
 

 1 

JMnorm: a novel Joint Multi-feature normalization method for integrative and 
comparative epigenomics 
 
Guanjue Xiang1, Yuchun Guo1, David Bumcrot1, Alla Sigova1 * 
 
1CAMP4 Therapeutics Corp., One Kendall Square, Building 1400 West, Cambridge, MA 02139, 
USA 
 
*Corresponding Author: Alla Sigova, E-mail: asigova@camp4tx.com 

ABSTRACT 

Combinatorial patterns of epigenetic features reflect transcriptional states and functions 
of genomic regions. While many epigenetic features have correlated relationships, most 
existing data normalization approaches analyze each feature independently. Such 
strategies may distort relationships between functionally correlated epigenetic features 
and hinder biological interpretation. We present a novel approach named JMnorm that 
simultaneously normalizes multiple epigenetic features across cell types, species, and 
experimental conditions by leveraging information from partially correlated epigenetic 
features. We demonstrate that JMnorm-normalized data can better preserve cross-
epigenetic-feature correlations across different cell types and enhance consistency 
between biological replicates than data normalized by other methods. Additionally, we 
show that JMnorm-normalized data can consistently improve the performance of 
various downstream analyses, which include candidate cis-regulatory element 
clustering, cross-cell-type gene expression prediction, detection of transcription factor 
binding and changes upon perturbations. These findings suggest that JMnorm 
effectively minimizes technical noise while preserving true biologically significant 
relationships between epigenetic datasets. We anticipate that JMnorm will enhance 
integrative and comparative epigenomics.  
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GRAPHICAL ABSTRACT 

 
 
JMnorm can jointly normalize multiple epigenetic features between the target sample and the 
reference. 
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INTRODUCTION 

Epigenetic features, including DNA accessibility and posttranslational histone modifications, are 
thought to accurately reflect transcriptional states and help infer mechanistic insights about the 
regulation of gene expression in cell-type-specific contexts. Development of high-throughput 
sequencing techniques for genome interrogation led to the generation of hundreds of epigenetic 
datasets in different cell types and under various physiological conditions. Many large-scale data 
consortiums, such as the Encyclopedia of DNA Elements (ENCODE) and the ValIdated 
Systematic IntegratiON of hematopoietic epigenomes (VISION) projects, have utilized 
epigenetic features to identify candidate cis-regulatory elements (cCREs) (1–4). Follow-up 
studies characterized functional dynamics of epigenetic features across different cell types and 
conditions to elucidate their effects on transcriptional regulation (5–10). Increased sensitivity of 
the high-throughput sequencing methods results in amplified technical noise that can hinder the 
ability to extract biologically meaningful information. Therefore, to precisely quantify and 
compare epigenetic features across cell types, species, and experimental conditions, it is essential 
to develop robust epigenomic data normalization techniques to mitigate technical biases (11). 
 
Many normalization methods have been developed for comparative analyses of high-throughput 
sequencing data (Supplementary Table 1). The two most widely used and easily implementable 
normalization methods are total library size normalization (TSnorm) and quantile normalization 
(QTnorm). TSnorm scales the signal of datasets to be compared based on the ratio of their total 
library sizes (12, 13), whereas QTnorm transforms and equalizes signal distribution of each 
dataset relative to a reference distribution (14). The advantage of TSnorm is in its simplicity as it 
assumes that the only source of technical variation between datasets lies in differences in their 
sequencing read depths. QTnorm, on the other hand, can effectively remove complex technical 
biases by assuming different datasets share not only the same global mean but also the same 
global distribution. These assumptions hold true for certain types of high-throughput sequencing 
data such as bulk cell RNA-seq, where the majority of true biological signals are similar in 
different data sets. However, they are likely incorrect for epigenetic datasets with substantial 
variability in the number of peaks and signal intensities across different cell types (1, 2) or 
experimental conditions (15), especially for epigenetic features with prominent signals at the 
cell-type-specific enhancers (1, 2). Consequently, in comparative analyses of data with unequal 
number of biological peaks between cell types or conditions, both normalization methods tend to 
generate false positive or negative peak signals. Moreover, when comparing datasets produced 
under different treatment conditions inducing global epigenomic effects, QTnorm often distorts 
normalized signals relative to the true signals. 
 
Other more specialized normalization methods, for example MAnorm and S3norm and their 
latest versions (16–19), are more adept for analysis of epigenetic datasets. These methods aim to 
eliminate biases due to differences in both sequencing depths and signal-to-noise ratios, which 
often arise from factors such as variations in antibody efficiency during ChIP-seq experiments 
(20). They utilize information from shared peak regions without/with common background 
regions and assume that the true signals in these regions remain consistent across different 
datasets and thereby, can serve as reliable anchors for data normalization. However, the simple 
scaling factors or transformation models employed by these methods might not be adequate for 
addressing all technical biases, especially when they exhibit complex patterns, which are often 
observed in studies integrating datasets from multiple sources (3, 21). Lastly, some methods can 
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effectively model diverse signal distributions of epigenetic data by converting signals into ranks. 
However, these methods result in a loss of quantitative information (22). 
 
Another significant drawback of existing approaches is that they analyze each epigenetic feature 
independently. These approaches may distort relationships between functionally correlated 
epigenetic features and hinder biological interpretation. Combinatorial patterns of multiple 
epigenetic features, known as epigenetic states, have been widely used for functional annotation 
of cCREs in different cell types, species, and experimental conditions (3, 23–28). Recent studies 
have shown that, while regulatory regions with specific epigenetic states may vary based on 
cellular and experimental contexts, cross-feature combinatorial patterns remain relatively 
conserved (4). Therefore, a normalization method that utilizes the information from functionally 
correlated epigenetic features could yield more accurate and biologically relevant post-
normalization signals, enabling more meaningful comparison and integration of epigenetic data 
across conditions. 
 
Here, we present a novel approach called Joint Multi-feature normalization (JMnorm) for 
simultaneous normalization of multiple epigenetic features across cell types, species, and 
experimental conditions by leveraging information from functionally correlated features. We 
demonstrate JMnorm’s superior performance in preserving cross-feature correlations and 
improving consistency between biological replicates, as well as its better versatility and utility 
for various genomic applications relative to other methods. Additionally, JMnorm can increase 
consistency between normalized epigenetic features and orthogonal datasets, which we robustly 
validated across diverse types of epigenetic features, including transcription factor (TF) binding 
ChIP-seq and DNase-seq data. 
 
MATERIALS AND METHODS 

Data collection and preprocessing 

We obtained epigenetic datasets primarily from two databases: the VISION (3, 4, 21, 29–32) and 
the EpiMAP repository (33, 34). For VISION datasets, we downloaded bigWig files containing 
average read counts for seven chromatin features (H3K4me3, H3K4me1, H3K27ac, H3K36me3, 
H3K27me3, H3K9me3, ATAC-seq) from 9 human and 16 mouse hematopoietic cell types. For 
EpiMAP datasets, we downloaded bigWig files containing average -log10(p-value) signal tracks 
for seven chromatin features (H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K27me3, CTCF 
ChIP-seq, and DNase-seq) from 24 human cell type groups. Since EpiMAP signal tracks were 
originally mapped to the hg19 reference genome, we used the CrossMap package (35) with 
default settings to lift over these files to the hg38 reference genome. All other datasets used in 
this study were mapped to hg38. RNA-seq data for different cell types were also downloaded 
from the VISION project (log2TPM, quantile normalized) and the EpiMAP repository 
(log2FPKM, quantile normalized). The topologically associating domains (TAD) boundaries 
were downloaded from the VISION project website under the "Hi-C" tab (36), and YY1 peaks 
(bed format) were downloaded from the Cistrome DB (37–39). The links to the downloaded files 
and the Cistrome DB sample ID list of the downloaded YY1 peak files are provided in 
Supplementary Table 1. The DNase-seq data to obtain the number of DNase I Hypersensitive 
Sites (DHSs) in different cell types were downloaded from the Meuleman 2020 study (40, 41). 
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To prepare data for normalization and downstream analyses, we first acquired the epigenomic 
signal matrices. This was accomplished by calculating the average signals for each chromatin 
feature at each ENCODE cCRE region (2) in every biological replicate of each cell type using 
the bigWigAverageOverBed script from the UCSC Genome Browser utilities (42). 
Subsequently, we generated a reference signal matrix by combining the average signal for each 
chromatin feature and used the matrix for all datasets to normalize against. It is important to note 
that not all cell types had datasets for all epigenetic features. The details and links to all available 
datasets in both species are provided in Supplementary Table 1. 

Generation of reference signal matrix 

To normalize data across multiple cell types, we used the average signal as reference for all cell 
types to normalize against in our study. For each epigenetic feature, we first collected all datasets 
for that feature in all cell types, and then computed the average signals at each cCRE region 
across these cell types. The average signal vector for all cCREs was used as a reference signal 
vector for the specific feature. This process was performed for all features, and the resulting 
outputs were combined to generate the reference signal matrix. 
 
To improve the cross-feature comparability and interpretability, we further equalized sequencing 
depths and signal-to-noise ratios of different features in the reference matrix using S3norm (17). 
Instead of using S3norm's default mode, which learns an exponential transformation model from 
common peak regions and common background regions of two signal vectors, we employed its 
cross-feature normalization mode. This mode leverages peak regions and background regions of 
each signal vector to learn a transformation model. The reason for this choice is that when 
normalizing two signal vectors of different epigenetic features, the assumption that common 
peak regions represent housekeeping epigenetic events with similar signal levels is not valid, 
particularly for features with opposing functions such as H3K27ac and H3K9me3. Specifically, 
we used the ratio between the top mean signal of 99% quantile of cCREs and the overall mean of 
all cCREs for each feature to learn the S3norm transformation model. After the normalization, 
the sequencing depth and the signal-to-noise ratios are equalized across all features in the 
reference matrix. This reference signal matrix is then used as the reference signal matrix for all 
cell types to normalize against in downstream analyses. 

The details about JMnorm 
JMnorm consists of four key steps (Figure 1). In the first step, it transforms the signal matrix into 
principal component analysis (PCA) space to consolidate correlated components across the 
signal vectors of different epigenetic features into the same PCA dimension. To achieve this, 
JMnorm learns a PCA transformation model from the reference signal matrix and then applies it 
to transform the target signal matrices. This ensures the signal matrices of all target cell types 
can be transferred to the same reference PCA spaces. Moreover, the PCA model captures the 
cross-feature correlation information from the reference signal matrix, which is used and 
preserved throughout the subsequent steps. 
  
Previous studies have demonstrated that there are reproducible combinatorial patterns across 
various chromatin features in different cell types or species, commonly referred to as epigenetic 
states, which play a role in transcriptional regulation. In the second step, we leveraged this prior 
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knowledge by first clustering the cCREs into distinct groups based on the reference signal matrix 
(reference clusters). The reference clusters were generated using K-means clustering based on 
the reference signal matrix in PCA space. The number of reference clusters (K) was 
automatically determined by performing hierarchical clustering on a subset of data (20,000 
cCREs by default), followed by the DynamicTreeCut method (cutreeDynamic function with the 
following parameter settings: method='hybrid' and deepSplit=2) (43). The resulting number of 
DynamicTreeCut clusters was then utilized as the K for K-means clustering on the entire 
reference signal matrix. Under the assumption that these reference clusters capture the conserved 
cross-feature patterns of distinct cCRE groups across different cell types, we assigned each 
cCRE, based on the target signal matrix, to one of the reference clusters. To achieve that, the 
target PCA signal matrix was first normalized to the reference PCA signal matrix using quantile 
normalization (initial QTnorm) to mitigate complex technical biases that could result in incorrect 
cCRE assignments. The Euclidean distance between each cCRE's target signal vector and the 
mean signal vector of every reference cluster was then calculated in the PCA space. Each cCRE 
was assigned to the reference cluster with the smallest Euclidean distance. It is important to note 
that the initial QTnorm step might introduce noise signals at different PCA space in the data. 
However, considering that different principal components (PCs) are independent, and the noise 
signal is expected to randomly appear across different PCs for each cCRE, we reasoned that the 
majority of PCs would still contain accurate signals, enabling correct cCRE assignment. 
  
The third step of JMnorm involves normalizing the target signal matrix against the reference 
signal matrix within each cluster in the PCA space. This was achieved by using QTnorm to 
normalize each principal component separately, removing both simple and complex technical 
biases that may be present in the target signal matrix. Here, we assumed that cCREs within the 
same cluster shared the same epigenetic state in both reference and target, and thus had the same 
signal distributions. However, since the number of cCREs within each cluster could be different 
between reference and target, they might still have different global distributions. The cCRE 
clustering followed by within-cluster QTnorm is one of the key distinctions between JMnorm 
and traditional QTnorm, effectively addressing the major limitation of QTnorm, which forces all 
cell types to have identical global signal distributions after normalization. 
  
In the fourth step, we reconstructed the normalized target signal matrix in the original signal 
space. To accomplish that, a dot product was performed between the normalized target PCA 
signal matrix and the transposed PCA rotation matrix that was learned in the first step. 

Quantification of the similarity of cross-feature correlations 
We assessed the ability of various methods to preserve and transfer cross-feature correlation 
information from reference signal matrices to post-normalization signal matrices of target cell 
types. Specifically, we calculated the cross-feature correlation matrix for each post-normalization 
signal matrix of the target cell types and the original reference signal matrix. We then computed 
the mean squared error (MSE) between each target cell type's correlation matrix and the 
reference correlation matrix. Lower MSE values indicate the normalization method can better 
preserve and transfer cross-feature correlation information from the reference signal matrix to the 
post-normalization signal matrices of the target cell types. For the cross-species normalization 
comparison (Figure 2F), S3norm's cross-feature mode was employed for S3norm normalization 
that only uses the peak regions and background regions from the reference and target datasets in 
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two species to learn the transformation model. Conversely, MAnorm was excluded because it 
requires the common peak regions between reference and target datasets to learn its 
transformation model, which was not available for cross-species normalization.  

Quantification of the preservation of combinatorial patterns across different cell types 
To evaluate the preservation of combinatorial patterns for different epigenetic features, we first 
combined the signal matrices of different cell types and applied a K-means clustering method to 
group the data from different cell types into distinct clusters. To ensure the robustness of this 
analysis, we used various numbers of clusters (K = 20, 30, 40, 50) in the K-means clustering 
step. We then quantified the mixing of various cell types in the clustering results using the 
average silhouette width (ASW), a metric ranging from 0 to 1 (44). Lower ASW values indicate 
a better mixing of data points across different cell types within each cluster relative to the 
between cluster distance. 
  
To measure the proportion of combinatorial patterns that are robustly identified across all cell 
types, we first performed K-means clustering (K = 30) for each cell type independently. Next, we 
generated the mean signal vector for each cluster in every cell type and combined all mean signal 
vectors into a single matrix. We then clustered the mean signal vectors using a second round of 
K-means clustering (K = 30) (Figure 3D). The output clusters containing at least one mean signal 
vector from all cell types were defined as robust clusters. We used the proportion of the robust 
clusters to evaluate different normalization methods. A higher proportion of robust clusters 
indicates that the normalization method is more effective in generating consistent combinatorial 
patterns across different cell types. We repeated this process multiple times with different 
random seeds to ensure the robustness of our conclusions. 

Cross-cell type RNA-seq predictions 
Integration of various epigenetic features, such as DNA accessibility and histone modifications, 
has been demonstrated to be an effective approach for prediction of gene expression levels. Since 
RNA-seq data is independent from epigenomic data, we hypothesized that properly normalized 
epigenetic signal matrices could better preserve the combinatorial patterns of epigenetic events 
across different cell types, thus enhancing the transferability of RNA-seq prediction models 
based on these combinatorial patterns and improving the accuracy of gene expression predictions 
across different cell types. Following the model design proposed by Xiang et al. (3), we used the 
average signals of eight epigenetic features at both proximal regions (TSS +/- 1kb) and distal 
cCRE regions (TSS +/- 500kb, excluding proximal regions) for all genes as predictors to train 
regression models for RNA-seq log2 transcripts per million (log2TPM) predictions. The RNA-
seq signals for different cell types were normalized by QTnorm against the average RNA-seq 
log2TPM across all cell types. To ensure the robustness of our evaluation, we tested three 
different models: a linear regression model (LM), a gradient boosting regression model (GBM) 
(45), and a linear regression model with gene grouping (LM-gene-grouping) (3). For gene 
grouping, we divided the gene set into four groups based on their average expression levels and 
standard deviations: (1) consistently low (mean < 0.5, sd < 0.2), (2) differentially low (mean < 
0.5, sd >= 0.2), (3) differentially high (mean >= 0.5, sd >= 0.2), and (4) consistently high 
expression (mean >= 0.5, sd < 0.2) across cell types. For each evaluation run, we randomly 
selected 80% of protein-coding genes in one training cell type to train the model, then used the 
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remaining 20% of protein-coding genes in another testing cell type for model evaluation. Model 
performance was evaluated using R2, with higher R2 values indicating more accurate cross-cell 
type RNA-seq predictions. We repeated this comparison multiple times with different random 
seeds to ensure the robustness of our conclusions. 

Comparison of the post-normalization signal consistency between biological replicates 

We reasoned that improved normalized signals would result in increased consistency between 
biological replicates. Therefore, we first independently normalized the signals of different 
replicates. Then, we employed two metrics to quantify signal consistency: (1) the R² values, 
which were computed between the post-normalization signal vectors of each pair of biological 
replicates, and (2) the Jaccard index values, which were calculated between the peak-calling 
results derived from the post-normalization signals of different replicates. Higher values for both 
R² and Jaccard indexes indicate better post-normalization signal consistency. 

Peak calling from cCRE signal matrices 
To compare normalization methods using peak calling results for CTCF ChIP-seq and DNase-
seq, we employed an iterative Z-score-based approach, akin to the hotspot peak calling method 
(46, 47), to call peaks from post-normalization cCRE signal matrices. For a specific epigenetic 
feature in a given cell type, we first converted normalized signals in all cCREs into Z-scores. We 
then selected cCREs with false discovery rate (FDR) adjusted p-values >= 0.1 to establish a 
second-round background model. Next, we recalculated the Z-scores and corresponding p-values 
for all cCREs using this updated background model. The cCREs with FDR adjusted p-values < 
0.1 were used as the output peak list for that chromatin feature in each cell type, which was 
ultimately utilized in downstream evaluations.  

Given that the number of peaks can vary significantly depending on statistical thresholds and 
methods, we applied a non-parametric, rank-based method to identify the same number of CTCF 
peaks for each cell type across different normalization methods. Specifically, we first used the 
iterative Z-score-based strategy to call CTCF peaks for a specific cell type across different 
normalization methods. The number of peaks (Nmax) for a specific cell type was determined 
based on the maximal peak count observed across the methods. Then, for different normalization 
methods, we used the top Nmax cCREs based on the normalized CTCF signals as the CTCF peaks 
for the specific cell type. 

Differential peak calling from cCRE signal matrices 
As described in the “Peak calling from cCRE signal matrices” section, for different 
normalization methods, we applied the rank-based method to identify the same number of 
differential peaks for DNase-seq datasets in different cell-types and glucocorticoid receptor (GR, 
gene symbol NR3C1) ChIP-seq datasets in A549 cell type with and without dexamethasone 
(Dex) treatment. Specifically, the top N peaks based on log2 fold change of DNase-seq signals in 
a pair of cell-types or an absolute value of log2 fold change between Dex-treated and untreated 
control conditions were defined as differential peaks and used for the downstream differential 
peak analysis. 
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Comparison between CTCF peaks and orthogonal data 
To evaluate the ability of normalized signals to accurately capture true biological events, we 
compared CTCF peak sets derived from different post-normalization CTCF signal vectors with 
orthogonal data sets. For different normalization methods, the same number of CTCF peaks was 
generated using the iterative Z-score-based peak calling followed by a rank-based method, as 
detailed in the “Peak calling from cCRE signal matrices” section. We then evaluated CTCF 
peaks using three types of orthogonal data: (1) YY1 (CTCF cofactor) peak  (48), (2) TAD 
boundaries (49–51), and (3) the CTCF binding site motifs (52, 53). 
  
We first compared the enrichment of CTCF peaks in YY1 peak regions. We reasoned that true 
CTCF peaks should exhibit greater enrichment in functionally related regions. Specifically, we 
divided the CTCF peaks into three distinct groups: (1) CTCF peaks shared by QTnorm / 
Harmony and JMnorm methods, (2) CTCF peaks uniquely called from JMnorm data, (3) CTCF 
peaks uniquely called from QTnorm / Harmony data. The enrichments were calculated as 
follows: 
  

exp!"!#&%%& = obsCTCF ×
YY1RegionSize
GenomeSize  

enrichment!"!#&%%& =
'()!"!#&%%&*&
+,-!"!#&%%&*&

,  
  

where (obsCTCF) represents the number of CTCF peaks in each group, (YY1RegionSize) 
represents the total number of base-pairs in the genome covered by YY1 peaks, (GenomeSize) 
represents the hg38 genome size, (obs!"!#&%%&) represents the observed number of CTCF peaks 
that intersect with YY1 peak regions by at least one base-pair. Due to the limited availability of 
YY1 peak datasets in some cell types, we pooled available YY1 peaks creating a single unified 
YY1 peak set for the YY1-CTCF peak intersection enrichment comparisons. Similarly, due to 
the availability issue for TAD boundary sets, we employed a unified TAD boundary region set 
for TAD boundary-CTCF peak intersection enrichment comparisons (Supplementary Table 1). 
  
We then compared the proportion of CTCF peaks containing CTCF motif (Jaspar ID: 
MA0139.1) for the data normalized by different normalization methods. We used FIMO (54) to 
assess whether CTCF peak contained CTCF motif using a q-value threshold of <= 1e-03 for 
motif identification. The CTCF peak set was partitioned into the same three groups as described 
earlier for the CTCF-YY1 enrichment comparison. 

Clustering cCRE based on cross-cell type DNase-seq patterns 
We employed the Snapshot package with default settings to cluster cCREs based on DNase-seq 
signal patterns across different cell types. Snapshot was chosen for its ability to efficiently 
identify smaller clusters, automatically determine the ideal cluster number, and consider signal 
correlations across cell types when grouping cCREs into separate clusters using an indexing 
strategy (8). To quantify the signal-to-noise ratios for the Snapshot output clusters, we defined 
"Signal" as the top quantile (100%, 90%, 80%, 70%, 60%) signal and "Noise" as the bottom 
quantile (10%, 20%, 30%, 40%, 50%) signal in the meta-cluster heatmap. We calculated the 
signal-to-noise ratio using different combinations of "Signal" and "Noise" and summarized the 
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results in Figure 6E. Statistical significance of the differences was calculated using the Paired 
Wilcoxon test. 

Identification of cell-type-specific DHSs 
For each cell type within a cell type pair, we initially identified 10,000 cell-type-specific DHSs 
from the post-normalization DNase-seq signal vectors using different normalization methods, 
following the strategy detailed in the "Differential peak calling from cCRE signal matrices" 
section. Then, using the bedtools intersect function with default parameters (55), these cell-type-
specific DHSs were categorized into three groups: JMnorm-uniquely identified, QTnorm-
uniquely identified, and those shared by both JMnorm and QTnorm methods.  

Identification of differential glucocorticoid receptor (GR) ChIP-seq peaks after 
dexamethasone (Dex) treatment 
For GR motif analyses and comparison of human phenotype term enrichments, we used the top 
2,000 differential peaks, identified based on the absolute value of the log2 fold changes between 
GR signals in A549 cells with and without Dex treatment. For different normalization methods, 
we analyzed the same number of differential GR ChIP-seq peaks. We computed GR motif 
(JASPAR ID: MA0113.1) scores in differential peaks as the -log10 p-value using the FIMO (54) 
motif scanning algorithm. The method for calculating the human phenotype term enrichment 
score is described in the "Human Phenotype term enrichment by GREAT analysis" section. 

Human Phenotype term enrichment by GREAT analysis 
To quantify enrichment of human phenotype terms for genes associated with distinct peak sets 
including cell-type-specific DHS and differential GR peaks post-Dex treatment, we utilized the 
rGREAT package (56)  (57). In this study, proximal regions were defined as TSS -5 kb to +1 kb, 
and distal regions were defined as proximal regions ± 100 kb. To focus on more specific terms, 
we excluded human phenotype terms linked with more than 1,000 genes to eliminate overly 
general associations.  
 
To compare the enrichment of human phenotype terms in cell-type-specific DHSs or differential 
GR ChIP-seq peaks after Dex treatment, we assumed that DHSs that are shared across 
normalization methods or differential GR ChIP-seq peaks that are identified using TSnorm_cbg 
corresponded to epigenetic signals representing true biological events. We identified the top 30 
enriched human phenotype terms for these shared DHSs or differential GR ChIP-seq peaks. 
Next, for each normalization method, we quantified enrichments of the top 30 terms in cell-type-
specific DHSs uniquely identified by each method and used these enrichments as a metric for 
method comparisons. Since relatively few differential GR peaks were unique to different 
normalization methods impairing the reliability of significance calculation of the human 
phenotype term enrichments, we compared performance of the normalization methods using 
enrichment of the top 30 terms in all differential GR peaks identified by each method instead. 

Using Harmony for cross-cell type multi-feature batch corrections 
The Harmony method (58), originally designed for single-cell batch correction, transforms the 
input signal matrix to PCA space for batch correction. During this process, it modifies the signal 
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matrices of both reference and target cell types in each run. As a result, in order to correct 
technical biases for signal matrices across cell types against a single reference matrix, both 
reference matrix and matrices for all cell types would need to be included in a single Harmony 
run, which would consume an excessive amount of computational resources. To address this 
issue, for each Harmony run, we assigned five times greater weight to the reference signal matrix 
than to the signal matrix of an individual target cell type. We reasoned that potential technical 
signal biases of the reference signal matrix would outweigh the biases of individual target cell 
type. This approach allowed for batch correction of data across all cell types against the same 
reference signal matrix without requiring the inclusion of all cell types’ data in a single Harmony 
run. 

RESULTS 

JMnorm overview 
The goal of JMnorm is to simultaneously normalize multiple epigenetic features across cell 
types, species, or experimental conditions by leveraging information from functionally correlated 
features. The input for JMnorm is signal matrices comprising data for multiple epigenetic 
features for a desirable number of regulatory regions in two or more cell types or experimental 
conditions (reference and target cell types or conditions). To develop the method, we utilized 
human and mouse ENCODE cCREs (2), comprehensive collections of genome-wide regulatory 
elements generated in multiple cell types in the two species. 
 
The method consists of four key steps (Figure 1). In step 1, orthogonal transformation, JMnorm 
converts the correlated components of multi-dimensional epigenetic signal matrices for both 
reference and target cCREs into mutually independent PCA dimensions. This process generates 
corresponding PCA matrices, effectively preserving the relationships between functionally 
related epigenetic features (Figure 1A) (59). In the subsequent steps 2 and 3, JMnorm performs 
data normalization within the PCA space, which simultaneously normalizes all features and 
transfers the cross-feature patterns from the reference signal matrix to the post-normalization 
signal matrices of the target cell types or conditions. We anticipate that this strategy can improve 
the performance of downstream prediction models that utilize the cross-feature patterns for tasks 
such as gene expression prediction (60–62), enhancer-promoter interaction prediction (63–65), or 
epigenomic data imputation (66–70), especially for cross-cell-type predictions. Specifically, in 
step 2, cCRE clustering, JMnorm first clusters (N) cCREs based on the reference PCA matrix 
into (M) reference clusters (M << N). It then assigns each of the individual target cCREs into the 
nearest reference cluster based on signal similarity in the PCA space (Figure 1B). In step 3, 
within-cluster normalization, JMnorm normalizes the target cCRE signals (PCA-transformed) to 
the corresponding reference cCRE signals (PCA-transformed) using quantile normalization 
within each cluster (Figure 1C). When performing cCRE clustering (step 2) followed by within-
cluster QTnorm (step 3), we assume that (1) the combinatorial patterns of epigenetic features are 
conserved across cell types or conditions and (2) within each cCRE cluster, the signal 
distributions of PCA matrices are also conserved across cell types or conditions. It is important 
to note that the number of target cCREs assigned to each reference cluster can vary for different 
target datasets, thereby resulting in different global signal distributions across cell types or 
conditions after normalization. Therefore, this strategy can circumvent potential biases inherent 



 

 12 

in QTnorm, which forces identical global signal distributions across diverse datasets. Once steps 
1-3 are completed, JMnorm transforms the normalized target signal matrix from the PCA space 
back to the original signal space in step 4 (Figure 1D). The details of these steps can be found in 
the Materials and Methods section. 

Evaluation of preservation of cross-feature correlation 
We evaluated the performance of JMnorm relative to a panel of other normalization methods 
(TSnorm, MAnorm, S3norm, QTnorm), which are frequently applied as initial data 
normalization strategies for various downstream analyses. We also included Harmony, a widely 
used batch correction method for single-cell data. Similar to JMnorm, Harmony utilizes PCA 
transformation to harness information from correlated features within multi-dimensional data 
(58).  
 
The first evaluation was to compare the performance of JMnorm and other normalization 
methods for their ability to preserve the cross-feature correlation among different epigenetic 
features across multiple cell types. While it is possible to use data from one particular cell type as 
a reference for normalizing data from other cell types, this approach could introduce biases from 
the data of the chosen cell type. To circumvent such potential biases, we generated a reference 
dataset by averaging each epigenetic feature across all cell types. Next, we used the selected 
methods to normalize raw signal matrices of target cell types against the reference signal matrix. 
The resulting post-normalization signal matrices were then used to compute the cross-feature 
correlation matrices.  
 
We first inspected the cross-feature correlation matrices derived from the reference, the raw data, 
and JMnorm-normalized data from neutrophil (NEU) cells, respectively (Figure 2A, B, and C).  
We observed that the JMnorm-derived correlation matrix was more similar to the reference 
correlation matrix than to the correlation matrix of the raw data. Specifically, correlation 
matrices derived from both JMnorm and reference signal matrices exhibited strong positive 
correlations between features within the active chromatin feature group (H3K27ac, H3K4me3, 
H3K4me1, ATAC-seq) and the repressed chromatin feature group (H3K27me3 and H3K9me3) 
(Figure 2A and C). Conversely, we observed a substantial negative correlation between features 
in active and repressed chromatin groups (Figure 2A and C) (1, 2). In contrast, the 
aforementioned correlation relationships are much weaker in the raw data (Figure 2B), likely due 
to the technical biases in the raw data. These results suggest that JMnorm is effective in reducing 
technical biases and preserving and transferring the cross-feature correlation information, which 
is better aligned with our prior knowledge, from the reference to the target cell type.  
 
We then compared the panel of methods by measuring the MSEs between cross-feature 
correlation matrices of the normalized data and the reference across different cell types. 
JMnorm-derived correlation matrices better preserved the information in the reference 
correlation matrix than those derived from other methods, as indicated by its significantly lower 
MSEs (Paired Wilcoxon test between JMnorm and the second-best performing method, p-value 
= 3.81e-06; Figure 2D). 
 
Furthermore, the superior performance of JMnorm also holds true in cross-species 
normalizations, when mouse cCRE signal matrices of different cell types were normalized 
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against the human reference signal matrix. Specifically, JMnorm produced significantly lower 
MSEs than other methods (Paired Wilcoxon test between JMnorm and the second-best 
performing method, p-value = 2.13e-04) when comparing the correlation matrices of each mouse 
target cell type to the human reference (Figure 2E).  
  
Since experimental data for large panels of epigenetic features might not always be available, we 
also assessed JMnorm’s performance with fewer features. As demonstrated in Supplementary 
Figure 1, JMnorm can effectively preserve and transfer cross-feature correlation information 
when normalizing datasets containing as few as two epigenetic features.  

Evaluation of consistency of cross-feature combinatorial patterns across cell types 
Combinatorial patterns of epigenetic features, called epigenetic states, reflect functionally 
relevant interactions between DNA accessibility, histone modifications, and transcription factor 
binding under specific cellular and experimental conditions. They are often used to accurately 
infer transcriptional states and interpret the function of non-coding genetic variants (2, 23–26, 
60–62). Previous studies have shown that epigenetic states are maintained across different cell 
types or even species (4). With the expanding variety of epigenetic features and functional 
element annotations along with the growth in profiled cell types, there is a growing need for 
normalization methods that can effectively integrate and preserve recurring combinatorial 
patterns within the epigenetic states across diverse cell types. 
 
We first compared the panel of methods for their ability to harmonize signal matrices of various 
epigenetic features across multiple cell types. A better normalization method should more 
consistently preserve common combinatorial patterns in different cell types and thus allow better 
data integration across cell types.  To quantify the degree of preservation of common 
combinatorial patterns, we first pooled cCRE signal matrices of seven epigenetic features from 
each pair of different cell types and identified the combinatorial patterns by clustering cCREs 
using K-means (K = 30, 20, 40, 50).  We then measured the ASW score, which ranges from 0 to 
1 and a lower score indicates better sharing of combinatorial patterns between cell types (44). As 
shown in Figure 3A and Supplementary Figure 2, JMnorm has significantly lower ASW scores 
than other methods (Paired Wilcoxon test between JMnorm and the second-best performing 
method, p-value = 3.05e-05, 3.05e-04, 2.14e-04, 6.23e-03 for different K values in K-means 
clustering), indicating that the multi-feature signal matrices normalized by JMnorm achieved 
better integration among cell types within each cCRE clusters. 
  
Next, we clustered all cCREs from all 24 cell types groups available in EpiMAP database and 
used the resulting cCRE clusters (Figure 3D) to compare different normalization methods, using 
the proportion of robust cCRE clusters (4) as a metric of global preservation of epigenetic feature 
patterns across different cell types. Here, a robust cCRE cluster is defined as the cCRE cluster 
displaying high consensus across all cell types. A higher proportion of robust cCRE clusters 
would indicate a better preservation of combinatorial feature patterns across cell types (see 
method section for details). JMnorm-normalized signal matrices resulted in a significantly higher 
proportion of robust cCRE clusters (Paired Wilcoxon test between JMnorm and the second-best 
performing method, p-value = 2.60e-04) than those obtained by other methods (Figure 3B).  
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Results of these comparisons demonstrate that JMnorm outperforms other methods in integrating 
multi-feature signal matrices and preserving cross-feature combinatorial patterns across different 
cell types. 

Evaluation of cross-cell-type gene expression predictions 
Since JMnorm integrates the multi-feature signal matrices and preserves cross-feature 
combinatorial patterns across different cell types better than other methods, we anticipated that 
the gene expression prediction models utilizing data normalized by JMnorm would also exhibit 
improved performance in cross-cell-type predictions. Therefore, we compared normalization 
methods by their ability to improve cross-cell type gene expression predictions. We trained three 
types of regression models to learn the quantitative relationships between seven epigenetic 
features and RNA-seq data: a linear regression model (LM), a gradient boosting regression 
model (GBM) (45), and a linear regression model with gene-grouping that is based on cross-cell 
type average expression levels and standard deviations (LM-gene-grouping) (3). The details 
about training and testing of these regression models are described in the Materials and Methods 
section. Briefly, we randomly divided protein-coding genes into two groups: 80% of genes were 
used for model training (Training-Genes) and 20% of genes were used for model evaluation 
(Testing-Genes). The regression models were trained using the signals of Training-Genes in one 
Training-Cell-Type and evaluated by R-squared (R2) using the signals of Testing-Genes in 
another Testing-Cell-Type, representing the most challenging cross-cell type hold-out gene 
prediction setting in gene expression prediction tasks. As shown in Figure 3C and Supplementary 
Figure 3, JMnorm-normalized data had significantly higher R2 than others normalization 
methods across all three regression methods and different cell-type-pairs (Paired Wilcoxon test 
between JMnorm and the second-best performing method, p-values are LM: 6.16e-06, GBM: 
1.48e-08, LM-gene-grouping: 2.54e-07). These results demonstrate that JMnorm-normalized 
epigenetic signals improve performance of cross-cell type gene expression prediction models, 
suggesting that the JMnorm-normalized epigenetic data are more consistent with gene expression 
levels, an orthogonal biological data type, than those normalized by other methods.  

Evaluation of signal consistency between biological replicates 
We next evaluated different methods based on consistency of post-normalization signal strengths 
between biological replicates, measured by R2. A better normalization method should result in 
higher signal consistency between the independently normalized replicates. We examined the 
replicate consistency of the post-normalized H3K27ac ChIP-seq signals across 9 different cell 
types. Six other features were used for JMnorm normalization of H3K27ac ChIP-seq data. JM 
norm-normalized data had significantly higher R2 values than data normalized by other methods 
(Paired Wilcoxon test between JMnorm and the second-best performing method, p-value = 
1.95e-03) (Figure 4A). Moreover, JMnorm-normalized data had the highest or the second highest 
R2 values across all 7 examined epigenetic features (Figure 4A and Supplementary Figure 4), 
especially those that are more likely to reflect cell-type-specific epigenetic events such as 
ATAC-seq, H3K27ac, and H3K4me1 (1).  
 
As an additional metric, we assessed the replicate consistency of enriched peak calling results for 
H3K27ac across 9 cell types. To this end, the same peak-calling method was applied to post-
normalized signals generated by the panel of normalization methods, and an equal number of 
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called peaks was identified for evaluation of replicate consistency using the Jaccard index. 
Besides the signal strengths consistency, JMnorm’s peak calling results also had higher replicate 
consistency as indicated by significantly higher Jaccard index values compared to peaks 
generated from data normalized by other methods (Paired Wilcoxon test between JMnorm and 
the second-best performing method, p-value = 4.5e-03; Figure 4B).  
 
We then generated scatterplots of post-normalization signals at individual cCREs for the two 
biological replicates from the H3K27ac ChIP-seq experiment in CD8+ T-cells (Figure 4C and 
Supplementary Figure 5). Compared to other methods, the scatterplot for JMnorm showed 
considerably less deviation from the diagonal line (indicating a higher R2), especially for the 
cCREs with lower or only noise-like signals indicated by the red arrow at bottom left corner of 
the scatterplots. 
 
These results suggest that by leveraging information from functionally correlated features, 
JMnorm can more effectively improve replicates consistency by reducing technical noise and 
preserving true epigenetic signals than other normalization methods. 
 
It is important to note that JMnorm performance is not universally superior to all other methods 
for normalization of all examined epigenetic features. For example, since H3K4me3 is a 
canonical marker of gene promoters, its ChIP-seq signals have similar global distributions across 
different cell types. This type of signal distribution is expected to be suitable for QTnorm, which 
enforces identical post-normalization signal distributions. Hence, QTnorm exhibited a slightly 
higher R2 between biological replicates for H3K4me3 ChIP-seq signal than JMnorm 
(Supplementary Figure 4). Based on the overall performance, we conclude that JMnorm 
surpasses other normalization methods in enhancing signal and minimizing technical noise and 
improves consistency between biological replicates. 

Evaluation of quality of peak calling results 
Based on the performance evaluations results above, JMnorm, QTnorm, and Harmony 
outperformed the other three methods. This outperformance is expected since JMnorm 
incorporates the strengths of both QTnorm and Harmony: as QTnorm, it minimizes the complex 
technical biases by equalizing the signals of the same rank, and as Harmony, it combines the 
highly correlated variables in the PCA space. To more closely evaluate the six normalization 
methods, we compared their performance by the quality of peak calling results (Figure 5 and 
Supplementary Figure 6 and 7). We hypothesized that better normalization could improve the 
accuracy of peak calling results by reducing both false positives and negatives, thereby yielding 
peaks more closely associated with true biologically relevant events. 
 
For this test, we first selected TF ChIP-seq data for CTCF (71) and YY1 (48) because the role of 
these TFs in transcription regulation at gene promoters, enhancers, and topologically associating 
domain (TAD) boundaries is well understood and their DNA-binding motifs had been 
extensively characterized. Specifically, CTCF and YY1 often co-occupy the same genomic 
regions at the promoters and enhancers of active genes (48), whereas TAD boundaries are 
uniquely bound by CTCF (49–51). Moreover, approximately 80% of previously validated CTCF 
ChIP-seq peaks contain CTCF binding motifs (52, 53). To evaluate the quality of CTCF ChIP-
seq peak calling results, we applied the same peak-calling method to the post-normalized signals 
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generated by the five normalization methods, yielding an equal number of CTCF peaks for each 
method (see Materials and Methods section for more details).  The resulting CTCF peaks were 
evaluated using the following three metrics: (1) enrichment at YY1 peak regions, (2) enrichment 
at TAD boundaries, and (3) fraction of the CTCF peaks with CTCF DNA-binding motif. We 
found that CTCF peaks, uniquely called using JMnorm-normalized data, exhibited significantly 
higher enrichment at YY1 peak regions than the ones generated by other methods (Paired 
Wilcoxon test p-values < 0.05) (Figure 5). Similarly, JMnorm-normalized CTCF ChIP-seq peaks 
had significantly higher (Paired Wilcoxon test p-values < 0.05) or comparable enrichment at 
TAD boundaries than other methods’ peaks (Supplementary Figure 6). Lastly, there is no 
significant difference in proportion of CTCF peaks containing CTCF motifs (Jaspar (72) ID: 
MA0139.1) with the JMnorm-normalized data relative to other methods’ data (Supplementary 
Figure 7). In sum, these findings suggest that JMnorm exhibits improved performance in terms 
of quality and biological significance of the resulting TF ChIP-seq peaks.  
 
We next focused on comparing the JMnorm and QTnorm by the quality of the DNase-seq peak 
calling results across cell types (Supplementary Figure 8). Both methods are designed to 
minimize technical biases by equalizing the signals of the same rank. However, a critical 
technical bias of QTnorm is that it imposes an identical signal distribution across cell types, 
which might lead peak-calling algorithms to identify the same number of peaks for all cell types. 
We asked if JMnorm could circumvent this technical bias since it applies QTnorm only within 
each cCRE cluster, which may contain a different number of cCREs per cell type, thereby 
leading to different global signal distributions across cell types and varying numbers of peaks for 
the normalized data.  
 
To this end, we first compared the performance of QTnorm and JMnorm on the same set of 
DNase-seq data generated in 24 cell types and found that QTnorm calls the same number of 
peaks across cell types, whereas JMnorm effectively identifies a different number of peaks per 
cell type (Supplementary Figure 8A). As expected, most cell types close to stem cells exhibited a 
larger number of peaks (denoted by orange coloring) than other cell types, consistent with prior 
observations by Meuleman et al. (40) (Supplementary Figure 8B).  
 
We then evaluated the noise level for the two methods. Since QTnorm imposes an identical 
signal distribution across various cell types, we expected more false positive peaks in the cell 
types with fewer true biological peaks. Clustering of cCREs based on these signals would reveal 
noisier cross-cell type patterns with increased presence of weaker signals in many cell types. To 
test the validity of these expectations, we utilized the Snapshot clustering algorithm to group 
cCREs using normalized DNase-seq signals (8) and then evaluated the quality of the resulting 
clusters. As expected, QTnorm clusters exhibited relatively noisier cross-cell type patterns 
(Supplementary Figure 8C and D) with significantly lower signal-to-noise ratios than JMnorm’s 
clusters (paired Wilcoxon test p-value = 2.38e-07) (Supplementary Figure 8E) (see Materials and 
Methods section for more details), indicating that JMnorm-normalized DNase-seq signals had 
less noise. 
 
Lastly, to determine whether the JMnorm-normalized DNase-seq peaks contained true 
biologically meaningful information, we conducted pairwise comparisons of post-normalized 
DNase-seq peaks in different cell types and assessed the enrichment of human phenotype terms 
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(73, 74) relevant to the respective cell types in the differential peaks. We reasoned that cell-type-
specific differential peaks would be more likely to reflect true biological differences between cell 
types and corresponding top-enriched human phenotype terms could be used to highlight the 
cell-type-specific functional differences. An initial analysis of the differential peaks identified in 
heart and lung cell types revealed greater enrichment of heart-relevant terms in heart-specific 
peaks uniquely identified using JMnorm-normalized DNase-seq data than QTnorm-normalized 
data (Figure 6A). Next, we conducted the same pairwise DNase-seq peak analysis for 100 
randomly selected pairs of cell types. Differential peaks unique to JMnorm had a significantly 
higher enrichment (paired Wilcoxon test p-value < 0.05) in cell-type-specific functional terms 
than peaks uniquely identified using other methods (Figure 6B-F), indicating that JMnorm-
derived differential peaks may more accurately capture true biological information. 
 
These results demonstrate that JMnorm improves the accuracy and biological relevance of the 
peak calling results.  

Evaluation of quality of differential peak calling in response to perturbations  
Small molecule perturbations often make a substantial and global impact on the epigenome (75, 
76) presenting a substantial challenge for data normalization. That is because many 
normalization methods assume that differences in the overall signal (12–14) or common peak 
regions (16, 17) between different datasets are caused primarily by technical inconsistencies 
rather than true biological changes in global epigenetic signals. We compared the performance of 
six normalization methods by the quality of differential glucocorticoid receptor (GR, gene 
symbol NR3C1) ChIP-seq peak calling results in the context of dexamethasone (Dex) treatment 
of A549 cells (15) (Figure 7). We selected GR ChIP-seq data for this evaluation because GR is a 
well-characterized receptor for Dex, GR’s binding to DNA increases globally with transient Dex 
treatment, and its DNA-binding motif is also well known (78). 
 
For this analysis, we first normalized the GR ChIP-seq data for both the Dex treatment condition 
and the no-treatment control using each of the six methods and then identified differential GR 
peaks using the post-normalization signals. For JMnorm and Harmony, the GR ChIP-seq data 
were normalized in conjunction with four additional epigenetic features (ATAC, H3K27ac, 
H3K4me1, and H3K4me3). We benchmarked the performance of different normalization 
methods relative to TSnorm_cbg. The TSnorm_cbg leverages the same concept as the 
normalization of ChIP-seq with control (NCIS) (77) method that was specifically developed to 
address the challenge of normalizing global differences between ChIP and control datasets, by 
calculating a scale factor based on the information from common background regions between 
the two. We hypothesized that better normalization could improve the accuracy of differential 
peak calling results, yielding peaks that are more closely associated with true biologically 
relevant changes induced by the perturbagen. 
  
As expected, most of the differential GR peaks (top 2,000 differential peaks based on absolute 
value log2 fold-change between Dex treatment sample and no treatment sample) called using 
TSnorm_cbg-normalized data were upregulated after Dex treatment (Figure 7A), indicating an 
increase of GR binding to the genome. For JMnorm, most differential peaks also exhibited 
increased GR signals (Figure. 7B), similarly supporting our biological understanding. 
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Conversely, only approximately 50% of differential peaks called using QTnorm-normalized data 
were upregulated with Dex treatment (Figure 7C).  
 
To further characterize the differential GR peaks identified using data normalized by the six 
methods relative to TSnorm_cbg-normalized data, we evaluated the quality of the GR motif 
(Jaspar ID: MA0113.1) (Figure 7D) and the extent of Human Phenotype term enrichment (Figure 
7E and Supplementary Figure 9) in differential peaks. As expected, GR motif scores and the 
degree of GR-related process term enrichment were significantly lower in differential peaks 
called using QTnorm/S3norm/MAnorm-normalized data as compared to those derived from the 
JMnorm (paired Wilcoxon test p-value < 0.05). These results suggest that an improper matching 
of overall distribution or signal-to-noise ratio can undermine the association between differential 
GR peaks and Dex treatment. In conclusion, JMnorm improves the accuracy and biological 
significance of the differential peak calling results relative to QTnorm/S3norm/MAnorm, and 
demonstrates a comparable performance relative to the other approaches including the state-of-
the-art method (TSnorm_cbg) for normalization of epigenetic datasets with global differences 
induced by perturbations. 

DISCUSSION 

We present a novel approach named JMnorm that simultaneously normalizes multiple epigenetic 
features across cell types, species, and experimental conditions by leveraging information from 
functionally correlated features. JMnorm presents several methodological advances over existing 
normalization approaches that analyze each feature independently and thus may distort 
relationships between epigenetic features. Specifically, JMnorm normalizes multiple epigenetic 
features jointly in the PCA space that preserves correlations between different features. Secondly, 
using a two-step process of initial cCRE clustering followed by within-cluster quantile 
normalization, JMnorm effectively reduces technical biases without imposing identical global 
signal distributions across different cell types. Following the principle of Occam's razor, we have 
implemented JMnorm using simple yet sufficiently effective statistical techniques. By employing 
these techniques, we aimed to enhance the robustness of JMnorm and enable its wide application 
for various downstream analyses. Future investigations could potentially benefit from exploring 
advanced techniques, such as orthogonal transformation and cCRE clustering. We have 
demonstrated JMnorm’s improved capabilities by comparing cross-feature correlation matrices 
before and post-normalization, analyzing the extent of preservation of combinatorial patterns of 
epigenetic features across different cell types, and evaluating consistency between biological 
replicates. Furthermore, in several use cases of epigenomic analyses, such as prediction of gene 
expression, peak calling, and differential TF binding, we showed that JMnorm achieves better 
results than other methods when being validated against various types of orthogonal biological 
data. Altogether, these improvements underscore the strength of JMnorm in reducing noise and 
preserving true biologically meaningful information in epigenomic data. 

Given the superior performance of JMnorm across diverse types of epigenetic features and 
genomic tasks, we anticipate that it can be used across a broad range of applications. In addition 
to the applications described in this work, a potential application for JMnorm is in normalizing 
single-cell gene module signal matrices. Single-cell gene expression analyses (80, 81) often 
involve data transformation that converts relatively noisy individual gene expression information 
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into gene module scores (82–86). By leveraging information from correlated gene modules, 
JMnorm may provide a more accurate representation of cells or meta cells in different gene module 
spaces across various cell groups, conditions, or time points. 

Because JMnorm normalizes data by leveraging information from functionally correlated datasets, 
higher correlations among the features can result in better improvements with normalization. To 
help users more effectively select features with high correlations for JMnorm analyses, we 
computed pairwise cross-feature correlations for 538 epigenetic features in K562 cells using data 
from the ENCODE Consortium (1, 2) (Supplementary Figure 10A). Considering the substantial 
size of the output correlation matrix and the difficulties with visualization, we also set up a Shiny 
app (79) visualization tool for convenient and interactive exploration of the correlation matrix 
(Supplementary Figure 10B). 

Lastly, we’d like to point out a potential limitation: JMnorm might not be able to adequately handle 
global changes across all functionally correlated features under certain conditions. This could 
result in losing some global changes at the within-cluster quantile normalization step. For these 
scenarios, other normalization strategies that take into account global changes, such as 
normalization using only common background regions (77) or a spike-in reference (75, 76), may 
be more appropriate. 

In summary, JMnorm introduces a novel approach for multi-feature normalization of epigenetic 
data. This method has a straightforward design and is effective in reducing technical biases and 
preserving cross-feature correlations across different cell types. With the continuing development 
of high-throughput sequencing technologies for genome interrogation and the growing number of 
epigenetic datasets generated in different cell types, species, and under various physiological 
conditions, we anticipate JMnorm becoming a crucial tool for data normalization in integrative 
and comparative epigenomics studies.  

DATA AVAILABILITY 

The JMnorm package is available at GitHub (https://github.com/camp4tx/JMnorm) (87) and 
released under GNU General Public License, version 2.0 or later. The main part of JMnorm was 
implemented in R. We also provided a conda environment that can be deployed in both MacOS 
and Linux operating systems. The signal tracks used in this project were mainly downloaded from 
VISION project data portal (32) and the EpiMAP repository (34). The detailed cell types included 
in each cell type group in the EpiMAP data can be found in the EpiMAP metadata file (88). Human 
and mouse cCRE lists were downloaded from ENCODE-SCREEN data portal (89, 90). The list of 
links for the files used in this paper can be found in Supplementary Table 1. 
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FIGURES 

 
Figure 1. An overview of the four key steps in the JMnorm normalization procedure. (A) 
Step 1: orthogonal transformation. The correlated components of various epigenetic signals are 
transformed into mutually independent high-dimensional PCA dimensions. Each colored block 
on the left represents the signal vector of all epigenetic features at the nref or ntar cCRE regions in 
reference or target samples, respectively. Colored blocks on the right denote corresponding 
transformed PCA epigenetic signal matrices for reference and target samples. The yellow box in 
the middle represents the PCA rotation matrix learned from the reference signal matrix. (B) Step 
2: cCRE clustering. Reference cCRE clusters are generated based on the reference data in the 
PCA space with the average signal reference matrix shown as a heatmap. Target cCREs are 
assigned to reference clusters according to the Euclidean distances between the signal vector of 
the target cCRE and the average signal vectors of reference clusters in the PCA space. Within 
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each cluster, the number of cCREs, shown as colored blocks within the insert, may vary between 
the reference and target samples. (C) Step 3: within-cluster normalization. Target signal matrix is 
normalized against the reference matrix using within-cluster quantile normalization as shown for 
Cluster k. (D) Step4: reconstruction of the JMnorm-normalized target signal matrix in the 
original signal space. The yellow box in the middle indicates the transposed PCA rotation matrix 
learned in the first step (panel A). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 27 

 
Figure 2. Evaluation of cross-feature correlation preservation. (A) Reference signal cross-
feature correlation matrix. (B) Raw signal cross-feature correlation matrix in target neutrophil 
(NEU) cell type. (C) JMnorm-normalized signal cross-feature correlation matrix in target NEU 
cell type. (D) A boxplot of MSEs between human target and reference correlation matrices for 
the six normalization methods. (E). A boxplot of MSEs between correlation matrices of mouse 
target cell types and the human reference for the five normalization methods. 
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Figure 3. Evaluation of consistency of cross-feature combinatorial patterns and gene 
expression predictions across cell types. (A) A boxplot of Average Silhouette Widths (ASWs) 
for the six normalization methods demonstrating quality of mixing of cCREs across different cell 
types in clustering outputs (K-means: K=30). (B) A boxplot of proportions of cCRE clusters that 
are reproducible in all cell types for the six normalization methods. (C) A boxplot of R² between 
observed and predicted RNA-seq values expressed as log2 transcripts per million (log2TPM) for 
the six normalization methods. Linear regression model with gene grouping was used for the 
predictions. (D) Top. A heatmap of the average signals at cCRE clusters for seven epigenetic 
features in 24 EpiMAP cell type groups. Clusters are ordered by the K-means cluster label (K = 
30). Bottom. The heatmaps with distinct colors represent labels for different cell types and K-
means clusters. 
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Figure 4. Evaluation of the post-normalization signal consistency between biological 
replicates. (A) A boxplot of R2 values between biological replicates in multiple cell types for the 
six normalization methods. (B) A boxplot of Jaccard indexes comparing peak calling results 
between biological replicates of multiple cell types for the six normalization methods. (C) 
Scatterplots of H3K27ac ChIP-seq signal in CD8+ T-cells in two biological replicates normalized 
by QTnorm (left) and JMnorm (right). Data are shown on log2 scale. Bright orange and gray 
colors indicate higher and lower data point density, respectively.   
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Figure 5. Evaluation of quality of TF peak calling results.  Box plots comparing JMnorm’s 
and five other methods’ performance as determined by CTCF peak enrichment at YY1 peak 
regions. (A) Comparison between JMnorm and QTnorm, (B) JMnorm and Harmony, (C) 
JMnorm and S3norm, (D) JMnorm and MAnorm, and (E) JMnorm and TSnorm. Red box plots 
represent enrichments for CTCF peaks that are shared between JMnorm and a corresponding 
alternative method. Orange box plots represent enrichments for CTCF peaks uniquely identified 
by JMnorm. Blue box plots represent enrichments for CTCF peaks uniquely identified by the 
respective alternative method. 
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Figure 6. Comparative analysis of JMnorm and other methods using DNase-seq peak 
calling results. (A) A scatterplot of enrichments of the Human Phenotype terms in heart-specific 
peaks (relative to lung) uniquely identified by QTnorm (x-axis) or JMnorm (y-axis). The 
displayed terms are the top 30 most significantly enriched terms identified by both methods. (B) 
A box plot of Human Phenotype terms enriched in shared and uniquely identified QTnorm’s or 
JMnorm’s peaks across 100 randomly selected cell type pairs. (C-F) same as (B), for comparison 
between JMnorm and Harmony (C) / S3norm (D) / MAnorm (E) / TSnorm (F). 
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Figure 7. Evaluation of quality of differential peak calling in response to perturbations. (A-
C) Scatter plots of GR ChIP-seq signals at ENCODE cCREs with (x-axis) and without (y-axis) 
Dex treatment for (A) TSnorm (cbg), (B) JMnorm, and (C) QTnorm. Bright orange and gray 
colors indicate higher and lower data point density, respectively. Green color represents GR 
ChIP-seq signals for the top 2,000 differential peaks based on absolute value of log2 fold change 
of signals between Dex treatment and no treatment control. (D) A boxplot of FIMO scores for 
GR motif (Jaspar ID: MA0113.1) found in differential peaks for the seven normalization 
methods. (E) A scatterplot of enrichments of the Human Phenotype terms in differential GR 
ChIP-seq peaks identified by QTnorm (x-axis) or JMnorm (y-axis).  
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