

1 Assisting and Accelerating NMR Assignment with Restrained 2 Structure Prediction

3 Sirui Liu^{1†}, Haotian Chu², Yuhao Xie¹, Fangming Wu³, Ningxi Ni², Chenghao Wang²,
4 Fangjing Mu¹, Jiachen Wei¹, Jun Zhang¹, Mengyun Chen², Junbin Li², Fan Yu², Hui Fu⁴,
5 Shenlin Wang⁵, Changlin Tian^{3,6}, Zidong Wang^{2†}, Yi Qin Gao^{1,4,7†}

6 1. Changping Laboratory, Beijing 102200, China.
7 2. Huawei Technologies Co., Ltd., Hangzhou 310000, China.
8 3. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.
9 4. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular
10 Engineering, Peking University, Beijing 100871, China.
11 5. State Key Laboratory of Bioreactor Engineering, East China University of Science and
12 Technology (ECUST), Shanghai 200237, China
13 6. Hefei National Laboratory of Physical Sciences at Microscale, School of Life Sciences,
14 University of Science and Technology of China, Hefei 230027, China.
15 7. Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871,
16 China.

17 †To whom correspondence should be addressed.

18 Abstract

19 NMR experiments can detect *in situ* structures and dynamic interactions, but the NMR
20 assignment process requires expertise and is time-consuming, thereby limiting its
21 applicability. Deep learning algorithms have been employed to aid in experimental data
22 analysis. In this work, we developed a RASP model which can enhance structure prediction
23 with restraints. Based on the Evoformer and structure module architecture of AlphaFold, this
24 model can predict structure based on sequence and a flexible number of input restraints.
25 Moreover, it can evaluate the consistency between the predicted structure and the imposed
26 restraints. Based on this model, we constructed an iterative NMR NOESY peak assignment
27 pipeline named FAAST, to accelerate assignment process of NOESY restraints and obtaining
28 high quality structure ensemble. The RASP model and FAAST pipeline not only allow for the
29 leveraging of experimental restraints to improve model prediction, but can also facilitate and
30 expedite experimental data analysis with their integrated capabilities.

31 Introduction

32 NMR is an experimental technique used to determine structures and detect weak
33 interactions *in situ*^{1,2}. However, NMR assignment requires both expertise and time. It might

34 take months even years for NMR assignment. Leveraging machine learning and deep learning
35 technologies, researchers have endeavored to automate the NMR assignment protocol. For
36 example, ARTINA³ provides an integrated pipeline which accepts raw NMR spectra, assigns
37 chemical shifts and NOE peaks, and provides structures simultaneously. It utilizes molecular
38 simulations to construct structures, with a focus on achieving automated and accurate
39 chemical shift assignments. Specifically, the NOESY peak assignment process provides
40 hydrogen restraints and is an essential technique in NMR structure analysis, although the
41 structure construction mostly relies on molecular simulation. Automated algorithms such as
42 CYANA⁴, ARIA^{5,6}, CANDID⁷ have been developed to assist NOE peak assignment, which
43 mostly apply strategies such as molecular dynamics simulation or simulated annealing for
44 structure construction, thus is relatively time consuming. Rosetta suites or pipelines
45 leveraging sparse NMR restraints from NOE, RDC, and PRE data have also be developed for
46 the data-assisted structure construction^{8,9,10}.

47 Recent progress in deep learning provides more efficient and accurate tools to generate
48 protein structure given its sequence. Employing deep learning protein structure prediction
49 models for experimental data analysis has been a problem of interest. In practice, the input
50 data form and distribution of general structure prediction models, such as AlphaFold¹¹, do not
51 necessarily align with the needs of experimental methods. While AlphaFold and
52 AlphaFold-multimer¹² have greatly improved the accuracy of predicting static protein
53 structures, unresolved issues remain, such as generating dynamic structures and predicting
54 restrained structures. Questions remain on how experimental information can facilitate rapid
55 structure prediction and how structure prediction methods can aid in the resolution or
56 acceleration of experimental data analysis. Attempts have been made to provide AlphaFold
57 structures as templates for X-ray replacement¹³ or Cryo-EM density map¹⁴ templates.
58 However, these approaches rely on iterative template use, which includes dense but not
59 necessarily accurate restraints and cannot utilize structural differences to improve predictions.
60 Recently, AlphaLink¹⁵ fine-tuned AlphaFold to accept sparse restraints, improving AlphaFold
61 performance in cross-linking experiments.

62 In this work we propose a model named Restraints Assisted Structure Predictor (RASP)
63 and an iterative NMR NOESY peak assignment pipeline called FAAST(iterative Folding
64 Assisted peak ASSignmenT). The architecture of RASP is derived from AlphaFold Evoformer
65 and structure module, and it accepts abstract or experimental restraints, sparse or dense, to
66 generate structures. This enables RASP to be used in diverse applications, including
67 improving structure predictions for multi-domain proteins and those with few multiple
68 sequence alignments (MSAs). The confidence of RASP can evaluate restraint quality in terms
69 of information efficiency and accuracy. Consequently, by leveraging the model's ability to
70 accept a flexible number of restraints and evaluate them, together with an NMR assignment
71 protocol adapted from ARIA⁶, we developed the FAAST pipeline. Using chemical shift and
72 NOE peak lists as input, FAAST assigns NOE peaks iteratively and generates a structure
73 ensemble based on the subsampled restraints, thus accelerating NMR analysis.

74 Results

75 **RASP takes in restraints directly and helps in structure prediction**

76 To facilitate general experimental information as restraints, we developed the RASP
77 model based on the AlphaFold architecture. The model takes in sequence and a flexible
78 number of distance restraints and returns a structure that largely complies with the restraints.
79 Additionally, it measures the consistency between the restraints and sequences. We consider
80 restraints as a form of edge information and use the edge bias in the Evoformer MSA
81 attention block (defined as MSA bias) and invariant point attention block (IPA, defined as
82 IPA bias) (Fig. 1a, 1b). Moreover, we experimented with the pair representation update in
83 Evoformer (defined as pair bias) and adopted the structure module (defined as structure bias)
84 to ensure that the structure follows the restraints in one update. We evaluated the impact of
85 the four types of bias information and chose MSA and IPA biases as the baseline RASP
86 model setting for simplicity and stability (Supplementary Figure 1). We use only the first two
87 bias forms in the following experiments.

88 We implemented RASP using MindSpore¹⁶ and trained it on 32 * Ascend910 NPUs. We
89 initialized the model with MEGA-Fold¹⁷ weights and fine-tuned it on the PSP dataset¹⁷ with a
90 true structure: distilled structure ratio of 1:3. We sampled pairwise restraints to tolerate
91 distance noise (refer to Methods). The training converged after 15k steps (480k samples in
92 total, Supplementary Figure 2) and demonstrated stable improvement over initial
93 MEGA-Fold.

94 Although the model supports templates in prediction and could improve performance
95 with template used, for fairness and to avoid data leakage, we chose not to utilize templates in
96 this research. We tested the model's performance on the PSP validation dataset¹⁷ previously
97 constructed along with the PSP training set, which contains 490 samples of CAMEO^{18,19,20,21}
98 targets and unique proteins between October 2021 and March 2022. This validation set is
99 strictly after the PDB and sequence deposition time of training set. When restricting the
100 number of restraints to 100, the TM-score^{22,23} which measures topological similarity between
101 structures improved significantly for the structure prediction in the PSP validation dataset
102 (Fig. 1c). Furthermore, the model followed the randomly sampled restraints much better than
103 those predicted by AlphaFold or MEGA-fold, as expected (Fig. 1D, Supplementary Figure 3).
104 Moreover, the violation loss which measures bond length, bond angle, and atomic clash
105 violation for RASP predictions remained low with a median of 0.0012 (Supplementary Figure
106 4), indicating its capability to predict structures following basic physiochemical principles.

107 **RASP helps structure prediction and evaluation in a broad range of restraints numbers**

108 We discovered that the structure accuracy improves steadily as the number of restraints
109 increases, starting from zero (Fig. 2a). However, restraints recall remains relatively constant,
110 implying that the current model can tolerate different numbers of prior information or
111 restraints without adversely affecting the baseline model performance (Fig. 2b). Additionally,
112 the predicted local-distance difference test score (pLDDT score) of the model serves as an
113 indicator of the model's confidence in the restraints. For proteins with varying numbers of
114 restraints, the pLDDT score rises stably though not significantly with an increase in the
115 number of restraints applied. The pLDDT confidence correlates well with the corresponding
116 structure TM-score with an overall correlation of 0.68 (Fig. 2C).

117 Despite the difference in restraint numbers, due to sampling randomness, some restraints
118 might provide repeating information with MSAs (and potentially templates, although
119 templates is not used here for fairness), and in reality the restraints information provided by
120 experiment may not be free of error. The restraint quality therefore could be considered in
121 two aspects: one is how much additional information it provides aside from that provided by
122 MSA and templates, another is how accurate the restraint information is. To examine the
123 ability of the confidence score to distinguish good and bad predictions for the same protein
124 with different additional restraints information, we first examined the confidence-TM-score
125 correlation for proteins with at least one prediction of lower quality (defined as TM-score
126 lower than 0.80). The average correlation score is 0.62 (Fig. 2d). Since we take only MSA
127 and restraints as input in the benchmark, while MSA is kept the same for predictions of the
128 same protein, better structures can therefore be attributed to more effective restraint
129 information. This indicates that the pLDDT score can largely be used to distinguish better
130 structures and better corresponding restraints. Furthermore, when incorrect restraints are
131 intentionally used (restraints with a C β distance greater than 12 Angstrom, as defined), the
132 TM-score decreases significantly along with the increasing incorrect ratio and fixed number
133 of 20 restraints (Fig. 2e), suggesting that the model is sensitive to inconsistent restraints and
134 can distinguish corresponding bad structures. The TM-scores correlate well with the pLDDT
135 scores with an overall correlation of 0.72 (Fig. 2f, Supplementary Figure 5). These findings
136 indicate that the pLDDT score can gauge how well the restraints may assist in structure
137 prediction and the restraint's quality or self-consistency, both with restraints that may be of
138 little use and with bad restraints present. With this evaluation, the model may find
139 applications in areas such as NMR determination (see section below).

140 **RASP improve structure prediction assisted by pseudo and NMR restraints**

141 By incorporating restraints, the model demonstrates improved capability to predict the
142 structures of multidomain and few-MSA proteins. Two cases representative of this
143 improvement in the PSP validation dataset are 6XMV and 7NBV(Fig. 3a, 3b). 6XMV is a
144 multi-domain protein that exhibits wrongly predicted relative domain positions by both
145 AlphaFold and Mega-Fold. However, utilizing randomly sampled restraints corrects the
146 inter-domain positions. For 7NBV, which is a virus protein and only has three sequences in its
147 multiple sequence alignment, an increase in the number of randomly sampled restraints leads
148 to a stable improvement in structure quality, with 50 restraints being used. These outcomes
149 demonstrate the potential for using restraints to aid in the prediction of few-MSA and
150 multi-domain proteins.

151 NMR is a commonly used experimental structure determination method that generates
152 restraints of different magnitudes. Despite that in many cases AlphaFold predictions follow
153 the restraints similar or even better than deposited NMR PDB structures^{24,25}, AlphaFold does
154 not naturally foresee structures compatible with NMR restraints and may produce alternative
155 structures as opposed to those deposited in the PDB. Given the continued evolution of NMR
156 data deposit requirements and the length of time during which samples may be deposited,
157 some entries in the PDB and BMRB database do not include restraint files. After filtration of
158 NMR samples deposited in the RCSB PDB bank with restraint files (.mr) available and bad

159 AlphaFold predictions (long-range restraint recall lower than 90%), 182 samples remain
160 (Supplementary Table 1). The samples exhibit a wide variation in the overall number of NMR
161 restraints, from tens to thousands, with a median restraint quantity of 11.4 per residue. When
162 leveraging NMR restraints to aid in structure prediction, the predicted structures better adhere
163 to the restraints than AlphaFold predictions, both for overall restraints and especially for
164 long-range restraints (defined as sequence separation ≥ 4 in this work), with median restraint
165 recall increasing from 95.2% to 99.2% and 79.5% to 96.2%, respectively (Fig. 3c). The
166 structures generated by RASP are interestingly more consistent with the deposited structures
167 (Fig. 3d).

168 NMR NOESY assignment pipeline FAAST

169 With the ability of the RASP model to take restraints from a wide range of sources and
170 evaluate their quality with pLDDT scores, it has the potential to accelerate NMR NOESY
171 peak assignments. These assignments accumulate over assigning iterations - starting with
172 only a few correctly identified restraints - and lead to refined structure predictions. By
173 combining the RASP model with the ARIA⁶ assignment protocol, we built an iterative NMR
174 analysis pipeline named FAAST (Fig. 4a). FAAST takes chemical shift and NOE peak lists as
175 input and outputs peak assignment and structure ensembles. Each iteration involves
176 subsampling the assigned restraints with an increasing ratio from the previous iteration as
177 RASP input and generating an ensemble of 20 structures, which is then used for the
178 subsequent NOE peak assignment. As pLDDT scores reflect the restraint quality, if the
179 median pLDDT of the ensemble is lower than 80, we restart the second round of iteration
180 with a lower restraint subsampling ratio to reduce restraints conflict (Fig. 4b). The protocol
181 allows for a maximum of one restart, resulting in a total ensemble iteration number of 2 or 5.

182 We benchmarked the FAAST pipeline on samples used in ARTINA. Out of the 100
183 ARTINA samples, only 57 had both chemical shift and at least one 3D NOESY peak list
184 deposited on BMRB and can be identified from the nmrstar files (Supplementary Table 2).
185 We validated the NMR pipeline on all of the 57 samples. With a median time of 32 minutes
186 (minimum and maximum time of 14 and 103 minutes), we were able to assign a median of
187 1569 peaks per sample and a median peak number of 14.75 per residue (Fig. 4c). Furthermore,
188 the average pairwise mutual C-alpha RMSD for the structure ensemble is 0.87 (Fig. 4d),
189 indicating consistency between subsampled restraints and the resulted structure ensemble. We
190 note here that pairwise RMSDs from the structure bundle in the initial iteration have a median
191 1.99, higher than that from the final structures, indicating that the subsampling strategy is able
192 to generate diversified structures, and that iterative refinement leads to convergence in
193 structure ensemble.

194 Moreover, the predicted structure is consistent with simultaneously assigned restraints as
195 well as the NOE peaks. A median of 99.6% of the identified restraints match the highest
196 confidence structure and the corresponding median is 99.0% for identified long-range
197 restraints. In comparison, the model 1 structure and restraints from the PDB database conform
198 on a median of 98.6% and 98.2% for all restraints and long-range restraints, respectively (Fig.
199 4e, Supplementary Figure 6). The RMSD score and correlation score calculated by
200 ANSURR²⁶ and DP score by RPF²⁷ indicate that the structures obtained by FAAST are of

201 comparable or better quality and consistency between predicted structure ensemble and the
202 NOE peak lists, compared to corresponding PDB structures (Supplementary Figure 7).

203 The predicted structures not only agree with the assigned peaks but are also consistent with
204 the deposited restraint and structure data. 96.9% of the deposited restraints from PDB
205 database align with the predicted structure ensemble. The median mean structure backbone
206 RMSD against the deposited PDB model 1 is 0.739 Angstrom for structured regions defined
207 by ARTINA. For the median scored structure in the structure ensemble, the backbone RMSD
208 is 0.791 Angstrom against the PDB structure. Both are lower than that reported by ARTINA,
209 in which the median mean structure backbone RMSD is 1.44A for all samples and 1.47A for
210 the 57 samples with BMRB peak lists (Fig. 4f).

211 Since only processed NOESY peak lists are available and raw peak lists absent for
212 samples downloaded directly from BMRB, we validated the pipeline's performance on the
213 2MRM case with raw NOESY peak lists. For this YgaP protein, much more restraints can be
214 assigned from the raw peak lists than from the deposited NOE peak lists (14.19 per residue
215 for raw lists compared to 4.93 for deposited ones). The number of assigned long-range
216 restraints is also higher (366 for raw lists and 285 for deposited lists). Despite similar small
217 mutual RMSDs, the predicted structures from raw peak lists and deposited peak lists have
218 similar TM-scores to the deposited structure (0.862 and 0.857, respectively), even though the
219 restraints assigned from the raw peak list are in better consistency than those assigned from
220 deposited lists, with the former has a restraint recall of 98.2% and the latter of 94.9%. These
221 results indicate that the pipeline doesn't require strict peak assignment, and we expect the raw
222 peak lists from NOE spectra to provide better assignment in the FAAST pipeline than the
223 deposited peaks.

224 In summary, we have presented a fast NMR pipeline that provides accurate structure
225 ensemble and highly consistent NOE peak assignments. Compared to previous methods, this
226 pipeline is fast, and through restraints iteration and subsampling, can provide a structure
227 ensemble plus a full set of NOE peak assignments. We expect this FAAST pipeline to be
228 useful in the NOESY peak assignment and NMR structure determination since it performs
229 well both with raw peak lists and deposited ones, even better with raw peak lists for the
230 example case in this study.

231 Discussion

232 The question of how experimental results and AI methods can mutually benefit each other
233 has been a topic of discussion, particularly with the emergence of advanced biochemical deep
234 learning models. Here, we present the RASP model and the FAAST pipeline, wherein the
235 former utilizes prior knowledge or restraints to improve in silico structure predictions, while
236 the latter employs the former's flexible number restraint-taking capability and evaluation of
237 restraint-structure quality to accelerate NOESY peak assignment. This model and pipeline
238 underscore the self-consistency of the two questions as an AI method capable of being
239 assisted by external knowledge has the potential to facilitate the acquisition and/or validation
240 of that external knowledge in return.

241 Despite the application of the RASP model on NMR restraints, due to its improvement of
242 structure prediction with abstract randomly sampled restraints, flexibility in restraint number
243 and ability to evaluate restraints, we expect it to be useful for broad knowledge types, such as
244 cross-linking or covalent labeling data as in AlphaLink, even abstract prior knowledge such
245 as closeness of two residues regardless of the knowledge source, and in this way may help the
246 generation of dynamic structures or states guided by restraints.

247 While we have currently applied our standard pipeline in FAAST for benchmark,
248 parameters for RASP and CCVP steps can be flexibly adjusted by users to accommodate their
249 particular peak quality and expectations on peak-structure convergence. When benchmarking
250 the pipeline, we did not employ parallel computation considering the possibly limited
251 computational resources for users. However, both the RASP prediction and relaxation can be
252 executed parallelly, which is expected to accelerate the process up to 20 times, which is the
253 ensemble size, depending on the hardware available. Since the chemical shift and NOE peak
254 assignment could be iteratively improved, merging the chemical shift and peak assignment
255 pipelines is also expected to produce more comprehensive and accurate NMR protein
256 assignment pipelines.

257 Moreover, in this study we only used restraints generated from 3D NOESY spectra, but the
258 current pipeline could be readily expanded to other NMR data types such as 4D NOESY
259 spectra, as long as the experimental data could be formatted as pairwise restraints. More
260 diversified forms of experimental data also exist that might provide information for different
261 molecule types, such as NMR for protein-small molecule interactions. In addition to the
262 conventional paired restraints, we also expect to incorporate additional information forms(e.g.
263 torsion angle and PRE in NMR) into our structure prediction and to develop multimer and
264 interface prediction models. These restrained structure prediction models hold the potential to
265 introduce an alternative approach to restrained design.

266 Methods

267 Structure of RASP

268 To incorporate restraint information, we developed the RASP model derived from the
269 AlphaFold Evoformer and structure module. Four additional biases were added, which draw
270 on restraint information: pair bias, MSA bias, IPA bias, and structure bias. To handle
271 inter-residue restraints as edge information, the first 3 biases are introduced as edge biases to
272 the Evoformer and IPA modules. This inter-residue information can be naturally converted
273 into features of shape $(N_{res}, N_{res}, C_{channels})$, similar to the pair activation in the Evoformer
274 module of the original model. Following the strategy of merging pair activation and MSA
275 activation in the Evoformer module, an extra contact bias is added to the row-wise attention
276 and the outer-product mean module by pair bias. The merging of inter-residue information
277 and per-residue information also occurs in the Invariant Point Attention. The contact
278 information is added to the IPA attention weight matrix as IPA bias in the same way as the
279 MSA bias. In addition to the biases in the attention, an additional bias is introduced in the
280 structure generation process. When generating the 3D structure, near-residue pairs identified
281 by restraint information are moved into close distances, whereas the rest of the residue pairs

282 connected to the pairs are then moved accordingly by optimizing the inter-residue distance in
283 the violation loss of AlphaFold. For simplicity and stability, only the RASP model with MSA
284 bias and IPA bias are used for result analysis.

285 **Restraint loss and tasks**

286 All AlphaFold losses are retained, including the auxiliary loss from the Structure Module (a
287 combination of averaged FAPE and torsion losses on the intermediate structures), averaged
288 cross-entropy losses for distogram and masked MSA predictions, model confidence loss,
289 experimentally resolved loss, and violation loss.

290 We introduce restraint loss into the model training to reinforce the input restraint
291 information in the final prediction. This loss comprises three components, each corresponding
292 to a restraint-related task. The first task is a 0/1 classification task with a loss called contact
293 classification loss. In this task, residue-wise distogram prediction of input restraints is
294 computed, and reorganized into 2 classes (whether or not the contact exists) with cross
295 entropy calculated using the ground truth label. The second task is to minimize the distance
296 RMSD difference of input restraints using a loss called dRMSD contact loss. The last task is
297 to make local structures similar to the ground truth structures, and takes a reduced version of
298 backbone FAPE loss called contact FAPE loss, in which the errors of all atom positions are
299 calculated in the local backbone frames of all residues in the restraints. The contact FAPE
300 loss and dRMSD contact loss are weighted equally at 0.5 so that the three losses are of the
301 same order of magnitude at the beginning of training. We clip the sum of the last two losses
302 by 1.5 to avoid training clashes in abnormal training examples.

303 **Sampling strategy**

304 The model was trained using the PSP dataset¹⁷, which was previously constructed by us.
305 The PSP dataset is a compilation of true and distilled protein structures, and it includes
306 sequence, structure, template, and MSA data for each protein sequence. Training data for
307 RASP are sampled with replacement from both the true structure and distillation datasets and
308 mixed in a ratio of 1:3.

309 To simulate the restraints observed in real experiments, the residue-wise distance map of
310 the protein structure is computed using the pseudo-C β atom position of the residue, where the
311 pseudo-C β atom is the C α atom position for glycine and C β for other amino acids. The
312 restraints are sampled based on a probability distribution that decreases with residue-wise
313 distance. When the distance is <7 Angstrom(A), the probability is equal, and it decays
314 exponentially from 7A to 10A. With this distribution, 90% of the sampled restraints are at a
315 distance less than or equal to 8A, and 10% of the restraints are at a distance greater than or
316 equal to 8A. This setting provides the model with a tolerance to restraints of poor quality. The
317 number of restraints is also randomly sampled from a distribution with equal probability for
318 16-128A and an exponential decay from 128A to 2048A. The expected value of this
319 distribution is 115 Angstrom.

320 **NMR NOE assignment pipeline**

321 The assignment pipeline used in this study was based on ARIA 2.3⁶ (Ambiguous Restraints
322 for Iterative Assignment), which was developed with Python 2 by Institut Pasteur. The

323 FAAST assignment pipeline referred to part of the ARIA method, mainly the Calibration -
324 CalculateBounds - ViolationAnalysis – Partially (CCVP for simplicity) functions, these
325 functions perform assignment of peaks by comparing distance of restraints atom pairs in
326 reference structure and theoretical distance calculated from intensity volume of the peaks. The
327 original Python 2 code is first simplified and translated to Python 3 to cooperate with other
328 parts of FAAST. Also, as the protein structure predicted by RASP does not distinguish
329 equivariant hydrogens in amino acids, we collected equivariant groups of 20 common amino
330 acids and redesigned the CCVP assignment algorithm based on distances between equivalent
331 atomic groups according to the equivariant groups list.

332 The initial assignment is performed by comparing the chemical shift and NOE lists.
333 Most of the restraints generated by initial assignments are ambiguous restraints (ARs), that is,
334 a single peak is assigned with more than one possibility. While some peaks are naturally
335 unambiguous (URs). The quality of the initial URs could be very low, with more than half
336 exceeding a distance of 6.0 Angstrom. Thus, for the initial assignment, we filtered out initial
337 URs with distances larger than 12 Angstrom in the reference prediction without restraints. For
338 each iteration, the URs are fed into RASP to generate 20 structures with the UR subsampling
339 rate of 5%, 10%, or 20%, depending on the iteration step, and the structures are relaxed by
340 OpenMM²⁸. The structure bundle is then used to assign NOE peaks by CCPV.

341 In the standard pipeline, the hyper-parameters used for restraint subsampling and CCVP
342 are iteratively tightened, with a subsampling rate of 10% and partial assignment cumulative
343 acceptance of 0.9 for the first iteration and 20% and 0.8 for the second iteration. ARs are
344 transformed into URs iteratively. If after the second iteration, the median pLDDT score is
345 lower than 80, a second round of iteration is initiated with subsampling and CCVP parameters
346 of (5%, 0.9), (5%, 0.8), and (10%, 0.8). The entire process takes 2-5 structure generation
347 iterations, and the number of iterations, as well as the iterating parameters, can be flexibly
348 adjusted.

349 **Benchmarking data**

350 The benchmarking data for our method consist of three parts:

351 PSP validation dataset: This dataset is the validation set of the PSP dataset and is used to
352 evaluate the performance of the RASP model. The restraints in this dataset are sampled in the
353 same way as during model training.

354 MR dataset: For most NMR structure in RCSB PDB database²⁹, restraint .mr files are
355 also deposited. We selected all the NMR .mr files from the RCSB PDB database in which a)
356 the restraint numbering followed the PDB numbering, and b) the restraint recall for
357 long-range restraints of the structure predicted by AlphaFold is less than 90%. This resulted in
358 182 samples.

359 NMR dataset: The NMR dataset was obtained to evaluate the NMR FAAST protocol.
360 We obtained the .star file (including the chemical shift and NOE list), .mr file (submitted
361 restraints), and .pdb file (structure) for 100 sequences in the ARTINA dataset by crawling the
362 BMRB³⁰ and RCSB PDB databases. After filtering out the .star files with missing chemical
363 shift or NOE lists, 57 sequences were available for testing our protocol.

364 Additionally, as the NOE list in .star files from the BMRB dataset before submission
365 could be filtered, we used the raw NOE peak list for pdb id 2MRM to evaluate the peak
366 quality.

367 **Evaluation methods**

368 We evaluated the structures and their consistency with restraints mainly with TM-score,
369 root mean square deviation (RMSD), and restraint recall.

370 TM-score^{22,23} is a metric for assessing the topological similarity of protein structures. This
371 score falls between 0 and 1, and higher TM-score indicates higher similarity between the two
372 compared proteins. We used the TM-align³¹ package downloaded from Zhang lab for
373 calculation of TM-scores.

374 In FAAST evaluation, two types of RMSD calculations are used. For measurement of
375 mutual similarity within a structure ensemble, we calculate the pairwise C α RMSD between
376 all pairs of different structures within the bundle, and average them to obtain the pairwise
377 mutual RMSD. For measurement of structure similarity between the deposited PDBs and
378 processed structure ensemble, we follow the ARTINA³ evaluation and calculated the mean
379 structure backbone atom RMSD for structured regions defined by ARTINA. All RMSD
380 calculations are performed using PyMOL.

381 Restraint recall is used to measure the consistency between a structure and a set of
382 restraints. It is defined as the ratio between the number of rightly followed restraints by the
383 structure and the number of ground truth restraints from PDB database, similar to the
384 definition of recall in the machine learning field. In RASP evaluation, since the restraints are
385 at residue level, we define a pairwise restraint to be followed by the structure as the distance
386 between pseudo-C β atoms (see sampling strategy in method) in the residue pair is closer than
387 8 Angstrom. In FAAST pipeline evaluation, since the NMR restraints are at atomic level, we
388 define a pairwise restraint to be followed only when the closest hydrogen atomic distance in
389 the two equivalent groups from the structure is lower than 6 Angstrom.

390 We further evaluated the goodness-of-fit of our predicted structures by FAAST to the
391 experimental data using correlation score, RMSD score, and DP score. ANSURR²⁶ (v2.0.55)
392 (<https://github.com/nickjf/ANSURR2>) was used to calculate the correlation score and RMSD
393 score. ANSURR accesses the accuracy of query structures by comparing their local rigidity
394 with the random coil index (RCI). Both correlation score and RMSD score fall between 0 and
395 100, with higher scores indicating higher accuracy of structures in the aspects of secondary
396 structure and overall rigidity, respectively. We re-referenced chemical shifts before
397 calculating RCI by specifying "-r" as recommended and ran with "ansurr -p xxxx.pdb -s
398 xxxx.str -r" for each structure.

399 The discrimination power (DP) score is the final output of the NMR structure quality
400 assessment web-server tool RPF²⁷ (<https://montelionelab.chem.rpi.edu/rpf/>), implying the
401 correctness of the overall fold of query structure. We ran RPFs in batch using "dpsimple"
402 from ASDP (v2.3) (https://github.rpi.edu/RPIBioinformatics/ASDP_public).

403 **Data availability**

404 The training set and PSP validation dataset are from our previous work and have been
405 publicly available at <http://ftp.cbi.pku.edu.cn/psp/>. The PDB ID of the 182 samples used for
406 restraints analysis in this work are available in Supplementary Table 1 and the PDB and
407 restraint .mr files can be downloaded at RCSB PDB database(<https://www.rcsb.org/>). The
408 information of the 57 samples used for FAAST pipeline benchmark are provided in
409 Supplementary Table 2, and the structure .pdb files, restraint .mr files, and NMRSTAR .str
410 files are available at RCSB PDB(<https://www.rcsb.org/>) and BMRB(<https://bmrb.io/>)
411 databases, according to their PDB and BMRB entry IDs.

412 Code Availability

413 The RASP and FAAST code are available at [our gitee repository](#) under Apache 2.0 license.
414 We additionally provide a [colab notebook](#) for ease of use.

415 Author contributions

416 S.L., Z.W., and Y.Q.G. developed overall concepts in the paper and supervised the project.
417 S.L., H.C., and Y.X. wrote the initial draft of manuscript. S.L., H.C., N.N., C.W., J.W., J.Z.,
418 M.C., J.L., and F.Y. developed and validated model and pipeline. S.L., H.C., Y.X., F.W., F.M.,
419 J.W., H.F., S.W., and C.T. carried out the data processing and analyses. Specifically, F.W.
420 and C.T. provided the raw YgaP NOESY peak data. All authors contributed ideas to the work
421 and assisted in editing of the manuscript.

422 Acknowledgements

423 The authors thank Yupeng Huang for helpful discussions on data processing, and would like
424 to extend our gratitude to Yuanpeng Janet Huang, the author of RPF, for his patience and
425 guidance on how to use dpsimple. This work was supported by National Key R&D Program
426 of China (2022ZD0115001), National Natural Science Foundation of China (92053202,
427 22050003, 22274050, and 21825703), the Strategic Priority Research Program of Chinese
428 Academy of Sciences (XDB37000000), and Collaborative Innovation Program of Hefei
429 Science Center, CAS (2022HSC-CIP011). A portion of this work was performed on the
430 Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS.

431 Competing Interests

432 Changping Laboratory and Huawei Technologies Co., Ltd. are in the process of applying for a
433 patent (202310400042.3) covering the FAAST and RASP methods, that lists S.L., H.C., N.N.,
434 Y.Q.G., Z.W., J.W., Y.X., F.M., J.L., and C.W. as inventors. All other authors declare no
435 competing interests.

436 **References**

- 437 1. Kay L E. NMR studies of protein structure and dynamics[J]. *Journal of magnetic*
438 *resonance*, 2011, 213(2): 477-491.
- 439 2. Wüthrich K. Protein structure determination in solution by NMR spectroscopy[J].
440 *Journal of Biological Chemistry*, 1990, 265(36): 22059-22062.
- 441 3. Klukowski P, Riek R, Güntert P. Rapid protein assignments and structures from raw
442 NMR spectra with the deep learning technique ARTINA[J]. *Nature Communications*,
443 2022, 13(1): 6151.
- 444 4. Güntert P, Buchner L. Combined automated NOE assignment and structure calculation
445 with CYANA[J]. *J Biomol NMR*, 2015, 62:453-471.
- 446 5. Nilges M, Macias MJ, O'Donoghue SI, Oschkinat H. Automated NOESY interpretation
447 with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin
448 homology domain from beta-spectrin[J]. *J Mol Biol*, 1997, 269:408-422.
- 449 6. Rieping W, Habeck M, Bardiaux B, et al. ARIA2: automated NOE assignment and data
450 integration in NMR structure calculation[J]. *Bioinformatics*, 2007, 23:381-382.
- 451 7. Herrmann T, Güntert P, Wüthrich K. Protein NMR structure determination with
452 automated NOE assignment using the new software CANDID and the torsion angle
453 dynamics algorithm DYANA[J]. *J Mol Biol*, 2002, 319:209-227.
- 454 8. Kuenze G and Meiler J. Protein structure prediction using sparse NOE and RDC
455 restraints with Rosetta in CASP13[J]. *Proteins*, 2019, 87(12): 1341-1350.
- 456 9. Kuenze G, Bonneau R, Leman JK, Meiler J. Integrative Protein Modeling in
457 RosettaNMR from Sparse Paramagnetic Restraints[J]. *Structure*, 2019, 27: 1721-1734.
- 458 10. Ovchinnikov S, Park H, Kim DE, Liu Y, Wang RYR, Baker D. Structure prediction
459 using sparse simulated NOE restraints with Rosetta in CASP11. *Proteins*, 2016, 84 Suppl
460 1(Suppl 1):181-188.
- 461 11. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with
462 AlphaFold[J]. *Nature*, 2021, 596(7873): 583-589.
- 463 12. Evans R, O'Neill M, Pritzel A, et al. Protein complex prediction with
464 AlphaFold-Multimer[J]. *BioRxiv*, 2021, biorxiv: 2021.10.04.463034.
- 465 13. Terwilliger T C, Poon B K, Afonine P V, et al. Improved AlphaFold modeling with
466 implicit experimental information[J]. *Nature Methods*, 2022, 19:1376-1382.
- 467 14. Terwilliger T C, Afonine P V, Liebschner D, et al. Accelerating crystal structure
468 determination with iterative AlphaFold prediction[J]. *Acta Crystallographica Section D:
469 Structural Biology*, 2023, 79(3).
- 470 15. Stahl K, Graziadei A, Dau T, et al. Protein structure prediction with in-cell
471 photo-crosslinking mass spectrometry and deep learning[J]. *Nature Biotechnology*, 2023:
472 1-10.
- 473 16. <https://www.mindspore.cn/>
- 474 17. Liu S, Zhang J, Chu H, et al. PSP: million-level protein sequence dataset for protein
475 structure prediction[J]. *arXiv preprint arXiv:2206.12240*, 2022.
- 476 18. Robin X, Haas J, Gumienny R, et al. Continuous Automated Model EvaluatiOn
477 (CAMEO)—Perspectives on the future of fully automated evaluation of structure

478 prediction methods[J]. *Proteins: Structure, Function, and Bioinformatics*, 2021, 89(12):
479 1977-1986.

480 19. Haas J, Gumienny R, Barbato A, et al. Introducing “best single template” models as
481 reference baseline for the Continuous Automated Model Evaluation (CAMEO)[J].
482 *Proteins: Structure, Function, and Bioinformatics*, 2019, 87(12): 1378-1387.

483 20. Haas J, Barbato A, Behringer D, et al. Continuous Automated Model EvaluatiOn
484 (CAMEO) complementing the critical assessment of structure prediction in CASP12[J].
485 *Proteins: Structure, Function, and Bioinformatics*, 2018, 86: 387-398.

486 21. Haas J, Roth S, Arnold K, et al. The Protein Model Portal—a comprehensive resource
487 for protein structure and model information[J]. *Database*, 2013, 2013:bat031.

488 22. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure
489 template quality[J]. *Proteins*, 2004, 57: 702-710.

490 23. Xu J, Zhang Z. How significant is a protein structure similarity with TM-score=0.5?[J].
491 *Bioinformatics*, 2010, 26: 889-895.

492 24. Tejero R, Huang Y J, Ramelot T A., Montelione G T. AlphaFold Models of Small
493 Proteins Rival the Accuracy of Solution NMR Structures[J]. *Frontiers in Molecular
494 Biosciences*, 2022, 9:877000.

495 25. Li E H, Spaman L, Tejero R, et al. Blind Assessment of Monomeric AlphaFold2 Protein
496 Structure Models with Experimental NMR Data[J]. *BioRxiv preprint*, 2023, biorxiv:
497 2023.01.22.525096.

498 26. Fowler N J, Sljoka A, and Williamson M P. A method for validating the accuracy of
499 NMR protein structures[J]. *Nature Communications*, 2020, 11:6321.

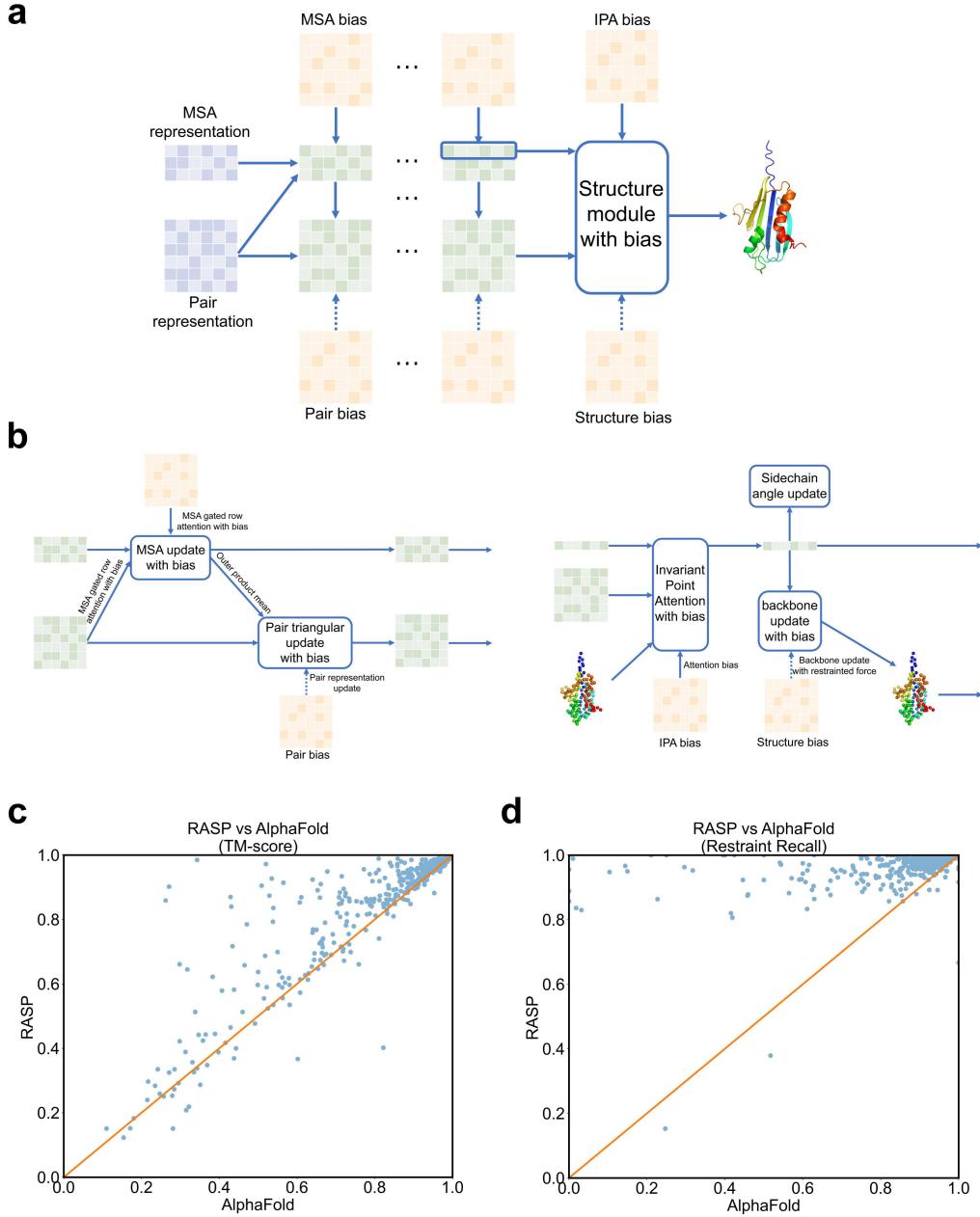
500 27. Huang Y J, Mao B, Xu F, and Montelione GT. Guiding automated NMR structure
501 determination using a global optimization metric, the NMR DP score. *J Biomol NMR*.
502 2015, 62(4):439-451.

503 28. Eastman P, Swails J, Chodera JD, et al. Openmm 7: Rapid development of high
504 performance algorithms for molecular dynamics[J]. *PLOS Computational Biology*, 2017,
505 13(7):1–17.

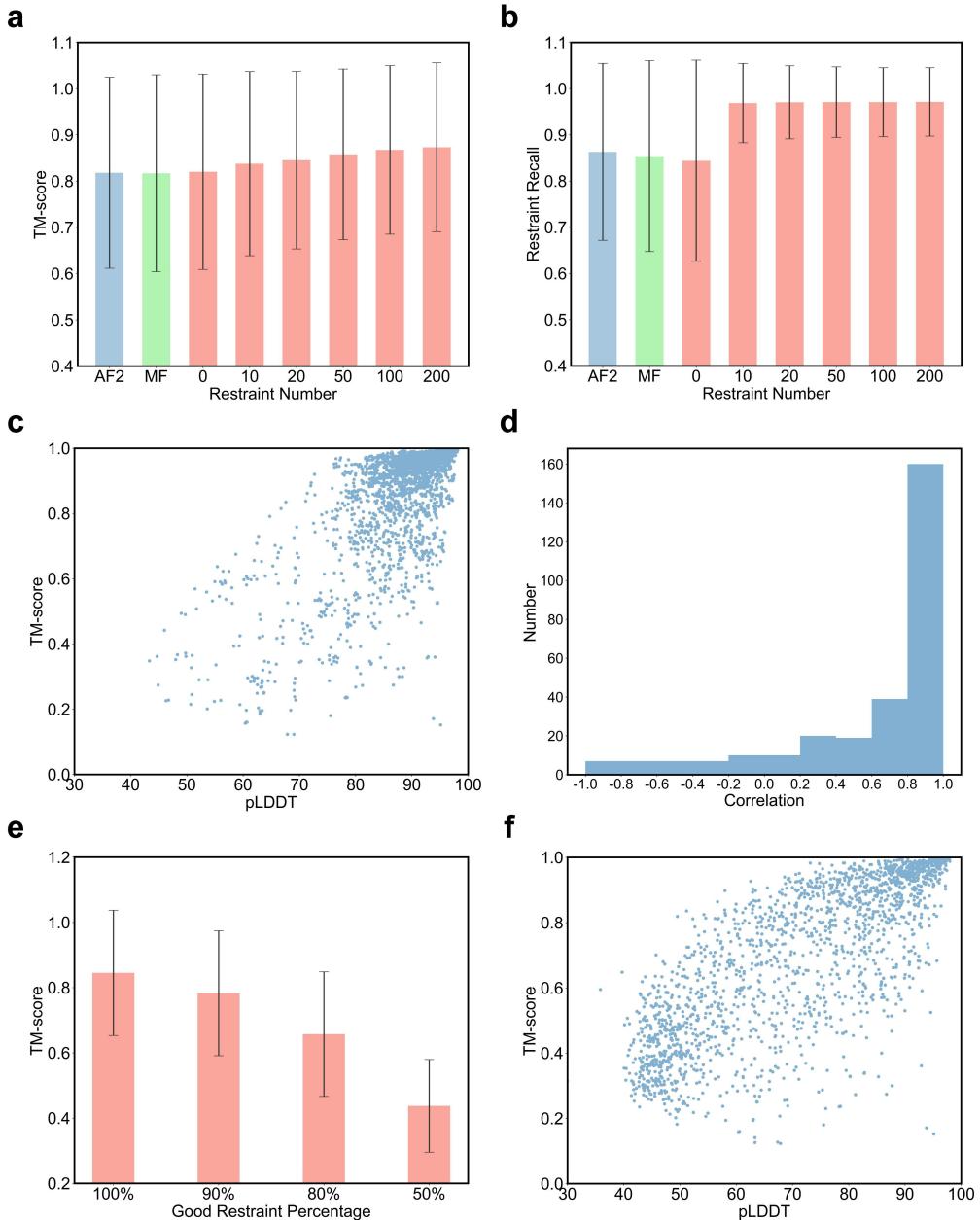
506 29. Berman H M, Westbrook J, Feng Z, et al. The protein data bank[J]. *Nucleic Acids
507 Research*, 2000, 28(1): 235-242.

508 30. Hoch J C, Baskaran K, Burr H, et al. Biological Magnetic Resonance Data Bank[J].
509 *Nucleic Acids Research*, 2023, 51(D1): D368-D376.

510 31. Zhang Y, Skolnick J. TM-align: A protein structure alignment algorithm based on
511 TM-score[J]. *Nucleic Acids Research*, 2005, 33: 2302-2309.

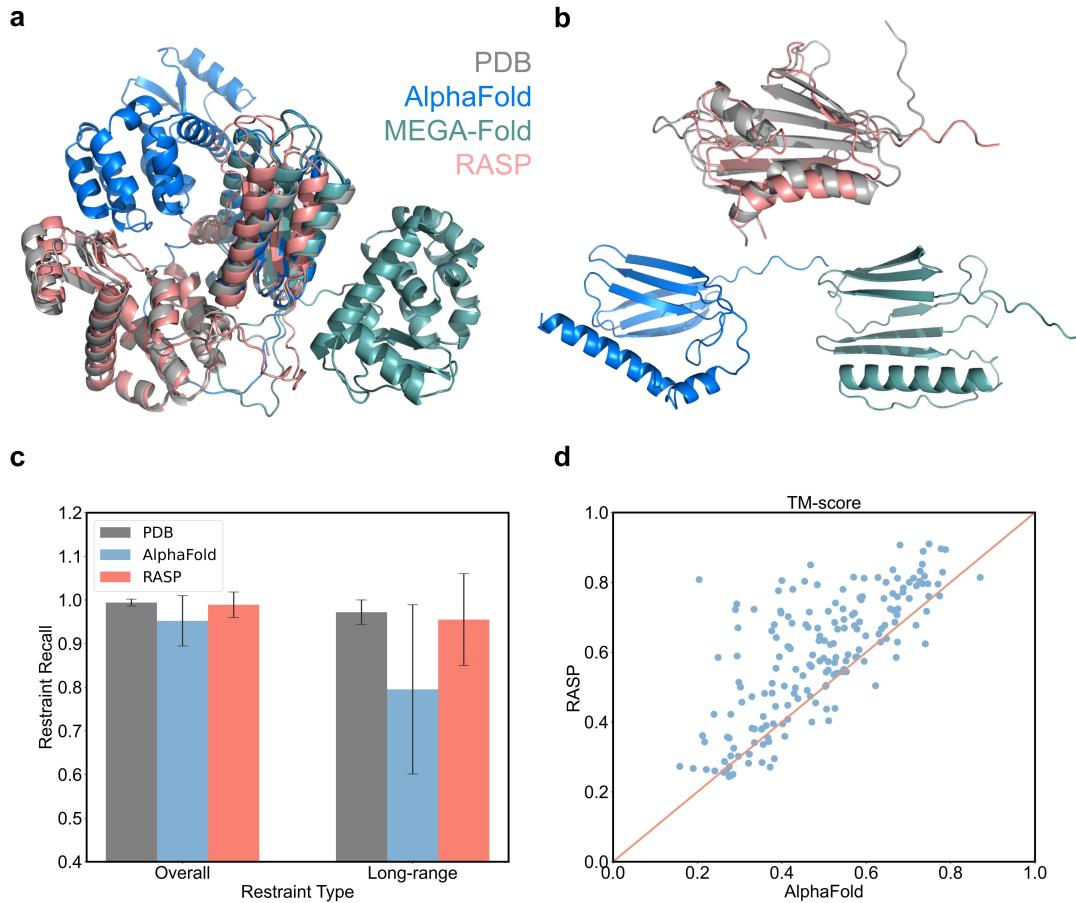


512 **Fig. 1.** RASP model takes in restraints in different forms and outperforms AlphaFold with restraint
 513 assistance. **a.** A scheme of how the pairwise restraints can be taken into the model in the form of
 514 MSA, pair, IPA, and structure biases, adopted from the Evoformer and structure module in
 515 AlphaFold. **b.** More detailed illustration of the model structure with restraints treated as biases in
 516 the Evoformer block (left) and structure block (right). For the PSP validation dataset, RASP with a
 517 fixed number of randomly sampled input restraints outperforms AlphaFold on **c.** the TM-score
 518 between the PDB structure and predicted structure and **d.** on restraint recall.

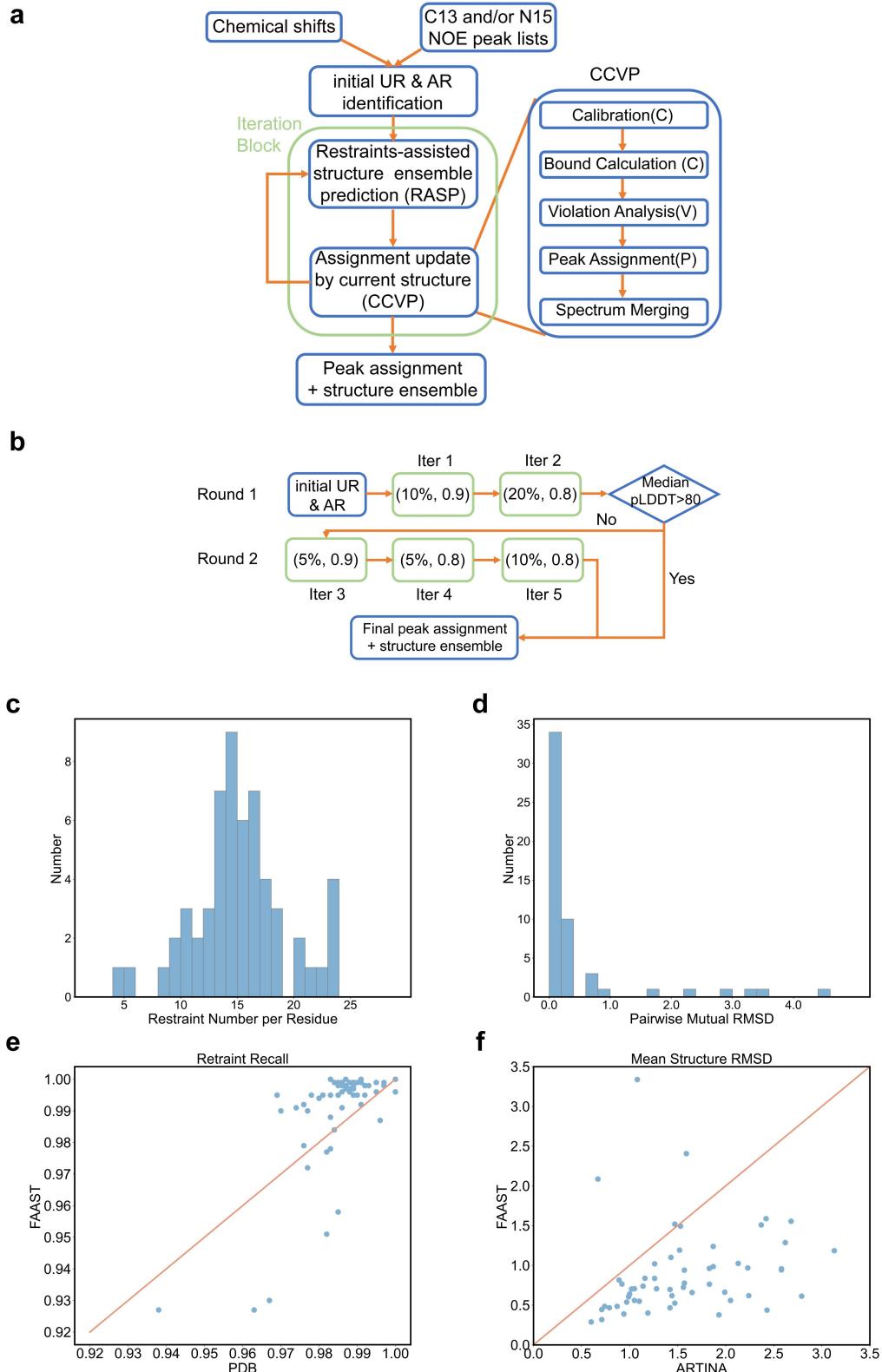


519 **Fig. 2.** RASP is robust against restraint number and the confidence score can be used to evaluate
520 restraint quality. Errorbars represent standard deviations for each group of data for all applicable
521 figures. **a.** The TM-score of predicted structure by RASP steadily increases over both AlphaFold
522 and MEGA-Fold, with increasing number of input restraints. **b.** Meanwhile regardless of the
523 restraint number, the restraint recall is steady above that with no restraints applied for AlphaFold,
524 MEGA-Fold, and RASP with zero restraints. The restraint recall for those without input restraints
525 is calculated with a fixed number of randomly sampled contacts by the same sampling strategy as
526 input restraints. **c.** The pLDDT with different restraints number and information quality correlates
527 well with the real TM-score of the predicted structure and deposited PDB structure, with an
528 overall correlation coefficient of 0.68. **d.** The distribution of correlation coefficient between the
529 predicted pLDDT confidence and TM-score with different number of restraints in use shows

530 consistency between predicted and real structure quality. The distribution is drawn for validation
531 samples with at least one bad prediction with TM-score<0.8, since we are more interested in the
532 model ability to distinguish bad or inefficient restraints information from the good ones than to tell
533 the best from a bunch of very good structures with efficient restraints. The pLDDT confidence and
534 TM-score are largely positively correlated with a median of 0.62, suggesting that pLDDT score
535 can be regarded as an indicator how much additional information input restraints provide. **e**. The
536 TM-score decreases with decreasing percentage of good restraints, when total input restraints
537 number is fixed at 20. **f**. The pLDDT confidence still correlates well with the TM-scores when bad
538 restraints are present, with an overall correlation coefficient of 0.72, demonstrating the RASP
539 model ability in telling bad restraint information and reporting this at the same time.



540 **Fig. 3.** Input restraints can assist RASP prediction for multi-domain proteins, few-MSA proteins,
541 and NMR structure prediction. **a.** For multi-domain structure 6XMV, both AlphaFold and
542 MEGA-fold provide inaccurate relative domain positions, however with restraints RASP is able to
543 fix the inter-domain structure. **b.** For 7NBV with few MSAs, restraint assisted prediction by
544 RASP helps to improve the structure prediction with more accurate secondary structure and
545 relative position between the helices and beta-sheets. The structures are presented separately
546 because the RMSDs for AlphaFold and MEGA-Fold predictions are higher than 10 Angstrom
547 (19.0 and 15.9, respectively) and are hard to align to the PDB structure. **c.** With varied number of
548 deposited .mr restraints provided by the PDB databank, NMR structures that fail for AlphaFold
549 prediction can be fixed in terms of overall and long-range (sequence separation ≥ 4) restraint recall
550 and **d.** TM-score that measures the similarity between the predicted structure and the deposited
551 ones.



552 **Fig. 4.** The FAAST NOESY assignment pipeline provides fast and accurate structure ensemble
 553 and NOE peak assignment at the same time. **a.** The schematic figure of the FAAST workflow. **b.**
 554 The current assignment pipeline and parameters applied. In each iteration block, the first
 555 parameter is the percentage of input restraints subsampled for RASP structure prediction in order

556 to construct a structure bundle, the second parameter is the cumulative probability to rule out
557 ambiguous restraints in assignment, which is also adjustable in ARIA. **c**. The distribution for
558 number of NOE assignments per residue for the 57 ARTINA samples. The median number is
559 around 15 with peak lists from the BMRB database. **d**. The distribution for pairwise mutual
560 RMSD for C-alpha atoms of the structure bundle. The median pairwise RMSD is 0.87, indicating
561 the predicted structures within each bundle are close to each other. **e**. The restraint recall is
562 compared between the FAAST structure with the identified restraints and the deposited PDB with
563 the deposited NMR restraints. The solved FAAST structures better follow the NMR restraints than
564 the PDBs. **f**. The FAAST structures also exhibit lower backbone RMSD than those reported by
565 ARTINA.