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Abstract

NMR experiments can detect in situ structures and dynamic interactions, but the NMR
assignment process requires expertise and is time-consuming, thereby limiting its
applicability. Deep learning algorithms have been employed to aid in experimental data
analysis. In this work, we developed a RASP model which can enhance structure prediction
with restraints. Based on the Evoformer and structure module architecture of AlphaFold, this
model can predict structure based on sequence and a flexible number of input restraints.
Moreover, it can evaluate the consistency between the predicted structure and the imposed
restraints. Based on this model, we constructed an iterative NMR NOESY peak assignment
pipeline named FAAST, to accelerate assignment process of NOESY restraints and obtaining
high quality structure ensemble. The RASP model and FAAST pipeline not only allow for the
leveraging of experimental restraints to improve model prediction, but can also facilitate and
expedite experimental data analysis with their integrated capabilities.

Introduction

NMR is an experimental technique used to determine structures and detect weak
interactions in situ'2. However, NMR assignment requires both expertise and time. It might
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34  take months even years for NMR assignment. Leveraging machine learning and deep learning
35  technologies, researchers have endeavored to automate the NMR assignment protocol. For
36 example, ARTINA? provides an integrated pipeline which accepts raw NMR spectra, assigns
37  chemical shifts and NOE peaks, and provides structures simultaneously. It utilizes molecular
38  simulations to construct structures, with a focus on achieving automated and accurate
39  chemical shift assignments. Specifically, the NOESY peak assignment process provides
40  hydrogen restraints and is an essential technique in NMR structure analysis, although the
41  structure construction mostly relies on molecular simulation. Automated algorithms such as
42 CYANA? ARIA>®, CANDID’ have been developed to assist NOE peak assignment, which
43 mostly apply strategies such as molecular dynamics simulation or simulated annealing for
44  structure construction, thus is relatively time consuming. Rosetta suites or pipelines
45  leveraging sparse NMR restraints from NOE, RDC, and PRE data have also be developed for
46  the data-assisted structure construction®®-1°.

47 Recent progress in deep learning provides more efficient and accurate tools to generate
48  protein structure given its sequence. Employing deep learning protein structure prediction
49  models for experimental data analysis has been a problem of interest. In practice, the input
50  data form and distribution of general structure prediction models, such as AlphaFold!!, do not
51  necessarily align with the needs of experimental methods. While AlphaFold and
52 AlphaFold-multimer'?> have greatly improved the accuracy of predicting static protein
53 structures, unresolved issues remain, such as generating dynamic structures and predicting
54  restrained structures. Questions remain on how experimental information can facilitate rapid
55  structure prediction and how structure prediction methods can aid in the resolution or
56  acceleration of experimental data analysis. Attempts have been made to provide AlphaFold
57  structures as templates for X-ray replacement'® or Cryo-EM density map!* templates.
58  However, these approaches rely on iterative template use, which includes dense but not
59  necessarily accurate restraints and cannot utilize structural differences to improve predictions.
60  Recently, AlphaLink'3 fine-tuned AlphaFold to accept sparse restraints, improving AlphaFold
61  performance in cross-linking experiments.

62 In this work we propose a model named Restraints Assisted Structure Predictor (RASP)
63  and an iterative NMR NOESY peak assignment pipeline called FAAST(iterative Folding
64  Assisted peak ASsignmenT). The architecture of RASP is derived from AlphaFold Evoformer
65  and structure module, and it accepts abstract or experimental restraints, sparse or dense, to
66  generate structures. This enables RASP to be used in diverse applications, including
67  improving structure predictions for multi-domain proteins and those with few multiple
68  sequence alignments (MSAs). The confidence of RASP can evaluate restraint quality in terms
69  of information efficiency and accuracy. Consequently, by leveraging the model's ability to
70  accept a flexible number of restraints and evaluate them, together with an NMR assignment
71  protocol adapted from ARIAS, we developed the FAAST pipeline. Using chemical shift and
72 NOE peak lists as input, FAAST assigns NOE peaks iteratively and generates a structure
73 ensemble based on the subsampled restraints, thus accelerating NMR analysis.

74 Results
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75  RASP takes in restraints directly and helps in structure prediction
76 To facilitate general experimental information as restraints, we developed the RASP
77  model based on the AlphaFold architecture. The model takes in sequence and a flexible
78  number of distance restraints and returns a structure that largely complies with the restraints.
79  Additionally, it measures the consistency between the restraints and sequences. We consider
80  restraints as a form of edge information and use the edge bias in the Evoformer MSA
81 attention block (defined as MSA bias) and invariant point attention block (IPA, defined as
82  IPA bias) (Fig. 1a, 1b). Moreover, we experimented with the pair representation update in
83  Evoformer (defined as pair bias) and adopted the structure module (defined as structure bias)
84  to ensure that the structure follows the restraints in one update. We evaluated the impact of
85  the four types of bias information and chose MSA and IPA biases as the baseline RASP
86  model setting for simplicity and stability (Suplementary Figure 1). We use only the first two
87  bias forms in the following experiments.
88 We implemented RASP using MindSpore'® and trained it on 32 * Ascend910 NPUs. We
89 initialized the model with MEGA-Fold'” weights and fine-tuned it on the PSP dataset!” with a
90 true structure: distilled structure ratio of 1:3. We sampled pairwise restraints to tolerate
91  distance noise (refer to Methods). The training converged after 15k steps (480k samples in
92  total, Supplementary Figure 2) and demonstrated stable improvement over initial
93  MEGA-Fold.
94 Although the model supports templates in prediction and could improve performance
95  with template used, for fairness and to avoid data leakage, we chose not to utilize templates in
96  this research. We tested the model's performance on the PSP validation dataset'” previously
97  constructed along with the PSP training set, which contains 490 samples of CAMEQ!819.20.21
98  targets and unique proteins between October 2021 and March 2022. This validation set is
99  strictly after the PDB and sequence deposition time of training set. When restricting the
100  number of restraints to 100, the TM-score?>?* which measures topological similarity between
101 structures improved significantly for the structure prediction in the PSP validation dataset
102 (Fig. Ic). Furthermore, the model followed the randomly sampled restraints much better than
103 those predicted by AlphaFold or MEGA-fold, as expected (Fig. 1D, Supplementary Figure 3).
104  Moreover, the violation loss which measures bond length, bond angle, and atomic clash
105  violation for RASP predictions remained low with a median of 0.0012 (Supplementary Figure
106  4), indicating its capability to predict structures following basic physiochemical principles.

107  RASP helps structure prediction and evaluation in a broad range of restraints numbers
108 We discovered that the structure accuracy improves steadily as the number of restraints
109  increases, starting from zero (Fig. 2a). However, restraints recall remains relatively constant,
110  implying that the current model can tolerate different numbers of prior information or
111 restraints without adversely affecting the baseline model performance (Fig. 2b). Additionally,
112 the predicted local-distance difference test score (pLDDT score) of the model serves as an
113 indicator of the model's confidence in the restraints. For proteins with varying numbers of
114 restraints, the pLDDT score rises stably though not significantly with an increase in the
115  number of restraints applied. The pLDDT confidence correlates well with the corresponding
116  structure TM-score with an overall correlation of 0.68 (Fig. 2C).
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117 Despite the difference in restraint numbers, due to sampling randomness, some restraints
118  might provide repeating information with MSAs (and potentially templates, although
119  templates is not used here for fairness), and in reality the restraints information provided by
120  experiment may not be free of error. The restraint quality therefore could be considered in
121 two aspects: one is how much additional information it provides aside from that provided by
122 MSA and templates, another is how accurate the restraint information is. To examine the
123 ability of the confidence score to distinguish good and bad predictions for the same protein
124  with different additional restraints information, we first examined the confidence-TM-score
125  correlation for proteins with at least one prediction of lower quality (defined as TM-score
126 lower than 0.80). The average correlation score is 0.62 (Fig. 2d). Since we take only MSA
127  and restraints as input in the benchmark, while MSA is kept the same for predictions of the
128  same protein, better structures can therefore be attributed to more effective restraint
129  information. This indicates that the pLDDT score can largely be used to distinguish better
130  structures and better corresponding restraints. Furthermore, when incorrect restraints are
131  intentionally used (restraints with a CP distance greater than 12 Angstrom, as defined), the
132 TM-score decreases significantly along with the increasing incorrect ratio and fixed number
133 of 20 restraints (Fig. 2e), suggesting that the model is sensitive to inconsistent restraints and
134 can distinguish corresponding bad structures. The TM-scores correlate well with the pLDDT
135  scores with an overall correlation of 0.72 (Fig. 2f, Supplementary Figure 5). These findings
136  indicate that the pLDDT score can gauge how well the restraints may assist in structure
137  prediction and the restraint's quality or self-consistency, both with restraints that may be of
138 little use and with bad restraints present. With this evaluation, the model may find
139  applications in areas such as NMR determination (see section below).

140  RASP improve structure prediction assisted by pseudo and NMR restraints

141 By incorporating restraints, the model demonstrates improved capability to predict the
142 structures of multidomain and few-MSA proteins. Two cases representative of this
143 improvement in the PSP validation dataset are 6XMV and 7NBV(Fig. 3a, 3b). 6XMYV is a
144  multi-domain protein that exhibits wrongly predicted relative domain positions by both
145  AlphaFold and Mega-Fold. However, utilizing randomly sampled restraints corrects the
146  inter-domain positions. For 7NBV, which is a virus protein and only has three sequences in its
147  multiple sequence alignment, an increase in the number of randomly sampled restraints leads
148  to a stable improvement in structure quality, with 50 restraints being used. These outcomes
149  demonstrate the potential for using restraints to aid in the prediction of few-MSA and
150  multi-domain proteins.

151 NMR is a commonly used experimental structure determination method that generates
152 restraints of different magnitudes. Despite that in many cases AlphaFold predictions follow
153 the restraints similar or even better than deposited NMR PDB structures?*?°, AlphaFold does
154  not naturally foresee structures compatible with NMR restraints and may produce alternative
155  structures as opposed to those deposited in the PDB. Given the continued evolution of NMR
156  data deposit requirements and the length of time during which samples may be deposited,
157  some entries in the PDB and BMRB database do not include restraint files. After filtration of
158  NMR samples deposited in the RCSB PDB bank with restraint files (.mr) available and bad
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159  AlphaFold predictions (long-range restraint recall lower than 90%), 182 samples remain
160  (Supplementary Table 1). The samples exhibit a wide variation in the overall number of NMR
161  restraints, from tens to thousands, with a median restraint quantity of 11.4 per residue. When
162 leveraging NMR restraints to aid in structure prediction, the predicted structures better adhere
163  to the restraints than AlphaFold predictions, both for overall restraints and especially for
164  long-range restraints (defined as sequence separation=4 in this work), with median restraint
165  recall increasing from 95.2% to 99.2% and 79.5% to 96.2%, respectively (Fig. 3c). The
166  structures generated by RASP are interestingly more consistent with the deposited structures
167  (Fig. 3d).

168  NMR NOESY assignment pipeline FAAST

169 With the ability of the RASP model to take restraints from a wide range of sources and
170  evaluate their quality with pLDDT scores, it has the potential to accelerate NMR NOESY
171  peak assignments. These assignments accumulate over assigning iterations - starting with
172 only a few correctly identified restraints - and lead to refined structure predictions. By
173 combining the RASP model with the ARIA® assignment protocol, we built an iterative NMR
174  analysis pipeline named FAAST (Fig. 4a). FAAST takes chemical shift and NOE peak lists as
175  input and outputs peak assignment and structure ensembles. Each iteration involves
176 ~ subsampling the assigned restraints with an increasing ratio from the previous iteration as
177 RASP input and generating an ensemble of 20 structures, which is then used for the
178  subsequent NOE peak assignment. As pLDDT scores reflect the restraint quality, if the
179  median pLDDT of the ensemble is lower than 80, we restart the second round of iteration
180  with a lower restraint subsampling ratio to reduce restraints conflict (Fig. 4b). The protocol
181  allows for a maximum of one restart, resulting in a total ensemble iteration number of 2 or 5.
182 We benchmarked the FAAST pipeline on samples used in ARTINA. Out of the 100
183  ARTINA samples, only 57 had both chemical shift and at least one 3D NOESY peak list
184  deposited on BMRB and can be identified from the nmrstar files (Supplementary Table 2).
185  We validated the NMR pipeline on all of the 57 samples. With a median time of 32 minutes
186  (minimum and maximum time of 14 and 103 minutes), we were able to assign a median of
187 1569 peaks per sample and a median peak number of 14.75 per residue (Fig. 4c). Furthermore,
188  the average pairwise mutual C-alpha RMSD for the structure ensemble is 0.87 (Fig. 4d),
189  indicating consistency between subsampled restraints and the resulted structure ensemble. We
190  note here that pairwise RMSDs from the structure bundle in the initial iteration have a median
191 1.99, higher than that from the final structures, indicating that the subsampling strategy is able
192 to generate diversified structures, and that iterative refinement leads to convergence in
193 structure ensemble.

194 Moreover, the predicted structure is consistent with simultaneously assigned restraints as
195  well as the NOE peaks. A median of 99.6% of the identified restraints match the highest
196  confidence structure and the corresponding median is 99.0% for identified long-range
197  restraints. In comparison, the model 1 structure and restraints from the PDB database conform
198  on a median of 98.6% and 98.2% for all restraints and long-range restraints, respectively (Fig.
199  4e, Supplementary Figure 6). The RMSD score and correlation score calculated by
200  ANSURR?® and DP score by RPF?’ indicate that the structures obtained by FAAST are of
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201  comparable or better quality and consistency between predicted structure ensemble and the
202  NOE peak lists, compared to corresponding PDB structures (Supplementary Figure 7).

203 The predicted structures not only agree with the assigned peaks but are also consistent with
204  the deposited restraint and structure data. 96.9% of the deposited restraints from PDB
205  database align with the predicted structure ensemble. The median mean structure backbone
206  RMSD against the deposited PDB model 1 is 0.739 Angstrom for structured regions defined
207 by ARTINA. For the median scored structure in the structure ensemble, the backbone RMSD
208  is 0.791 Angstrom against the PDB structure. Both are lower than that reported by ARTINA,
209  in which the median mean structure backbone RMSD is 1.44A for all samples and 1.47A for
210  the 57 samples with BMRB peak lists (Fig. 4f).

211 Since only processed NOESY peak lists are available and raw peak lists absent for
212 samples downloaded directly from BMRB, we validated the pipeline's performance on the
213 2MRM case with raw NOESY peak lists. For this YgaP protein, much more restraints can be
214  assigned from the raw peak lists than from the deposited NOE peak lists (14.19 per residue
215  for raw lists compared to 4.93 for deposited ones). The number of assigned long-range
216  restraints is also higher (366 for raw lists and 285 for deposited lists). Despite similar small
217  mutual RMSDs, the predicted structures from raw peak lists and deposited peak lists have
218  similar TM-scores to the deposited structure (0.862 and 0.857, respectively), even though the
219  restraints assigned from the raw peak list are in better consistency than those assigned from
220  deposited lists, with the former has a restraint recall of 98.2% and the latter of 94.9%. These
221  results indicate that the pipeline doesn't require strict peak assignment, and we expect the raw
222 peak lists from NOE spectra to provide better assignment in the FAAST pipeline than the
223 deposited peaks.

224 In summary, we have presented a fast NMR pipeline that provides accurate structure
225  ensemble and highly consistent NOE peak assignments. Compared to previous methods, this
226  pipeline is fast, and through restraints iteration and subsampling, can provide a structure
227  ensemble plus a full set of NOE peak assignments. We expect this FAAST pipeline to be
228  wuseful in the NOESY peak assignment and NMR structure determination since it performs
229  well both with raw peak lists and deposited ones, even better with raw peak lists for the
230  example case in this study.

231  Discussion

232 The question of how experimental results and Al methods can mutually benefit each other
233 has been a topic of discussion, particularly with the emergence of advanced biochemical deep
234 learning models. Here, we present the RASP model and the FAAST pipeline, wherein the
235  former utilizes prior knowledge or restraints to improve in silico structure predictions, while
236  the latter employs the former's flexible number restraint-taking capability and evaluation of
237  restraint-structure quality to accelerate NOESY peak assignment. This model and pipeline
238  underscore the self-consistency of the two questions as an Al method capable of being
239  assisted by external knowledge has the potential to facilitate the acquisition and/or validation
240  of that external knowledge in return.
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241 Despite the application of the RASP model on NMR restraints, due to its improvement of
242 structure prediction with abstract randomly sampled restraints, flexibility in restraint number
243 and ability to evaluate restraints, we expect it to be useful for broad knowledge types, such as
244 cross-linking or covalent labeling data as in AlphaLink, even abstract prior knowledge such
245  ascloseness of two residues regardless of the knowledge source, and in this way may help the
246  generation of dynamic structures or states guided by restraints.

247 While we have currently applied our standard pipeline in FAAST for benchmark,
248  parameters for RASP and CCVP steps can be flexibly adjusted by users to accommodate their
249  particular peak quality and expectations on peak-structure convergence. When benchmarking
250  the pipeline, we did not employ parallel computation considering the possibly limited
251  computational resources for users. However, both the RASP prediction and relaxation can be
252 executed parallelly, which is expected to accelerate the process up to 20 times, which is the
253  ensemble size, depending on the hardware available. Since the chemical shift and NOE peak
254  assignment could be iteratively improved, merging the chemical shift and peak assignment
255  pipelines is also expected to produce more comprehensive and accurate NMR protein
256  assignment pipelines.

257 Moreover, in this study we only used restraints generated from 3D NOESY spectra, but the
258  current pipeline could be readily expanded to other NMR data types such as 4D NOESY
259  spectra, as long as the experimental data could be formatted as pairwise restraints. More
260  diversified forms of experimental data also exist that might provide information for different
261  molecule types, such as NMR for protein-small molecule interactions. In addition to the
262  conventional paired restraints, we also expect to incorporate additional information forms(e.g.
263  torsion angle and PRE in NMR) into our structure prediction and to develop multimer and
264  interface prediction models. These restrained structure prediction models hold the potential to
265  introduce an alternative approach to restrained design.

266 Methods

267  Structure of RASP

268 To incorporate restraint information, we developed the RASP model derived from the
269  AlphaFold Evoformer and structure module. Four additional biases were added, which draw
270 on restraint information: pair bias, MSA bias, IPA bias, and structure bias. To handle
271  inter-residue restraints as edge information, the first 3 biases are introduced as edge biases to
272 the Evoformer and IPA modules. This inter-residue information can be naturally converted
273 into features of shape ( , , ), similar to the pair activation in the Evoformer
274  module of the original model. Following the strategy of merging pair activation and MSA
275 activation in the Evoformer module, an extra contact bias is added to the row-wise attention
276  and the outer-product mean module by pair bias. The merging of inter-residue information
277  and per-residue information also occurs in the Invariant Point Attention. The contact
278  information is added to the IPA attention weight matrix as IPA bias in the same way as the
279  MSA bias. In addition to the biases in the attention, an additional bias is introduced in the
280  structure generation process. When generating the 3D structure, near-residue pairs identified
281 by restraint information are moved into close distances, whereas the rest of the residue pairs
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282  connected to the pairs are then moved accordingly by optimizing the inter-residue distance in
283  the violation loss of AlphaFold. For simplicity and stability, only the RASP model with MSA
284  bias and IPA bias are used for result analysis.

285  Restraint loss and tasks

286 All AlphaFold losses are retained, including the auxiliary loss from the Structure Module (a
287  combination of averaged FAPE and torsion losses on the intermediate structures), averaged
288  cross-entropy losses for distogram and masked MSA predictions, model confidence loss,
289  experimentally resolved loss, and violation loss.

290 We introduce restraint loss into the model training to reinforce the input restraint
291  information in the final prediction. This loss comprises three components, each corresponding
292 to a restraint-related task. The first task is a 0/1 classification task with a loss called contact
293  classification loss. In this task, residue-wise distogram prediction of input restraints is
294  computed, and reorganized into 2 classes (whether or not the contact exists) with cross
295  entropy calculated using the ground truth label. The second task is to minimize the distance
296  RMSD difference of input restraints using a loss called dRMSD contact loss. The last task is
297  to make local structures similar to the ground truth structures, and takes a reduced version of
298  backbone FAPE loss called contact FAPE loss, in which the errors of all atom positions are
299  calculated in the local backbone frames of all residues in the restraints. The contact FAPE
300 loss and dRMSD contact loss are weighted equally at 0.5 so that the three losses are of the
301  same order of magnitude at the beginning of training. We clip the sum of the last two losses
302 by 1.5 to avoid training clashes in abnormal training examples.

303  Sampling strategy

304 The model was trained using the PSP dataset'’, which was previously constructed by us.
305  The PSP dataset is a compilation of true and distilled protein structures, and it includes
306  sequence, structure, template, and MSA data for each protein sequence. Training data for
307  RASP are sampled with replacement from both the true structure and distillation datasets and
308  mixed in a ratio of 1:3.

309 To simulate the restraints observed in real experiments, the residue-wise distance map of
310  the protein structure is computed using the pseudo-CP atom position of the residue, where the
311  pseudo-Cp atom is the Ca atom position for glycine and CP for other amino acids. The
312  restraints are sampled based on a probability distribution that decreases with residue-wise
313  distance. When the distance is <7 Angstrom(A), the probability is equal, and it decays
314  exponentially from 7A to 10A. With this distribution, 90% of the sampled restraints are at a
315  distance less than or equal to 8A, and 10% of the restraints are at a distance greater than or
316  equal to 8A. This setting provides the model with a tolerance to restraints of poor quality. The
317  number of restraints is also randomly sampled from a distribution with equal probability for
318  16-128A and an exponential decay from 128A to 2048A. The expected value of this
319  distribution is 115 Angstrom.

320  NMR NOE assignment pipeline
321  The assignment pipeline used in this study was based on ARIA 2.3% (Ambiguous Restraints
322 for Iterative Assignment), which was developed with Python 2 by Institut Pasteur. The
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323  FAAST assignment pipeline refered to part of the ARIA method, mainly the Calibration -
324  CalculateBounds - ViolationAnalysis — Partially (CCVP for simplicity) functions, these
325  functions perform assignment of peaks by comparing distance of restraints atom pairs in
326  reference structure and theoretical distance calculated from intensity volume of the peaks. The
327  original Python 2 code is first simplified and translated to Python 3 to cooperate with other
328  parts of FAAST. Also, as the protein structure predicted by RASP does not distinguish
329  equivariant hydrogens in amino acids, we collected equivariant groups of 20 common amino
330  acids and redesigned the CCVP assignment algorithm based on distances between equivalent
331  atomic groups according to the equivariant groups list.

332 The initial assignment is performed by comparing the chemical shift and NOE lists.
333 Most of the restraints generated by initial assignments are ambiguous restraints (ARs), that is,
334  a single peak is assigned with more than one possibility. While some peaks are naturally
335  unambiguous (URs). The quality of the initial URs could be very low, with more than half
336  exceeding a distance of 6.0 Angstrom. Thus, for the initial assignment, we filtered out initial
337  URs with distances larger than 12 Angstrom in the reference prediction without restraints. For
338  each iteration, the URs are fed into RASP to generate 20 structures with the UR subsampling
339  rate of 5%, 10%, or 20%, depending on the iteration step, and the structures are relaxed by
340  OpenMM?, The structure bundle is then used to assign NOE peaks by CCPV.

341 In the standard pipeline, the hyper-parameters used for restraint subsampling and CCVP
342 are iteratively tightened, with a subsampling rate of 10% and partial assignment cumulative
343 acceptance of 0.9 for the first iteration and 20% and 0.8 for the second iteration. ARs are
344  transformed into URs iteratively. If after the second iteration, the median pLDDT score is
345  lower than 80, a second round of iteration is initiated with subsampling and CCVP parameters
346  of (5%, 0.9), (5%, 0.8), and (10%, 0.8). The entire process takes 2-5 structure generation
347  iterations, and the number of iterations, as well as the iterating parameters, can be flexibly
348  adjusted.

349  Benchmarking data

350 The benchmarking data for our method consist of three parts:

351 PSP validation dataset: This dataset is the validation set of the PSP dataset and is used to
352 evaluate the performance of the RASP model. The restraints in this dataset are sampled in the
353  same way as during model training.

354 MR dataset: For most NMR structure in RCSB PDB database®, restraint .mr files are
355  also deposited. We selected all the NMR .mr files from the RCSB PDB database in which a)
356  the restraint numbering followed the PDB numbering, and b) the restraint recall for
357  long-range restraints of the structure predicted by AlphaFold is less than 90%. This resulted in
358 182 samples.

359 NMR dataset: The NMR dataset was obtained to evaluate the NMR FAAST protocol.
360  We obtained the .star file (including the chemical shift and NOE list), .mr file (submitted
361  restraints), and .pdb file (structure) for 100 sequences in the ARTINA dataset by crawling the
362 BMRB?*® and RCSB PDB databases. After filtering out the .star files with missing chemical
363  shift or NOE lists, 57 sequences were available for testing our protocol.
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364 Additionally, as the NOE list in .star files from the BMRB dataset before submission
365  could be filtered, we used the raw NOE peak list for pdb id 2MRM to evaluate the peak
366  quality.

367  Evaluation methods

368 We evaluated the structures and their consistency with restraints mainly with TM-score,
369  root mean square deviation (RMSD), and restraint recall.

370 TM-score?>? is a metric for assessing the topological similarity of protein structures. This
371  score falls between 0 and 1, and higher TM-score indicates higher similarity between the two
372 compared proteins. We used the TM-align’! package downloaded from Zhang lab for
373 calculation of TM-scores.

374 In FAAST evaluation, two types of RMSD calculations are used. For measurement of
375  mutual similarity within a structure ensemble, we calculate the pairwise Ca RMSD between
376  all pairs of different structures within the bundle, and average them to obtain the pairwise
377  mutual RMSD. For measurement of structure similarity between the deposited PDBs and
378  processed structure ensemble, we follow the ARTINA? evaluation and calculated the mean
379  structure backbone atom RMSD for structured regions defined by ARTINA. All RMSD
380  calculations are performed using PyMOL.

381 Restraint recall is used to measure the consistency between a structure and a set of
382  restraints. It is defined as the ratio between the number of rightly followed restraints by the
383  structure and the number of ground truth restraints from PDB database, similar to the
384  definition of recall in the machine learning field. In RASP evaluation, since the restraints are
385 at residue level, we define a pairwise restraint to be followed by the structure as the distance
386  between pseudo-Cp atoms (see sampling strategy in method) in the residue pair is closer than
387 8 Angstrom. In FAAST pipeline evaluation, since the NMR restraints are at atomic level, we
388  define a pairwise restraint to be followed only when the closest hydrogen atomic distance in
389  the two equivalent groups from the structure is lower than 6 Angstrom.

390 We further evaluated the goodness-of-fit of our predicted structures by FAAST to the
391  experimental data using correlation score, RMSD score, and DP score. ANSURR?® (v2.0.55)
392 (https://github.com/nickjf/ANSURR?2) was used to calculate the correlation score and RMSD
393  score. ANSURR accesses the accuracy of query structures by comparing their local rigidity
394  with the random coil index (RCI). Both correlation score and RMSD score fall between 0 and
395 100, with higher scores indicating higher accuracy of structures in the aspects of secondary
396  structure and overall rigidity, respectively. We re-referenced chemical shifts before
397  calculating RCI by specifying "-r" as recommended and ran with "ansurr -p xxxx.pdb -s
398  xxxx.str -r" for each structure.

399 The discrimination power (DP) score is the final output of the NMR structure quality
400  assessment web-server tool RPF?’ (https://montelionelab.chem.rpi.edu/rpf/), implying the
401  correctness of the overall fold of query structure. We ran RPFs in batch using "dpsimple"
402  from ASDP (v2.3) (https://github.rpi.edu/RPIBioinformatics/ASDP_public).

403  Data availability
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404  The training set and PSP validation dataset are from our previous work and have been
405  publicly available at http://ftp.cbi.pku.edu.cn/psp/. The PDB ID of the 182 samples used for
406  restraints analysis in this work are available in Supplementary Table 1 and the PDB and
407 restraint .mr files can be downloaded at RCSB PDB database(https://www.rcsb.org/). The
408  information of the 57 samples used for FAAST pipeline benchmark are provided in
409  Supplementary Table 2, and the structure .pdb files, restraint .mr files, and NMRSTAR .str
410  files are available at RCSB PDB(https://www.rcsb.org/) and BMRB(https://bmrb.io/)
411  databases, according to their PDB and BMRB entry IDs.

412 Code Availability

413  The RASP and FAAST code are available at our gitee repository under Apache 2.0 license.
414  We additionally provide a colab notebook for ease of use.
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512 Fig. 1. RASP model takes in restraints in different forms and outperforms AlphaFold with restraint

513  assistance. a. A scheme of how the pairwise restraints can be taken into the model in the form of

514 MSA, pair, IPA, and structure biases, adopted from the Evoformer and structure module in

515  AlphaFold. b. More detailed illustration of the model structure with restraints treated as biases in
516  the Evoformer block (left) and structure block (right). For the PSP validation dataset, RASP with a
517  fixed number of randomly sampled input restraints outperforms AlphaFold on ¢. the TM-score

518  between the PDB structure and predicted structure and d. on restraint recall.
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519  Fig. 2. RASP is robust against restraint number and the confidence score can be used to evaluate
520  restraint quality. Errorbars represent standard deviations for each group of data for all applicable
521 figures. a.The TM-score of predicted structure by RASP steadily increases over both AlphaFold
522 and MEGA-Fold, with increasing number of input restraints. b. Meanwhile regardless of the
523  restraint number, the restraint recall is steady above that with no restraints applied for AlphaFold,
524  MEGA-Fold, and RASP with zero restraints. The restraint recall for those without input restraints
525  is calculated with a fixed number of randomly sampled contacts by the same sampling strategy as
526  input restraints. ¢. The pLDDT with different restraints number and information quality correlates
527  well with the real TM-score of the predicted structure and deposited PDB structure, with an
528  overall correlation coefficient of 0.68. d. The distribution of correlation coefficient between the
529  predicted pLDDT confidence and TM-score with different number of restraints in use shows

15


https://doi.org/10.1101/2023.04.14.536890
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.14.536890; this version posted May 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

530  consistency between predicted and real structure quality. The distribution is drawn for validation
531 samples with at least one bad prediction with TM-score<0.8, since we are more interested in the
532 model ability to distinguish bad or inefficient restraints information from the good ones than to tell
533 the best from a bunch of very good structures with efficient restraints. The pLDDT confidence and
534  TM-score are largely positively correlated with a median of 0.62, suggesting that pPLDDT score
535  can be regarded as an indicator how much additional information input restraints provide. e. The
536 TM-score decreases with decreasing percentage of good restraints, when total input restraints
537  number is fixed at 20. f. The pLDDT confidence still correlates well with the TM-scores when bad
538  restraints are present, with an overall correlation coefficient of 0.72, demonstrating the RASP
539  model ability in telling bad restraint information and reporting this at the same time.
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540  Fig. 3. Input restraints can assist RASP prediction for multi-domain proteins, few-MSA proteins,
541 and NMR structure prediction. a. For multi-domain structure 6XMV, both AlphaFold and
542  MEGA-fold provide inaccurate relative domain positions, however with restraints RASP is able to
543  fix the inter-domain structure. b. For 7NBV with few MSAs, restraint assisted prediction by
544  RASP helps to improve the structure prediction with more accurate secondary structure and
545  relative position between the helices and beta-sheets The structures are presented separately
546  because the RMSDs for AlphaFold and MEGA-Fold predictions are higher than 10 Angstrom
547  (19.0 and 15.9, respectively) and are hard to align to the PDB structure. ¢. With varied number of
548  deposited .mr restraints provided by the PDB databank, NMR structures that fail for AlphaFold
549  prediction can be fixed in terms of overall and long-range (sequence separation=4) restraint recall
550  and d. TM-score that measures the similarity between the predicted structure and the deposited
551  ones.
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552 Fig. 4. The FAAST NOESY assignment pipeline provides fast and accurate structure ensemble
553  and NOE peak assignment at the same time. a. The schematic figure of the FAAST workflow. b.
554  The current assignment pipeline and parameters applied. In each iteration block, the first
555  parameter is the percentage of input restraints subsampled for RASP structure prediction in order
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556  to construct a structure bundle, the second parameter is the cumulative probability to rule out
557  ambiguous restraints in assignment, which is also adjustable in ARIA. ¢. The distribution for
558  number of NOE assignments per residue for the 57 ARTINA samples. The median number is
559  around 15 with peak lists from the BMRB database. d. The distribution for pairwise mutual
560  RMSD for C-alpha atoms of the structure bundle. The median pairwise RMSD is 0.87, indicating
561 the predicted structures within each bundle are close to each other. e. The restraint recall is
562  compared between the FAAST structure with the identified restraints and the deposited PDB with
563  the deposited NMR restraints. The solved FAAST structures better follow the NMR restraints than
564  the PDBs. f. The FAAST structures also exhibit lower backbone RMSD than those reported by
565  ARTINA.
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