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Abstract  

The presence of somatic mutations, including copy number variants (CNVs), in the brain is well 

recognized. Comprehensive study requires single-cell whole genome amplification, with several 

methods available, prior to sequencing. We compared PicoPLEX with two recent adaptations of 

multiple displacement amplification (MDA): primary template-directed amplification (PTA) and 

droplet MDA, across 93 human brain cortical nuclei. We demonstrated different properties for 

each, with PTA providing the broadest amplification, PicoPLEX the most even, and distinct 

chimeric profiles. Furthermore, we performed CNV calling on two brains with multiple system 

atrophy and one control brain using different reference genomes. We found that 38% of brain 

cells have at least one Mb-scale CNV, with some supported by bulk sequencing or single-cells 

from other brain regions. Our study highlights the importance of selecting whole genome 

amplification method and reference genome for CNV calling, while supporting the existence of 

somatic CNVs in healthy and diseased human brain. 
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Introduction 

 

Mosaicism, due to somatic mutations in the human brain, is increasingly recognised, with likely 

roles in neurodevelopmental and neurodegenerative diseases 1 2–4. As the ‘signal’ of a low-level 

somatic mutation can be lost in ‘bulk’ tissue homogenates, single-cell whole genome sequencing 

(scWGS) after whole genome amplification (WGA) has been increasingly utilized in the past 

decade 5. Megabase-scale copy number variants (CNVs) can be detected using read-depth 

methods even with one or a few million short reads 6–8. Several studies of human single cortical 

neurons showed Megabase-scale CNVs, although the precise frequency of these changes 

remains unclear 9 7 10 11 12. These CNVs may be more frequent in younger than aged healthy 

brains 7,8, arising in embryonic neurogenesis in mouse8, with complex structural variants (SVs) 

also arising in human neurogenesis13. We previously performed targeted detection of somatic 

CNVs in two related neurodegenerative disorders, Parkinson’s disease (PD) and multiple system 

atrophy (MSA). These diseases are summarized under the umbrella term of synucleinopathies, 

related to abnormal aggregation of misfolded alpha-synuclein protein, encoded by the gene 

SNCA. Using fluorescent in situ hybridisation, we found somatic SNCA CNVs in PD and MSA 

brain tissue14 associated with pathology in MSA at the single-cell and regional level15,16.  

 

A range of WGA options exist, such as PCR-based, Multiple Displacement Amplification (MDA, 

isothermal, using phi-29, a DNA polymerase with high fidelity and extreme processivity ideal for 

amplifying large fragments), and hybrid methods5. Still, one needs to better understand the 

advantages and disadvantages/biases across these WGA methods, as it impacts the detection 

and interpretation of CNV calls across cells. This is especially needed outside control tissues or 

cell lines, as often these do not encapsulate the challenges faced across e.g., brain tissue. In our 

previous work16, we used PicoPLEX, a hybrid method related to multiple-annealing and looping-

based amplification cycles (MALBAC), to capture genome-wide somatic CNVs in diseased human 

brain tissue for the first time. We detected CNVs in ~30% of cells in two MSA cases in affected 

brain regions16, although their relevance remains unclear. We note several previous comparisons 

of WGA methods, with the broad consensus being that MDA is not suitable for calling CNVs by 

read depth, as there is bias due to over-amplification of certain regions, although it is more 

accurate at the single-base level 17–23. There have been several attempts to reduce MDA 

amplification bias by performing reactions in nanoliter-scale volumes10,24,25. MDA performed after 

the single-cell genome is partitioned into ~50,000 droplets (droplet MDA, or dMDA) in the Samplix 

X-Drop device was reported to yield more even amplification26. The recently developed method 

of Primary Template-directed Amplification (PTA) also utilizes phi29, but the reaction is terminated 

early to avoid over-amplification27. High coverage (>30x) scWGS after PTA allows detection of 

single nucleotide variants (SNVs) and indels, already been applied to normal and Alzheimer’s 

disease brain28,29, and also shows lower coverage variability than MDA 28. 

 

In this work we provide deeper insights into the advantages and disadvantages of three WGA 

approaches currently available commercially (PicoPLEX, PTA, dMDA), the first two of which are 

easily scalable. We perform their first direct comparison using human post-mortem frozen brain 

samples, including disease brain (two MSA cases) and one control donor. We found that in our 
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hands both PicoPLEX and PTA are suitable for CNV calling by shallow WGS, but not dMDA. PTA 

amplifies more the human genome, but PicoPLEX is the least noisy method. Furthermore, we 

compared chimeras generated by these methods, which could hinder precise SV detection or 

introduce other biases in the analysis. We also investigated the utility of alignment to a complete 

reference genome (T2T-CHM13) as compared to the commonly used hg38 reference genome, 

and liftover back to hg38.  

 

Results and Discussion 

 

To optimize the workflow for detection of large CNVs by scWGS, we compared three different 

WGA methods, PicoPLEX, PTA, dMDA. We used single-nuclei isolated from the cortex of up to 

three different brains, two with MSA and one control (Fig. 1a). We had previously reported scWGS 

from other regions of the same MSA brains16. We also used non-brain control nuclei in selected 

experiments: fibroblasts carrying a germline SNCA triplication, and lymphocyte nuclei from 

NA12878. In total, we amplified and performed Illumina sequencing (paired-end) across 93 brain 

cells, as well as 3 fibroblasts and 5 NA12878 Β-lymphocytes (mean coverage ~0.64x, 0.17x and 

0.71x respectively) (Fig. 1b, Supplementary Fig. 1a).  

 

 
Fig. 1 Experimental overview and scWGS preliminary analysis from human post-mortem 

brain samples. a Methodology overview created with BioRender.com (agreement 
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KB25LPBTEK). b Mean depth of coverage for each WGA method. PicoPLEX vs PTA ns (adj. 

p>0.99), PicoPLEX vs dMDA ** (adj. p=0.008) and PTA vs dMDA * (adj. p=0.04). Kruskal-Wallis 

test with Dunn’s multiple comparisons correction. c Bases potentially covered if sequenced 

deeper. P value for all pairwise comparisons <0.001. Brown-Forsythe and Welch ANOVA tests 

with Dunnett’s T3 multiple comparisons correction.  d Median Absolute Deviation (MAD) scores. 

P value for all pairwise comparisons <0.001 (adj. p<0.001). Kruskal-Wallis test with Dunn’s 

multiple comparisons correction. For b-d PicoPLEX (n=33), PTA (n=21), dMDA (n=39); Mean ± 

SD shown. 

 

PTA provides the broadest amplification, but PicoPLEX provides the most even  

Although these are “whole” genome amplification methods, some regions may not be amplified in 

a given cell (locus dropouts)5. In the absence of high coverage WGS of each cell, the maximum 

number of bases which could be retrieved by deeper sequencing can be deduced genome-wide 

using Preseq30. We found that PTA provides efficient capture of the genome of brain nuclei, 

consistent with other data27,28 (Fig. 1c; mean ± SD: 2.84 ± 0.56 Gb), with PicoPLEX the next best 

performer (1.71 ± 0.48 Gb). dMDA provided the lowest breadth of coverage (0.75 ± 0.29 Gb), 

even lower than the report of only one-third of the genome covered with 100 million reads after 

dMDA26. 

 

CNV calling by read depth is hampered by uneven amplification, as regions which are over- or 

under-amplified could appear as CNVs. We compared a key metric, the median absolute 

deviation (MAD) between adjacent bins, between the three technologies at 500 kb bin size using 

Ginkgo6, after adapting this widely used validated tool to hg38 (see methods). We noted clear 

differences across methods, with PicoPLEX performing best and dMDA worst (Fig. 1d, mean ± 

SD: PicoPLEX 0.15 ± 0.03, PTA 0.24 ± 0.06, dMDA 0.57 ± 0.07). This is reflected by visual review 

of sequencing traces (Fig. 2a), and Lorenz curves, which indicate the amplification variation by 

plotting the cumulative fraction of reads as a function of the cumulative fraction of the genome 

(Fig. 2b). In MSA1, where we had used different PicoPLEX versions, and different library 

preparation for PTA, we verified that the MAD was not affected by this (Supplementary Fig. 1b-

c). Furthermore, the MAD for each WGA method was similar between different brains, and non-

brain samples (Supplementary Fig. 1d-f). The MAD values we obtained for PTA are similar to 

the ones reported (~0.25 for bin size range 100-1,000 kb)27. The uneven coverage of dMDA in 

particular cannot be explained by GC content variation, although there was a slight drop in 

coverage of high GC regions for both dMDA and PTA (Fig. 2c). Indeed, others have reported no 

major GC effect on MDA bias23. Although previous reports had shown superiority of PicoPLEX or 

MALBAC over MDA for CNV calling18–23,31,32, there had been no prior comparison to dMDA. The 

previous study of dMDA, conducted in lymphoblasts, reported more even genome coverage 

compared to MDA performed in parallel but not in droplets, although MAD values were not 

reported26. As the MAD values we obtained using dMDA were poor, we recalculated MAD after 

gradually increasing the bin size up to 5 Mb, which improved the values as expected9. We also 

found that MAD can be further improved by removing noise using principal component analysis 

(see methods)33 (Supplementary Fig. 2). CNV calling in dMDA might therefore be possible for 

very large aberrations after denoising. 
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Fig. 2 scWGA method comparison from brain analyzed by Ginkgo at 500 kb bin size. a 

Visual view of copy number profiles of single-nuclei amplified by PicoPLEX, PTA and dMDA from 

the control (top) and MSA1 (bottom) brains. b Lorenz curves. The black lines with slope 1 

represent perfect coverage uniformity. Increasing divergence of the curve of each cell from this 

indicates lower overage uniformity. c Effect of GC content in scWGA. For b-c PicoPLEX n=33, 

PTA n=21, dMDA n=40. 

 

Each WGA method has propensity for different types of chimeras 

  

All WGA methods can lead to chimeras. These could be misinterpreted as SVs, but also, if they 

cluster in certain parts of the genome, could impact CNV calls. We therefore aimed to compare 

the frequencies of key types between the three WGA methods (Fig. 3). For this comparison, PTA 

cells which had a different library preparation method were analyzed separately, as they had a 

divergent profile presumably related to this (Supplementary Fig. 3). In paired-end sequencing, 

the read pairs should both be pointing inwards, towards each other. Outward read pairs, indicative 

of tandem duplications, were most frequent in PicoPLEX, and least frequent in PTA. This 

observation is consistent with a previous report that over half of PicoPLEX artifacts appear as 

duplications17. Apparent translocations were most frequent in PTA and least frequent in dMDA. 

Other orientations, which include inversions, were most frequent in PTA, and hardly ever seen in 

PicoPLEX, but relatively common in dMDA, as previously reported in MDA, where they had 

comprised almost all the chimera signatures17.  

 

 
Figure 3. Comparison of discordant read pairs of brain nuclei amplified with each method. 

a Outward pairs. Differences analyzed using Brown-Forsythe and Welch ANOVA test with 

Dunnett’s T2 multiple comparisons test. PicoPLEX vs PTA *** (adj. p<0.001), PicoPLEX vs dMDA 

*** (adj. p<0.001), PTA vs dMDA * (adj. p=0.02). b Pairs on different chromosomes indicating 

translocations. Differences analyzed by Kruskal-Wallis test with Dunn’s multiple comparisons test. 

PicoPLEX vs PTA ns (adj. p>0.99), PicoPLEX vs dMDA ** (adj. p=0.002), PTA vs dMDA *** (adj. 

p=0.02). c Pairs in other orientations. Differences analyzed by Kruskal-Wallis test with Dunn’s 

multiple comparisons test. PicoPLEX vs PTA *** (adj. p<0.001), PicoPLEX vs dMDA *** (adj. 

p<0.001), PTA vs dMDA ns (adj. p=0.18. a-c PicoPLEX (n=33), PTA (n=10). dMDA (n=38). 
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Realignment to T2T-CHM13 and liftover to hg38 affects CNV calling 

 

Next we investigated the impact of the reference genome for the analysis of single-cell CNV. We 

realigned all data to the T2T-CHM13 genome34 and performed liftover of the read alignments back 

to hg38 using levioSAM2, which improves calling on the original reference, both for small variants, 

and for structural variants using long reads.35 We compared relevant metrics between the different 

alignments. We found a marginal improvement in the percentage of reads aligned, which was 

highest in T2T-CHM13 and partly maintained in hg38 after liftover (Supplementary Fig. 4a). For 

both amplification methods, the MAD slightly improved in the T2T-CHM13 and liftover alignments 

compared to the original hg38 (Supplementary Fig. 4b; see also methods). The confidence score 

was not affected by genome changes (Supplementary Fig. 4c; see also methods). The breadth 

of sequencing (bases potentially covered using Preseq) was improved using T2T but was lower 

in the liftover genome (Supplementary Fig. 4d). 

 

To determine which brain cells were suitable for CNV calling by Ginkgo, we set strict thresholds. 

We discarded cells with MAD score >0.3 as before16, although even higher values have been 

considered acceptable8,9. We also calculated the confidence score, which indicates the extent to 

which genomic segments have integer copy numbers, rather than intermediate copy number 

states which may indicate uneven amplification,11 and retained only cells with confidence score 

≥0.7. We used 250 kb bins for PicoPLEX, for consistency with our previous work, which left 23 of 

34 cells (Table 1). We initially compared unfiltered PicoPLEX and PTA CNV calls between the 

different genome alignments (Supplementary Table 1). T2T-CHM13 alignment followed by 

liftover to hg38 led to 65% fewer losses called than hg38. Liftover also increased gains by >10%, 

but the T2T-CHM13 gains were even higher (an additional 14%, or 2.15 CNVs per cell). We 

reviewed hg38-specific losses and noted that they were mostly shared between cells and 

individuals, did not appear robust (as they appeared to be non-integer, intermediate between copy 

numbers 1 and 2), and were often around centromeres. The SNCA germline triplication (1.85 Mb), 

which we had also used as a positive control before, was detected in all three PicoPLEX-amplified 

fibroblasts, including one which failed confidence score filter, regardless of reference used 

(Supplementary Fig. 5).  

 

Table 1. Success rates and overview of filtered CNV calls across all brain samples (hg38-

liftover). 

 Cells passing QC (%) Cells with at least 1 CNV (%) CNVs called 

 PicoPLEX PTA PicoPLEX PTA Total Gains Losses 

MSA1 11/15 (73.3%) 5/13 (38.5%) 3  
(27.3%) 

4  
(80%) 

26 16 10 

MSA2 8/12 (66.7%) x 3  
(37.5%) 

x 4 3 1 

Control 4/7  
(57.1%) 

6/12 (50.0%) 1  
(25.0%) 

2  
(33.3%) 

6 4 2 
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For PTA-amplified cells, we used 500 kb bins, as even at this size only 11 of 25 cells passed our 

criteria. We thus decided to focus CNV-calling on the hg38-liftover genomes, limited to 

autosomes, as this is better annotated, and the results are easier to compare than T2T-CHM13.  

 

Megabase-scale CNVs are detected in over a third of brain cells 

 

We proceeded to somatic CNV calling in PicoPLEX and PTA-amplified brain cells; the profiles of 

all cells and CNVs called are given in Supplementary Fig. 6. To perform stringent filtering, we 

first removed all calls that were shared between at least half of the cells, or any cells between 

different individuals. To assign a numerical threshold, we calculated the median copy number of 

each segment assigned by Ginkgo and plotted the distribution of segments with each copy 

number, from which we set copy number thresholds of 1.29 for a loss and 2.80 for a gain (methods 

and Supplementary Fig. 7). We confirmed that in males, excluding one cell with possible chrX 

aneusomy, CN was below that number in both PicoPLEX and PTA. 

 

This led to a total of 36 CNVs across the three brains, with gains predominant (63.9%; Table 1; 

all CNVs listed in Supplementary Table 2, profiles shown in Supplementary Fig. 6), CNVs were 

found in 38.2% of cells (13/34 overall; 8/23 PicoPLEX, 6/11 PTA; p=0.46). The proportion of cells 

with CNVs were similar in MSA (10/24) and controls (3/10; p=0.7). This is very similar to the ~30% 

of cells we estimated to carry somatic CNVs in other regions of the same MSA brains16. For 

controls it appears higher than previous estimates in cortical neurons, with 10-25% reported to 

carry Mb-scale CNVs7, and  more recently only 2 of 52 PTA-amplified cortical neurons carrying 

CNVs >~5 Mb 28. In the cells which had CNVs, the mean number per cell was 2.8, although 

notably one MSA cell had 17 (11 gains and 6 losses; cell A24; Supplementary Fig. 6). To ensure 

that CNVs are not associated with low mapping quality, we conducted the same analyses after 

filtering for reads with mapping quality below 10. All CNVs were detected, except one in A24. 

 

Examining CNVs further, these were slightly larger in the PTA data, at least partly due to the 

higher bin size used (median 5.15 Mb v 3.36 Mb, Mann-Whitney p=0.22; Supplementary Table 

2). Gains and losses had similar sizes in PicoPLEX data (3.31 and 3.21 Mb respectively), although 

in PTA gains were larger (11.44 v 5.65 Mb). One control brain cell had two distinct losses which 

essentially added up to a loss of chromosome 13, with only 2.3 Mb spared, which presumably is 

an error, and this chromosome is lost in its entirety. This was the only aneusomy seen in a brain 

cell, consistent with estimates of brain aneuploidy of 0.7-5% derived by scWGS1, although one of 

three fibroblasts did have a chromosome gain (Supplementary Fig. 5). We noted that 9 brain 

CNVs (27.8%) were sub-telomeric. This observation is in agreement with previous work 

suggesting enrichment in these regions which are rich in segmental duplications, but considerably 

higher than the 9.15% in MSA neurons from other brain regions which we previously reported16. 

To understand the nature of genes affected by CNVs, we performed gene ontology analysis using 

PANTHER36. We noted divergent enrichment in MSA and control, but due to the sample size we 

cannot draw any conclusions (Supplementary Fig. 8).  
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We also investigated whether CNV calls are supported by another algorithm for scWGS CNV 

calling, Copykit,37 also based on circular binary segmentation, which uses hg38 as default 

(Supplementary Table 2). The SNCA triplication was detected in all three fibroblasts, although 

the copy number was given as 3 (rather than 4) in the one that failed confidence score. We 

allowed for a smaller CNV called by Copykit to be classed as supportive of a CNV called by 

Ginkgo if it was encapsulated by the Ginkgo CNV region. The majority of Ginkgo CNV calls in 

brain were supported (75.8% for PicoPLEX and 71.4% for PTA). The CNVs in PicoPLEX cells not 

reported by Copykit were all <3.5 Mb, except for a centromeric one. The median CNV size was 

identical (3.52 Mb PicoPLEX, 3.51 Mb Copykit). For CNVs called by both, Copykit sizes were 

slightly smaller (median difference -0.54 Mb), with three notable large CNVs extending to the short 

arm telomere being much smaller (by 19-35 Mb) in Copykit. As Copykit has not been formally 

benchmarked to our knowledge, while Ginkgo has been found to be accurate in calling 

breakpoints38 we gave it the benefit of the doubt for estimating CNV sizes. Ginkgo appears to 

have an advantage in detecting relatively small CNVs, and centromeric and telomeric regions. 

 

Some CNVs have support in bulk or other brain regions 

 

If a somatic CNV is limited to a single-cell, orthogonal validation is by definition impossible. A 

clonal CNV, however, could be detectable in other cells, from the same or other brain regions. It 

may also be detectable by bulk sequencing of adequate depth. This could, however, be 

compromised by a number of issues, including imprecise boundaries in single-cell CNV calling, 

possible non-amplification of the breakpoints due to allelic drop-out, and the intrinsic limitations in 

SV calling if short-read sequencing is used. To investigate this in the two MSA brains, we first 

reviewed the presence of CNVs with similar boundaries in previously reported different regions 

from the same brains: substantia nigra in both (n=99), and the pons and putamen in MSA1 

(n=70)16. One 3.36 Mb gain on chromosome 9 in MSA2 (cell A76; Supplementary Fig. 6) was 

essentially identical to a gain which had already been suspected of being clonal, as one 

breakpoint had been shared and one located nearby in two cells from the substantia nigra of the 

same brain, one neuron and one non-neuron. This includes the TLR4 gene, which encodes a 

microglial and astroglial receptor with a role in alpha-synuclein clearance and pathology 

propagation39, and is upregulated in MSA40. Although we did not detect a gain of this gene in the 

other MSA brain, its presence in a clonal CNV makes further study worthwhile. 

 

To seek support for somatic CNV calls in the MSA brains, we also analyzed deep bulk short-read 

WGS from the MSA brains, specifically the cingulate cortex (where the single-cells were obtained 

from) and the adjacent cingulate white matter for both cases, as well as the cerebellar cortex and 

white matter from MSA2 (mean coverage across all 83.6x; Supplementary Table 3). We used 

Samplot41 to visualize any read pairs consistent with each reported CNV in all bam files, scanning 

250 kb on each side of Ginkgo-reported breakpoints. We considered any read pair in the WGS 

from the same sample and region consistent with the called CNV as tentative support, as long as 

it was in a region with good coverage, and, assuming that somatic CNVs would not be shared 

between individuals, nothing similar was found in the other brain. We found tentative support (at 

least one read pair each) for 4 CNVs, 2 gains and 2 losses, all <10 Mb in size, with support also 
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in DNA from the adjacent white matter of the same brain in one (Fig. 4; the images of these 

genomic regions from all WGS samples are shown in Supplementary Fig. 9).  

 

 
 

Fig. 4: Samplot views demonstrating tentative support for single cell CNV calls in bulk 

short read WGS. These show all read pairs in the designated regions in cingulate cortex, with 

pairs supporting a particular type of CNV / SV indicated according to the scheme at the top, and 

those supporting each single-cell CNV arrowed. The left and right panel of each plot show the 

regions around the reported proximal and distal breakpoint respectively, which is at the middle of 

each panel, with the chromosomal numbers and positions on the x axis below. The y axis indicates 

the calculated insert size for the read pairs of interest on the left, and the local coverage on the 

right. a-c MSA1 and d MSA2. a duplication 2.47 Mb (cell A24), b deletion 1.58 Mb (cell A24), c 

deletion 9.54 Mb (cell L21), d duplication 3.45 Mb (cell A82). A read pair identical to c was found 

in the cingulate white matter, suggesting mosaicism across both brain regions. 

Putative gains in T2T-CHM13 specific regions may be due to low mapping quality but 

merit further assessment  
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We finally addressed the T2T-CHM13 specific gains (gains called only in the T2T-CHM13 

alignments, with at least 50% of their span being novel T2T-CHM13 sequence). Again, we filtered 

those shared between >50% of cells or different individuals, to focus on most likely somatic 

events. We identified three gains, two involving centromeric active α-sat higher order repeat 

(HOR) arrays42. A chromosome 13 acrocentric arm gain had surprisingly high copy numbers (15-

16). We reviewed the copy number of the region covered in all other cells, and we noted that the 

PicoPLEX data were much more noisy than PTA in two of these regions (Fig. 5). We investigated 

the likelihood of these calls by restraining the mapping quality and assessing how this impacts 

the CN estimation. As previously reported, the alignment to the T2T-CHM13 reference results in 

less noisy and more reliable alignments for short reads35. Nevertheless, these T2T-CHM13 

unique regions have specific challenges due to their repetitiveness34. We filtered the reads based 

on mapping quality (MQ) 0, 1 and 10 to assess different stringencies. For MQ1, we observed that 

the single copy number gain was removed, but the two high CN gains persisted at MQ1, and were 

removed at MQ10. At MQ10, however, many cells had apparent losses in these regions, due to 

the poor mappability. This illustrates the difficulty at calling even large CNVs in these regions. We 

approached this by filtering more stringently across samples and CN directly, since false positives 

should manifest in all samples if it is due to mapping or reference biases. Since this is not the 

case in these CN candidates, the possibility of true somatic gains cannot be excluded. 
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Fig. 5. Evaluation of T2T-CHM13 specific CNV calls using different WGA methods (PTA 

and PicoPLEX) and mapping quality filtering. a no mapping quality filter, b mapping quality 

1, c mapping quality 10. 
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Conclusions 

 

Whole genome amplification allows the analysis of single-cell genomes for somatic mutations. 

Nowadays there are several available methods to perform this which vary in their advantages 

(e.g. evenness of amplification) and disadvantages (e.g. coverage across the genome, scalability, 

costs), and even in applicability to neurons, as in the case of single-cell trichannel processing 

which requires dividing cells43. In this work, we have directly compared three existing 

technologies, the well-established PicoPLEX and two very recently developed adaptations of phi-

29-based isothermal amplification, PTA and dMDA, using human post-mortem brain samples, 

and highlighted their characteristics. Furthermore, we have updated the popular single-cell CNV 

caller Gingko for hg38, and for the first time assessed the advantage of utilizing alternative 

reference genomes besides hg19 or hg38. Indeed, the T2T-CHM13 genome seems to offer 

potential novel CNV candidates, although the intrinsically low mappability of the novel regions 

complicates detection. Thus, this study provides key insights for experimental considerations for 

whole genome single-cell studies and analysis with clear recommendations. 

 

The consistency of amplification across the genome by PicoPLEX makes it preferable for CNV 

calling, although PTA can also be used. The latter has the advantage of more complete genome 

coverage, albeit at the expense of requiring a larger bin size to allow CNV calling when a strict 

MAD cutoff is used. dMDA was not suitable for CNV calling by read depth, but further 

developments (e.g., more stringent lysis and increased number of droplets per reaction) could 

improve this. Furthermore, the long MDA amplicons make it potentially well suited for long reads 

and direct detection of SV breakpoints. This will require effective filtering of pervasive chimeras, 

with tools already becoming available44. 

 

Findings of interest in MSA is the apparent clonality of a gain which encompasses TLR4, a 

possibly disease-relevant gene39, as well as tentative support for some CNVs by focused analysis 

of deep bulk short read WGS. Detection of breakpoints with deep long read WGS and dedicated 

analysis for somatic SV’s45 is needed to fully validate these, although breakpoints of CNVs found 

in one or a small number of single cells will be impossible to confirm even with sensitive digital 

PCR methods. Determining the possible relevance of the TLR4 CNV, and of the apparently high 

proportion of brain cells with somatic CNVs in MSA (~40% in the cingulate cortex, and ~30% in 

our earlier study of different regions of the same two brains16), will require larger studies with well-

matched controls. Further single-cell genomic studies in sporadic neurodegenerative disorders 

are needed to fully elucidate the potential role of somatic mutations in their etiology and 

pathogenesis. 
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Methods 
Human Tissue and cell lines 

Fresh frozen post-mortem brain samples were provided by the Queen Square Brain Bank, 

London, UK. All donors had given informed consent for the use of their brain in research and the 

study was approved by the National Research Ethics service London – Hampstead (10/H0729/21) 

and from the brain tissue bank by the UK National Research Ethics Service (07/MRE09/72). 

Samples from 1 control (frontal cortex) and 2 MSA (cingulate cortex) donors were used in this 

study. We selected MSA cases from which we already have scWGS from other regions26. 

Demographics are presented in Table 2. As positive control, we used human skin fibroblasts with 

a known germline SNCA triplication that we previously used with FISH14 and scWGS. For PTA, 

we also used fluorescence-activated nuclei (FANS) sorting NA12878 (B-lymphocyte cell line, 

RRID:CVCL_7526) single-nuclei provided by BioSkryB as amplification controls. 

 

Table 2 Demographics of brains used in the study. 

  Control MSA1 MSA2 

Age of death (years) 91 50 67 

Disease duration (years) NA 2  7 

Post-mortem interval 

(hours) 

38 30 28 

Sex Female Male Female 

 

Manual isolation of single-nuclei using CellRaft device 

We isolated single-nuclei using the CellRaft system (Cell Microsystems) mounted on a Nikon 

Eclipse TE300 inverted microscope coupled to a CCD camera (KERN optics), as described in 

detail elsewhere16,18,46. Briefly, we prepared nuclear fractions from 30-50 mg frozen tissues or cell 

pellets, and counterstained nuclei with 1 μg/ml DAPI for 20 min on ice. Then, we seeded 5000 

nuclei onto a 10,000-raft array pre-treated with Cell-Tak (Corning), and nuclei were allowed to 

settle on the raft at 4oC at least overnight. The nuclei were observed under the microscope, and 

we selected rafts that contained a single-nucleus with a neuronal appearance (large diameter and 

presence of low condensed chromatin). We isolated individual nuclei of interest manually using a 

magnetic wand, and subsequently released each nucleus into a 0.2 ml tube containing 5 μl TE or 
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Cell Extraction Buffer for PicoPLEX, 3 μl of Cell Buffer for PTA, and in 2.8 μl lysis buffer (200 mM 

KOH, 5 mM EDTA pH 8 and 40 mM 1.4 DTT) supplemented with 2 μl dH2O (DNase/RNase-free) 

for dMDA and kept them on ice until further use. To avoid cross-contamination, we rinsed the 

wand sequentially with DNase I solution (1x, Corning DLW354242), absolute EtOH and dH2O 

before and between the individual nuclear collections. In each experiment, we used at least one 

negative control (a tube with no raft or a raft with no nucleus) and a positive control (15 pg of bulk 

gDNA). 

 

Single-cell Whole Genome Amplification (WGA) 

We performed single-cell WGA using the following methods: 

1) PicoPLEX Single Cell WGA Kit (Takara, R300672 v2 or R300722 v3) according to the 

manufacturer protocol. In brief, lysis mix was added to the samples and lysis reaction carried 

out on a thermal cycler. Then pre-amplification reagents were added, and the pre-

amplification reaction was carried out on a thermal cycler. Lastly, amplification mix was added. 

including 1x EvaGreen (Biotium) as reporter dye and the reaction was monitored using qPCR 

(StepOne, Applied BioSystems). The scWGA products were then cleaned with AMPure XP 

beads (Beckman Coulter; 1:1 ratio).  

2) PTA using ResolveDNA™ Whole Genome Amplification Kit (BioSkryB PN100136) 

according to the manufacturer protocol. All the PTA reagents were added step by step 

according to manufactory protocol, but on step 7 the samples were incubated for 20 min at 

RT, instead of 10 min in a PCR cooler, for improved lysis. The lysed samples with the enzymes 

and terminators were incubated on thermal cycler at 30°C for 10 h before enzyme deactivation 

at 65°C for 3 min, followed by bead purification of the amplicons according to the manufacturer 

protocol.  

3) dMDA kit (Samplix) according to the manufacturer protocol, but with an addition of a lysis step 

95ºC for 3 min followed by 10 min cool down at RT) after alkaline lysis of the samples 46. 

Briefly, samples underwent alkaline and heat lysis, followed by droplet generation in the 

XdropTM instrument (Samplix) which encapsulated the single-cell DNA fragments and dMDA 

enzyme mix. The droplets were incubated in a thermal block for 16 h on 30°C before 

inactivating the enzyme at 65°C for 10 min. Droplets were then broken by the addition of break 

solution and color reagents.  

All amplified samples were assessed using Qubit dsDNA BR or HS Assay kits (Thermo Fisher 

Scientific) and TapeStation (Agilent) using HS D5000 DNA Tapes or HS D1000 DNA Tapes 

(Agilent). All amplicons were stored at -20oC and quantified by Qubit prior to library 

preparation. 
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Library preparation and short-read sequencing 

Unless otherwise indicated, scWGA products were manually fragmented using SureSelect XT HS 

Enzymatic Fragmentation Kit (Agilent), and libraries for Illumina sequencing were created using 

SureSelect XT HS2 DNA Reagent Kit (Agilent) manually or using automation with Agilent Bravo, 

according to manufacturer’s guidelines (dx.doi.org/10.17504/protocols.io.x54v9p3qzg3e/v1) as 

used without  fragmentation to create libraries using ResolveDNA Library Preparation Kit 

(BioSkryB) kit, according to BioSkryB guidelines. Each library was quantified by Qubit dsDNA BR 

or HS Assay kits and assessed by TapeStation using D1000 or HS D1000 DNA tapes (Agilent). 

was determined using Qubit dsDNA HS Assay Kit, HS D1000 tapes on TapeStation, and qPCR 

(QuantaBio qPCR Library Quantification or NEBNext Library Quant Kit for Illumina). The pooled 

libraries were sequenced on NextSeq 2000 (100 or 200 cycles, Illumina) or NovaSeq SP v1.5 

(300 Cycles, Illumina) using paired-end configuration and including 2% PhiX. For three cells (one 

dMDA, two PTA), library preparation was repeated and each one sequenced separately, but the 

bam files were merged for eq, Ginkgo, and Copykit. 

 

Bioinformatic analyses 

Read alignment and alignment summary 

The sequencing reads from PicoPLEX included a 14 base amplification adapter, and the resulting 

fastq files were therefore trimmed using Trimmomatic-v.0.36 (RRID:SCR_011848; 

http://www.usadellab.org/cms/?page=trimmomatic)47. The data were then aligned to hg38 and 

T2T-CHM13-v2.0 reference genome with bowtie2-v2.5.1 (RRID:SCR_016368; http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml)48. The sequencing data were then sorted using 

Samtools-v.1.14 (RRID:SCR_002105; http://www.htslib.org)49 and duplicates were marked and 

coverage metrics collected using Picard-v2.18.4 (RRID:SCR_006525; 

https://broadinstitute.github.io/picard)50. BAM files were converted to bed files using Bedtools 

v2.25.0 (RRID:SCR_006646; https://bedtools.readthedocs.io/en/latest)51 Liftover of T2T-CHM13 

to hg38 was performed using LevioSAM2-v0.2.235 after which duplicates were marked again. 

Preseq-v.3.1.1 (RRID:SCR_018664; http://smithlabresearch.org/software/preseq) was run on 

bed files across different genome assemblies using “gc_extrap” option30. The alignment statistics 

of all mapping files were generated using Samtools-v1.14 (RRID:SCR_002105; 

http://www.htslib.org)49 (see code availability).  

Data quality metrics for each amplification method 

Data quality assessment and CNV calling were performed using the command-line version of 

Ginkgo (https://github.com/robertaboukhalil/ginkgo). To allow use of Ginkgo beyond the hg19 

genome, we generated variable and constant sized bins for hg38 and T2T-CHM13 using the 

buildGenome scripts provided within Ginkgo 

(https://github.com/robertaboukhalil/ginkgo/tree/master/genomes/scripts), adapted to run on the 

compute infrastructure of the Flemish Supercomputing Center. The data quality for each 
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amplification method was assessed by calculating MAD, GC content and Lorenz curve with a 

variable bin size initially of 500 kb for the hg38 genome. We adapted and ran functions within 

Ginkgo to compute locally these three statistics across the autosomes. MAD was calculated 

between neighboring bins using normalized read counts (the count of each bin divided by the 

mean read count per cell). As a robust statistic, MAD is resilient to abrupt changes in read counts 

resulting from copy number changes. The confidence score was calculated as before. GC 

extreme regions could cause read dropout, one of the reasons for uneven coverage. To model 

the relationship between normalized read counts and GC content, Ginkgo uses the 'LOWESS' 

function in R (RRID:SCR_001905; https://www.r-project.org)52, followed by scaling the read 

counts accordingly. We also computed Lorenz curves as indicators of uniform amplification for 

each amplification method. The Lorenz curves and GC content plots were visually assessed to 

compare the data quality of PicoPLEX, PTA and dMDA. 

Denoising 

 

To reduce high within-cell variation in dMDA data, we applied a principal component analysis 

(PCA) based denoising approach. The approach is based on the idea that PCA can capture 

common variation in read depth across cells that are mostly likely caused by technical artifacts. 

To remove the effect of common variation, multiple regression is applied followed by PCA. CNV 

calling can then be performed using the residuals from the regression, instead of using normalized 

read counts. Somatic CNVs that are randomly distributed in the genome should remain 

unaffected33. We ran Ginkgo for different bin sizes (500 kb, 1 Mb, 2.5 Mb, 5 Mb), and for each bin 

size, we removed common variation, starting from 40% and increasing up to 90% in 10% 

increments. 

CNV calling using Ginkgo 

Ginkgo was used for CNV calling across different genome assemblies6. As read lengths varied in 

some sequencing experiments, the read length of each dataset was rounded down to the next 

smallest value to get more conservative mappability. Ginkgo settings are presented in Table 3 

CNV calling. Ginkgo employs circular binary segmentation (CBS), which is implemented in 

DNAcopy in R53. DNAcopy (v.1.68.0) (RRID:SCR_012560; 

http://www.bioconductor.org/packages/2.12/bioc/html/DNAcopy.html) was run with Ginkgo-

implemented parameters which are: alpha=0.01, min.width=5. CBS uses a permutation reference 

distribution to identify the change points54. To ensure reproducibility, all codes were run with 

set.seed (1) in R. Independent segmentation was used throughout. We removed all CNVs smaller 

than 5 bins. 

Table 3. Read length and corresponding Ginkgo settings.  

scWGA method Read length used for 
alignment 

Ginkgo read length setting 

PTA 58 bp 48 bp 
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PTA 111 bp 101 bp 

PicoPLEX 97 bp 76 bp 

PicoPLEX 137 bp 101 bp 

dMDA 111 bp 101 bp 

 

To identify common CNVs shared among multiple cells, we considered two CNVs as shared if 

their start and end positions are within 2.5 Mb of each other for PicoPLEX cells, and within 5 Mb 

for PTA cells. We removed these calls from downstream analyses, as they could result from either 

dry lab/wet lab artifacts or germline mutations. 33,55 

Filtering of Ginkgo CNV calls 

The output of the segmentation algorithm is integer-like CN values such as 1.2 and 2.1. These 

deviations from integer values are due to variations in the data caused by both biological and 

technical factors6,7. Therefore, a CN threshold is required to stringently identify gains and losses. 

For this, we calculated the median CN of diploid segments across autosomes using PicoPLEX 

data, as the number of cells passing QC (MAD ≤0.3 and confidence score ≥0.7) is greater than 

that in the PTA data set (25 v 14). The lower limit for the segment size was set to 5, consistent 

with our use of a minimum of 5 bins for CNV detection, and the upper limit at the size of the 

smallest chromosome (n=127 bins)7. We plotted the distribution of the segments CN values on a 

histogram, from which we set thresholds of 1.29 for a loss and 2.80 for a gain (Supplementary 

Fig. 7). 

 

CNV calling using Copykit 

The newly developed algorithm, Copykit37 was used for comparison against filtered Ginkgo CNV 

calls in all cells passing QC. For consistency with Ginkgo parameters used, Alpha was adjusted 

to 0.01, and the bin size used for PicoPLEX and PTA amplified cells was 220 kb (as 250 kb is not 

available) and 500 kb, respectively. Copykit is compatible with the genome assemblies hg19 and 

hg38, therefore CNV calling was performed on hg38 and liftover (not T2T-CHM13). CNV 

coordinates were extracted from Copykit using a custom R script. 

Short read Illumina bulk WGS analysis 

Illumina reads for DNA extracted from both MSA brains were mapped to hg38 using bwa mem 

(v.0.7.17-r1188) (RRID:SCR_010910; http://bio-bwa.sourceforge.net) with default parameters 

including -M to mark split reads as secondary alignments. To visualize possible read support for 

single-cell gains and losses in bulk Illumina WGS data, we used Samplot (v.1.3.0)41, which creates 

images that display the read depth and sequence alignments across specified regions, and reveal 

any reads supporting a specified CNV. The coordinates of all filtered CNVs (gains and losses) 

were input into Samplot, to detect and reads supporting them in all MSA samples available (2 
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brain regions from MSA1, 4 regions from MSA2). High-coverage (250x) HG002 data was used 

for comparison. We allowed 250 kb on either side of each reported breakpoint, due to the inherent 

inaccuracy of defining CNVs using large bin sizes. 

 

T2T-CHM13 specific gains 

To identify the characteristics of T2T-CHM13 specific gains, we used samples that were aligned 

to T2T-CHM13 and lifted over to hg38, passing both the MAD (≤0.3) and confidence score (≥0.7) 

filters. One PicoPLEX cell ("A14_v2_Exp9_1_sn1_P70_06_CC_S14_R") was excluded from the 

analyses due to the absence of a T2T-CHM13 version. The number of cells for PicoPLEX is 25 

and for PTA, it's 14. bedtools subtract -v (v2.30.0)51 was used to identify T2T-CHM13 specific 

gains compared to the lifted-over version. T2T-CHM13 unique regions in comparison to hg38 

were downloaded from the UCSC Table Browser (http://genome.ucsc.edu/cgi-bin/hgTables, 

track: CHM13 unique, table: hub_3671779_hgUniqueHg38  on 2023-06-09)56. If the T2T-CHM13 

specific gains for each cell showed a minimum of 50% overlap with the bed file obtained from the 

UCSC Table Browser, those positions were kept for the analysis (using Bedtools v2.30.0 with the 

intersect -f 0.50 -wo). 

 

Gene Ontology (GO) Analysis 

A list of genes covered by significant CNVs was separately identified for MSA patients and 

controls using the Ensembl BioMart package (RRID:SCR_010714; 

http://www.ensembl.org/biomart/martview)57. The gene lists were submitted to PANTHER 

(RRID:SCR_004869; http://www.pantherdb.org)36 to identify statistical overrepresentation in any 

GO categories. The remaining analyses were conducted as described16,18. 

Statistics and reproducibility  

Statistical tests were performed, and graphs were plotted using GraphPad Prism version 10 

(RRID:SCR_002798, https://www.graphpad.com/features) and RStudio IDE (v.2023.6.1.524) 

(RRID:SCR_000432; https://posit.co). Normal distribution was assessed using the D'Agostino & 

Pearson test. Data are presented as mean ± standard deviation (SD) and a p-value of <0.05 was 

considered statistically significant. Comparisons between groups were assessed using Kruskal-

Wallis test with Dunn’s multiple comparisons test, Brown-Forsythe and Welch ANOVA tests with 

Dunnett’s T3 multiple comparisons test, paired-matched Friedman test with Dunn’s multiple 

comparisons test, Mann–Whitney, unpaired student’s t-test with Welch’s correction, Geisser-

Greenhouse correction and Tukey's multiple comparisons test or  RM one-way ANOVA with the 

Geisser-Greenhouse correction and Tukey's multiple comparisons test, as indicated in the Figure 

legends. All statistical tests were two-sided. 

Data availability 

Sequence data has been deposited at the European Genome-phenome Archive (EGA), which is 

hosted by the EBI and the CRG, under accession number EGAS50000000020 (Dataset ID: 

EGAD50000000030). Further information about EGA can be found on https://ega-archive.org 

"The European Genome-phenome Archive in 2021" (https://academic.oup.com/nar/advance-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.08.07.552289doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=1265291&pre=&suf=&sa=0
http://genome.ucsc.edu/cgi-bin/hgTables
https://sciwheel.com/work/citation?ids=57988&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=252618&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6543499&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8527379,15011530&pre=&pre=&suf=&suf=&sa=0,0
https://ega-archive.org/
https://doi.org/10.1101/2023.08.07.552289
http://creativecommons.org/licenses/by/4.0/


 

20 

article/doi/10.1093/nar/gkab1059/6430505). Sample information and statistics related to analyzed 

cells can be found in Supplementary Table 4. Illumina bulk data from the MSA brains will be 

submitted to an appropriate repository as part of a larger MSA study. The Ginkgo bins for hg38 

and T2T-CHM13 are available at Zenodo (RRID: SCR_00412, 

https://doi.org/10.5281/zenodo.8225214). 

 

Code availability  

 

Custom scripts written in bash (v.5.1.16) or R (v.4.1.2) using RStudio IDE (v.2023.6.1.524) 

(RRID:SCR_000432, https://rstudio.com) are available on  

https://github.com/zgturan/scWGA_comp.git (https://zenodo.org/doi/10.5281/zenodo.10019431). 

Custom scripts for re-alignment and alignment analysis are available on 

https://github.com/srbehera/Brain_scWGA_comparision.  

 

IP rights notice: For the purpose of open access, the author has applied a CC-BY 

public copyright license to the Author Accepted Manuscript (AAM) version arising from 
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Supplementary information 

 
 

Supplementary Fig. 1 Sequencing coverage of non-brain samples and detailed MAD 

comparison between samples and method variations.  

a Mean coverage depth distribution of nuclei from cell culture amplified by either PicoPLEX 

(fibroblasts with known SNCA triplication isolated by CellRaft, n=3) and PTA (NA12878 cells, 

isolated by nuclei sorting, n=5) *; p=0.04 unpaired Mann-Witney test. b-f Median Absolute 

Deviation (MAD scores) of nuclei aligned to hg38 at 500 kb bins.  
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b MAD scores PicoPLEX amplified nuclei from MSA1 donor amplified by either PicoPLEX v2 

(Takara R300672, n=10) or PicoPLEX v3 (Takara R300722, n=5) analyzed by unpaired Mann-

Whitney test. v2 vs v3 ns (n=0.95).  

c MAD from PTA-amplified brain nuclei when used either SureSelect (Agilent) or ResolveDNA 

(BioSkryB) libraries analyzed by unpaired Mann-Whitney test. SureSelect vs ResolveDNA ns 

(n=0.33). 

d PicoPLEX-amplified nuclei from brain donors (Ctrl n=7, MSA1 n=15, MSA2 n=11) or fibroblast 

(n=3) cells analyzed by Kruskal-Wallis test with Dunn’s multiple comparisons test Ctrl vs MSA1 

ns (adj. p=0.09), Ctrl vs MSA2 ns (adj. p=0.28), Ctrl vs Fibr ns (adj. p>0.99), MSA1 vs MSA2 ns 

(adj. p>0.99), MSA1 vs Fibr ns (adj. p>0.99), MSA2 vs Fibr ns (adj. p>0.99).  

e PTA-amplified nuclei from different brain donors (Ctrl n=10), MSA1 n=11) or NA12878 cells 

(n=5) analysed by Kruskal-Wallis test with Dunn’s multiple comparisons test. Ctrl vs MSA1 ns 

(adj. p>0.99), Ctrl vs NA12878 ns (adj. p=0.88), MSA1 vs NA12878 ns (adj p>0.99).  

f MAD of dMDA-amplified from different brain donors (Ctrl n=10), MSA1 n=14, MSA2 n=15) 

analysed by Brown-Forsythe and Welch ANOVA tests with Dunnett’s T3 multiple comparisons 

tests. All comparisons ns (adj. p>0.99).  

Data represent Mean ± SD. 

 

 

 

 

 

 

 

 

 

 

 
 

Supplementary Fig. 2 MAD of dMDA at different bin sizes.  

The results are shown before denoising (“raw”) and after denoising at different proportions. For 

each bin size, we tested the difference between the raw data and after denoising (40%) using the 

Wilcoxon test with “paired=TRUE” and alternative=“greater”. For all bin sizes, except for 500 kb 
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(p=0.06), we found that 40% denoising significantly improved the MAD score: for bin sizes 1 Mb, 

2.5 Mb, and 5 Mb, the p-value was < 0.01. 

 

 
 

 

Supplementary Fig. 3 Effect of different library preparations for PTA samples on 

discordant read pair orientation.  

PTA-amplified cells from MSA1 brain sequenced before either SureSelect (n=6) or ResolveDNA 

(n=6) library preparation. Analyzed by Mann–Whitney, unpaired student’s t-test, mean ± SD 

shown.   

a Outward pairs. SureSelect vs ResolveDNA ** (p=0.002). 

b Translocations. SureSelect vs ResolveDNA ** (p=0.002). 

c Other. SureSelect vs ResolveDNA ns (p=0.39). 
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Supplementary Fig. 4 Single-cell metrics across different reference genomes.  

a % of reads aligned. RM one-way ANOVA with the Geisser-Greenhouse correction and Tukey's 

multiple comparisons test. PicoPLEX (n=33): all comparisons *** (p<0.001). PTA (n=21): arrows 

indicate library prep; top=ResolveDNA (n=12), bottom=SureSelect (n=9). hg38 vs hg38-lift 

***(p<0.001), hg38 vs T2T-CHM23 **(p=0.007), hg38-lift vs T2T-CHM23 ** (p=0.003). dMDA 

(n=39) : hg38 vs hg38-lift ns (p=0.14), hg38 vs T2T-CHM23 ns (p=0.27), hg38-lift vs T2T-CHM23 

ns (p=0.32).  

b MAD. Friedman test with Dunn’s multiple comparisons test. PicoPLEX (n= 33): hg38 vs hg38-

lift ***(p<0.001), hg38 vs T2T-CHM23 ***(p<0.001), hg38-lift vs T2T-CHM23 ns(p=0.42). PTA 

(n=20): hg38 vs hg38-lift **(p=0.005), hg38 vs T2T-CHM23 ns(p>0.99), hg38-lift vs T2T-CHM23 

*(p=0.03). dMDA (n= 38): hg38 vs hg38-lift *(p=0.02), hg38 vs T2T-CHM23 ***(p<0.001), hg38-

lift vs T2T-CHM23 ns (p=0.26). 

c Confidence scores. RM one-way ANOVA with the Geisser-Greenhouse correction and Tukey’s 

multiple comparisons test. PicoPLEX (n=33): all comparisons ns, hg38 vs hg38-lift (p=0.98), hg38 

vs T2T-CHM23 (p>0.99), hg38-lift vs T2T-CHM23 (p=0.95), PTA (n=20): all comparisons ns, hg38 

vs hg38-lift (p>0.99), hg38 vs T2T-CHM23 (p=0.85), hg38-lift vs T2T-CHM23 (p=0.75), dMDA 

(n=38): all comparisons ns, hg38 vs hg38-lift (p=0.18), hg38 vs T2T-CHM23 (p=0.92), hg38-lift vs 

T2T-CHM23 (p=0.77).  

d PreSeq. RM one-way ANOVA with the Geisser-Greenhouse correction and Tukey’s multiple 

comparisons test. PicoPLEX (n=33): hg38 vs hg38-lift *(p=0.04), hg38 vs T2T-CHM23 

ns(p=0.51), hg38-lift vs T2T-CHM23 ***(p<0.001), PTA (n=20): hg38 vs hg38-lift ns (p=0.06), 

hg38 vs T2T-CHM23 *(p=0.05), hg38-lift vs T2T-CHM23 ***(p<0.001), dMDA (n=38): all 

comparisons ns, hg38 vs hg38-lift (p=0.11), hg38 vs T2T-CHM23 (p=0.80), hg38-lift vs T2T-

CHM23 (p=0.10).  

Data represent Mean ± SD. 

 

 
Supplementary Fig. 5 SNCA germline triplication (copy number 4) in three single 

fibroblasts.  

PicoPLEX WGA, 250 kb bins. Arrow points to CNV. Reference genomes from top to bottom: hg38, 

liftover, T2T. Note that cell L2 has copy number assigned as 5 in the hg38 and liftover, although 

visual inspection indicates that the bin copy numbers are between 4 and 5. Cell L4 fails confidence 

score (0.6). Cell L4 also has a chromosome 7 gain.  
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Supplementary Fig. 6 CN profile of cells passing QC.  

Each page shows the profile of one cell, including MAD, confidence score, bin size, and CNV 

calls. All CNVs called by Ginkgo are shown in the Table above the CN plot. Filtered CNVs are 

highlighted (pink = gain, blue = loss).  

 

 

(file uploaded separately) 

 

 

 

 

 

 

 

 

 

 
 

Supplementary Fig. 7 Determination of thresholds for CNV filtering.   

Plots show the median CN of segments in cells passing QC. A. PicoPLEX. For losses, we set a 

threshold of 1.29 (dotted purple line), as the median CN of chromosome X was lower than that in 

all males (n=11). For gains, as the CN 2.8 was found in more segments than the immediately 

higher and lower values, we used that as the cut-off (dotted red line). The two segments in red 

are the SNCA CNV in the fibroblasts passing QC. B. PTA. As the data were sparse, we applied 

the same thresholds as in PicoPLEX, visually shown as purple and red lines. The median CN of 

chromosome X in males was below 1.29 in all 5 cells. 
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Supplementary Fig. 8 Gene ontology analysis.  

a-b biological process for a control and b MSA brains, c-d molecular function for c control and d 

MSA brains. e-f cellular component for e control and f MSA brains. 
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Supplementary Fig. 9 Samplot visualization of bulk Illumina (ILM) WGS in all brain samples 

focusing on genomic regions of single-cell CNVs supported by bulk reads.  

All MSA1 and MSA2 brain regions with data available are shown; CingCx= cingulate cortex (also 

shown in Fig. 4), CingCx= cingulate white matter, CerCx= cerebellar cortex, CerWM= cerebellar 

WM. Read pairs supporting a particular type of CNV / SV indicated according to the scheme at 

the top, and those supporting each called single-cell CNV arrowed. The left and right panel of 

each plot show the regions around the reported proximal and distal breakpoint respectively, which 

is at the middle of each panel, with the chromosomal positions on the x axis below. The y axis 

indicates the calculated insert size for the read pairs of interest on the left, and the local coverage 

on the right. Note that each supporting read pair is only seen in the cingulate cortex of the MSA 

brain where the relevant single-cell was reported, except for c which is also shown in the adjacent 

white matter of the same brain. 
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Supplementary Tables 

 

Supplementary Table 1 CNV calls (unfiltered) for PicoPLEX and PTA data across different 

genomes 

 

 Gains / cell Losses / cell 

hg38 12.62 11.26 

hg38-lift 14.41 4.00 

T2T 16.98 3.40 

 

Supplementary Table 2 Information About Significant CNVs:  

This shows detailed information about all CNVs which were called after filtering. CN=copy 

number. Ginkgo results are shown in columns F-L, and Copykit (if called) L-O. The size 

difference for CNV called by both is shown in P. 

 

 

(File uploaded separately) 

 

 

Supplementary Table 3 Coverage of bulk WGS  

 

Sample Cingulate cortex Cingulate White 
matter 

Cerebellar 
cortex 

Cerebellar white 
matter 

MSA1  85.1 86.3   

MSA2  84.1 87.2 77.5 81.3 

 

Supplementary Table 4 Sample information submitted in EGA and quality control detailed 

information:  

This shows detailed information about the analyzed cells. a Nuclei used in this study and 

detailed information about them. b-d Sample statistics about different amplification method, a 

PicoPLEX, b PTA, c dMDA. 

 

(File uploaded separately) 
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