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Abstract 30 

Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based 31 

GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease 32 

susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but 33 

lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1,000 34 

Genomes data as a reference panel for imputing HLA from admixed individuals of African and European 35 

ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, (c) 19 conditions for 36 

the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 37 

0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of 38 

similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using 39 

genetically specific models for imputing admixed populations, which are currently underrepresented 40 

in public datasets, opening the door to HLA imputation for every genetic population. 41 
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Introduction 43 

Genome-wide association studies (GWASs) have now become a strong ally in the understanding of the 44 

underlying mechanisms of diseases susceptibility and outcomes, with historical associations such as 45 

rs2395029 in HIV (Limou and Zagury 2013; Fellay et al. 2007), or the identification of 233 genomic 46 

regions linked to multiple sclerosis susceptibility (International Multiple Sclerosis Genetics Consortium 47 

2019). GWASs have also been performed as first lines of research at the beginning of the SARS-CoV-2 48 

outbreak to evaluate how host genetics can influence COVID-19 outcomes (Pairo-Castineira et al. 2021; 49 

COVID-19 Host Genetics Initiative 2021; Douillard et al. 2021b; Castelli et al. 2022). Starting from the 50 

first GWAS with hundreds of individuals in the 2000s (Klein et al. 2005; Duerr et al. 2006), multiple 51 

initiatives emerged in the last decade seeking to systematically gather clinical and genetic information, 52 

such as the UK Biobank (Bycroft et al. 2018), Japanese BioBank (Hirata et al. 2017), or TOPMed (Taliun 53 

et al. 2021), which count hundreds of thousands of samples. These studies greatly improved the 54 

comprehension of the genetic impact on phenotype variation (Visscher et al. 2017; Tam et al. 2019; 55 

Claussnitzer et al. 2020). Along with the collective organization effort, continuous advances in the 56 

domain of Single Nucleotide Polymorphism (SNP) imputation (Browning et al. 2018), and the 57 

availability of computing power from imputation servers, globally helped the genomics community 58 

(McCarthy et al. 2016). 59 

A bystander effect of these GWASs has been confirming the central role of the Major 60 

Histocompatibility Complex (MHC), especially the HLA genes, in immune-related diseases. The MHC 61 

was discovered in the 1950s (Dausset 1958), and was identified as crucial for transplantation success 62 

(Dausset 1981). Association studies expanded our understanding of the role of MHC since 2.5% of all 63 

significant associations in the GWAS catalog (MacArthur et al. 2017) coincide with the MHC region, 64 

and approximately 20% of all traits are associated with at least one SNP within the MHC (Douillard et 65 

al. 2021b). The associations go from auto-immune diseases such as type 1 diabetes (Concannon et al. 66 

2009) or multiple sclerosis (International Multiple Sclerosis Genetics Consortium 2019), neurological 67 
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disorders such as Parkinson(Nalls et al. 2019), to infectious diseases such as HIV (Limou et al. 2009; 68 

Fellay et al. 2007), Hepatitis B (Hu et al. 2013) and C (Vergara et al. 2019). 69 

In the context of genetic association studies, a parallel effort focused on direct association with HLA 70 

polymorphisms to understand the mechanisms in which HLA molecules impact disease susceptibility 71 

and severity. These studies have identified protective and risk HLA alleles, such as HLA-DRB1*15:01 in 72 

multiple sclerosis (Moutsianas et al. 2015), HLA-DRB1*09:01 with tIgE levels in asthma (Vince et al. 73 

2020b), specific HLA-DQB1 amino acids in hepatitis C virus infection (Valencia et al. 2022), or the HLA-74 

DRB1 valine 11 in Parkinson’s disease (Domenighetti et al. 2022), among many others. The five most 75 

polymorphic HLA genes (HLA-A, HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1) are exceptionally diverse, 76 

with almost 30,000 alleles combined (Robinson et al. 2020). However, most of these alleles seem to 77 

have frequencies <1% (Maiers et al. 2007). Therefore, because of the high number of alleles and their 78 

low frequency, the HLA typing of thousands of individuals is necessary to reach sufficient statistical 79 

power for detecting associations. The cost-efficiency of directly typing HLA for such cohorts is limited. 80 

Thus, following the steps of the SNP association, the HLA community organized multiple typing 81 

initiatives and developed imputation tools (Meyer and Nunes 2017; Douillard et al. 2021a). The 82 

literature on HLA imputation articulates a dual focus on algorithms and reference data. 83 

Regarding algorithms, several HLA imputation tools allow to create reference panels for imputing HLA 84 

alleles from SNP data: HIBAG (Zheng et al. 2014) and SNP2HLA (Jia et al. 2013) are the most common 85 

choices. Pappas et al. evaluated HIBAG to be the most accurate (Pappas et al. 2015). A new generation 86 

of software followed, with improvements to existing algorithms such as HLA*IMP:03 (Motyer et al. 87 

2016) and CookHLA (Cook et al. 2021), or using deep learning with DEEP-HLA (Naito et al. 2021), all of 88 

which will probably gain traction over time. However, regarding reference datasets, the accuracy of 89 

HLA imputation results depends on the reference panel used to predict the target genotypes; if training 90 

and target data are not of the same ancestry, it will provide inaccurate results due to different HLA 91 

alleles and linkage disequilibrium patterns between SNP and HLA in different populations. To 92 
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circumvent this issue, researchers advocated for both: specific reference panels, such as in Japan 93 

(Okada et al. 2015), Finland (Ritari et al. 2020), or SweHLA (Nordin et al. 2020), and large multi-ethnic 94 

reference panels (Degenhardt et al. 2019; Luo et al. 2021). To pursue the different efforts, we created 95 

the SNP-HLA Reference Consortium, or SHLARC (Vince et al. 2020a). Our goal is to coordinate an 96 

international effort to gather HLA data and reference panels, make them available to the scientific 97 

community and improve the methodology of HLA association studies. Generally, HLA imputation is 98 

highly performant for European-origin populations as a large amount of data are available to build 99 

reference panels. Conversely, the challenge is higher when focusing on admixed or underrepresented 100 

populations as fewer data are available. A clear HLA imputation strategy remain to be defined to 101 

improve accuracy in these populations: here, we want to increase our understanding about HLA 102 

imputation performance between larger reference panels or smaller but customized (ancestry-103 

matched) reference panels. Indeed, our hypothesis is that oversampling individuals for the reference 104 

panel with close genetic ancestry to the target individuals would increase accuracy for their specific 105 

HLA alleles. To explore this in our study, we focused on the results of HLA imputation on admixed 106 

populations using a multiethnic reference panel from the 1,000 Genomes Project (1KG), and 107 

investigating dimension reduction as a method to mitigate HLA imputation errors on rare alleles (1000 108 

Genomes Project Consortium et al. 2015; Byrska-Bishop et al. 2022). 109 

  110 
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Results 111 

HLA imputation strategy 112 

HLA imputation accuracy heavily depends on the data used as reference. Our study aims at finding the 113 

preferred HLA imputation combination of reference data selection and imputation method when 114 

dealing with a target population whose ancestry is absent or underrepresented in the available training 115 

data. The 1KG dataset presents a large diversity in populations as described in table S1 (1000 Genomes 116 

Project Consortium et al. 2015; Clarke et al. 2017), which can be grouped in 5 populations: African 117 

(AFR), American (AMR), European (EUR), East Asian (EAS), and South Asian (SAS). We selected these 118 

data as a training dataset to create 395 reference panels to be tested (Figure 1), including: (a) the full 119 

dataset (full1KG, N=2,504), (b) 10 replications from 6 populations (1KG, AFR, AMR, EUR, EAS, and SAS; 120 

N=200 for each), (c) 19 conditions for the custom reference panels (further described in the next 121 

chapter; 200<N<485); each condition replicated 5 times for each HLA gene (HLA-A, HLA-B, HLA-C, HLA-122 

DQB1, and HLA-DRB1). 123 

Figure 1 Selection strategy: description of the dataset selection for training 
and testing. Different subsets of the 1KG dataset are used as reference, 
selected by super-population or from genetic proximity with the CAAPA 
dataset. The HLA genotypes from CAAPA are either imputed from a single 
model or by multiple models specific to subsets of CAAPA. 
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The CAAPA cohort (Consortium on Asthma among African-ancestry Populations in the Americas) is 124 

constituted of 880 individuals with SNPs of the MHC region and HLA genotypes. These individuals are 125 

from admixed African and European ancestry in various proportions (Vince et al. 2020b). Only a small 126 

fraction of these populations ancestries are represented in the 1KG dataset, so we also wanted to 127 

evaluate the impact of admixture in the imputation process and accuracy. Thus, the CAAPA population 128 

was alternatively considered a unique dataset of 880 individuals, or as multiple subsets of it, depending 129 

on the representation with dimension reduction methods. 130 

Data selection for customized HLA imputation 131 

We created models with individuals from 1KG genetically close to the CAAPA target data: the custom 132 

models. We decided to rely on dimension reduction, common in population genetics, to assess 133 

individuals ancestry. The goal is to select 200 individuals from 1KG closest to the target data, regardless 134 

of their designated ancestry. Classically, ancestry is assessed with whole-genome SNPs by Principal 135 

Component Analysis (PCA). However, since we focused our study on HLA, we decided to represent the 136 

populations using only SNPs within the MHC region (29-34Mb from chr6). This representation strategy 137 

separated the African population and a portion of the American population in one part, and the rest 138 

of 1KG on the other (Figure 2A). The usual granularity of PCA on whole-genome genotypes (Figure S1A) 139 

is not obtained and does not allow grouping ancestries. However, we could identify well-separated 140 

A) B) 

Figure 2 PCA (A) and UMAP (B) representation of 1KG and CAAPA dataset with merged genotypes of the MHC region. 
CAAPA is represented in black. Super-populations are colored in five main colors divided into different shades for each 
population (Table S1), including 5 super-populations: African (AFR) in blue, American (AMR) in purple, European (EUR) in 
orange, South Asian (SAS) in green, East Asian (EAS) in red. PCA does not separate well the population when restrained 
to the MHC region, whereas UMAP creates different groups of ancestries. 
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groups with a two-dimension UMAP (Uniform Manifold Approximation and Projection) of the MHC 141 

region (Figure 2B; UMAP on whole-genome genotypes in Figure S1B). 142 

To investigate the effect of dimension reduction on HLA imputation, we tested 3 parameters for 143 

representation: the algorithm (PCA or UMAP), the number of dimensions used (2 or 10), and the 144 

genomic region covered by the genotypes dataset (the whole chromosome 6 or the MHC region, see 145 

also Figures S1). The different conditions are named after the combination of these parameters. For 146 

instance, a selection of the training data based on a UMAP using the distance computed in 10 147 

dimensions on every SNP available on chromosome 6 is named UMAPnonMHC_10D. 148 

We performed a silhouette score analysis to the resulting projection of the CAAPA dataset. We 149 

identified that, in every UMAP condition and with the ten-dimensions PCA in the MHC region, we could 150 

cluster CAAPA in more than one group. In these cases, we decided to create one model per group. We 151 

computed the average coordinates of the CAAPA individuals, then selected the 200 individuals from 152 

1KG closest to this point (Figure 3). To avoid redundant models, we checked the overlap of selected 153 

individuals between the conditions. Surprisingly, they all yielded a unique list of 1KG individuals, with 154 

low overlap between conditions (Figure S2). For the conditions where the CAAPA dataset was 155 

separated into different subsets, we imputed the individuals separately, thus relying on multiple 156 

models, but merged the results into one table. For example, with the two-dimension UMAP 157 

representation (genotypes from the MHC region), we computed three different models of 200 1KG 158 

individuals (Figure 3). We then imputed three CAAPA groups independently (357, 344, and 179 159 

individuals for a total of 880) and combined results into a unique table of imputation for the full 160 

dataset. 161 
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CAAPA HLA imputation comparison between usual and custom reference panels from 1KG data 162 

We have compared the different conditions by averaging the F1-score of each allele. As explained by 163 

Cook et al. (Cook et al. 2021), the F1-score has an advantage over other accuracy metrics for 164 

representing the rare alleles as it is the mean of two metrics, taking into account both the potential 165 

under- and over-prediction of an allele. As expected, the full1KG model (N=2,504) displayed the highest 166 

F1-score for all HLA genes, ranging from 0.64 for HLA-DRB1 to 0.87 for HLA-C (Figure 4). For HLA-B, 167 

full1KG has a score of 0.66. However, still for HLA-B, when considering the smaller models, we found 168 

that the 1KG models (F1-score of 0.42) and the populations with close ancestry to CAAPA (AFR: 0.37, 169 

AMR: 0.42) had nominally lower F1-score than some custom models (PCAnonMHC_10D: 0.52, 170 

UMAPnonMHC_10D: 0.53). This trend was also observed for HLA-A and HLA-DRB1, while HLA-C and 171 

HLA-DQB1 show a higher mean F1-score for the small 1KG models. F1-scores are not to be interpreted 172 

as regular accuracies. Indeed, when the same methodology is applied to compute the average 173 

Figure 3 Creation of custom 1KG models for CAAPA imputation. 1) Dimension reduction allows the 
separation of individuals according to ancestry, using UMAP as an example. CAAPA is represented in 
black. Super-populations from 1KG are colored in five main colors: African (AFR) in blue, American 
(AMR) in purple, European (EUR) in orange, South Asian (SAS) in green, East Asian (EAS) in red. It is also 
possible to apply dimension reduction to one dataset and project another onto it. 2) Clustering of the 
target dataset: here CAAPA. The silhouette score allows to evaluate the preferred number of clusters, 
then k-means allows for subsetting. 3) Modeling. The barycenter of each cluster subset is computed, 
then 1KG individuals closest to this coordinate are selected (in light blue), allowing to create a custom 
model. Created with biorender.com 
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accuracies of each allele, these accuracies obtained more than 98% (represented as error rates in 174 

Figure S3). Additionally, the individual and haplotype accuracies, which corresponds to the proportion 175 

of correct genotypes (individuals can be counted as 0 or 1; incorrect vs. correct imputation) and the 176 

proportion of correct allele (individuals can be counted as 0, 0.5, or 1; incorrect vs. 1 correct allele vs. 177 

2 correct alleles imputation), respectively, also show values above 80% (Figure S4). 178 
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 179 

Figure 4 Average F1-score of 
HLA allele predictions for HLA-A, 
HLA-B, HLA-C, HLA-DQB1, and 
HLA-DRB1 based on imputation 
of the CAAPA dataset, with 
different training models from 
the 1000 Genomes dataset. We 
have removed alleles that are 
not represented in the training 
datasets. Nomenclature of the 
models can be found in table S2. 
Full1KG, N=2,504. Small 1KG 
models (1KG, AFR, AMR, EUR, 
EAS, SAS), N=200. Custom 
models, 200<N<485. 
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To investigate the impact of custom models on imputation and why they seemed to perform better 180 

for highly polymorphic genes, we stratified the mean F1-score metric by HLA allele frequency (Figure 181 

5). The full1KG model (N=2,504) yielded a higher F1-score through all allelelic frequencies. Custom 182 

models performed equally or marginally better for the rarest alleles (frequency <= 0.1%) and the most 183 

Figure 5 Mean F1-score of HLA alleles imputation, stratified by groups of frequency, for the full 1KG model, super-
population models, and a selection of custom models. The custom models PCAMHC_10D and UMAPnonMHC_10D 
are displayed as they are the most accurate. #: HLA-C does not have the 10-20% frequency category. Therefore, 
unlike other genes, the last two categories correspond to 5-10% and >20%. 

# 
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common alleles (frequency >10%). Still, they scored higher for every other category than population 184 

models. For HLA-B, UMAPnonMHC_10D (N=485) presented an F1-score of 0.30, 0.70, 0.85, and 0.91 185 

for the categories from 0.1 to 10% frequency, whereas the multi-ethnic model (1KG, N=200) showed 186 

scores of 0.18, 0.45, 0.78, and 0.91. Notably, the reference panel based on the African population 187 

performed worse for HLA-DQB1. It can be explained by the allele HLA-DQB1*06:01, which was 188 

represented only once and had an F1-score of 0.1. 189 

The results showed that creating custom reference panels based on a genotypic distance between 190 

individuals can improve the outcome compared to multi-ethnic or declared ancestry panels. However, 191 

larger multi-ethnic reference panels are always more robust. We went further and looked directly at 192 

the imputation of HLA alleles individually. 193 

When we analyzed results allele by allele, taking HLA-A (Figure 6) as an example, we observed that in 194 

most cases, custom models performed just as well, or a few points under the full dataset models (e.g. 195 

HLA-A*01:01, HLA-A*23:01). Several HLA alleles were better predicted with the custom models 196 

compared to the multi-ethnic (1KG) and population models (e.g. HLA-A*01:02, HLA-A*80:01), 197 

highlighting the importance of creating specific reference panels. We found cases where the full1KG 198 

model (N=2,504) or population models (N=200) were the only ones to predict the allele (e.g. HLA-199 

A*02:06, HLA-A*03:02). However, we also found cases where custom models were the only ones to 200 

impute correctly the allele (e.g. HLA-A*02:04). Zheng et al. (Zheng et al. 2014) showed that at least 10 201 

copies of an allele were needed in a model to be able to impute them. Nine HLA-A alleles were present 202 

in the training and target data but were not imputed by any of the models (e.g. HLA-A*02:11, HLA-203 

A*24:03, HLA-A*26:08). Often, the allele was present only in few individuals of the target data, causing 204 

the miscalled allele to weigh a lot in the score. We focused on HLA-A for visualization purposes, but 205 

the results applied to HLA-B, HLA-C, and HLA-DRB1 (Figure S5). Interestingly for HLA-DQB1, the best 206 

custom models were never the best predictors. For most HLA-DQB1 alleles, the best training dataset 207 

was the full1KG dataset. For HLA-DQB1*03:01, however, the AMR and EUR super-populations yielded 208 
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better results. The different examples presented here show how a custom reference panel could help 209 

in the imputation of certain HLA alleles. However, since bigger models produce better imputation 210 

results overall, we would need to know when to select the results from the custom reference panel. 211 

HLA imputation with HIBAG yields post-probabilities for each genotype. We tried to harness the few 212 

cases where custom models performed better (in terms of post-probabilities) to obtain hybrid 213 

imputation between the full models and the custom model. We chose UMAPnonMHC_10D as it 214 

performed the best on multiple HLA genes. Unfortunately, the small number of samples in the custom 215 

models led to lower post-probabilities than the full model. In the few cases where UMAPnonMHC_10D 216 

yielded better post-probabilities, the imputed genotype was not always correct, whereas the less likely 217 

genotype imputed by the other model was correct. In a real situation where the HLA alleles of the 218 

target data would not be known, there would be no way to choose between the imputed genotype of 219 

the two models (Figure S6). 220 

221 
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  222 

Figure 6 Mean F1-score of each HLA-A alleles (N=42) for the full 1KG training dataset, the African, 
American, European super-populations datasets, and the most accurate custom reference panels 
PCAMHC_10D and UMAPnonMHC_10D. Alleles are ordered by decreasing frequency in the 1KG 
dataset. Those absent from the training dataset have been removed to compute the means. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.04.12.536582doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536582
http://creativecommons.org/licenses/by/4.0/


 16 

Replication with admixed Brazilian individuals from SABE 223 

We replicated our methodology on another cohort of admixed individuals, the Longitudinal Health, 224 

Well-Being, and Aging cohort (SABE - Saúde, Bem-estar e Envelhecimento) from Brazil, to validate the 225 

impact of the models composition on HLA imputation (Figure 7). SABE is an independent dataset of 226 

1,322 individuals from Brazil, mostly with European and African admixed ancestry (Naslavsky et al. 227 

2022). To validate our conclusions, we used the same models as with the CAAPA dataset; therefore, 228 

between 11.6% and 45.1% of the model SNPs were missing in the target data. Though it probably 229 

reduced the imputation score overall, the missing SNPs were homogeneous across conditions for each 230 

gene, with averages of 30,0% for HLA-A, 14,3% for HLA-B, 13,9% for HLA-C, 39,4% for HLA-DQB1, and 231 

Figure 7 Mean F1-score of SABE’s imputed HLA-A, HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1 genotypes, using the 
full 1KG model, compared to super-populations from 1KG or individual custom models selected by dimension 
reduction. Alleles absent from the training datasets were removed to obtain these values. 
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39,6% for HLA-DRB1. We also limited our study to the PCAMHC_10D and UMAPnonMHC_10D custom 232 

models, as these two models predicted HLA-A, HLA-C, HLA-DQB1, and HLA-DRB1 better, out of all the 233 

custom models in the CAAPA dataset. 234 

As with CAAPA, the custom models had nominally higher F1-score than the 1KG model, but only for 235 

the HLA-B (0.44, 0.50 for PCA and UMAP vs. 0.42 for 1KG) and HLA-DRB1 (0.56 for UMAP vs. 0.48 for 236 

1KG). Overall, the validation with the SABE population showed the same patterns as the CAAPA 237 

population, with a global preference for the full1KG model and multiple cases where the custom 238 

reference panels were to be preferred but presented low post-probabilities genotypes.  239 
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Discussion 240 

The HLA and immunogenetic community, along with the SHLARC (Vince et al. 2020a), carries a broad 241 

dynamic to provide scientists with reliable tools and reference panels for HLA imputation, thus 242 

increasing the power of HLA association studies to that of existing GWASs. We believe our results 243 

contribute to this effort. Our work focused on improving existing methods of HLA imputation by finely 244 

accounting for ancestry in the choice of the training model. Our underlying hypothesis was that 245 

oversampling individuals to create reference panels with close genetic ancestry compared to the target 246 

individuals would increase HLA imputation accuracy for rare HLA alleles. In this context, we chose to 247 

evaluate the imputation of CAAPA, an admixed African-American cohort, using reference panels 248 

composed of different combinations of 1,000 Genomes Project individuals: randomly selected from a 249 

population or selected for their estimated ancestry by dimension reduction. We showed that, 250 

ultimately, the number of individuals was the crucial point of HLA imputation. The reference panel 251 

composed of 2,504 individuals from 1KG systematically had a higher F1-score than other smaller 252 

models. Using fewer individuals for training by selecting individuals close to the ancestry of the target 253 

population was a good strategy and resulted in slightly better HLA imputation F1-scores, compared to 254 

multi-ethnic reference panels. The improvement did not concern the rarest or most common alleles, 255 

which are respectively badly and well imputed by all those models. At the allele level, we expected the 256 

full model to impute HLA alleles other models would not; we also saw the opposite with custom 257 

reference panels capturing a part of the information left out in the full model. Unfortunately, we could 258 

not conclude on its applicability since the custom reference panels had fewer individuals resulting in 259 

lower post-probabilities that rendered a hybrid imputation impossible. Research on SNP to SNP 260 

imputation also encounters the problem of lack of diversity for the imputation of rarer alleles, and are 261 

working with specific reference panels to enhance imputation accuracy (Kals et al. 2019; Herzig et al. 262 

2022). 263 

Interestingly, we were also able to use UMAP for genomic ancestry representation, as can also be seen 264 

in recent research (Diaz-Papkovich et al. 2021; Sakaue et al. 2020; Dai et al. 2020). It presented a good 265 
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separation of ancestry groups in two dimensions when only using the MHC SNPs, concordant with the 266 

frequency difference of HLA alleles between populations (Maróstica et al. 2022). In contrast, PCA 267 

would fail to separate them in only two dimensions, limiting the possibility to visualize. PCA uses SNPs 268 

to explain most of the variance. Conversely, UMAP tries to preserve the topography of the higher 269 

dimensions in its reduction, taking into account every SNP available for distance. Besides, we observed 270 

a distance between individuals sometimes higher inside a labeled 1KG population than between 271 

populations, as described in Maróstica et al. (Lewontin 1972; Maróstica et al. 2022). This 272 

representation of this genomic diversity inside the MHC directly impacts how we should construct 273 

reference panels in the future and highlights the importance of gathering more data from different 274 

ancestry backgrounds. 275 

Our work showed the potential interest of population-specific reference panels, as multiple studies 276 

have demonstrated (Okada et al. 2015; Ritari et al. 2020; Nordin et al. 2020; Luo et al. 2021; Mimori et 277 

al. 2019; Zhou et al. 2016; Nunes et al. 2016; Huang et al. 2020). However, we strayed further from the 278 

geographic definition of the population. We tried to find a local definition of ancestry to select training 279 

datasets. While doing so, we also omitted potential sides to the problem and created limits to our 280 

method. One important difference to HLA imputation compared to typing, inherent to the method, is 281 

the impossibility of predicting de novo alleles and the difficulty of imputing rare alleles. This issue is 282 

intrinsic to all training machine learning methods, and it is especially true for HLA, where each gene 283 

can have thousands of alleles. In HIBAG, for instance, an allele should be present at least 10 times in 284 

the training dataset to be predicted (Zheng et al. 2014). This study showed that this limit can be 285 

overcome to a certain extent but still hinders HLA imputation accuracy overall. Additionally, the choice 286 

to limit the number of randomly selected individuals was directly linked to the maximum of samples 287 

in the smallest population (nAMR=347). However, it has led to low imputation scores. Even though we 288 

performed replications, the difference between population models and the full dataset, or the custom 289 

models, may greatly vary if we increase this limit with another multi-ethnic dataset. It is one potential 290 

improvement to this work, which may validate or not our findings. 291 
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We chose to represent the HLA imputation with the F1-score, as seen in Cook et al. (Cook et al. 2021). 292 

This choice is convenient for the analysis of HLA, in which we encounter low and unbalanced 293 

frequencies between the different alleles. We set the F1-score at 0 when a specific allele was not 294 

imputed at all (whereas F1-score should be null) to represent all alleles in common between the two 295 

datasets and weigh this absence of imputation negatively. It has increased the confidence interval of 296 

each averaged F1-score and limited the possibility to find statistical differences between them. It is 297 

important to note that the F1-score gives a harsher view on HLA imputation because rare alleles have 298 

low scores, however, HLA imputation performs very well for common alleles (Figure S3) (Meyer and 299 

Nunes 2017). 300 

Besides methodology, HLA imputation gains much accuracy from the number of samples and the 301 

diversity in the reference panels. This is why initiatives looking into expanding the HLA data and 302 

creating larger reference panels, such as Degenhardt et al., are essential to the field (Degenhardt et al. 303 

2019; Luo et al. 2021; Abi-Rached et al. 2018). With the SHLARC (Vince et al. 2020a), we advocate for 304 

the coordination of such efforts to provide multi-ethnic panels of sufficient size, and help researchers 305 

do HLA imputation to investigate HLA risk and protection alleles, focusing on the coverage of the globe 306 

for data gathering. The evolution of imputation tools will also consequently improve HLA imputation. 307 

HLA-IMP*03 (Motyer et al. 2016) and CookHLA (Cook et al. 2021) showed improved results over the 308 

algorithms they are created upon, and DeepHLA (Naito et al. 2021) also showed high accuracy, with a 309 

specific focus on rare HLA alleles. Eventually, these efforts will reach a limit, and we think the main 310 

focus of research should be gathering data worldwide.  311 

Our results demonstrated the interest of using genetically specific models for imputing admixed 312 

populations which are currently underrepresented, opening the door to HLA imputation for every 313 

genetic population, while also exemplifying some limitation. The SNP-HLA Reference Consortium 314 

(SHLARC) wants to contribute to the HLA association analysis community by providing a platform for 315 

HLA imputation with exhaustive and diverse reference panels. We hope this will help association 316 
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studies to rapidly increase their statistical power and become a natural extension of genome-wide 317 

association studies pointing towards HLA association. 318 

319 
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Methods 320 

Data description and processing 321 

SNPs data from the 1KG, CAAPA, and SABE cohorts were obtained from whole-genome sequencing. 322 

The 1KG dataset is one of the most diverse public dataset with 2,504 individuals from 26 populations 323 

(1000 Genomes Project Consortium et al. 2015; Clarke et al. 2017). These populations are grouped in 324 

5 populations, as described in table S1: African (AFR), American (AMR), European (EUR), East Asian 325 

(EAS), and South Asian (SAS). HLA genotyping for the HLA-A, HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1 326 

genes was published and made accessible using HLA calling algorithms for whole-genome sequencing 327 

data (Abi-Rached et al. 2018). Moreover, the SNP data has been updated with a new whole-genome 328 

sequencing of 30X coverage from the New York Genome Center (Byrska-Bishop et al. 2022). The CAAPA 329 

cohort (Consortium on Asthma among African-ancestry Populations in the Americas) was created to 330 

study asthma in African-ancestry populations. The aim of this study was to catalog genetic diversity in 331 

these populations, especially the African Diaspora in the Americas. From this, we had access to 880 332 

individuals with whole-genome sequencing data of the MHC region and HLA genotypes (Vince et al. 333 

2020b). The HLA alleles were called with the Omixon software (Budapest, Hungary) from whole-334 

genome sequencing data (Vince et al. 2020b). The SABE (Saúde, Bem-estar e Envelhecimento) data 335 

come from the longitudinal, census-based follow-up, Health, Well-Being, and Aging cohort of elderly 336 

people from São Paulo, Brazil. SABE is an independent dataset of 1,322 admixed individuals from Brazil, 337 

mostly with European and African admixed ancestry: details can be found in the whole-genome 338 

sequencing flagship publication (Naslavsky et al. 2022). HLA genotypes for SABE cohort were obtained 339 

after read alignment with hla-mapper 4.1. This application was designed to optimize the mapping of 340 

HLA sequences produced by massively parallel sequencing procedures (Castelli et al. 2018); the 341 

pipeline is available at https://github.com/erickcastelli/HLA_genotyping/tree/main/version_2. 342 

SNPs data were handled with PLINK v1.90b6.21 (Chang et al. 2015) and went through the same quality 343 

control step: the removal of A/T and G/C ambiguous SNPs, and SNPs with >2% missing genotypes and 344 
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<1% minor allele frequency. HLA data comprises two-field alleles for HLA-A, HLA-B, HLA-C, HLA-DQB1, 345 

and HLA-DRB1, stored in a CSV file. HLA imputation models were computed on R 3.5.3 (R Core Team 346 

2022) with HIBAG v1.19.3 (Zheng et al. 2014) and its complementary package HIBAG.gpu v0.9.1. 347 

Training data were subsetted with PLINK to contain only the SNPs present in the target data for CAAPA. 348 

We limited the number of individuals within each reference panel to 200 to be able to compare the 349 

specific reference panels to the population reference panels. Indeed, this number is lower than the 350 

smallest population, allowing to resample the population and repeat the experiment. 351 

HLA imputation metrics 352 

We have evaluated imputation accuracy using the F1-score. The F1-score is a harmonic mean of 353 

sensitivity (for a specific allele, # of correctly predicted allele/# of said alleles in the target dataset) and 354 

the positive predictive value (for a specific allele, # of correctly predicted allele/# of predictions of said 355 

allele). This score has the property to give important weight to the coverage of a specific allele 356 

prediction. For instance, if a rare allele is present once in a dataset of 100 alleles and not predicted by 357 

the model, you would have a 99% accuracy but a F1-score of 0. 358 

HLA imputation models are limited by the pool of HLA alleles in the training dataset and the SNPs 359 

available, contrary to HLA-typing software based on read alignment, which relies on the complete 360 

database of known HLA alleles and the assessment of all gene regions. Therefore, we chose to average 361 

the results of all alleles present in the training and target datasets. Additionally, if one of these alleles 362 

is not predicted by the model, the positive predictive value, by definition, cannot be computed; in this 363 

case, the F1-score is also null. Since we wanted to focus our analysis on rare alleles, we decided to set 364 

the F1 scores of such alleles to 0, to visualize the impact of HLA alleles that are in the training dataset 365 

but do not manage to impute the ones in the target data. 366 

Dimension reduction 367 

Principal Component Analysis (PCA) is routinely used in population genomics and association studies 368 

to study population ancestry. It relies on SNPs which are attributed to different contributions, 369 
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maximizing the variance in their genotypes. It allows separating populations along multiple orthogonal 370 

axes with different contributions for each SNP. Uniform Manifold Approximation Projection (UMAP) 371 

and t-SNE are central in single-cell transcriptomics analyses (McInnes et al. 2018; Becht et al. 2018). 372 

Recently, It has also appeared in population genomics publications (Diaz-Papkovich et al. 2021; Sakaue 373 

et al. 2020). UMAP is based on simplicial topology to identify sets of neighbors for each individual and 374 

try to preserve them while transforming coordinates into new ones with less dimensions. 375 

We performed dimension reduction after merging 1KG and CAAPA data. We ran PCA with PLINK, and 376 

UMAP on the BiRD cluster from Nantes University, using the umap R package. This package does not 377 

handle missing data; therefore, we applied the PLINK geno filter with a 0 threshold beforehand to 378 

remove any SNP with missing data. We followed the same process with SABE but merged the dataset 379 

with both 1KG and CAAPA. 380 

We applied a silhouette score on the coordinates of the CAAPA individuals to identify the preferred 381 

number of clusters. We then performed k-means with the number of clusters that had the highest 382 

silhouette score. If the maximum score was inferior to 0.4, we chose not to perform clustering because 383 

simulations showed different groups would overlap greatly. 384 

  385 
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Data access 386 

1,000 Genomes SNP genotypes were retrieved from the International Genome Sample Resource (ISGR) 387 

and can be accessed through (https://www.internationalgenome.org/data-portal/data-388 

collection/30x-grch38). 1,000 Genomes HLA genotypes of 2,693 individuals were recovered from Abi-389 

Rached et al. (2018) at https://doi.org/10.1371/journal.pone.0206512.s010. 390 

CAAPA SNPs were retrieved from the WGS data deposited in dbGAP with the accession code 391 

phs001123.v2.p1, described in Mathias, R. A. et al. (2016). CAAPA HLA genotypes were obtained with 392 

the Omixon software as described in https://doi.org/10.1016/j.jaci.2020.01.011. 393 

For SABE, individual-level sequence datasets (BAM files) are available at the European Genome-394 

phenome Archive (EGA), under EGA Study accession number EGAS00001005052. Further information 395 

about EGA can be found on https://ega-archive.org. 396 
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