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ABSTRACT 

The Illumina Methylation array platform has facilitated countless epigenetic studies on DNA 

methylation (DNAme) in health and disease, yet relatively few studies have so studied its reliability, 

i.e., the consistency of repeated measures. Here we focus on the reliability of both type I and type II 

Infinium probes. We propose a method for excluding unreliable probes based on dynamic thresholds 

for mean intensity (MI) and ‘unreliability’, estimated by probe-level simulation of the influence of 

technical noise on methylation β-values using the background intensities of negative control probes. 

We validate our method in several datasets, including Illumina MethylationEPIC BeadChip v1.0 data 

from paired whole blood samples taken six weeks apart. Our analysis revealed that specifically 

probes with low MI exhibit higher β-value variability between repeated samples. MI was associated 

with the number of C-bases in the respective probe sequence and correlated negatively with 

unreliability scores. The unreliability scores were substantiated through validation in a new EPIC v1.0 

(blood and cervix) and a publicly available 450k (blood) dataset, as they effectively captured the 

variability observed in β-values between technical replicates. Finally, despite promising higher 

robustness, the newer version v2.0 of the MethylationEPIC BeadChip retained a substantial number 

of probes with poor unreliability scores. To enhance current pre-processing pipelines, we developed 

an R package to calculate MI and unreliability scores and provide guidance on establishing optimal 

dynamic score thresholds for a given data set. 

INTRODUCTION 

DNA methylation (DNAme) is a chemical modification of DNA that entails the addition of a methyl 

group to a cytosine (C) residue resulting in 5-methylcytosine, and most commonly occurs in the 
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context of CpG dinucleotides in humans (1). The study of epigenetics and DNAme has become 

one of the most topical areas of genomic research in recent years, both from a functional point of 

view and a clinical perspective, owing to its potential application in cancer risk prediction and early 

detection strategies (2, 3). 

 

The two most widely used techniques to study epigenome-wide DNAme are whole-genome bisulphite 

sequencing (WGBS) and Illumina methylation arrays. Both technologies require bisulfite pre-

treatment of DNA to enable distinction of methylated from unmethylated cytosine residues in the 

context of CpG dinucleotides. Whereas WGBS provides information regarding the DNAme status 

of a series of linked CpGs, the Illumina methylation arrays allow a more affordable and high-

throughput assessment of the methylation status of a subset single CpGs dinucleotides throughout 

the genome.  

 

The Illumina BeadArray technology has undergone substantial re-development over the years and 

the total number of CpGs that can be simultaneously analysed has increased substantially from 

~25,000 in 2008 (HumanMethylation27KBeadChip), to ~485,000 in 2011 (HumanMethylation450K 

BeadChip), to over ~850,000 CpG sites in 2016 (MethylationEPIC BeadChip v1.0), and finally to over 

~935,000 CpG sites in 2022 when the MethylationEPIC BeadChip v2.0 was released. Illumina 

Methylation microarrays include two different types of bead chemistry, Infinium type I and II probes (4, 

5). Type I probes have two separate probe sequences per CpG dinucleotide (one each for methylated 

and unmethylated CpGs), whereas type II probes have just one probe sequence per CpG 

dinucleotide. Consequently, type II probes take up much less physical space on the arrays than type I 

probes and are the most abundant type on the latest Illumina EPIC arrays, constituting ~85% of all 

probes. For type II probes, discrimination of methylated (M) versus unmethylated (U) alleles is made 

possible by single nucleotide primer extension which results in the incorporation of Cy3 or Cy5 

labelled nucleotides into the target sequence and emitting green or red fluorescence, respectively. For 

type I probes, discrimination of methylated versus unmethylated alleles is made by constructing 

corresponding probes sequences (M and U) which are measured in the same channel, either Red or 

Green. Further we will distinguish between them as type I-Red and I-Green probes respectively. The 

level of methylation at specific CpG sites is expressed as Beta (β-value), which represents a constant 

from ‘0’ (unmethylated) to ‘1’ (fully methylated) and can be written as: 

� � 
�

���� �
  ;     (1) 

with α a small positive constant (typically 100) added to the equation to avoid dividing by zero when 

both M and U signals are equal to 0. If β = 0, then the interrogated CpG is unmethylated (there is no 

M signal), if β = 1, then the interrogated CpG is methylated (there is no U signal). 

 

When assessing Illumina Methylation array data, basic pre-processing steps would typically include 

identifying probes and/or samples with a low signal to noise intensity which should be excluded (6), 

correcting for background intensity and dye bias (7), performing within-array normalization to reduce 

differences in beta-distributions obtained from Infinium I and II probes (8), and imputing missing data 
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(9). For this, several established methods have been benchmarked and implemented into pre-

processing pipelines available as R packages, such as minfi  (10), ChAMP (11) and the latest ENmix 

(12). Additionally, previous studies have identified the necessity to exclude low-specificity probes 

that can bind to multiple sequences within the genome, as well as probes that contain genetic variants 

in their underlying sequence (5, 13). Lastly, a recent study by Sugden et al. (14) identified a large set 

of ‘unreliable’ probes that poorly reproduced methylation values when samples from the same DNA 

source were measured either on the HumanMethylation450K or MethylationEPIC BeadChip. However, 

to date comprehensive understanding of the factors which influence the reliability of Illumina array 

probes is lacking (where reliability refers to the ability to reproduce data). This has substantial 

implications for the accurate interpretation of array data, especially since a typical experimental design for 

Illumina Methylation arrays does not include technical or biological replication. 

 

In this study, we present a series of comprehensive analyses that explore yet unidentified factors 

affecting the validity of Illumina Methylation array data. Paired longitudinal data from 142 paired blood 

samples (from 71 volunteers) collected 6 weeks apart was generated with the MethylationEPIC 

BeadChip v1.0, which enabled us to distinguish inter-individual DNAme variability with intra-individual 

DNAme data over time. Our results reveal new insights into factors affecting the variability of DNAme 

derived from the EPIC array and we thus propose a novel, data-driven method for the assessment of 

probe reliability. We expect that these findings will further improve existing pre-processing pipelines 

and the subsequent interpretation of next-generation Illumina Methylation array results. 

MATERIAL AND METHODS 

Sample collection and DNAme profiling in the clinical intervention study 

93 individuals were recruited to the TACT (Turmeric-Anti-Inflammatory & Cell Damage Trial – clinical 

trial number NCT02815475) for a 6-week intervention study. There were 3 arms to the study: one 

group (‘Turmeric Capsule’ group; 25 patients: 17 females, 8 males) received a 400 mg Turmeric 

capsule providing 0.27g curcuminoids/day, a second group (‘Placebo’ Group; 24 patients: 16 females, 

8 males) a sugar placebo (xylitol), and a third group were asked to regularly cook with Turmeric 

powder (‘Turmeric Powder’ group; 22 patients: 20 females, 2 males) providing 0.24g 

curcuminoids/day in their food every alternate day, all for a period of 6 weeks. Ethical approval 

number 16-WAT-23 was granted by Newcastle University’s SAgE ethics committee. 71 participants 

(53 females and 18 males) completed the study and provided full sets of usable 12-h fasting whole 

blood samples, which were collected at the start and end of the 6-week intervention into PAXGene 

DNA blood tubes (Becton Dickenson, 761165). Full blood counts were complemented with 

measurements of lymphocyte subsets (T/B/NK cells) using the fluorescently labelled antibodies CD3, 

CD4, CD8, CD19, and CD56, targeting T cells, T helper cells, cytotoxic T cells, B lymphocytes and 

NK cells (CD3 negative), respectively. Briefly, 50 µL blood were added to the antibody mix and 

incubated for 20’ at RT in the dark. To lyse the red blood cells, the mixture was incubated 10’ with 3 

mL lysis buffer, washed (PBS-1%FBS) and cells were resuspended prior to flow cytometry analysis 
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using a FACSCanto II (Becton Dickinson). DNA from the blood was extracted using the Machery 

Nagel NucleoMag® Blood 200 µL extraction kit (cat, 744501) and 500 ng total DNA was bisulfite 

modified using the EZ-96 DNA Methylation-Lightning kit (Zymo Research Corp, cat, D5047). 8 µl of 

modified DNA was subjected to methylation analysis on the Illumina Infinium MethylationEPIC 

BeadChip (Illumina, CA, USA) at UCL Genomics according to the manufacturer’s standard protocol.  

 

Normalization of MethylationEPIC data and immune cell subtype inference 

Downstream analyses of the TACT study utilized raw β-values, obtained by formula (1) with raw 

intensities, as well as normalized β-values from three distinct pipelines: minfi preprocessFunnorm 

(10), ChAMP (11), and ENmix (12). β-values were regressed against the FACS-measured neutrophile 

and lymphocyte cell fractions for the first and second visits separately, and Infinium probes were 

considered cell type-dependent when FDR < 0.05 for both p-values associated with the slope of two 

linear regressions. 

 

Methylation changes linked to the clinical intervention 

Two approaches were used to investigate differential methylation between two visits across the three 

treatment groups in the TACT study, either considering absolute differences in the original β-values 

between visits or considering differences in residuals from linear regression models (β-values versus 

real neutrophile cell fraction, the largest blood cell fraction) fitted on samples from the first visit only 

and then applied to all samples. Pairwise comparisons of the treatment groups were done using the 

Wilcoxon test, as well as a common comparison of all three groups using a Kruskal-Wallis test. Since 

the proportion of males in the ‘Turmeric Powder’ group was lower than in the other two groups, all 

tests were repeated on the female samples only.  

 

SNP analysis 

Single nucleotide polymorphisms (SNPs) were identified from probes with underlying genetic 

sequence variation at target CpG sites listed by Pidsley et al. (Supplementary Table S4 in (5)). SNPs 

affect methylation profiles in specific ways depending on the position of the SNP relative to the target 

site. We defined the ‘SNP-II-0-effect’ associated with a 0-position (C base of target CG pair) of a 

Infinium Type II probe, which can cause false M (if SNP is G base) or false U signals (if SNP is T or A 

base), and the ‘SNP-II-1-effect’ associated with a 1-position (G base of target CG pair) of a type II 

probe, which may cause degradation of the total signal intensity (see Supplementary Figure S1). 

The ‘SNP-II-0-effect’ results in a tri-modal distribution of β-values of the type II probe where each 

mode is represented by carriers of one of three variants: CC – C on both chromosomes, C(SNP) or 

(SNP)C – C only on one chromosome, or (SNP)(SNP) for NON C on both chromosomes. Conversely, 

the ‘SNP-II-1-effect’ results in a tri-modal distribution of intensity levels of the type II probe, where 

each mode is represented by carriers of one of three variants: highest level for GG – G on both 

chromosomes, middle level for G(SNP) or (SNP)G – C only on one chromosome, and lowest level for 

(SNP)(SNP) for NON G on both chromosomes. On the level of β-values, the ‘SNP-II-1-effect’ results 
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in a bi-modal distribution, with one mode corresponding to the (SNP)(SNP) variant and the second 

mode to the other two variants. Notably, SNPs in the other closest positions towards the end of the 

probe (likely 2-5 bp away) or large inserts and deletions in more distant positions can have the same 

‘SNP-II-1-effect’. For type I-Red and I-Green probes, more SNP cases are possible that ultimately 

result in the same effects as described for type II probes, either a tri-modal β-value distribution 

(~‘SNP-II-0-effect’), a tri-modal intensity distribution (~‘SNP-II-1-effect’), or a combination of both (see 

Supplementary Figure S2). 

 

MI score calculation 

We calculate the Mean normalized Intensity of each Infinium type probe (MI score) as follows:  

For n samples, calculated across all type II or type I-Red or type I-Green probes separately: 

�� and ��; average raw methylated and unmethylated signal of ith sample (2) 

���� = �� 	 ��;     Average Intensity of ith Sample (3) 

For each ith sample and each jth type II or type I-Red or type I-Green probe: 

��� �
�������

�	
�
 ;   Normalized intensity of jth Probe on ith Sample (4) 

For each jth type II or type I-Red or type I-Green probe: 

��� �
�

�
∑ ����

�
�
� ;        MI score (5) 

 

Unreliability score calculation 

First, intensities recorded in the Green and Red channels of the negative control probes on each 

array are collected (Green and Red noise, respectively) to create a Reliability Map (RM) for each 

probe type/colour separately, i.e., RM-II, RM-I-Green, RM-I-Red (see also Figure 2d). Each RM is a 

grid of pairs of fixed methylated and unmethylated values M�, U� with k, l = (0, 5000, step = 100). For 

each pair of M� and U� in a RM, noise values are randomly selected 1000x and methylated noise 

M�����,�� and unmethylated noise U�����,�� defined as follows, for m = 1:1000: 

- for type II probes: 

M�����,��: M��� ��,��
� = G��� ��,��

�  (G��� = Green noise) and  

U�����,��: U��� ��,��
� = R��� ��,��

�  (R��� = Red noise); 

- for type I-Green probes: 

M�����,��: M��� ��,��
� = G��� ��,��

�  (G��� = M Green noise) and  

U�����,��: U��� ��,��
� = G���� ��,��

�  (G���
�  = U Green noise); 

- for type I-Red probes: 

M�����,��: M��� ��,��
� = R��� ��,��

�  (R��� = M Red noise) and  

U�����,��: U��� ��,��
� = R���� ��,��

�  (R���� = U Red noise); 
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For each pair k and l we generate the artificial distribution of β-values by repeatedly 

adding U��� ��,��
� and  M��� ��,��

�  noise values to M� and U� respectively: 

β��,��
� �

�������� ��,	

� �

�������� ��,	

� �� �������� ��,	


� �
 , m=1:1000 ; 

Then we calculate a Q score for a given distribution:  

Q�,� = MAD (mean absolute deviation) distribution of β��,��
�…����;  Q score (6) 

Thus, for each probe type the Reliability Map is a two-dimensional grid (G�, R�), of M and U signal 

intensities, where each cell is assigned the Q�,�  value, which is associated with the unreliability of the 

β-value obtained at the corresponding intensities. For each real (i.e., not modelled) pair of Mij and Uij 

signals from the ith sample and each jth probe average noise values are subtracted in the 

corresponding channels and the closest point (G*,R*) on RM and associated its Q*-value is retrieved 

to finally calculate the Unreliability score for each jth probe across all n samples in the data set: 

Unreliability = 
�

�
∑ Q��

�
�  ;     Unreliability score (7) 

For intensity values outside the grid, then Q� is assigned 0, that is very reliable. 

 

Unreliability and MI score dynamic thresholding 

The relationship between unreliability and MI scores were examined for each probe type/colour 

separately, constructing smoothed curves using a generalized additive model (GAM). Because the 

dependence of Unreliability on MI rapidly decreases and then stabilizes after a so-called “critical 

point”, we propose a dynamic threshold for determining which probes are deemed unreliable in a 

given dataset, by determining the maximum of the second derivative of the smoothed. 

 

Unreliability and MI score validation 

Two DNA methylation datasets comprised of true technical replicates were used to validate the utility 

of the unreliability and MI scores for probe reliability estimation. The first GSE174422 dataset with 128 

duplicate pairs of female blood samples collected within a Sister Study and analyzed on an Illumina 

Infinium 450k Human Methylation Beadchip v1 (12) was downloaded from NCBI GEO. A second 

“Repeatability” dataset was generated in house using four technical replicates from the same DNA 

(2x) and bisulfite converted DNA mixtures (2x) obtained from three different sample types, i.e., fresh 

blood, frozen blood and cervical smears, from four female subjects that participated in the 

TirolGesund study (n = 3 x 4; see Supplementary Figure S3). Blood samples (2.5 mL) were stored in 

PAX gene blood DNA tubes (BD Biosciences) and DNA was isolated from fresh blood within a week 

after sample collection. The remaining blood was kept frozen at -20°C. DNA was additionally isolated 

from the frozen left-over samples and treated as a separate sample type. Cervical smears were 

collected and stored at room temperature with ThinPrep® Collection Kit (Hologic). Within a week after 

sample collection, cells sediments were transferred, washed (PBS) and pelleted (2,500 RPM, 10 min). 

Cell pellets were kept frozen at -80°C. DNA was isolated according to the tissue protocol of the Mag-

Bind® Blood & Tissue DNA 96 Kit (#M6399-01, Omega Bio-tek) and quantified using the Quantifluor® 

dsDNA System (#E2670, Promega). 2 x 500 ng of DNA was bisulfite modified with the EZ DNA 
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Methylation-Lightning kit (\#D5030, Zymo) and standardized to a concentration of 25 ng/uL BC-DNA. 

From each BC-DNA mixture 2 x 100 ng was processed on the Illumina Human MethylationEPIC v1.0 

(#20042130) according to manufacturer’s instructions. To minimize batch effects, modified DNA from 

each sample type was processed randomly on array positions across two bead chips. 

 

RESULTS 

Unexpected DNAme variability in repeated blood samples 

We initially studied whole blood DNA methylation profiles of 71 volunteers within the TACT study at 

two time points separated by a six-week interval (n=142). Although participants were allocated to 

one of three treatment groups (‘Placebo’, ‘Turmeric Capsule’ or ‘Turmeric Powder’), no significantly 

differentially methylated CpG sites (FDR > 0.05) were found with champ.dmp() for any of the four 

variants of β-values analyzed (raw or normalized with distinct published preprocessing pipelines; 

results not shown). For each CpG locus, we then calculated SD β, i.e., standard deviation of the β 

values within the population at visit 1, and Δβ, i.e., the average (over all individuals) of absolute 

differences in β values between visits (over time) for the same person. This revealed two distinct groups 

of CpGs targeted by Infinium probes in terms of DNAme variability (Fig. 1a): first, sites demonstrating a 

wide range of variability across the population of samples of a single visit (time point 1), and second, 

sites demonstrating a high degree of variability over time for the same individual. This distinction was 

evident both for both the raw and normalized β values. 

 

Consequently, we checked to what degree the observed patterns of variability were linked to the 

genetic background of the targeted sites, in particular with sex chromosomes and single nucleotide 

polymorphisms (SNPs), sites typically removed or removed during preprocessing (13). When grouping 

probes by their chromosomal location (X, Y, and “other”), sex chromosome-associated probes within 

our dataset exhibited a high variability across the population, which is partially expected as our 

participant cohort included both men and women. However, strikingly, methylation values in probes 

targeting sex chromosomes also showed a high variability over time. This effect was less pronounced 

for minfi and ENmix normalized β values, likely due to the special normalization performed for sex 

chromosome-associated probes in these pipelines. As expected, M and U signal intensities at sex 

chromosomes was influenced by biological sex and sex chromosome copy number (Fig. 1b,c). The 

total signal intensity (M+U) of CpG probes mapping to the X chromosome is higher in females than 

males, since females have two X chromosomes. Conversely, the total signal intensity of CpG probes 

mapping to the Y chromosome is close to ‘0’, since females do not carry a Y chromosome, although 

some Y-CpGs might be in pseudoautosomal regions. 

 

Infinium type I and II probes are based on inherently different designs, therefore we consider them 

separately for the remainder of our analyses. With respect to the Infinium type II probes, the two most 

relevant positional types of SNPs occur at position ‘0’ immediately after the 3’ end of the probe (SNP-
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II-0), where the SNP specifically affects the cytosine residue of the interrogated CpG, or at position ‘1’ 

at the very end of the 3’ end of the probe (SNP-II-1), where the SNP specifically affects the guanidine 

residue of the interrogated CpG (Fig. 1d). These two SNPs have distinct impacts on signal: a SNP-II-0 

can result in false U or M signals, depending on the nature of the SNP replacing the ‘C’ residue, while 

a SNP-II-1 impairs hybridization and extension and results in a loss of signal. Other studies (5, 13) 

previously identified probes on the MethylationEPIC BeadChip v1.0 whose reliability is impacted by 

SNPs within sequence they target, and we have highlighted these probes in our dataset (see Fig. 1e 

for type II probes). Interestingly, the subset of probes with the highest Δβ, were neither a SNP-II-0 nor 

a SNP-II-1. Thus, like the sex-chromosome associated probes, SNP-associated probes contribute to 

a high degree of variability within the population, but they do not fully explain the high variability in 

DNAme data over time within individuals. We further found that SNP-II-1 resulted in bimodal β 

distributions (corresponding to signal or loss of signal; Fig. 1g), where the “true” variant is represented 

by the upper layer of intensity. SNP-II-0 that give rise to either false U or M signals yielded a trimodal 

β distributions (Fig. 1f), and the nature of the polymorphism, i.e., which base has replaced the 

cytosine residue, determined which particular mode corresponded to the values of the “true” (C/C) 

variant (see Supplementary Figure S1).  

 

Modelling the impact of signal intensity on β value reliability  

Since the properties of both SNP-related and sex chromosome-associated probes are closely related 

to signal intensity (either through DNA quantity, false signals, or a loss of signal), but cannot fully 

explain the observed variability in repeated blood samples from the same individuals, we further 

scrutinized the impact of probe intensities on DNAme variability. For each probe on the array, we 

calculated a mean intensity (MI) value, which represents the corrected mean overall signal strength of 

the probe. Overall, probes with the highest level of time-dependent variability have a low MI value 

(Fig. 2a). Probes on the lower end of the MI scale in our dataset show a low reproducibility in paired 

blood samples (example cg21373150; Fig. 2b), whereas probes on the higher end of the MI scale a 

high reproducibility (cg17588455; Fig. 2c). We hypothesize that this high variability at low intensity 

levels is caused by a relatively higher impact of signal to noise. Therefore, the MI score may 

potentially allow for the identification of ‘noisy’ or ‘unreliable’ probes, i.e., probes which do not yield 

consistent β-values between two timepoints or replicates. 

 

We created a simulation model to estimate the impact of noise on each probe’s “unreliability” by 

collecting the background intensities recorded by the negative control probes on the array and 

repeatedly adding methylated and unmethylated noise values, M-noise and U-noise, to a fixed grid of 

M and U signal pairs (Fig 2d, see Material and Methods section for further details). The resulting 

reliability maps summarize for each probe type/colour the mean absolute deviation of the resulting β 

distributions for each point in the grid (Q score) and are then subsequently used to assign an 

unreliability score for each probe in the final dataset, by averaging the matching Q scores for the 

measured β values across all samples. Dynamic thresholding for defining unreliable probes in each 

dataset is then achieved by examining the dependence of the unreliability scores on MI and finding 
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the critical point of a smoothed curve where the dependence of unreliability (mirroring Δβ estimates) 

on MI stabilizes (Fig. 2e; Supplementary Figures S4, S5, S6).  

 

Compared to the popular p-value detection method (detP, 15) to remove outlier probes as 

implemented in the minfi package (10), we improve by modelling the effect of noise on beta values 

obtained at different intensity levels, rather than comparing total intensities (across all genomic 

position in every sample) with distribution of total intensities on negative control probes (which only 

allows to estimate the ‘distance’ of probe intensities from the noise intensity, but does not allow to 

estimate the influence of noise on the final beta values). Furthermore, by allowing for data-driven 

thresholding we detect more unreliable probes than the statistical outliers alone, even compared to a 

very stringent threshold of p = 1.e-40 (6) for detP (Fig. 2f,e; Supplementary Figure S7, S8, S9, S10, 

S11). 

 

Linking mean intensity with probe sequence composition, target sequence copy number and 

unreliability scores 

Investigating probe composition to identify factors associated with reliability, we found that probes 

with a low MI score tend to have a lower C content and target sequences with a lower G content (Fig. 

3a; Supplementary Figure S12). Stronger physical binding between G-C base pairs than A-T base 

pairs could result in an increase in bound targets and fluorescent signal. Furthermore, probes 

targeting island, shore, shelf, and open sea regions inherently differ in their CG content (Fig. 3b). 

Correspondingly, open sea region probes have a lower MI and higher unreliability scores than probes 

located in island regions (Fig. 3c, 3d). As previously shown, the raw signal intensity of the probe 

depends on the number of copies on the DNA (in its bisulfite notation) complementary to the full 50bp 

sequence or a long-length nested subsequence of the probe (13). Here we additionally show that 

mean intensities depend both on copy number for 3΄ nested subsequences of probes longer than 30 

nucleotides and C content (Fig. 3e).  

 

Interestingly, our Unreliability score was not associated with a reliability measure proposed by Sugden 

et al. (14), which was calculated using ICC (Intraclass Correlation Coefficient) on β-values of repeat 

measurements of the same DNA samples (Fig. 3f). Furthermore, the reliability score from Sugden et 

al. does not correlate with MI (Fig. 3g – lower panel), and SNP-associated probes were deemed the 

most reliable using this measure (Fig. 3g – upper panel), which seems to be due to the high spread of 

β values in SNP 0 and SNP 1 (Fig. 3h – upper panels). Of note, some probes which have a similar 

Sugden reliability score had different ICC, MI and unreliability in our TACT data (Fig. 3h – lower 

panels). In contrast to the method proposed by Sugden et al., our method of assessing probe 

reliability is not based on cross-correlation of samples (which can be different in intensity, and 

therefore result in β bias), but instead offers insights into the reliability of probes based purely on 

intensity and noise distribution. 
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Consistency of unreliability scores and probe MI with respect to biological and technical 

variation 

Our method to estimate unreliability of Infinium probes is based on the analytical modelling of the 

effect of noise on probe intensities and explains the high values of Δβ well. However, since our 

dataset is comprised of paired biological replicate samples, we further investigate whether changes in 

methylation values over time could still be explained partially by biological influence, despite the 

absence of a treatment effect, and not only probe unreliability. Fractions of cell subtypes in the blood 

can change rapidly, for example the proportion of lymphocytes in peripheral blood can rapidly 

increase due to acute illness, influencing the β values that integrate the methylation status from all 

cell subtypes in the samples, and further explaining the variation seen in time for the same 

individuals. Indeed, the proportion of the two main immune blood cell subtypes, neutrophils, and 

lymphocytes, changed between the two visits (see example for type II probes in Supplementary Fig. 

S13a, S13b). We therefore selected probes whose β values are strongly influenced by these two 

immune subtypes (see Supplementary Fig. S13c) and evaluated the variability in these cell type-

dependent probes between patients at visit 1 (SD β) and over time (∆ β; see Supplementary Fig. 

S13d). 

 

To further demonstrate the consistency of the unreliability scores on true technical replicates, we 

analyzed two additional data sets: a published Illumina Infinium 450k Human Methylation Beadchip v1 

dataset GSE174422 from 128 duplicate female blood samples, and a new EPIC v1.0 “Repeatability” 

dataset generated for this study from 4 quadruplicate fresh blood, 4 quadruplicate frozen blood and 4 

quadruplicate cervical smear samples. Using raw β-values, we estimated variability by mean, 

absolute beta differences (Δβ) for each probe, confirming that variability increased with increasing 

unreliability scores and decreased with MI in the datasets with technical replicates (Figure 4a, 4b; 

Supplementary Fig. S14a, S14b, S15a, S15b). Also, for the technical replicate datasets, we detect 

more unreliable probes than the statistical outliers alone detected by the detP method with different 

thresholds and remove a significant portion of the lower variable probes deemed unreliable (Fig.4c; 

Supplementary Figures S8, S9, S10, S11). Furthermore, MI scores, which we use for dynamic 

thresholding in our unreliability method, correlate well across datasets (Fig. 4d), despite marked 

differences in total signal intensities for samples in the different datasets (Fig. 4e) and their noise 

distributions recorded from the negative control probes (Fig. 4f).  

 

Implications for the newer MethylationEPIC BeadChip v2.0  

A new MethylationEPIC BeadChip v2.0 was released in November 2022. The new manifest reports 

that ‘underperforming’ probes were removed compared to the v1.0 manifest (approximately 140,000, 

i.e., 23% of all type I probes and 15% of all type II probes). However, we found no evidence of an 

enrichment for probes with high unreliability or low MI in those discarded for v2.0 (Supplementary 

Figure S16). Therefore, we assume that the issues raised here will remain of high importance also for 

the newer version of the EPIC array. We also note that despite the announced large-scale removal of 
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SNPs, some SNP 0 (~15%) and 1 (~25%) probes remained on v2.0. In addition, we observed that 

some probes are not marked as containing SNPs (neither by Pidsley (5) and Zhou lists (13), nor by 

the Illumina Manifest), but clearly demonstrate SNP-II-0 or SNP-II-1 behaviour (Supplementary Figure 

S17, S18). 

DISCUSSION 

Despite considerable investment in improving existing analysis pipelines for popular Illumina 

methylation arrays, room for improvement remains. To facilitate the generation of meaningful findings 

that will not only increase our understanding of the epigenome and its relationship with health and 

disease, but also translate into clinically useful tools, it is vital that we fully understand how robust 

these DNA methylation arrays perform. Here we show that DNAme data from paired whole blood 

samples taken from the same individuals display variability over time which cannot be attributed to 

underlying genetic or biological factors alone. Much of the ‘unexplained’ temporal variability in the 

current study can be attributed to probe quality, which is primarily dictated by the probe sequence 

complexity and genome location.  

 

Noise affects methylation values differently at different intensity levels: it has a dramatic effect on β-

values at low intensity, while at high intensities, the signal cancels out the effect of noise. We 

therefore developed an approach for assessing the unreliability of β-values in a data-driven manner, 

using the negative control probes on the arrays to model the contribution of noise to any of the final 

signal intensities in a specific data set. Our new unreliability score correlates well increasing degrees 

of variability observed between repeated samples, both in longitudinal data set as well as in two 

validation sets with technical replicates. By modeling the noise distribution for each dataset for type II 

and type I/color probes independently, we were able to detect more unreliable probes compared to an 

existing detP method for detecting outlier probes ((15) with 0.01 p-value threshold, (16) with 1.e-16 p-

value threshold, (6) with 1.e-40 p-value threshold) . 

 

There is a marked difference in signal intensity and quality based on the C-content of the probe 

sequence and CpG content. On the one hand, this observation can help Illumina to achieve leveling 

of such an effect within the technological process, on the other hand, it will allow scientists to provide 

more qualitative comparisons on different regions of DNA, for example separating Islands and the 

Open Sea CpGs. Excluding low-intensity probes or unreliable from the analysis could help increase 

the detection of differentially methylated CpGs for different phenotypes and improve both the 

accuracy and precision of existing and emerging predictive models on this type of DNAme data. 

Beyond the mere exclusion of unreliable probes, new correction or normalization methods may 

emerge in the future based on the results of this work that could instead salvage the data generated 

from these probes.  

 

Factors contributing to laboratory or methodological bias, such as sample storage and hybridization 

procedures, are relatively underexplored. Samples from different studies tend to be of different 
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quality, yielding different average intensities depending on the instruments used and the exact 

laboratory protocols, which in turn can also affect the reproducibility of β-values on probes with 

different intensities and estimated probe reliability. Therefore, accounting for probe reliability and raw 

signal intensities during initial quality control may also improve the reproducibility of DNAme studies 

across laboratories. 

 

In summary, we developed a new computational method to further refine existing preprocessing 

methods for Illumina methylation array data by excluding unreliable probes from downstream 

analyses. We implemented our methods to calculate MI and unreliability scores into an R package, 

epicMI, which is publicly available on GitHub (17).  
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FIGURES LEGENDS 

Fig. 1 Variability associated with genetic factors (sex and genetic variants) in the TACT study 

(a) Sex chromosome-associated probes demonstrate high variability both within population at visit 1 

(SD β, x-axis) and over time (∆ β, y-axis). (b) Example of β value and intensity of an X-chromosome-

associated probe in males and females. (c) Example of β value and intensity of a Y-chromosome-

associated probe in males and females. (d) Two types of type II probes SNPs and their impact on 

signal intensity: SNPs in position 0 (SNP-II-0) result in false green or red signals, while SNPs in 

position 1 (SNP-II-1) result in a loss of signal (for type I probes see Supplementary Fig. 2a). (e) SNPs 

in position 0 and 1 both demonstrate high variability in the population at visit 1 (SD β), but SNPs in 

position 1 furthermore demonstrate high variability over time (∆ β; for type I probes Supplementary 

Fig. 2b). (f) Example of probe with 0-position SNP (SNP-II-0) shows tri-modal b-values distribution. 

(g) Example of probe with 1-position SNP (SNP-II-1) shows tri-modal intensities distributions. 

 

Fig. 2 Impact of probe intensity on β value reliability in the TACT study (a) Association of probe 

variability within participants at visit 1 (SD β) and over time (∆ β) with mean intensity (MI). Probes with 

low MI have high variability over time. Examples of a probe with low MI (b) or high MI (c). Lines are 

connected by points corresponding to the individual in two different visits. β values from the same 

individual are closer for a probe with a high MI than on a probe with a low MI. (d) Reliability map of β 

values. (e) Smoothed curve shows the dependence of type II probe unreliability on mean intensity 

(MI). The point highlighted on the graph is the “critical point” marking a sharp change in dependence 

decline, which we recommend as a dynamic threshold for determining which probes are deemed 

unreliable (for type I probes and other data sets see Supplementary Figures S4, S5, S6). (f) 

Dependence of the type II probe unreliability on MI, highlighting probes which are detected using the 

p-value method at different threshold stringency (for type I probes and other datasets see 

Supplementary Figure S7). 

 

Fig. 3 Type II probe features impacting signal intensity and reliability. (a) Dependence of mean 

signal intensity (MI) on C content of the probe (for type I probes and other data sets see Supplementary 

Figure S12). (b) Odds ratio for C enrichment in different DNA regions: Islands, due to their inherently 

high CG content, have a strong enrichment of probes with a large C content, which leads to the fact 

that on average MIs are higher (c) and Unreliability scores (d) are lower for Islands probes than for 

probes in other regions. (e) Dependence of the mean signal intensity (Y-axis) on raw signal intensity 

(X-axis) and C content of the probe sequence (color). (f) Reliability scores proposed by Sugden et al.  

(14) versus Unreliability scores defined here. (g) Association of Reliability scores proposed by 

Sugden et al.  (14) with SNPs and MI. (h) Methylation status (β) and intraclass correlation coefficient 

(ICC) for example SNP-associated CpGs and probes yielding low signal intensity of probes. 

 

Fig. 4 Validation of the unreliability method on datasets with technical replicates. Association of 

type II probe variability estimated by the averaged, absolute methylation differences between 

repeated samples (∆β) with (a) the unreliability score and (b) the mean intensity (MI) in the TACT 
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study (n=2x71 longitudinal paired blood samples), the Repeatability set (n=4x4x4 technical replicates 

for fresh blood, frozen blood and cervical smear samples) and GSE174422 (n=2x128 technical 

replicates for blood samples). For type I probes see Supplementary Fig. S14a, S14b, S15a, S15b. (c) 

Distribution of Δβ for all type II probes (grey) or those removed by the p-value detection method at 

different threshold settings (red, orange, yellow) and the Unreliability method (black) in the different 

data sets. (d) Correlation of MI measured for type II probes across data sets. (e) Mean red versus 

green total signal intensities of the samples in the different data sets. (f) Noise distributions obtained 

from the negative control probes in the different datasets.  
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