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Abstract

Real-time database searching allows for simpler and automated proteomics workflows as it
eliminates technical bottlenecks in high throughput experiments. Most importantly, it enables
results dependent acquisition (RDA) where search results can be used to guide data acquisition
during acquisition. This is especially beneficial for glycoproteomics since the wide range of
physicochemical properties of glycopeptides lead to a wide range of optimal acquisition parameters.
We established here the GlycoPaSER prototype by extending the Parallel Search Engine in Real-time
(PaSER) functionality for real-time glycopeptide identification from fragmentation spectra.
Glycopeptide fragmentation spectra were decomposed into peptide- and glycan-moiety spectra
using common N-glycan fragments. Each moiety was subsequently identified by a specialized
algorithm running in real-time. GlycoPaSER can keep up with the rate of data acquisition for real-
time analysis with similar performance to other glycoproteomics software and produces results that
are in line with literature reference data. The GlycoPaSER prototype presented here provides the
first proof-of-concept for real-time glycopeptide identification that unlocks future development of
RDA technology to transcend data acquisition.

Keywords: glycoproteomics, real-time search, results dependent acquisition (RDA), PaSER,
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Introduction

Mass spectrometry based proteomics has become a staple method when studying proteins in
complex mixtures [1-3]. The most notable approach is bottom-up proteomics using LC-MS/MS in
which proteins are digested into peptides which are then separated by liquid chromatography (LC),
ionized, and measured by tandem mass spectrometry (MS/MS). Acquired fragmentation spectra are
then post-hoc searched against a protein sequence database to identify peptide sequences (with
modifications) and infer protein identifications. The recent introduction of the Parallel Search Engine
in Real-time (PaSER [4]) enabled routine real-time protein database searching using peptide
fragmentation spectra during sample measurement by the timsTOF instrument using Parallel
Accumulation SErial Fragmentation in Data Dependent Acquisition mode (dda-PASEF [5]). Real-time
data processing not only solves common computational bottlenecks and data stewardship
challenges in typical proteomics workflows, but also opens unique opportunities to optimize data
acquisition on-the-fly. The potential benefits of this concept were demonstrated on other platforms
[6—-10] where MS/MS precursor selections were modified according to real-time analysis results,
going deeper with identification and quantification. To this end, PaSER can communicate with an
Application Programming Interface (API) on the acquisition computer to guide PASEF data
acquisition and schedule precursor ions for re-analysis using individually optimized parameters when
needed. The mass spectrometer receives direct feedback based on the results that it is producing;
this new kind of data is available for the acquisition logic which opens a whole new field of research
in mass spectrometry with unprecedented possibilities to enhance experimental outcomes.

The potential of real-time results dependent acquisition (RDA) is of particular interest for the
analysis of glycosylated peptides in complex mixtures by glycoproteomics. Protein glycosylation is a
key modulator of protein biology that has been shown to dynamically change in various genetic or
acquired diseases [11,12]. Glycoproteomics enables proteome-wide characterization of protein
glycosylation at the level of individual glycosylation sites, which provides unique possibilities for
biomarker applications and understanding of the intricate biology underlying this complex
modification class. Characterization of glycopeptides by LC-MS/MS is inherently challenging because
of the relatively low intensities of the glycopeptide precursors and their fragmentation behaviour in
collision induced dissociation experiments. The diverse fragmentation behaviour is due to intrinsic
physicochemical differences between the peptide- and glycan-moiety of these hybrid amino acid-
sugar copolymers. Even more so, the glycoproteome contains an overwhelming variation in
combinations of peptide sequences and glycan structures [13]. This complicates MS/MS data
acquisition since optimal activation energies to achieve rich fragmentation spectra are harder to
predict from the m/z or collisional cross section of precursor ions. Here, the use of real-time
glycopeptide identification results together with fragmentation spectrum information to guide
glycopeptide data acquisition offers an enticing possibility to advance glycoproteomics.

Applying the concept of using on-the-fly results for adjustment of acquisition parameters in
glycoproteomics requires glycopeptide identification capabilities that are currently unavailable on
the PaSER platform. Moreover, the great diversity in glycan structures that can occupy a single
glycosylation site in proteins are beyond the limits of regular variable modification in most
proteomics software. Hence, specialized algorithms are required to determine in real-time the
composition and/or structure of glycan moieties. To enable such real-time glycopeptide searches on
PaSER, we set out to develop GlycoPaSER which takes advantage of the available real-time protein
database search engine “ProLuCID” [14]. Our strategy is to decompose the original hybrid
glycopeptide fragmentation spectrum into two composite spectra that contain either peptide
fragmentation products or glycan fragmentation products (Figure S1).
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In this work we share proof-of-concept for real-time glycopeptide identification from online dda-
PASEF measurements using the newly developed GlycoPaSER prototype software. We evaluated its
glycopeptide identification performance by comparing plasma glycoproteomics results to offline
MSFragger-Glyco [15] output and available reference data from the literature. In addition, we assess
its computational performance in relation to the instrument PASEF duty cycle and investigate the
potential gain of using optimized collision energies for future applications.

Results

GlycoPaSER prototype design

N-glycopeptide fragmentation spectra contain a mixture of peptide, glycan, and peptide + glycan
fragment ions from which both the peptide- and glycan-moiety need to be elucidated. Our strategy
is to decompose hybrid glycopeptide fragmentation spectra into separated peptide- and glycan-
moiety spectra. This would enable characterization of each moiety separately by specialized
algorithms and avoid incorrect assignment of peptide-fragments as glycan-fragments and vice versa.
We aimed to achieve real-time spectrum decomposition in three consecutive steps by developing a
decomposer module for PaSER. Figure 1A depicts the data flow in the decomposer module of
GlycoPaSER with the three major steps:

1. Filter for glycopeptide fragmentation spectra by use of oxonium ion signatures.

2. For each selected glycopeptide spectrum, identify the peptide + HexNAc mass by searching
for the N-glycan core fragmentation pattern.

3. Generate respective peptide- and glycan-moiety fragmentation spectra using the peptide +
HexNAc mass and removing glycan fragment peaks after charge deconvolution.

Step 1: Glycopeptide fragmentation spectra are selected for subsequent spectrum decomposition by
the presence of oxonium ions which are glycopeptide diagnostic fragments. Oxonium ions are
characteristic fragments of the glycan-moiety (Figure 1B, S1A). If their predefined masses are
detected at sufficient intensity then the decomposer module will send the spectrum to the glycan
core pattern finder, otherwise the spectrum is streamed to ProLuCID to be searched as a regular
non-glycopeptide.

Step 2: Upon collisional activation of a glycopeptide precursor ion with the appropriate activation
energy, the glycan-moiety is fragmented at glycosidic bonds. This results in a fragment series with
mass differences corresponding to the sequence of the sugars along the glycan including the
common N-glycan core sequence of Asn-HexNAc-HexNAc-Hex-Hex-Hex. The first fragment in this Y-
ion series is the deglycosylated peptide-moiety (or Yoion), therefore, if we find the fragment ions
which follow this pattern, we can deduce the mass of the peptide-moiety and pass the spectrum to
the modifier submodule. Figure 1B shows an illustration of a glycopeptide fragmentation spectrum
with the glycan core fragmentation pattern highlighted.

Step 3: The spectrum modifier generates peptide- and glycan-moiety composite spectra with
appropriate virtual precursor ion masses for each moiety. The peptide-moiety spectrum is generated
by modifying the original precursor mass to [M+HexNAc]*, charge deconvoluting the spectrum,
removing oxonium ion peaks, and removing all Y-ions by removing all peaks with a mass larger than
the modified precursor mass (Figure S2). The glycan-moiety spectrum is generated by charge
deconvolution and adding the calculated glycan-moiety mass to the spectrum metadata. The last
step of the decomposer is streaming the modified spectra to their respective identification modules,
the peptide-moiety spectrum to ProLuCID, and the glycan-moiety spectrum to a glycan composition
generator.
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Figure 1: Glycopeptide identification strategy. (A) Data flow scheme for real-time glycopeptide identification
in PaSER. The broken arrows indicate search-results dependant acquisition (RDA) which is not yet
implemented. (B) Glycopeptide fragmentation spectrum annotated with the features used for decomposition

and identification. p is peptide-moiety mass (Yo ion) (C) Schematic example for how glycan-moiety
compositions are generated in PaSER using the glycan-moiety mass of the spectrum in B.

For peptide-moiety elucidation we made use of the existing ProLuCID search engine “as is” without
any optimization of this algorithm. To perform basic glycan identification, we developed a PaSER
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module that generates all possible glycan compositions by exhaustively checking all combinations of
sugar building blocks for compositions that fit the determined glycan-moiety mass within user
defined constraints (Figure 1C). Each GlycoPaSER step for MS/MS spectrum decomposition will be
explained in detail in subsequent sections.

Oxonium ion filter: selection of glycopeptide MS/MS spectra

The decomposer module has several parameters that need to be set for it to perform well. We
determined these parameters in a data-driven manner using data of 10 plasma samples from
healthy controls. We used MSFragger-glyco [15] to search these data and used the search results as
reference for parameter setting, testing, and benchmarking.

The goal of the first step in the decomposer module, the oxonium filter, is to filter out as many non-
glycopeptide spectra while retaining as many glycopeptide spectra as possible. To achieve this, we
determined two parameters: which oxonium ions to use and how intense they should be (Figure 2A,
B). We checked 42 oxonium ions (Figure S3A) and found that 99.8% of the glycopeptide
fragmentation spectra (as determined by MSFragger) contained a HexNAc-Hex ion (m/z 366.1395).
The glycopeptide spectra that did not contain this ion (0.2%) could be accounted for by one of five
other ions (HexNAc, Neu5Ac, Neu5Ac-H,0, and HexNAc-Hex-Neu5Ac, Figure 2A). However, some
non-glycopeptide spectra also contain a mass matching to one of these six oxonium ions (Figure 2A).
These spectra can be filtered out by requiring the presence of more than one ion per spectrum while
considering more ions (Figure S3A, B), but an even better classifier is provided by the summed
relative intensity from all detected oxonium ions (Figure S3C). We selected a threshold for the
relative intensity sum such that only 5% of the non-glycopeptide spectra pass the filter (false
positives) while retaining 99.1% of the glycopeptide spectra (true positives) as shown in Figure 2B.

N-glycan core pattern finder: spectrum decomposition into composite peptide- and glycan-moiety
fragmentation spectra

The glycopeptide spectra that pass the oxonium ion filter are passed on to the pattern finder, which
finds the best match for the N-glycan core pattern in each spectrum. First, we set what pattern to
search for; the N-glycan core has five monosaccharides which yields a collision induced dissociation
(CID) fragmentation pattern of six peaks: p, p + HexNAc, p + 2 HexNAc, p + 2HexNAc + Hex, p +
2HexNAc + 2 Hex, p + 2HexNAc + 3 Hex, where p is the mass of the peptide-moiety. In addition, two
N-glycan core fragment peaks have been reported to be commonly generated in CID experiments
[16,17], one originating from deamidation of the glycosylated asparagine, and the other from cross-
ring fragmentation of the proximal HexNAc residue. Therefore, the pattern we use is composed of
these 8 peaks (Figure 1B). When searching for a pattern, we measure the mass distances from the
[M+HexNAc]* (Y ions) as the reference peak since it will later be used as pseudo precursor mass
when generating the composite peptide-moiety spectrum.

We evaluated several parameters to find the correct fragmentation pattern and their optimal values
based on the plasma data. From all evaluated parameters, the minimum mass and intensity for the
reference peak and the minimum number of ions matching the pattern were the most relevant. We
set a minimum mass for the reference peak since the pattern can also be matched with small
fragment ions below the peptide-moiety mass. Theoretically, the lightest tryptic glycopeptide is
GGGNK.S with a mass of 431 Da, however in practice, the lightest glycopeptide we identify is ANISHK
with a mass of 688 Da or 891 Da with the proximal HexNAc. We also set a minimum intensity for the
reference peak since considering all peaks, including noise signals, would be too computationally
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intensive for running in real-time. We therefore considered fragment ions with a base peak intensity
greater than 10% and with mass greater than 850 Da as reference peaks.
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Figure 2: Decomposer parameters optimization. (A) Cumulative count of spectra that contain a mass
corresponding to the oxonium ions. (B) Distribution of the oxonium ions relative intensity sum and the
threshold that was picked. (C) Distribution of the number of matching ions in the correct N-glycan core
fragmentation pattern (patterns which lead to a peptide-moiety identification). (D) Performance of the
fragmentation pattern ranking method, what is the rank of the correct pattern according to the identification
of ProLuCID or MSFragger.

Searching for the pattern in a spectrum usually yields multiple options, especially when we allow for
partial pattern matches. To select the best pattern match, we ranked them by sorting by the number
of peaks matched to the pattern and then by intensity, such that rank 1 would have the most peak
matches and with the highest intensity. We then determined if the pattern that was ranked 1 is
indeed the correct pattern match in two ways. First, we used MSFragger identification results as a
reference to label the correct pattern match when its respective peptide-moiety mass corresponded
with MSFragger results within 0.02 Da mass error tolerance. Second, we generated 10 composite
peptide-moiety spectra from each fragmentation spectrum based on the respective top 10 ranked
patterns. These spectra, along with the original unmodified spectra, were submitted to protein
sequence database searches by ProLuCID. For each spectrum, a pattern match was labelled as
correct if its corresponding modified spectrum had the best peptide spectrum match (PSM). If the
unmodified spectrum yielded the best PSM, all the patterns were labelled as incorrect.
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Using the correct pattern labelled according to ProLuCID, we determined the last parameter for the
pattern finder, the minimum number of ions matching the pattern. As we can see in Figure 2C, about
half of the correct patterns have 8 matches, matching the entire pattern. Nonetheless, there are still
correct patterns with only 2 matches (3.6%). Therefore, we chose to consider all pattern matches
irrespective of the number of peaks that support it and rely on our pattern ranking to select the
correct pattern. Next, we evaluated how accurate our ranking method was in more detail by
analysing the distributions of ProLuCID and MSFragger results over different classes. In most of the
spectra (70% and 76%, respectively) the top-ranking pattern was indeed the correct pattern (Figure
2D). In 25% and 13% of the cases, the correct pattern match was ranked lower so that the
decomposer produced the wrong peptide-moiety composite spectrum. In many of these cases the
top-ranking (but wrong) pattern was ranked higher than the correct pattern since it had an extra
peak match, but the correct pattern had a higher intensity. In a small percentage (5% and 13%,
respectively) none of the patterns were correct, either because none of them matched the identified
peptide-moiety (red), or because the spectrum was not of a glycopeptide (purple) therefore there
was no pattern to be found. Based on this analysis, we concluded that the accuracy of this ranking
method is sufficient to be used for selecting the correct pattern match for glycopeptide
fragmentation spectra in the GlycoPaSER prototype.

GlycoPaSER real-time computational performance

Prior to real-life testing of GlycoPaSER during timsTOF Pro measurements we verified that it could
keep up with the rate at which fragmentation spectra are generated. The acquisition duty cycle of a
typical timsTOF method is depicted in the centre of Figure 3, starting with an MS frame which is
used to decide what precursors to fragment, followed by PASEF MS/MS frames where the selected
precursors are fragmented for identification [5]. Across all 10 plasma samples the average time to
acquire a precursor fragmentation spectrum was 107 ms which meant that GlycoPaSER must fully
process spectra at, >9Hz to be able to run in real-time. PaSER runs in parallel to the acquisition duty
cycle (Figure 3), and when acquisition of a precursor MS/MS spectrum is finished, it is streamed
from the acquisition computer to the PaSER box (Figure 1A) where spectra are processed and
searched. For testing, data files were streamed to PaSER with an acquisition simulator which showed
that GlycoPaSER was able to process and search all the fragmentation spectra when they were sent
every 35 ms (~30Hz acquisition rate) which is easily compatible with the PASEF data acquisition
method used in this work. We further investigated whether the GlycoPaSER modules we introduced
would bottleneck real-time data processing by timing each individual component. We conclude that
based on results in Figures 3 and S4, it appears that GlycoPaSER modules are not rate limiting with
respect to current search parameters.
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Figure 3: Computational performance of glycoPaSER. The PASEF acquisition cycle is depicted in the centre
while the PaSER identification is depicted on the outer circle. The average timings for precursor data
acquisition are given in the centre and the average timings of glycopeptide identification are indicated in the
enlarged precursor MS/MS.

GlycoPaSER real-time peptide-moiety identification performance

For benchmarking the glycopeptide identification performance, we compared the results from
GlycoPaSER to the results from MSFragger on the same 10 plasma control samples. We first
compared the sequence motif for N-glycosylation — NXS/T where X is any amino acid but not Proline.
The distribution between both variants is very similar (Figure 4A). The distribution is also highly
similar to the distribution of the glycosylation sites annotated in Uniprot. Moreover, according to the
results from PaSER, 76% of the peptide-moiety sequences contained the N-glycosylation sequon
which increases the confidence in these identifications since unlike MSFragger, GlycoPaSER does not
yet filter out peptides that lack the N-glycosylation sequon.

We next compared glycopeptide identifications at three levels: PSM, peptide-moiety sequences, and
glycoproteins. Comparing the glyco-PSMs revealed that about a third of the spectra identified by
either tool was not identified by the other one (Figure 4B, red and blue). This was expected to some
extent since the two identification tools follow different approaches to glycopeptide identification.
GlycoPaSER uses glycopeptide decomposition while MSFragger uses an open mass search [18]. On
the other hand, this difference in approaches strengthens the confidence in the overlap where the
two different approaches lead to the same identification. Indeed, when both tools identified the
same spectrum, it was the same identification in most cases (93%) (Figure 4B, green). Investigating
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the 14,069 spectra uniquely identified by MSFragger revealed that in ~75% of the cases PaSER did
not produce an identification but was close. In ~50% (Figure 4B *) the glycopeptide decomposer
module found the correct peptide-moiety mass, but the modified peptide-moiety spectrum was not
identified by ProLuCID. In the other ~25% (Figure 4B **), the glycopeptide decomposer module
found the correct core fragmentation pattern, but it was not selected since it did not have the
highest rank. These observations indicate that improvements to ProLuCID and the glycopeptide
decomposer would further increase the glycopeptide identification performance. The qualitative
comparison between both software at peptide-moiety and glycoprotein levels show excellent
agreement based on the large overlap in consistently detected sequences and glycoproteins for at

least 8 out of 10 control samples (Figure 4C).
I Same identification

| | N Different identification

PaSER  MSFragger UniProt B Unique identification

C

Peptid-moiety sequence Glycoproteins

l PaSER I

PaSER MSFragger MSFragger
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PaSER

Figure 4: Glycopeptide identification results compared to MSFragger. (A) Distribution of identified N-
glycosylation motifs. For PaSER and MSFragger, the motif of the identified glycopeptides is shown. For Uniprot,
the motif of all annotated glycosylation sites for all proteins used in the database search is shown. (B)
Identified spectra overlap between PaSER and MSFragger. Different identification is a difference in the peptide
sequence, the glycan mass, or both. * 7200 spectra, ** 3255 spectra, *** 3614 spectra. (C) Overall results
comparison for consistently identified (at least 8 of 10 samples) peptide-moiety sequence and glycoprotein.
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Glycan composition generation and glycoproteome coverage

We developed a database-independent approach to the glycan-moiety identification which allows us
to identify unexpected glycans that are not listed in the database. This is especially useful when
analysing samples from patients where disease-specific glycans can be observed . The current
glycan-moiety identification is simple, using only the glycan-moiety mass to generate possible
compositions even though glycan fragments hold much more information. Nonetheless, it generates
valuable information since for most glycopeptides we find only few possible compositions and for
many there is only one option (Figure S5). Even though the current GlycoPaSER prototype does not
yet use glycan fragments in the glycan composition generation, for 78% of the glycoPSMs both
PaSER and MSFragger generated the same glycan composition.

To assess the glycoproteome coverage of the GlycoPaSER output from the 10 human control
samples, we visualized 123 identified N-glycosylation sites together with 70 unique glycan-moiety
mass offsets in a chord diagram (Figure 5A) that reflects the intricate complexity of the
glycoproteome. From this plot we can observe that the most frequently detected glycan mass
correspond with complex di- and tri-antennary glycans which are the dominant glycans of the
plasma N-glycome [19,20]. In addition, many resident plasma proteins were detected with glycan
masses corresponding with known glycans from literature such as tri-antennary complex glycans at
al-acid-glycoprotein, ceruloplasmin, and a-2-HS-glycoprotein or fucosylated truncated complex
glycans at immunoglobulin heavy constant gamma proteins or high mannose glycans at complement
component proteins C3 and C4b [19]. On average, we identified 2.1 N-glycosites per protein from
resident plasma proteins that span the top 6 orders of magnitude in abundance (Figure 5b). These
results are a significant improvement over our previous characterization of the baseline plasma
glycoproteome where the same samples were analysed using conventional Qg-TOF instrumentation
in combination with ProteinScape and Mascot software [21]. The glycan-moiety masses for the vast
majority of N-glycosites correspond with glycan compositions that are listed in the GlyGen reference
database as shown in Figure 5C for the three illustrative glycoproteins examples of complement
component C4b, immunoglobulin u, and serotransferrin. Combined, these results show that the
GlycoPaSER output for the plasma glycopeptide samples correlate well to available reference data at
high sensitivity.
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Figure 5: Identified glycopeptides in light of the plasma glycoproteome. (A) The relationship between
glycosylation sites (bottom) and glycan mass (top). The glycan masses were grouped according to the GlyGen
database, each group is represented by its smallest matched mass. The annotated glycans are the most
probable glycan for that mass. (B) Glycoprotein abundance distribution (concentrations according to [22]) (C)
Three representative glycoproteins and their identified glycans. The most probable glycan is connected to the
identified glycosylation site with a green edge when it was reported in the GlyGen database or with a red edge
when it was not.
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Potential of on-the-fly acquisition parameters adjustment for improved MS/MS data acquisition

To demonstrate how using the real-time glycopeptide identification results can improve the data
quality we analysed a set of measurements where the same sample was measured at different
collision energy settings. The collision energy (CE) in the timsTOF is determined by the measured
mobility value (with a linear scale), however, we find glycopeptides with similar mobility values but
different optimal collision energy (Figure 6A). This indicated that modifying the CE setting may
improve the identification quality of glycopeptides. Therefore, we selected the measurement with
optimized default CE setting as a reference and the glycopeptide identification results (with other CE
settings) were all matched to the reference results. For each unique glycopeptide identification
(unique peptide-moiety sequence, glycan mass, and charge) the PSM with the highest score was
selected. Figure 6B shows the collision energy and mobility values for all these best scoring PSMs.
Interestingly, 61% of the glycopeptide identifications can be improved by using other collision
energies (green dots).

To simulate how real-time modification of the acquisition parameters could generate higher quality
data, we generated a file with hybrid spectra by cherry picking for each precursor the spectrum with
the optimal CE out of the seven CE settings (Figure 6B). We performed the glycopeptide search using
PaSER for both the original file and the modified file and, as expected, when the spectra were
replaced with spectra collected at a better CE, the PSM scores increased (Figure S6). Moreover, in
this example the increase in PSM score is only reflected in spectra that passed the false discovery
rate (FDR) control in the original file, while unidentified spectra, that can benefit the most from
optimized CE, were not included. This demonstrates the unique potential of results-based on-the-fly
adjustment of acquisition parameters in challenging glycoproteomics applications.
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Figure 6: The optimal CE (collision energy) is glycopeptide specific. (A) Examples for glycopeptides with very
similar mobility values but different optimal CE. The glycopeptides are: Blue SVQEIQATFFYFTPNK —
HexsHexNAcasNeuAc,, Yellow VVLHPNYSQVDIGIK — HexsHacNAcsNeuAcz, Red
SLGNVNFTVSAEALESQELCGTEVPSVPEHGR — HexsHexNAc2, Green GLTFQQNASSMCVPDQDTAIR —
HexsHexNAcsdHexiNeuAcs. (B) The best scoring glycopeptide identification out of 7 CE settings. In blue are the
identifications with the optimized default CE setting, and in green are identification with higher or lower CE
settings.
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Discussion

The GlycoPaSER prototype described in this work is capable of real-time glycopeptide identification
where it can keep up with data generation in a real-life plasma glycoproteomics experiment.
Spectral decomposition of the glycopeptide spectrum into peptide- and glycan-moiety composite
spectra enables subsequent identification of each moiety with a highly significant overlap between
our GlycoPaSER prototype and MSFragger-Glyco results. These results, combined with the observed
correlation to available reference plasma glycoproteome data, corroborate the accuracy of
glycopeptide identifications. We show for the first time the successful application of real-time search
technology for glycoproteomics, significantly reducing data processing time, and with great potential
for further development towards comprehensive glycoproteomics software with real-time
acquisition optimization capabilities.

One of the strengths of the glycan core fragmentation pattern search is that it accepts all partial
pattern matches that should enable application to disease-specific glycoforms with abnormal N-
glycan core sequence. The pattern matching performance may be further improved by e.g., machine
learning models that include more pattern match characteristics for even better performance. In
addition, it can be expanded further for application to O-glycopeptide MS/MS spectra in order to
develop GlycoPaSER into a generic glycoproteomics tool beyond N-glycosylation.

The ProLuCID database search engine that is embedded within GlycoPaSER can be further optimized
for performance on peptide-moiety fragmentation spectra. For example, glycopeptide
fragmentation spectra often contain peptide fragment (b-, y-) ion series both with and without the
proximal HexNAc, while at present, ProLuCID evaluates only the series with. Evaluating both ion
series would not only increase peptide spectrum match confidence but would also lower the penalty
a match receives for unexplained residual fragment ions to enhance the match scoring.

The glycan identification currently implemented in GlycoPaSER is simple, providing all possible
(restrained) glycan compositions based on the glycan-moiety mass alone. Yet, it is surprisingly
effective, yielding only few putative compositions per spectrum which enables us to evaluate
different strategies for development of an MS/MS driven database-independent glycan
identification algorithm. Here, we plan on using information from glycan fragment ions to determine
a minimal composition of the glycan as is often performed in manual spectrum annotation. For
example, the presence of sialic acid containing oxonium ions excludes any possible composition
lacking sialic acid. Our pursuit of a database independent glycan identification approach is of
particular interest for clinical applications where, in e.g. congenital disorders of glycosylation,
uncommon disease-specific glycoforms can be present that may not be listed in a database [20].

An attractive objective of real-time glycopeptide identification is to use the identification data to
guide the acquisition, using the instrument in a smarter way to generate higher quality data. We
demonstrated here the potential for optimized collision energies to improve data quality. Other
instrument parameters can also be evaluated such as increasing the number of summed MS/MS
scans for low signal to noise ratio fragmentation spectra. The software infrastructure for performing
such on-the-fly acquisition guidance is already available through an instrument APl and preliminary
research is ongoing to determine which fragmentation spectra should be reacquired and how
optimal parameters can be derived and used.
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Conclusions

To our knowledge, this work documents the very first successful real-time glycoproteomics data
processing for LC-MS/MS which opens exciting avenues for future development of RDA, results
driven on-the-fly optimization of acquisition parameters for higher quality and deeper
glycoproteomics data.

Methods

Sample preparation

Plasma samples of 10 healthy human control subjects were received from the Sanquin blood bank
(Nijmegen, Netherlands) according to their protocols of informed consent. Samples were prepared
as described in [21]. Briefly, 10ul of plasma was denatured in 10ul urea (8 M urea, 10 mM Tris-HCI
pH 8.0) and reduced with 15 pl 10 mM dithiothreitol for 30 min at room temperature (RT). Reduced
cysteines were alkylated through incubation with 15 pul 50 mM 2-chloroacetamide in the dark for 20
min at RT. Next, proteins were subjected to LysC digestion (1 pug LysC/50ug protein) by incubating
the sample at RT for 3 hours. Then, samples were diluted with 3 volumes of 50 mM ammonium
bicarbonate and trypsin was added (1 pg trypsin /50 pg protein) for overnight digestion at 37°C.
Glycopeptides were enriched using 100 ul Sepharose CL-4B beads slurry (Sigma) per sample well in a
0.20 um pore size 96 multi well filter plate (AcroPrep Advance, VWR). The beads were washed three
times with 20% ethanol and 83% acetonitrile (ACN), respectively, prior to sample application. The
sample was then incubated on the beads for 20 min at room temperature on a shaking plate. The
filter plate was then centrifuged, and beads were first washed three times with 83% ACN and then
three times with 83% ACN with 0.1% trifluoroacetic acid (TFA). Next, glycopeptide eluates were
collected by incubation of the beads with 50 ul milliQ water for 5 min at room temperature,
followed by centrifugation.

MS acquisition

Samples were measured using a nanoElute nanoflow liquid chromatograph (Bruker Daltonics)
coupled online to a timsTOF Pro2 instrument (Bruker Daltonics) via a CaptiveSprayer nanoflow
electrospray ionization source using acetonitrile as nanoBooster dopant (Bruker Daltonics) [23].
Peptides were separated on an ELUTE FITEEN C18 reversed phase column (0.075mm ID x 150mm
length, 1.9um particles, 120A pore size, C18-AQ2 chemistry) operated at 45°C using a linear increase
of 5 to 43% acetonitrile in 0.1% formic acid and 0.02% trifluoroacetic acid over 25 minutes at a flow
rate of 500 nl/min. Mass spectrometry measurements were performed in positive ionization mode
using 0.2bar N2 nanoBooster gas pressure and 1500V capillary voltage as source conditions. Spectra
were acquired within 0.7-1.5 1/KO mobility and 50-4000 m/z ranges using 10 dda-PASEF ramps at
50.000 target intensity and 30eV at 0.6 Vs/cm? 1/KO0 to 90eV at 1.6 Vs/cm? 1/K0 as default collision
energy. Collision energies were varied for selective experiments as:20, 22, 24, 26, 28, 30, and 32 eV
at 0.6 Vs/cm? 1/K0 to 60, 66, 72, 78, 84, 90, and 96 eV at 1.6 Vs/cm? 1/KO, etc.

Database search settings

PaSER database searches were done with version 2022c with the default parameters modified to
match the glycoproteomics experiment. The database contained all human proteins which are
labelled as secreted on Uniprot, downloaded on 22 November 2021. Peptide mass tolerance was set
to 30 ppm with 3 isotopic peaks, precursor mass range to 600-50000 Da, and semi-tryptic enzyme
digestion specificity. Variable modifications were set to oxidation of methionine, HexNAc on
asparagine, and N-terminal ammonia loss. MS/MS spectra were considered to be deisotoped and
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decharged and the multistage activation mode was set to 1 (consider both neutral loss and non-
neutral loss peaks). FDR was set to 1% at the protein level, noisy PSMs were filtered, and spectra
display mode was set to O (include all PSMs for each sequence).

MSFragger searches were conducted with fragpipe 17.1, msfragger 3.4, and philosopher 4.1.1. The
glyco-N-HCD parameters were adjusted to match the glycoproteomics experiment. Namely, the
mass tolerance was set to 30 ppm with isotope error of 0-3, enzyme was set to trypsin (semi
specific), peptide length to 5-50, and m/z range to 600-20000. Variable modifications: oxidation of
methionine and N-terminal ammonia loss. The glycan mass offsets were extracted for unique
composition in the GlyGen glycan reference database[24]. The FDR was set to 1% at PSM, peptide,
and protein levels. For glycan assignment and FDR, the GlyGen database downloaded on 22.4.2022
was filtered for unique compositions.

Parameters for the glycopeptide decomposer

The glycopeptide decomposer has several adjustable parameters: minimum spectrum peak intensity
was set to 15, mass error for oxonium ions was set to 0.02 Da, minimal number of oxonium ions was
1 out of a list of six — 366.139472 (HexHexNAc), 657.234889 (HexHexNAcNeuAc), 512.19793
(HexHexNAcdHex), 292.102693 (NeuAc), 274.092128 (NeuAc -H,0), 204.0867 (HexNAc). The
minimum relative oxonium ion intensity sum was set to 0.0047 (The ratio of the intensity of the
oxonium ions to the total intensity of the fragmentation spectrum). The pattern to search for was set
to be with offsets [-220.0821, -203.0794, -120.0423, 0, 203.0794, 365.1322, 527.185, 689.2378]
where 0 offset is the reference mass, the peptide + HexNAc peak. The reference mass was set to be
at least 850 Da with base-peak intensity of at least 0.1. The mass error for matching pattern peaks
was set to 0.05 and pattern matches with at least 2 peaks were considered (the reference mass and
at least one another peak). Multiple patterns found in a spectrum were ranked first by the number
of pattern matches and then by reference peak intensity such that the top rank has the most pattern
matches with the most intense reference mass.

Parameters for the glycan composition generator

The glycan composition generator has several adjustable parameters: Building blocks were set to be
Hex (162.05282), HexNAc (203.07937), dHex (146.05791), and Neu5Ac (291.09542). Each building
block had a minimum and maximum set: [0,12], [1,7], [0,3], [0,4], respectively. The mass error for
matching a composition to the glycan-moiety mass was set to 0.1 Da.

Determination of the correct pattern using ProLuCID

To determine which of the multiple patterns found for each spectrum is correct, the top 10 ranking
patterns were tested. Each spectrum was modified according to each of the patterns, resulting in up
to 10 modified spectra per spectrum. All the spectra with modified precursor mass from each
sample were written together to an ms2 file, and all the spectra with the original precursor mass
were written in to a second ms2 file. These files were uploaded and separately searched in PaSER,
then the results were merged and the PSMs originating from the same precursor were grouped. If
the best scoring PSM was from a modified spectrum, the corresponding pattern was labelled as
correct, if the best scoring PSM was from the spectrum with the original precursor mass, all the
patterns were labelled as incorrect, and if none of the spectra yielded a PSM, that precursor was
labelled as unknown and was not used in this analysis. Often multiple patterns pointed to the same
species, each pointing to a different isotope, if one of these patterns were labelled as correct, the
other patterns were also labelled as correct since all of them lead to the same identification.
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Timing glycopeptide acquisition and identification

We calculated the average acquisition time per precursor by averaging the value for each cycle. The
value for each cycle was determined as the ratio between the cycle time to the number of
precursors which were selected for acquisition in that cycle. The cycle time is the difference in the
Time column between MS1 frames — MsMsType 0 in the Frames table of the analysis.tdf file. The
number of precursors selected in a frame is given by how many precursors have that frame as their
Parent in the Precursors table.

The new glycopeptide identification components in PaSER (Figure S4) were timed for each spectrum
analysis by logging the time during analysis. The ProLuCID identification timing (Figure 3) was more
challenging due to the GPU parallelization; to do so spectra were sent to ProLuCID faster than it
could process and the times for identifying each 100 spectra batch were recorded and averaged.

PaSER identification performance

The glycosylation motif fractions from Uniprot (Figure 4A) were calculated for all reported
glycosylation sites for all the proteins present in the database used for the PaSER database searches.

When comparing identifications between PaSER and MSFragger, we consider the identification to be
the same if the peptide-moiety sequence is identical and the glycan-moiety mass is within a mass
error of 0.05 and 3 isotope peaks (for when the non-monoisotopic precursor mass was selected for
fragmentation).

Supplementary Material: The supporting information contains the following: Figure S1: Common
glycopeptide fragments, Figure S2: Examples of glycopeptide fragmentation spectra, Figure S3:
Oxonium ions filter parameter selection, Figure S4: Processing time per spectrum for the new
GlycoPaSER modules, Figure S5: Distribution of possible compositions per glycopeptide identification
in PaSER, Figure S6: Score increase distribution, Supplementary data 1: GlycoPaSER controle results,
Supplementary data 2: MSFragger controle results, Supplementary data 3: GlycoPaSER CE results.
Reference [25] is cited in the Supplementary Materials
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