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ABSTRACT

Combinatorial patterns of epigenetic features reflect transcriptional states and functions
of genomic regions. While many epigenetic features have correlated relationships, most
existing data normalization approaches analyze each feature independently. Such
strategies may distort relationships between functionally correlated epigenetic features
and hinder biological interpretation. We present a novel approach named JMnorm that
simultaneously normalizes multiple epigenetic features across cell types, species, and
experimental conditions by leveraging information from partially correlated epigenetic
features. We demonstrate that JMnorm-normalized data can better preserve cross-
epigenetic-feature correlations across different cell types and enhance consistency
between biological replicates than data normalized by other methods. Additionally, we
show that JMnorm-normalized data can consistently improve the performance of
various downstream analyses, which include candidate cis-regulatory element
clustering, cross-cell-type gene expression prediction, detection of transcription factor
binding and changes upon perturbations. These findings suggest that JMnorm
effectively minimizes technical noise while preserving true biologically significant
relationships between epigenetic datasets. We anticipate that JMnorm will enhance
integrative and comparative epigenomics.
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GRAPHICAL ABSTRACT

Normalize each epigenetic feature independently
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INTRODUCTION

Epigenetic features, including DNA accessibility and posttranslational histone modifications, are
thought to accurately reflect transcriptional states and help infer mechanistic insights about the
regulation of gene expression in cell-type-specific contexts. Development of high-throughput
sequencing techniques for genome interrogation led to the generation of hundreds of epigenetic
datasets in different cell types and under various physiological conditions. Many large-scale data
consortiums, such as the Encyclopedia of DNA Elements (ENCODE) and the Valldated
Systematic IntegratiON of hematopoietic epigenomes (VISION) projects, have utilized
epigenetic features to identify candidate cis-regulatory elements (cCREs) (1-4). Follow-up
studies characterized functional dynamics of epigenetic features across different cell types and
conditions to elucidate their effects on transcriptional regulation (5-10). Increased sensitivity of
the high-throughput sequencing methods results in amplified technical noise that can hinder the
ability to extract biologically meaningful information. Therefore, to precisely quantify and
compare epigenetic features across cell types, species, and experimental conditions, it is essential
to develop robust epigenomic data normalization techniques to mitigate technical biases (11).

Many normalization methods have been developed for comparative analyses of high-throughput
sequencing data (Supplementary Table 1). The two most widely used and easily implementable
normalization methods are total library size normalization (TSnorm) and quantile normalization
(QTnorm). TSnorm scales the signal of datasets to be compared based on the ratio of their total
library sizes (12, 13), whereas QTnorm transforms and equalizes signal distribution of each
dataset relative to a reference distribution (14). The advantage of TSnorm is in its simplicity as it
assumes that the only source of technical variation between datasets lies in differences in their
sequencing read depths. QTnorm, on the other hand, can effectively remove complex technical
biases by assuming different datasets share not only the same global mean but also the same
global distribution. These assumptions hold true for certain types of high-throughput sequencing
data such as bulk cell RNA-seq, where the majority of true biological signals are similar in
different data sets. However, they are likely incorrect for epigenetic datasets with substantial
variability in the number of peaks and signal intensities across different cell types (1, 2) or
experimental conditions (15), especially for epigenetic features with prominent signals at the
cell-type-specific enhancers (1, 2). Consequently, in comparative analyses of data with unequal
number of biological peaks between cell types or conditions, both normalization methods tend to
generate false positive or negative peak signals. Moreover, when comparing datasets produced
under different treatment conditions inducing global epigenomic effects, QTnorm often distorts
normalized signals relative to the true signals.

Other more specialized normalization methods, for example MAnorm and S3norm and their
latest versions (16—19), are more adept for analysis of epigenetic datasets. These methods aim to
eliminate biases due to differences in both sequencing depths and signal-to-noise ratios, which
often arise from factors such as variations in antibody efficiency during ChIP-seq experiments
(20). They utilize information from shared peak regions without/with common background
regions and assume that the true signals in these regions remain consistent across different
datasets and thereby, can serve as reliable anchors for data normalization. However, the simple
scaling factors or transformation models employed by these methods might not be adequate for
addressing all technical biases, especially when they exhibit complex patterns, which are often
observed in studies integrating datasets from multiple sources (3, 21). Lastly, some methods can



effectively model diverse signal distributions of epigenetic data by converting signals into ranks.
However, these methods result in a loss of quantitative information (22).

Another significant drawback of existing approaches is that they analyze each epigenetic feature
independently. These approaches may distort relationships between functionally correlated
epigenetic features and hinder biological interpretation. Combinatorial patterns of multiple
epigenetic features, known as epigenetic states, have been widely used for functional annotation
of cCRE:s in different cell types, species, and experimental conditions (3, 23-28). Recent studies
have shown that, while regulatory regions with specific epigenetic states may vary based on
cellular and experimental contexts, cross-feature combinatorial patterns remain relatively
conserved (4). Therefore, a normalization method that utilizes the information from functionally
correlated epigenetic features could yield more accurate and biologically relevant post-
normalization signals, enabling more meaningful comparison and integration of epigenetic data
across conditions.

Here, we present a novel approach called Joint Multi-feature normalization (JMnorm) for
simultaneous normalization of multiple epigenetic features across cell types, species, and
experimental conditions by leveraging information from functionally correlated features. We
demonstrate JMnorm’s superior performance in preserving cross-feature correlations and
improving consistency between biological replicates, as well as its better versatility and utility
for various genomic applications relative to other methods. Additionally, JMnorm can increase
consistency between normalized epigenetic features and orthogonal datasets, which we robustly
validated across diverse types of epigenetic features, including transcription factor (TF) binding
ChIP-seq and DNase-seq data.

MATERIALS AND METHODS

Data collection and preprocessing

We obtained epigenetic datasets primarily from two databases: the VISION (3, 4, 21, 29-32) and
the EpiMAP repository (33, 34). For VISION datasets, we downloaded bigWig files containing
average read counts for seven chromatin features (H3K4me3, H3K4mel, H3K27ac, H3K36me3,
H3K27me3, H3K9me3, ATAC-seq) from 9 human and 16 mouse hematopoietic cell types. For
EpiMAP datasets, we downloaded bigWig files containing average -log10(p-value) signal tracks
for seven chromatin features (H3K4me3, H3K4mel, H3K27ac, H3K36me3, H3K27me3, CTCF
ChIP-seq, and DNase-seq) from 24 human cell type groups. Since EpiMAP signal tracks were
originally mapped to the hg19 reference genome, we used the CrossMap package (35) with
default settings to lift over these files to the hg38 reference genome. All other datasets used in
this study were mapped to hg38. RNA-seq data for different cell types were also downloaded
from the VISION project (log2TPM, quantile normalized) and the EpiMAP repository
(log2FPKM, quantile normalized). The topologically associating domains (TAD) boundaries
were downloaded from the VISION project website under the "Hi-C" tab (36), and YY1 peaks
(bed format) were downloaded from the Cistrome DB (37-39). The links to the downloaded files
and the Cistrome DB sample ID list of the downloaded YY1 peak files are provided in
Supplementary Table 1. The DNase-seq data to obtain the number of DNase I Hypersensitive
Sites (DHSs) in different cell types were downloaded from the Meuleman 2020 study (40, 41).



To prepare data for normalization and downstream analyses, we first acquired the epigenomic
signal matrices. This was accomplished by calculating the average signals for each chromatin
feature at each ENCODE cCRE region (2) in every biological replicate of each cell type using
the bigWigAverageOverBed script from the UCSC Genome Browser utilities (42).
Subsequently, we generated a reference signal matrix by combining the average signal for each
chromatin feature and used the matrix for all datasets to normalize against. It is important to note
that not all cell types had datasets for all epigenetic features. The details and links to all available
datasets in both species are provided in Supplementary Table 1.

Generation of reference signal matrix

To normalize data across multiple cell types, we used the average signal as reference for all cell
types to normalize against in our study. For each epigenetic feature, we first collected all datasets
for that feature in all cell types, and then computed the average signals at each cCRE region
across these cell types. The average signal vector for all cCREs was used as a reference signal
vector for the specific feature. This process was performed for all features, and the resulting
outputs were combined to generate the reference signal matrix.

To improve the cross-feature comparability and interpretability, we further equalized sequencing
depths and signal-to-noise ratios of different features in the reference matrix using S3norm (17).
Instead of using S3norm's default mode, which learns an exponential transformation model from
common peak regions and common background regions of two signal vectors, we employed its
cross-feature normalization mode. This mode leverages peak regions and background regions of
each signal vector to learn a transformation model. The reason for this choice is that when
normalizing two signal vectors of different epigenetic features, the assumption that common
peak regions represent housekeeping epigenetic events with similar signal levels is not valid,
particularly for features with opposing functions such as H3K27ac and H3K9me3. Specifically,
we used the ratio between the top mean signal of 99% quantile of cCREs and the overall mean of
all cCREs for each feature to learn the S3norm transformation model. After the normalization,
the sequencing depth and the signal-to-noise ratios are equalized across all features in the
reference matrix. This reference signal matrix is then used as the reference signal matrix for all
cell types to normalize against in downstream analyses.

The details about JMnorm

JMnorm consists of four key steps (Figure 1). In the first step, it transforms the signal matrix into
principal component analysis (PCA) space to consolidate correlated components across the
signal vectors of different epigenetic features into the same PCA dimension. To achieve this,
JMnorm learns a PCA transformation model from the reference signal matrix and then applies it
to transform the target signal matrices. This ensures the signal matrices of all target cell types
can be transferred to the same reference PCA spaces. Moreover, the PCA model captures the
cross-feature correlation information from the reference signal matrix, which is used and
preserved throughout the subsequent steps.

Previous studies have demonstrated that there are reproducible combinatorial patterns across
various chromatin features in different cell types or species, commonly referred to as epigenetic
states, which play a role in transcriptional regulation. In the second step, we leveraged this prior



knowledge by first clustering the cCREs into distinct groups based on the reference signal matrix
(reference clusters). The reference clusters were generated using K-means clustering based on
the reference signal matrix in PCA space. The number of reference clusters (K) was
automatically determined by performing hierarchical clustering on a subset of data (20,000
cCREs by default), followed by the DynamicTreeCut method (cutreeDynamic function with the
following parameter settings: method='hybrid' and deepSplit=2) (43). The resulting number of
DynamicTreeCut clusters was then utilized as the K for K-means clustering on the entire
reference signal matrix. Under the assumption that these reference clusters capture the conserved
cross-feature patterns of distinct cCRE groups across different cell types, we assigned each
cCRE, based on the target signal matrix, to one of the reference clusters. To achieve that, the
target PCA signal matrix was first normalized to the reference PCA signal matrix using quantile
normalization (initial QTnorm) to mitigate complex technical biases that could result in incorrect
cCRE assignments. The Euclidean distance between each cCRE's target signal vector and the
mean signal vector of every reference cluster was then calculated in the PCA space. Each cCRE
was assigned to the reference cluster with the smallest Euclidean distance. It is important to note
that the initial QTnorm step might introduce noise signals at different PCA space in the data.
However, considering that different principal components (PCs) are independent, and the noise
signal is expected to randomly appear across different PCs for each cCRE, we reasoned that the
majority of PCs would still contain accurate signals, enabling correct cCRE assignment.

The third step of JMnorm involves normalizing the target signal matrix against the reference
signal matrix within each cluster in the PCA space. This was achieved by using QTnorm to
normalize each principal component separately, removing both simple and complex technical
biases that may be present in the target signal matrix. Here, we assumed that cCREs within the
same cluster shared the same epigenetic state in both reference and target, and thus had the same
signal distributions. However, since the number of cCREs within each cluster could be different
between reference and target, they might still have different global distributions. The cCRE
clustering followed by within-cluster QTnorm is one of the key distinctions between JMnorm
and traditional QTnorm, effectively addressing the major limitation of QTnorm, which forces all
cell types to have identical global signal distributions after normalization.

In the fourth step, we reconstructed the normalized target signal matrix in the original signal
space. To accomplish that, a dot product was performed between the normalized target PCA
signal matrix and the transposed PCA rotation matrix that was learned in the first step.

Quantification of the similarity of cross-feature correlations

We assessed the ability of various methods to preserve and transfer cross-feature correlation
information from reference signal matrices to post-normalization signal matrices of target cell
types. Specifically, we calculated the cross-feature correlation matrix for each post-normalization
signal matrix of the target cell types and the original reference signal matrix. We then computed
the mean squared error (MSE) between each target cell type's correlation matrix and the
reference correlation matrix. Lower MSE values indicate the normalization method can better
preserve and transfer cross-feature correlation information from the reference signal matrix to the
post-normalization signal matrices of the target cell types. For the cross-species normalization
comparison (Figure 2F), S3norm's cross-feature mode was employed for S3norm normalization
that only uses the peak regions and background regions from the reference and target datasets in



two species to learn the transformation model. Conversely, MAnorm was excluded because it
requires the common peak regions between reference and target datasets to learn its
transformation model, which was not available for cross-species normalization.

Quantification of the preservation of combinatorial patterns across different cell types

To evaluate the preservation of combinatorial patterns for different epigenetic features, we first
combined the signal matrices of different cell types and applied a K-means clustering method to
group the data from different cell types into distinct clusters. To ensure the robustness of this
analysis, we used various numbers of clusters (K = 20, 30, 40, 50) in the K-means clustering
step. We then quantified the mixing of various cell types in the clustering results using the
average silhouette width (ASW), a metric ranging from 0 to 1 (44). Lower ASW values indicate
a better mixing of data points across different cell types within each cluster relative to the
between cluster distance.

To measure the proportion of combinatorial patterns that are robustly identified across all cell
types, we first performed K-means clustering (K = 30) for each cell type independently. Next, we
generated the mean signal vector for each cluster in every cell type and combined all mean signal
vectors into a single matrix. We then clustered the mean signal vectors using a second round of
K-means clustering (K = 30) (Figure 3D). The output clusters containing at least one mean signal
vector from all cell types were defined as robust clusters. We used the proportion of the robust
clusters to evaluate different normalization methods. A higher proportion of robust clusters
indicates that the normalization method is more effective in generating consistent combinatorial
patterns across different cell types. We repeated this process multiple times with different
random seeds to ensure the robustness of our conclusions.

Cross-cell type RNA-seq predictions

Integration of various epigenetic features, such as DNA accessibility and histone modifications,
has been demonstrated to be an effective approach for prediction of gene expression levels. Since
RNA-seq data is independent from epigenomic data, we hypothesized that properly normalized
epigenetic signal matrices could better preserve the combinatorial patterns of epigenetic events
across different cell types, thus enhancing the transferability of RNA-seq prediction models
based on these combinatorial patterns and improving the accuracy of gene expression predictions
across different cell types. Following the model design proposed by Xiang et al. (3), we used the
average signals of eight epigenetic features at both proximal regions (TSS +/- 1kb) and distal
cCRE regions (TSS +/- 500kb, excluding proximal regions) for all genes as predictors to train
regression models for RNA-seq log2 transcripts per million (log2TPM) predictions. The RNA-
seq signals for different cell types were normalized by QTnorm against the average RNA-seq
log2TPM across all cell types. To ensure the robustness of our evaluation, we tested three
different models: a linear regression model (LM), a gradient boosting regression model (GBM)
(45), and a linear regression model with gene grouping (LM-gene-grouping) (3). For gene
grouping, we divided the gene set into four groups based on their average expression levels and
standard deviations: (1) consistently low (mean < 0.5, sd < 0.2), (2) differentially low (mean <
0.5, sd >=0.2), (3) differentially high (mean >= 0.5, sd >= 0.2), and (4) consistently high
expression (mean >= (.5, sd < 0.2) across cell types. For each evaluation run, we randomly
selected 80% of protein-coding genes in one training cell type to train the model, then used the



remaining 20% of protein-coding genes in another testing cell type for model evaluation. Model
performance was evaluated using R2, with higher R? values indicating more accurate cross-cell

type RNA-seq predictions. We repeated this comparison multiple times with different random
seeds to ensure the robustness of our conclusions.

Comparison of the post-normalization signal consistency between biological replicates

We reasoned that improved normalized signals would result in increased consistency between
biological replicates. Therefore, we first independently normalized the signals of different
replicates. Then, we employed two metrics to quantify signal consistency: (1) the R? values,
which were computed between the post-normalization signal vectors of each pair of biological
replicates, and (2) the Jaccard index values, which were calculated between the peak-calling
results derived from the post-normalization signals of different replicates. Higher values for both
R? and Jaccard indexes indicate better post-normalization signal consistency.

Peak calling from cCRE signal matrices

To compare normalization methods using peak calling results for CTCF ChIP-seq and DNase-
seq, we employed an iterative Z-score-based approach, akin to the hotspot peak calling method
(46, 47), to call peaks from post-normalization cCRE signal matrices. For a specific epigenetic
feature in a given cell type, we first converted normalized signals in all cCREs into Z-scores. We
then selected cCREs with false discovery rate (FDR) adjusted p-values >= 0.1 to establish a
second-round background model. Next, we recalculated the Z-scores and corresponding p-values
for all cCREs using this updated background model. The cCREs with FDR adjusted p-values <
0.1 were used as the output peak list for that chromatin feature in each cell type, which was
ultimately utilized in downstream evaluations.

Given that the number of peaks can vary significantly depending on statistical thresholds and
methods, we applied a non-parametric, rank-based method to identify the same number of CTCF
peaks for each cell type across different normalization methods. Specifically, we first used the
iterative Z-score-based strategy to call CTCF peaks for a specific cell type across different
normalization methods. The number of peaks (Nmax) for a specific cell type was determined
based on the maximal peak count observed across the methods. Then, for different normalization
methods, we used the top Nmax cCCREs based on the normalized CTCF signals as the CTCF peaks
for the specific cell type.

Differential peak calling from cCRE signal matrices

As described in the “Peak calling from cCRE signal matrices” section, for different
normalization methods, we applied the rank-based method to identify the same number of
differential peaks for DNase-seq datasets in different cell-types and glucocorticoid receptor (GR,
gene symbol NR3C1) ChlIP-seq datasets in A549 cell type with and without dexamethasone
(Dex) treatment. Specifically, the top N peaks based on log2 fold change of DNase-seq signals in
a pair of cell-types or an absolute value of log2 fold change between Dex-treated and untreated
control conditions were defined as differential peaks and used for the downstream differential
peak analysis.



Comparison between CTCF peaks and orthogonal data

To evaluate the ability of normalized signals to accurately capture true biological events, we
compared CTCF peak sets derived from different post-normalization CTCF signal vectors with
orthogonal data sets. For different normalization methods, the same number of CTCF peaks was
generated using the iterative Z-score-based peak calling followed by a rank-based method, as
detailed in the “Peak calling from cCRE signal matrices” section. We then evaluated CTCF
peaks using three types of orthogonal data: (1) YY1 (CTCF cofactor) peak (48), (2) TAD
boundaries (49-51), and (3) the CTCF binding site motifs (52, 53).

We first compared the enrichment of CTCF peaks in YY1 peak regions. We reasoned that true
CTCEF peaks should exhibit greater enrichment in functionally related regions. Specifically, we
divided the CTCF peaks into three distinct groups: (1) CTCF peaks shared by QTnorm /
Harmony and JMnorm methods, (2) CTCF peaks uniquely called from JMnorm data, (3) CTCF
peaks uniquely called from QTnorm / Harmony data. The enrichments were calculated as
follows:

YY1RegionSize
expcrcreyyr = ObsCTCF X P
i obs +1
enrichmentcrcpayy; = — ¥t
expcrcrayy1tl

where (0bsCTCF) represents the number of CTCF peaks in each group, (YY1RegionSize)
represents the total number of base-pairs in the genome covered by YY1 peaks, (GenomeSize)
represents the hg38 genome size, (obscrcrsyy1) represents the observed number of CTCF peaks
that intersect with YY1 peak regions by at least one base-pair. Due to the limited availability of
YY1 peak datasets in some cell types, we pooled available YY1 peaks creating a single unified
YY1 peak set for the YY1-CTCF peak intersection enrichment comparisons. Similarly, due to
the availability issue for TAD boundary sets, we employed a unified TAD boundary region set
for TAD boundary-CTCF peak intersection enrichment comparisons (Supplementary Table 1).

We then compared the proportion of CTCF peaks containing CTCF motif (Jaspar ID:
MAO0139.1) for the data normalized by different normalization methods. We used FIMO (54) to
assess whether CTCF peak contained CTCF motif using a g-value threshold of <= 1e-03 for
motif identification. The CTCF peak set was partitioned into the same three groups as described
earlier for the CTCF-YY1 enrichment comparison.

Clustering cCRE based on cross-cell type DNase-seq patterns

We employed the Snapshot package with default settings to cluster cCREs based on DNase-seq
signal patterns across different cell types. Snapshot was chosen for its ability to efficiently
identify smaller clusters, automatically determine the ideal cluster number, and consider signal
correlations across cell types when grouping cCREs into separate clusters using an indexing
strategy (8). To quantify the signal-to-noise ratios for the Snapshot output clusters, we defined
"Signal" as the top quantile (100%, 90%, 80%, 70%, 60%) signal and "Noise" as the bottom
quantile (10%, 20%, 30%, 40%, 50%) signal in the meta-cluster heatmap. We calculated the
signal-to-noise ratio using different combinations of "Signal" and "Noise" and summarized the



results in Figure 6E. Statistical significance of the differences was calculated using the Paired
Wilcoxon test.

Identification of cell-type-specific DHSs

For each cell type within a cell type pair, we initially identified 10,000 cell-type-specific DHSs
from the post-normalization DNase-seq signal vectors using different normalization methods,
following the strategy detailed in the "Differential peak calling from cCRE signal matrices"
section. Then, using the bedtools intersect function with default parameters (55), these cell-type-
specific DHSs were categorized into three groups: JMnorm-uniquely identified, QTnorm-
uniquely identified, and those shared by both JMnorm and QTnorm methods.

Identification of differential glucocorticoid receptor (GR) ChIP-seq peaks after
dexamethasone (Dex) treatment

For GR motif analyses and comparison of human phenotype term enrichments, we used the top
2,000 differential peaks, identified based on the absolute value of the log2 fold changes between
GR signals in A549 cells with and without Dex treatment. For different normalization methods,
we analyzed the same number of differential GR ChIP-seq peaks. We computed GR motif
(JASPAR ID: MAO113.1) scores in differential peaks as the -log10 p-value using the FIMO (54)
motif scanning algorithm. The method for calculating the human phenotype term enrichment
score is described in the "Human Phenotype term enrichment by GREAT analysis" section.

Human Phenotype term enrichment by GREAT analysis

To quantify enrichment of human phenotype terms for genes associated with distinct peak sets
including cell-type-specific DHS and differential GR peaks post-Dex treatment, we utilized the
rGREAT package (56) (57). In this study, proximal regions were defined as TSS -5 kb to +1 kb,
and distal regions were defined as proximal regions + 100 kb. To focus on more specific terms,
we excluded human phenotype terms linked with more than 1,000 genes to eliminate overly
general associations.

To compare the enrichment of human phenotype terms in cell-type-specific DHSs or differential
GR ChIP-seq peaks after Dex treatment, we assumed that DHSs that are shared across
normalization methods or differential GR ChIP-seq peaks that are identified using TSnorm_cbg
corresponded to epigenetic signals representing true biological events. We identified the top 30
enriched human phenotype terms for these shared DHSs or differential GR ChIP-seq peaks.
Next, for each normalization method, we quantified enrichments of the top 30 terms in cell-type-
specific DHSs uniquely identified by each method and used these enrichments as a metric for
method comparisons. Since relatively few differential GR peaks were unique to different
normalization methods impairing the reliability of significance calculation of the human
phenotype term enrichments, we compared performance of the normalization methods using
enrichment of the top 30 terms in all differential GR peaks identified by each method instead.

Using Harmony for cross-cell type multi-feature batch corrections

The Harmony method (58), originally designed for single-cell batch correction, transforms the
input signal matrix to PCA space for batch correction. During this process, it modifies the signal
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matrices of both reference and target cell types in each run. As a result, in order to correct
technical biases for signal matrices across cell types against a single reference matrix, both
reference matrix and matrices for all cell types would need to be included in a single Harmony
run, which would consume an excessive amount of computational resources. To address this
issue, for each Harmony run, we assigned five times greater weight to the reference signal matrix
than to the signal matrix of an individual target cell type. We reasoned that potential technical
signal biases of the reference signal matrix would outweigh the biases of individual target cell
type. This approach allowed for batch correction of data across all cell types against the same
reference signal matrix without requiring the inclusion of all cell types’ data in a single Harmony
run.

RESULTS

JMnorm overview

The goal of JMnorm is to simultaneously normalize multiple epigenetic features across cell
types, species, or experimental conditions by leveraging information from functionally correlated
features. The input for JMnorm is signal matrices comprising data for multiple epigenetic
features for a desirable number of regulatory regions in two or more cell types or experimental
conditions (reference and target cell types or conditions). To develop the method, we utilized
human and mouse ENCODE cCREs (2), comprehensive collections of genome-wide regulatory
elements generated in multiple cell types in the two species.

The method consists of four key steps (Figure 1). In step 1, orthogonal transformation, JMnorm
converts the correlated components of multi-dimensional epigenetic signal matrices for both
reference and target cCREs into mutually independent PCA dimensions. This process generates
corresponding PCA matrices, effectively preserving the relationships between functionally
related epigenetic features (Figure 1A) (59). In the subsequent steps 2 and 3, JMnorm performs
data normalization within the PCA space, which simultaneously normalizes all features and
transfers the cross-feature patterns from the reference signal matrix to the post-normalization
signal matrices of the target cell types or conditions. We anticipate that this strategy can improve
the performance of downstream prediction models that utilize the cross-feature patterns for tasks
such as gene expression prediction (60—62), enhancer-promoter interaction prediction (63—65), or
epigenomic data imputation (66—70), especially for cross-cell-type predictions. Specifically, in
step 2, cCRE clustering, JMnorm first clusters (N) cCREs based on the reference PCA matrix
into (M) reference clusters (M << N). It then assigns each of the individual target cCREs into the
nearest reference cluster based on signal similarity in the PCA space (Figure 1B). In step 3,
within-cluster normalization, JMnorm normalizes the target cCRE signals (PCA-transformed) to
the corresponding reference cCRE signals (PCA-transformed) using quantile normalization
within each cluster (Figure 1C). When performing cCRE clustering (step 2) followed by within-
cluster QTnorm (step 3), we assume that (1) the combinatorial patterns of epigenetic features are
conserved across cell types or conditions and (2) within each cCRE cluster, the signal
distributions of PCA matrices are also conserved across cell types or conditions. It is important
to note that the number of target cCREs assigned to each reference cluster can vary for different
target datasets, thereby resulting in different global signal distributions across cell types or
conditions after normalization. Therefore, this strategy can circumvent potential biases inherent
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in QTnorm, which forces identical global signal distributions across diverse datasets. Once steps
1-3 are completed, J]Mnorm transforms the normalized target signal matrix from the PCA space
back to the original signal space in step 4 (Figure 1D). The details of these steps can be found in
the Materials and Methods section.

Evaluation of preservation of cross-feature correlation

We evaluated the performance of JMnorm relative to a panel of other normalization methods
(TSnorm, MAnorm, S3norm, QTnorm), which are frequently applied as initial data
normalization strategies for various downstream analyses. We also included Harmony, a widely
used batch correction method for single-cell data. Similar to JMnorm, Harmony utilizes PCA
transformation to harness information from correlated features within multi-dimensional data
(58).

The first evaluation was to compare the performance of JMnorm and other normalization
methods for their ability to preserve the cross-feature correlation among different epigenetic
features across multiple cell types. While it is possible to use data from one particular cell type as
a reference for normalizing data from other cell types, this approach could introduce biases from
the data of the chosen cell type. To circumvent such potential biases, we generated a reference
dataset by averaging each epigenetic feature across all cell types. Next, we used the selected
methods to normalize raw signal matrices of target cell types against the reference signal matrix.
The resulting post-normalization signal matrices were then used to compute the cross-feature
correlation matrices.

We first inspected the cross-feature correlation matrices derived from the reference, the raw data,
and JMnorm-normalized data from neutrophil (NEU) cells, respectively (Figure 2A, B, and C).
We observed that the JMnorm-derived correlation matrix was more similar to the reference
correlation matrix than to the correlation matrix of the raw data. Specifically, correlation
matrices derived from both JMnorm and reference signal matrices exhibited strong positive
correlations between features within the active chromatin feature group (H3K27ac, H3K4me3,
H3K4mel, ATAC-seq) and the repressed chromatin feature group (H3K27me3 and H3K9me3)
(Figure 2A and C). Conversely, we observed a substantial negative correlation between features
in active and repressed chromatin groups (Figure 2A and C) (1, 2). In contrast, the
aforementioned correlation relationships are much weaker in the raw data (Figure 2B), likely due
to the technical biases in the raw data. These results suggest that JMnorm is effective in reducing
technical biases and preserving and transferring the cross-feature correlation information, which
is better aligned with our prior knowledge, from the reference to the target cell type.

We then compared the panel of methods by measuring the MSEs between cross-feature
correlation matrices of the normalized data and the reference across different cell types.
JMnorm-derived correlation matrices better preserved the information in the reference
correlation matrix than those derived from other methods, as indicated by its significantly lower
MSEs (Paired Wilcoxon test between JMnorm and the second-best performing method, p-value
= 3.81e-06; Figure 2D).

Furthermore, the superior performance of JMnorm also holds true in cross-species
normalizations, when mouse cCRE signal matrices of different cell types were normalized

12



against the human reference signal matrix. Specifically, JMnorm produced significantly lower
MSEs than other methods (Paired Wilcoxon test between JMnorm and the second-best
performing method, p-value = 2.13e-04) when comparing the correlation matrices of each mouse
target cell type to the human reference (Figure 2E).

Since experimental data for large panels of epigenetic features might not always be available, we
also assessed JMnorm’s performance with fewer features. As demonstrated in Supplementary
Figure 1, JMnorm can effectively preserve and transfer cross-feature correlation information
when normalizing datasets containing as few as two epigenetic features.

Evaluation of consistency of cross-feature combinatorial patterns across cell types

Combinatorial patterns of epigenetic features, called epigenetic states, reflect functionally
relevant interactions between DNA accessibility, histone modifications, and transcription factor
binding under specific cellular and experimental conditions. They are often used to accurately
infer transcriptional states and interpret the function of non-coding genetic variants (2, 23-26,
60—62). Previous studies have shown that epigenetic states are maintained across different cell
types or even species (4). With the expanding variety of epigenetic features and functional
element annotations along with the growth in profiled cell types, there is a growing need for
normalization methods that can effectively integrate and preserve recurring combinatorial
patterns within the epigenetic states across diverse cell types.

We first compared the panel of methods for their ability to harmonize signal matrices of various
epigenetic features across multiple cell types. A better normalization method should more
consistently preserve common combinatorial patterns in different cell types and thus allow better
data integration across cell types. To quantify the degree of preservation of common
combinatorial patterns, we first pooled cCRE signal matrices of seven epigenetic features from
each pair of different cell types and identified the combinatorial patterns by clustering cCREs
using K-means (K = 30, 20, 40, 50). We then measured the ASW score, which ranges from 0 to
1 and a lower score indicates better sharing of combinatorial patterns between cell types (44). As
shown in Figure 3A and Supplementary Figure 2, JMnorm has significantly lower ASW scores
than other methods (Paired Wilcoxon test between JMnorm and the second-best performing
method, p-value = 3.05e-05, 3.05¢e-04, 2.14e-04, 6.23e-03 for different K values in K-means
clustering), indicating that the multi-feature signal matrices normalized by JMnorm achieved
better integration among cell types within each cCRE clusters.

Next, we clustered all cCREs from all 24 cell types groups available in EpiMAP database and
used the resulting cCRE clusters (Figure 3D) to compare different normalization methods, using
the proportion of robust cCRE clusters (4) as a metric of global preservation of epigenetic feature
patterns across different cell types. Here, a robust cCRE cluster is defined as the cCRE cluster
displaying high consensus across all cell types. A higher proportion of robust cCRE clusters
would indicate a better preservation of combinatorial feature patterns across cell types (see
method section for details). JMnorm-normalized signal matrices resulted in a significantly higher
proportion of robust cCRE clusters (Paired Wilcoxon test between JMnorm and the second-best
performing method, p-value = 2.60e-04) than those obtained by other methods (Figure 3B).
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Results of these comparisons demonstrate that JMnorm outperforms other methods in integrating
multi-feature signal matrices and preserving cross-feature combinatorial patterns across different
cell types.

Evaluation of cross-cell-type gene expression predictions

Since JMnorm integrates the multi-feature signal matrices and preserves cross-feature
combinatorial patterns across different cell types better than other methods, we anticipated that
the gene expression prediction models utilizing data normalized by JMnorm would also exhibit
improved performance in cross-cell-type predictions. Therefore, we compared normalization
methods by their ability to improve cross-cell type gene expression predictions. We trained three
types of regression models to learn the quantitative relationships between seven epigenetic
features and RNA-seq data: a linear regression model (LM), a gradient boosting regression
model (GBM) (45), and a linear regression model with gene-grouping that is based on cross-cell
type average expression levels and standard deviations (LM-gene-grouping) (3). The details
about training and testing of these regression models are described in the Materials and Methods
section. Briefly, we randomly divided protein-coding genes into two groups: 80% of genes were
used for model training (Training-Genes) and 20% of genes were used for model evaluation
(Testing-Genes). The regression models were trained using the signals of Training-Genes in one
Training-Cell-Type and evaluated by R-squared (R?) using the signals of Testing-Genes in
another Testing-Cell-Type, representing the most challenging cross-cell type hold-out gene
prediction setting in gene expression prediction tasks. As shown in Figure 3C and Supplementary
Figure 3, JMnorm-normalized data had significantly higher R? than others normalization
methods across all three regression methods and different cell-type-pairs (Paired Wilcoxon test
between JMnorm and the second-best performing method, p-values are LM: 6.16e-06, GBM:
1.48e-08, LM-gene-grouping: 2.54e-07). These results demonstrate that JMnorm-normalized
epigenetic signals improve performance of cross-cell type gene expression prediction models,
suggesting that the JMnorm-normalized epigenetic data are more consistent with gene expression
levels, an orthogonal biological data type, than those normalized by other methods.

Evaluation of signal consistency between biological replicates

We next evaluated different methods based on consistency of post-normalization signal strengths
between biological replicates, measured by R2. A better normalization method should result in
higher signal consistency between the independently normalized replicates. We examined the
replicate consistency of the post-normalized H3K27ac ChIP-seq signals across 9 different cell
types. Six other features were used for JMnorm normalization of H3K27ac ChIP-seq data. JM
norm-normalized data had significantly higher R? values than data normalized by other methods
(Paired Wilcoxon test between JMnorm and the second-best performing method, p-value =
1.95e-03) (Figure 4A). Moreover, JMnorm-normalized data had the highest or the second highest
R? values across all 7 examined epigenetic features (Figure 4A and Supplementary Figure 4),
especially those that are more likely to reflect cell-type-specific epigenetic events such as
ATAC-seq, H3K27ac, and H3K4mel (1).

As an additional metric, we assessed the replicate consistency of enriched peak calling results for

H3K27ac across 9 cell types. To this end, the same peak-calling method was applied to post-
normalized signals generated by the panel of normalization methods, and an equal number of
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called peaks was identified for evaluation of replicate consistency using the Jaccard index.
Besides the signal strengths consistency, JMnorm’s peak calling results also had higher replicate
consistency as indicated by significantly higher Jaccard index values compared to peaks
generated from data normalized by other methods (Paired Wilcoxon test between JMnorm and
the second-best performing method, p-value = 4.5¢-03; Figure 4B).

We then generated scatterplots of post-normalization signals at individual cCREs for the two
biological replicates from the H3K27ac ChIP-seq experiment in CD8" T-cells (Figure 4C and
Supplementary Figure 5). Compared to other methods, the scatterplot for JMnorm showed
considerably less deviation from the diagonal line (indicating a higher R?), especially for the
cCRESs with lower or only noise-like signals indicated by the red arrow at bottom left corner of
the scatterplots.

These results suggest that by leveraging information from functionally correlated features,
JMnorm can more effectively improve replicates consistency by reducing technical noise and
preserving true epigenetic signals than other normalization methods.

It is important to note that JMnorm performance is not universally superior to all other methods
for normalization of all examined epigenetic features. For example, since H3K4me3 is a
canonical marker of gene promoters, its ChIP-seq signals have similar global distributions across
different cell types. This type of signal distribution is expected to be suitable for QTnorm, which
enforces identical post-normalization signal distributions. Hence, QTnorm exhibited a slightly
higher R? between biological replicates for H3K4me3 ChIP-seq signal than JMnorm
(Supplementary Figure 4). Based on the overall performance, we conclude that J]Mnorm
surpasses other normalization methods in enhancing signal and minimizing technical noise and
improves consistency between biological replicates.

Evaluation of quality of peak calling results

Based on the performance evaluations results above, JMnorm, QTnorm, and Harmony
outperformed the other three methods. This outperformance is expected since JMnorm
incorporates the strengths of both QTnorm and Harmony: as QTnorm, it minimizes the complex
technical biases by equalizing the signals of the same rank, and as Harmony, it combines the
highly correlated variables in the PCA space. To more closely evaluate the six normalization
methods, we compared their performance by the quality of peak calling results (Figure 5 and
Supplementary Figure 6 and 7). We hypothesized that better normalization could improve the
accuracy of peak calling results by reducing both false positives and negatives, thereby yielding
peaks more closely associated with true biologically relevant events.

For this test, we first selected TF ChIP-seq data for CTCF (71) and YY1 (48) because the role of
these TFs in transcription regulation at gene promoters, enhancers, and topologically associating
domain (TAD) boundaries is well understood and their DNA-binding motifs had been
extensively characterized. Specifically, CTCF and YY1 often co-occupy the same genomic
regions at the promoters and enhancers of active genes (48), whereas TAD boundaries are
uniquely bound by CTCF (49-51). Moreover, approximately 80% of previously validated CTCF
ChIP-seq peaks contain CTCF binding motifs (52, 53). To evaluate the quality of CTCF ChIP-
seq peak calling results, we applied the same peak-calling method to the post-normalized signals
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generated by the five normalization methods, yielding an equal number of CTCF peaks for each
method (see Materials and Methods section for more details). The resulting CTCF peaks were
evaluated using the following three metrics: (1) enrichment at YY1 peak regions, (2) enrichment
at TAD boundaries, and (3) fraction of the CTCF peaks with CTCF DNA-binding motif. We
found that CTCF peaks, uniquely called using JMnorm-normalized data, exhibited significantly
higher enrichment at YY1 peak regions than the ones generated by other methods (Paired
Wilcoxon test p-values < 0.05) (Figure 5). Similarly, JMnorm-normalized CTCF ChIP-seq peaks
had significantly higher (Paired Wilcoxon test p-values < 0.05) or comparable enrichment at
TAD boundaries than other methods’ peaks (Supplementary Figure 6). Lastly, there is no
significant difference in proportion of CTCF peaks containing CTCF motifs (Jaspar (72) ID:
MAO0139.1) with the JMnorm-normalized data relative to other methods’ data (Supplementary
Figure 7). In sum, these findings suggest that JMnorm exhibits improved performance in terms
of quality and biological significance of the resulting TF ChIP-seq peaks.

We next focused on comparing the J]Mnorm and QTnorm by the quality of the DNase-seq peak
calling results across cell types (Supplementary Figure §). Both methods are designed to
minimize technical biases by equalizing the signals of the same rank. However, a critical
technical bias of QTnorm is that it imposes an identical signal distribution across cell types,
which might lead peak-calling algorithms to identify the same number of peaks for all cell types.
We asked if JMnorm could circumvent this technical bias since it applies QTnorm only within
each cCRE cluster, which may contain a different number of cCREs per cell type, thereby
leading to different global signal distributions across cell types and varying numbers of peaks for
the normalized data.

To this end, we first compared the performance of QTnorm and JMnorm on the same set of
DNase-seq data generated in 24 cell types and found that QTnorm calls the same number of
peaks across cell types, whereas JMnorm effectively identifies a different number of peaks per
cell type (Supplementary Figure 8A). As expected, most cell types close to stem cells exhibited a
larger number of peaks (denoted by orange coloring) than other cell types, consistent with prior
observations by Meuleman et al. (40) (Supplementary Figure §B).

We then evaluated the noise level for the two methods. Since QTnorm imposes an identical
signal distribution across various cell types, we expected more false positive peaks in the cell
types with fewer true biological peaks. Clustering of cCREs based on these signals would reveal
noisier cross-cell type patterns with increased presence of weaker signals in many cell types. To
test the validity of these expectations, we utilized the Snapshot clustering algorithm to group
cCREs using normalized DNase-seq signals (8) and then evaluated the quality of the resulting
clusters. As expected, QTnorm clusters exhibited relatively noisier cross-cell type patterns
(Supplementary Figure 8C and D) with significantly lower signal-to-noise ratios than JMnorm’s
clusters (paired Wilcoxon test p-value = 2.38e-07) (Supplementary Figure 8E) (see Materials and
Methods section for more details), indicating that JMnorm-normalized DNase-seq signals had
less noise.

Lastly, to determine whether the JMnorm-normalized DNase-seq peaks contained true

biologically meaningful information, we conducted pairwise comparisons of post-normalized
DNase-seq peaks in different cell types and assessed the enrichment of human phenotype terms
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(73, 74) relevant to the respective cell types in the differential peaks. We reasoned that cell-type-
specific differential peaks would be more likely to reflect true biological differences between cell
types and corresponding top-enriched human phenotype terms could be used to highlight the
cell-type-specific functional differences. An initial analysis of the differential peaks identified in
heart and lung cell types revealed greater enrichment of heart-relevant terms in heart-specific
peaks uniquely identified using JMnorm-normalized DNase-seq data than QTnorm-normalized
data (Figure 6A). Next, we conducted the same pairwise DNase-seq peak analysis for 100
randomly selected pairs of cell types. Differential peaks unique to JMnorm had a significantly
higher enrichment (paired Wilcoxon test p-value < 0.05) in cell-type-specific functional terms
than peaks uniquely identified using other methods (Figure 6B-F), indicating that JMnorm-
derived differential peaks may more accurately capture true biological information.

These results demonstrate that JMnorm improves the accuracy and biological relevance of the
peak calling results.

Evaluation of quality of differential peak calling in response to perturbations

Small molecule perturbations often make a substantial and global impact on the epigenome (75,
76) presenting a substantial challenge for data normalization. That is because many
normalization methods assume that differences in the overall signal (12—14) or common peak
regions (16, 17) between different datasets are caused primarily by technical inconsistencies
rather than true biological changes in global epigenetic signals. We compared the performance of
six normalization methods by the quality of differential glucocorticoid receptor (GR, gene
symbol NR3C1) ChIP-seq peak calling results in the context of dexamethasone (Dex) treatment
of A549 cells (15) (Figure 7). We selected GR ChIP-seq data for this evaluation because GR is a
well-characterized receptor for Dex, GR’s binding to DNA increases globally with transient Dex
treatment, and its DNA-binding motif is also well known (78).

For this analysis, we first normalized the GR ChIP-seq data for both the Dex treatment condition
and the no-treatment control using each of the six methods and then identified differential GR
peaks using the post-normalization signals. For J]Mnorm and Harmony, the GR ChIP-seq data
were normalized in conjunction with four additional epigenetic features (ATAC, H3K27ac,
H3K4mel, and H3K4me3). We benchmarked the performance of different normalization
methods relative to TSnorm_cbg. The TSnorm_cbg leverages the same concept as the
normalization of ChIP-seq with control (NCIS) (77) method that was specifically developed to
address the challenge of normalizing global differences between ChIP and control datasets, by
calculating a scale factor based on the information from common background regions between
the two. We hypothesized that better normalization could improve the accuracy of differential
peak calling results, yielding peaks that are more closely associated with true biologically
relevant changes induced by the perturbagen.

As expected, most of the differential GR peaks (top 2,000 differential peaks based on absolute
value log2 fold-change between Dex treatment sample and no treatment sample) called using
TSnorm_cbg-normalized data were upregulated after Dex treatment (Figure 7A), indicating an
increase of GR binding to the genome. For J]Mnorm, most differential peaks also exhibited
increased GR signals (Figure. 7B), similarly supporting our biological understanding.
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Conversely, only approximately 50% of differential peaks called using QTnorm-normalized data
were upregulated with Dex treatment (Figure 7C).

To further characterize the differential GR peaks identified using data normalized by the six
methods relative to TSnorm_cbg-normalized data, we evaluated the quality of the GR motif
(Jaspar ID: MAO113.1) (Figure 7D) and the extent of Human Phenotype term enrichment (Figure
7E and Supplementary Figure 9) in differential peaks. As expected, GR motif scores and the
degree of GR-related process term enrichment were significantly lower in differential peaks
called using QTnorm/S3norm/MAnorm-normalized data as compared to those derived from the
JMnorm (paired Wilcoxon test p-value < 0.05). These results suggest that an improper matching
of overall distribution or signal-to-noise ratio can undermine the association between differential
GR peaks and Dex treatment. In conclusion, JMnorm improves the accuracy and biological
significance of the differential peak calling results relative to QTnorm/S3norm/MAnorm, and
demonstrates a comparable performance relative to the other approaches including the state-of-
the-art method (TSnorm_cbg) for normalization of epigenetic datasets with global differences
induced by perturbations.

DISCUSSION

We present a novel approach named JMnorm that simultaneously normalizes multiple epigenetic
features across cell types, species, and experimental conditions by leveraging information from
functionally correlated features. JMnorm presents several methodological advances over existing
normalization approaches that analyze each feature independently and thus may distort
relationships between epigenetic features. Specifically, J]Mnorm normalizes multiple epigenetic
features jointly in the PCA space that preserves correlations between different features. Secondly,
using a two-step process of initial cCRE clustering followed by within-cluster quantile
normalization, JMnorm effectively reduces technical biases without imposing identical global
signal distributions across different cell types. Following the principle of Occam's razor, we have
implemented JMnorm using simple yet sufficiently effective statistical techniques. By employing
these techniques, we aimed to enhance the robustness of JMnorm and enable its wide application
for various downstream analyses. Future investigations could potentially benefit from exploring
advanced techniques, such as orthogonal transformation and cCRE clustering. We have
demonstrated JMnorm’s improved capabilities by comparing cross-feature correlation matrices
before and post-normalization, analyzing the extent of preservation of combinatorial patterns of
epigenetic features across different cell types, and evaluating consistency between biological
replicates. Furthermore, in several use cases of epigenomic analyses, such as prediction of gene
expression, peak calling, and differential TF binding, we showed that JMnorm achieves better
results than other methods when being validated against various types of orthogonal biological
data. Altogether, these improvements underscore the strength of JMnorm in reducing noise and
preserving true biologically meaningful information in epigenomic data.

Given the superior performance of JMnorm across diverse types of epigenetic features and
genomic tasks, we anticipate that it can be used across a broad range of applications. In addition
to the applications described in this work, a potential application for JMnorm is in normalizing
single-cell gene module signal matrices. Single-cell gene expression analyses (80, 81) often
involve data transformation that converts relatively noisy individual gene expression information
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into gene module scores (82—86). By leveraging information from correlated gene modules,
JMnorm may provide a more accurate representation of cells or meta cells in different gene module
spaces across various cell groups, conditions, or time points.

Because JMnorm normalizes data by leveraging information from functionally correlated datasets,
higher correlations among the features can result in better improvements with normalization. To
help users more effectively select features with high correlations for JMnorm analyses, we
computed pairwise cross-feature correlations for 538 epigenetic features in K562 cells using data
from the ENCODE Consortium (1, 2) (Supplementary Figure 10A). Considering the substantial
size of the output correlation matrix and the difficulties with visualization, we also set up a Shiny
app (79) visualization tool for convenient and interactive exploration of the correlation matrix
(Supplementary Figure 10B).

Lastly, we’d like to point out a potential limitation: JMnorm might not be able to adequately handle
global changes across all functionally correlated features under certain conditions. This could
result in losing some global changes at the within-cluster quantile normalization step. For these
scenarios, other normalization strategies that take into account global changes, such as
normalization using only common background regions (77) or a spike-in reference (75, 76), may
be more appropriate.

In summary, JMnorm introduces a novel approach for multi-feature normalization of epigenetic
data. This method has a straightforward design and is effective in reducing technical biases and
preserving cross-feature correlations across different cell types. With the continuing development
of high-throughput sequencing technologies for genome interrogation and the growing number of
epigenetic datasets generated in different cell types, species, and under various physiological
conditions, we anticipate JMnorm becoming a crucial tool for data normalization in integrative
and comparative epigenomics studies.

DATA AVAILABILITY

The JMnorm package is available at GitHub (https://github.com/camp4tx/JMnorm) (87) and
released under GNU General Public License, version 2.0 or later. The main part of JMnorm was
implemented in R. We also provided a conda environment that can be deployed in both MacOS
and Linux operating systems. The signal tracks used in this project were mainly downloaded from
VISION project data portal (32) and the EpiMAP repository (34). The detailed cell types included
in each cell type group in the EpiIMAP data can be found in the EpiMAP metadata file (88). Human
and mouse cCRE lists were downloaded from ENCODE-SCREEN data portal (89, 90). The list of

links for the files used in this paper can be found in Supplementary Table 1.

CONFLICT OF INTEREST DISCLOSURE

All authors are employees and equity holders of CAMP4 Therapeutics Corporation.

ACKNOWLEDGEMENTS

19



We would like to express our gratitude to the ENCODE, VISION, and EpiMAP data Consortium
projects for their valuable resources. We thank Gokul Ramaswami and Wei Jiang for their
valuable suggestions and help.

REFERENCES

1. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human
genome. Nature, 489, 57-74.

2. Moore,J.E., Purcaro,M.J., Pratt,H.E., Epstein,C.B., Shoresh,N., Adrian,J., Kawli,T., Davis,C.A.,
Dobin,A., Kaul,R., et al. (2020) Expanded encyclopaedias of DNA elements in the human and
mouse genomes. Nature, 583, 699-710.

3. Xiang,G., Keller,C.A., Heuston,E., Giardine,B.M., An,L., Wixom,A.Q., Miller,A., Cockburn,A.,
Sauria,M.E.G., Weaver,K., et al. (2020) An integrative view of the regulatory and transcriptional
landscapes in mouse hematopoiesis. Genome Res, 30, 472-484.

4. Xiang,G., He,X., Giardine,B.M., Weaver,K.J., Taylor,D.J., Mccoy,R.C., Jansen,C., Keller,C.A.,
Wixom,A.Q., Cockburn,A., ef al. (2023) Cross-species regulatory landscapes and elements revealed
by novel joint systematic integration of human and mouse blood cell epigenomes.
10.1101/2023.04.02.535219.

5. Vu,H. and Emst,J. (2022) Universal annotation of the human genome through integration of over a
thousand epigenomic datasets. Genome Biol, 23.

6. Luan,J., Xiang,G., Gomez-Garcia,P.A., Tome,J.M., Zhang,Z., Vermunt, M.W., Zhang,H., Huang,A.,
Keller,C.A., Giardine,B.M., et al. (2021) Distinct properties and functions of CTCF revealed by a
rapidly inducible degron system. Cell Rep, 34.

7. Koch,H., Keller,C.A., Xiang,G., Giardine,B., Zhang,F., Wang,Y ., Hardison,R.C. and Li,Q. (2022)
CLIMB: High-dimensional association detection in large scale genomic data. Nat Commun, 13.

8. Xiang,G., Giardine,B., An,L., Sun,C., Keller,C.A., Heuston,E.F., Anderson,S.M., Kirby,M., Bodine,D.,
Zhang,Y ., et al. (2023) Snapshot: a package for clustering and visualizing epigenetic history during
cell differentiation. BMC Bioinformatics, 24, 102.

9. Bernstein,B.E., Stamatoyannopoulos,J.A., Costello,J.F., Ren,B., Milosavljevic,A., Meissner,A.,
Kellis,M., Marra,M.A., Beaudet,A.L., Ecker,J.R., ef al. (2010) The NIH Roadmap Epigenomics
Mapping Consortium. Nat Biotechnol, 28, 1045-1048.

10. McDowell,I.C., Manandhar,D., Vockley,C.M., Schmid,A.K., Reddy,T.E. and Engelhardt,B.E. (2018)
Clustering gene expression time series data using an infinite Gaussian process mixture model. PLoS
Comput Biol, 14, €1005896.

11. Meyer,C.A. and Liu,X.S. (2014) Identifying and mitigating bias in next-generation sequencing
methods for chromatin biology. Nat Rev Genet, 15, 709-721.

12. Marioni,J.C., Mason,C.E., Mane,S.M., Stephens,M. and Gilad,Y. (2008) RNA-seq: An assessment of
technical reproducibility and comparison with gene expression arrays. Genome Res, 18, 1509—-1517.

13. Zhang,Y ., Liu,T., Meyer,C.A., Eeckhoute,]J., Johnson,D.S., Bernstein,B.E., Nussbaum,C.,
Myers,R.M., Brown,M., Li,W., et al. (2008) Model-based Analysis of ChIP-Seq (MACS). Genome
Biol, 9, R137.

14. Bolstad,B.M., Irizarry,R.A., Astrand,M. and Speed,T.P. (2003) A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19,
185-193.

15. Reddy,T.E., Pauli,F., Sprouse,R.O., Neff,N.F., Newberry,K.M., Garabedian,M.J. and Myers,R.M.
(2009) Genomic determination of the glucocorticoid response reveals unexpected mechanisms of
gene regulation. Genome Res, 19.

16. Shao,Z., Zhang,Y ., Yuan,G.-C., Orkin,S.H. and Waxman,D.J. (2012) MAnorm: a robust model for
quantitative comparison of ChIP-Seq data sets. Genome Biol, 13, R16.

20



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

Xiang,G., Keller,C.A., Giardine,B., An,L., Li,Q., Zhang,Y. and Hardison,R.C. (2020) S3norm:
simultaneous normalization of sequencing depth and signal-to-noise ratio in epigenomic data.
Nucleic Acids Res, 48, €43.

Xiang,G., Giardine,B.M., Mahony,S., Zhang,Y. and Hardison,R.C. (2021) S3V2-IDEAS: a package
for normalizing, denoising and integrating epigenomic datasets across different cell types.
Bioinformatics, 10.1093/bioinformatics/btab148.

Diaz,A., Nellore,A. and Song,J.S. (2012) CHANCE: comprehensive software for quality control and
validation of ChIP-seq data. Genome Biol, 13, R98.

Park,P.J. (2009) ChIP—seq: advantages and challenges of a maturing technology. Nat Rev Genet, 10,
669—-680.

Hardison,R.C., Zhang,Y ., Keller,C.A., Xiang,G., Heuston,E.F., An,L., Lichtenberg,J., Giardine,B.M.,
Bodine,D., Mahony,S., et al. (2020) Systematic integration of GATA transcription factors and
epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells. [UBMB Life, 72, 27—
38.

Lyu,Y. and Li,Q. (2016) A semi-parametric statistical model for integrating gene expression profiles
across different platforms. BMC Bioinformatics, 17, S5.

Emst,J. and Kellis,M. (2012) ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods, 9, 215-216.

Hoffman,M.M., Buske,O.J., Wang,J., Weng,Z., Bilmes,J.A. and Noble,W.S. (2012) Unsupervised
pattern discovery in human chromatin structure through genomic segmentation. Nat Methods, 9,
473-476.

Zhang,Y ., An,L., Yue,F. and Hardison,R.C. (2016) Jointly characterizing epigenetic dynamics across
multiple human cell types. Nucleic Acids Res, 44, 6721-6731.

Libbrecht,M.W., Chan,R.C.W. and Hoffman,M.M. (2021) Segmentation and genome annotation
algorithms for identifying chromatin state and other genomic patterns. PLoS Comput Biol, 17.

Zhang,Y. and Hardison,R.C. (2017) Accurate and reproducible functional maps in 127 human cell
types via 2D genome segmentation. Nucleic Acids Res, 45, 9823-9836.

Kundaje,A., Meuleman,W., Ernst,J., Bilenky,M., Yen,A., Heravi-Moussavi,A., Kheradpour,P.,
Zhang,Z., Wang,J., Ziller, M.]., et al. (2015) Integrative analysis of 111 reference human
epigenomes. Nature, 518, 317-330.

Oudelaar,A.M., Hanssen,L.L.P., Hardison,R.C., Kassouf,M.T., Hughes,J.R. and Higgs,D.R. (2017)
Between form and function: the complexity of genome folding. Hum Mol Genet, 26, R208-R215.

Philipsen,S. and Hardison,R.C. (2018) Evolution of hemoglobin loci and their regulatory elements.
Blood Cells Mol Dis, 70, 2—12.

Heuston,E.F., Keller,C.A., Lichtenberg,J., Giardine,B., Anderson,S.M., Hardison,R.C. and
Bodine,D.M. (2018) Establishment of regulatory elements during erythro-megakaryopoiesis
identifies hematopoietic lineage-commitment points. Epigenetics Chromatin, 11, 22.

VISION project data portal https://usevision.org/data/ (Accessed 20 May 2023).

Hoon,D.S.B., Rahimzadeh,N. and Bustos,M.A. (2021) EpiMap: Fine-tuning integrative epigenomics
maps to understand complex human regulatory genomic circuitry. Signal Transduct Target Ther, 6.

EpiMAP repository https://epigenome.wustl.edu/epimap/data/ (Accessed 20 May 2023)).

Zhao,H., Sun,Z., Wang,J., Huang,H., Kocher,J.P. and Wang,L. (2014) CrossMap: A versatile tool for
coordinate conversion between genome assemblies. Bioinformatics, 30.

TAD boundaries from VISION project https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks
(Access 20 May 2023).

Zheng,R., Wan,C., Mei,S., Qin,Q., Wu,Q., Sun,H., Chen,C.H., Brown,M., Zhang,X., Meyer,C.A., et
al. (2019) Cistrome Data Browser: Expanded datasets and new tools for gene regulatory analysis.
Nucleic Acids Res, 47.

Mei,S., Qin,Q., Wu,Q., Sun,H., Zheng,R., Zang,C., Zhu,M., Wu,J., Shi,X., Taing,L., et al. (2017)
Cistrome Data Browser: A data portal for ChIP-Seq and chromatin accessibility data in human and
mouse. Nucleic Acids Res, 45.

21



39.
40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Cistrome DB http://cistrome.org/db/#/ (Access 20 May 2023).

Meuleman,W., Muratov,A., Rynes,E., Halow,J., Lee,K., Bates,D., Diegel, M., Dunn,D., Neri,F.,
Teodosiadis,A., et al. (2020) Index and biological spectrum of human DNase | hypersensitive sites.
Nature, 584, 244-251.

The numbers of DHSs in different cell types in Meuleman 2020 paper https.//static-
content.springer.com/esm/art%3A410.1038%2Fs41586-020-2559-
3/MediaObjects/41586 2020 2559 MOESM3 ESM.xlsx (Access 20 May 2023).

Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle, T.H., Zahler,A.M. and Haussler, a. D.
(2002) The Human Genome Browser at UCSC. Genome Res, 12, 996—-1006.

Langfelder,P., Zhang,B. and Horvath,S. (2008) Defining clusters from a hierarchical cluster tree: The
Dynamic Tree Cut package for R. Bioinformatics, 24.

Tran,H.T.N., Ang,K.S., Chevrier,M., Zhang,X., Lee,N.Y.S., Goh,M. and Chen,J. (2020) A benchmark
of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol, 21.

Friedman,J.H. (2002) Stochastic gradient boosting. Comput Stat Data Anal, 38.

Koohy,H., Down,T.A., Spivakov,M. and Hubbard,T. (2014) A comparison of peak callers used for
DNase-Seq data. PLoS One, 9.

John,S., Sabo,P.J., Thurman,R.E., Sung,M.-H., Biddie,S.C., Johnson,T.A., Hager,G.L. and
Stamatoyannopoulos,J.A. (2011) Chromatin accessibility pre-determines glucocorticoid receptor
binding patterns. Nat Genet, 43, 264-268.

Weintraub,A.S., Li,C.H., Zamudio,A. V., Sigova,A.A., Hannett,N.M., Day,D.S., Abraham,B.J.,
Cohen,M.A., Nabet,B., Buckley,D.L., ef al. (2017) YY1 Is a Structural Regulator of Enhancer-
Promoter Loops. Cell, 171, 1573-1588.e28.

An,L., Yang,T., Yang,J., Nuebler,J., Xiang,G., Hardison,R.C., Li,Q. and Zhang,Y. (2019) OnTAD:
hierarchical domain structure reveals the divergence of activity among TADs and boundaries.
Genome Biol, 20, 282.

Dixon,J.R., Gorkin,D.U. and Ren,B. (2016) Chromatin Domains: The Unit of Chromosome
Organization. Mol Cell, 62, 668—680.

Dixon,J.R., Selvaraj,S., Yue,F., Kim,A., Li,Y., Shen,Y., Hu,M., Liu,J.S. and Ren,B. (2012)
Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Nature, 485, 376-380.

Ghirlando,R. and Felsenfeld,G. (2016) CTCF: making the right connections. Genes Dev, 30, 881-891.

Nakahashi,H., Kwon,K.-R.K., Resch,W., Vian,L., Dose,M., Stavreva,D., Hakim,O., Pruett,N.,
Nelson,S., Yamane,A., et al. (2013) A Genome-wide Map of CTCF Multivalency Redefines the
CTCEF Code. Cell Rep, 3, 1678—1689.

Grant,C.E., Bailey,T.L. and Noble,W.S. (2011) FIMO: scanning for occurrences of a given motif.
Bioinformatics, 27, 1017-1018.

Quinlan,A.R. (2014) BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr Protoc
Bioinformatics, 47, 11.12.1-11.12.34.

Gu,Z. and Hiibschmann,D. (2023) rGREAT: an R/bioconductor package for functional enrichment on
genomic regions. Bioinformatics, 39.

McLean,C.Y ., Bristor,D., Hiller,M., Clarke,S.L., Schaar,B.T., Lowe,C.B., Wenger,A.M. and
Bejerano,G. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat
Biotechnol, 28, 495-501.

Korsunsky,l., Millard,N., Fan,J., Slowikowski,K., Zhang,F., Wei,K., Baglaenko,Y., Brenner,M.,
Loh,P. ru and Raychaudhuri,S. (2019) Fast, sensitive and accurate integration of single-cell data
with Harmony. Nat Methods, 16.

Jolliffe,I.T. and Basilevsky,A. (1997) Statistical Factor Analysis and Related Methods: Theory and
Applications. Biometrics, 53.

Dong,X., Greven,M.C., Kundaje,A., Djebali,S., Brown,J.B., Cheng,C., Gingeras,T.R., Gerstein,M.,
Guigo,R., Birney,E., et al. (2012) Modeling gene expression using chromatin features in various
cellular contexts. Genome Biol, 13, R53.

22



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.

75.

76.

77.

78.

79.

80.

&1.

82.

Karlic,R., Chung,H.-R., Lasserre,J., Vlahovicek,K. and Vingron,M. (2010) Histone modification
levels are predictive for gene expression. Proceedings of the National Academy of Sciences, 107,
2926-2931.

Singh,R., Lanchantin,J., Robins,G. and Qi,Y. (2016) DeepChrome: deep-learning for predicting gene
expression from histone modifications. Bioinformatics, 32, 1639—-1648.

Moore,J.E., Pratt,H.E., Purcaro,M.J. and Weng,Z. (2020) A curated benchmark of enhancer-gene
interactions for evaluating enhancer-target gene prediction methods. Genome Biol, 21.

Whalen,S., Truty,R.M. and Pollard,K.S. (2016) Enhancer-promoter interactions are encoded by
complex genomic signatures on looping chromatin. Nat Genet, 48.

Fulco,C.P., Nasser,J., Jones, T.R., Munson,G., Bergman,D.T., Subramanian,V., Grossman,S.R.,
Anyoha,R., Doughty,B.R., Patwardhan,T.A., ef al. (2019) Activity-by-contact model of enhancer—
promoter regulation from thousands of CRISPR perturbations. Nat Genet, 51, 1664—1669.

Schreiber,J., Durham,T., Bilmes,J. and Noble,W.S. (2020) Avocado: A multi-scale deep tensor
factorization method learns a latent representation of the human epigenome. Genome Biol, 21.

Emst,J. and Kellis,M. (2015) Large-scale imputation of epigenomic datasets for systematic annotation
of diverse human tissues. Nat Biotechnol, 33, 364-376.

Durham,T.]J., Libbrecht, M.W., Howbert,J.J., Bilmes,J. and Noble,W.S. (2018) PREDICTD PaRallel
Epigenomics Data Imputation with Cloud-based Tensor Decomposition. Nat Commun, 9.

Li,H. and Guan,Y. (2022) Asymmetric predictive relationships across histone modifications. Nat
Mach Intell, 4.

Schreiber,J., Boix,C., wook Lee,J., Li,H., Guan,Y., Chang,C.-C., Chang,J.-C., Hawkins-Hooker,A.,
Scholkopf,B., Schweikert,G., et al. (2023) The ENCODE Imputation Challenge: a critical
assessment of methods for cross-cell type imputation of epigenomic profiles. Genome Biol, 24, 79.

Ong,C.T. and Corces,V.G. (2014) CTCF: An architectural protein bridging genome topology and
function. Nat Rev Genet, 15.

Mathelier,A., Zhao,X., Zhang,A.W., Parcy,F., Worsley-Hunt,R., Arenillas,D.J., Buchman,S., Chen,C.,
Chou,A., Ienasescu,H., et al. (2014) JASPAR 2014: an extensively expanded and updated open-
access database of transcription factor binding profiles. Nucleic Acids Res, 42, D142-D147.

Robinson,P.N. and Mundlos,S. (2010) The Human Phenotype Ontology. Clin Genet, 77.

Kohler,S., Gargano,M., Matentzoglu,N., Carmody,L.C., Lewis-Smith,D., Vasilevsky,N.A., Danis,D.,
Balagura,G., Baynam,G., Brower,A.M., ef al. (2021) The human phenotype ontology in 2021.
Nucleic Acids Res, 49.

Orlando,D.A., Chen,M.W., Brown,V.E., Solanki,S., Choi,Y .J., Olson,E.R., Fritz,C.C., Bradner,] E.
and Guenther,M.G. (2014) Quantitative ChIP-Seq normalization reveals global modulation of the
epigenome. Cell Rep, 9.

Risso,D., Ngai,J., Speed, T.P. and Dudoit,S. (2014) Normalization of RNA-seq data using factor
analysis of control genes or samples. Nat Biotechnol, 32.

Liang K. and Keles,S. (2012) Normalization of ChIP-seq data with control. BMC Bioinformatics, 13,
199.

McDowellI.C., Barrera,A., D’Ippolito,A.M., Vockley,C.M., Hong,L.K., Leichter,S.M., Bartelt,L..C.,
Majoros,W.H., Song,L., Safi,A., ef al. (2018) Glucocorticoid receptor recruits to enhancers and
drives activation by motif-directed binding. Genome Res, 28.

Chang,W., Cheng,J., Allaire,J.J., Xie,Y. and McPherson,J. (2015) shiny: Web Application Framework
for R. R package version 0.11. 1. Retrieved February, 23.

Satija,R., Farrell,J.A., Gennert,D., Schier,A.F. and Regev,A. (2015) Spatial reconstruction of single-
cell gene expression data. Nat Biotechnol, 33.

Heumos,L., Schaar,A.C., Lance,C., Litinetskaya,A., Drost,F., Zappia,L., Liicken,M.D., Strobl,D.C.,
Henao,J., Curion,F., et al. (2023) Best practices for single-cell analysis across modalities. Nat Rev
Genet, 10.1038/s41576-023-00586-w.

Lange,M., Bergen,V., Klein,M., Setty,M., Reuter,B., Bakhti,M., Lickert,H., Ansari,M., Schniering,J.,
Schiller,H.B., et al. (2022) CellRank for directed single-cell fate mapping. Nat Methods, 19.

23



&3.

&4.

85.

86.

&7.
88.

&9.
90.

La Manno,G., Soldatov,R., Zeisel,A., Braun,E., Hochgerner,H., Petukhov,V., Lidschreiber,K.,
Kastriti,M.E., Lonnerberg,P., Furlan,A., et al. (2018) RNA velocity of single cells. Nature, 560,
494-498.

Zhang,Y ., Xiang,G., Jiang,A.Y., Lynch,A., Zeng,Z., Wang,C., Zhang,W., Fan,J., Kang,J., Gu,S.S., et
al. MetaTiME: Meta-components of the Tumor Immune Microenvironment.
10.1101/2022.08.05.502989.

Wang,W., Tan,H., Sun,M., Han,Y., Chen,W., Qiu,S., Zheng K., Wei,G. and Ni,T. (2021) Independent
component analysis based gene co-expression network inference (ICAnet) to decipher functional
modules for better single-cell clustering and batch integration. Nucleic Acids Res, 49.

Pelka,K., Hofree,M., Chen,J.H., Sarkizova,S., Pirl,J.D., Jorgji,V., Bejnood,A., Dionne,D., Ge,W.H.,
Xu,K.H., et al. (2021) Spatially organized multicellular immune hubs in human colorectal cancer.
Cell, 184.

JMnorm GitHub page https.//github.com/camp4tx/JMnorm (Access 25 May 2023).

EPIMAP cell type group meta-data
https://personal.broadinstitute.org/cboix/epimap/metadata/Short Metadata.html (Access 20 May
2023).

ENCODE-SCREEN data portal https://screen.encodeproject.org/ (Access 20 May 2023).

Luo,Y., Hitz,B.C., Gabdank,I., Hilton,J.A., Kagda,M.S., Lam,B., Myers,Z., Sud,P., Jou,J., Lin,K., et
al. (2020) New developments on the Encyclopedia of DNA Elements (ENCODE) data portal.
Nucleic Acids Res, 48.

24



FIGURES

AN

k.

A Signal in original Signal in B
signal space PCA space
g Transform to Cluster Ref cCREs
P PCA space into Ref-clusters
w8 > >
TS PCA .
°n ® Rotation » B
c M Matrix -9 S
5 30
S —> 0o 5
Reference (Ref) Ref 2 \ ,./""\.
— IS S 7 Cluster
S ~ .
o
o
g5 1N
TS — . |
3 '; Assign Tar cCREs to .
£ ) nearest Ref-clusters 58838 Sispet
. aoaaa
£
Target (Tar) Tar
C l D
o Signal in Signal in original
Within Cluster k PCA space signal space
PCA
Ref cCREs inl]] ) Rotation
atrix
Cluster k PCA-transformed
target signals ® K ) =
Tar cCREs in g .]]
Cluster k

Tar

Tar
(Post-dMnorm)

Figure 1. An overview of the four key steps in the JMnorm normalization procedure. (A)
Step 1: orthogonal transformation. The correlated components of various epigenetic signals are

transformed into mutually independent high-dimensional PCA dimensions. Each colored block

on the left represents the signal vector of all epigenetic features at the neer or nar CCRE regions in
reference or target samples, respectively. Colored blocks on the right denote corresponding
transformed PCA epigenetic signal matrices for reference and target samples. The yellow box in
the middle represents the PCA rotation matrix learned from the reference signal matrix. (B) Step
2: cCRE clustering. Reference cCRE clusters are generated based on the reference data in the
PCA space with the average signal reference matrix shown as a heatmap. Target cCREs are

assigned to reference clusters according to the Euclidean distances between the signal vector of
the target cCRE and the average signal vectors of reference clusters in the PCA space. Within
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each cluster, the number of cCREs, shown as colored blocks within the insert, may vary between
the reference and target samples. (C) Step 3: within-cluster normalization. Target signal matrix is
normalized against the reference matrix using within-cluster quantile normalization as shown for
Cluster k. (D) Step4: reconstruction of the JMnorm-normalized target signal matrix in the
original signal space. The yellow box in the middle indicates the transposed PCA rotation matrix
learned in the first step (panel A).
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Figure 2. Evaluation of cross-feature correlation preservation. (A) Reference signal cross-
feature correlation matrix. (B) Raw signal cross-feature correlation matrix in target neutrophil
(NEU) cell type. (C) IMnorm-normalized signal cross-feature correlation matrix in target NEU
cell type. (D) A boxplot of MSEs between human target and reference correlation matrices for
the six normalization methods. (E). A boxplot of MSEs between correlation matrices of mouse
target cell types and the human reference for the five normalization methods.
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Figure 3. Evaluation of consistency of cross-feature combinatorial patterns and gene
expression predictions across cell types. (A) A boxplot of Average Silhouette Widths (ASWs)
for the six normalization methods demonstrating quality of mixing of cCREs across different cell
types in clustering outputs (K-means: K=30). (B) A boxplot of proportions of cCRE clusters that
are reproducible in all cell types for the six normalization methods. (C) A boxplot of R? between
observed and predicted RNA-seq values expressed as log2 transcripts per million (log2TPM) for
the six normalization methods. Linear regression model with gene grouping was used for the
predictions. (D) Top. A heatmap of the average signals at cCRE clusters for seven epigenetic
features in 24 EpiMAP cell type groups. Clusters are ordered by the K-means cluster label (K =
30). Bottom. The heatmaps with distinct colors represent labels for different cell types and K-
means clusters.
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Figure 4. Evaluation of the post-normalization signal consistency between biological
replicates. (A) A boxplot of R? values between biological replicates in multiple cell types for the
six normalization methods. (B) A boxplot of Jaccard indexes comparing peak calling results
between biological replicates of multiple cell types for the six normalization methods. (C)
Scatterplots of H3K27ac ChIP-seq signal in CD8" T-cells in two biological replicates normalized
by QTnorm (left) and JMnorm (right). Data are shown on log2 scale. Bright orange and gray
colors indicate higher and lower data point density, respectively.
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Figure 5. Evaluation of quality of TF peak calling results. Box plots comparing JMnorm’s
and five other methods’ performance as determined by CTCF peak enrichment at YY1 peak
regions. (A) Comparison between JMnorm and QTnorm, (B) JMnorm and Harmony, (C)
JMnorm and S3norm, (D) JMnorm and MAnorm, and (E) JMnorm and TSnorm. Red box plots
represent enrichments for CTCF peaks that are shared between JMnorm and a corresponding
alternative method. Orange box plots represent enrichments for CTCF peaks uniquely identified
by JMnorm. Blue box plots represent enrichments for CTCF peaks uniquely identified by the
respective alternative method.
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Figure 6. Comparative analysis of JMnorm and other methods using DNase-seq peak
calling results. (A) A scatterplot of enrichments of the Human Phenotype terms in heart-specific
peaks (relative to lung) uniquely identified by QTnorm (x-axis) or JMnorm (y-axis). The
displayed terms are the top 30 most significantly enriched terms identified by both methods. (B)
A box plot of Human Phenotype terms enriched in shared and uniquely identified QTnorm’s or
JMnorm’s peaks across 100 randomly selected cell type pairs. (C-F) same as (B), for comparison
between JMnorm and Harmony (C) / S3norm (D) / MAnorm (E) / TSnorm (F).
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Figure 7. Evaluation of quality of differential peak calling in response to perturbations. (A-
C) Scatter plots of GR ChIP-seq signals at ENCODE c¢CREs with (x-axis) and without (y-axis)
Dex treatment for (A) TSnorm (cbg), (B) JMnorm, and (C) QTnorm. Bright orange and gray
colors indicate higher and lower data point density, respectively. Green color represents GR
ChIP-seq signals for the top 2,000 differential peaks based on absolute value of log2 fold change
of signals between Dex treatment and no treatment control. (D) A boxplot of FIMO scores for
GR motif (Jaspar ID: MAO113.1) found in differential peaks for the seven normalization
methods. (E) A scatterplot of enrichments of the Human Phenotype terms in differential GR
ChIP-seq peaks identified by QTnorm (x-axis) or JMnorm (y-axis).
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