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Abstract18

NMR experiments can detect in situ structures and dynamic interactions, but the NMR19
assignment process requires expertise and is time-consuming, thereby limiting its20
applicability. Deep learning algorithms have been employed to aid in experimental data21
analysis. In this work, we developed a RASP model which can enhance structure prediction22
with restraints. Based on the Evoformer and structure module architecture of AlphaFold, this23
model can predict structure based on sequence and a flexible number of input restraints.24
Moreover, it can evaluate the consistency between the predicted structure and the imposed25
restraints. Based on this model, we constructed an iterative NMR NOESY peak assignment26
pipeline named FAAST, to accelerate assignment process of NOESY restraints and obtaining27
high quality structure ensemble. The RASP model and FAAST pipeline not only allow for the28
leveraging of experimental restraints to improve model prediction, but can also facilitate and29
expedite experimental data analysis with their integrated capabilities.30

Introduction31

NMR is an experimental technique used to determine structures and detect weak32
interactions in situ1,2. However, NMR assignment requires both expertise and time. It might33

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.04.14.536890doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536890
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

take months even years for NMR assignment. Leveraging machine learning and deep learning34
technologies, researchers have endeavored to automate the NMR assignment protocol. For35
example, ARTINA3 provides an integrated pipeline which accepts raw NMR spectra, assigns36
chemical shifts and NOE peaks, and provides structures simultaneously. It utilizes molecular37
simulations to construct structures, with a focus on achieving automated and accurate38
chemical shift assignments. Specifically, the NOESY peak assignment process provides39
hydrogen restraints and is an essential technique in NMR structure analysis, although the40
structure construction mostly relies on molecular simulation. Automated algorithms such as41
CYANA4, ARIA5,6, CANDID7 have been developed to assist NOE peak assignment, which42
mostly apply strategies such as molecular dynamics simulation or simulated annealing for43
structure construction, thus is relatively time consuming. Rosetta suites or pipelines44
leveraging sparse NMR restraints from NOE, RDC, and PRE data have also be developed for45
the data-assisted structure construction8,9,10.46
Recent progress in deep learning provides more efficient and accurate tools to generate47

protein structure given its sequence. Employing deep learning protein structure prediction48
models for experimental data analysis has been a problem of interest. In practice, the input49
data form and distribution of general structure prediction models, such as AlphaFold11, do not50
necessarily align with the needs of experimental methods. While AlphaFold and51
AlphaFold-multimer12 have greatly improved the accuracy of predicting static protein52
structures, unresolved issues remain, such as generating dynamic structures and predicting53
restrained structures. Questions remain on how experimental information can facilitate rapid54
structure prediction and how structure prediction methods can aid in the resolution or55
acceleration of experimental data analysis. Attempts have been made to provide AlphaFold56
structures as templates for X-ray replacement13 or Cryo-EM density map14 templates.57
However, these approaches rely on iterative template use, which includes dense but not58
necessarily accurate restraints and cannot utilize structural differences to improve predictions.59
Recently, AlphaLink15 fine-tuned AlphaFold to accept sparse restraints, improving AlphaFold60
performance in cross-linking experiments.61
In this work we propose a model named Restraints Assisted Structure Predictor (RASP)62

and an iterative NMR NOESY peak assignment pipeline called FAAST(iterative Folding63
Assisted peak ASsignmenT). The architecture of RASP is derived from AlphaFold Evoformer64
and structure module, and it accepts abstract or experimental restraints, sparse or dense, to65
generate structures. This enables RASP to be used in diverse applications, including66
improving structure predictions for multi-domain proteins and those with few multiple67
sequence alignments (MSAs). The confidence of RASP can evaluate restraint quality in terms68
of information efficiency and accuracy. Consequently, by leveraging the model's ability to69
accept a flexible number of restraints and evaluate them, together with an NMR assignment70
protocol adapted from ARIA6, we developed the FAAST pipeline. Using chemical shift and71
NOE peak lists as input, FAAST assigns NOE peaks iteratively and generates a structure72
ensemble based on the subsampled restraints, thus accelerating NMR analysis.73

Results74
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RASP takes in restraints directly and helps in structure prediction75
To facilitate general experimental information as restraints, we developed the RASP76

model based on the AlphaFold architecture. The model takes in sequence and a flexible77
number of distance restraints and returns a structure that largely complies with the restraints.78
Additionally, it measures the consistency between the restraints and sequences. We consider79
restraints as a form of edge information and use the edge bias in the Evoformer MSA80
attention block (defined as MSA bias) and invariant point attention block (IPA, defined as81
IPA bias) (Fig. 1a, 1b). Moreover, we experimented with the pair representation update in82
Evoformer (defined as pair bias) and adopted the structure module (defined as structure bias)83
to ensure that the structure follows the restraints in one update. We evaluated the impact of84
the four types of bias information and chose MSA and IPA biases as the baseline RASP85
model setting for simplicity and stability (Suplementary Figure 1). We use only the first two86
bias forms in the following experiments.87

We implemented RASP using MindSpore16 and trained it on 32 * Ascend910 NPUs. We88
initialized the model with MEGA-Fold17 weights and fine-tuned it on the PSP dataset17 with a89
true structure: distilled structure ratio of 1:3. We sampled pairwise restraints to tolerate90
distance noise (refer to Methods). The training converged after 15k steps (480k samples in91
total, Supplementary Figure 2) and demonstrated stable improvement over initial92
MEGA-Fold.93

Although the model supports templates in prediction and could improve performance94
with template used, for fairness and to avoid data leakage, we chose not to utilize templates in95
this research. We tested the model's performance on the PSP validation dataset17 previously96
constructed along with the PSP training set, which contains 490 samples of CAMEO18,19,20,2197
targets and unique proteins between October 2021 and March 2022. This validation set is98
strictly after the PDB and sequence deposition time of training set. When restricting the99
number of restraints to 100, the TM-score22,23 which measures topological similarity between100
structures improved significantly for the structure prediction in the PSP validation dataset101
(Fig. 1c). Furthermore, the model followed the randomly sampled restraints much better than102
those predicted by AlphaFold or MEGA-fold, as expected (Fig. 1D, Supplementary Figure 3).103
Moreover, the violation loss which measures bond length, bond angle, and atomic clash104
violation for RASP predictions remained low with a median of 0.0012 (Supplementary Figure105
4), indicating its capability to predict structures following basic physiochemical principles.106

RASP helps structure prediction and evaluation in a broad range of restraints numbers107
We discovered that the structure accuracy improves steadily as the number of restraints108

increases, starting from zero (Fig. 2a). However, restraints recall remains relatively constant,109
implying that the current model can tolerate different numbers of prior information or110
restraints without adversely affecting the baseline model performance (Fig. 2b). Additionally,111
the predicted local-distance difference test score (pLDDT score) of the model serves as an112
indicator of the model's confidence in the restraints. For proteins with varying numbers of113
restraints, the pLDDT score rises stably though not significantly with an increase in the114
number of restraints applied. The pLDDT confidence correlates well with the corresponding115
structure TM-score with an overall correlation of 0.68 (Fig. 2C).116
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Despite the difference in restraint numbers, due to sampling randomness, some restraints117
might provide repeating information with MSAs (and potentially templates, although118
templates is not used here for fairness), and in reality the restraints information provided by119
experiment may not be free of error. The restraint quality therefore could be considered in120
two aspects: one is how much additional information it provides aside from that provided by121
MSA and templates, another is how accurate the restraint information is. To examine the122
ability of the confidence score to distinguish good and bad predictions for the same protein123
with different additional restraints information, we first examined the confidence-TM-score124
correlation for proteins with at least one prediction of lower quality (defined as TM-score125
lower than 0.80). The average correlation score is 0.62 (Fig. 2d). Since we take only MSA126
and restraints as input in the benchmark, while MSA is kept the same for predictions of the127
same protein, better structures can therefore be attributed to more effective restraint128
information. This indicates that the pLDDT score can largely be used to distinguish better129
structures and better corresponding restraints. Furthermore, when incorrect restraints are130
intentionally used (restraints with a Cβ distance greater than 12 Angstrom, as defined), the131
TM-score decreases significantly along with the increasing incorrect ratio and fixed number132
of 20 restraints (Fig. 2e), suggesting that the model is sensitive to inconsistent restraints and133
can distinguish corresponding bad structures. The TM-scores correlate well with the pLDDT134
scores with an overall correlation of 0.72 (Fig. 2f, Supplementary Figure 5). These findings135
indicate that the pLDDT score can gauge how well the restraints may assist in structure136
prediction and the restraint's quality or self-consistency, both with restraints that may be of137
little use and with bad restraints present. With this evaluation, the model may find138
applications in areas such as NMR determination (see section below).139

RASP improve structure prediction assisted by pseudo and NMR restraints140
By incorporating restraints, the model demonstrates improved capability to predict the141

structures of multidomain and few-MSA proteins. Two cases representative of this142
improvement in the PSP validation dataset are 6XMV and 7NBV(Fig. 3a, 3b). 6XMV is a143
multi-domain protein that exhibits wrongly predicted relative domain positions by both144
AlphaFold and Mega-Fold. However, utilizing randomly sampled restraints corrects the145
inter-domain positions. For 7NBV, which is a virus protein and only has three sequences in its146
multiple sequence alignment, an increase in the number of randomly sampled restraints leads147
to a stable improvement in structure quality, with 50 restraints being used. These outcomes148
demonstrate the potential for using restraints to aid in the prediction of few-MSA and149
multi-domain proteins.150

NMR is a commonly used experimental structure determination method that generates151
restraints of different magnitudes. Despite that in many cases AlphaFold predictions follow152
the restraints similar or even better than deposited NMR PDB structures24,25, AlphaFold does153
not naturally foresee structures compatible with NMR restraints and may produce alternative154
structures as opposed to those deposited in the PDB. Given the continued evolution of NMR155
data deposit requirements and the length of time during which samples may be deposited,156
some entries in the PDB and BMRB database do not include restraint files. After filtration of157
NMR samples deposited in the RCSB PDB bank with restraint files (.mr) available and bad158
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AlphaFold predictions (long-range restraint recall lower than 90%), 182 samples remain159
(Supplementary Table 1). The samples exhibit a wide variation in the overall number of NMR160
restraints, from tens to thousands, with a median restraint quantity of 11.4 per residue. When161
leveraging NMR restraints to aid in structure prediction, the predicted structures better adhere162
to the restraints than AlphaFold predictions, both for overall restraints and especially for163
long-range restraints (defined as sequence separation≥4 in this work), with median restraint164
recall increasing from 95.2% to 99.2% and 79.5% to 96.2%, respectively (Fig. 3c). The165
structures generated by RASP are interestingly more consistent with the deposited structures166
(Fig. 3d).167

NMR NOESY assignment pipeline FAAST168
With the ability of the RASP model to take restraints from a wide range of sources and169

evaluate their quality with pLDDT scores, it has the potential to accelerate NMR NOESY170
peak assignments. These assignments accumulate over assigning iterations - starting with171
only a few correctly identified restraints - and lead to refined structure predictions. By172
combining the RASP model with the ARIA6 assignment protocol, we built an iterative NMR173
analysis pipeline named FAAST (Fig. 4a). FAAST takes chemical shift and NOE peak lists as174
input and outputs peak assignment and structure ensembles. Each iteration involves175
subsampling the assigned restraints with an increasing ratio from the previous iteration as176
RASP input and generating an ensemble of 20 structures, which is then used for the177
subsequent NOE peak assignment. As pLDDT scores reflect the restraint quality, if the178
median pLDDT of the ensemble is lower than 80, we restart the second round of iteration179
with a lower restraint subsampling ratio to reduce restraints conflict (Fig. 4b). The protocol180
allows for a maximum of one restart, resulting in a total ensemble iteration number of 2 or 5.181
We benchmarked the FAAST pipeline on samples used in ARTINA. Out of the 100182

ARTINA samples, only 57 had both chemical shift and at least one 3D NOESY peak list183
deposited on BMRB and can be identified from the nmrstar files (Supplementary Table 2).184
We validated the NMR pipeline on all of the 57 samples. With a median time of 32 minutes185
(minimum and maximum time of 14 and 103 minutes), we were able to assign a median of186
1569 peaks per sample and a median peak number of 14.75 per residue (Fig. 4c). Furthermore,187
the average pairwise mutual C-alpha RMSD for the structure ensemble is 0.87 (Fig. 4d),188
indicating consistency between subsampled restraints and the resulted structure ensemble. We189
note here that pairwise RMSDs from the structure bundle in the initial iteration have a median190
1.99, higher than that from the final structures, indicating that the subsampling strategy is able191
to generate diversified structures, and that iterative refinement leads to convergence in192
structure ensemble.193
Moreover, the predicted structure is consistent with simultaneously assigned restraints as194

well as the NOE peaks. A median of 99.6% of the identified restraints match the highest195
confidence structure and the corresponding median is 99.0% for identified long-range196
restraints. In comparison, the model 1 structure and restraints from the PDB database conform197
on a median of 98.6% and 98.2% for all restraints and long-range restraints, respectively (Fig.198
4e, Supplementary Figure 6). The RMSD score and correlation score calculated by199
ANSURR26 and DP score by RPF27 indicate that the structures obtained by FAAST are of200
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comparable or better quality and consistency between predicted structure ensemble and the201
NOE peak lists, compared to corresponding PDB structures (Supplementary Figure 7).202
The predicted structures not only agree with the assigned peaks but are also consistent with203

the deposited restraint and structure data. 96.9% of the deposited restraints from PDB204
database align with the predicted structure ensemble. The median mean structure backbone205
RMSD against the deposited PDB model 1 is 0.739 Angstrom for structured regions defined206
by ARTINA. For the median scored structure in the structure ensemble, the backbone RMSD207
is 0.791 Angstrom against the PDB structure. Both are lower than that reported by ARTINA,208
in which the median mean structure backbone RMSD is 1.44A for all samples and 1.47A for209
the 57 samples with BMRB peak lists (Fig. 4f).210

Since only processed NOESY peak lists are available and raw peak lists absent for211
samples downloaded directly from BMRB, we validated the pipeline's performance on the212
2MRM case with raw NOESY peak lists. For this YgaP protein, much more restraints can be213
assigned from the raw peak lists than from the deposited NOE peak lists (14.19 per residue214
for raw lists compared to 4.93 for deposited ones). The number of assigned long-range215
restraints is also higher (366 for raw lists and 285 for deposited lists). Despite similar small216
mutual RMSDs, the predicted structures from raw peak lists and deposited peak lists have217
similar TM-scores to the deposited structure (0.862 and 0.857, respectively), even though the218
restraints assigned from the raw peak list are in better consistency than those assigned from219
deposited lists, with the former has a restraint recall of 98.2% and the latter of 94.9%. These220
results indicate that the pipeline doesn't require strict peak assignment, and we expect the raw221
peak lists from NOE spectra to provide better assignment in the FAAST pipeline than the222
deposited peaks.223

In summary, we have presented a fast NMR pipeline that provides accurate structure224
ensemble and highly consistent NOE peak assignments. Compared to previous methods, this225
pipeline is fast, and through restraints iteration and subsampling, can provide a structure226
ensemble plus a full set of NOE peak assignments. We expect this FAAST pipeline to be227
useful in the NOESY peak assignment and NMR structure determination since it performs228
well both with raw peak lists and deposited ones, even better with raw peak lists for the229
example case in this study.230

Discussion231

The question of how experimental results and AI methods can mutually benefit each other232
has been a topic of discussion, particularly with the emergence of advanced biochemical deep233
learning models. Here, we present the RASP model and the FAAST pipeline, wherein the234
former utilizes prior knowledge or restraints to improve in silico structure predictions, while235
the latter employs the former's flexible number restraint-taking capability and evaluation of236
restraint-structure quality to accelerate NOESY peak assignment. This model and pipeline237
underscore the self-consistency of the two questions as an AI method capable of being238
assisted by external knowledge has the potential to facilitate the acquisition and/or validation239
of that external knowledge in return.240
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Despite the application of the RASP model on NMR restraints, due to its improvement of241
structure prediction with abstract randomly sampled restraints, flexibility in restraint number242
and ability to evaluate restraints, we expect it to be useful for broad knowledge types, such as243
cross-linking or covalent labeling data as in AlphaLink, even abstract prior knowledge such244
as closeness of two residues regardless of the knowledge source, and in this way may help the245
generation of dynamic structures or states guided by restraints.246
While we have currently applied our standard pipeline in FAAST for benchmark,247

parameters for RASP and CCVP steps can be flexibly adjusted by users to accommodate their248
particular peak quality and expectations on peak-structure convergence. When benchmarking249
the pipeline, we did not employ parallel computation considering the possibly limited250
computational resources for users. However, both the RASP prediction and relaxation can be251
executed parallelly, which is expected to accelerate the process up to 20 times, which is the252
ensemble size, depending on the hardware available. Since the chemical shift and NOE peak253
assignment could be iteratively improved, merging the chemical shift and peak assignment254
pipelines is also expected to produce more comprehensive and accurate NMR protein255
assignment pipelines.256
Moreover, in this study we only used restraints generated from 3D NOESY spectra, but the257

current pipeline could be readily expanded to other NMR data types such as 4D NOESY258
spectra, as long as the experimental data could be formatted as pairwise restraints. More259
diversified forms of experimental data also exist that might provide information for different260
molecule types, such as NMR for protein-small molecule interactions. In addition to the261
conventional paired restraints, we also expect to incorporate additional information forms(e.g.262
torsion angle and PRE in NMR) into our structure prediction and to develop multimer and263
interface prediction models. These restrained structure prediction models hold the potential to264
introduce an alternative approach to restrained design.265

Methods266

Structure of RASP267
To incorporate restraint information, we developed the RASP model derived from the268

AlphaFold Evoformer and structure module. Four additional biases were added, which draw269
on restraint information: pair bias, MSA bias, IPA bias, and structure bias. To handle270
inter-residue restraints as edge information, the first 3 biases are introduced as edge biases to271
the Evoformer and IPA modules. This inter-residue information can be naturally converted272
into features of shape (����, ���� ,��ℎ������) , similar to the pair activation in the Evoformer273
module of the original model. Following the strategy of merging pair activation and MSA274
activation in the Evoformer module, an extra contact bias is added to the row-wise attention275
and the outer-product mean module by pair bias. The merging of inter-residue information276
and per-residue information also occurs in the Invariant Point Attention. The contact277
information is added to the IPA attention weight matrix as IPA bias in the same way as the278
MSA bias. In addition to the biases in the attention, an additional bias is introduced in the279
structure generation process. When generating the 3D structure, near-residue pairs identified280
by restraint information are moved into close distances, whereas the rest of the residue pairs281
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connected to the pairs are then moved accordingly by optimizing the inter-residue distance in282
the violation loss of AlphaFold. For simplicity and stability, only the RASP model with MSA283
bias and IPA bias are used for result analysis.284

Restraint loss and tasks285
All AlphaFold losses are retained, including the auxiliary loss from the Structure Module (a286

combination of averaged FAPE and torsion losses on the intermediate structures), averaged287
cross-entropy losses for distogram and masked MSA predictions, model confidence loss,288
experimentally resolved loss, and violation loss.289
We introduce restraint loss into the model training to reinforce the input restraint290

information in the final prediction. This loss comprises three components, each corresponding291
to a restraint-related task. The first task is a 0/1 classification task with a loss called contact292
classification loss. In this task, residue-wise distogram prediction of input restraints is293
computed, and reorganized into 2 classes (whether or not the contact exists) with cross294
entropy calculated using the ground truth label. The second task is to minimize the distance295
RMSD difference of input restraints using a loss called dRMSD contact loss. The last task is296
to make local structures similar to the ground truth structures, and takes a reduced version of297
backbone FAPE loss called contact FAPE loss, in which the errors of all atom positions are298
calculated in the local backbone frames of all residues in the restraints. The contact FAPE299
loss and dRMSD contact loss are weighted equally at 0.5 so that the three losses are of the300
same order of magnitude at the beginning of training. We clip the sum of the last two losses301
by 1.5 to avoid training clashes in abnormal training examples.302

Sampling strategy303
The model was trained using the PSP dataset17, which was previously constructed by us.304

The PSP dataset is a compilation of true and distilled protein structures, and it includes305
sequence, structure, template, and MSA data for each protein sequence. Training data for306
RASP are sampled with replacement from both the true structure and distillation datasets and307
mixed in a ratio of 1:3.308
To simulate the restraints observed in real experiments, the residue-wise distance map of309

the protein structure is computed using the pseudo-Cβ atom position of the residue, where the310
pseudo-Cβ atom is the Cα atom position for glycine and Cβ for other amino acids. The311
restraints are sampled based on a probability distribution that decreases with residue-wise312
distance. When the distance is <7 Angstrom(A), the probability is equal, and it decays313
exponentially from 7A to 10A. With this distribution, 90% of the sampled restraints are at a314
distance less than or equal to 8A, and 10% of the restraints are at a distance greater than or315
equal to 8A. This setting provides the model with a tolerance to restraints of poor quality. The316
number of restraints is also randomly sampled from a distribution with equal probability for317
16-128A and an exponential decay from 128A to 2048A. The expected value of this318
distribution is 115 Angstrom.319

NMR NOE assignment pipeline320
The assignment pipeline used in this study was based on ARIA 2.36 (Ambiguous Restraints321
for Iterative Assignment), which was developed with Python 2 by Institut Pasteur. The322
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FAAST assignment pipeline refered to part of the ARIA method, mainly the Calibration -323
CalculateBounds - ViolationAnalysis – Partially (CCVP for simplicity) functions, these324
functions perform assignment of peaks by comparing distance of restraints atom pairs in325
reference structure and theoretical distance calculated from intensity volume of the peaks. The326
original Python 2 code is first simplified and translated to Python 3 to cooperate with other327
parts of FAAST. Also, as the protein structure predicted by RASP does not distinguish328
equivariant hydrogens in amino acids, we collected equivariant groups of 20 common amino329
acids and redesigned the CCVP assignment algorithm based on distances between equivalent330
atomic groups according to the equivariant groups list.331

The initial assignment is performed by comparing the chemical shift and NOE lists.332
Most of the restraints generated by initial assignments are ambiguous restraints (ARs), that is,333
a single peak is assigned with more than one possibility. While some peaks are naturally334
unambiguous (URs). The quality of the initial URs could be very low, with more than half335
exceeding a distance of 6.0 Angstrom. Thus, for the initial assignment, we filtered out initial336
URs with distances larger than 12 Angstrom in the reference prediction without restraints. For337
each iteration, the URs are fed into RASP to generate 20 structures with the UR subsampling338
rate of 5%, 10%, or 20%, depending on the iteration step, and the structures are relaxed by339
OpenMM28. The structure bundle is then used to assign NOE peaks by CCPV.340

In the standard pipeline, the hyper-parameters used for restraint subsampling and CCVP341
are iteratively tightened, with a subsampling rate of 10% and partial assignment cumulative342
acceptance of 0.9 for the first iteration and 20% and 0.8 for the second iteration. ARs are343
transformed into URs iteratively. If after the second iteration, the median pLDDT score is344
lower than 80, a second round of iteration is initiated with subsampling and CCVP parameters345
of (5%, 0.9), (5%, 0.8), and (10%, 0.8). The entire process takes 2-5 structure generation346
iterations, and the number of iterations, as well as the iterating parameters, can be flexibly347
adjusted.348

Benchmarking data349
The benchmarking data for our method consist of three parts:350
PSP validation dataset: This dataset is the validation set of the PSP dataset and is used to351

evaluate the performance of the RASP model. The restraints in this dataset are sampled in the352
same way as during model training.353

MR dataset: For most NMR structure in RCSB PDB database29, restraint .mr files are354
also deposited. We selected all the NMR .mr files from the RCSB PDB database in which a)355
the restraint numbering followed the PDB numbering, and b) the restraint recall for356
long-range restraints of the structure predicted by AlphaFold is less than 90%. This resulted in357
182 samples.358

NMR dataset: The NMR dataset was obtained to evaluate the NMR FAAST protocol.359
We obtained the .star file (including the chemical shift and NOE list), .mr file (submitted360
restraints), and .pdb file (structure) for 100 sequences in the ARTINA dataset by crawling the361
BMRB30 and RCSB PDB databases. After filtering out the .star files with missing chemical362
shift or NOE lists, 57 sequences were available for testing our protocol.363
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Additionally, as the NOE list in .star files from the BMRB dataset before submission364
could be filtered, we used the raw NOE peak list for pdb id 2MRM to evaluate the peak365
quality.366

Evaluation methods367
We evaluated the structures and their consistency with restraints mainly with TM-score,368

root mean square deviation (RMSD), and restraint recall.369
TM-score22,23 is a metric for assessing the topological similarity of protein structures. This370

score falls between 0 and 1, and higher TM-score indicates higher similarity between the two371
compared proteins. We used the TM-align31 package downloaded from Zhang lab for372
calculation of TM-scores.373
In FAAST evaluation, two types of RMSD calculations are used. For measurement of374

mutual similarity within a structure ensemble, we calculate the pairwise Cα RMSD between375
all pairs of different structures within the bundle, and average them to obtain the pairwise376
mutual RMSD. For measurement of structure similarity between the deposited PDBs and377
processed structure ensemble, we follow the ARTINA3 evaluation and calculated the mean378
structure backbone atom RMSD for structured regions defined by ARTINA. All RMSD379
calculations are performed using PyMOL.380
Restraint recall is used to measure the consistency between a structure and a set of381

restraints. It is defined as the ratio between the number of rightly followed restraints by the382
structure and the number of ground truth restraints from PDB database, similar to the383
definition of recall in the machine learning field. In RASP evaluation, since the restraints are384
at residue level, we define a pairwise restraint to be followed by the structure as the distance385
between pseudo-Cβ atoms (see sampling strategy in method) in the residue pair is closer than386
8 Angstrom. In FAAST pipeline evaluation, since the NMR restraints are at atomic level, we387
define a pairwise restraint to be followed only when the closest hydrogen atomic distance in388
the two equivalent groups from the structure is lower than 6 Angstrom.389
We further evaluated the goodness-of-fit of our predicted structures by FAAST to the390

experimental data using correlation score, RMSD score, and DP score. ANSURR26 (v2.0.55)391
(https://github.com/nickjf/ANSURR2) was used to calculate the correlation score and RMSD392
score. ANSURR accesses the accuracy of query structures by comparing their local rigidity393
with the random coil index (RCI). Both correlation score and RMSD score fall between 0 and394
100, with higher scores indicating higher accuracy of structures in the aspects of secondary395
structure and overall rigidity, respectively. We re-referenced chemical shifts before396
calculating RCI by specifying "-r" as recommended and ran with "ansurr -p xxxx.pdb -s397
xxxx.str -r" for each structure.398
The discrimination power (DP) score is the final output of the NMR structure quality399

assessment web-server tool RPF27 (https://montelionelab.chem.rpi.edu/rpf/), implying the400
correctness of the overall fold of query structure. We ran RPFs in batch using "dpsimple"401
from ASDP (v2.3) (https://github.rpi.edu/RPIBioinformatics/ASDP_public).402

Data availability403
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The training set and PSP validation dataset are from our previous work and have been404
publicly available at http://ftp.cbi.pku.edu.cn/psp/. The PDB ID of the 182 samples used for405
restraints analysis in this work are available in Supplementary Table 1 and the PDB and406
restraint .mr files can be downloaded at RCSB PDB database(https://www.rcsb.org/). The407
information of the 57 samples used for FAAST pipeline benchmark are provided in408
Supplementary Table 2, and the structure .pdb files, restraint .mr files, and NMRSTAR .str409
files are available at RCSB PDB(https://www.rcsb.org/) and BMRB(https://bmrb.io/)410
databases, according to their PDB and BMRB entry IDs.411

Code Availability412

The RASP and FAAST code are available at our gitee repository under Apache 2.0 license.413
We additionally provide a colab notebook for ease of use.414
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Fig. 1. RASP model takes in restraints in different forms and outperforms AlphaFold with restraint512
assistance. a. A scheme of how the pairwise restraints can be taken into the model in the form of513
MSA, pair, IPA, and structure biases, adopted from the Evoformer and structure module in514
AlphaFold. b. More detailed illustration of the model structure with restraints treated as biases in515
the Evoformer block (left) and structure block (right). For the PSP validation dataset, RASP with a516
fixed number of randomly sampled input restraints outperforms AlphaFold on c. the TM-score517
between the PDB structure and predicted structure and d. on restraint recall.518
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Fig. 2. RASP is robust against restraint number and the confidence score can be used to evaluate519
restraint quality. Errorbars represent standard deviations for each group of data for all applicable520
figures. a.The TM-score of predicted structure by RASP steadily increases over both AlphaFold521
and MEGA-Fold, with increasing number of input restraints. b. Meanwhile regardless of the522
restraint number, the restraint recall is steady above that with no restraints applied for AlphaFold,523
MEGA-Fold, and RASP with zero restraints. The restraint recall for those without input restraints524
is calculated with a fixed number of randomly sampled contacts by the same sampling strategy as525
input restraints. c. The pLDDT with different restraints number and information quality correlates526
well with the real TM-score of the predicted structure and deposited PDB structure, with an527
overall correlation coefficient of 0.68. d. The distribution of correlation coefficient between the528
predicted pLDDT confidence and TM-score with different number of restraints in use shows529
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consistency between predicted and real structure quality. The distribution is drawn for validation530
samples with at least one bad prediction with TM-score<0.8, since we are more interested in the531
model ability to distinguish bad or inefficient restraints information from the good ones than to tell532
the best from a bunch of very good structures with efficient restraints. The pLDDT confidence and533
TM-score are largely positively correlated with a median of 0.62, suggesting that pLDDT score534
can be regarded as an indicator how much additional information input restraints provide. e. The535
TM-score decreases with decreasing percentage of good restraints, when total input restraints536
number is fixed at 20. f. The pLDDT confidence still correlates well with the TM-scores when bad537
restraints are present, with an overall correlation coefficient of 0.72, demonstrating the RASP538
model ability in telling bad restraint information and reporting this at the same time.539
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Fig. 3. Input restraints can assist RASP prediction for multi-domain proteins, few-MSA proteins,540
and NMR structure prediction. a. For multi-domain structure 6XMV, both AlphaFold and541
MEGA-fold provide inaccurate relative domain positions, however with restraints RASP is able to542
fix the inter-domain structure. b. For 7NBV with few MSAs, restraint assisted prediction by543
RASP helps to improve the structure prediction with more accurate secondary structure and544
relative position between the helices and beta-sheets The structures are presented separately545
because the RMSDs for AlphaFold and MEGA-Fold predictions are higher than 10 Angstrom546
(19.0 and 15.9, respectively) and are hard to align to the PDB structure. c. With varied number of547
deposited .mr restraints provided by the PDB databank, NMR structures that fail for AlphaFold548
prediction can be fixed in terms of overall and long-range (sequence separation≥4) restraint recall549
and d. TM-score that measures the similarity between the predicted structure and the deposited550
ones.551
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Fig. 4. The FAAST NOESY assignment pipeline provides fast and accurate structure ensemble552
and NOE peak assignment at the same time. a. The schematic figure of the FAAST workflow. b.553
The current assignment pipeline and parameters applied. In each iteration block, the first554
parameter is the percentage of input restraints subsampled for RASP structure prediction in order555
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to construct a structure bundle, the second parameter is the cumulative probability to rule out556
ambiguous restraints in assignment, which is also adjustable in ARIA. c. The distribution for557
number of NOE assignments per residue for the 57 ARTINA samples. The median number is558
around 15 with peak lists from the BMRB database. d. The distribution for pairwise mutual559
RMSD for C-alpha atoms of the structure bundle. The median pairwise RMSD is 0.87, indicating560
the predicted structures within each bundle are close to each other. e. The restraint recall is561
compared between the FAAST structure with the identified restraints and the deposited PDB with562
the deposited NMR restraints. The solved FAAST structures better follow the NMR restraints than563
the PDBs. f. The FAAST structures also exhibit lower backbone RMSD than those reported by564
ARTINA.565
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