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Abstract

Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based
GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease
susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but
lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1,000
Genomes data as a reference panel for imputing HLA from admixed individuals of African and European
ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, (c) 19 conditions for
the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of
0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of
similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using
genetically specific models for imputing admixed populations, which are currently underrepresented

in public datasets, opening the door to HLA imputation for every genetic population.
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Introduction

Genome-wide association studies (GWASs) have now become a strong ally in the understanding of the
underlying mechanisms of diseases susceptibility and outcomes, with historical associations such as
rs2395029 in HIV (Limou and Zagury 2013; Fellay et al. 2007), or the identification of 233 genomic
regions linked to multiple sclerosis susceptibility (International Multiple Sclerosis Genetics Consortium
2019). GWASs have also been performed as first lines of research at the beginning of the SARS-CoV-2
outbreak to evaluate how host genetics can influence COVID-19 outcomes (Pairo-Castineira et al. 2021;
COVID-19 Host Genetics Initiative 2021; Douillard et al. 2021b; Castelli et al. 2022). Starting from the
first GWAS with hundreds of individuals in the 2000s (Klein et al. 2005; Duerr et al. 2006), multiple
initiatives emerged in the last decade seeking to systematically gather clinical and genetic information,
such as the UK Biobank (Bycroft et al. 2018), Japanese BioBank (Hirata et al. 2017), or TOPMed (Taliun
et al. 2021), which count hundreds of thousands of samples. These studies greatly improved the
comprehension of the genetic impact on phenotype variation (Visscher et al. 2017; Tam et al. 2019;
Claussnitzer et al. 2020). Along with the collective organization effort, continuous advances in the
domain of Single Nucleotide Polymorphism (SNP) imputation (Browning et al. 2018), and the
availability of computing power from imputation servers, globally helped the genomics community

(McCarthy et al. 2016).

A bystander effect of these GWASs has been confirming the central role of the Major
Histocompatibility Complex (MHC), especially the HLA genes, in immune-related diseases. The MHC
was discovered in the 1950s (Dausset 1958), and was identified as crucial for transplantation success
(Dausset 1981). Association studies expanded our understanding of the role of MHC since 2.5% of all
significant associations in the GWAS catalog (MacArthur et al. 2017) coincide with the MHC region,
and approximately 20% of all traits are associated with at least one SNP within the MHC (Douillard et
al. 2021b). The associations go from auto-immune diseases such as type 1 diabetes (Concannon et al.

2009) or multiple sclerosis (International Multiple Sclerosis Genetics Consortium 2019), neurological
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disorders such as Parkinson(Nalls et al. 2019), to infectious diseases such as HIV (Limou et al. 2009;

Fellay et al. 2007), Hepatitis B (Hu et al. 2013) and C (Vergara et al. 2019).

In the context of genetic association studies, a parallel effort focused on direct association with HLA
polymorphisms to understand the mechanisms in which HLA molecules impact disease susceptibility
and severity. These studies have identified protective and risk HLA alleles, such as HLA-DRB1*15:01 in
multiple sclerosis (Moutsianas et al. 2015), HLA-DRB1*09:01 with tIgE levels in asthma (Vince et al.
2020b), specific HLA-DQB1 amino acids in hepatitis C virus infection (Valencia et al. 2022), or the HLA-
DRB1 valine 11 in Parkinson’s disease (Domenighetti et al. 2022), among many others. The five most
polymorphic HLA genes (HLA-A, HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1) are exceptionally diverse,
with almost 30,000 alleles combined (Robinson et al. 2020). However, most of these alleles seem to
have frequencies <1% (Maiers et al. 2007). Therefore, because of the high number of alleles and their
low frequency, the HLA typing of thousands of individuals is necessary to reach sufficient statistical
power for detecting associations. The cost-efficiency of directly typing HLA for such cohorts is limited.
Thus, following the steps of the SNP association, the HLA community organized multiple typing
initiatives and developed imputation tools (Meyer and Nunes 2017; Douillard et al. 2021a). The

literature on HLA imputation articulates a dual focus on algorithms and reference data.

Regarding algorithms, several HLA imputation tools allow to create reference panels for imputing HLA
alleles from SNP data: HIBAG (Zheng et al. 2014) and SNP2HLA (Jia et al. 2013) are the most common
choices. Pappas et al. evaluated HIBAG to be the most accurate (Pappas et al. 2015). A new generation
of software followed, with improvements to existing algorithms such as HLA*IMP:03 (Motyer et al.
2016) and CookHLA (Cook et al. 2021), or using deep learning with DEEP-HLA (Naito et al. 2021), all of
which will probably gain traction over time. However, regarding reference datasets, the accuracy of
HLA imputation results depends on the reference panel used to predict the target genotypes; if training
and target data are not of the same ancestry, it will provide inaccurate results due to different HLA

alleles and linkage disequilibrium patterns between SNP and HLA in different populations. To
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93 circumvent this issue, researchers advocated for both: specific reference panels, such as in Japan
94  (Okada et al. 2015), Finland (Ritari et al. 2020), or SweHLA (Nordin et al. 2020), and large multi-ethnic
95 reference panels (Degenhardt et al. 2019; Luo et al. 2021). To pursue the different efforts, we created
96  the SNP-HLA Reference Consortium, or SHLARC (Vince et al. 2020a). Our goal is to coordinate an
97 international effort to gather HLA data and reference panels, make them available to the scientific
98 community and improve the methodology of HLA association studies. Generally, HLA imputation is
99 highly performant for European-origin populations as a large amount of data are available to build
100 reference panels. Conversely, the challenge is higher when focusing on admixed or underrepresented
101 populations as fewer data are available. A clear HLA imputation strategy remain to be defined to
102 improve accuracy in these populations: here, we want to increase our understanding about HLA
103 imputation performance between larger reference panels or smaller but customized (ancestry-
104 matched) reference panels. Indeed, our hypothesis is that oversampling individuals for the reference
105 panel with close genetic ancestry to the target individuals would increase accuracy for their specific
106  HLA alleles. To explore this in our study, we focused on the results of HLA imputation on admixed
107 populations using a multiethnic reference panel from the 1,000 Genomes Project (1KG), and
108 investigating dimension reduction as a method to mitigate HLA imputation errors on rare alleles (1000

109  Genomes Project Consortium et al. 2015; Byrska-Bishop et al. 2022).

110
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111  Results

112 HLA imputation strategy

113 HLA imputation accuracy heavily depends on the data used as reference. Our study aims at finding the
114  preferred HLA imputation combination of reference data selection and imputation method when
115 dealing with a target population whose ancestry is absent or underrepresented in the available training
116  data. The 1KG dataset presents a large diversity in populations as described in table S1 (1000 Genomes
117 Project Consortium et al. 2015; Clarke et al. 2017), which can be grouped in 5 populations: African
118  (AFR), American (AMR), European (EUR), East Asian (EAS), and South Asian (SAS). We selected these
119  data as a training dataset to create 395 reference panels to be tested (Figure 1), including: (a) the full
120  dataset (fulllKG, N=2,504), (b) 10 replications from 6 populations (1KG, AFR, AMR, EUR, EAS, and SAS;
121  N=200 for each), (c) 19 conditions for the custom reference panels (further described in the next

122 chapter; 200<N<485); each condition replicated 5 times for each HLA gene (HLA-A, HLA-B, HLA-C, HLA-

Training data Target data

ncustom . . .
200-485 ( Closest individuals )

1,000 Genomes Project E CAAPA
2o ( Full dataset J
[ Random individuals ] ( Full dataset ]
from the full dataset '
H Nyl
Npop Random individuals ' 880
200 from a superpopulation ;
: [ Divided ]
AFR ) AMR ) ( EAs ) EUR )( sas ) ¢ datasets
E N+ ...+ Ny
' 880

Figure 1 Selection strategy: description of the dataset selection for training
and testing. Different subsets of the 1KG dataset are used as reference,
selected by super-population or from genetic proximity with the CAAPA
dataset. The HLA genotypes from CAAPA are either imputed from a single
model or by multiple models specific to subsets of CAAPA.

123  DQB1, and HLA-DRB1).
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124  The CAAPA cohort (Consortium on Asthma among African-ancestry Populations in the Americas) is
125  constituted of 880 individuals with SNPs of the MHC region and HLA genotypes. These individuals are
126  from admixed African and European ancestry in various proportions (Vince et al. 2020b). Only a small
127  fraction of these populations ancestries are represented in the 1KG dataset, so we also wanted to
128  evaluate the impact of admixture in the imputation process and accuracy. Thus, the CAAPA population
129  wasalternatively considered a unique dataset of 880 individuals, or as multiple subsets of it, depending

130  onthe representation with dimension reduction methods.

131 Data selection for customized HLA imputation

132  We created models with individuals from 1KG genetically close to the CAAPA target data: the custom
133 models. We decided to rely on dimension reduction, common in population genetics, to assess
134  individuals ancestry. The goal is to select 200 individuals from 1KG closest to the target data, regardless
135  of their designated ancestry. Classically, ancestry is assessed with whole-genome SNPs by Principal
136  Component Analysis (PCA). However, since we focused our study on HLA, we decided to represent the
137  populations using only SNPs within the MHC region (29-34Mb from chr6). This representation strategy
138  separated the African population and a portion of the American population in one part, and the rest
139  of 1KG on the other (Figure 2A). The usual granularity of PCA on whole-genome genotypes (Figure S1A)

140 is not obtained and does not allow grouping ancestries. However, we could identify well-separated

A) ‘
Population
e CAAPA e GBR
0.050 e YRI ® FIN
o LWK IBS
® GWD GIH
0.025 ® MSL PJL
e ESN BEB
o [aV)
o £ ACB STU
©
0000 *  ASW ITU

o MXL
PUR
CLM
PEL

CHB
JPT
CHS
CDX

~ ~ - 3 e CEU o KHV
Figure 2 PCA (A) and UMAP (B) representation of 1KG and CAAPA dataset with merged genotypes of the MHC region.
CAAPA is represented in black. Super-populations are colored in five main colors divided into different shades for each
population (Table S1), including 5 super-populations: African (AFR) in blue, American (AMR) in purple, European (EUR) in
orange, South Asian (SAS) in green, East Asian (EAS) in red. PCA does not separate well the population when restrained
to the MIHC region, whereas UMAP creates different groups of ancestries.

-0.025
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141 groups with a two-dimension UMAP (Uniform Manifold Approximation and Projection) of the MHC

142 region (Figure 2B; UMAP on whole-genome genotypes in Figure S1B).

143  To investigate the effect of dimension reduction on HLA imputation, we tested 3 parameters for
144  representation: the algorithm (PCA or UMAP), the number of dimensions used (2 or 10), and the
145  genomic region covered by the genotypes dataset (the whole chromosome 6 or the MHC region, see
146  also Figures S1). The different conditions are named after the combination of these parameters. For
147 instance, a selection of the training data based on a UMAP using the distance computed in 10

148  dimensions on every SNP available on chromosome 6 is named UMAPnonMHC_10D.

149 We performed a silhouette score analysis to the resulting projection of the CAAPA dataset. We
150 identified that, in every UMAP condition and with the ten-dimensions PCA in the MHC region, we could
151 cluster CAAPA in more than one group. In these cases, we decided to create one model per group. We
152 computed the average coordinates of the CAAPA individuals, then selected the 200 individuals from
153 1KG closest to this point (Figure 3). To avoid redundant models, we checked the overlap of selected
154 individuals between the conditions. Surprisingly, they all yielded a unique list of 1KG individuals, with
155 low overlap between conditions (Figure S2). For the conditions where the CAAPA dataset was
156  separated into different subsets, we imputed the individuals separately, thus relying on multiple
157 models, but merged the results into one table. For example, with the two-dimension UMAP
158 representation (genotypes from the MHC region), we computed three different models of 200 1KG
159  individuals (Figure 3). We then imputed three CAAPA groups independently (357, 344, and 179
160 individuals for a total of 880) and combined results into a unique table of imputation for the full

161 dataset.
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Dimension Clustering Modeling
reduction
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Selection of close
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<
UMAP 2D outside MHC ‘ = Create

1KG + CAAPA
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Figure 3 Creation of custom 1KG models for CAAPA imputation. 1) Dimension reduction allows the
separation of individuals according to ancestry, using UMAP as an example. CAAPA is represented in
black. Super-populations from 1KG are colored in five main colors: African (AFR) in blue, American
(AMR) in purple, European (EUR) in orange, South Asian (SAS) in green, East Asian (EAS) in red. It is also
possible to apply dimension reduction to one dataset and project another onto it. 2) Clustering of the
target dataset: here CAAPA. The silhouette score allows to evaluate the preferred number of clusters,
then k-means allows for subsetting. 3) Modeling. The barycenter of each cluster subset is computed,
then 1KG individuals closest to this coordinate are selected (in light blue), allowing to create a custom
model. Created with biorender.com

162  CAAPA HLA imputation comparison between usual and custom reference panels from 1KG data
163  We have compared the different conditions by averaging the Fl-score of each allele. As explained by
164  Cook et al. (Cook et al. 2021), the Fl-score has an advantage over other accuracy metrics for
165 representing the rare alleles as it is the mean of two metrics, taking into account both the potential
166 under- and over-prediction of an allele. As expected, the fullLKG model (N=2,504) displayed the highest
167  Fl-score for all HLA genes, ranging from 0.64 for HLA-DRB1 to 0.87 for HLA-C (Figure 4). For HLA-B,
168 full1KG has a score of 0.66. However, still for HLA-B, when considering the smaller models, we found
169  that the 1KG models (F1-score of 0.42) and the populations with close ancestry to CAAPA (AFR: 0.37,
170 AMR: 0.42) had nominally lower Fl-score than some custom models (PCAnonMHC_10D: 0.52,
171 UMAPnonMHC_10D: 0.53). This trend was also observed for HLA-A and HLA-DRB1, while HLA-C and
172 HLA-DQBI1 show a higher mean F1-score for the small 1KG models. F1-scores are not to be interpreted

173 as regular accuracies. Indeed, when the same methodology is applied to compute the average
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174  accuracies of each allele, these accuracies obtained more than 98% (represented as error rates in
175 Figure S3). Additionally, the individual and haplotype accuracies, which corresponds to the proportion
176  of correct genotypes (individuals can be counted as 0 or 1; incorrect vs. correct imputation) and the
177 proportion of correct allele (individuals can be counted as 0, 0.5, or 1; incorrect vs. 1 correct allele vs.

178 2 correct alleles imputation), respectively, also show values above 80% (Figure S4).

10
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180 To investigate the impact of custom models on imputation and why they seemed to perform better
181  for highly polymorphic genes, we stratified the mean F1-score metric by HLA allele frequency (Figure
182  5). The fulllKG model (N=2,504) yielded a higher Fl-score through all allelelic frequencies. Custom

183 models performed equally or marginally better for the rarest alleles (frequency <= 0.1%) and the most
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Figure 5 Mean F1-score of HLA alleles imputation, stratified by groups of frequency, for the full 1IKG model, super-
population models, and a selection of custom models. The custom models PCAMHC 10D and UMAPnonMHC 10D
are displayed as they are the most accurate. #: HLA-C does not have the 10-20% frequency category. Therefore,
unlike other genes, the last two categories correspond to 5-10% and >20%.
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184  common alleles (frequency >10%). Still, they scored higher for every other category than population
185 models. For HLA-B, UMAPnonMHC_10D (N=485) presented an F1-score of 0.30, 0.70, 0.85, and 0.91
186  for the categories from 0.1 to 10% frequency, whereas the multi-ethnic model (1KG, N=200) showed
187 scores of 0.18, 0.45, 0.78, and 0.91. Notably, the reference panel based on the African population
188 performed worse for HLA-DQBI. It can be explained by the allele HLA-DQB1*06:01, which was

189 represented only once and had an F1-score of 0.1.

190 The results showed that creating custom reference panels based on a genotypic distance between
191 individuals can improve the outcome compared to multi-ethnic or declared ancestry panels. However,
192 larger multi-ethnic reference panels are always more robust. We went further and looked directly at

193  the imputation of HLA alleles individually.

194  When we analyzed results allele by allele, taking HLA-A (Figure 6) as an example, we observed that in
195 most cases, custom models performed just as well, or a few points under the full dataset models (e.g.
196  HLA-A*01:01, HLA-A*23:01). Several HLA alleles were better predicted with the custom models
197 compared to the multi-ethnic (1KG) and population models (e.g. HLA-A*01:02, HLA-A*80:01),
198 highlighting the importance of creating specific reference panels. We found cases where the full1KG
199 model (N=2,504) or population models (N=200) were the only ones to predict the allele (e.g. HLA-
200 A*02:06, HLA-A*03:02). However, we also found cases where custom models were the only ones to
201  impute correctly the allele (e.g. HLA-A*02:04). Zheng et al. (Zheng et al. 2014) showed that at least 10
202 copies of an allele were needed in a model to be able to impute them. Nine HLA-A alleles were present
203 in the training and target data but were not imputed by any of the models (e.g. HLA-A*02:11, HLA-
204  A*24:03, HLA-A*26:08). Often, the allele was present only in few individuals of the target data, causing
205  the miscalled allele to weigh a lot in the score. We focused on HLA-A for visualization purposes, but
206  the results applied to HLA-B, HLA-C, and HLA-DRB1 (Figure S5). Interestingly for HLA-DQBI1, the best
207 custom models were never the best predictors. For most HLA-DQBI1 alleles, the best training dataset

208  was the full1KG dataset. For HLA-DQB1*03:01, however, the AMR and EUR super-populations yielded
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209 better results. The different examples presented here show how a custom reference panel could help
210 in the imputation of certain HLA alleles. However, since bigger models produce better imputation

211 results overall, we would need to know when to select the results from the custom reference panel.

212 HLA imputation with HIBAG vyields post-probabilities for each genotype. We tried to harness the few
213 cases where custom models performed better (in terms of post-probabilities) to obtain hybrid
214  imputation between the full models and the custom model. We chose UMAPnonMHC_10D as it
215 performed the best on multiple HLA genes. Unfortunately, the small number of samples in the custom
216 models led to lower post-probabilities than the full model. In the few cases where UMAPnonMHC_10D
217  vyielded better post-probabilities, the imputed genotype was not always correct, whereas the less likely
218  genotype imputed by the other model was correct. In a real situation where the HLA alleles of the
219  target data would not be known, there would be no way to choose between the imputed genotype of

220  the two models (Figure S6).

221
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Figure 6 Mean F1-score of each HLA-A alleles (N=42) for the full 1KG training dataset, the African,
American, European super-populations datasets, and the most accurate custom reference panels
PCAMHC 10D and UMAPnonMHC _10D. Alleles are ordered by decreasing frequency in the 1KG
dataset. Those absent from the training dataset have been removed to compute the means.
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Replication with admixed Brazilian individuals from SABE

We replicated our methodology on another cohort of admixed individuals, the Longitudinal Health,
Well-Being, and Aging cohort (SABE - Saude, Bem-estar e Envelhecimento) from Brazil, to validate the
impact of the models composition on HLA imputation (Figure 7). SABE is an independent dataset of
1,322 individuals from Brazil, mostly with European and African admixed ancestry (Naslavsky et al.
2022). To validate our conclusions, we used the same models as with the CAAPA dataset; therefore,
between 11.6% and 45.1% of the model SNPs were missing in the target data. Though it probably
reduced the imputation score overall, the missing SNPs were homogeneous across conditions for each

gene, with averages of 30,0% for HLA-A, 14,3% for HLA-B, 13,9% for HLA-C, 39,4% for HLA-DQB1, and
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Figure 7 Mean F1-score of SABE’s imputed HLA-A, HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1 genotypes, using the

full 1IKG model, compared to super-populations from 1KG or individual custom models selected by dimension
reduction. Alleles absent from the training datasets were removed to obtain these values.
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39,6% for HLA-DRB1. We also limited our study to the PCAMHC_10D and UMAPnonMHC_10D custom
models, as these two models predicted HLA-A, HLA-C, HLA-DQBI1, and HLA-DRB1 better, out of all the

custom models in the CAAPA dataset.

As with CAAPA, the custom models had nominally higher Fl1-score than the 1KG model, but only for
the HLA-B (0.44, 0.50 for PCA and UMAP vs. 0.42 for 1KG) and HLA-DRB1 (0.56 for UMAP vs. 0.48 for
1KG). Overall, the validation with the SABE population showed the same patterns as the CAAPA
population, with a global preference for the fulllLKG model and multiple cases where the custom

reference panels were to be preferred but presented low post-probabilities genotypes.
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240 Discussion

241  The HLA and immunogenetic community, along with the SHLARC (Vince et al. 2020a), carries a broad
242  dynamic to provide scientists with reliable tools and reference panels for HLA imputation, thus
243 increasing the power of HLA association studies to that of existing GWASs. We believe our results
244  contribute to this effort. Our work focused on improving existing methods of HLA imputation by finely
245 accounting for ancestry in the choice of the training model. Our underlying hypothesis was that
246  oversampling individuals to create reference panels with close genetic ancestry compared to the target
247 individuals would increase HLA imputation accuracy for rare HLA alleles. In this context, we chose to
248 evaluate the imputation of CAAPA, an admixed African-American cohort, using reference panels
249 composed of different combinations of 1,000 Genomes Project individuals: randomly selected from a
250  population or selected for their estimated ancestry by dimension reduction. We showed that,
251 ultimately, the number of individuals was the crucial point of HLA imputation. The reference panel
252 composed of 2,504 individuals from 1KG systematically had a higher F1-score than other smaller
253 models. Using fewer individuals for training by selecting individuals close to the ancestry of the target
254 population was a good strategy and resulted in slightly better HLA imputation F1-scores, compared to
255 multi-ethnic reference panels. The improvement did not concern the rarest or most common alleles,
256  which are respectively badly and well imputed by all those models. At the allele level, we expected the
257  full model to impute HLA alleles other models would not; we also saw the opposite with custom
258  reference panels capturing a part of the information left out in the full model. Unfortunately, we could
259 not conclude on its applicability since the custom reference panels had fewer individuals resulting in
260 lower post-probabilities that rendered a hybrid imputation impossible. Research on SNP to SNP
261 imputation also encounters the problem of lack of diversity for the imputation of rarer alleles, and are
262  working with specific reference panels to enhance imputation accuracy (Kals et al. 2019; Herzig et al.

263 2022).

264 Interestingly, we were also able to use UMAP for genomic ancestry representation, as can also be seen

265 in recent research (Diaz-Papkovich et al. 2021; Sakaue et al. 2020; Dai et al. 2020). It presented a good
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266  separation of ancestry groups in two dimensions when only using the MHC SNPs, concordant with the
267  frequency difference of HLA alleles between populations (Mardstica et al. 2022). In contrast, PCA
268  would fail to separate them in only two dimensions, limiting the possibility to visualize. PCA uses SNPs
269  to explain most of the variance. Conversely, UMAP tries to preserve the topography of the higher
270  dimensions in its reduction, taking into account every SNP available for distance. Besides, we observed
271 a distance between individuals sometimes higher inside a labeled 1KG population than between
272 populations, as described in Mardstica et al. (Lewontin 1972; Mardstica et al. 2022). This
273 representation of this genomic diversity inside the MHC directly impacts how we should construct
274 reference panels in the future and highlights the importance of gathering more data from different

275 ancestry backgrounds.

276  Our work showed the potential interest of population-specific reference panels, as multiple studies
277 have demonstrated (Okada et al. 2015; Ritari et al. 2020; Nordin et al. 2020; Luo et al. 2021; Mimori et
278  al. 2019; Zhou et al. 2016; Nunes et al. 2016; Huang et al. 2020). However, we strayed further from the
279  geographic definition of the population. We tried to find a local definition of ancestry to select training
280  datasets. While doing so, we also omitted potential sides to the problem and created limits to our
281 method. One important difference to HLA imputation compared to typing, inherent to the method, is
282  the impossibility of predicting de novo alleles and the difficulty of imputing rare alleles. This issue is
283 intrinsic to all training machine learning methods, and it is especially true for HLA, where each gene
284 can have thousands of alleles. In HIBAG, for instance, an allele should be present at least 10 times in
285  the training dataset to be predicted (Zheng et al. 2014). This study showed that this limit can be
286  overcome to a certain extent but still hinders HLA imputation accuracy overall. Additionally, the choice
287  to limit the number of randomly selected individuals was directly linked to the maximum of samples
288 in the smallest population (namr=347). However, it has led to low imputation scores. Even though we
289 performed replications, the difference between population models and the full dataset, or the custom
290  models, may greatly vary if we increase this limit with another multi-ethnic dataset. It is one potential

291 improvement to this work, which may validate or not our findings.
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292  We chose to represent the HLA imputation with the F1-score, as seen in Cook et al. (Cook et al. 2021).
293 This choice is convenient for the analysis of HLA, in which we encounter low and unbalanced
294  frequencies between the different alleles. We set the Fl-score at 0 when a specific allele was not
295  imputed at all (whereas F1-score should be null) to represent all alleles in common between the two
296  datasets and weigh this absence of imputation negatively. It has increased the confidence interval of
297 each averaged F1-score and limited the possibility to find statistical differences between them. It is
298 important to note that the F1-score gives a harsher view on HLA imputation because rare alleles have
299 low scores, however, HLA imputation performs very well for common alleles (Figure S3) (Meyer and

300 Nunes 2017).

301 Besides methodology, HLA imputation gains much accuracy from the number of samples and the
302 diversity in the reference panels. This is why initiatives looking into expanding the HLA data and
303 creating larger reference panels, such as Degenhardt et al., are essential to the field (Degenhardt et al.
304  2019; Luo et al. 2021; Abi-Rached et al. 2018). With the SHLARC (Vince et al. 2020a), we advocate for
305 the coordination of such efforts to provide multi-ethnic panels of sufficient size, and help researchers
306 do HLA imputation to investigate HLA risk and protection alleles, focusing on the coverage of the globe
307 for data gathering. The evolution of imputation tools will also consequently improve HLA imputation.
308  HLA-IMP*03 (Motyer et al. 2016) and CookHLA (Cook et al. 2021) showed improved results over the
309 algorithms they are created upon, and DeepHLA (Naito et al. 2021) also showed high accuracy, with a
310  specific focus on rare HLA alleles. Eventually, these efforts will reach a limit, and we think the main

311  focus of research should be gathering data worldwide.

312 Our results demonstrated the interest of using genetically specific models for imputing admixed
313 populations which are currently underrepresented, opening the door to HLA imputation for every
314  genetic population, while also exemplifying some limitation. The SNP-HLA Reference Consortium
315  (SHLARC) wants to contribute to the HLA association analysis community by providing a platform for

316  HLA imputation with exhaustive and diverse reference panels. We hope this will help association
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317 studies to rapidly increase their statistical power and become a natural extension of genome-wide

318 association studies pointing towards HLA association.

319
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320 Methods

321  Data description and processing

322 SNPs data from the 1KG, CAAPA, and SABE cohorts were obtained from whole-genome sequencing.
323  The 1KG dataset is one of the most diverse public dataset with 2,504 individuals from 26 populations
324 (1000 Genomes Project Consortium et al. 2015; Clarke et al. 2017). These populations are grouped in
325 5 populations, as described in table S1: African (AFR), American (AMR), European (EUR), East Asian
326 (EAS), and South Asian (SAS). HLA genotyping for the HLA-A, HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1
327  genes was published and made accessible using HLA calling algorithms for whole-genome sequencing
328  data (Abi-Rached et al. 2018). Moreover, the SNP data has been updated with a new whole-genome
329  sequencing of 30X coverage from the New York Genome Center (Byrska-Bishop et al. 2022). The CAAPA
330 cohort (Consortium on Asthma among African-ancestry Populations in the Americas) was created to
331 study asthma in African-ancestry populations. The aim of this study was to catalog genetic diversity in
332  these populations, especially the African Diaspora in the Americas. From this, we had access to 880
333  individuals with whole-genome sequencing data of the MHC region and HLA genotypes (Vince et al.
334  2020b). The HLA alleles were called with the Omixon software (Budapest, Hungary) from whole-
335 genome sequencing data (Vince et al. 2020b). The SABE (Saude, Bem-estar e Envelhecimento) data
336 come from the longitudinal, census-based follow-up, Health, Well-Being, and Aging cohort of elderly
337 people from S3o Paulo, Brazil. SABE is an independent dataset of 1,322 admixed individuals from Brazil,
338 mostly with European and African admixed ancestry: details can be found in the whole-genome
339 sequencing flagship publication (Naslavsky et al. 2022). HLA genotypes for SABE cohort were obtained
340  after read alignment with hla-mapper 4.1. This application was designed to optimize the mapping of
341 HLA sequences produced by massively parallel sequencing procedures (Castelli et al. 2018); the

342 pipeline is available at https://github.com/erickcastelli/HLA_genotyping/tree/main/version_2.

343  SNPs data were handled with PLINK v1.90b6.21 (Chang et al. 2015) and went through the same quality

344  control step: the removal of A/T and G/C ambiguous SNPs, and SNPs with >2% missing genotypes and
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345 <1% minor allele frequency. HLA data comprises two-field alleles for HLA-A, HLA-B, HLA-C, HLA-DQB1,
346  and HLA-DRBI, stored in a CSV file. HLA imputation models were computed on R 3.5.3 (R Core Team
347  2022) with HIBAG v1.19.3 (Zheng et al. 2014) and its complementary package HIBAG.gpu v0.9.1.

348  Training data were subsetted with PLINK to contain only the SNPs present in the target data for CAAPA.

349  We limited the number of individuals within each reference panel to 200 to be able to compare the
350 specific reference panels to the population reference panels. Indeed, this number is lower than the

351 smallest population, allowing to resample the population and repeat the experiment.

352  HLA imputation metrics

353 We have evaluated imputation accuracy using the Fl-score. The Fl-score is a harmonic mean of
354  sensitivity (for a specific allele, # of correctly predicted allele/# of said alleles in the target dataset) and
355 the positive predictive value (for a specific allele, # of correctly predicted allele/# of predictions of said
356 allele). This score has the property to give important weight to the coverage of a specific allele
357 prediction. For instance, if a rare allele is present once in a dataset of 100 alleles and not predicted by

358 the model, you would have a 99% accuracy but a F1-score of 0.

359 HLA imputation models are limited by the pool of HLA alleles in the training dataset and the SNPs
360 available, contrary to HLA-typing software based on read alignment, which relies on the complete
361 database of known HLA alleles and the assessment of all gene regions. Therefore, we chose to average
362  the results of all alleles present in the training and target datasets. Additionally, if one of these alleles
363 is not predicted by the model, the positive predictive value, by definition, cannot be computed; in this
364 case, the F1-score is also null. Since we wanted to focus our analysis on rare alleles, we decided to set
365 the F1 scores of such alleles to 0, to visualize the impact of HLA alleles that are in the training dataset

366 but do not manage to impute the ones in the target data.

367 Dimension reduction

368 Principal Component Analysis (PCA) is routinely used in population genomics and association studies

369 to study population ancestry. It relies on SNPs which are attributed to different contributions,
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370 maximizing the variance in their genotypes. It allows separating populations along multiple orthogonal
371 axes with different contributions for each SNP. Uniform Manifold Approximation Projection (UMAP)
372 and t-SNE are central in single-cell transcriptomics analyses (Mclnnes et al. 2018; Becht et al. 2018).
373 Recently, It has also appeared in population genomics publications (Diaz-Papkovich et al. 2021; Sakaue
374  etal. 2020). UMAP is based on simplicial topology to identify sets of neighbors for each individual and

375  try to preserve them while transforming coordinates into new ones with less dimensions.

376  We performed dimension reduction after merging 1KG and CAAPA data. We ran PCA with PLINK, and
377 UMAP on the BiRD cluster from Nantes University, using the umap R package. This package does not
378 handle missing data; therefore, we applied the PLINK geno filter with a 0 threshold beforehand to
379 remove any SNP with missing data. We followed the same process with SABE but merged the dataset

380  with both 1KG and CAAPA.

381  We applied a silhouette score on the coordinates of the CAAPA individuals to identify the preferred
382 number of clusters. We then performed k-means with the number of clusters that had the highest
383 silhouette score. If the maximum score was inferior to 0.4, we chose not to perform clustering because

384  simulations showed different groups would overlap greatly.

385
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386 Data access

387 1,000 Genomes SNP genotypes were retrieved from the International Genome Sample Resource (ISGR)

388 and can be accessed through (https://www.internationalgenome.org/data-portal/data-

389  collection/30x-grch38). 1,000 Genomes HLA genotypes of 2,693 individuals were recovered from Abi-

390 Rached et al. (2018) at https://doi.org/10.1371/journal.pone.0206512.s010.

391 CAAPA SNPs were retrieved from the WGS data deposited in dbGAP with the accession code
392 phs001123.v2.p1, described in Mathias, R. A. et al. (2016). CAAPA HLA genotypes were obtained with

393  the Omixon software as described in https://doi.org/10.1016/j.jaci.2020.01.011.

394 For SABE, individual-level sequence datasets (BAM files) are available at the European Genome-
395 phenome Archive (EGA), under EGA Study accession number EGAS00001005052. Further information

396  about EGA can be found on https://ega-archive.org.
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