N-back working memory task. The analysis
332 identified two significant latent variables (LVs). LV1 represented a brain-wide network with increased
333 activation in older individuals in a load-independent fashion. This network was largely unrelated to

334 D1DR or iron in DLPFC (supplementary materials 5.1.2, Table 1, Fig 2).

335  The second LV represented the canonical WM network (c.f. Nagel et al., 2009; Salami et al., 2018).
336  This LV (permuted p = 0.02, 17.97% of cross-block covariance: Fig. 3A) demonstrated that older
337 individuals with elevated iron content and lower D1DR in DLPFC exhibited lower BOLD response in

338 the frontoparietal network during 3-back (Fig. 3B}. In contrast, higher BOLD response in the
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339  frontoparietal network during 1-back was associated with older age and lower D1DR in DLPFC, but
340 not with iron content. For 2-back, no associations were considered reliable as the Cl:s overlapped
341  with zero (Fig. 3B). As opposed to the frontoparietal WM network, the default-mode network (Fig. 3A
342  (Blue areas); supplementary Table 2) was less deactivated during 3-back in older individuals with
343  higher iron content and lower D1DR in DLPFC. Taken together, these results revealed that iron-D1DR

344  coupling modulates neural correlates of the working memory in a load-dependent fashion.

345
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358 Figure 3. Multivariate relationship of BOLD response patterns during working-memory task identified
359 by task PLS. A) The regions depicted in a yellow colour mainly correspond to the frontoparietal

360 network, whereas the blue colour mainly represents the default-mode network. The frontoparietal
361  network showed greater activation in correspondence to the behavioural measures across different
362  task conditions, whereas the default-mode network showed greater deactivation (i.e., less

363 activation). B) BOLD association across age, iron content (QSM), and D1DR. Interpretation of the

364  figure should be as reliable positive and negative associations of activation (BOLD response) when
365 the confidence intervals (Cl:s) do not overlap with zero. As the frontoparietal network displayed

366 increased activation, a positive association is interpreted as greater activation, whereas a negative
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367  association is interpreted as less activation. For the default-mode network the opposite applies. C)
368  Greater activation was associated with poorer performance during 1-back, but greater performance

369  during 3-back. All values are z-transformed residuals adjusting for age.

370 3.4 Load-dependent BOLD response is differentially associated with task performance.

371  We have shown that increasing age was concomitant with increased and decreased activations
372  within the frontoparietal network during 1-back and 3-back, respectively. We next tested the
373  relationship of brain activation in relation to task performance. The brain score during 1-back was
374  negatively associated with 1-back performance (r = -0.324, p < 0.001; Fig. 3C), but positively with 3-
375  back (r = 0.216, p = 0.006; Fig. 3C). No significant association was observed during 2-back (r = 0.05,
376  p=0.4). Taken together, our results suggest that less frontoparietal activity during 3-back as well as
377  greater frontoparietal activity during 1-back are associated with less efficient working memory

378 function.

379 3.5 Control analyses

380 To confirm that the results obtained from the partial correlation analyses were not due to
381 confounding variables, we performed additional analyses in which we controlled for sex, education,
382  and regional grey-matter volume. The inclusion of the additional variables did not result in a
383  noticeable change of the outcome and all the patterns remained consistent. A full description of the

384  resultsis given in the supplementary results.

385 4, Discussion

386  Inthis study, we provide first in-vivo evidence for an association between D1DR and brain iron across
387  the adult lifespan, and how iron-D1DR synergy may contribute to disturbed brain responses during
388 WM task performance across the lifespan. The main findings were that greater iron content was
389 associated with lower D1DR in DLPFC, but not in striatum, across the adult lifespan. We also found
390 that older individuals with elevated iron content and lower D1DR in DLPFC — a presumably

391 deleterious synergy — exhibited lower frontoparietal activity along with less deactivation of the DMN
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392  during high demand condition and in turn poorer WM performance. Although the associations
393 revealed by these data are cross-sectional, a plausible interpretation is that elevated iron and lower
394 D1DR together form a toxic couple (c.f. Hare & Double, 2016), which would contribute to reduced

395  network dynamics and impaired WM processing.

396 A key finding of the present study is the association between higher iron content and lower D1DR in
397 DLPFC across the adult lifespan. The exact mechanism underlying the association between iron
398 content and DA receptors is poorly understood. The dopaminergic system is important to cellular
399  iron homeostasis, as documented in in vitro studies (Dichtl et al., 2018; Liu et al., 2021). Supporting
400 this idea, we recently demonstrated that older adults with genetic predisposition for lower DA levels
401  accumulated more iron in DLPFC and striatum over time compared to individuals with presumably
402  higher DA levels (Gustavsson et al.,, 2022). Age-related differences in pre- and postsynaptic DA
403  markers (Backman et al., 2006, 2010) may also contribute to iron dyshomeostasis in aging, resulting
404  in disruption of transportation of iron via transferrin and storage in the ferritin protein (Ward et al.,
405  2014). Disruption of iron handling may lead to increase of ferrous iron, which triggers oxidative
406 stress, neuroinflammation, and cell loss due to ferroptosis (Daugherty et al., 2015; Mazhar et al.,
407 2021; Salami et al., 2021). The activation of D1 and D2/3 receptors alleviates oxidative stress-induced
408 inflammatory responses (Shao et al., 2013; Yan et al., 2015; Zhu et al., 2018). However, whether age-
409  related loss of DA receptors leads to an iron-related increase of oxidative stress and ferroptosis, or
410  whether an age-related increase of iron causes loss of DA receptor cells can only be determined in a

411  longitudinal setting.

412  We did not observe any significant association between iron and D1DR in striatum, except for a
413  trend-level negative association in older age. The reason for these regional variations is unclear. One
414  possibility is that, as D1DR are more expressed in striatum compared to cortex (Shohamy & Adcock,
415  2010), striatal regions are less vulnerable or better at attenuating the damage from higher iron

416  content. If too many receptors diminishes, or the threshold of the capacity for dealing with oxidative
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417  stress is exceeded, the iron-induced damage to the cells may lead to ferroptosis (Lillig et al., 2008).
418  This concords well with Parkinson’s Disease studies reporting regional variations in synuclein
419  pathology despite brain-wide iron accumulation (McCann et al., 2016), suggesting that additional

420  factors may contribute to iron serving a pathological role.

421  The multivariate PLS analysis revealed that in older age the combination of higher iron and lower
422 D1DR within DLPFC was related to high frontoparietal recruitment during low-demanding tasks along
423  with weak frontoparietal upregulation at higher task demand, which in turn was associated with

424  poorer working memory performance. These results concord with the Compensation-Related

425 Utilization of Neural Circuits Hypothesis (CRUNCH; (Cappell et al., 2010; Mattay et al., 2006; Nyberg
426  etal., 2014; Reuter-Lorenz & Cappell, 2008; Schneider-Garces et al., 2010)), which postulates that
427  neural activity increases at low demanding task-levels in older adults compared to younger adults,

428  butis reduced at more demanding levels.

429  The unique and shared contributions of iron content and neuroinflammation to astrocytic
430  dysfunction in the neurovascular coupling has been proposed to account for the reduced BOLD
431 response (Kalpouzos et al., 2017; Salami et al., 2018, 2021). Higher iron content has been related to
432  inflammation (Haider, 2015; Salami et al., 2021), which can be detrimental to cells during prolonged
433 periods (Hald & Lotharius, 2005; Zecca et al., 2004), thus contributing to astrocytic dysfunction. In
434  vitro studies have demonstrated that DA receptors activation may alleviate and supress
435 neuroinflammation (Liu et al, 2021; Shao et al., 2013; Yan et al.,, 2015). A more efficient
436  dopaminergic system (e.g., manifested by greater receptor availability) protect against negative
437  effects of iron and neuroinflammation on brain function. In support of this notion, a past study
438  showed that age-related D1DR alteration alone may contribute to less efficient engagement of
439  working memory circuits (Backman et al.,, 2011). Relatedly, the importance of DA for the
440  frontoparietal BOLD response has been further demonstrated through pharmacological

441  administration of a dopaminergic antagonist, leading to poorer working-memory performance
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442  (Fischer et al., 2010). Our results add novel contribution to the previous work, by showing that the
443 combination of elevated iron and D1DR reduction in DLPFC in aging, possibly reflecting synergistic
444  iron-D1DR effects, exerts a deleterious effect in neural circuits of WM. Furthermore, during the most
445 demanding WM condition (3-back), lower activation in the frontoparietal network was related to
446  worse performance, in concordance with previous reports (Salami et al., 2021). Longitudinal data are

447  needed to identify the primary mechanism of disturbed working memory circuit in older age.

448 Our study is the first to link regional iron content to DA receptor availability, by showing that greater
449 iron content is related to lower D1DR. Critically, an interplay between age-related elevated iron
450 content and diminished D1 receptor availability may provide a mechanistic understanding of how
451  iron-DA coupling may exert deleterious effects on neural function and ultimately cognition. Elevated
452  brainiron has been implicated in several neurodegenerative disorders, including Parkinson’s disease,
453  which is characterized by loss of dopaminergic cells (Ward et al., 2014). Thus, the observed findings

454  have implications for better understanding the mechanisms behind DA-related neurodegeneration.
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