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ABSTRACT

The lllumina Methylation array platform has facilitated countless epigenetic studies on DNA
methylation (DNAme) in health and disease, yet relatively few studies have so studied its reliability,
i.e., the consistency of repeated measures. Here we focus on the reliability of both type | and type I
Infinium probes. We propose a method for excluding unreliable probes based on dynamic thresholds
for mean intensity (MI) and ‘unreliability’, estimated by probe-level simulation of the influence of
technical noise on methylation B-values using the background intensities of negative control probes.
We validate our method in several datasets, including lllumina MethylationEPIC BeadChip v1.0 data
from paired whole blood samples taken six weeks apart. Our analysis revealed that specifically
probes with low MI exhibit higher B-value variability between repeated samples. Ml was associated
with the number of C-bases in the respective probe sequence and correlated negatively with
unreliability scores. The unreliability scores were substantiated through validation in a new EPIC v1.0
(blood and cervix) and a publicly available 450k (blood) dataset, as they effectively captured the
variability observed in B-values between technical replicates. Finally, despite promising higher
robustness, the newer version v2.0 of the MethylationEPIC BeadChip retained a substantial number
of probes with poor unreliability scores. To enhance current pre-processing pipelines, we developed
an R package to calculate Ml and unreliability scores and provide guidance on establishing optimal

dynamic score thresholds for a given data set.
INTRODUCTION

DNA methylation (DNAme) is a chemical modification of DNA that entails the addition of a methyl
group to a cytosine (C) residue resulting in 5-methylcytosine, and most commonly occurs in the
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context of CpG dinucleotides in humans (1). The study of epigenetics and DNAme has become
one of the most topical areas of genomic research in recent years, both from a functional point of
view and a clinical perspective, owing to its potential application in cancer risk prediction and early

detection strategies (2, 3).

The two most widely used techniques to study epigenome-wide DNAme are whole-genome bisulphite
sequencing (WGBS) and lllumina methylation arrays. Both technologies require bisulfite pre-
treatment of DNA to enable distinction of methylated from unmethylated cytosine residues in the
context of CpG dinucleotides. Whereas WGBS provides information regarding the DNAme status
of a series of linked CpGs, the Illumina methylation arrays allow a more affordable and high-
throughput assessment of the methylation status of a subset single CpGs dinucleotides throughout
the genome.

The lllumina BeadArray technology has undergone substantial re-development over the years and
the total number of CpGs that can be simultaneously analysed has increased substantially from
~25,000 in 2008 (HumanMethylation27KBeadChip), to ~485,000 in 2011 (HumanMethylation450K
BeadChip), to over ~850,000 CpG sites in 2016 (MethylationEPIC BeadChip v1.0), and finally to over
~935,000 CpG sites in 2022 when the MethylationEPIC BeadChip v2.0 was released. lllumina
Methylation microarrays include two different types of bead chemistry, Infinium type | and Il probes (4,
5). Type | probes have two separate probe sequences per CpG dinucleotide (one each for methylated
and unmethylated CpGs), whereas type Il probes have just one probe sequence per CpG
dinucleotide. Consequently, type Il probes take up much less physical space on the arrays than type |
probes and are the most abundant type on the latest lllumina EPIC arrays, constituting ~85% of all
probes. For type Il probes, discrimination of methylated (M) versus unmethylated (U) alleles is made
possible by single nucleotide primer extension which results in the incorporation of Cy3 or Cy5
labelled nucleotides into the target sequence and emitting green or red fluorescence, respectively. For
type | probes, discrimination of methylated versus unmethylated alleles is made by constructing
corresponding probes sequences (M and U) which are measured in the same channel, either Red or
Green. Further we will distinguish between them as type I-Red and I-Green probes respectively. The
level of methylation at specific CpG sites is expressed as Beta (B-value), which represents a constant

from ‘0’ (unmethylated) to ‘1’ (fully methylated) and can be written as:
B = ; 1

with a a small positive constant (typically 100) added to the equation to avoid dividing by zero when

M
M+U+ «

both M and U signals are equal to 0. If B = O, then the interrogated CpG is unmethylated (there is no
M signal), if § = 1, then the interrogated CpG is methylated (there is no U signal).

When assessing lllumina Methylation array data, basic pre-processing steps would typically include
identifying probes and/or samples with a low signal to noise intensity which should be excluded (6),
correcting for background intensity and dye bias (7), performing within-array normalization to reduce

differences in beta-distributions obtained from Infinium | and Il probes (8), and imputing missing data
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(9). For this, several established methods have been benchmarked and implemented into pre-
processing pipelines available as R packages, such as minfi (10), ChAMP (11) and the latest ENmix
(12). Additionally, previous studies have identified the necessity to exclude low-specificity probes
that can bind to multiple sequences within the genome, as well as probes that contain genetic variants
in their underlying sequence (5, 13). Lastly, a recent study by Sugden et al. (14) identified a large set
of ‘unreliable’ probes that poorly reproduced methylation values when samples from the same DNA
source were measured either on the HumanMethylation450K or MethylationEPIC BeadChip. However,
to date comprehensive understanding of the factors which influence the reliability of Illlumina array
probes is lacking (where reliability refers to the ability to reproduce data). This has substantial
implications for the accurate interpretation of array data, especially since a typical experimental design for

lllumina Methylation arrays does not include technical or biological replication.

In this study, we present a series of comprehensive analyses that explore yet unidentified factors
affecting the validity of lllumina Methylation array data. Paired longitudinal data from 142 paired blood
samples (from 71 volunteers) collected 6 weeks apart was generated with the MethylationEPIC
BeadChip v1.0, which enabled us to distinguish inter-individual DNAme variability with intra-individual
DNAme data over time. Our results reveal new insights into factors affecting the variability of DNAme
derived from the EPIC array and we thus propose a novel, data-driven method for the assessment of
probe reliability. We expect that these findings will further improve existing pre-processing pipelines

and the subsequent interpretation of next-generation Illumina Methylation array results.

MATERIAL AND METHODS

Sample collection and DNAme profiling in the clinical intervention study

93 individuals were recruited to the TACT (Turmeric-Anti-Inflammatory & Cell Damage Trial — clinical
trial number NCT02815475) for a 6-week intervention study. There were 3 arms to the study: one
group (‘Turmeric Capsule’ group; 25 patients: 17 females, 8 males) received a 400 mg Turmeric
capsule providing 0.27g curcuminoids/day, a second group (‘Placebo’ Group; 24 patients: 16 females,
8 males) a sugar placebo (xylitol), and a third group were asked to regularly cook with Turmeric
powder (‘Turmeric Powder’ group; 22 patients: 20 females, 2 males) providing 0.24g
curcuminoids/day in their food every alternate day, all for a period of 6 weeks. Ethical approval
number 16-WAT-23 was granted by Newcastle University's SAQE ethics committee. 71 participants
(53 females and 18 males) completed the study and provided full sets of usable 12-h fasting whole
blood samples, which were collected at the start and end of the 6-week intervention into PAXGene
DNA blood tubes (Becton Dickenson, 761165). Full blood counts were complemented with
measurements of lymphocyte subsets (T/B/NK cells) using the fluorescently labelled antibodies CD3,
CD4, CD8, CD19, and CD56, targeting T cells, T helper cells, cytotoxic T cells, B lymphocytes and
NK cells (CD3 negative), respectively. Briefly, 50 uL blood were added to the antibody mix and
incubated for 20" at RT in the dark. To lyse the red blood cells, the mixture was incubated 10" with 3

mL lysis buffer, washed (PBS-1%FBS) and cells were resuspended prior to flow cytometry analysis
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using a FACSCanto Il (Becton Dickinson). DNA from the blood was extracted using the Machery
Nagel NucleoMag® Blood 200 pL extraction kit (cat, 744501) and 500 ng total DNA was bisulfite
modified using the EZ-96 DNA Methylation-Lightning kit (Zymo Research Corp, cat, D5047). 8 ul of
modified DNA was subjected to methylation analysis on the Illumina Infinium MethylationEPIC

BeadChip (lllumina, CA, USA) at UCL Genomics according to the manufacturer’s standard protocol.

Normalization of MethylationEPIC data and immune cell subtype inference

Downstream analyses of the TACT study utilized raw B-values, obtained by formula (1) with raw
intensities, as well as normalized B-values from three distinct pipelines: minfi preprocessFunnorm
(10), ChAMP (11), and ENmix (12). B-values were regressed against the FACS-measured neutrophile
and lymphocyte cell fractions for the first and second visits separately, and Infinium probes were
considered cell type-dependent when FDR < 0.05 for both p-values associated with the slope of two

linear regressions.

Methylation changes linked to the clinical intervention

Two approaches were used to investigate differential methylation between two visits across the three
treatment groups in the TACT study, either considering absolute differences in the original p-values
between visits or considering differences in residuals from linear regression models (B-values versus
real neutrophile cell fraction, the largest blood cell fraction) fitted on samples from the first visit only
and then applied to all samples. Pairwise comparisons of the treatment groups were done using the
Wilcoxon test, as well as a common comparison of all three groups using a Kruskal-Wallis test. Since
the proportion of males in the ‘Turmeric Powder’ group was lower than in the other two groups, all

tests were repeated on the female samples only.

SNP analysis

Single nucleotide polymorphisms (SNPs) were identified from probes with underlying genetic
sequence variation at target CpG sites listed by Pidsley et al. (Supplementary Table S4 in (5)). SNPs
affect methylation profiles in specific ways depending on the position of the SNP relative to the target
site. We defined the ‘SNP-II-0-effect’ associated with a 0-position (C base of target CG pair) of a
Infinium Type Il probe, which can cause false M (if SNP is G base) or false U signals (if SNP is T or A
base), and the ‘'SNP-II-1-effect’ associated with a 1-position (G base of target CG pair) of a type Il
probe, which may cause degradation of the total signal intensity (see Supplementary Figure S1).
The ‘SNP-II-0-effect’ results in a tri-modal distribution of B-values of the type Il probe where each
mode is represented by carriers of one of three variants: CC — C on both chromosomes, C(SNP) or
(SNP)C — C only on one chromosome, or (SNP)(SNP) for NON C on both chromosomes. Conversely,
the ‘SNP-II-1-effect’ results in a tri-modal distribution of intensity levels of the type Il probe, where
each mode is represented by carriers of one of three variants: highest level for GG — G on both
chromosomes, middle level for G(SNP) or (SNP)G — C only on one chromosome, and lowest level for
(SNP)(SNP) for NON G on both chromosomes. On the level of B-values, the ‘SNP-II-1-effect’ results
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in a bi-modal distribution, with one mode corresponding to the (SNP)(SNP) variant and the second
mode to the other two variants. Notably, SNPs in the other closest positions towards the end of the
probe (likely 2-5 bp away) or large inserts and deletions in more distant positions can have the same
‘SNP-II-1-effect’. For type I-Red and I-Green probes, more SNP cases are possible that ultimately
result in the same effects as described for type Il probes, either a tri-modal B-value distribution
(~'SNP-I1-0-effect’), a tri-modal intensity distribution (~‘SNP-II-1-effect’), or a combination of both (see

Supplementary Figure S2).

Ml score calculation

We calculate the Mean normalized Intensity of each Infinium type probe (Ml score) as follows:
For n samples, calculated across all type Il or type I-Red or type I-Green probes separately:
M; and U;; average raw methylated and unmethylated signal of i’ sample (2)
AlS;=M; + U; Average Intensity of i"” Sample (3)
For each i"™ sample and each | type Il or type I-Red or type I-Green probe:

N;; = Ml%;l]” : Normalized intensity of j"" Probe on i"" Sample (4)

For each j" type Il or type I-Red or type I-Green probe:

1
Mi; = - i1 NI, MI score (5)

Unreliability score calculation

First, intensities recorded in the Green and Red channels of the negative control probes on each
array are collected (Green and Red noise, respectively) to create a Reliability Map (RM) for each
probe type/colour separately, i.e., RM-Il, RM-I-Green, RM-I-Red (see also Figure 2d). Each RM is a
grid of pairs of fixed methylated and unmethylated values My, U; with k, | = (0, 5000, step = 100). For
each pair of My and U; in a RM, noise values are randomly selected 1000x and methylated noise
Merr(i1y @nd unmethylated noise Uerr 1y defined as follows, for m = 1:1000:
- for type Il probes:

Merr(in: Mg, kD)= Gore (Kl (Ggrr = Green noise) and

Uerrn: Uz, (kD)= R%:, K1) (Rerr = Red noise);
- for type |-Green probes:

Mere(il): Merr (k)= Gerr k1) (Gerr = M Green noise) and

Uerr(i) Uerr = G'err ey (Gerr = U Green noise);
- for type |-Red probes:

Mere(ioy: Merr ()= Rerr k1) (Rerr = M Red noise) and

Uere: Uarr o= R'err (k) (R'err = U Red noise);
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For each pair k and | we generate the artificial distribution of PB-values by repeatedly
adding Ugr, nand Mgp, )y NOise values to My and U respectively:

(Mic+Matr aeny)
(M Mgty o)t Uk tUghy geny) '

Blkn = m=1:1000 ;

Then we calculate a Q score for a given distribution;

Qi1 = MAD (mean absolute deviation) distribution of Bfic}**; Q score (6)
Thus, for each probe type the Reliability Map is a two-dimensional grid (G, R;), of M and U signal
intensities, where each cell is assigned the Qi value, which is associated with the unreliability of the
B-value obtained at the corresponding intensities. For each real (i.e., not modelled) pair of M; and U
signals from the i" sample and each i" probe average noise values are subtracted in the
corresponding channels and the closest point (G*,R*) on RM and associated its Q*-value is retrieved
to finally calculate the Unreliability score for each jth probe across all n samples in the data set:

Unreliability :% L.Q; Unreliability score (7)

For intensity values outside the grid, then Q* is assigned 0, that is very reliable.

Unreliability and Ml score dynamic thresholding

The relationship between unreliability and MI scores were examined for each probe type/colour
separately, constructing smoothed curves using a generalized additive model (GAM). Because the
dependence of Unreliability on MI rapidly decreases and then stabilizes after a so-called “critical
point”, we propose a dynamic threshold for determining which probes are deemed unreliable in a

given dataset, by determining the maximum of the second derivative of the smoothed.

Unreliability and Ml score validation

Two DNA methylation datasets comprised of true technical replicates were used to validate the utility
of the unreliability and Ml scores for probe reliability estimation. The first GSE174422 dataset with 128
duplicate pairs of female blood samples collected within a Sister Study and analyzed on an lllumina
Infinium 450k Human Methylation Beadchip v1 (12) was downloaded from NCBI GEO. A second
“Repeatability” dataset was generated in house using four technical replicates from the same DNA
(2x) and bisulfite converted DNA mixtures (2x) obtained from three different sample types, i.e., fresh
blood, frozen blood and cervical smears, from four female subjects that participated in the
TirolGesund study (n = 3 x 4; see Supplementary Figure S3). Blood samples (2.5 mL) were stored in
PAX gene blood DNA tubes (BD Biosciences) and DNA was isolated from fresh blood within a week
after sample collection. The remaining blood was kept frozen at -20°C. DNA was additionally isolated
from the frozen left-over samples and treated as a separate sample type. Cervical smears were
collected and stored at room temperature with ThinPrep® Collection Kit (Hologic). Within a week after
sample collection, cells sediments were transferred, washed (PBS) and pelleted (2,500 RPM, 10 min).
Cell pellets were kept frozen at -80°C. DNA was isolated according to the tissue protocol of the Mag-
Bind® Blood & Tissue DNA 96 Kit (#M6399-01, Omega Bio-tek) and quantified using the Quantifluor®
dsDNA System (#E2670, Promega). 2 x 500 ng of DNA was bisulfite modified with the EZ DNA
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Methylation-Lightning kit (\#D5030, Zymo) and standardized to a concentration of 25 ng/uL BC-DNA.
From each BC-DNA mixture 2 x 100 ng was processed on the Illlumina Human MethylationEPIC v1.0
(#20042130) according to manufacturer’s instructions. To minimize batch effects, modified DNA from

each sample type was processed randomly on array positions across two bead chips.

RESULTS

Unexpected DNAme variability in repeated blood samples

We initially studied whole blood DNA methylation profiles of 71 volunteers within the TACT study at
two time points separated by a six-week interval (n=142). Although participants were allocated to
one of three treatment groups (‘Placebo’, ‘Turmeric Capsule’ or ‘Turmeric Powder’), no significantly
differentially methylated CpG sites (FDR > 0.05) were found with champ.dmp() for any of the four
variants of pB-values analyzed (raw or normalized with distinct published preprocessing pipelines;
results not shown). For each CpG locus, we then calculated SD B, i.e., standard deviation of the B
values within the population at visit 1, and AB, i.e., the average (over all individuals) of absolute
differences in B values between visits (over time) for the same person. This revealed two distinct groups
of CpGs targeted by Infinium probes in terms of DNAme variability (Fig. 1a): first, sites demonstrating a
wide range of variability across the population of samples of a single visit (time point 1), and second,
sites demonstrating a high degree of variability over time for the same individual. This distinction was
evident both for both the raw and normalized B values.

Consequently, we checked to what degree the observed patterns of variability were linked to the
genetic background of the targeted sites, in particular with sex chromosomes and single nucleotide
polymorphisms (SNPs), sites typically removed or removed during preprocessing (13). When grouping
probes by their chromosomal location (X, Y, and “other”), sex chromosome-associated probes within
our dataset exhibited a high variability across the population, which is partially expected as our
participant cohort included both men and women. However, strikingly, methylation values in probes
targeting sex chromosomes also showed a high variability over time. This effect was less pronounced
for minfi and ENmix normalized B values, likely due to the special normalization performed for sex
chromosome-associated probes in these pipelines. As expected, M and U signal intensities at sex
chromosomes was influenced by biological sex and sex chromosome copy number (Fig. 1b,c). The
total signal intensity (M+U) of CpG probes mapping to the X chromosome is higher in females than
males, since females have two X chromosomes. Conversely, the total signal intensity of CpG probes
mapping to the Y chromosome is close to ‘0’, since females do not carry a Y chromosome, although

some Y-CpGs might be in pseudoautosomal regions.

Infinium type | and Il probes are based on inherently different designs, therefore we consider them
separately for the remainder of our analyses. With respect to the Infinium type Il probes, the two most

relevant positional types of SNPs occur at position ‘0’ immediately after the 3’ end of the probe (SNP-
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11-0), where the SNP specifically affects the cytosine residue of the interrogated CpG, or at position ‘1’
at the very end of the 3’ end of the probe (SNP-II-1), where the SNP specifically affects the guanidine
residue of the interrogated CpG (Fig. 1d). These two SNPs have distinct impacts on signal: a SNP-I1-0
can result in false U or M signals, depending on the nature of the SNP replacing the ‘C’ residue, while
a SNP-1I-1 impairs hybridization and extension and results in a loss of signal. Other studies (5, 13)
previously identified probes on the MethylationEPIC BeadChip v1.0 whose reliability is impacted by
SNPs within sequence they target, and we have highlighted these probes in our dataset (see Fig. le
for type Il probes). Interestingly, the subset of probes with the highest AR, were neither a SNP-11-0 nor
a SNP-II-1. Thus, like the sex-chromosome associated probes, SNP-associated probes contribute to
a high degree of variability within the population, but they do not fully explain the high variability in
DNAme data over time within individuals. We further found that SNP-II-1 resulted in bimodal B
distributions (corresponding to signal or loss of signal; Fig. 1g), where the “true” variant is represented
by the upper layer of intensity. SNP-11-0 that give rise to either false U or M signals yielded a trimodal
B distributions (Fig. 1f), and the nature of the polymorphism, i.e., which base has replaced the
cytosine residue, determined which particular mode corresponded to the values of the “true” (C/C)

variant (see Supplementary Figure S1).

Modelling the impact of signal intensity on B value reliability

Since the properties of both SNP-related and sex chromosome-associated probes are closely related
to signal intensity (either through DNA quantity, false signals, or a loss of signal), but cannot fully
explain the observed variability in repeated blood samples from the same individuals, we further
scrutinized the impact of probe intensities on DNAme variability. For each probe on the array, we
calculated a mean intensity (MI) value, which represents the corrected mean overall signal strength of
the probe. Overall, probes with the highest level of time-dependent variability have a low Ml value
(Fig. 2a). Probes on the lower end of the Ml scale in our dataset show a low reproducibility in paired
blood samples (example cg21373150; Fig. 2b), whereas probes on the higher end of the Ml scale a
high reproducibility (cg17588455; Fig. 2c). We hypothesize that this high variability at low intensity
levels is caused by a relatively higher impact of signal to noise. Therefore, the MI score may
potentially allow for the identification of ‘noisy’ or ‘unreliable’ probes, i.e., probes which do not yield
consistent B-values between two timepoints or replicates.

We created a simulation model to estimate the impact of noise on each probe’s “unreliability” by
collecting the background intensities recorded by the negative control probes on the array and
repeatedly adding methylated and unmethylated noise values, M-noise and U-noise, to a fixed grid of
M and U signal pairs (Fig 2d, see Material and Methods section for further details). The resulting
reliability maps summarize for each probe type/colour the mean absolute deviation of the resulting
distributions for each point in the grid (Q score) and are then subsequently used to assign an
unreliability score for each probe in the final dataset, by averaging the matching Q scores for the
measured B values across all samples. Dynamic thresholding for defining unreliable probes in each
dataset is then achieved by examining the dependence of the unreliability scores on Ml and finding
8
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the critical point of a smoothed curve where the dependence of unreliability (mirroring AR estimates)
on Ml stabilizes (Fig. 2e; Supplementary Figures S4, S5, S6).

Compared to the popular p-value detection method (detP, 15) to remove outlier probes as
implemented in the minfi package (10), we improve by modelling the effect of noise on beta values
obtained at different intensity levels, rather than comparing total intensities (across all genomic
position in every sample) with distribution of total intensities on negative control probes (which only
allows to estimate the ‘distance’ of probe intensities from the noise intensity, but does not allow to
estimate the influence of noise on the final beta values). Furthermore, by allowing for data-driven
thresholding we detect more unreliable probes than the statistical outliers alone, even compared to a
very stringent threshold of p = 1.e-40 (6) for detP (Fig. 2f,e; Supplementary Figure S7, S8, S9, S10,
S11).

Linking mean intensity with probe sequence composition, target sequence copy number and
unreliability scores

Investigating probe composition to identify factors associated with reliability, we found that probes
with a low MI score tend to have a lower C content and target sequences with a lower G content (Fig.
3a; Supplementary Figure S12). Stronger physical binding between G-C base pairs than A-T base
pairs could result in an increase in bound targets and fluorescent signal. Furthermore, probes
targeting island, shore, shelf, and open sea regions inherently differ in their CG content (Fig. 3b).
Correspondingly, open sea region probes have a lower MI and higher unreliability scores than probes
located in island regions (Fig. 3c, 3d). As previously shown, the raw signal intensity of the probe
depends on the number of copies on the DNA (in its bisulfite notation) complementary to the full 50bp
sequence or a long-length nested subsequence of the probe (13). Here we additionally show that
mean intensities depend both on copy number for 3" nested subsequences of probes longer than 30
nucleotides and C content (Fig. 3e).

Interestingly, our Unreliability score was not associated with a reliability measure proposed by Sugden
et al. (14), which was calculated using ICC (Intraclass Correlation Coefficient) on -values of repeat
measurements of the same DNA samples (Fig. 3f). Furthermore, the reliability score from Sugden et
al. does not correlate with Ml (Fig. 3g — lower panel), and SNP-associated probes were deemed the
most reliable using this measure (Fig. 3g — upper panel), which seems to be due to the high spread of
B values in SNP 0 and SNP 1 (Fig. 3h — upper panels). Of note, some probes which have a similar
Sugden reliability score had different ICC, Ml and unreliability in our TACT data (Fig. 3h — lower
panels). In contrast to the method proposed by Sugden et al., our method of assessing probe
reliability is not based on cross-correlation of samples (which can be different in intensity, and
therefore result in B bias), but instead offers insights into the reliability of probes based purely on
intensity and noise distribution.
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Consistency of unreliability scores and probe MI with respect to biological and technical
variation

Our method to estimate unreliability of Infinium probes is based on the analytical modelling of the
effect of noise on probe intensities and explains the high values of Ap well. However, since our
dataset is comprised of paired biological replicate samples, we further investigate whether changes in
methylation values over time could still be explained partially by biological influence, despite the
absence of a treatment effect, and not only probe unreliability. Fractions of cell subtypes in the blood
can change rapidly, for example the proportion of lymphocytes in peripheral blood can rapidly
increase due to acute illness, influencing the B values that integrate the methylation status from all
cell subtypes in the samples, and further explaining the variation seen in time for the same
individuals. Indeed, the proportion of the two main immune blood cell subtypes, neutrophils, and
lymphocytes, changed between the two visits (see example for type Il probes in Supplementary Fig.
S13a, S13b). We therefore selected probes whose B values are strongly influenced by these two
immune subtypes (see Supplementary Fig. S13c) and evaluated the variability in these cell type-
dependent probes between patients at visit 1 (SD B) and over time (A B; see Supplementary Fig.
S13d).

To further demonstrate the consistency of the unreliability scores on true technical replicates, we
analyzed two additional data sets: a published lllumina Infinium 450k Human Methylation Beadchip v1
dataset GSE174422 from 128 duplicate female blood samples, and a new EPIC v1.0 “Repeatability”
dataset generated for this study from 4 quadruplicate fresh blood, 4 quadruplicate frozen blood and 4
quadruplicate cervical smear samples. Using raw B-values, we estimated variability by mean,
absolute beta differences (AB) for each probe, confirming that variability increased with increasing
unreliability scores and decreased with Ml in the datasets with technical replicates (Figure 4a, 4b;
Supplementary Fig. S14a, S14b, S15a, S15b). Also, for the technical replicate datasets, we detect
more unreliable probes than the statistical outliers alone detected by the detP method with different
thresholds and remove a significant portion of the lower variable probes deemed unreliable (Fig.4c;
Supplementary Figures S8, S9, S10, S11). Furthermore, Ml scores, which we use for dynamic
thresholding in our unreliability method, correlate well across datasets (Fig. 4d), despite marked
differences in total signal intensities for samples in the different datasets (Fig. 4e) and their noise

distributions recorded from the negative control probes (Fig. 4f).

Implications for the newer MethylationEPIC BeadChip v2.0

A new MethylationEPIC BeadChip v2.0 was released in November 2022. The new manifest reports
that ‘underperforming’ probes were removed compared to the v1.0 manifest (approximately 140,000,
i.e., 23% of all type | probes and 15% of all type Il probes). However, we found no evidence of an
enrichment for probes with high unreliability or low MI in those discarded for v2.0 (Supplementary
Figure S16). Therefore, we assume that the issues raised here will remain of high importance also for

the newer version of the EPIC array. We also note that despite the announced large-scale removal of
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SNPs, some SNP 0 (~15%) and 1 (~25%) probes remained on v2.0. In addition, we observed that
some probes are not marked as containing SNPs (neither by Pidsley (5) and Zhou lists (13), nor by
the lllumina Manifest), but clearly demonstrate SNP-II-0 or SNP-1I-1 behaviour (Supplementary Figure
S17, S18).

DISCUSSION

Despite considerable investment in improving existing analysis pipelines for popular Illumina
methylation arrays, room for improvement remains. To facilitate the generation of meaningful findings
that will not only increase our understanding of the epigenome and its relationship with health and
disease, but also translate into clinically useful tools, it is vital that we fully understand how robust
these DNA methylation arrays perform. Here we show that DNAme data from paired whole blood
samples taken from the same individuals display variability over time which cannot be attributed to
underlying genetic or biological factors alone. Much of the ‘unexplained’ temporal variability in the
current study can be attributed to probe quality, which is primarily dictated by the probe sequence

complexity and genome location.

Noise affects methylation values differently at different intensity levels: it has a dramatic effect on -
values at low intensity, while at high intensities, the signal cancels out the effect of noise. We
therefore developed an approach for assessing the unreliability of B-values in a data-driven manner,
using the negative control probes on the arrays to model the contribution of noise to any of the final
signal intensities in a specific data set. Our new unreliability score correlates well increasing degrees
of variability observed between repeated samples, both in longitudinal data set as well as in two
validation sets with technical replicates. By modeling the noise distribution for each dataset for type Il
and type l/color probes independently, we were able to detect more unreliable probes compared to an
existing detP method for detecting outlier probes ((15) with 0.01 p-value threshold, (16) with 1.e-16 p-
value threshold, (6) with 1.e-40 p-value threshold) .

There is a marked difference in signal intensity and quality based on the C-content of the probe
sequence and CpG content. On the one hand, this observation can help lllumina to achieve leveling
of such an effect within the technological process, on the other hand, it will allow scientists to provide
more qualitative comparisons on different regions of DNA, for example separating Islands and the
Open Sea CpGs. Excluding low-intensity probes or unreliable from the analysis could help increase
the detection of differentially methylated CpGs for different phenotypes and improve both the
accuracy and precision of existing and emerging predictive models on this type of DNAme data.
Beyond the mere exclusion of unreliable probes, new correction or normalization methods may
emerge in the future based on the results of this work that could instead salvage the data generated

from these probes.

Factors contributing to laboratory or methodological bias, such as sample storage and hybridization

procedures, are relatively underexplored. Samples from different studies tend to be of different
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quality, yielding different average intensities depending on the instruments used and the exact
laboratory protocols, which in turn can also affect the reproducibility of B-values on probes with
different intensities and estimated probe reliability. Therefore, accounting for probe reliability and raw
signal intensities during initial quality control may also improve the reproducibility of DNAme studies

across laboratories.

In summary, we developed a new computational method to further refine existing preprocessing
methods for lllumina methylation array data by excluding unreliable probes from downstream
analyses. We implemented our methods to calculate MI and unreliability scores into an R package,
epicMI, which is publicly available on GitHub (17).
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FIGURES LEGENDS

Fig. 1 Variability associated with genetic factors (sex and genetic variants) in the TACT study
(a) Sex chromosome-associated probes demonstrate high variability both within population at visit 1
(SD B, x-axis) and over time (A B, y-axis). (b) Example of  value and intensity of an X-chromosome-
associated probe in males and females. (c) Example of B value and intensity of a Y-chromosome-
associated probe in males and females. (d) Two types of type Il probes SNPs and their impact on
signal intensity: SNPs in position 0 (SNP-11-0) result in false green or red signals, while SNPs in
position 1 (SNP-II-1) result in a loss of signal (for type | probes see Supplementary Fig. 2a). (e) SNPs
in position 0 and 1 both demonstrate high variability in the population at visit 1 (SD B), but SNPs in
position 1 furthermore demonstrate high variability over time (A B; for type | probes Supplementary
Fig. 2b). (f) Example of probe with 0-position SNP (SNP-II-0) shows tri-modal b-values distribution.
(g9) Example of probe with 1-position SNP (SNP-II-1) shows tri-modal intensities distributions.

Fig. 2 Impact of probe intensity on B value reliability in the TACT study (a) Association of probe
variability within participants at visit 1 (SD B) and over time (A B) with mean intensity (MI). Probes with
low MI have high variability over time. Examples of a probe with low MI (b) or high Ml (c). Lines are
connected by points corresponding to the individual in two different visits. B values from the same
individual are closer for a probe with a high Ml than on a probe with a low MI. (d) Reliability map of B
values. (e) Smoothed curve shows the dependence of type Il probe unreliability on mean intensity
(MI). The point highlighted on the graph is the “critical point” marking a sharp change in dependence
decline, which we recommend as a dynamic threshold for determining which probes are deemed
unreliable (for type | probes and other data sets see Supplementary Figures S4, S5, S6). (f)
Dependence of the type Il probe unreliability on M, highlighting probes which are detected using the
p-value method at different threshold stringency (for type | probes and other datasets see
Supplementary Figure S7).

Fig. 3 Type Il probe features impacting signal intensity and reliability. (a) Dependence of mean
signal intensity (MI) on C content of the probe (for type | probes and other data sets see Supplementary
Figure S12). (b) Odds ratio for C enrichment in different DNA regions: Islands, due to their inherently
high CG content, have a strong enrichment of probes with a large C content, which leads to the fact
that on average Mis are higher (c) and Unreliability scores (d) are lower for Islands probes than for
probes in other regions. (e) Dependence of the mean signal intensity (Y-axis) on raw signal intensity
(X-axis) and C content of the probe sequence (color). (f) Reliability scores proposed by Sugden et al.
(14) versus Unreliability scores defined here. (g) Association of Reliability scores proposed by
Sugden et al. (14) with SNPs and MI. (h) Methylation status () and intraclass correlation coefficient

(ICC) for example SNP-associated CpGs and probes yielding low signal intensity of probes.

Fig. 4 Validation of the unreliability method on datasets with technical replicates. Association of
type Il probe variability estimated by the averaged, absolute methylation differences between

repeated samples (AB) with (a) the unreliability score and (b) the mean intensity (Ml) in the TACT
15
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study (n=2x71 longitudinal paired blood samples), the Repeatability set (n=4x4x4 technical replicates
for fresh blood, frozen blood and cervical smear samples) and GSE174422 (n=2x128 technical
replicates for blood samples). For type | probes see Supplementary Fig. S14a, S14b, S15a, S15b. (c)
Distribution of AR for all type Il probes (grey) or those removed by the p-value detection method at
different threshold settings (red, orange, yellow) and the Unreliability method (black) in the different
data sets. (d) Correlation of Ml measured for type Il probes across data sets. (e) Mean red versus
green total signal intensities of the samples in the different data sets. (f) Noise distributions obtained
from the negative control probes in the different datasets.
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