

Modulation of dorsal premotor cortex disrupts neuroplasticity of primary motor cortex in young and older adults

Wei-Yeh Liao¹, George M. Opie¹, Ulf Ziemann^{2,3} & John G. Semmler¹

1. Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
2. Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
3. Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany

Running title: Premotor effects on motor cortex plasticity in young and older adults

Correspondence: Wei-Yeh Liao
School of Biomedicine
The University of Adelaide
Adelaide, South Australia 5005
Australia
Telephone: Int + 61 4 3771 9665
E-mail: wei-yeh.liao@adelaide.edu.au

1 **Abstract**

2 Although transcranial magnetic stimulation (TMS) research demonstrates that dorsal
3 premotor cortex (PMd) influences neuroplasticity within primary motor cortex (M1), it is
4 unclear how ageing modifies this communication. The present study investigated the
5 influence of PMd on different indirect (I) wave inputs within M1 that mediate cortical
6 plasticity in young and older adults. 15 young and 15 older participants completed two
7 experimental sessions that examined the effects of intermittent theta burst stimulation (iTBS)
8 to M1 when preceded by iTBS (PMd iTBS-M1 iTBS) or sham stimulation (PMd sham-M1
9 iTBS) to PMd. Changes in corticospinal excitability post-intervention were assessed with
10 motor evoked potentials (MEP) recorded from right first dorsal interosseous using posterior-
11 anterior (PA) and anterior-posterior (AP) current single-pulse TMS (PA_{1mV}; AP_{1mV}; PA_{0.5mV},
12 early I-wave; AP_{0.5mV}, late I-wave). Although PA_{1mV} did not change post-intervention ($P =$
13 0.628), PMd iTBS-M1 iTBS disrupted the expected facilitation of AP_{1mV} (to M1 iTBS) in
14 young and older adults ($P = 0.002$). Similarly, PMd iTBS-M1 iTBS disrupted PA_{0.5mV}
15 facilitation in young and older adults ($P = 0.030$), whereas AP_{0.5mV} facilitation was not
16 affected in either group ($P = 0.218$). This suggests that while PMd specifically influences the
17 plasticity of early I-wave circuits, this communication is preserved in older adults.

18 **Keywords:** ageing, dorsal premotor cortex, neuroplasticity, transcranial magnetic
19 stimulation

20

21

22

23 **Introduction**

24 One of the universal effects of ageing is widespread deficits in motor function. Although
25 these deficits occur at all levels of the motor system, the structural, functional, and
26 biochemical changes within the brain are important (Seidler *et al.*, 2010). In particular,
27 alterations to the ability of the brain's motor system to continuously modify its structure and
28 function are a critical factor. Termed neuroplasticity, this process is initially mediated by
29 changes in the strength of synaptic communication with long-term potentiation (LTP) and
30 depression (LTD), and underpins the ability to learn new motor skills (Buonomano &
31 Merzenich, 1998; Sanes & Donoghue, 2000). While the capacity for neuroplastic change is
32 present across the lifespan, some studies using non-invasive brain stimulation (NIBS) show
33 reduced plasticity in older adults (Müller-Dahlhaus *et al.*, 2008; Fathi *et al.*, 2010; Todd *et*
34 *al.*, 2010; Freitas *et al.*, 2011). This reduced plasticity may contribute to the motor deficits
35 that limit the ability of older adults to learn new motor skills that may be essential for daily
36 life. However, the neurophysiological mechanisms underpinning these changes with
37 advancing age remain unclear.

38 Transcranial magnetic stimulation (TMS) is a type of NIBS that allows investigation of
39 specific neuronal networks within the motor system with high temporal resolution.
40 Application of TMS over primary motor cortex (M1) produces a complex series of
41 descending volleys within corticospinal neurons that summate at the spinal cord, resulting in
42 a motor evoked potential (MEP) in targeted muscles (Di Lazzaro *et al.*, 1998; Rossini *et al.*,
43 2015). The first of these waves likely represents direct activation of corticospinal neurons,
44 whereas subsequent waves are thought to reflect the indirect activation of interneuronal
45 inputs to the corticospinal neurons (Di Lazzaro *et al.*, 2012; Ziemann, 2020). These responses
46 are referred to as indirect (I) waves and are named early (I₁) or late (I₂, I₃) based on the order

47 of their appearance, which occurs with a periodicity of ~1.5 ms (Di Lazzaro *et al.*, 2012;
48 Ziemann, 2020). Early and late I-waves can be preferentially recruited by applying low-
49 intensity single-pulse TMS with different current directions (Sakai *et al.*, 1997; Di Lazzaro *et*
50 *al.*, 2001; Ni *et al.*, 2010). For example, a posterior-anterior (PA) current (relative to the
51 central sulcus) preferentially recruits early I-waves, whereas an anterior-posterior (AP)
52 current preferentially recruits late I-waves (Sakai *et al.*, 1997; Di Lazzaro *et al.*, 2001; Ni *et*
53 *al.*, 2010). Using these measures, previous work has shown that the ability to recruit late I-
54 waves predicts the response to plasticity-inducing TMS paradigms over M1 (Hamada *et al.*,
55 2013; Wiethoff *et al.*, 2014) and that the late I-waves are behaviourally relevant to the
56 acquisition of fine motor skills (Hamada *et al.*, 2014).

57 I-wave circuits are also involved in mediating the communication between other motor nodes
58 and M1 (Groppa *et al.*, 2012; Volz *et al.*, 2015; Spampinato *et al.*, 2020; Opie *et al.*, 2022;
59 Casarotto *et al.*, 2023), which form a wider network that influences M1 plasticity and
60 learning (Huang *et al.*, 2018; Liao *et al.*, 2022). In particular, the dorsal premotor cortex
61 (PMd) facilitates the planning, prediction, and correction of movements during motor
62 learning by updating the activity of M1 (Chouinard *et al.*, 2005; Nowak *et al.*, 2009; Parikh &
63 Santello, 2017). Previous studies have demonstrated that the application of repetitive TMS
64 (rTMS) techniques (such as theta burst stimulation; TBS) over PMd is able to modify M1
65 excitability, plasticity, and motor skill acquisition (Huang *et al.*, 2018; Meng *et al.*, 2020).
66 Furthermore, while PMd influences both early and late I-wave excitability (Liao *et al.*, 2023),
67 there is a stronger effect on the late I-waves (Volz *et al.*, 2015; Aberra *et al.*, 2020). Taken
68 together, it is likely that the influence of late I-waves on M1 plasticity reflects inputs from
69 PMd.

70 Given the role of late I-wave circuits in mediating PMd-M1 communication, changes in late
71 I-wave activity may affect the influence of PMd on M1 plasticity. In particular, late I-wave
72 activity is known to be altered with advancing age (Opie *et al.*, 2018). Age-related changes in
73 I-wave excitability have been investigated using the paired-pulse TMS protocol short
74 intracortical facilitation (SICF) (Opie *et al.*, 2018), which revealed reduced I-wave
75 excitability and a specific delay in the temporal characteristics of the late I-waves in older
76 adults (Opie *et al.*, 2018). Importantly, this delay influences NIBS-induced plasticity and is
77 associated with specific aspects of motor behaviour in older adults (Opie *et al.*, 2018; Opie *et*
78 *al.*, 2020). In addition, it is also known that PMd-M1 effective connectivity (Ni *et al.*, 2015)
79 and direct PMd modulation of early I-waves within M1 is reduced in older adults (Liao *et al.*,
80 2023). Consequently, it is possible that the influence of PMd on M1 plasticity is altered with
81 advancing age, but this remains to be tested.

82 The purpose of the present study was, therefore, to investigate the influence of PMd on the
83 plasticity of early and late I-wave circuits in M1 of young and older adults. Given that
84 previous work has used TBS to modulate M1 plasticity in young adults (Huang *et al.*, 2018),
85 we applied intermittent TBS (iTBS) over PMd in young and older participants and assessed
86 how this influenced the neuroplastic response of M1 to iTBS. Different I-wave circuits were
87 assessed by varying the direction of current used to apply TMS over M1. Although we
88 expected iTBS over PMd to selectively modulate the plasticity of late I-wave circuits, we
89 hypothesised that the effect of PMd on M1 plasticity would be weaker in older adults, given
90 the likely alterations in late I-wave activity and PMd-M1 connectivity with advancing age.

91 **Materials and Methods**

92 *Sample Size and Participants*

93 15 young (mean \pm standard deviation, 24.7 ± 5.0 years; range , 19-36 years) and 15 older
94 adults (67.2 ± 5.4 years; 61-78 years) were recruited for the study via advertisements placed
95 on notice boards within The University of Adelaide and the wider community, in addition to
96 social media platforms. Applicants for the study were excluded if they had a history of
97 psychiatric or neurological disease, current use of medication that affect the central nervous
98 system, pregnancy, metal implants, or left handedness, as assessed by a standard TMS
99 screening questionnaire (Rossi *et al.*, 2011). The experiment was conducted in accordance
100 with the Declaration of Helsinki and was approved by The University of Adelaide Human
101 research Ethics Committee (H-026-2008). Subjects provided written, informed consent prior
102 to participation.

103 *Experimental Arrangement*

104 All participants attended two experimental sessions where iTBS or sham iTBS was applied to
105 PMd, followed 30 minutes later by plasticity induction within M1 via iTBS (PMd iTBS-M1
106 iTBS, PMd sham-M1 iTBS). The same experimental protocol was used in both sessions (Fig.
107 1), with the order of intervention randomised between participants, and a washout period of at
108 least 1 week was used between sessions. As diurnal variations in cortisol are known to
109 influence the neuroplastic response to TMS (Sale *et al.*, 2008), all sessions were completed
110 between 11 am and 5 pm at approximately the same time of day for each participant.

111 During each experimental session, participants were seated in a comfortable chair with their
112 hands resting and relaxed. Surface electromyography (EMG) was recorded from the first
113 dorsal interosseous (FDI) of the right hand using two Ag-AgCl electrodes arranged in a belly-
114 tendon montage on the skin above the muscle, with a third electrode attached above the
115 styloid process of the right ulnar used to ground the electrodes. EMG signals were amplified
116 (300x) and filtered (band-pass 20 Hz – 1 kHz) using a CED 1902 signal conditioner

117 (Cambridge Electronic Design, Cambridge, UK) before being digitised at 2 kHz using a CED
118 1401 analogue-to-digital converter. Signal noise associated with mains power was removed
119 using a Humbug mains noise eliminator (Quest Scientific, North Vancouver, Canada). EMG
120 signals were stored on a PC for offline analysis. Real-time EMG signals were displayed on an
121 oscilloscope placed in front of the participant to facilitate muscle relaxation during the
122 experiment.

123 *Experimental Procedures*

124 *Transcranial magnetic stimulation (TMS).* A branding iron coil connected to two Magstim
125 200² magnetic stimulators (Magstim, Whitland, UK) via a BiStim unit was used to apply
126 TMS to left M1. The coil was held tangentially to the scalp at an angle of 45° to the sagittal
127 plane, inducing a PA current relative to the central sulcus. The M1 hotspot was identified as
128 the location producing the largest and most consistent MEPs within the relaxed FDI muscle
129 of the right hand (Rossini *et al.*, 2015). This location was marked on the scalp for reference
130 and continuously monitored throughout each experimental session. All baseline, post-PMd
131 iTBS, and post-M1 iTBS (5 minutes, 30 minutes) TMS was applied at a rate of 0.2 Hz, with a
132 10% jitter between trials to avoid anticipation of the stimulus.

133 Resting motor threshold (RMT) was recorded as the lowest stimulus intensity producing an
134 MEP amplitude $\geq 50 \mu\text{V}$ in at least 5 out of 10 trials during relaxation of the right FDI. RMT
135 was assessed at the beginning of each experimental session and expressed as a percentage of
136 maximum stimulator output (% MSO) (Rossini *et al.*, 2015). Active motor threshold (AMT)
137 was then assessed, defined as the lowest % MSO producing an MEP amplitude $\geq 200 \mu\text{V}$ in
138 at least 5 out of 10 trials during concurrent low-level activation (~10% voluntary activation)
139 of the right FDI (Hamada *et al.*, 2013). These measures were then repeated using the AP
140 current by rotating the coil 180°. Then, the stimulus intensities producing a standard MEP

141 amplitude approximating 1 mV (MEP_{1mV} ; PA_{1mV} , AP_{1mV}), in addition to an MEP amplitude
142 approximating 0.5 mV ($MEP_{0.5mV}$; $PA_{0.5mV}$, $AP_{0.5mV}$), when averaged over 20 trials, were
143 identified. The same intensities (MEP_{1mV} , $MEP_{0.5mV}$) were then applied following PMd iTBS
144 and following M1 iTBS to assess changes in corticospinal excitability.

145 *I-wave recruitment.* To investigate the ability to recruit I-waves, the onset latencies of PA
146 (early) and AP (late) MEPs were assessed relative to the MEP onset generated by direct
147 activation of corticospinal neurons using a lateral-to-medial (LM) current (Hamada *et al.*,
148 2013). A block of 15 MEP trials in the active FDI was recorded for 110% of AMT_{PA} and
149 AMT_{AP} , in addition to 150% AMT_{LM} (Hamada *et al.*, 2013). If 150% AMT_{LM} exceeded 100%
150 MSO, 100% MSO was used, or if 150% AMT_{LM} was below 50% MSO, 50% MSO was used
151 (Hamada *et al.*, 2013). The difference in mean onset latencies between PA and LM (PA-LM)
152 and AP and LM (AP-LM) were calculated as measures of early and late I-wave recruitment
153 efficiency, respectively (Hamada *et al.*, 2013). In an attempt to reduce the confounding
154 influence of muscle contraction on neuroplasticity induction (Huang *et al.*, 2008;
155 Thirugnanasambandam *et al.*, 2011; Goldsworthy *et al.*, 2015), these measures were recorded
156 at the start and at the end of the experimental session, at least 45 minutes apart from the
157 plasticity induction of PMd and M1.

158 *Theta burst stimulation (TBS).* Intermittent theta burst stimulation (iTBS) was delivered over
159 left PMd and left M1 using a Magstim Super-rapid stimulator (Magstim, Whitland, UK),
160 connected to an air-cooled figure-of-eight coil. The coil was held tangentially to the scalp, at
161 an angle of 45° to the sagittal plane, with the handle pointing backwards and laterally,
162 inducing a biphasic pulse with an initial PA current followed by an AP return current (Suppa
163 *et al.*, 2008). In accordance with existing literature, iTBS consisted of bursts of three pulses
164 given at a frequency of 50 Hz. Each burst was repeated at 5 Hz for 2 s, and repeated every 8 s

165 for 20 cycles, totalling 600 pulses (Huang *et al.*, 2005; Huang *et al.*, 2008; Huang *et al.*,
166 2018; Meng *et al.*, 2020). The location of left PMd was defined as 8% of the distance
167 between the nasion and inion (approximately 2.5 – 3 cm) anterior to the M1 hotspot,
168 consistent with previous work (Münchau *et al.*, 2002; Koch *et al.*, 2007; Huang *et al.*, 2018;
169 Meng *et al.*, 2020). The location of both the M1 hotspot and left PMd site were logged
170 relative to the MNI-ICBM152 template using Brainsight neuronavigation (Rogue Research,
171 Montreal, Quebec, Canada). These locations were then used to guide the assessment of RMT
172 (RMT_{Rapid}) over M1 with the Magstim Super-rapid stimulator, in addition to the application
173 of iTBS over left PMd and M1 at 70% RMT_{Rapid}.

174 Sham iTBS to left PMd was delivered using a sham figure-of-eight coil (replicating the coil
175 click), with a bar electrode connected to a constant current stimulator (Digitimer,
176 Hertfordshire, UK) placed underneath the coil delivering electrical stimulation (1.5 mA) to
177 the scalp in order to mimic the pulse sensation. Following either intervention, participants
178 provided answers to a visual analogue scale (VAS) questionnaire indexing the degree of
179 discomfort, muscle activation, and localisation of scalp sensation during PMd iTBS.

180 *Data Analysis*

181 Visual inspection of EMG data was completed offline, with any trials obtained from the
182 resting muscle having EMG activity exceeding 25 μ V in the 100 ms prior to stimulus
183 application excluded from analysis (approximately 6.8% removed). The amplitude of MEPs
184 obtained from resting muscle recordings was measured peak-to-peak and expressed in mV.
185 The MEP onset latencies obtained from active muscle recordings was assessed with a semi-
186 automated process using a custom script within the Signal program (v 6.02, Cambridge
187 Electronic Design) and expressed in ms. MEP latency was recorded as the period from
188 stimulus application to the resumption of voluntary EMG activity. This was defined as the

189 point at which post-stimulus EMG amplitude exceeded the mean EMG amplitude recorded
190 within the 100 ms pre-stimulus, plus 2 standard deviations. MEP onset latencies were
191 averaged over individual trials within each subject and coil orientation. Within each
192 participant, the mean LM MEP latencies were subtracted from the mean PA and AP MEP
193 latencies to determine PA-LM and AP-LM MEP latency differences. Following TBS
194 interventions, changes in MEP latency differences were quantified by expressing the post-
195 intervention responses as a percentage of the baseline responses. Changes in MEP amplitude
196 due to PMd iTBS were quantified by expressing post-PMd iTBS responses as a percentage of
197 baseline MEP amplitude. For post-M1 iTBS, changes in MEP amplitude were quantified by
198 expressing post-M1 iTBS responses as a percentage of post-PMd iTBS responses.

199 *Statistical Analysis*

200 Visual inspection and Kolmogorov-Smirnov tests of the data residuals revealed non-normal,
201 positively-skewed distributions for all TMS data. Consequently, generalised linear mixed
202 models (GLMM's), which can account for non-normal distributions (Lo & Andrews, 2015;
203 Puri & Hinder, 2022), were used to perform all statistical analyses. Each model assessing
204 MEP amplitude included single trial data with repeated measures and was fitted with Gamma
205 distributions (Puri & Hinder, 2022), with all random subject effects included (intercepts and
206 slopes) (Barr *et al.*, 2013). Identity link functions were used for baseline MEP amplitude and
207 latency differences while log link functions were used for post-iTBS normalised MEP
208 amplitude and latency differences (Lo & Andrews, 2015; Puri & Hinder, 2022). To optimise
209 model fit, we tested different covariance structures and the structure providing the best fit
210 (assess with the Bayesian Schwartz Criterion; BIC) within a model that was able to converge
211 was used in the final model. Two-factor GLMMs were used to compare effects of session
212 (PMd iTBS-M1 iTBS, PMd sham-M1 iTBS) and age (young, older) at baseline in eight
213 separate models for $PA_{0.5mV}$, $AP_{0.5mV}$, PA_{ImV} , and AP_{ImV} stimulation intensities and MEP

214 amplitude. A three-factor model was used to compare the effects of session, age, and
215 orientation (PA, AP) on PA-LM and AP-LM latency differences at baseline.

216 Changes in corticospinal excitability following PMd iTBS were investigated by assessing
217 effects of session and age in four separate models for baseline-normalised PA_{1mV}, AP_{1mV},
218 PA_{0.5mV}, and AP_{0.5mV} MEP amplitude. Changes in corticospinal excitability following PMd
219 iTBS-M1 iTBS and PMd sham-M1 iTBS were investigated by assessing effects of session,
220 time (5 minutes, 30 minutes) and age in four separate models for PA_{1mV}, AP_{1mV}, PA_{0.5mV}, and
221 AP_{0.5mV} MEP amplitude normalised to the mean post-PMd iTBS MEP amplitude. As AP_{1mV}
222 baseline stimulation intensities varied between sessions (see Table 1), AP_{1mV} stimulation
223 intensities were also included in the model as a covariate to assess if varying stimulation
224 intensities confounded changes in post-intervention AP_{1mV} MEP amplitude. Changes in I-
225 wave recruitment following the intervention were investigated by assessing effects of session,
226 age, and coil orientation on baseline-normalised average PA-LM and AP-LM latency
227 differences. For all models, investigation of main effects and interactions were performed
228 using custom contrasts with the Bonferroni correction, and significance was set at $P < 0.05$.
229 Data for all models are presented as estimated marginal means (EMMs) and 95% confidence
230 intervals (95% CI), whereas pairwise comparisons are presented as the estimated mean
231 difference (EMD) and 95% CI for the estimate.

232 Furthermore, we used Spearman's rank order correlation analysis to assess the relationship
233 between different variables. Specifically, baseline MEP latency differences were correlated
234 with changes in corticospinal excitability immediately following PMd iTBS to investigate if
235 the ability to recruit I-waves is related to changes in corticospinal excitability. Baseline MEP
236 latency differences were also correlated with changes in corticospinal excitability during the
237 PMd sham-M1 iTBS session to investigate if the ability to recruit I-waves is related to

238 changes in corticospinal excitability following M1 iTBS. In addition, changes in corticospinal
239 excitability following PMd iTBS were also correlated with changes in corticospinal
240 excitability following M1 iTBS (during PMd iTBS-M1 iTBS) to investigate if direct PMd
241 modulation of M1 excitability is related to changes in M1 plasticity. Correlations are
242 presented as Spearman's ρ with false discovery rate-adjusted P -value of 0.05 following the
243 Benjamini-Hochberg procedure. Lastly, differences in the perception of discomfort, extent of
244 FDI activation, and localisation of stimulus during PMd iTBS and PMd sham were
245 investigated by comparing VAS responses using paired t-tests with Bonferroni correction (P
246 < 0.0167), with data presented as mean \pm standard deviation.

247 **Results**

248 All participants completed both experimental sessions without adverse reactions. We were
249 unable to record PA_{ImV} in one older male participant, $AP_{0.5mV}$ in two older participants (1
250 female, 1 male), and AP_{ImV} in five participants (1 young female; 3 older females, 1 older
251 male) due to high thresholds of activation (mean $RMT_{PA} = 80.0\%$ MSO, mean $RMT_{AP} =$
252 73.0% MSO). Baseline stimulation intensities are presented in Table 1. Stimulation
253 intensities for AP_{ImV} differed between sessions ($F_{1,46} = 4.17$, $P = 0.047$), with *post-hoc*
254 comparisons showing higher intensities for the iTBS session relative to sham session (EMD =
255 2.3% MSO [0.0, 4.6], $P = 0.047$). There were no other main effects or interactions for all
256 other baseline stimulation intensities (all $P > 0.05$).

257 Baseline MEP amplitude for corticospinal excitability and MEP latency differences are
258 shown in Table 2. For PA_{ImV} MEP amplitude, there was an interaction between session and
259 age ($F_{1,1121} = 4.194$, $P = 0.041$), with *post-hoc* comparisons revealing larger MEP amplitude
260 for young participants relative to older participants (EMD = 0.14 mV [0.02, 0.26], $P =$
261 0.024). For baseline MEP latency differences, responses differed between coil orientations

262 ($F_{1,112} = 165.20, P < 0.0001$), where PA-LM latencies were shorter than AP-LM latencies
263 (EMD = 1.95 ms [1.65, 2.25], $P < 0.0001$), as expected. There were no main effects or
264 interactions for all other baseline MEP amplitude or MEP latency differences (all $P > 0.05$).
265 Absolute MEP amplitude between sessions for young and older adults is presented in
266 Supplementary Materials.

267 **Changes in corticospinal excitability following PMd iTBS**

268 The participants' perceptions of PMd iTBS and PMd sham are shown in Table 3. While there
269 were no differences between sessions in the extent of discomfort ($t_{29} = 0.25, P = 0.804$) or
270 FDI activation ($t_{29} = 0.10, P = 0.918$) experienced by the participants, the locality of
271 stimulation differed ($t_{29} = 3.98, P = 0.004$), with the sensation of iTBS perceived as more
272 widespread relative to electrical scalp stimulation in sham.

273 Changes in MEP_{ImV} and $MEP_{0.5mV}$ measures of corticospinal excitability following PMd
274 iTBS are shown in Figure 2. PA_{ImV} MEP amplitude did not differ between sessions ($F_{1,1114} =$
275 0.90, $P = 0.343$; Fig. 2A) or age groups ($F_{1,1114} = 0.12, P = 0.726$), and there was no
276 interaction between factors ($F_{1,1114} = 2.41, P = 0.121$). AP_{ImV} MEP amplitude did not vary
277 between sessions ($F_{1,996} = 2.33, P = 0.127$; Fig. 2B) or age groups ($F_{1,996} = 1.31, P = 0.252$),
278 and there was no interaction between factors ($F_{1,996} = 0.51, P = 0.476$). In contrast, while
279 PA_{0.5mV} MEP amplitude did not differ between age groups ($F_{1,1152} = 0.11, P = 0.740$),
280 responses varied between sessions ($F_{1,1152} = 4.23, P = 0.040$; Fig. 2C), with increased MEP
281 amplitude following PMd iTBS relative to sham (EMD = 26.3% [0.7, 51.9], $P = 0.044$).
282 There was no interaction between factors ($F_{1,1152} = 0.11, P = 0.741$). AP_{0.5mV} MEP amplitude
283 did not vary between sessions ($F_{1,1073} = 1.04, P = 0.308$; Fig. 2D) or age groups ($F_{1,1073} =$
284 2.80, $P = 0.095$), and there was no interaction between factors ($F_{1,1073} = 1.03, P = 0.310$).

285 **Changes in corticospinal excitability and I-wave recruitment following M1 iTBS.**

286 *Corticospinal excitability*

287 Changes in MEP_{ImV} measures of corticospinal excitability following PMd iTBS-M1 iTBS
288 and PMd sham-M1 iTBS are presented in Figure 3. PA_{ImV} MEP amplitude (Fig. 3A) did not
289 vary between sessions ($F_{1,2234} = 2.20, P = 0.138$), time points ($F_{1,2234} = 0.15, P = 0.696$), or
290 age groups ($F_{1,2234} = 1.17, P = 0.279$), and there were no interactions between factors (all $P >$
291 0.05). AP_{ImV} MEP amplitude also did not differ between sessions ($F_{1,1921} = 0.98, P = 0.323$),
292 time points ($F_{1,1921} = 1.14, P = 0.286$), or age groups ($F_{1,1921} = 1.21, P = 0.272$), but there was
293 an interaction between session and time ($F_{1,1921} = 9.94, P = 0.002$; Fig 3B). *Post-hoc*
294 comparisons showed that MEP amplitude following PMd sham-M1 iTBS was increased at 5
295 minutes compared to PMd iTBS-M1 iTBS (EMD = 29.7% [6.6, 52.8], $P = 0.012$), and
296 compared to 30 minutes (EMD = 30.3% [7.3, 53.3], $P = 0.010$). There were no other
297 interactions (all $P > 0.05$). In addition, there was no effect of stimulation intensity on MEP
298 amplitude ($F_{1,1921} = 0.40, P = 0.527$).

299 Changes in $MEP_{0.5mV}$ measures of corticospinal excitability are presented in Figure 4. While
300 $PA_{0.5mV}$ MEP amplitude did not differ between time points ($F_{1,2311} = 0.03, P = 0.874$) or age
301 groups ($F_{1,2311} = 0.17, P = 0.678$), responses varied between sessions ($F_{1,2311} = 17.4, P <$
302 0.05), with increased MEP amplitude following PMd sham-M1 iTBS (EMD = 34.3% [17.5,
303 51.0], $P < 0.05$). Furthermore, there was an interaction between session, time, and age ($F_{1,2311}$
304 = 4.71, $P = 0.030$; Fig. 4A). *Post-hoc* analysis revealed increased MEP amplitude following
305 PMd sham-M1 iTBS compared to PMd iTBS-M1 iTBS for young adults at 30 minutes (EMD
306 = 50.7% [20.1, 81.3], $P = 0.001$), while this effect was observed for older adults at 5 (EMD =
307 43.0% [13.9, 72.0], $P = 0.004$) and 30 minutes (EMD = 32.0% [3.6, 60.4], $P = 0.027$). For
308 $AP_{0.5mV}$, MEP amplitude did not vary between sessions ($F_{1,2141} = 0.13, P = 0.723$) or age
309 groups ($F_{1,2141} = 3.12, P = 0.077$) (Fig. 4B). However, responses differed between time points

310 ($F_{1,2141} = 5.91, P = 0.015$; Fig. 4C), with *post-hoc* analysis revealing that MEP amplitude was
311 increased at 5 minutes relative to 30 minutes post-M1 iTBS (EMD = 22.0% [3.9, 40.0], $P =$
312 0.017). There were no interactions between factors (all $P > 0.05$).

313 *I-wave recruitment*

314 There was no difference between sessions ($F_{1,112} = 0.72, P = 0.399$), coil orientations ($F_{1,112} =$
315 0.09, $P = 0.766$), or age groups ($F_{1,112} = 0.38, P = 0.538$), and there were no interactions
316 between factors (all $P > 0.05$).

317 *Correlation analyses*

318 Baseline PA-LM and AP-LM latencies were not related to changes in single-pulse measures
319 of corticospinal excitability (PA_{1mV} , AP_{1mV} , $PA_{0.5mV}$, $AP_{0.5mV}$) following PMd iTBS (all $P >$
320 0.05). Baseline PA-LM and AP-LM latencies were not related to changes in single-pulse
321 measures of corticospinal excitability following PMd sham-M1 iTBS (all $P > 0.05$). In
322 contrast, while changes in AP_{1mV} MEP amplitude following PMd iTBS were not related to
323 changes in AP_{1mV} responses following M1 iTBS ($\rho = -0.361, P = 0.076$; Fig. 5B), changes in
324 PA_{1mV} , $PA_{0.5mV}$, and $AP_{0.5mV}$ MEP amplitude following PMd iTBS were negatively correlated
325 with changes in PA_{1mV} ($\rho = -0.577, P = 0.001$; Fig. 5A), $PA_{0.5mV}$ ($\rho = -0.616, P = 0.0003$; Fig.
326 5C), and $AP_{0.5mV}$ ($\rho = -0.551, P = 0.002$; Fig. 5D) responses following M1 iTBS,
327 respectively.

328 **Discussion**

329 In the present study, we investigated the influence of PMd on the plasticity of early and late I-
330 wave-generating circuits in M1 of young and older adults. This was achieved by applying
331 PMd iTBS as a priming intervention to modify the neuroplastic response of M1 to subsequent

332 iTBS (PMd iTBS-M1 iTBS, PMd sham-M1 iTBS). We measured changes in corticospinal
333 excitability (PA_{1mV} , AP_{1mV} , $PA_{0.5mV}$, $AP_{0.5mV}$) and I-wave recruitment (PA-LM latency, AP-
334 LM latency) following the intervention. The findings show that PMd iTBS specifically
335 modulated the excitability of the early I-wave circuits in both young and older adults.
336 Moreover, PMd iTBS disrupted the neuroplastic response of the early I-wave circuits to M1
337 iTBS in both young and older adults, whereas the neuroplastic response of the late I-wave
338 circuits was unaffected in both age groups.

339 **PMd influence on corticospinal excitability in young and older adults**

340 Previous work has reported that application of iTBS to PMd facilitates PA_{1mV} measures of
341 M1 corticospinal excitability in young adults by ~30%, which is thought to stem from the
342 induction of LTP-like effects within PMd, resulting in increased excitability within M1
343 (Meng *et al.*, 2020). Furthermore, we have demonstrated previously that this effect on PA_{1mV}
344 is preserved with ageing and extends to AP_{1mV} measures of corticospinal excitability (Liao *et*
345 *al.*, 2023). The absence of any changes in PA_{1mV} or AP_{1mV} within the present study is
346 therefore inconsistent with these previous findings. However, inter- and intraindividual
347 variability in the changes in M1 excitability following TBS is well-documented (Hamada *et*
348 *al.*, 2013; Corp *et al.*, 2020; Guerra *et al.*, 2020). In particular, there is some variability in the
349 time course of facilitation following PMd iTBS. For example, one study reported that the
350 facilitation of MEP amplitude only occurred at 15 minutes (Meng *et al.*, 2020), whereas we
351 previously demonstrated facilitation of MEP amplitude that persisted from 5 to 40 minutes
352 following PMd iTBS (Liao *et al.*, 2023). Consequently, our decision to record MEPs at 5
353 minutes post-PMd iTBS may have limited the ability to detect changes in corticospinal
354 excitability due to the priming intervention.

355 Although PA_{ImV} and AP_{ImV} MEP amplitude were not modulated following PMd iTBS,
356 $PA_{0.5mV}$ was facilitated (by ~30%) for both young and older adults. The conventional
357 interpretation of how TMS intensity and current direction influence I-wave recruitment
358 suggests that low-intensity PA TMS preferentially recruits early I-waves, whereas low-
359 intensity AP TMS preferentially recruits late I-waves (Hamada *et al.*, 2013), with either
360 current direction able to recruit both I-waves as the stimulation intensity is increased (Di
361 Lazzaro *et al.*, 2001; Di Lazzaro *et al.*, 2003). We therefore applied single-pulse TMS at
362 relatively lower intensities compared to MEP_{ImV} ($PA_{0.5mV}$, $AP_{0.5mV}$), where $PA_{0.5mV}$ is likely
363 more selective for activation of the early I-waves, while $AP_{0.5mV}$ is likely more selective for
364 the late I-waves (Opie *et al.*, 2022). Given that we previously reported potentiation of both
365 $PA_{0.5mV}$ and $AP_{0.5mV}$ (by ~50-100%) following PMd iTBS (Liao *et al.*, 2023), the increase in
366 $PA_{0.5mV}$ within the present study suggests that the effect of PMd iTBS on early I-wave
367 excitability may be immediate and more consistent. Importantly, previous work has shown
368 that PMd iTBS applied as it was in the current study is unlikely to have activated M1 directly.
369 Specifically, Huang and colleagues (2009) assessed the intensity required to activate M1
370 when TMS was applied over PMd, and showed that 80% of this (matching the level applied
371 during iTBS) applied to M1 does not influence M1 excitability (Huang *et al.*, 2009). Given
372 that we located PMd using similar methods (Huang *et al.*, 2009; Huang *et al.*, 2018; Meng *et*
373 *al.*, 2020), it is therefore unlikely that PMd iTBS activated M1 directly in the present study.
374 Despite the present findings demonstrating that PMd iTBS increased early I-wave
375 excitability, this effect was not different between young and older adults, suggesting that the
376 influence of PMd on early I-wave excitability may be preserved with ageing. This contrasts
377 with our previous work, which specifically demonstrated weakened direct PMd modulation
378 of early I-waves in older adults (Liao *et al.*, 2023). Given that both studies employed the
379 same methods to assess changes in M1 excitability following PMd iTBS, participant factors

380 such as genetics, pharmacology, aerobic exercise, and diet that are known to influence
381 cortical plasticity (Ridding & Ziemann, 2010; Phillips, 2017) may have confounded the
382 present findings. As the contributions of participant characteristics on PMd-M1
383 communication were not examined in the present study, and the small sample sizes were not
384 powered for such subanalyses, it will be important to characterise their involvement in future
385 studies.

386 **PMd influence on M1 plasticity in young and older adults**

387 Previous work in young participants demonstrated that applying continuous TBS (cTBS) to
388 PMd disrupts the neuroplastic response of M1 to both iTBS and cTBS, assessed using PA_{ImV}
389 MEPs (Huang *et al.*, 2018). This demonstrated that LTP- and LTD-like effects within M1 can
390 be modulated by PMd cTBS, which was thought to arise from heterosynaptic metaplastic
391 effects, where the modulation of local synaptic plasticity within PMd affected subsequent
392 changes in remote synapses (that were not initially activated) within M1 (Huang *et al.*, 2018).
393 In the present study, we demonstrated that applying iTBS to PMd also disrupts the LTP-like
394 effects of M1 iTBS for AP_{ImV} measures of corticospinal excitability. However, given that
395 iTBS produces LTP-like effects while cTBS produces LTD-like effects, this disruption of
396 AP_{ImV} facilitation may stem from a different mechanism more consistent with homeostatic
397 metaplasticity (Müller *et al.*, 2007; Todd *et al.*, 2009; Murakami *et al.*, 2012). Importantly,
398 this response did not differ between young and older adults, suggesting that the influence of
399 PMd on the plasticity of AP circuits within M1 is maintained with age. In addition, this
400 difference is also unlikely to be driven by AP_{ImV} stimulation intensity differences at baseline,
401 as investigation of this confounding factor did not reveal any effects on post-intervention
402 AP_{ImV} MEP amplitude.

403 Furthermore, PMd iTBS disrupted the effects of M1 iTBS on PA_{0.5mV} (early), but not AP_{0.5mV}
404 (late) circuits. This suggests that the influence of PMd on M1 plasticity is specific to the early
405 I-waves, which is unexpected given that previous work has demonstrated a stronger influence
406 of PMd on late I-wave circuits (Volz *et al.*, 2015; Aberra *et al.*, 2020; Liao *et al.*, 2023). One
407 possible explanation is that shorter AP MEP onset latencies (more consistent with early I-
408 wave recruitment) have been reported to predict stronger premotor-M1 functional
409 connectivity (Volz *et al.*, 2015) and the nature of this communication may contribute to the
410 influence of PMd on M1 plasticity. This appears consistent with our AP_{ImV} findings, which
411 may have occurred as the higher stimulus intensity required to record AP_{ImV} resulted in
412 mixed recruitment of early and late I-waves, but that changes in AP_{ImV} were driven
413 specifically by the early I-waves (Di Lazzaro *et al.*, 2001; Di Lazzaro *et al.*, 2003; Liao *et al.*,
414 2022). This is further complemented by the correlation analysis results demonstrating that
415 larger facilitation of PA_{0.5mV} post-PMd iTBS is correlated with smaller facilitation of PA_{0.5mV}
416 post-M1 iTBS, suggesting that this homeostatic metaplastic effect is likely related to the early
417 I-wave circuits. While a similar correlation was also shown for PA_{ImV} and AP_{0.5mV}, PMd
418 iTBS-M1 iTBS did not disrupt the potentiation of these measures when compared to PMd
419 sham-M1 iTBS session. It is possible that the higher stimulus intensities required for PA_{ImV}
420 and AP_{0.5mV} (relative to PA_{0.5mV}) may have also resulted in mixed recruitment of early and
421 late I-waves (Liao *et al.*, 2022). In particular, given that there is growing evidence to suggest
422 that PA and AP TMS can activate distinct populations of early and late I-waves (i.e., PA- and
423 AP-sensitive early and late I-waves) (Spampinato *et al.*, 2020; Opie & Semmler, 2021),
424 PA_{ImV} and AP_{0.5mV} may have recruited other I-wave circuits that were less sensitive to the
425 modulatory effects of iTBS. However, this will need to be clarified in future research using
426 techniques that are more selective to these different I-waves, such as modifying the TMS
427 pulse width (Hannah & Rothwell, 2017). Despite this, we provide new evidence that PMd

428 iTBS specifically modulates M1 plasticity of early I-wave circuits recruited by AP
429 stimulation.

430 While M1 iTBS in isolation (PMd sham-M1 iTBS) potentiated PA_{0.5mV} responses (compared
431 with PMd iTBS-M1 iTBS) in both age groups, the timing of this response varied between
432 groups. Whereas differences between sham and real PMd iTBS sessions were immediate for
433 older adults, they were only apparent after 30 minutes in young adults. Given that M1 iTBS
434 has not been shown to differentially modulate corticospinal excitability in young and older
435 adults (Di Lazzaro *et al.*, 2008; Young-Bernier *et al.*, 2014; Dickins *et al.*, 2015; Opie *et al.*,
436 2017), this outcome seems unlikely to reflect effects of age within M1. An alternative
437 explanation could be that the modulatory effects of PMd iTBS differed between groups, with
438 younger adults having a stronger response that was more resistant to the subsequent effects of
439 M1 iTBS. This is supported by the amplitude of PA_{0.5mV} being reduced 5 minutes after M1
440 iTBS in older, but not young adults in the session involving real PMd iTBS (Fig. 4A).
441 Although speculative, this outcome would be consistent with our previous finding that the
442 influence of PMd iTBS on PA_{0.5mV} is reduced in older adults (Liao *et al.*, 2023). However,
443 this speculation will require additional studies that more effectively characterise the time
444 course of facilitation in young and older adults. For example, previous work investigating the
445 effects of PMd cTBS on M1 neuroplastic response to iTBS or cTBS monitored changes in
446 corticospinal excitability for two hours following PMd cTBS (during which excitability
447 returned to baseline levels) before applying subsequent M1 iTBS or cTBS (Huang *et al.*,
448 2018).

449 **PMd and M1 influence on I-wave recruitment in young and older adults**

450 The ability to recruit both early and late I-waves can be investigated by comparing the
451 latencies evoked by PA and AP TMS to the latencies of direct corticospinal activation (PA-

452 LM, early; AP-LM, late) (Hamada *et al.*, 2013). The prototypical values for these measures
453 reveal shorter PA-LM latencies (~1.5 ms) compared to AP-LM latencies (~3 ms), providing
454 an index of early and late I-wave recruitment, respectively (Hamada *et al.*, 2013).
455 Importantly, previous studies have shown that the ability to recruit late I-waves with AP TMS
456 predicts the neuroplastic response of M1 to iTBS (Hamada *et al.*, 2013; Volz *et al.*, 2019),
457 with AP inputs thought to originate from PMd (Volz *et al.*, 2015; Aberra *et al.*, 2020). It has
458 also been demonstrated that AP-LM latencies can be shortened using M1 iTBS, which was
459 suggested to reflect the direct modulation of the late I-wave circuitry (Volz *et al.*, 2019).
460 Although we also assessed changes in PA-LM and AP-LM latencies following PMd sham-
461 M1 iTBS in the present study, the intervention failed to modulate the I-wave latencies. It is
462 possible that changes in AP-LM latencies occur immediately following iTBS, as the MEP
463 latency measures were recorded at least 45 minutes either side of PMd and M1 iTBS in order
464 to avoid complications involving the effects of muscle activation on neuroplasticity responses
465 (Huang *et al.*, 2008; Thirugnanasambandam *et al.*, 2011; Goldsworthy *et al.*, 2015).
466 Consequently, the effects of M1 iTBS on I-wave latencies will have to be clarified in future
467 studies.

468 Importantly, baseline I-wave recruitment was not correlated with changes in corticospinal
469 excitability following M1 iTBS in isolation, in contrast to previous findings (Hamada *et al.*,
470 2013; Volz *et al.*, 2019). While the difference between the present study and previous studies
471 is that we included older participants, no differences between age groups were shown for I-
472 wave recruitment or corticospinal excitability in the present study. The variability in the
473 present findings may therefore involve contributions from other factors. For example, recent
474 work assessing variability of M1 iTBS has suggested that the ability of iTBS to engage neural
475 oscillations in the β range (13-30 Hz) may be an important predictor of the neuroplastic
476 response to iTBS (Leodori *et al.*, 2021). Enhancing premotor-M1 communication using

477 cortico-cortical paired associated stimulation (ccPAS) has been recently shown to improve
478 the synchronisation of neural oscillations (which is thought to mediate neuronal
479 communication and plasticity) in the β range (Trajkovic *et al.*, 2023). Further investigation
480 involving these measures may therefore better characterise the variability of iTBS, and may
481 also have applications in understanding PMd-M1 communication.

482 In conclusion, the application of iTBS over PMd potentiated corticospinal excitability and
483 disrupted the effects of subsequent M1 iTBS. Specifically, our results show that PMd may
484 more consistently influence the excitability of early I-waves in young and older adults.
485 Importantly, we provide new evidence that PMd disrupts M1 plasticity of early I-wave
486 circuits in both age groups. It will therefore be useful in future studies to investigate how
487 PMd modulation of M1 plasticity influences different feature of motor skill learning in young
488 and older adults.

489 **Funding**

490 Support was provided by an Australian Research Council Discovery Projects Grant (grant
491 number DP200101009). GMO was supported by funding from the National Health and
492 Medical Research Council (APP1139723) and Australian Research Council (DE230100022).

493 **References**

494 Aberra AS, Wang B, Grill WM & Peterchev AV. (2020). Simulation of transcranial magnetic
495 stimulation in head model with morphologically-realistic cortical neurons. *Brain Stimul* **13**,
496 175-189.

497 Barr DJ, Levy R, Scheepers C & Tily HJ. (2013). Random effects structure for confirmatory hypothesis
498 testing: Keep it maximal. *J Mem Lang* **68**, 255-278.

499 Buonomano DV & Merzenich MM. (1998). Cortical plasticity: from synapses to maps. *Annu Rev
500 Neurosci* **21**, 149-186.

501 Casarotto A, Dolfini E, Cardellichio P, Fadiga L, D'Ausilio A & Koch G. (2023). Mechanisms of
502 Hebbian-like plasticity in the ventral premotor – primary motor network. *J Physiol* **601**, 211-
503 226.

504 Chouinard PA, Leonard G & Paus T. (2005). Role of the primary motor and dorsal premotor cortices
505 in the anticipation of forces during object lifting. *J Neurosci* **25**, 2277-2284.

506 Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, Davies CB, Gomes-Osman J,
507 Stamm J, Chung SW, Bowe SJ, Rogasch NC, Fitzgerald PB, Koch G, Di Lazzaro V, Pascual-
508 Leone A & Enticott PG. (2020). Large-scale analysis of interindividual variability in theta-burst
509 stimulation data: Results from the 'Big TMS Data Collaboration'. *Brain Stimul* **13**, 1476-1488.

510 Di Lazzaro V, Oliviero A, Pilato F, Mazzone P, Insola A, Ranieri F & Tonali PA. (2003). Corticospinal
511 volleys evoked by transcranial stimulation of the brain in conscious humans. *Neurology* **25**,
512 143-150.

513 Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P & Rothwell J.
514 (2001). The effect on corticospinal volleys of reversing the direction of current induced in the
515 motor cortex by transcranial magnetic stimulation. *Exp Brain Res* **138**, 268-273.

516 Di Lazzaro V, Pilato F, Dileone M, Profice P, Oliviero A, Mazzone P, Insola A, Ranieri F, Meglio M,
517 Tonali PA & Rothwell JC. (2008). The physiological basis of the effects of intermittent theta
518 burst stimulation of the human motor cortex. *J Physiol* **586**, 3871-3879.

519 Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A & Pilato F. (2012). I-wave origin
520 and modulation. *Brain Stimul* **5**, 512-525.

521 Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P & Rothwell JC.
522 (1998). Effects of voluntary contraction on descending volleys evoked by transcranial
523 stimulation in conscious humans. *J Physiol* **508 (Pt 2)**, 625-633.

524 Dickins DS, Sale MV & Kamke MR. (2015). Plasticity Induced by Intermittent Theta Burst Stimulation
525 in Bilateral Motor Cortices Is Not Altered in Older Adults. *Neural plasticity* **2015**, 323409.

526 Fathi D, Ueki Y, Mima T, Koganemaru S, Nagamine T, Tawfik A & Fukuyama H. (2010). Effects of aging
527 on the human motor cortical plasticity studied by paired associative stimulation. *Clin
528 Neurophysiol* **121**, 90-93.

529 Freitas C, Perez J, Knobel M, Tormos JM, Oberman L, Eldaief M, Bashir S, Vernet M, Peña-Gómez C &
530 Pascual-Leone A. (2011). Changes in cortical plasticity across the lifespan. *Front Aging
531 Neurosci* **3**, 5-5.

532 Goldsworthy MR, Müller-Dahlhaus F, Ridding MC & Ziemann U. (2015). Resistant Against De-
533 depression: LTD-Like Plasticity in the Human Motor Cortex Induced by Spaced cTBS. *Cereb
534 Cortex* **25**, 1724-1734.

535 Groppa S, Schlaak BH, Münchau A, Werner-Petroll N, Dünnweber J, Bäumer T, van Nuenen BFL &
536 Siebner HR. (2012). The human dorsal premotor cortex facilitates the excitability of
537 ipsilateral primary motor cortex via a short latency cortico-cortical route. *Hum Brain Mapp
538* **33**, 419-430.

539 Guerra A, López-Alonso V, Cheeran B & Suppa A. (2020). Variability in non-invasive brain stimulation
540 studies: Reasons and results. *Neurosci Lett* **719**, 133330.

541 Hamada M, Galea JM, Di Lazzaro V, Mazzone P, Ziemann U & Rothwell JC. (2014). Two distinct
542 interneuron circuits in human motor cortex are linked to different subsets of physiological
543 and behavioral plasticity. *J Neurosci* **34**, 12837-12849.

544 Hamada M, Murase N, Hasan A, Balaratnam M & Rothwell JC. (2013). The Role of Interneuron
545 Networks in Driving Human Motor Cortical Plasticity. *Cereb Cortex* **23**, 1593-1605.

546 Hannah R & Rothwell JC. (2017). Pulse Duration as Well as Current Direction Determines the
547 Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction. *Brain*
548 *Stimul* **10**, 106-115.

549 Huang Y-Z, Chen R-S, Fong P-Y, Rothwell JC, Chuang W-L, Weng Y-H, Lin W-Y & Lu C-S. (2018). Inter-
550 cortical modulation from premotor to motor plasticity. *J Physiol* **596**, 4207-4217.

551 Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP & Rothwell JC. (2005). Theta Burst Stimulation of the
552 Human Motor Cortex. *Neuron* **45**, 201-206.

553 Huang Y-Z, Rothwell JC, Edwards MJ & Chen R-S. (2008). Effect of Physiological Activity on an NMDA-
554 Dependent Form of Cortical Plasticity in Human. *Cereb Cortex* **18**, 563-570.

555 Huang Y-Z, Rothwell JC, Lu C-S, Wang J, Weng Y-H, Lai S-C, Chuang W-L, Hung J & Chen R-S. (2009).
556 The effect of continuous theta burst stimulation over premotor cortex on circuits in primary
557 motor cortex and spinal cord. *Clin Neurophysiol* **120**, 796-801.

558 Koch G, Franca M, Mochizuki H, Marconi B, Caltagirone C & Rothwell JC. (2007). Interactions
559 between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex
560 differ from those seen in primary motor cortex. *J Physiol* **578**, 551-562.

561 Leodori G, Fabbrini A, De Bartolo MI, Costanzo M, Asci F, Palma V, Belvisi D, Conte A & Berardelli A.
562 (2021). Cortical mechanisms underlying variability in intermittent theta-burst stimulation-
563 induced plasticity: A TMS-EEG study. *Clin Neurophysiol* **132**, 2519-2531.

564 Liao W-Y, Opie GM, Ziemann U & Semmler JG. (2023). Modulation of dorsal premotor cortex
565 differentially influences I-wave excitability in primary motor cortex of young and older
566 adults. *J Physiol*.

567 Liao W-Y, Sasaki R, Semmler JG & Opie GM. (2022). Cerebellar transcranial direct current stimulation
568 disrupts neuroplasticity of intracortical motor circuits. *PLoS One* **17**, e0271311.

569 Lo S & Andrews S. (2015). To transform or not to transform: using generalized linear mixed models
570 to analyse reaction time data. *Front Psychol* **6**, 1171-1171.

571 Meng H-J, Cao N, Zhang J & Pi Y-L. (2020). Intermittent theta burst stimulation facilitates functional
572 connectivity from the dorsal premotor cortex to primary motor cortex. *PeerJ* **8**, e9253-
573 e9253.

574 Müller-Dahlhaus JFM, Orekhov Y, Liu Y & Ziemann U. (2008). Interindividual variability and age-
575 dependency of motor cortical plasticity induced by paired associative stimulation. *Exp Brain
576 Res* **187**, 467-475.

577 Müller JF, Orekhov Y, Liu Y & Ziemann U. (2007). Homeostatic plasticity in human motor cortex
578 demonstrated by two consecutive sessions of paired associative stimulation. *The European
579 journal of neuroscience* **25**, 3461-3468.

580 Münchau A, Bloem BR, Irlbacher K, Trimble MR & Rothwell JC. (2002). Functional connectivity of
581 human premotor and motor cortex explored with repetitive transcranial magnetic
582 stimulation. *J Neurosci* **22**, 554-561.

583 Murakami T, Müller-Dahlhaus F, Lu MK & Ziemann U. (2012). Homeostatic metaplasticity of
584 corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex. *J
585 Physiol* **590**, 5765-5781.

586 Ni Z, Charab S, Gunraj C, Nelson AJ, Udupa K, Yeh IJ & Chen R. (2010). Transcranial Magnetic
587 Stimulation in Different Current Directions Activates Separate Cortical Circuits. *J
588 Neurophysiol* **105**, 749-756.

589 Ni Z, Isayama R, Castillo G, Gunraj C, Saha U & Chen R. (2015). Reduced dorsal premotor cortex and
590 primary motor cortex connectivity in older adults. *Neurobiol Aging* **36**, 301-303.

591 Nowak DA, Berner J, Herrnberger B, Kammer T, Grön G & Schönenfeldt-Lecuona C. (2009). Continuous
592 theta-burst stimulation over the dorsal premotor cortex interferes with associative learning
593 during object lifting. *Cortex* **45**, 473-482.

594 Opie GM, Cirillo J & Semmler JG. (2018). Age-related changes in late I-waves influence motor cortex
595 plasticity induction in older adults. *J Physiol* **596**, 2597-2609.

596 Opie GM, Hand BJ & Semmler JG. (2020). Age-related changes in late synaptic inputs to corticospinal
597 neurons and their functional significance: A paired-pulse TMS study. *Brain Stimul* **13**, 239-
598 246.

599 Opie GM, Liao W-Y & Semmler JG. (2022). Interactions Between Cerebellum and the Intracortical
600 Excitatory Circuits of Motor Cortex: a Mini-Review. *Cerebellum* **21**, 159-166.

601 Opie GM & Semmler JG. (2021). Preferential Activation of Unique Motor Cortical Networks With
602 Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical
603 Evidence. *Neuromodulation* **24**, 813-828.

604 Opie GM, Vosnakis E, Ridding MC, Ziemann U & Semmler JG. (2017). Priming theta burst stimulation
605 enhances motor cortex plasticity in young but not old adults. *Brain Stimul* **10**, 298-304.

606 Parikh PJ & Santello M. (2017). Role of human premotor dorsal region in learning a conditional
607 visuomotor task. *J Neurophysiol* **117**, 445-456.

608 Phillips C. (2017). Lifestyle Modulators of Neuroplasticity: How Physical Activity, Mental
609 Engagement, and Diet Promote Cognitive Health during Aging. *Neural plasticity* **2017**,
610 3589271.

611 Puri R & Hinder MR. (2022). Response bias reveals the role of interhemispheric inhibitory networks
612 in movement preparation and execution. *Neuropsychologia* **165**, 108120.

613 Ridding MC & Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive
614 brain stimulation in healthy subjects. *J Physiol* **588**, 2291-2304.

615 Rossi S, Hallett M, Rossini PM & Pascual-Leone A. (2011). Screening questionnaire before TMS: An
616 update. *Clin Neurophysiol* **122**, 1686.

617 Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB,
618 George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA,
619 Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V & Ziemann
620 U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots
621 and peripheral nerves: Basic principles and procedures for routine clinical and research
622 application. An updated report from an I.F.C.N. Committee. *Clin Neurophysiol* **126**, 1071-
623 1107.

624 Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T & Kanazawa I. (1997). Preferential activation of
625 different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. *Exp
626 Brain Res* **113**, 24-32.

627 Sale MV, Ridding MC & Nordstrom MA. (2008). Cortisol inhibits neuroplasticity induction in human
628 motor cortex. *J Neurosci* **28**, 8285-8293.

629 Sanes JN & Donoghue JP. (2000). Plasticity and primary motor cortex. *Annu Rev Neurosci* **23**, 393-
630 415.

631 Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y & Lipps DB. (2010).
632 Motor control and aging: links to age-related brain structural, functional, and biochemical
633 effects. *Neurosci Biobehav Rev* **34**, 721-733.

634 Spampinato DA, Celnik PA & Rothwell JC. (2020). Cerebellar-Motor Cortex Connectivity: One or Two
635 Different Networks? *J Neurosci* **40**, 4230-4239.

636 Suppa A, Bologna M, Gilio F, Lorenzano C, Rothwell JC & Berardelli A. (2008). Preconditioning
637 Repetitive Transcranial Magnetic Stimulation of Premotor Cortex Can Reduce But Not
638 Enhance Short-Term Facilitation of Primary Motor Cortex. *J Neurophysiol* **99**, 564-570.

639 Thirugnanasambandam N, Sparing R, Dafotakis M, Meister IG, Paulus W, Nitsche MA & Fink GR.
640 (2011). Isometric contraction interferes with transcranial direct current stimulation (tDCS)
641 induced plasticity – evidence of state-dependent neuromodulation in human motor cortex.
642 *Restor Neurol Neurosci* **29**, 311-320.

643 Todd G, Flavel SC & Ridding MC. (2009). Priming theta-burst repetitive transcranial magnetic
644 stimulation with low- and high-frequency stimulation. *Exp Brain Res* **195**, 307-315.

645 Todd G, Kimber TE, Ridding MC & Semmler JG. (2010). Reduced motor cortex plasticity following
646 inhibitory rTMS in older adults. *Clin Neurophysiol* **121**, 441-447.

647 Trajkovic J, Romei V, Rushworth MFS & Sel A. (2023). Strengthening connectivity between premotor
648 and motor cortex increases inter-areal communication in the human brain. *bioRxiv*,
649 2023.2002.2015.528606.

650 Volz LJ, Hamada M, Michely J, Pool E-M, Nettekoven C, Rothwell JC & Grefkes Hermann C. (2019).
651 Modulation of I-wave generating pathways by theta-burst stimulation: a model of plasticity
652 induction. *J Physiol* **597**, 5963-5971.

653 Volz LJ, Hamada M, Rothwell JC & Grefkes C. (2015). What Makes the Muscle Twitch: Motor System
654 Connectivity and TMS-Induced Activity. *Cereb Cortex* **25**, 2346-2353.

655 Wiethoff S, Hamada M & Rothwell JC. (2014). Variability in Response to Transcranial Direct Current
656 Stimulation of the Motor Cortex. *Brain Stimul* **7**, 468-475.

657 Young-Bernier M, Tanguay AN, Davidson PS & Tremblay F. (2014). Short-latency afferent inhibition is
658 a poor predictor of individual susceptibility to rTMS-induced plasticity in the motor cortex of
659 young and older adults. *Front Aging Neurosci* **6**, 182.

660 Ziemann U. (2020). I-waves in motor cortex revisited. *Exp Brain Res* **238**, 1601-1610.

661

Figure Legends

Figure 1. (A) Subject sample and experimental setup. (B) Experimental procedure. PA, posterior-to-anterior; AP, anterior-to-posterior; LM, lateral-to-medial; RMT, resting motor threshold; AMT, active motor threshold; MEP_{1mV} , standard MEP of $\sim 1mV$ at baseline; $MEP_{0.5mV}$, MEP of ~ 0.5 mV at baseline; PMd, dorsal premotor cortex; iTBS, intermittent theta burst stimulation; CSE, corticospinal excitability.

Figure 2. Changes in PA_{1mV} (A), AP_{1mV} (B), $PA_{0.5mV}$ (C), and $AP_{0.5mV}$ (D) measures of corticospinal excitability following PMd iTBS (grey) and sham (white) stimulation in all participants. Data show EMM (95% CI) with individual subject means. $*P < 0.05$.

Figure 3. Changes in PA_{1mV} (A) and AP_{1mV} (B) measures of corticospinal excitability following PMd iTBS-M1 iTBS (grey) and PMd sham-M1 iTBS (white) in young (no stripes) and older adults (stripes) at 5 and 30 minutes. Data show EMM (95% CI) with individual subject means. $*P < 0.05$. $\#P < 0.05$ compared to 5 minutes in same session.

Figure 4. Changes in $PA_{0.5mV}$ (A) and $AP_{0.5mV}$ (B) measures of corticospinal excitability following PMd iTBS-M1 iTBS (grey) and PMd sham-M1 iTBS (white) in young (no stripes) and older adults (stripes) at 5 and 30 minutes. (C) Changes in $AP_{0.5mV}$ following M1 iTBS in all participants (light grey) at 5 and 30 minutes. Data show EMM (95% CI) with individual subject means. $*P < 0.05$.

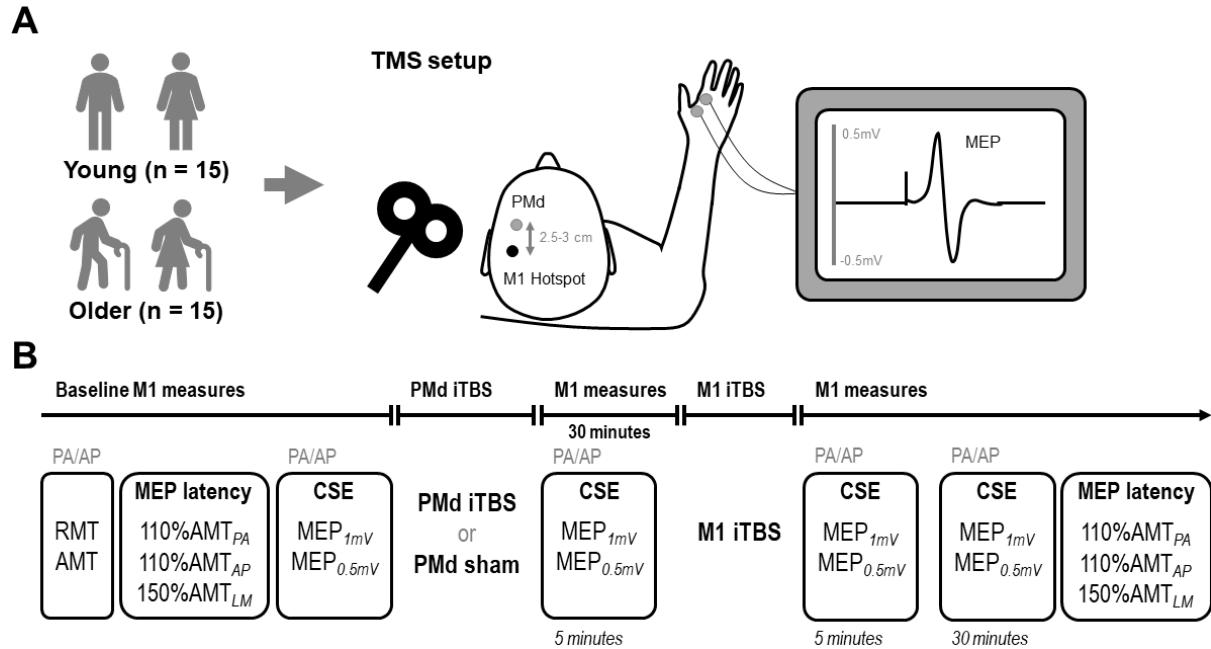
Figure 5. Correlation of ranked changes in post-PMd iTBS measures of corticospinal excitability (PA_{1mV} , A; AP_{1mV} , B; $PA_{0.5mV}$, C; $AP_{0.5mV}$, D) with ranked changes in post-M1 iTBS measures of corticospinal excitability.

Table 1. Baseline TMS intensities between sessions for young and older adults.

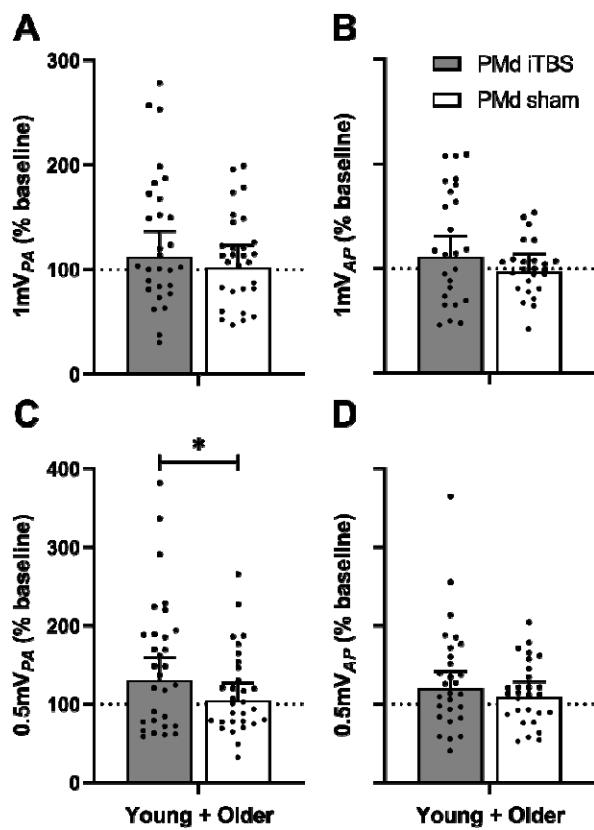
Measure	Young		Older	
	PMd iTBS-M1 iTBS	PMd sham-M1 iTBS	PMd iTBS-M1 iTBS	PMd sham-M1 iTBS
PA				
RMT _{PA} (% MSO)	47.3 [42.3, 52.3]	47.8 [42.8, 52.8]	50.4 [45.4, 55.4]	51.3 [46.3, 56.3]
AMT _{PA} (% MSO)	39.9 [36.4, 43.4]	39.3 [35.8, 42.8]	42.6 [39.1, 46.1]	43.2 [39.7, 46.7]
1mV _{PA} (% MSO)	56.5 [49.9, 63.1]	57.4 [50.8, 64.0]	65.4 [58.5, 72.2]	63.3 [56.4, 70.1]
0.5mV _{PA} (% MSO)	53.0 [46.1, 59.9]	53.8 [46.9, 60.7]	61.5 [54.5, 68.4]	61.3 [54.3, 68.2]
AP				
RMT _{AP} (% MSO)	61.3 [55.6, 67.0]	62.3 [56.6, 68.0]	66.3 [60.4, 72.2]	65.3 [59.4, 71.2]
AMT _{AP} (% MSO)	54.2 [49.0, 59.4]	54.1 [49.0, 59.3]	59.1 [54.0, 64.3]	57.2 [52.0, 62.4]
1mV _{AP} (% MSO)	73.9 [65.6, 82.1]	73.8 [65.6, 82.0] ^a	83.8 [74.6, 93.1]	79.3 [70.0, 88.5] ^a
0.5mV _{AP} (% MSO)	70.9 [63.5, 78.3]	71.3 [63.9, 78.7]	79.4 [71.4, 89.4]	76.4 [68.4, 84.4]
LM				
AMT _{LM} (% MSO)	45.3 [40.5, 50.2]	45.3 [40.4, 50.1]	49.9 [45.1, 54.8]	48.8 [43.9, 53.7]
TBS				
RMT _{Rapid} (% MSO)	55.7 [50.8, 60.6]	57.8 [52.9, 62.7]	57.7 [52.8, 62.6]	58.1 [53.2, 63.0]

Data show EMM [95% CI; lower, upper]. ^aP < 0.05 compared to iTBS session.

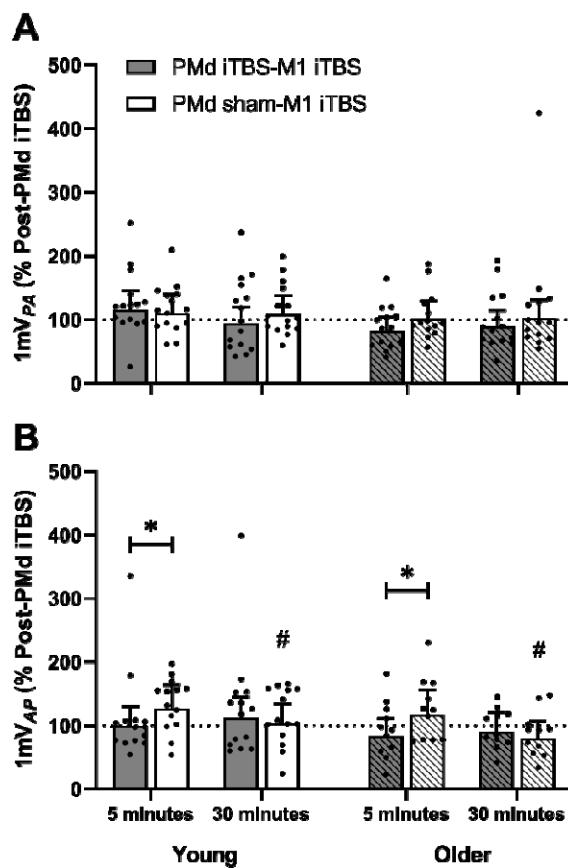
Table 2. Baseline responses of corticospinal excitability and I-wave recruitment between sessions.

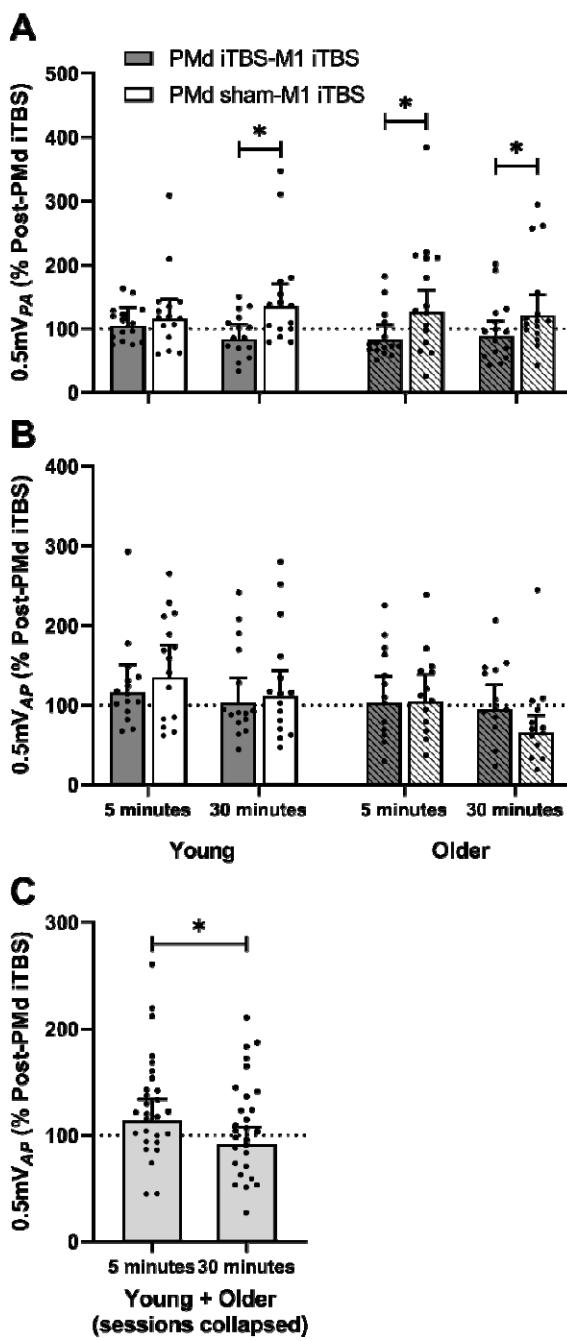

Measure	Young		Older	
	PMd iTBS-M1 iTBS	PMd sham-M1 iTBS	PMd iTBS-M1 iTBS	PMd sham-M1 iTBS
PA				
PA-LM latency (ms)	1.39 [0.89, 1.88]	1.54 [1.04, 2.03]	1.97 [1.47, 2.46]	2.02 [1.52, 2.51]
1mV _{PA} (mV)	1.03 [0.94, 1.12]	0.93 [0.85, 1.01]	0.89 [0.81, 0.97] ^a	0.96 [0.87, 1.04]
0.5mV _{PA} (mV)	0.53 [0.46, 0.60]	0.49 [0.42, 0.56]	0.50 [0.43, 0.57]	0.51 [0.44, 0.58]
AP				
AP-LM latency (ms)	3.49 [3.00, 3.98] ^b	3.54 [3.05, 4.03] ^b	3.69 [3.20, 4.18] ^b	3.99 [3.50, 4.48] ^b
1mV _{AP} (mV)	0.97 [0.87, 1.06]	0.88 [0.79, 0.97]	1.02 [0.91, 1.14]	0.99 [0.88, 1.10]
0.5mV _{AP} (mV)	0.47 [0.41, 0.53]	0.44 [0.39, 0.50]	0.45 [0.40, 0.51]	0.45 [0.39, 0.50]

Data show EMM [95% CI; lower, upper]. ^aP < 0.05 compared to young. ^bP < 0.05 compared to PA-LM latency.


Table 3. Comparison of VAS responses (mean \pm STD) between sessions.

Question	PMd iTBS-M1 iTBS	PMd sham-M1 iTBS
How uncomfortable were the TMS pulses (0, not uncomfortable at all; 10, highly uncomfortable)?	2.67 ± 2.60	2.5 ± 2.79
If there were any twitches in the right hand, how strong were they (0, no twitches; 10, very strong cramp)?	0.63 ± 1.40	0.60 ± 1.13
How localised were the sensations from TMS pulses (0, highly localised; 10, widespread)?	2.03 ± 2.47	$0.50 \pm 1.04^*$


Data show mean \pm standard deviation. $^*P < 0.0167$ compared to iTBS.


Figure 1. (A) Subject sample and experimental setup. (B) Experimental procedure. PA, posterior-to-anterior; AP, anterior-to-posterior; LM, lateral-to-medial; RMT, resting motor threshold; AMT, active motor threshold; MEP_{1mV}, standard MEP of ~ 1 mV at baseline; MEP_{0.5mV}, MEP of ~ 0.5 mV at baseline; PMd, dorsal premotor cortex; iTBS, intermittent theta burst stimulation; CSE, corticospinal excitability.

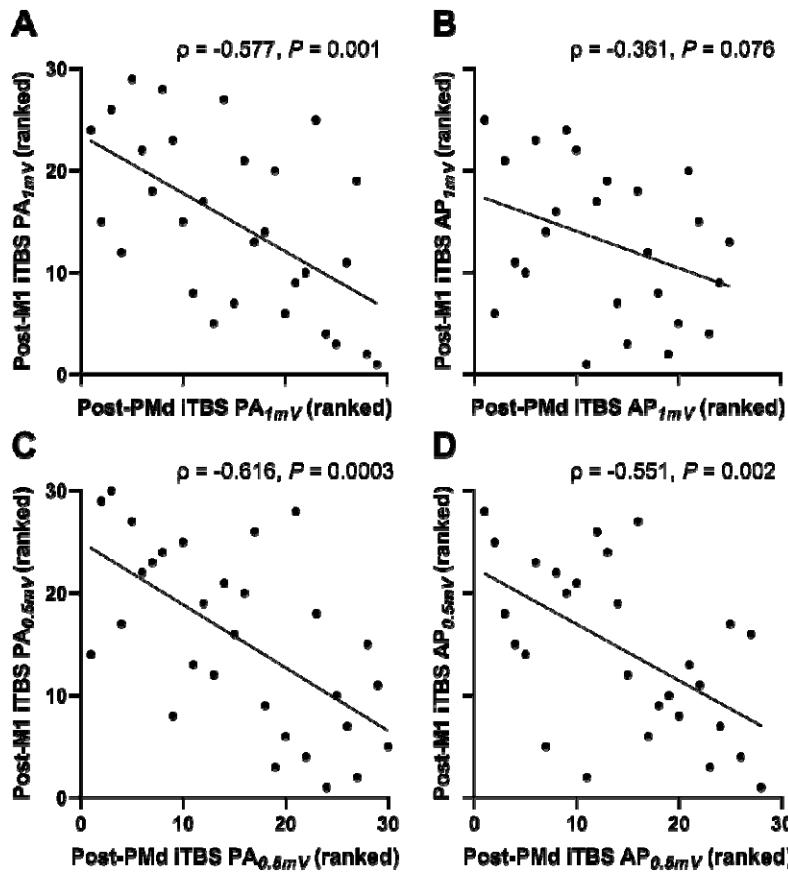

Figure 2. Changes in PA_{1mV} (A), AP_{1mV} (B), $PA_{0.5mV}$ (C), and $AP_{0.5mV}$ (D) measures of corticospinal excitability following PMd iTBS (grey) and sham (white) stimulation in all participants. Data show EMM (95% CI) with individual subject means. $*P < 0.05$.

Figure 3. Changes in PA_{imV} (A) and AP_{imV} (B) measures of corticospinal excitability following PMd iTBS-M1 iTBS (grey) and PMd sham-M1 iTBS (white) in young (no stripes) and older adults (stripes) at 5 and 30 minutes. Data show EMM (95% CI) with individual subject means. * $P < 0.05$. # $P < 0.05$ compared to 5 minutes in same session.

Figure 4. Changes in $PA_{0.5mV}$ (A) and $AP_{0.5mV}$ (B) measures of corticospinal excitability following PMd iTBS-M1 iTBS (grey) and PMd sham-M1 iTBS (white) in young (no stripes) and older adults (stripes) at 5 and 30 minutes. (C) Changes in $AP_{0.5mV}$ following M1 iTBS in all participants (light grey) at 5 and 30 minutes. Data show EMM (95% CI) with individual subject means. * $P < 0.05$.

Figure 5. Correlation of ranked changes in post-PMd iTBS measures of corticospinal excitability (PA_{1mV}, A; AP_{1mV}, B; PA_{0.5mV}, C; AP_{0.5mV}, D) with ranked changes in post-M1 iTBS measures of corticospinal excitability.