

Brain asymmetries from mid- to late life and hemispheric brain age

Max Korbmacher^{1,2,3*}, Dennis van der Meer^{2,4}, Dani Beck^{2,5,6},
Ann-Marie de Lange^{2,7,8}, Eli Eikefjord^{1,3}, Arvid Lundervold^{1,3,9,10},
Ole A. Andreassen^{2,11}, Lars T. Westlye^{2,6,11}, Ivan I. Maximov^{1,2*}

¹Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.

²NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.

³Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway.

⁸Department of Psychiatry, University of Oxford, Oxford, UK.

⁷LREN, Centre for Research in Neurosciences - Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland.

⁴Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.

⁵Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.

⁶Department of Psychology, University of Oslo, Oslo, Norway.

⁹Department of Radiology, Haukeland University Hospital, Bergen, Norway.

¹⁰Department of Biomedicine, University of Bergen, Bergen, Norway.

¹¹KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.

*Corresponding authors. E-mails: max.korbmacher@hvl.no;
ivan.maximov@hvl.no;

ABSTRACT

The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in $N=48,040$ UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, [which were higher later in life](#). Informed by these results, we conducted *hemispheric brain age* (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. [In contrast to](#) WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. [Our findings outline various sex-specific differences, particularly important for brain age estimates, and](#) the value of further investigating the role of brain asymmetries in brain ageing and disease development.

1 INTRODUCTION

2 There are various structural and functional differences in brain architecture between
3 the left and right hemispheres¹⁻⁶. Microstructural brain characteristics, such as white
4 matter (WM) pathways or intra- and extra-neurite water organisation, might underlie
5 the brain's functional lateralisation⁷. Functional network difference has been asso-
6 ciated with handedness⁸. Both structural and functional brain asymmetry exhibit
7 clinical importance as there are differences in brain asymmetry between healthy
8 controls and various disease groups, including neurodegenerative diseases such as
9 Alzheimer's disease^{9, 10}, Parkinson's disease¹¹, and psychiatric disease such as obses-
10 sive-compulsive disorder^{4, 12, 13} and schizophrenia¹⁴. In that context and particularly
11 relevant from a lifespan-perspective, cortical thickness asymmetry decreases through-
12 out ageing, with this alteration being potentially accelerated in the development of
13 neurodegenerative disorders such as Alzheimer's Disease⁹. Similarly, some studies sug-
14 gest lower WM microstructure asymmetry at higher ages, indicated by intra-axonal
15 water fraction¹⁵, fractional anisotropy, or the apparent diffusion coefficient¹⁶. Addi-
16 tional investigations into brain asymmetries' age-dependencies can provide a more
17 comprehensive understanding of the influence of asymmetries on ageing and disease
18 development.

19 Brain age is a developing integrative marker of brain health, particularly sensitive
20 to neurodegenerative diseases^{17, 18}. Brain age refers to the predicted age in contrast to
21 chronological age and is based on a set of scalar metrics derived from brain scans such
22 as MR. To date, brain age has often been estimated using a global brain parametri-
23 sation such as the averaged scalar measures over particular anatomical regions or
24 the whole brain¹⁷⁻²¹. Hence, we refer to these whole-brain age predictions as global
25 brain age (GBA). However, while brain age has been calculated for different brain
26 regions^{18, 22-24}, the use of hemisphere-specific data is usually not being considered as a
27 potential source of additional information. Yet, one study presents hemisphere-specific

28 and region-specific brain ages containing useful clinical information about post-stroke
29 cognitive improvement²².

30 Previous results show that brain age prediction depends on the specific fea-
31 tures used^{25–27}, rendering for example modality as important. Yet, the influence of
32 hemispheric differences or brain asymmetry on the age predictions remains unclear.
33 However, previously outlined brain asymmetries^{1–6} might be informative for age pre-
34 dictions. One way of leveraging brain asymmetries into simple metrics is to estimate
35 separate brain ages for each hemisphere (HBA) and to then compare the estimates.
36 It remains unclear whether predictions from a single hemisphere lead to less accu-
37 rate predictions due to the inclusion of less data and a potential attenuation of noise.
38 At the same time, in the case of diffusion MRI (dMRI), different model-based dif-
39 fusion features yield highly concordant brain age predictions, also when varying the
40 number of included features²¹. Finally, although the evidence is mixed on the influ-
41 ence of handedness on brain asymmetry^{28–31}, differences in handedness are potentially
42 reflected in brain structure, which would in turn influence age predictions differently
43 when obtained from the left or right hemisphere only. Hence, handedness requires
44 further examination as potential confounding effect when assessing asymmetry.

45 HBA, a new brain age measure, may propose more sensitive brain health mark-
46 ers than GBA, as age predictions can be compared between hemispheres to infer the
47 integrity of each hemisphere and give a general estimate of brain asymmetry. Brain
48 asymmetries are commonly observed using the Laterality Index (LI)³². However, dif-
49 ferent ways of estimating asymmetry can introduce variability in its dependency with
50 age³³, and covariates of brain age require further investigation^{34, 35}. To extend the
51 existing brain age conceptualisation of using features across the whole brain and to
52 maximise interpretability, we restrict brain age predictions to region-averaged and
53 global features and not asymmetries of these features. Additionally, differences in the
54 models' abilities to predict age from WM microstructure features derived from dMRI
55 compared to T₁-weighted features (volume, surface area, thickness) need to be ruled
56 out in order to validate both GBA and HBA.

57 Hence, in the present work, we tested first the preregistered hypotheses (writ-
58 ten study and analysis plan prior data inspection and analyses^{36, 37}) that the GBA
59 and HBA depend on the used MRI modality (Hypothesis 1), disentangling whether
60 the different grey matter (GM) and WM metrics and the degree of their asymme-
61 try influences brain age predictions. We furthermore tested whether there was an
62 effect of hemisphere (Hypothesis 2) and handedness (Hypothesis 3) on brain age pre-
63 dictions. Exploratory analyses included (a) revealing hemispheric differences between
64 GM and WM features, (b) examining LI associations with age, including the LI of the
65 brain features as well as left and right brain ages, and (c) testing the consistency of
66 brain age-covariate associations (specifically, health-and-lifestyle factors, as these were
67 previously associated with brain age^{20, 26, 38–41}).

68 RESULTS

69 Hemispheric differences and age sensitivity for GM and WM 70 features

71 Two-tailed paired samples *t*-tests showed that a significant proportion of the GM
72 and WM features differed between hemispheres with medium effect sizes. Among the
73 significant 793 of 840 dMRI feature asymmetries (94.4%, $p < .05$, with Cohen's $|\bar{d}_{dMRI}|$
74 = 0.57 ± 0.44). The largest differences were found for DTI FA in the inferior longitudinal
75 fasciculus ($d = 3.64$), and cingulum ($d = 1.95$), and for AD in superior longitudinal
76 fasciculus.

77 Effects sizes of the significant hemispheric differences of the 115 of 117 T₁-weighted
78 features (98.3%), were similar: mean $|\bar{d}_{T_1}| = 0.53 \pm 0.41$, and the largest asymmetries
79 were found for the surface area of the transverse-temporal region ($d = 1.81$), frontal
80 pole ($d = 1.76$), and pars orbitalis ($d = 1.74$; see Supplementary Table 10 for T₁-
81 weighted and dMRI features with strongest hemispheric differences).

82 Likelihood Ratio Tests (LRTs) comparing a baseline model predicting age from
83 sex and scanner site compared to a model where the respective smooth of the met-
84 ric was added (Eq. 3 and 4) indicated most features as age-sensitive (231 of the 234
85 (98.72%) of the T₁-weighted features; 1601 of the 1680 (95.53%) dMRI features).
86 Age-sensitivity was strongly expressed in both significant T₁-weighted features (\bar{F}_{T_1}
87 = $1,168.90 \pm 993.59$), as well as significant dMRI metrics ($\bar{F}_{dMRI} = 1,208.97 \pm 943.52$)
88 with strongest age-sensitivity observed for left superior temporal thickness, left/right
89 overall thickness, left/right hippocampus volume, and right inferior parietal thickness
90 and multiple WMM metrics in the right anterior limb of the internal capsule, the left-
91 /right fornix-striaterminalis pathway, left/right anterior corona radiata and inferior
92 fronto-occipital fasciculus ($F > 3,000$; for top features see Supplementary Table 2).
93 Results were similar when comparing linear models to the baseline model (Eq. 2
94 and 4): 1448 of the 1680 (86.19%) dMRI metrics, and 228 of the 234 (97.44%)
95 of the T₁-weighted features were age-sensitive ($\bar{F}_{T_1} = 3,426.89 \pm 2,947.11$, $\bar{F}_{dMRI} =$
96 $2,378.46 \pm 2,357.80$), with the features with the strongest age-sensitivity resembling
97 LRT results of non-linear models (for top features see Supplementary Table 3).

98 Considering only left/right averages identified only DTI-AD, and WMTI axial
99 and radial extra-axonal diffusivity to not differ between hemispheres ($p > .05$). Fur-
100 thermore, all features were age-sensitive when GAMs ($p < 3.4 \times 10^{-64}$; yet for
101 linear models, BRIA-vCSF and WMTI-axEAD, as well as right DTI-AD and left
102 WMTI-radEAD were not age sensitive (Supplementary Tables 4, 5). Furthermore, the
103 age-relationships for most of the left/right averages were similar across hemispheres
104 (Figure 1, both for crude and adjusted values: Supplementary Figure 1, and for linear
105 and non-linear models: Supplementary Figure 4). However, differences in dMRI met-
106 rics were observed for the ends of the distribution including individuals aged younger
107 than 55 ($N = 5,307$) and older than 75 ($N = 3,480$).

108 **GM and WM feature asymmetry**

109 Using LRTs comparing GAMs to a baseline model 53 (45.30%) of the 117 T₁-weighted
110 and 733 of the 840 (87.26%) dMRI |LI| features as age sensitive ($p < .05$). Using LRTs
111 on linear effects identified 53 (45.30%) of the 117 T₁-weighted and 678 of the 840
112 (80.71%) dMRI |LI| features as age sensitive ($p < .05$).

113 In the following we constrain analyses to linear models and present partial derivatives / slopes as a measure of effect size, allowing for simple comparisons across
114 age-relationships as model fit indices AIC and BIC of linear models and GAMs suggested on average no differences across both T₁-weighted ($p_{adj\ AIC} = .759$; $p_{adj\ BIC} =$
115 1) and diffusion-weighted features ($d_{AIC} = 0.510$, $p_{adj\ AIC} = .020$; $p_{adj\ BIC} = .126$).

116 The absolute feature asymmetries were higher later in life ($\bar{\beta}_{dMRI} = 0.05 \pm 0.07$;
117 $\bar{\beta}_{T_1} = 0.03 \pm 0.06$, $|\bar{\beta}_{multimodal}| = 0.05 \pm 0.07$, here only $p_{adj} < .05$ selected;
118 Supplementary Figure 2-3).

119 The strongest adjusted relationships between the respective features' asymmetries and age were found for dMRI metrics ($|\bar{\beta}_{dMRI}| = 0.08 \pm 0.05$, $|\bar{\beta}_{T_1}| =$
120 0.05 ± 0.03 ; Figure 2), particularly outlining asymmetry increases in the cingulate
121 gyrus ($\beta_{BRIA-microRD} = 0.25$, $\beta_{BRIA-microFA} = 0.22$, $\beta_{DTI-MD} = 0.20$,
122 $\beta_{BRIA-microADC} = 0.19$), and decrease in the cerebral peduncle ($\beta_{SMTmc-extratrans} =$
123 -0.20 , $\beta_{SMT-trans} = -0.19$, $\beta_{BRIA-Vextra} = -0.14$) and superior longitudinal temporal
124 fasciculus ($\beta_{BRIA-microAX} = -0.17$, $\beta_{SMT-long} = -0.17$, $\beta_{BRIA-DAXextra} =$
125 -0.16).

126 For T₁-weighted metrics, larger structures' |LI| were most sensitive to age, with
127 the strongest negative associations including the inferior lateral ($\beta = -0.16$) and lateral
128 ventricles ($\beta = -0.09$), pallidum ($\beta = -0.11$) volumes, rostro-middle thickness ($\beta = -$
129 0.11), thalamus volume ($\beta = -0.07$) and enthorinal area ($\beta = -0.05$). Largest positive
130 age-associations were shown for accumbens area ($\beta = 0.13$), WM surface area ($\beta =$
131 0.13) and volume ($\beta = 0.11$), amygdala ($\beta = 0.11$), caudal anterior cingulate thickness
132 ($\beta = 0.11$), cortex volume ($\beta = 0.10$), caudate volume ($\beta = 0.10$), and cerebellar WM
133 volume ($\beta = 0.09$), in addition to several temporal and limbic areas (Figure 2).

134 **135 Sex-specific differences in the influence of hemisphere,
136 modality, and handedness on brain age estimates**

137 Model performance metrics indicated that most accurately age predictions were
138 accomplished using multimodal MRI data based on left, right, and both hemispheres
139 (Table 1), with obtained HBA and GBA being strongly correlated with each other for
140 similar models (Figure 3). Additional sex-stratified models produced similar results
141 in terms of model performance (Supplementary Table 14), associations across brain
142 ages and age (Supplementary Figure 10), and feature importance rankings (compare
143 Supplementary Tables 11, 12, and 13).

144 LMERs did not indicate a difference between modalities (Hypothesis 1) when
145 comparing brain ages estimated from both sexes from dMRI to multimodal MRI
146 ($p = .623$), and dMRI to T₁-weighted MRI ($p = .452$). There were also no differences in brain age estimates between hemispheres ($p = .413$, Hypothesis 2). Moreover,
147 LRTs indicated no significant difference between models when adding handedness

151 $(\chi^2 = 4.19, p = .123, df = 2)$ or handedness-hemisphere interaction and handedness
152 $(\chi^2 = 7.32, p = .120, df = 4$; see Eqs. 5-6).

153 To additionally consider sex differences, we estimated additional sex-specific brain
154 ages and control for the modelling choice (as extension to Eq. 6). We find that females' brain
155 ages do not differ when estimated from females' data only compared to predictions from both males' and females' data ($\beta = -0.0073 \text{ years}, p = .420$). The same holds true for male brain ages estimated from males' data only compared to data from both sexes ($\beta = -0.0002 \text{ years}, p = .984$). Furthermore, with these additional modelling choices, we identified a significant marginal effect of sex (indicating an older brain age for males: $\beta = 0.58 \text{ years}, p < .001$), and hemisphere for T_1 -weighted ($\beta = 0.03 \text{ years}, p = .022$), but not dMRI ($\beta = 0.02 \text{ years}, p = .099$), or multimodal MRI ($\beta = 0.02 \text{ years}, p = .110$). Moreover, ambidextrous brain age was higher than for left-handed ($\beta = 1 \text{ year}, p < .001$) and right handed participants ($\beta = 0.7 \text{ years}, p < .001$), as well as higher for right-handed compared to left-handed participants ($\beta = 0.2 \text{ years}, p < .001$).

166 Further investigating the identified sex-effect, we found higher brain ages for
167 males across modalities with larger differences identified for dMRI ($\beta_{left} = 0.768 \text{ years}, p < .001$, $\beta_{right} = 0.870 \text{ years}, p < .001$), followed by T_1 -weighted
168 ($\beta_{left} = 0.308 \text{ years}, p < .001$, $\beta_{right} = 0.438 \text{ years}, p < .001$) and multimodal MRI
169 ($\beta_{left} = 0.503 \text{ years}, p < .001$, $\beta_{right} = 0.570 \text{ years}, p < .001$). Notably, females' right brain age was lower than the left brain age ($\beta_{T_1} = -0.035 \text{ years}, p = .027$,
170 $\beta_{dMRI} = -0.029 \text{ years}, p = .066$, $\beta_{multimodal} = -0.013 \text{ years}, p = .403$), which was
171 the opposite for males showing lower left brain age ($\beta_{T_1} = 0.095 \text{ years}, p < .001$,
172 $\beta_{dMRI} = 0.073 \text{ years}, p < .001$, $\beta_{multimodal} = -0.054 \text{ years}, p = .001$). In contrast to
173 the analyses across sexes, these additional analyses provide support for Hypotheses
174 1-3 when sex-stratifying.

177 Lower brain age asymmetry at higher ages

178 To test whether asymmetries between hemisphere-specific brain age predictions are
179 lower at higher age, $|LI_{HBA}|$, was associated with age (Eq. 7-8). $|LI_{HBA}|$ showed
180 negative unadjusted associations with age for T_1 -weighted ($r = -0.069, p < .001$),
181 dMRI ($r = -0.121, p < .001$), and multimodal models ($r = -0.121, p < .001$).
182 The associations were similar when using LMEs adjusting for sex and the random
183 intercept site (T_1 -weighted: $\beta = -0.069, p < .001$, dMRI: $\beta = -0.115, p < .001$,
184 multimodal: $\beta = -0.117, p < .001$). LRTs indicate the age-sensitivity of LI_{HBA} (T_1 -
185 weighted: $\chi^2 = 173.42, p < .001$, dMRI: $\chi^2 = 488.74, p < .001$, multimodal: $\chi^2 = 506.08, p < .001$).

187 These results were robust to stratifying by sex, estimates from a brain age model
188 considering both sexes for unadjusted ($r_{dMRI \text{ males}} = -0.134, r_{dMRI \text{ females}} = -0.104, r_{T_1 \text{ males}} = -0.134, r_{T_1 \text{ females}} = -0.048, r_{multimodal \text{ males}} = -0.134, r_{multimodal \text{ females}} = -0.111$), and adjusted associations ($\beta_{dMRI \text{ males}} = -0.134, \beta_{dMRI \text{ females}} = -0.099, \beta_{T_1 \text{ males}} = -0.134, \beta_{T_1 \text{ females}} = -0.045, \beta_{multimodal \text{ males}} = -0.134, \beta_{multimodal \text{ females}} = -0.106$), with χ^2 tests suggesting
189 age sensitivity (all $p < .001$).

194 Using brain age predictions from models which were independently estimated
195 for males and females showed similar results for unadjusted ($r_{dMRI\ males} = -0.141$, $r_{dMRI\ females} = -0.094$, $r_{T1\ males} = -0.120$, $r_{T1\ females} = -0.031$,
196 $r_{multimodal\ males} = -0.165$, $r_{multimodal\ females} = -0.089$), and adjusted associations
197 ($\beta_{dMRI\ males} = -0.137$, $\beta_{dMRI\ females} = -0.088$, $\beta_{T1\ males} = -0.117$, $\beta_{T1\ females} = -0.029$,
198 $\beta_{multimodal\ males} = -0.162$, $\beta_{multimodal\ females} = -0.084$), with χ^2 tests
199 suggesting age sensitivity (all $p < .001$).
200

201 Finally, also when analysing brain ages for males and females from sex-specific
202 models together shows similar trends for uncorrected $|LI_{HBA}|$ -age associations
203 ($r_{multimodal} = -0.123$, $p < .001$; $r_{T1} = -0.074$, $p < .001$, $r_{dMRI} = -0.114$, $p < .001$),
204 as well as corrected association ($\beta_{multimodal} = -0.125$, $p < .001$; $\beta_{T1} = -0.071$,
205 $p < .001$, $\beta_{dMRI} = -0.113$, $p < .001$; Eq. 7-8).

206 HBA and GBA and health-and-lifestyle factors

207 We further investigated the pattern of relationships with general health-and-lifestyle
208 phenotypes across HBAs (Figure 4). Relationships between brain ages from single
209 and both hemispheres were similar within modalities, but varied slightly between
210 modalities (Figure 4). These results were robust to sex stratifications. Yet, while males'
211 brain age was sensitive to high cholesterol, hip circumference, smoking and weight,
212 this was not the case for females' brain age when using brain age predictions from
213 data of both sexes (Supplementary Figure 11-12).

214 Sex stratified hemispheric differences and age sensitivity for 215 GM and WM features

216 For further insights into sex differences, we repeated the presented analyses on hemi-
217 spheric differences and features' age-sensitivity stratifying by sex. Two-tailed paired
218 samples t -tests assessing regional differences between hemispheres showed similar
219 results between sexes, which are also comparable to cross-sex results. Most features
220 differed between hemispheres for both males and females (T₁-weighted: 98.3% for both
221 sexes, dMRI_{males}: 96%, dMRI_{females}: 95%), and effect sizes were similar ($|\bar{d}_{T1\ males}| = 0.54 \pm 0.42$, $|\bar{d}_{T1\ females}| = 0.53 \pm 0.42$, $|\bar{d}_{dMRI\ males}| = 0.57 \pm 0.41$, $|\bar{d}_{dMRI\ females}| = 0.60 \pm 0.47$).

222 Also the strongest effects were similar across sexes: strongest differences in T₁-
223 weighted features in males were observed for frontal pole ($d_{T1\ males} = 1.82$) and pars
224 orbitalis ($d_{T1\ males} = 1.78$) surface area, and for females in the area of the trans-
225 verse temporal area ($d_{T1\ females} = 1.89$) and the frontal pole ($d_{T1\ females} = 1.73$).
226 Strongest WM differences were observed for both sexes in inferior longitudinal fasci-
227 culus ($d_{dMRI\ males} = 3.44$, $d_{dMRI\ females} = 3.91$), and superior longitudinal temporal
228 fasciculus ($d_{dMRI\ males} = 2.09$, $d_{dMRI\ females} = 2.40$; Supplementary Table 6).

229 LRTs comparing a baseline model predicting age from sex and scanner site com-
230 pared to a model where the respective smooth of the metric was added (Eq. 3 and 4)
231 indicated most features as age-sensitive (230 of the 234 (98.29%) of the T₁-weighted
232 features (both sexes); 1,557 and 1564 of the 1,680 (92.68% and 93.10%) dMRI fea-
233 tures for males and females, respectively). Age-sensitivity was strongly expressed in both
234

236 significant T_1 -weighted features ($\bar{F}_{T_1 \text{males}} = 640.80 \pm 521.33$; $\bar{F}_{T_1 \text{females}} = 578.61$
237 ± 500.79), as well as significant dMRI metrics ($\bar{F}_{\text{dMRI males}} = 586.38 \pm 450.68$,
238 $\bar{F}_{\text{dMRI females}} = 674.61 \pm 499.58$).

239 Similar to the results including both sexes, the strongest T_1 -weighted feature age-
240 sensitivity was observed for left superior temporal thickness, left/right hippocampus
241 volume for both sexes, and right inferior parietal thickness only for females. Concerning
242 dMRI features, sex stratification reflects the findings accounting for sex, outlining
243 the fornix-striaterminalis pathway, anterior corona radiata and inferior fronto-occipital
244 fasciculus, yet adding the anterior limb of the internal capsule and the anterior thala-
245 mic radiation. Unique to non-linear models, also the lateral ventricle volume was lined
246 out as highly age sensitive (all $F > 1,666$; for top features see Supplementary Table 7).

247 Results were similar when comparing linear models to the baseline model (Eq. 2
248 and 4): 1,557 and 1,564 of the 1680 (92.68%, 93.01%) dMRI metrics, and 226 and 224
249 of the 234 (96.58%, 95.73%) of the T_1 -weighted features were age-sensitive for males
250 and females, respectively ($\bar{F}_{T_1 \text{males}} = 1,767.60 \pm 1,474.69$; $\bar{F}_{T_1 \text{females}} = 1,712.73 \pm$
251 $1,488.97$; $\bar{F}_{\text{dMRI males}} = 1,198.85 \pm 1,135.84$, $\bar{F}_{\text{dMRI females}} = 1,297.51 \pm 1,257.02$),
252 with the features with the strongest age-sensitivity resembling LRT results of non-
253 linear models (for top features see Supplementary Table 8).

254 Considering only left and right hemispheric averages, t-tests indicated that all
255 features differed between hemispheres for males ($p < 3.1 \times 10^{-9}$). In females, WMTI
256 radEAD and axEAD as well as DTI AD did not differ between hemispheres ($p > 0.05$),
257 but all other metrics differing between hemispheres ($p < 1.5 \times 10^{-36}$).

258 Considering all regional features, LRTs on GAMs (Eq. 4, 3) indicated that all
259 features were age-sensitive ($p < 5.1 \times 10^{-71}$). LRTs on linear models (Eq. 2, 4)
260 indicated that right hemisphere BRIA-vCSF and left microRD were not age sensitive
261 ($p_{adj} > 0.05$) in males. In females, additionally, left DTI-RD and GM thickness
262 as well as left and right WMTI-axEAD were not age-sensitive. All other metrics
263 were age sensitive ($p < 2.7 \times 10^{-11}$). Hemispheric features' age-relationships showed
264 similar intercepts and slopes across sexes, except DTI-AD, WMTI-radEAD and
265 WMTI-axEAD (Supplementary Figure 5-6).

266 Sex differences in GM and WM feature asymmetry

267 Sex-stratified analyses indicate most dMRI $|LI|$ features to be age sensitive
268 ($\text{dMRI}_{\text{males}} = 64.29\%$, $\text{dMRI}_{\text{females}} = 69.52\%$), but less T_1 -weighted features
269 ($T_1 \text{males} = 47.86\%$, $T_1 \text{females} = 38.46\%$) when using non-linear models. Linear mod-
270 els showed similar results ($\text{dMRI}_{\text{males}} = 60.95\%$, $\text{dMRI}_{\text{females}} = 64.05\%$; $T_1 \text{males} =$
271 44.44% , $T_1 \text{females} = 37.61\%$). Comparing linear to non-linear models using paired
272 samples t-tests suggests no differences model fit indicated in AIC or BIC scores for
273 both males and females in T_1 -weighted and diffusion features' asymmetry ($p > 0.05$).
274 Hence, linear model outcomes are presented below. Similar to models including both
275 sexes, when stratifying for sex, $|LI|$ for diffusion and T_1 -weighted feature were pos-
276 itively associated with age ($\bar{\beta}_{\text{dMRI male}} = 0.05 \pm 0.08$, $\bar{\beta}_{\text{dMRI female}} = 0.05 \pm 0.08$,
277 $\bar{\beta}_{T_1 \text{male}} = 0.03 \pm 0.06$, $\bar{\beta}_{T_1 \text{female}} = 0.03 \pm 0.06$).

278 The strongest adjusted relationships for diffusion features were found in the
279 cingulate gyrus tract ($\beta_{\text{males BRIA-microRD}} = 0.25$, $\beta_{\text{males BRIA-microFA}} =$

280 0.22, $\beta_{females\ BRIA-microRD} = 0.25$, $\beta_{males\ BRIA-microFA} = 0.21$) and in
281 the cerebral peduncle ($\beta_{males\ SMTmc-extratrans} = -0.19$, $\beta_{males\ SMT-trans} =$
282 -0.18 , $\beta_{females\ SMTmc-extratrans} = -0.21$, $\beta_{females\ SMT-trans} = -0.20$,
283 $\beta_{females\ BRIA-Vextra} = -0.18$; Supplementary Figures 8, 9). Strongest age asso-
284 ciations with T₁-weighted asymmetries were found for the area of the accumbens
285 ($\beta_{males} = 0.14$, $\beta_{females} = 0.12$) and WM surface ($\beta_{males} = 0.13$, $\beta_{females} = 0.12$),
286 with strongest inverse relationships observed for inferior lateral ventricles ($\beta_{males} =$
287 -0.17 , $\beta_{females} = -0.14$) and pallidum ($\beta_{males} = -0.11$, $\beta_{females} = -0.12$).

288 DISCUSSION

289 In the present work we investigated a new way of utilising brain age to differenti-
290 ate between hemispheres, and performed a detailed assessment of brain asymmetry
291 associations with age. As a baseline, we showed that most grey and white matter fea-
292 tures were age-sensitive and differed between hemispheres with relatively large effect
293 sizes. Brain asymmetry was age-sensitive, and overall higher at higher ages. In con-
294 trast, asymmetry in hemispheric brain age was lower at higher ages. The strongest
295 relationship of age and absolute brain asymmetry was identified in larger GM and
296 WM regions, as well as subcortical structures, including the limbic system, the ventricles,
297 cingulate and cerebral as well as cerebellar peduncle WM.

298 Brain age predictions exhibited concordant accuracy within modalities for left,
299 right, and both hemispheres, and concordant associations with health-and-lifestyle
300 factors also when analysing data for males and females separately, training brain age
301 models on data from each sex separately or both sexes together. The predictions did
302 not differ statistically between hemispheres, modalities, or handedness groups when
303 considering both sexes together. However, sex-stratified analyses, which considered
304 different brain age modelling choice, revealed significant opposing effects between
305 sexes for hemisphere and modality, and outlined marginal differences between hand-
306 edness groups. There are multiple reasons for the observed higher brain age in
307 females' right hemisphere compared to males' higher brain age of the left hemisphere,
308 in addition to modality-specific differences. First, male and female brain structure
309 differs, resulting in sex-specific regional variations in brain age estimates⁴². Second,
310 body and brain ageing trajectories differ between sexes, for example, outlined by
311 sex-dependent importance of cardiometabolic risk factors⁴³. Hence, the tendency of
312 males' predicted brain age being lower using T₁-weighted and multimodal in contrast
313 to diffusion-derived brain ages, with these trends reversed in females, might also
314 reflect stronger brain age associations with cardiometabolic risk factors in males
315 (Supplementary Figure 7), which have been demonstrated earlier for WM features
316 and WM brain age^{38, 39}. HBA allows to assess the structural integrity of each hemi-
317 sphere individually, and to set brain ages from the two hemispheres in relationship
318 to each other providing a general marker of asymmetry. Despite brain asymmetries
319 overall increasing (Supplementary Figures 2-3), the asymmetries between left/right
320 HBA were smaller at a higher age. At higher ages, both hemispheres might hence
321 become overall more comparable, despite ageing-related changes⁴⁴.

323 We found that the majority of regional and hemisphere-averaged MRI features
324 differed between hemispheres. Both features and asymmetries were age-sensitive
325 indicating that the investigation of asymmetries are useful across ages and MRI
326 modalities.

327 Interestingly, hemisphere-averaged features' age-associations and HBA of the same
328 modality were similar between hemispheres (Figure 1), and the hemisphere was not
329 a significant predictor of brain age estimated from a particular hemisphere, **when**
330 **analysing data from both sexes together. However, when sex-stratifying, modality**
331 **and hemisphere were significant predictors, suggesting that HBA captures both brain**
332 **asymmetries as well as biological sex-differences which become apparent when using**
333 **multimodal MRI. These results outline the importance of considering sex-differences**
334 **in brain age analyses.**

335 Several studies present evidence for asymmetries in WM^{6, 45–48} and GM^{4, 9, 49–51}.
336 In contrast to these previous studies, for the first time, we examine various metrics
337 supplying information on both WM and GM in a large sample. While we find various
338 differences between hemispheres, age relationships of T₁-weighted and dMRI features
339 were similar between hemispheres using hemispheric averages, **also when stratifying**
340 **by sex**. Spatially finer-grained examinations revealed more specific patterns of asym-
341 metry in T₁-weighted features, such as GM thickness⁹, and dMRI features⁴⁵. This is
342 also shown in the present study by stronger age-effects for specific regional asymme-
343 tries compared to asymmetries in hemispheric averages. Age-MRI metric relationships
344 depend, however, on the selected metric, the sample, and the sampling (cross-sectional
345 or longitudinal)^{52, 53}. For example, previous evidence from T₁-weighted MRI indicates
346 no differences in GM volume between hemispheres⁵⁴, but hemispheric differences of
347 cortical thickness and surface area across ageing^{4, 9}.

348 The presented age charts of MRI metrics in the current work (Figure 1, Supplemen-
349 tary Figure 1) provide similar trends to those reported in previous studies observing
350 global age dependencies^{19, 21, 55–57}. Yet, the stratification between hemispheres when
351 presenting brain features' age dependence is a novel way of presenting brain charts.

352
353 We found asymmetries based on GM and WM brain scalar measures. Unimodal
354 studies with smaller, younger samples presented age-dependence of the brain asymme-
355 try during early WM development⁴⁸ and adult cortical thickness⁹, other T₁-derived
356 metrics³³, and functional network development⁵, showing lower asymmetry at higher
357 ages. **In contrast to HBA asymmetries, brain asymmetries do generally not support**
358 **the notion of lower but instead of higher brain asymmetry later in life. Different**
359 **study design choices, such as temporal and spatial levels might provide supplemental**
360 **information into the age-dependence of brain asymmetries, for example, by further**
361 **investigating longitudinal and voxel-level asymmetries.**

362 We extended previous findings by providing a comprehensive overview of brain
363 asymmetry associations throughout mid- to late life including both GM and WM. Our
364 findings indicate that when considering various metrics, older brains generally appear
365 less symmetric than younger brains in the current sample mid- to late life sample,
366 whereas brain age appears more symmetric in older brains.

367 Notably, we identified strong associations between specific brain regions' asymme-
368 try and age. The strongest age-associations of asymmetries were observed for subcor-
369 tical, ventricle-near structures. The general age-sensitivity of such structures^{21, 58, 59}
370 might be a reason for the observed age-associations in asymmetries, and hence
371 pointing towards one hemisphere being stronger affected by degradation effects,
372 or even the involvement of such regions in psychiatric and neurodegenerative
373 disorders^{40, 55, 58, 60-65}. For example, the hippocampus, a prominent limbic structure,
374 presents relatively high levels of adult neurogenesis, which might potentially explain
375 repeated findings of the region's associations with psychiatric disorders and disor-
376 der states such as depression, anxiety, schizophrenia, addiction, and psychosis^{66, 67},
377 and neurdegenerative disorders, especially Alzheimer's Disease⁶⁸, but also ageing in
378 general⁶⁹. Some of the strongest age-relationship for T₁-derived asymmetries were
379 observed in the accumbens, ventricles and pallidum. In turn, a series of dMRI
380 approaches was sensitive to asymmetry in the cingulum tract, which is higher
381 in late-life and cerebral peduncle asymmetry which appears lower in late-life. In
382 particular, radial diffusivity metrics, such SMT-trans, SMTmc-extratrans, and BRIA-
383 microRd, and fractional anisotropy indicated by BRIA-microFA were sensitive to
384 age-dependencies of these asymmetries. Although speculative, this observation could
385 indicate a relationship between asymmetry and axonal properties during ageing, such
386 as myelination, density, or diameter, in the cingulum, with yet a more general marker
387 (BRIA-microFA) of anisotropy asymmetry increasing at advanced age. However, lim-
388 itations of the different diffusion metrics, such as the inability to account for axonal
389 swelling, infection, or crossing fibres⁷⁰, aggravates the interpretation of such asym-
390 metry changes. Overall, asymmetries' age-dependencies in subcortical, limbic and
391 ventricle-near areas are not surprising, considering that the cingulum and cerebral
392 peduncle WM, and middle temporal GM area also presented some of the strongest
393 asymmetries across the sample (Supplementary Table 10).

394 Both GM volume, surface, and thickness show asymmetries across
395 studies^{1, 3, 4, 9, 54}. We identified lower asymmetry linked to higher ages in the ventricu-
396 lar and pallidum volumes, appearing alongside the known effect of larger ventricle
397 volumes at higher ages⁵⁵. The strongest positive age-relationships for T₁-weighted
398 features' asymmetry were observed for accumbens and WM surface area, as well as
399 limbic structures such as amygdala, hippocampus, and cingulate. Limbic structures
400 have previously been outlined as highly age-sensitive^{21, 58, 59, 69}. Higher asymmetry-
401 levels might speak to asymmetric atrophy in these limbic regions, potentially
402 explaining several ageing-related effects⁹. However, lifespan changes in ventricular
403 volume asymmetry in relation to symptom and disorder expression requires additional
404 investigations.

405 Cingulum WM microstructure has been reported to differ between
406 hemispheres⁷¹⁻⁷³. Abnormalities in cingulum asymmetry have been linked to
407 schizophrenia⁷⁴⁻⁷⁶ and epilepsy^{77, 78}, and Alzheimer's disease⁵⁹. Additionally, the cin-
408 gulum tract was associated with the anti-depressant effects of deep brain stimulation
409 in treatment-resistant depression⁷⁹. Recent evidence points out strongest polygenic
410 risk associations for several psychiatric disorders in addition to Alzheimer's Dis-
411 ease with longitudinal WM in the cerebral peduncle⁵⁸. Future research could assess

412 regional asymmetries to evaluate such metrics' value for diagnostics and treatment in
413 a range of brain disorders.

414 Overall, most absolute MRI feature asymmetries were **positively related to age**,
415 **with brain age asymmetries showing inverse age-relationships**. However, for both WM
416 and GM this process was observed to be spatially distributed. Metric-specific changes
417 might indicate accelerated and pathological ageing⁹, which urges to examine different
418 WM and GM metrics across temporal and spatial resolutions and in clinical samples.

419 Informed by the presented brain asymmetries and their age-dependence, we suggest
420 HBA, indicating the structural integrity of each hemisphere when compared to
421 the chronological age. Moreover, HBA provides a general marker of asymmetry, when
422 setting left/right HBA in relationship to each other. While this added information to
423 conventional GBA is promising, first, the degree to which HBA captures GBA pre-
424 dictions, had to be assessed. This investigation included (1) direct comparisons of
425 HBA and GBA models and their predictions, (2) the influence of covariates of brain
426 age including MRI modality, hemisphere, handedness, and the hemisphere-handedness
427 interaction effect, and (3) a comparison of health-and-lifestyle phenotype-associations
428 with HBA and GBA. Overall, HBA and GBA were highly similar across these dimen-
429 sions, **yet different between hemispheres and modalities within males and females**,
430 with these differences contrasting each other. This renders HBA sensitive to potential
431 underlying biological processes which only become apparent when assessing males and
432 females separately. Additionally, different modalities might be sensitive to a range of
433 biological phenomena in terms of brain age, such as dMRI brain age which presents
434 group differences for diabetes only in males. In that sense, a further route of investi-
435 gation could be to establish sex-specific uni- and multimodal brain age models
436 (which account for sex differences in brain morphology and its developmental trajec-
437 tories). **The influence of hemisphere and sex on how these models relate to biological**
438 **phenomena can then be assessed.**

439 Congruently with previous research which combined MRI modalities²⁷, we found
440 higher prediction accuracy for multimodal compared to unimodal predictions for both
441 HBA and GBA. Our results extend previous findings on conventional brain age by
442 not only estimating brain age from different MRI modalities, but also for each hemi-
443 sphere **and sex** separately. HBA could hold potential in clinical samples by informing
444 about the consistency between the two hemispheres' brain age predictions. Particu-
445 larly diseases or conditions which affect a single hemisphere, such as unilateral stroke
446 or trauma, might then be sensitively detected, and the integrity of the unaffected hemi-
447 sphere can be assessed by observing the congruence of HBA²². Larger discrepancies
448 between HBAs of the same individual might act as a marker of hemisphere-specific
449 brain health imbalance, which may indicate potential pathology.

450 While this study provides initial explorations of asymmetries and HBA, our find-
451 ings remain limited to the examined sample (imaging subset of the UKB), and limited
452 by generational effects within the sample. The UKB contains individuals born in
453 different decades, which influences individual predispositions for brain health through
454 various factors such as the living environment⁸⁰ or education⁸¹, representing various
455 potential confounding effects. Additional bias might have been introduced by the sam-
456 ple characteristics and sampling procedure. The UKB consists of nearly exclusively

457 white UK citizens, limiting the generalisability beyond white Northern Europeans
458 and US Americans in their midlife to late life. The volunteer-based sampling proce-
459 dure might additionally have introduced bias, reducing generalisability to the UK
460 population⁸², with the imaging sample of the UKB showing an additional positive
461 health bias (better physical and mental health) over the rest of the UKB sample⁸³,
462 rendering this sub-sample as even less representative of the total UK population.

463

464 In conclusion, we identified asymmetries throughout the brain from **midlife to late-**
465 **life**. These asymmetries appear **higher later in life across GM and WM**. Opposing, the
466 difference in left/right hemispheric brain age is smaller at higher ages. We further-
467 more identify various **sex-specific differences in brain age and its correlates, as well as**
468 **regional asymmetries** which do not only show age-dependence but which have also been
469 related to various clinical diagnoses. The identified age-relationships of asymmetries
470 provide future opportunities to better understand ageing and disease development.

471 METHODS

472 Sample characteristics

473 We obtained UK Biobank (UKB) data⁸⁴, including $N = 48,040$ T₁-weighted datasets,
474 $N = 39,637$ dMRI datasets, resulting in $N = 39,507$ joined/multimodal datasets after
475 exclusions were applied. Participant data were excluded when consent had been with-
476 drawn, an ICD-10 diagnosis from categories F (presence of mental and behavioural
477 disorder), G (disease of the nervous system), I (disease of the circulatory system),
478 or stroke was present, and when datasets were not meeting quality control standards
479 using the YTTRIUM method⁸⁵ for dMRI datasets and Euler numbers were larger than
480 3 standard deviations below the mean for T₁-weighted data⁸⁶. In brief, YTTRIUM⁸⁵
481 converts the dMRI scalar metric into 2D format using a structural similarity^{87, 88}
482 extension of each scalar map to their mean image in order to create a 2D distribu-
483 tion of image and diffusion parameters. These quality assessments are based on a
484 2-step clustering algorithm applied to identify subjects located outside of the main
485 distribution.

486 Data were collected at four sites, with the T₁-weighted data collected in Cheadle
487 (58.41%), Newcastle (25.97%), Reading (15.48%), and Bristol (0.14%). Of these data,
488 52.00% were females, and the participants age range was from 44.57 to 83.71, mean
489 $= 64.86 \pm 7.77$, median $= 65.38 \pm 8.79$. DMRI data were available from four sites:
490 Cheadle (57.76%), Newcastle (26.12%), Reading (15.98%), and Bristol (0.14), with
491 52.19% female, and an age range of 44.57 to 82.75, mean $= 64.63 \pm 7.70$, median $=$
492 65.16 ± 8.73 . The multimodal sample ($N = 39,507$) was 52.22% female, with an age
493 range of 44.57 to 82.75, mean $= 64.62 \pm 7.70$, median $= 65.15 \pm 8.73$. **Information**
494 **on sex was acquired from the UK central registry at recruitment, but in some cases**
495 **updated by the participant. Hence the sex variable may contain a mixture of the sex**
496 **the UK National Health Service (NHS) had recorded for the participant as well as**
497 **self-reported sex.**

498 MRI acquisition and post-processing

499 UKB MRI data acquisition procedures are described elsewhere^{84, 89, 90}. The raw
500 T₁-weighted and dMRI data were processed accordingly. Namely, the dMRI data
501 passed through an optimised pipeline⁸⁵. The pipeline includes corrections for noise⁹¹,
502 Gibbs ringing⁹², susceptibility-induced and motion distortions, and eddy current
503 artifacts⁹³. Isotropic 1 mm³ Gaussian smoothing was carried out using FSL's^{94, 95}
504 *fslmaths*. Employing the multi-shell data, Diffusion Tensor Imaging (DTI)⁹⁶, Diffusion
505 Kurtosis Imaging (DKI)⁹⁷ and White Matter Tract Integrity (WMTI)⁹⁸ metrics
506 were estimated using Matlab 2017b code (<https://github.com/NYU-DiffusionMRI/DESIGNER>). Spherical mean technique (SMT)⁹⁹, and multi-compartment spherical
507 mean technique (SMTmc)¹⁰⁰ metrics were estimated using original code (<https://github.com/ekaden/smt>)^{99, 100}. Estimates from the Bayesian Rotational Invariant
508 Approach (BRIA) were evaluated by the original Matlab code (<https://bitbucket.org/reisert/baydiff/src/master/>)¹⁰¹.

512 T₁-weighted images were processed using Freesurfer (version 5.3)¹⁰² automatic
513 *recon-all* pipeline for cortical reconstruction and subcortical segmentation of the T₁-
514 weighted images (<http://surfer.nmr.mgh.harvard.edu/fswiki>)¹⁰³.

515 In total, we obtained 28 WM metrics from six diffusion approaches (DTI, DKI,
516 WMTI, SMT, SMTmc, BRIA; see for overview in Supplement 9). In order to normalise
517 all metrics, we used Tract-based Spatial Statistics (TBSS)¹⁰⁴, as part of FSL^{94, 95}. In
518 brief, initially all brain-extracted¹⁰⁵ fractional anisotropy (FA) images were aligned
519 to MNI space using non-linear transformation (FNIRT)⁹⁵. Following, the mean FA
520 image and related mean FA skeleton were derived. Each diffusion scalar map was
521 projected onto the mean FA skeleton using the TBSS procedure. In order to provide
522 a quantitative description of diffusion metrics we used the John Hopkins University
523 (JHU) atlas¹⁰⁶, and obtained 30 hemisphere-specific WM regions of interest (ROIs)
524 based on a probabilistic WM atlas (JHU)¹⁰⁷ for each of the 28 metrics. For T₁-weighted
525 data, we applied the Desikan-Killiany Atlas¹⁰⁸. Altogether, 840 dMRI features were
526 derived per individual [28 metrics × (24 ROIs + 6 tracts)] for each hemisphere, and
527 117 T₁-weighted features (surface area, volume, thickness for each of the 34 regions;
528 3 whole-brain gray matter averages, and 2 averages of white matter surface area and
529 volume) for each hemisphere.

530 Brain Age Predictions

531 Brain age was predicted using the XGBoost algorithm¹⁰⁹ implemented in Python
532 (v3.7.1). We used six data subsets to predict brain age split in the following manner:
533 1) right hemisphere T₁-weighted, 2) left hemisphere T₁-weighted, 3) left hemisphere
534 diffusion, 4) right hemisphere diffusion, 5) left hemisphere multimodal, 6) right hemi-
535 sphere multimodal. We applied nested *k*-fold cross-validation with 5 outer and 10 inner
536 folds (see Supplementary Table 1 for tuned hyperparameters for models trained on
537 data from both sexes together and Supplementary Table 15 for models trained sepa-
538 rately for males and females). We corrected for age-bias and mere age-effects^{110, 111}.

539 by including age in the regression equations (Eq. 5) when assessing effects of modal-
540 ity, hemisphere, and handedness on brain age, as well as phenotype associations with
541 brain ages (Eq. 9).

542 Statistical Analyses

543 All statistical analyses were carried out using Python (v3.7.1) and R (v4.2.0).

544 Hemispheric differences and age sensitivity

To give an overview of the extent of brain asymmetry, we assessed the significance of T₁-weighted and dMRI features' asymmetry using two-sided t-tests. The lateralisation or asymmetry of the brain features was estimated as the following: we applied the LI³² to both regional features and features averaged over each hemisphere (see also³³).

$$LI = \frac{L - R}{L + R}, \quad (1)$$

545 where L and R belongs to any left and right scalar metric, respectively. Furthermore,
546 when associating LI with age, we used absolute LI values ($|LI|$) allowing to estimate
547 age-effects on asymmetry irrespective of the direction of the asymmetry (leftwards or
548 rightwards).

We then used linear regression models correcting for sex and scanning site to predict age from all regular and LI features:

$$\hat{Age} = F + Sex + Site, \quad (2)$$

where F is a scalar metric such as, for example, hippocampus volume (derived from T₁-weighted image) or tapetum fractional anisotropy (derived from DTI). The same model setup was used applying generalised additive models (GAM) to model non-linear relationships between F and *Age* using a smooth s of linked quadratic functions with $k = 4$ knots and restricted maximum likelihood (REML):

$$\hat{Age} = s(F) + Sex + Site. \quad (3)$$

Likelihood ratio tests (LRTs)¹¹² were used to assess the age sensitivity of all T₁-weighted and dMRI features and their asymmetry/LI features by comparing the above models with baseline models not including the respective feature:

$$\hat{Age} = Sex + Site. \quad (4)$$

549 We used the same procedure for region-averaged and hemispheric average metrics for
550 regular and LI features. Hemispheric averages of regular features were then visualised
551 by age, including surface area, volume, thickness for T₁-weighted data, and intra- and
552 extra-axonal water diffusivities as well as for DTI and DKI metrics.

553 To compare the model fit of non-linear and linear models we used the Akaike
554 information criterion (AIC)¹¹³ and Bayesian information criterion (BIC)¹¹⁴.

555 **Brain age assessment**

556 We estimated correlations across HBA and GBA to assess their similarities in addition
557 to the model output provided from the prediction procedure. We also correlated age
558 with the LI (see Eq. 1) for the three modalities (dMRI, T_1 -weighted, multimodal
559 MRI), and estimated the age sensitivity of the LI as described in (Eqs. 2-4).

As preregistered (<https://aspredicted.org/if5yr.pdf>), to test the relationships between hemisphere (H), modality (M), and HBA while controlling for age, sex and scanner site, we employed linear mixed effects regression (LMER) models of the following form:

$$H\hat{BA} = H + M + H \times M + Sex + Age + Sex \times Age + (1|Site) + (1|I), \quad (5)$$

560 where I refers to the random intercept at the level of the individual. Post-hoc group
561 differences were observed for hemisphere, modality and their interaction.

Next, handedness (Ha) was added to the model to observe whether there are model differences between the resulting LMER:

$$H\hat{BA} = Ha + H \times Ha + H + M + H \times M + Sex + Age + Sex \times Age + (1|Site) + (1|I), \quad (6)$$

562 and the previous model. Models were statistically compared using LRTs¹¹².

563 For sex-stratified analyses, we considered brain age estimates both from models
564 using data from both sexes together, as well as models which were trained on females-
565 only or males-only data. The modelling choice (MC) was included as a factor for the
566 sex-stratified brain age analyses in the formula of Eq. 6.

Finally, the LIs (Eq. 1 of left and right brain age predictions for T_1 -weighted, diffusion and multimodal MRI (LI_{HBA} , i.e. the asymmetry in brain age predictions) were associated with age, controlling for sex and scanner site as random effect:

$$\hat{Age} = LI_{HBA} + Sex + (1|Site). \quad (7)$$

The LI_{HBA} 's age-sensitivity was then assessed (as for brain features, see Eqs. 2-4), using LRTs comparing the above model with a baseline model excluding LI_{HBA} (Eq. 4):

$$\hat{Age} = Sex + (1|Site). \quad (8)$$

567 This procedure was also done for each sex individually, also separating between brain
568 age models predictions which were obtained from the data from both sexes compared
569 to a single sex.

570 **Phenotype associations of brain age**

In an exploratory analysis step, we assessed association patterns between brain ages and health-and-lifestyle factors which have previously demonstrated an association with brain age^{20, 26, 38-41}. This analysis step served to compare phenotype associations across estimated brain ages. The health-and-lifestyle factors included alcohol drinking (binary), height and weight supplementing body mass index (BMI), diabetes diagnosis

(binary), diastolic blood pressure, systolic blood pressure, pulse pressure, hypertension (binary), cholesterol level (binary), and smoking (binary describing current smokers). For this last analysis step, LMERs were used with the following structure:

$$\hat{P} = BA + Sex + Age + Sex \times Age + (1|Site), \quad (9)$$

571 where BA refers brain age incorporating both GBA and HBA, P is the phenotype.

572 Furthermore, where applicable, we corrected p -values for multiple testing using
573 Bonferroni correction and an α -level of $p < .05$. We used a high-precision approach
574 to calculate exact p -values utilizing the Multiple Precision Floating-Point Reliable R
575 package¹¹⁵, and report standardized β -values. Sex and site were entered as indepen-
576 dent factorial nominal variables in the applicable regression models, with sex being
577 a binary (0 = female, 1 = male) and scanner site a multinomial (0 = Cheadle, 1 =
578 Newcastle, 2 = Reading, 3 = Bristol). Finally, we repeated the presented statistical
579 analyses stratifying for sex.

580

581 DATA AVAILABILITY

582 All raw data are available from the UKB (www.ukbiobank.ac.uk).

583 CODE AVAILABILITY

584 Analysis code is available at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age.

586 REFERENCES

587 [1] Nazlee, N., Waiter, G. D. & Sandu, A.-L. Age-associated sex and asymme-
588 try differentiation in hemispheric and lobar cortical ribbon complexity across
589 adulthood: A uk biobank imaging study. *HBM* **44**, 49–65 (2023).

590 [2] Karolis, V. R., Corbetta, M. & Thiebaut de Schotten, M. The architecture
591 of functional lateralisation and its relationship to callosal connectivity in the
592 human brain. *Nat. Comm.* **10**, 1417 (2019).

593 [3] Saltoun, K. *et al.* Dissociable brain structural asymmetry patterns reveal unique
594 phenome-wide profiles. *Nat. Hum. Beh.* 1–18 (2022).

595 [4] Kong, X.-Z. *et al.* Mapping cortical brain asymmetry in 17,141 healthy indi-
596 viduals worldwide via the ENIGMA Consortium. *PNAS* **115**, E5154–E5163
597 (2018).

598 [5] Agcaoglu, O., Miller, R., Mayer, A. R., Hugdahl, K. & Calhoun, V. D. Lateral-
599 ization of resting state networks and relationship to age and gender. *NeuroImage*
600 **104**, 310–325 (2015).

601 [6] Ocklenburg, S., Friedrich, P., Güntürkün, O. & Genç, E. Intrahemispheric white
602 matter asymmetries: the missing link between brain structure and functional
603 lateralization? *Rev. Neurosci.* **27**, 465–480 (2016).

604 [7] Barrick, T. R., Lawes, I. N., Mackay, C. E. & Clark, C. A. White Matter
605 Pathway Asymmetry Underlies Functional Lateralization. *Cereb. Cort.* **17**, 591–
606 598 (2006).

607 [8] Sun, T. & Walsh, C. A. Molecular approaches to brain asymmetry and
608 handedness. *Nat. Rev. Neur.* **7**, 655–662 (2006).

609 [9] Roe, J. M. *et al.* Asymmetric thinning of the Cereb. Cort. across the adult
610 lifespan is accelerated in Alzheimer’s disease. *Nat. Comm.* **12**, 721 (2021).

611 [10] Thompson, P. M. *et al.* The enigma consortium: large-scale collaborative
612 analyses of neuroimaging and genetic data. *Brain Img. & Beh.* **8**, 153–182 (2014).

613 [11] Li, P. *et al.* Hemispheric asymmetry in the human brain and in parkinson’s
614 disease is linked to divergent epigenetic patterns in neurons. *Gen. Bio.* **21**, 1–23
615 (2020).

616 [12] Kong, X.-Z. *et al.* Mapping cortical and subcortical asymmetry in obsessives-
617 compulsive disorder: findings from the enigma consortium. *Bio. Psych.* **87**,
618 1022–1034 (2020).

619 [13] Kong, X.-Z. *et al.* Mapping brain asymmetry in health and disease through the
620 enigma consortium. *HBM* **43**, 167–181 (2022).

621 [14] Schijven, D. *et al.* Large-scale analysis of structural brain asymmetries in
622 schizophrenia via the enigma consortium. *PNAS* **120**, e2213880120 (2023).

623 [15] Maximov, I. I. & Westlye, L. T. Comparison of different neurite density metrics
624 with brain asymmetry evaluation. *Zeitschr. Med. Phy.* (2023).

625 [16] Ardekani, S., Kumar, A., Bartzokis, G. & Sinha, U. Exploratory voxel-based
626 analysis of diffusion indices and hemispheric asymmetry in normal aging. *MRI*
627 **25**, 154–167 (2007).

628 [17] Franke, K. & Gaser, C. Ten years of brainage as a neuroimaging biomarker of
629 brain aging: what insights have we gained? *Front. Neur.* 789 (2019).

630 [18] Kaufmann, T. *et al.* Common brain disorders are associated with heritable
631 patterns of apparent aging of the brain. *Nat. Neur.* **22**, 1617–1623 (2019).

632 [19] Beck, D. *et al.* White matter microstructure across the adult lifespan: A
633 mixed longitudinal and cross-sectional study using advanced diffusion models
634 and brain-age prediction. *NeuroImage* **224**, 117441 (2021).

635 [20] Beck, D. *et al.* Adipose tissue distribution from body MRI is associated with
636 cross-sectional and longitudinal brain age in adults. *NeuroImage: Clin.* **33**,
637 102949 (2022).

638 [21] Korbmacher, M. *et al.* Brain-wide associations between white matter and age
639 highlight the role of fornix microstructure in brain ageing. *HBM* **44** (2023).

640 [22] Richard, G. *et al.* Brain age prediction in stroke patients: Highly reliable but
641 limited sensitivity to cognitive performance and response to cognitive training.
642 *NeuroImage: Clin.* **25**, 102159 (2020).

643 [23] de Lange, A.-M. G. *et al.* The maternal brain: Region-specific patterns of brain
644 aging are traceable decades after childbirth. *HBM* **41**, 4718–4729 (2020).

645 [24] Voldsbekk, I. *et al.* A history of previous childbirths is linked to women's white
646 matter brain age in midlife and older age. *HBM* **42**, 4372–4386 (2021).

647 [25] Richard, G. *et al.* Assessing distinct patterns of cognitive aging using tissue-
648 specific brain age prediction based on diffusion tensor imaging and brain
649 morphometry. *PeerJ* **6**, e5908 (2018).

650 [26] Cole, J. H. Multimodality neuroimaging brain-age in uk biobank: relationship
651 to biomedical, lifestyle, and cognitive factors. *Neurobio. Aging* **92**, 34–42 (2020).

652 [27] De Lange, A.-M. G. *et al.* Multimodal brain-age prediction and cardiovascular
653 risk: The Whitehall II MRI sub-study. *NeuroImage* **222**, 117292 (2020).

654 [28] Good, C. D. *et al.* Cerebral asymmetry and the effects of sex and handedness
655 on brain structure: a voxel-based morphometric analysis of 465 normal adult
656 human brains. *NeuroImage* **14**, 685–700 (2001).

657 [29] Jang, H., Lee, J. Y., Lee, K. I. & Park, K. M. Are there differences in brain
658 morphology according to handedness? *Brain & Beh.* **7**, e00730 (2017).

659 [30] Ocklenburg, S. *et al.* Polygenic scores for handedness and their association with
660 asymmetries in brain structure. *Brain Struct. & Funct.* 1–13 (2021).

661 [31] Rentería, M. E. Cerebral asymmetry: a quantitative, multifactorial, and plastic
662 brain phenotype. *Twin Res. & Hum. Gen.* **15**, 401–413 (2012).

663 [32] Benson, R. *et al.* Language dominance determined by whole brain functional
664 mri in patients with brain lesions. *Neurol.* **52**, 798–798 (1999).

665 [33] Williams, C. M., Peyre, H., Toro, R. & Ramus, F. Comparing brain asymmetries
666 independently of brain size. *NeuroImage* **254**, 119118 (2022).

667 [34] Jirsaraie, R. J. *et al.* Benchmarking the generalizability of brain age models:
668 challenges posed by scanner variance and prediction bias. *HBM* **44**, 1118–1128
669 (2023).

670 [35] Korbmacher, M. *et al.* Considerations on brain age predictions from repeatedly
671 sampled data across time. *Brain & Beh.* **13**, 1–8 (2023).

672 [36] Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T. The
673 preregistration revolution. *PNAS* **115**, 2600–2606 (2018).

674 [37] Nosek, B. A. *et al.* Preregistration is hard, and worthwhile. *Trends Cog. Sci* **23**,
675 815–818 (2019).

676 [38] Beck, D. *et al.* Cardiometabolic risk factors associated with brain age and
677 accelerate brain ageing. *HBM* **43**, 700–720 (2022).

678 [39] Korbmacher, M. *et al.* Bio-psycho-social factors' associations with brain age: a
679 large-scale uk biobank diffusion study of 35,749 participants. *Front. Psych.* **14**,
680 1117732 (2023).

681 [40] Leonardsen, E. H. *et al.* Deep neural networks learn general and clinically
682 relevant representations of the ageing brain. *NeuroImage* **256**, 119210 (2022).

683 [41] Smith, S. M. *et al.* Brain aging comprises many modes of structural and func-
684 tional change with distinct genetic and biophysical associations. *eLife* **9**, e52677
685 (2020).

686 [42] Sanford, N. *et al.* Sex differences in predictors and regional patterns of brain
687 age gap estimates. *HBM* **43**, 4689–4698 (2022).

688 [43] Subramaniapillai, S. *et al.* Sex-and age-specific associations between car-
689 diometabolic risk and white matter brain age in the uk biobank cohort. *HBM*
690 **43**, 3759–3774 (2022).

691 [44] Koen, J. D. & Rugg, M. D. Neural dedifferentiation in the aging brain. *Trends*
692 *Cog. Sci.* **23**, 547–559 (2019).

693 [45] Büchel, C. *et al.* White matter asymmetry in the human brain: a diffusion tensor
694 MRI study. *Cereb. Cort.* **14**, 945–951 (2004).

695 [46] Mito, R. *et al.* Fibre-specific white matter reductions in alzheimer's disease and
696 mild cognitive impairment. *Brain* **141**, 888–902 (2018).

697 [47] Takao, H., Hayashi, N. & Ohtomo, K. White matter asymmetry in healthy
698 individuals: a diffusion tensor imaging study using tract-based spatial statistics.
699 *Neurosci.* **193**, 291–299 (2011).

700 [48] Song, J. W. *et al.* Asymmetry of White Matter Pathways in Developing Human
701 Brains. *Cereb. Cortex* **25**, 2883–2893 (2014).

702 [49] Huang, K. *et al.* Asymmetrical alterations of grey matter among psychiatric
703 disorders: a systematic analysis by voxel-based activation likelihood estimation.
704 *Prog. Neuro-Psychopharm. & Bio. Psych.* **110**, 110322 (2021).

705 [50] Toga, A. W. & Thompson, P. M. Mapping brain asymmetry. *Nat. Rev. Neuro.*
706 **4**, 37–48 (2003).

707 [51] Chiarello, C., Vazquez, D., Felton, A. & McDowell, A. Structural asymmetry of
708 the human cereb. cort.: Regional and between-subject variability of surface area,
709 cortical thickness, and local gyration. *Neuropsychologia* **93**, 365–379 (2016).

710 [52] Di Biase, M. A. *et al.* Mapping human brain charts cross-sectionally and
711 longitudinally. *PNAS* **120**, e2216798120 (2023).

712 [53] Button, K. S. *et al.* Power failure: why small sample size undermines the
713 reliability of neuroscience. *Nat. Rev. Neuro.* **14**, 365–376 (2013).

714 [54] Taki, Y. *et al.* Correlations among brain gray matter volumes, age, gender, and
715 hemisphere in healthy individuals. *PLoS one* **6**, e22734 (2011).

716 [55] Bethlehem, R. A. *et al.* Brain charts for the human lifespan. *Nat.* **604**, 525–533
717 (2022).

718 [56] Wei, Y., Zhang, H. & Liu, Y. Charting Normative Brain Variability Across the
719 Human Lifespan. *Neurosci. Bull.* **39**, 362–364 (2023).

720 [57] Westlye, L. T. *et al.* Life-span changes of the human brain white matter: diffusion
721 tensor imaging (DTI) and volumetry. *Cereb. Cort.* **20**, 2055–2068 (2010).

722 [58] Korbmacher, M. *et al.* Distinct longitudinal brain white matter microstruc-
723 ture changes and associated polygenic risk of common psychiatric disorders and
724 alzheimer's disease in the uk biobank. *medRxiv (Preprint)* (2023).

725 [59] Xiao, D., Wang, K., Theriault, L., Charbel, E. & Initiative, A. D. N. White
726 matter integrity and key structures affected in alzheimer's disease characterized
727 by diffusion tensor imaging. *Eur. J. Neurosci.* **56**, 5319–5331 (2022).

728 [60] Rajmohan, V. & Mohandas, E. The limbic system. *Ind J Psych* **49**, 132 (2007).

729 [61] Redlich, R. *et al.* The limbic system in youth depression: brain structural
730 and functional alterations in adolescent in-patients with severe depression.
731 *Neuropsychopharm.* **43**, 546–554 (2018).

732 [62] Zelikowsky, M., Hersman, S., Chawla, M. K., Barnes, C. A. & Fanselow, M. S.
733 Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track
734 differential components of contextual fear. *J Neurosc* **34**, 8462–8466 (2014).

735 [63] Bari, A., Niu, T., Langevin, J.-P. & Fried, I. Limbic neuromodulation: impli-
736 cations for addiction, posttraumatic stress disorder, and memory. *Neurosurg.*
737 *Clin.* **25**, 137–145 (2014).

738 [64] Coupé, P., Manjón, J. V., Lanuza, E. & Catheline, G. Lifespan changes of the
739 human brain in alzheimer's disease. *Sci. Rep.* **9**, 3998 (2019).

740 [65] Yamada, S., Ishikawa, M. & Nozaki, K. Exploring mechanisms of ventricular
741 enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal
742 fluid dynamics and motile cilia. *Flu. Barr. CNS* **18**, 1–11 (2021).

743 [66] Schoenfeld, T. J. & Cameron, H. A. Adult neurogenesis and mental illness.
744 *Neuropsychophar.* **40**, 113–128 (2015).

745 [67] Peyton, L., Oliveros, A., Choi, D.-S. & Jang, M.-H. Hippocampal regenerative
746 medicine: neurogenic implications for addiction and mental disorders. *Exp. &*
747 *Mol. Med.* **53**, 358–368 (2021).

748 [68] Moodley, K. & Chan, D. The hippocampus in neurodegenerative disease. *Hippo.*
749 *Clin. Neurosci.* **34**, 95–108 (2014).

750 [69] Van de Pol, L. *et al.* Hippocampal atrophy in alzheimer disease: age matters.
751 *Neurol.* **66**, 236–238 (2006).

752 [70] Van Hecke, W., Emsell, L., Sunaert, S. *et al.* *Diffusion tensor imaging: a practical*
753 *handbook* (Springer, 2016).

754 [71] Huster, R. J., Westerhausen, R., Kreuder, F., Schweiger, E. & Wittling, W.
755 Morphologic asymmetry of the human anterior cingulate cortex. *NeuroImage*
756 **34**, 888–895 (2007).

757 [72] Kucyi, A., Moayedi, M., Weissman-Fogel, I., Hodaie, M. & Davis, K. D. Hemispheric asymmetry in white matter connectivity of the temporoparietal junction
758 with the insula and prefrontal cortex. *PLoS one* **7**, e35589 (2012).

760 [73] Wang, J. *et al.* Asymmetry of the dorsal anterior cingulate cortex: evidences
761 from multiple modalities of mri. *Neuroinf.* **11**, 149–157 (2013).

762 [74] Takahashi, T. *et al.* Lack of normal structural asymmetry of the anterior
763 cingulate gyrus in female patients with schizophrenia: a volumetric magnetic
764 resonance imaging study. *Schiz. Res.* **55**, 69–81 (2002).

765 [75] Manoach, D. S. *et al.* Reduced microstructural integrity of the white matter
766 underlying anterior cingulate cortex is associated with increased saccadic latency
767 in schizophrenia. *NeuroImage* **37**, 599–610 (2007).

768 [76] Joo, S. W. *et al.* Abnormal asymmetry of white matter tracts between
769 ventral posterior cingulate cortex and middle temporal gyrus in recent-onset
770 schizophrenia. *Schiz. Res.* **192**, 159–166 (2018).

771 [77] Zhao, X. *et al.* Reduced interhemispheric white matter asymmetries in medial
772 temporal lobe epilepsy with hippocampal sclerosis. *Front. Neurol.* **10**, 394
773 (2019).

774 [78] Zhang, Y. *et al.* Study of the microstructure of brain white matter in medial
775 temporal lobe epilepsy based on diffusion tensor imaging. *Brain & Beh.* **13**,
776 e2919 (2023).

777 [79] Cattarinussi, G. *et al.* White matter microstructure associated with the antide-
778 pressant effects of deep brain stimulation in treatment-resistant depression: A
779 review of diffusion tensor imaging studies. *Int. J. Molec. Sci.* **23**, 15379 (2022).

780 [80] Xu, J. *et al.* Effects of urban living environments on mental health in adults.
781 *Nat. Med.* 1–12 (2023).

782 [81] Chan, M. Y. *et al.* Long-term prognosis and educational determinants of brain
783 network decline in older adult individuals. *Nat. aging* **1**, 1053–1067 (2021).

784 [82] Schoeler, T. *et al.* Participation bias in the uk biobank distorts genetic
785 associations and downstream analyses. *Nat. Hum. Beh.* 1–12 (2023).

786 [83] Lyall, D. M. *et al.* Quantifying bias in psychological and physical health in the
787 uk biobank imaging sub-sample. *Brain Comm.* **4**, fcac119 (2022).

788 [84] Alfaro-Almagro, F. *et al.* Image processing and quality control for the first 10,000
789 brain imaging datasets from uk biobank. *NeuroImage* **166**, 400–424 (2018).

790 [85] Maximov, I. I. *et al.* Fast qualitY conTrol meThod foR derIved diffUision Metrics
791 (YTTRIUM) in big data analysis: UK Biobank 18,608 example. *HBM* **42**,

792 3141–3155 (2021).

793 [86] Rosen, A. F. *et al.* Quantitative assessment of structural image quality.
794 *NeuroImage* **169**, 407–418 (2018).

795 [87] Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assess-
796 ment: from error visibility to structural similarity. *IEEE Transact. Img. Proc.*
797 **13**, 600–612 (2004).

798 [88] Brunet, D., Vrscay, E. R. & Wang, Z. On the mathematical properties of the
799 structural similarity index. *IEEE Transact. Img. Proc.* **21**, 1488–1499 (2011).

800 [89] Miller, K. L. *et al.* Multimodal population brain imaging in the UK Biobank
801 prospective epidemiological study. *Nat. Neur.* **19**, 1523–1536 (2016).

802 [90] Sudlow, C. *et al.* UK biobank: an open access resource for identifying the causes
803 of a wide range of complex diseases of middle and old age. *PLoS Med.* **12**,
804 e1001779 (2015).

805 [91] Veraart, J., Fieremans, E. & Novikov, D. S. Diffusion MRI noise mapping using
806 random matrix theory. *MR in Med.* **76**, 1582–1593 (2016).

807 [92] Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs-ringing artifact
808 removal based on local subvoxel-shifts. *MR in Med.* **76**, 1574–1581 (2016).

809 [93] Andersson, J. L. & Sotiroopoulos, S. N. An integrated approach to correc-
810 tion for off-resonance effects and subject movement in diffusion MR imaging.
811 *NeuroImage* **125**, 1063–1078 (2016).

812 [94] Smith, S. M. *et al.* Advances in functional and structural MR image analysis
813 and implementation as FSL. *NeuroImage* **23**, S208–S219 (2004).

814 [95] Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith,
815 S. M. FSL. *NeuroImage* **62**, 782–790 (2012).

816 [96] Basser, P. J., Mattiello, J. & LeBihan, D. Mr diffusion tensor spectroscopy and
817 imaging. *Biophys. J.* **66**, 259–267 (1994).

818 [97] Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H. & Kaczkynski, K. Diffusional
819 kurtosis imaging: the quantification of non-gaussian water diffusion by means of
820 magnetic resonance imaging. *MR in Med.* **53**, 1432–1440 (2005).

821 [98] Fieremans, E., Jensen, J. H. & Helpern, J. A. White matter characterization
822 with diffusional kurtosis imaging. *NeuroImage* **58**, 177–188 (2011).

823 [99] Kaden, E., Kruggel, F. & Alexander, D. C. Quantitative mapping of the per-
824 axon diffusion coefficients in brain white matter. *MR in Med.* **75**, 1752–1763
825 (2016).

826 [100] Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D. & Alexander, D. C. Multi-
827 compartment microscopic diffusion imaging. *NeuroImage* **139**, 346–359 (2016).

828 [101] Reisert, M., Kellner, E., Dhital, B., Hennig, J. & Kiselev, V. G. Disentangling
829 micro from mesostructure by diffusion MRI: a Bayesian approach. *NeuroImage*
830 **147**, 964–975 (2017).

831 [102] Fischl, B. Freesurfer. *NeuroImage* **62**, 774–781 (2012).

832 [103] Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I.
833 Segmentation and surface reconstruction. *NeuroImage* **9**, 179–194 (1999).

834 [104] Smith, S. M. *et al.* Tract-based spatial statistics: voxelwise analysis of multi-
835 subject diffusion data. *NeuroImage* **31**, 1487–1505 (2006).

836 [105] Smith, S. M. Fast robust automated brain extraction. *HBM* **17**, 143–155 (2002).

837 [106] Mori, S., Wakana, S., Nagae-Poetscher, L. & Van Zijl, P. MRI atlas of human
838 white matter. *Am. J. Neurorad.* **27**, 1384 (2006).

839 [107] Hua, K. *et al.* Tract probability maps in stereotaxic spaces: analyses of white
840 matter anatomy and tract-specific quantification. *NeuroImage* **39**, 336–347
841 (2008).

842 [108] Desikan, R. S. *et al.* An automated labeling system for subdividing the human
843 Cereb. Cort. on MRI scans into gyral based regions of interest. *NeuroImage* **31**,
844 968–980 (2006).

845 [109] Chen, T. & Guestrin, C. *Xgboost: A scalable tree boosting system*, 785–794
846 (2016).

847 [110] de Lange, A.-M. G. & Cole, J. H. Commentary: Correction procedures in brain-
848 age prediction. *NeuroImage: Clin.* **26** (2020).

849 [111] de Lange, A.-M. G. *et al.* Mind the gap: Performance metric evaluation in
850 brain-age prediction. *HBM* **43**, 3113–3129 (2022).

851 [112] Lehmann, E. L. On likelihood ratio tests. *Selected works of E.L. Lehmann*
852 209–216 (2012).

853 [113] Akaike, H. in *Information theory and an extension of the maximum likelihood*
854 *principle* 199–213 (Springer, 1998).

855 [114] Neath, A. A. & Cavanaugh, J. E. The bayesian information criterion: back-
856 ground, derivation, and applications. *Wiley Interdisc. Rev.: Comp. Stat.* **4**,
857 199–203 (2012).

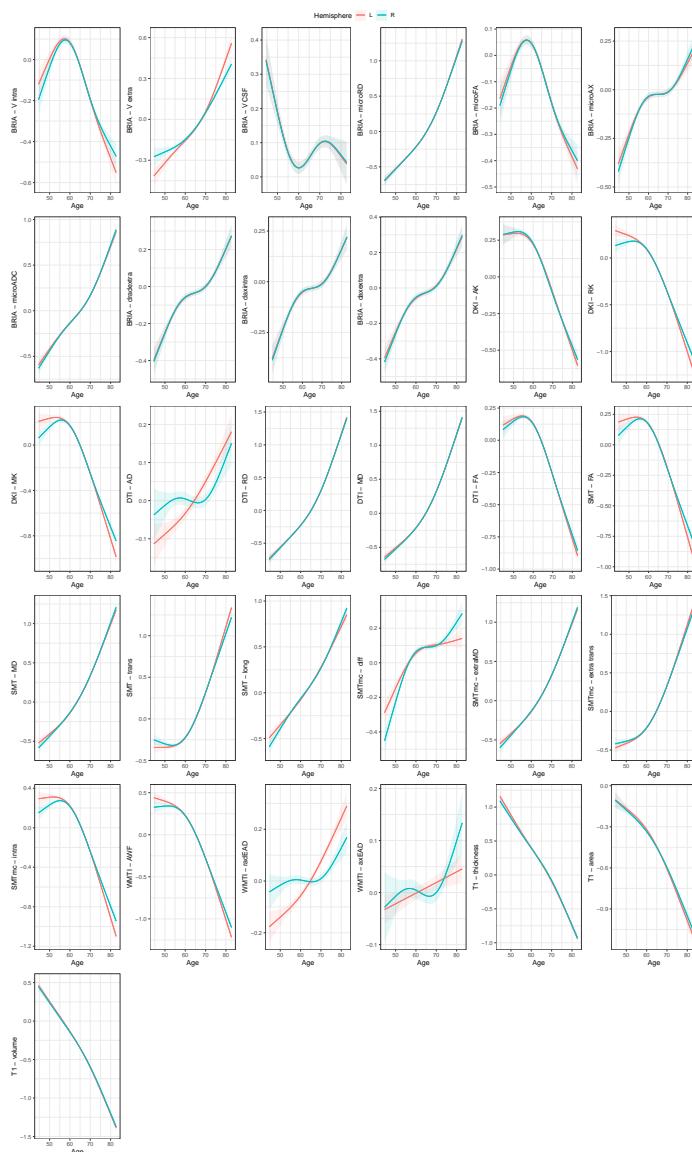
858 [115] Maechler, M., Maechler, M. M., MPFR, S., Suggests, M. & SuggestsNote, M.
859 Package ‘rmpfr’. *CRAN* (2016). URL <https://cran.r-project.org/web/packages/Rmpfr/index.html>.
860

861 ACKNOWLEDGEMENTS

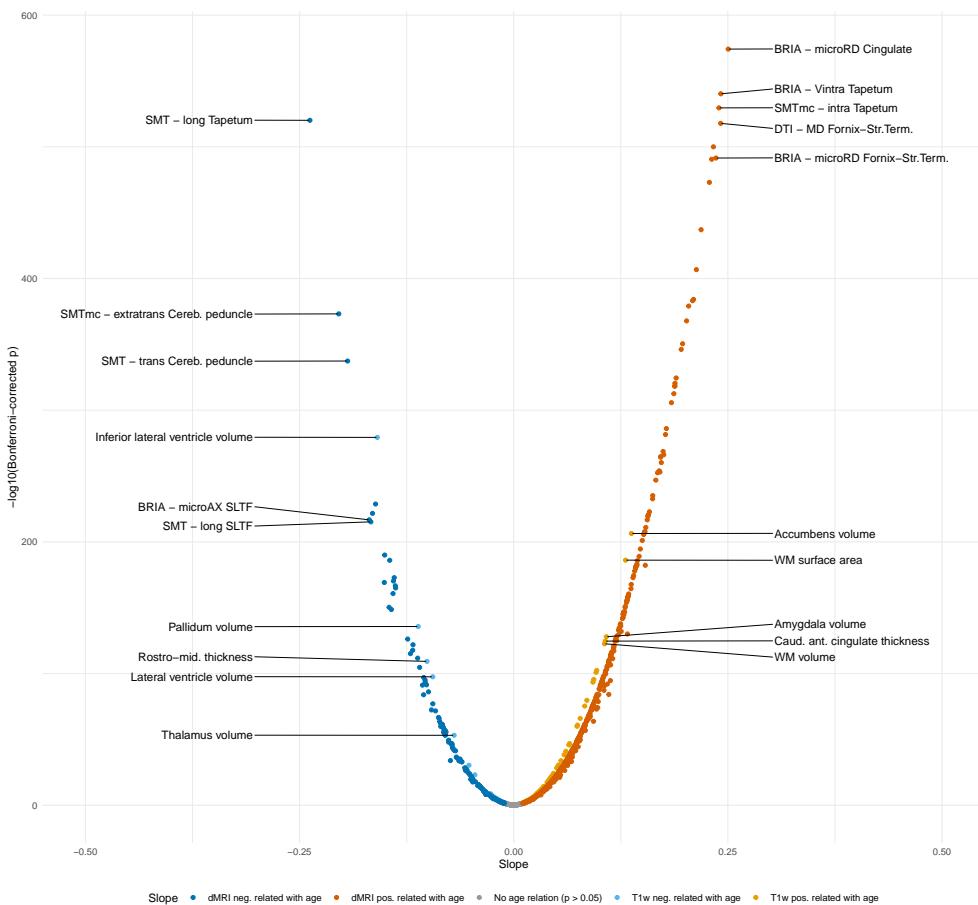
862 This study has been conducted using UKB data under Application 27412. UKB has
863 received ethics approval from the National Health Service National Research Ethics
864 Service (ref 11/NW/0382). The work was performed on the Service for Sensitive
865 Data (TSD) platform, owned by the University of Oslo, operated and developed by
866 the TSD service group at the University of Oslo IT-Department (USIT). Computa-
867 tions were performed using resources provided by UNINETT Sigma2 – the National
868 Infrastructure for High Performance Computing and Data Storage in Norway.

869 We want to thank Tobias Kaufmann and Torgeir Moberget who processed the T₁-
870 weighted MRI data, and all UKB participants and facilitators who made this research
871 possible.

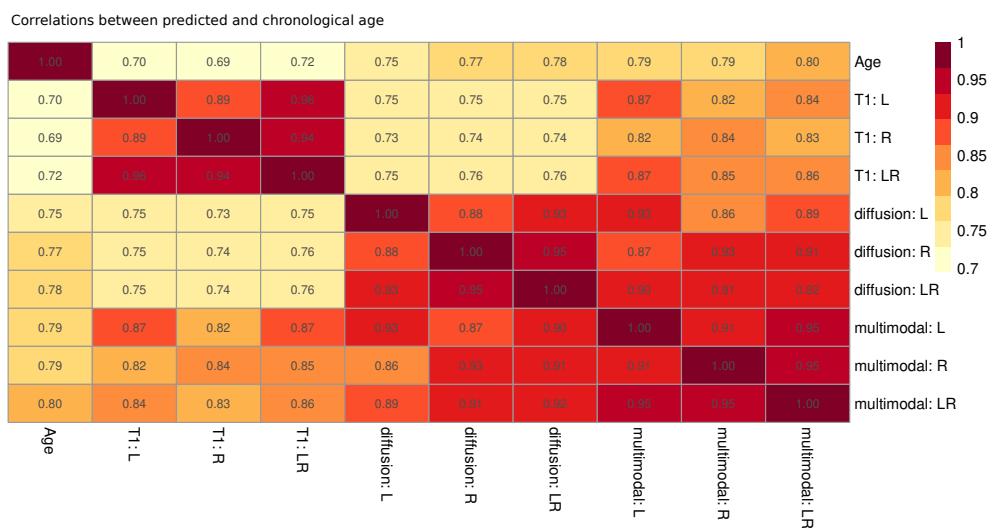
872 This research was funded by the Research Council of Norway (#223273); the
873 South-Eastern Norway Regional Health Authority (#2022080); and the European
874 Union's Horizon2020 Research and Innovation Programme (CoMorMent project;
875 Grant #847776).


876 AUTHOR CONTRIBUTIONS

877 M.K.: Study design, Software, Formal analysis, Visualizations, Project administra-
878 tion, Writing—original draft, Writing—review & editing. D.v.d.M.: Software, Writing
879 – review & editing. D.B.: Writing—review & editing. A.M.d.L.: Software, Writ-
880 ing—review & editing. A.L.: Funding acquisition. E.E.: Funding acquisition. O.A.A.:
881 Writing—review & editing, Funding acquisition. L.T.W.: Writing—review & editing,
882 Funding acquisition. I.I.M.: Supervision, Study design, Data preprocessing and quality
883 control, Writing—review & editing, Funding acquisition.


884 COMPETING INTERESTS

885 OAA has received a speaker's honorarium from Lundbeck and is a consultant to
886 Coretechs.ai. We declare no other conflicts of interest.


887 **FIGURES**

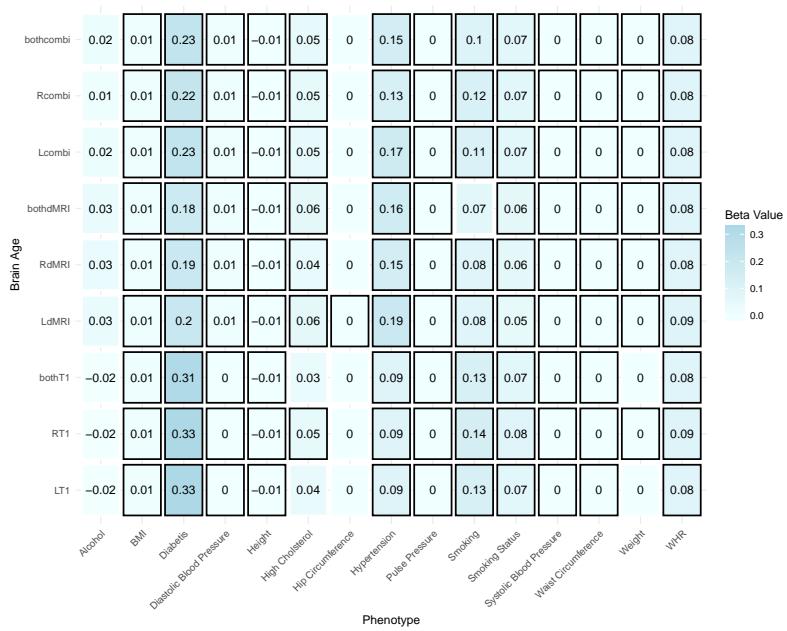

Fig. 1 Age curves of standardized and zero-centered mean values of GM and WM features per hemisphere. A cubic smooth function (s) with $k = 4$ knots was applied to plot the relationship between age and brain features correcting for sex and scanner site (F): $age = s(F) + sex + site$ using restricted maximum likelihood (REML). The grey shaded area indicates the 95% CI. All age-relationships were significant ($p_{adj} < .05$).

Fig. 2 T₁-weighted and dMRI features linear asymmetry-age-associations. The plot presents the standardized (sex- and site-corrected) regression slopes versus Bonferroni-adjusted -log₁₀ p-values. Modelling was done using Eq. 2: $\hat{age} = \beta_0 + \beta_1 \times F + \beta_2 \times Sex + \beta_3 \times Site$, where F is the respective brain feature. Labelling was done separately for T₁-weighted and dMRI indicating the 10 most significantly associated features (five for $\beta > 0$ and five for $\beta < 0$). ILF = inferior longitudinal fasciculus, Cereb.Peduncle = cerebral peduncle, Rostro-mid. thickness = rostro-middle thickness, SLFT = superior longitudinal fasciculus (temporal part), Fornix-Str.Term. = fornix-stria terminalis tract, Caud. ant. cingulate = caudal anterior cingulate. Full tables are available at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age/.

Fig. 3 Pearson correlation coefficients between chronological and predicted ages for T₁-weighted, diffusion, and multimodal MRI for left, right and both hemispheres. All Bonferroni-corrected $p < .001$. L: left hemisphere, R: right hemisphere, LR: both hemispheres.

Fig. 4 Linear association between general health-and-lifestyle phenotypes and brain age estimated from different modalities, left, right and both hemispheres. Eq. 9 was used and standardized slopes are presented. For simplicity, standardized slopes with $|\beta| < 0.005$ were rounded down to $\beta = 0$. L: left hemisphere, R: right hemisphere, LR: both hemispheres, BMI: body mass index, WHR: waist-to-hip ratio. Bonferroni-adjusted $p < .05$ is marked by a black frame.

888 **TABLES**

Table 1 Hemispheric brain age prediction outcomes.

Model	Features	R ²	MAE	RMSE	Correlation*
Left T _{1w}	117	0.504 (0.010)	4.389 (0.054)	5.472 (0.061)	0.708 [0.703, 0.712]
Right T _{1w}	117	0.492 (0.008)	4.439 (0.049)	5.529 (0.051)	0.705 [0.700, 0.709]
T _{1w}	234	0.526 (0.011)	4.294 (0.050)	5.356 (0.062)	0.725 [0.721, 0.730]
Left dMRI	840	0.568 (0.014)	4.000 (0.047)	4.990 (0.067)	0.757 [0.753, 0.762]
Right dMRI	840	0.582 (0.013)	3.960 (0.052)	4.967 (0.079)	0.766 [0.762, 0.771]
dMRI	1680	0.605 (0.010)	3.867 (0.059)	4.821 (0.094)	0.781 [0.777, 0.785]
Left multimodal	957	0.630 (0.009)	3.757 (0.046)	4.673 (0.047)	0.794 [0.790, 0.797]
Right multimodal	957	0.634 (0.014)	3.723 (0.073)	4.673 (0.092)	0.794 [0.791, 0.798]
Multimodal	1914	0.628 (0.017)	3.663 (0.055)	4.563 (0.077)	0.793 [0.789, 0.797]

R² = Variance explained, MAE = Mean Absolute Error, RMSE = Root Mean Squared Error, Corr. = Correlation, Values in round parentheses () refer to standard deviations and square brackets [] to 95% confidence interval around correlations (Pearson's r) of uncorrected brain age estimates and chronological age.

* The correlation between raw brain age and chronological age.

889 **SUPPLEMENTARY**
890 **INFORMATION**

891 Supplementary information to the article "Brain asymmetries from mid- to late-life
892 and hemispheric brain age", Korbmacher et al., 2023

893 **SUPPLEMENTARY TABLES**

894 **1 Tuned hyperparameters for brain age models
895 considering both sexes together**

896 Overview of the tuned hyperparameters for each of the used brain age models
considering both sexes together.

Modality	Hemisphere	Learning Rate	Maximum Depth	Number of Trees
Multimodal	Both	0.1	8	140
Multimodal	Left	0.05	7	180
Multimodal	Right	0.1	8	140
dMRI	Both	0.1	6	100
dMRI	Left	0.1	4	180
dMRI	Right	0.1	5	180
T ₁ w	Both	0.1	5	140
T ₁ w	Left	0.1	6	140
T ₁ w	Right	0.1	6	180

897

2 Most age-sensitive regional features using non-linear models

T ₁ Metric	Deviance	F	dMRI Metric	Deviance	F
superior temporal thickness (lh)	587304.16	4188.91	DKI - AK anterior limb of the internal capsule (rh)	644106.76	5170.95
hippocampus volume (rh)	576250.86	4101.39	DTI - RD fornix striaterminalis (rh)	627313.71	4981.99
thickness (lh)	576355.10	4082.87	DTI - FA anterior corona radiata (lh)	571637.61	4390.91
inferiorparietal thickness (lh)	569468.00	4041.74	DTI - FA inferior fronto-occipital fasciculus (lh)	568799.27	4366.64
hippocampus volume (lh)	565456.80	4006.59	BRIA - microRD anterior thalamic radiation (rh)	561902.12	4295.66
thickness (rh)	562548.97	3965.59	WMTI - radEAD anterior coronaradiata (rh)	433925.45	4281.90
inferior lateral ventricle volume (lh)	544864.71	3836.12	BRIA - microFA fornix striaterminalis (rh)	557084.22	4247.55
inferior lateral ventricle volume (rh)	539066.94	3786.01	DTI - FA fornix striaterminalis (rh)	545272.55	4125.27
superior temporal thickness (rh)	522564.64	3603.62	BRIA - microRD fornix striaterminalis (rh)	539180.21	4070.72
lateral ventricle volume (lh)	513713.08	3567.34	BRIA - microADC anterior thalamic radiation (rh)	536979.62	4050.30

3 Most age-sensitive regional features using linear models

T ₁ Metric	Sum of Squares	F	dMRI Metric	Sum of Squares	F
superior temporal thickness (lh)	582215.80	12516.42	DTI - RD fornix striaterminalis (rh)	568838.72	13114.24
thickness (lh)	571936.88	12239.14	DTI - FA anterior coronaradiata (lh)	554045.66	12664.20
hippocampus volume (rh)	564806.62	12048.28	DTI - FA inferior fronto-occipital fasciculus (lh)	527205.85	11866.98
inferiorparietal thickness (rh)	559834.17	11915.90	DTI - FA fornix striaterminalis (rh)	526713.03	11852.57
thickness (rh)	557696.94	11859.18	DTI - RD anterior coronaradiata (lh)	504149.35	11201.30
hippocampus volume (lh)	554478.02	11773.95	DTI - RD anterior coronaradiata (rh)	500047.51	11084.67
superior temporal thickness (rh)	519361.12	10859.68	DTI - FA anterior coronaradiata (rh)	481860.37	10573.93
thalamus volume (rh)	470220.77	9626.25	BRIA - microRD anterior thalamic radiation (rh)	480010.76	10522.57
cortex volume (lh)	455643.18	9270.23	DTI - RD inferior fronto-occipital fasciculus (lh)	471710.65	10293.35
amygdala (lh)	454268.29	9236.88	DTI - FA inferior fronto-occipital fasciculus (rh)	470227.52	10252.62

900 4 Global metrics' age sensitivity using linear models

901 LRTs outcomes testing global metrics' age sensitivity using linear models (Eqs. 2 & 4), with *p*-values being Bonferroni-corrected for multiple comparison. Acronyms lh and rh refer to mean left and right hemisphere, respectively.

36

Metric	Sum of Squares	F	p	Metric	Sum of Squares	F	p
<i>BRIA vintra (lh)</i>	-14143.51	256.78	<.001	<i>DTI MD (rh)</i>	-294821.39	6256.88	<.001
<i>BRIA vintra (rh)</i>	-13492.91	244.88	<.001	<i>DTI FA (lh)</i>	-294054.08	6237.71	<.001
<i>BRIA vextra (lh)</i>	-8868.68	160.58	<.001	<i>DTI FA (rh)</i>	-290846.08	6157.77	<.001
<i>BRIA vextra (rh)</i>	-8247.91	149.29	<.001	<i>SMT FA (lh)</i>	-96237.02	1824.32	<.001
<i>BRIA vcsf (lh)</i>	-12339.56	223.82	<.001	<i>SMT FA (rh)</i>	-88924.97	1679.10	<.001
<i>BRIA vcsf (rh)</i>	-11691.20	211.99	<.001	<i>SMT MD (lh)</i>	-145717.99	2837.80	<.001
<i>BRIA micrord (lh)</i>	-110749.44	2115.93	<.001	<i>SMT MD (rh)</i>	-138236.90	2681.03	<.001
<i>BRIA micrord (rh)</i>	-112757.19	2156.64	<.001	<i>SMT trans (lh)</i>	-236947.06	4859.34	<.001
<i>BRIA microfa (lh)</i>	-7389.49	133.69	<.001	<i>SMT trans (rh)</i>	-230976.33	4720.50	<.001
<i>BRIA microfa (rh)</i>	-7660.08	138.61	<.001	<i>SMT long (lh)</i>	-233251.22	4773.28	<.001
<i>BRIA microax (lh)</i>	-20330.95	370.29	<.001	<i>SMT long (rh)</i>	-221802.60	4509.03	<.001
<i>BRIA microax (rh)</i>	-19217.81	349.82	<.001	<i>SMTmc d (lh)</i>	-12811.82	232.44	<.001
<i>BRIA microadc (lh)</i>	-244852.70	5044.67	<.001	<i>SMTmc d (rh)</i>	-15325.44	278.40	<.001
<i>BRIA microadc (rh)</i>	-242965.40	5000.27	<.001	<i>SMTmc extramd (lh)</i>	-234164.26	4794.51	<.001
<i>BRIA dradextra (lh)</i>	-0.87	0.02	1.00	<i>SMTmc extramd (rh)</i>	-221755.78	4507.96	<.001
<i>BRIA dradextra (rh)</i>	-0.56	0.01	1.00	<i>SMTmc extratrans (lh)</i>	-269921.51	5643.84	<.001
<i>BRIA daxintra (lh)</i>	-45776.98	844.85	<.001	<i>SMTmc extratrans (rh)</i>	-251971.27	5213.02	<.001
<i>BRIA daxintra (rh)</i>	-32572.59	597.02	<.001	<i>SMTmc intra (lh)</i>	-162286.59	3189.66	<.001
<i>BRIA daxextra (lh)</i>	-33941.70	622.56	<.001	<i>SMTmc intra (rh)</i>	-138122.05	2678.64	<.001
<i>BRIA daxextra (rh)</i>	-29058.51	531.64	<.001	<i>WMTI awf (lh)</i>	-216212.24	4381.26	<.001
<i>DKI AK (lh)</i>	-98394.96	1867.39	<.001	<i>WMTI awf (rh)</i>	-198966.98	3992.24	<.001
<i>DKI AK (rh)</i>	-107687.41	2054.02	<.001	<i>WMTI radead (lh)</i>	-538.93	9.72	0.11
<i>DKI RK (lh)</i>	-134762.36	2608.66	<.001	<i>WMTI radead (rh)</i>	-1786.25	32.22	<.001
<i>DKI RK (rh)</i>	-117109.00	2245.17	<.001	<i>WMTI axead (lh)</i>	-15537.30	282.28	<.001
<i>DKI MK (lh)</i>	-166559.26	3281.46	<.001	<i>WMTI axead (rh)</i>	-140593.59	2730.28	<.001
<i>DKI MK (rh)</i>	-146629.45	2856.99	<.001	<i>T1 (lh) thickness</i>	-361976.02	7460.14	<.001
<i>DTI AD (lh)</i>	-6414.25	115.99	<.001	<i>T1 (rh) thickness</i>	-337720.79	6873.27	<.001
<i>DTI AD (rh)</i>	-32682.00	599.06	<.001	<i>T1 (lh) area</i>	-131984.99	2428.71	<.001
<i>DTI RD (lh)</i>	-103169.79	1963.06	<.001	<i>T1 (rh) area</i>	-115500.16	2109.17	<.001
<i>DTI RD (rh)</i>	-98654.94	1872.59	<.001	<i>T1 (lh) volume</i>	-366138.06	7562.34	<.001
<i>DTI MD (lh)</i>	-296264.43	6292.97	<.001	<i>T1 (rh) volume</i>	-351072.41	7194.50	<.001

902 5 Global metrics' age sensitivity using non-linear models

903 LRTs outcomes testing global metrics' age sensitivity using generalized additive models (Eqs. (3,4)), with p -values being Bonferroni-corrected for multiple comparison. Acronyms lh and rh refer to mean left and right hemisphere, respectively.

Metric	Deviance	F	p	Metric	Deviance	F	p
<i>BRIA vintra (lh)</i>	298222.11	1980.42	<.001	<i>DTI MD (rh)</i>	420292.82	2975.29	<.001
<i>BRIA vintra (rh)</i>	263814.46	1721.75	<.001	<i>DTI FA (lh)</i>	454980.03	3284.21	<.001
<i>BRIA vextra (lh)</i>	99954.26	601.06	<.001	<i>DTI FA (rh)</i>	437831.65	3130.91	<.001
<i>BRIA vextra (rh)</i>	68415.48	404.41	<.001	<i>SMT FA (lh)</i>	231126.97	1481.17	<.001
<i>BRIA vcsf (lh)</i>	389707.46	2715.85	<.001	<i>SMT FA (rh)</i>	212502.18	1350	<.001
<i>BRIA vcsf (rh)</i>	395906.41	2768.18	<.001	<i>SMT MD (lh)</i>	338666.06	2295.03	<.001
<i>BRIA micrord (lh)</i>	489922	3605.08	<.001	<i>SMT MD (rh)</i>	329913.59	2225.14	<.001
<i>BRIA micrord (rh)</i>	482669.31	3537.29	<.001	<i>SMT trans (lh)</i>	325557.05	2188.8	<.001
<i>BRIA microfa (lh)</i>	468131.01	3399.04	<.001	<i>SMT trans (rh)</i>	309770.56	2066.61	<.001
<i>BRIA microfa (rh)</i>	441798.75	3161.43	<.001	<i>SMT long (lh)</i>	239399.25	1543.22	<.001
<i>BRIA microax (lh)</i>	123284.12	747.18	<.001	<i>SMT long (rh)</i>	220310.81	1406.65	<.001
<i>BRIA microax (rh)</i>	122353.86	741.87	<.001	<i>SMTmc d (lh)</i>	17581.83	100.96	<.001
<i>BRIA microadc (lh)</i>	442217.61	3169.41	<.001	<i>SMTmc d (rh)</i>	18705.17	107	<.001
<i>BRIA microadc (rh)</i>	433573.24	3092.76	<.001	<i>SMTmc extramd (lh)</i>	375805.34	2598.83	<.001
<i>BRIA dradextra (lh)</i>	265199.9	1732.72	<.001	<i>SMTmc extramd (rh)</i>	350591.17	2392.53	<.001
<i>BRIA dradextra (rh)</i>	259410.42	1690.27	1.00	<i>SMTmc extratrans (lh)</i>	381698.57	2646.36	<.001
<i>BRIA daxintra (lh)</i>	227477.58	1459.06	<.001	<i>SMTmc extratrans (rh)</i>	357451.71	2446.62	<.001
<i>BRIA daxintra (rh)</i>	221619.72	1417.52	<.001	<i>SMTmc intra (lh)</i>	230534.22	1477.89	<.001
<i>BRIA daxextra (lh)</i>	269452.37	1764.08	<.001	<i>SMTmc intra (rh)</i>	196608	1238.41	<.001
<i>BRIA daxextra (rh)</i>	265820.53	1737.25	<.001	<i>WMTI awf (lh)</i>	294396.47	1946.39	<.001
<i>DKI AK (lh)</i>	248201.74	1607.19	<.001	<i>WMTI awf (rh)</i>	271308.81	1773.47	<.001
<i>DKI AK (rh)</i>	277452.37	1822.07	<.001	<i>WMTI radead (lh)</i>	356837.69	2444	<.001
<i>DKI RK (lh)</i>	248246.37	1606.74	<.001	<i>WMTI radead (rh)</i>	347896.75	2371.95	<.001
<i>DKI RK (rh)</i>	214591.89	1365.38	<.001	<i>WMTI axead (lh)</i>	22893.57	133.33	<.001
<i>DKI MK (lh)</i>	225899.98	1446.06	<.001	<i>WMTI axead (rh)</i>	30036.73	175.61	<.001
<i>DKI MK (rh)</i>	190685.71	1195.84	<.001	<i>T1 (lh) thickness</i>	363679.29	2447.65	<.001
<i>DTI AD (lh)</i>	91486.87	545.48	<.001	<i>T1 (rh) thickness</i>	339637.31	2256.41	<.001
<i>DTI AD (rh)</i>	63150.51	374.43	<.001	<i>T1 (lh) area</i>	132330.67	818.92	<.001
<i>DTI RD (lh)</i>	492407	3628.18	<.001	<i>T1 (rh) area</i>	115697.02	777.46	<.001
<i>DTI RD (rh)</i>	481438.43	3525.6	<.001	<i>T1 (lh) volume</i>	366575.45	2414.26	<.001
<i>DTI MD (lh)</i>	425442.7	3020.18	<.001	<i>T1 (rh) volume</i>	351519.39	2312.27	<.001

904 6 Differences of T₁-weighted and dMRI features between hemispheres by sex

905 The table shows the ten largest regional differences between left and right hemispheres' T₁-weighted and dMRI data indicated
 906 by effect size (Cohen's *d*) indicated by paired samples t-tests (two-sided) and presented separately for males and females. All
 907 Bonferroni corrected *p* < .05. SLFT = Superior longitudinal fasciculus (temporal part), ILF = Inferior longitudinal fasciculus.
 908 For full tables see the files Hemi_NEW_sex_dMRI_features_diff.csv and Hemi_NEW_sex_T1w_features_diff.csv at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age.

40

diffusion MRI			
Feature	Cohen's <i>d</i> _{males}	Feature	Cohen's <i>d</i> _{females}
DTI - FA ILF	3.44	DTI - FA ILF	3.91
DTI - AD SLFT	2.09	DTI - AD SLFT	2.40
WMTI - axEAD SLFT	2.01	SMTmc - diff SLFT	2.06
DTI - FA cingulate gyrus	1.93	SMT - long SLFT	2.04
DKI - RK cingulate gyrus	1.90	DTI - FA cingulate gyrus	1.98
WMTI - AWF cingulate gyrus	1.83	SMTmc - extratrans cerebral peduncle	1.96
DTI - AD ILF	1.81	SMTmc - extraMD SLFT	1.93
DTI - FA superior frontooccipital fasciculus	1.77	BRIA - microAX SLFT	1.92
DKI - RK SLFT	1.75	DKI - RK SLFT	1.91
SMTmc - extratrans cerebral peduncle	1.74	SMTmc - intra cingulate gyrus	1.89
T ₁ -weighted MRI			
Feature	Cohen's <i>d</i> _{males}	Feature	Cohen's <i>d</i> _{females}
frontal pole area	1.82	transverse temporal area	1.89
pars orbitalis area	1.78	frontal pole area	1.73
transverse temporal area	1.77	pars orbitalis area	1.72
inferior parietal area	1.71	inferior parietal area	1.72
inferior parietal volume	1.62	inferior parietal volume	1.64
frontal pole volume	1.58	frontal pole volume	1.54
thalamus volume	1.40	middle temporal area	1.42
middle temporal area	1.31	transverse temporal volume	1.38
transverse temporal volume	1.29	thalamus volume	1.34
pars orbitalis volume	1.27	pars orbitalis volume	1.29

7 Most age-sensitive regional T_1 - and diffusion-weighted features using *non-linear models by sex*

The table shows the ten largest regional differences between left and right hemispheres' T₁-weighted and dMRI data indicated by F from LRTs comparing a baseline model (Eq. 4) to the GAM (Eq. 3) presented separately for males and females. All Bonferroni corrected $p < .05$. ATR = Anterior thalamic radiation, IFOF = inferior fronto-occipital fasciculus. For full tables see the files Hemi_NEW_REGIONAL_dMRI_non_linear_hemi_effects_MALES.csv, Hemi_NEW_REGIONAL_dMRI_non_linear_hemi_effects_FEMALES.csv, Hemi_NEW_REGIONAL_T1_non_linear_hemi_effects_MALES.csv, and Hemi_NEW_REGIONAL_T1_non_linear_hemi_effects_FEMALES.csv at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age.

Males					
T ₁ Metric	Deviance	F	DMRI Metric	Deviance	F
Hippocampus volume (rh)	325396.71	2327.14	DTI - RD fornix striaterminalis (rh)	321483.12	2474.87
Inferior lateral ventricle volume (lh)	315630.20	2242.52	DKI - AK Anteriorlimbointernalcapsule (rh)	315123.70	2406.94
Hippocampus volume (lh)	314178.29	2222.80	DTI - FA fornix striaterminalis (rh)	287920.97	2127.34
Lateral ventricle volume (rh)	294791.55	2055.25	DTI - FA IFOF (lh)	286229.79	2114.11
Superior temporal thickness (lh)	288883.19	1973.34	BRIA - micro Rd ATR (rh)	285675.67	2109.47
Thickness (lh)	286653.65	1944.76	DTI - FA Anteriorcoronaradiata (lh)	285098.32	2099.07
Thickness (rh)	285659.63	1943.02	BRIA - micro FA Fornix Striaterminalis (rh)	280978.76	2062.43
Lateral ventricle volume (lh)	280759.99	1932.22	BRIA - micro Rd ATR (lh)	268901.80	1946.45
Bankssts thickness (lh)	111534.08	1927.07	DTI - RD ATR (rh)	268857.43	1944.99
Rostral middle frontal volume (rh)	112544.65	1887.40	DTI - RD ATR (lh)	268408.62	1942.57
Females					
T ₁ Metric	Deviance	F	DMRI Metric	Deviance	F
Superior temporal thickness (lh)	298436.46	2186.28	DKI - AK Anteriorlimbointernalcapsule (rh)	328299.92	2756.78
Inferior parietal thickness (rh)	294083.30	2157.56	DTI - RD Fornix Striaterminalis (rh)	309568.49	2539.12
Thickness (lh)	289859.17	2098.94	DTI - FA Anteriorcoronaradiata (lh)	287115.30	2288.94
Thickness (rh)	277328.73	1988.89	DTI - FA IFOF (lh)	282230.37	2243.21
Superiortemporal thickness (rh)	268345.92	1902.38	BRIA - micro FA Fornix Striaterminalis (rh)	279454.04	2213.63
Hippocampus volume (lh)	256888.62	1827.15	BRIA - micro Rd Fornix Striaterminalis (rh)	279158.45	2213.20
Hippocampus volume (rh)	256386.19	1820.25	BRIA - micro Rd ATR (rh)	279221.52	2209.87
Lateral ventricle volume (rh)	247973.59	1755.77	DTI - RD ATR (lh)	278213.99	2202.86
Lateral ventricle volume (lh)	237509.49	1666.32	DTI - RD Anteriorcoronaradiata (lh)	277873.07	2197.90
Supramarginal thickness (rh)	235411.09	1632.94	BRIA - micro Rd ATR (lh)	274318.30	2160.44

917 8 Most age-sensitive regional T_1 - and diffusion-weighted features using 918 linear models *by sex*

919 The table shows the ten largest regional differences between left and right hemispheres' T_1 -weighted and dMRI data indicated by F from LRTs
920 comparing a baseline model (Eq. 4) to the linear model (Eq. 2) presented separately for males and females. All Bonferroni corrected $p <$
921 $.05$. ATR = Anterior thalamic radiation, SLFT = superior longitudinal fasciculus (temporal part), IFOF = inferior fronto-occipital fasciculus. For
922 full tables see the files Hemi_NEW_REGIONAL_dMRI_linear_hemi_effects_MALES.csv, Hemi_NEW_REGIONAL_dMRI_linear_hemi_effects_FEMALES.csv,
923 Hemi_NEW_REGIONAL_T1_linear_hemi_effects_MALES.csv, and Hemi_NEW_REGIONAL_T1_linear_hemi_effects_FEMALES.csv at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age.

Males					
T_1 Metric	SS	F	dMRI Metric	SS	F
Hippocampus volume (rh)	316544.24	6766.75	DTI - RD fornix striaterminalis (rh)	286594.17	6364.49
Hippocampus volume (lh)	306351.25	6487.54	DTI - FA fornix striaterminalis (rh)	276467.17	6067.57
Superior temporal thickness (lh)	286384.87	5955.49	DTI - FA anterior corona radiata (lh)	274955.01	6023.83
Thickness (lh)	284626.62	5909.55	DTI - FA IFOF (lh)	263814.28	5706.24
Thickness (rh)	283428.75	5878.34	DTI - RD anterior corona radiata (lh)	246467.64	5227.51
Inferior parietal thickness (rh)	271677.80	5575.68	DTI - RD anterior corona radiata (rh)	242227.42	5113.30
Inferior lateral ventricle volume (lh)	254969.32	5156.08	DTI - FA anterior corona radiata (rh)	238605.78	5016.60
Superior temporal thickness (rh)	252923.59	5105.55	DTI - FA IFOF (rh)	233533.32	4882.47
Thalamus volume (rh)	247813.43	4980.11	BRIA - microRD ATR (rh)	232131.22	4845.66
Amygdala volume (lh)	243131.64	4866.16	DTI - RD IFOF (lh)	230505.57	4803.12

T_1 Metric	SS	F	dMRI Metric	SS	F
Superior temporal thickness (lh)	295682.20	6561.30	DTI - RD fornix striaterminalis (rh)	282234.33	6743.14
Inferior parietal thickness (rh)	288649.89	6365.48	DTI - FA anterior corona radiata (lh)	279013.72	6641.48
Thickness (lh)	287657.68	6338.05	DTI - FA IFOF (lh)	263549.29	6163.65
Thickness (rh)	274795.27	5986.72	DTI - RD anterior corona radiata (rh)	258369.12	6007.30
Superior temporal thickness (rh)	266558.45	5765.84	DTI - RD anterior corona radiata (lh)	257953.77	5994.85
Hippocampus volume (rh)	248481.56	5291.98	DTI - FA fornix striaterminalis (rh)	251128.24	5791.79
Hippocampus volume (lh)	248438.59	5290.87	BRIA - microRD ATR (rh)	249535.85	5744.86
Supramarginal thickness (rh)	232265.05	4879.14	BRIA - microRD ATR (lh)	243660.64	5573.15
Supramarginal thickness (lh)	225512.01	4710.53	DTI - FA anterior corona radiata (rh)	243324.99	5563.40
Precuneus thickness (rh)	223530.22	4661.41	DTI - RD IFOF (lh)	241625.80	5514.19

925 **9 Description of white matter features by diffusion approaches.**

Diffusion Approach	Metrics
Bayesian Rotationally Invariant Approach (BRIA) [101]	intra-axonal axial diffusivity (DAX intra) extra-axonal radial diffusivity (DRAD extra) microscopic fractional anisotropy (micro FA) extra-axonal axial diffusivity (DAX extra) intra-axonal water fraction (V intra) extra-axonal water fraction (V extra) cerebrospinal fluid fraction (vCSF) microscopical axial diffusivity (micro AX) microscopic radial diffusivity (micro RD) microscopical apparent diffusion coefficient (micro ADC) mean kurtosis (MK) radial kurtosis (RK) axial kurtosis (AK) fractional anisotropy (FA) axial diffusivity (AD) mean diffusivity (MD) radial diffusivity (RD)
Diffusion Kurtosis Imaging (DKI) [97, 98]	fractional anisotropy (SMT FA) mean diffusivity (SMT md) transverse diffusion coefficient (SMT trans) longitudinal diffusion coefficient (SMT long) extra-neurite microscopic mean diffusivity (SMTmc extra md) extra-neurite transverse microscopic diffusivity (SMTmc extra trans) mc SMT diffusion coefficient (SMT mcd) intra-neurite volume fraction (SMTmc intra) axonal water fraction (AWF) radial extra-axonal diffusivity (radEAD) axial extra-axonal diffusivity (axEAD)
Diffusion Tensor Imaging (DTI) [96]	
Spherical Mean Technique (SMT) [99]	
Multi-compartment Spherical Mean Technique (SMTmc) [100]	
White Matter Tract Integrity (WMTI) [98]	

926 **10 Differences of T₁w and dMRI features between hemispheres**

927 The table shows the ten largest regional differences between left and right hemispheres' T₁w and dMRI data indicated by
928 effect size (Cohen's *d*) indicated by paired samples t-tests (two-sided). SLFT = Superior longitudinal fasciculus (temporal
929 part), ILF = Inferior longitudinal fasciculus. Bonferroni-adjusted *p*-values were *p* < 2 × 10⁻³⁰⁸. For full tables see the files
930 Hemi_dMRI_features_diff.csv and Hemi_T1w_features_diff.csv at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age.

44

T ₁ -weighted MRI			diffusion MRI		
Feature	T-value	Cohen's <i>d</i>	Feature	T-value	Cohen's <i>d</i>
Transverse temporal area	397.45	1.81	DTI - FA ILF	725.48	3.64
Frontal pole area	-386.34	1.76	DTI - AD SLFT	-444.89	2.23
Pars orbitalis area	-380.71	1.74	DTI - FA cingulate gyrus	388.09	1.95
Inferior parietal area	-368.85	1.68	DKI - RK cingulate gyrus	375.36	1.89
Inferior parietal volume	-352.95	1.61	SMTmc - diff SLFT	-369.19	1.85
Frontal pole volume	-340.08	1.55	SMTmc - extratrans cerebral peduncle	-367.31	1.84
Middletemporal area	-297.79	1.36	DKI - RK SLFT	-364.52	1.83
Thalamus Proper	296.93	1.35	WMTI - AWF cingulate gyrus	364.46	1.83
Transverse temporal volume	292.04	1.33	SMT - long SLFT	-359.08	1.80
Pars orbitalis volume	-280.74	1.28	DTI - AD ILF	353.43	1.78

11 Permutation feature importance for multimodal, T_1 -weighted, and dMRI features between hemispheres considering *both sexes together*

931 Permutation feature importance shows the contribution of each feature $R^2 \pm SD$ (standard deviation) to the (brain) age
 932 predictions using multimodal, T_1 -weighted, and dMRI models of each hemisphere on their own and both hemispheres together.
 933 Retroen. = Retrolenticular, l.o.int.caps. = limb of the internal capsule, cerebell.ped. = cerebellar peduncle. ATR = anterior
 934 thalamic radiation, CST = corticospinal tract, IFOF = inferior fronto-occipital fasciculus, SLF = superior longitudinal fasciculus.
 935

45

Both hemispheres		Multimodal MRI		
		Left hemisphere	Right hemisphere	
DKI – AK Anterior l.o.int.caps. (rh)	0.083 \pm 0.0010	DTI – AK Anterior l.o.int.caps.	0.058 \pm 0.0007	DKI – AK Anterior l.o.int.caps.
DTI – RD Fornix Striaterminalis (rh)	0.049 \pm 0.0006	DTI – FA Superior cerebell.ped.	0.031 \pm 0.0004	DTI – RD Fornix Striaterminalis
Cortex volume (lh)	0.018 \pm 0.0004	Cerebellum WM volume	0.023 \pm 0.0004	DTI – FA Superior cerebell.ped.
DTI – FA Cerebral peduncle (lh)	0.015 \pm 0.0003	Inferior Lateral Ventricle volume	0.022 \pm 0.0003	Cerebellum WM volume
DKI – AK Anterior l.o.int.caps. (lh)	0.013 \pm 0.0002	Thalamus volume	0.019 \pm 0.0003	Thalamus volume
DTI – FA Superior cerebell.ped. (lh)	0.011 \pm 0.0002	DKI – RK Fornix-stria terminalis	0.019 \pm 0.0003	BRIA – vCSF external capsule
ROI 3a area (rh)	0.01 \pm 0.0002	Putamen volume	0.019 \pm 0.0003	Hippocampus volume
ROI 3a area (lh)	0.01 \pm 0.0002	BRIA – vCSF External capsule	0.019 \pm 0.0003	Lateral ventricle volume
BRIA – vCSF External capsule (lh)	0.01 \pm 0.0002	Lateral Ventricle volume	0.017 \pm 0.0003	DKI – RK Posterior l.o.int.caps.
DTI – FA Superior cerebell.ped. (rh)	0.008 \pm 0.0002	WMTI – AWF Superior cerebell.ped.	0.017 \pm 0.0003	WMTI – AWF Retroen. l.o.int.caps.
diffusion-weighted MRI				
Both hemispheres		Left hemisphere	Right hemisphere	
		DKI – AK Anterior l.o.int.caps. (rh)	0.095 \pm 0.0013	DKI – AK Anterior l.o.int.caps.
DTI – RD Fornix Striaterminalis (rh)	0.061 \pm 0.0009	BRIA – vCSF ATR	0.025 \pm 0.0007	DTI – RD Fornix Stria terminalis
DTI – FA Cerebral peduncle (lh)	0.018 \pm 0.0005	DKI – RK Fornix-stria terminalis	0.023 \pm 0.0005	DTI – FA Superior cerebell.ped.
DTI – FA Anterior corona radiata (lh)	0.012 \pm 0.0003	DTI – FA Fornix-stria terminalis	0.022 \pm 0.0007	DKI – AK PTR
DKI – AK Anterior l.o.int.caps. (lh)	0.011 \pm 0.0003	DTI – FA Cerebral peduncle	0.022 \pm 0.0006	BRIA – vCSF SLF
DTI – FA Superior cerebell.ped. (lh)	0.010 \pm 0.0003	DTI – FA Anterior corona radiata	0.022 \pm 0.0005	DKI – AK Superior cerebell.ped.
DTI – AD Superior l.o.int.caps. (lh)	0.010 \pm 0.0003	WMTI – AWF Retroen. l.o.int.caps.	0.02 \pm 0.0005	WMTI – AWF Retroen. l.o.int.caps.
DTI – AD Posterior l.o.int.caps. (lh)	0.010 \pm 0.0003	DTI – FA IFOF	0.018 \pm 0.0005	DTI – AD CST
DTI – AD CST (lh)	0.009 \pm 0.0003	DKI – AK Superior frontooccipital fasciculus	0.017 \pm 0.0006	BRIA – vCSF ATR
WMTI – AWF Retroen. l.o.int.caps. (lh)	0.009 \pm 0.0002	DTI – FA Superior cerebell.ped.	0.016 \pm 0.0005	DKI – RK Posterior l.o.int.caps.
T1-weighted MRI				
Both hemispheres		Left hemisphere	Right hemisphere	
		Cortex volume (lh)	0.041 \pm 0.0008	Lateral ventricle volume
ROI PreS area (lh)	0.018 \pm 0.0004	Inf.Lat.Vent volume	0.071 \pm 0.0011	Lateral ventricle volume
ROI 3a area (rh)	0.014 \pm 0.0004	Superior temporal thickness	0.065 \pm 0.0008	Inferiorparietal thickness
Mean thickness (lh)	0.014 \pm 0.0004	Insula volume	0.034 \pm 0.0007	0.037 \pm 0.0008
ROI Poi1 volume (rh)	0.013 \pm 0.0005	Putamen volume	0.03 \pm 0.0006	Superiortemporal thickness
ROI H area (lh)	0.011 \pm 0.0003	Mean thickness	0.028 \pm 0.0006	Inf.Lat.Veni volume
ROI PI thickness (lh)	0.011 \pm 0.0004	Cerebellum WM volume	0.023 \pm 0.0005	0.035 \pm 0.0006
ROI 52 area (lh)	0.011 \pm 0.0003	Thalamus volume	0.022 \pm 0.0005	Inferior temporal area
ROI 3a area (lh)	0.009 \pm 0.0003	Temporal pole volume	0.02 \pm 0.0005	Thalamus volume
ROI H thickness (lh)	0.009 \pm 0.0003	Amygdala volume	0.019 \pm 0.0005	Cerebellum WM volume
				0.029 \pm 0.0005
				Insula volume
				0.029 \pm 0.0005
				Superior frontal thickness
				0.028 \pm 0.0006
				Hippocampus volume

938 **12 Permutation feature importance for multimodal, T₁-weighted, and**
 939 **dMRI features between hemispheres considering *males only***

940 Permutation feature importance shows the contribution of each feature $R^2 \pm SD$ (standard deviation) to the (brain) age
 941 predictions using multimodal, T₁-weighted, and dMRI models of each hemisphere on their own and both hemispheres together.
 942 Inf.Lat.Vent. = Inferior Lateral Ventricle, retroen. = Retrolenticular, l.o. inf. int.caps = limb of the inferior internal capsule,
 943 Ant. = anterior, l.o. inf. ext.caps. = limb of the external capsule, l.o.int.caps. = limb of the internal capsule, cerebell.ped. =
 944 cerebellar peduncle, SFF = superior frontooccipital fasciculus, ATR = anterior thalamic radiation, CST = corticospinal tract,
 945 IFOF = inferior fronto-occipital fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate fasciculus, PTR = Posterior
 946 thalamic radiation.

46

Multimodal MRI			
Both hemispheres		Left hemisphere	Right hemisphere
DKI - AK Ant. l.o. inf. int.caps. (rh)	0.063 \pm 0.0009	DKI - AK Ant. l.o.int.caps.	0.049 \pm 0.0009
DTI - RD Fornix-Striaterminalis (rh)	0.023 \pm 0.0005	DTI - FA Superior cerebell.ped.	0.025 \pm 0.0007
Inf.Lat.Vent. volume (lh)	0.015 \pm 0.0004	Inf.Lat.Vent volume	0.024 \pm 0.0006
Putamen volume (lh)	0.010 \pm 0.0002	Cerebellum WM volume	0.023 \pm 0.0005
Thalamus volume (lh)	0.009 \pm 0.0003	Thalamus volume	0.022 \pm 0.0005
Thalamus volume (rh)	0.009 \pm 0.0003	Putamen volume	0.019 \pm 0.0006
Amygdala volume (lh)	0.009 \pm 0.0003	WMTI - AWF Superior cerebell.ped.	0.016 \pm 0.0004
DTI - FA Superior cerebell.ped. (rh)	0.009 \pm 0.0003	Lateral Ventricle	0.016 \pm 0.0004
BRIA - vCSF External capsule (lh)	0.009 \pm 0.0002	DKI - RK Fornix-stria terminalis	0.013 \pm 0.0004
Cerebellum WM volume (rh)	0.009 \pm 0.0002	Amygdala volume	0.012 \pm 0.0005
diffusion-weighted MRI			
Both hemispheres		Left hemisphere	Right hemisphere
DKI - AK Ant. l.o. inf. ext.caps. (rh)	0.097 \pm 0.0015	DKI - AK Ant. l.o.int.caps.	0.100 \pm 0.0020
DTI - RD Fornix-Striaterminalis (rh)	0.061 \pm 0.0013	BRIA - vCSF ATR	0.028 \pm 0.0009
DTI - FA Cerebral peduncle (lh)	0.022 \pm 0.0007	DTI - FA Cerebral peduncle	0.028 \pm 0.0008
DTI - FA Ant. corona radiata (lh)	0.019 \pm 0.0006	DTI - FA IFOF	0.027 \pm 0.0008
DKI - AK Ant. l.o. inf. ext.caps. (lh)	0.015 \pm 0.0005	DTI - FA Ant. corona radiata	0.023 \pm 0.0007
DTI - FA Superior cerebell.ped. (lh)	0.012 \pm 0.0004	DKI - RK Fornix-stria terminalis	0.021 \pm 0.0006
BRIA - vextra SLF (rh)	0.011 \pm 0.0004	DTI - FA Fornix-stria terminalis	0.021 \pm 0.0008
DTI - FA IFOF (lh)	0.010 \pm 0.0003	DKI - AK SFF	0.021 \pm 0.0007
DKI - AK SFF (rh)	0.010 \pm 0.0004	DTI - FA Superior cerebell.ped.	0.017 \pm 0.0007
BRIA - vCSF External capsule (lh)	0.009 \pm 0.0002	WMTI - AWF retroen. l.o. int.caps.	0.016 \pm 0.0006
T ₁ -weighted MRI			
Both hemispheres		Left hemisphere	Right hemisphere
Inf.Lat.Vent (lh)	0.051 \pm 0.0011	Inf.Lat.Vent volume	0.064 \pm 0.0014
Lateral Ventricle (rh)	0.034 \pm 0.0008	Lateral Ventricle	0.049 \pm 0.0011
Thalamus volume (rh)	0.019 \pm 0.0006	Putamen volume	0.036 \pm 0.0011
Superior temporal thickness (lh)	0.019 \pm 0.0006	Insula volume	0.034 \pm 0.0012
Putamen volume (lh)	0.017 \pm 0.0006	Temporal pole volume	0.023 \pm 0.0006
Insula volume (lh)	0.017 \pm 0.0007	Superior temporal thickness	0.023 \pm 0.0006
Hippocampus volume (rh)	0.017 \pm 0.0006	Amygdala volume	0.020 \pm 0.0006
Amygdala volume (rh)	0.017 \pm 0.0006	Thalamus volume	0.018 \pm 0.0006
Inf.Lat.Ventricle (rh)	0.016 \pm 0.0007	Cerebellum WM volume	0.018 \pm 0.0004
Temporal pole volume (rh)	0.0162 \pm 0.0007	Isthmus cingulate thickness	0.014 \pm 0.0004

13 Permutation feature importance for multimodal, T_1 -weighted, and dMRI features between hemispheres considering *females only*

949 Permutation feature importance shows the contribution of each feature $R^2 \pm SD$ (standard deviation) to the (brain) age
 950 predictions using multimodal, T_1 -weighted, and dMRI models of each hemisphere on their own and both hemispheres together.
 951 Inf.Lat.Vent. = Inferior Lateral Ventricle, retroen. = Retrolenticular, l.o. inf. int.caps = limb of the inferior internal capsule,
 952 Ant. = anterior, l.o. inf. ext.caps. = limb of the external capsule, l.o.int.caps. = limb of the internal capsule, cerebell.ped. =
 953 cerebellar peduncle, SFF = superior frontooccipital fasciculus, ATR = anterior thalamic radiation, CST = corticospinal tract,
 954 IFOF = inferior fronto-occipital fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate fasciculus, PTR = Posterior
 thalamic radiation.

47

Multimodal MRI			
Both hemispheres		Left hemisphere	Right hemisphere
DKI - AK Anterior l.o. Int.caps. (rh)	0.077 \pm 0.0012	DKI - AK Ant. l.o.int.caps.	0.056 \pm 0.0008
DTI - RD Fornix-Striaterminalis (rh)	0.024 \pm 0.0008	DTI - FA Superior cerebell.ped.	0.031 \pm 0.0004
DTI - FA Superior cerebell. ped. (lh)	0.011 \pm 0.0004	DKI - RK Fornix-Striaterminalis	0.022 \pm 0.0003
DTI - AD Posterior l.o. ext.caps. (lh)	0.010 \pm 0.0003	Cerebellum WM volume	0.022 \pm 0.0003
Inferior parietal thickness (rh)	0.010 \pm 0.0005	Putamen volume	0.019 \pm 0.0003
Thalamus volume (rh)	0.008 \pm 0.0004	Lateral ventricle volume	0.019 \pm 0.0003
Cerebellum WM volume (rh)	0.007 \pm 0.0004	DKI - AK PTR	0.017 \pm 0.0003
DTI - FA Superior cerebell. ped. (rh)	0.007 \pm 0.0003	BRIA - vCSF External capsule	0.017
BRIA - vCSF External capsule (lh)	0.006 \pm 0.0003	WMTI - AWF Superior cerebell.ped.	0.016 \pm 0.0002
DTI - FA Superior cerebell. ped. (lh)	0.006 \pm 0.0002	Thalamus volume	0.016 \pm 0.0003
diffusion-weighted MRI			
Both hemispheres		Left hemisphere	Right hemisphere
DKI - AK Ant. l.o. inf. ext.caps. (rh)	0.129 \pm 0.0019	DKI - AK Ant. l.o.int.caps.	0.101 \pm 0.0016
DTI - RD Fornix-Striaterminalis (rh)	0.062 \pm 0.0009	DKI - RK Fornix-stria terminalis	0.037 \pm 0.0006
DTI - FA Cerebral peduncle (lh)	0.022 \pm 0.0004	DTI - FA Superior cerebell.ped.	0.036 \pm 0.0005
DTI - FA Superior cerebell.ped. (lh)	0.017 \pm 0.0003	DTI - FA Cerebral peduncle	0.034 \pm 0.0006
DTI - AD Posterior l.o. inf. ext.caps. (lh)	0.015 \pm 0.0002	BRIA - vCSF ATR	0.027 \pm 0.0005
DKI - AK Ant. l.o. inf. ext.caps. (lh)	0.015 \pm 0.0002	DTI - RD Fornix Striaterminalis	0.025 \pm 0.0006
DKI - RK Fornix-Striaterminalis (lh)	0.013 \pm 0.0003	DKI - AK PTR	0.025 \pm 0.0004
DKI - AK SFF (lh)	0.012 \pm 0.0002	DTI - FA IFOF	0.025 \pm 0.0004
DTI - FA IFOF (lh)	0.011 \pm 0.0002	WMTI - AWF retroen. l.o. int.caps.	0.023 \pm 0.0004
DKI - AK PTR (rh)	0.011 \pm 0.0002	DKI - AK SFF	0.023 \pm 0.0005
T_1 -weighted MRI			
Both hemispheres		Left hemisphere	Right hemisphere
Inferiorparietal thickness (rh)	0.030 \pm 0.0007	Lateral ventricle volume	Lateral ventricle volume
Lateral Ventricle (rh)	0.030 \pm 0.0006	Inf.Lat.Vent volume	Inferior parietal thickness
Inf.Lat.Ventricle (lh)	0.026 \pm 0.0007	Superior temporal thickness	Superior temporal thickness
Superior temporal thickness (lh)	0.024 \pm 0.0007	Putamen volume	Thalamus volume
Putamen volume (lh)	0.020 \pm 0.0005	Insula volume	Cerebellum WM volume
Cerebellum WM (rh)	0.017 \pm 0.0006	Thalamus volume	Insula volume
Thalamus volume (rh)	0.011 \pm 0.0004	Cerebellum WM volume	Inf.Lat.Vent volume
Thalamus volume (lh)	0.011 \pm 0.0004	Mean thickness	Inferior temporal area
Superior temporal thickness (rh)	0.011 \pm 0.0004	Amygdala volume	Superior temporal thickness
Accumbens area (lh)	0.011 \pm 0.0003	Accumbens volume	Temporal pole volume

955 **14 Sex stratified brain age model performance**

956 R^2 = Variance explained, MAE = Mean Absolute Error, RMSE = Root Mean Squared Error, Corr. = Correlation, Values
 957 in round parentheses () refer to standard deviations and square brackets [] to 95% confidence interval around correlations
 958 (Pearson's r) of uncorrected brain age estimates and chronological age.

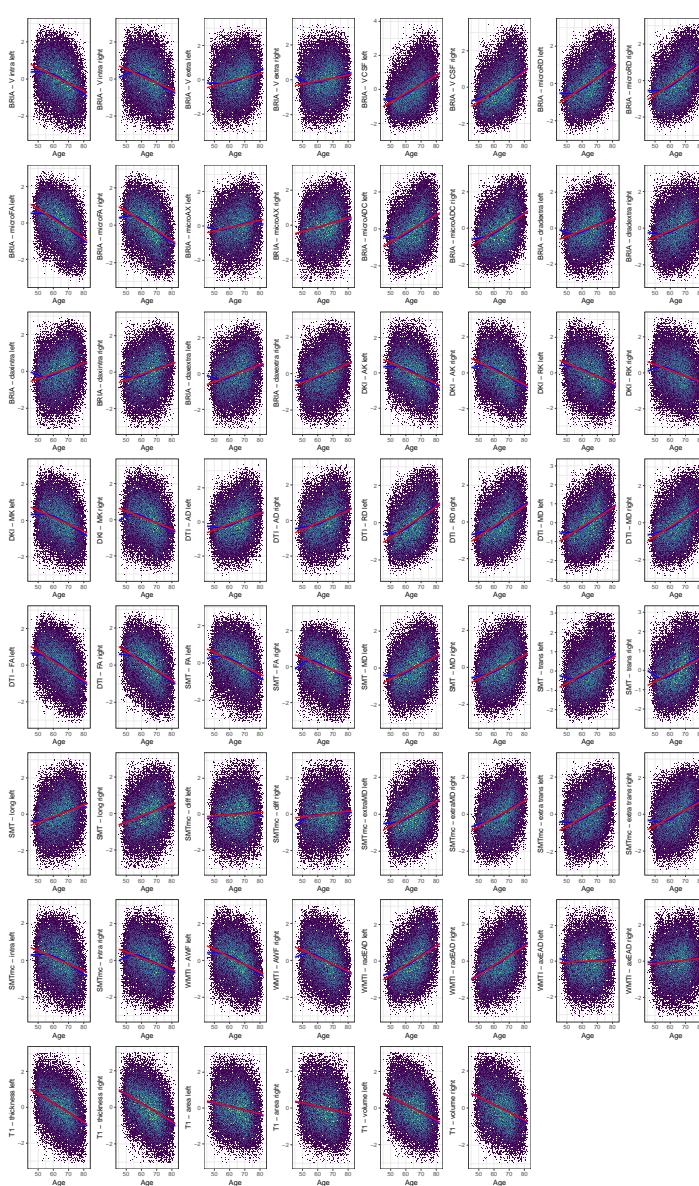
The correlation between raw brain age and chronological age.

Males					
Model	Features	R^2	MAE	RMSE	Correlation*
Left T _{1w}	117	0.513 (0.013)	4.398 (0.059)	5.472 (0.087)	0.719 [0.712, 0.725]
Right T _{1w}	117	0.506 (0.012)	4.437 (0.069)	5.521 (0.101)	0.711 [0.704, 0.717]
T _{1w}	234	0.534 (0.010)	4.294 (0.070)	5.356 (0.096)	0.722 [0.716, 0.728]
Left dMRI	840	0.573 (0.017)	4.104 (0.077)	5.111 (0.112)	0.761 [0.755, 0.767]
Right dMRI	840	0.586 (0.015)	4.039 (0.063)	5.039 (0.108)	0.767 [0.761, 0.773]
dMRI	1680	0.608 (0.015)	3.922 (0.078)	4.908 (0.108)	0.782 [0.776, 0.787]
Left multimodal	957	0.626 (0.012)	3.794 (0.030)	4.767 (0.037)	0.795 [0.790, 0.801]
Right multimodal	957	0.630 (0.015)	3.783 (0.066)	4.743 (0.075)	0.798 [0.792, 0.803]
Multimodal	1914	0.653 (0.014)	3.688 (0.064)	4.627 (0.040)	0.808 [0.803, 0.813]
Females					
Model	Features	R^2	MAE	RMSE	Correlation*
Left T _{1w}	117	0.482 (0.015)	4.424 (0.053)	5.499 (0.060)	0.696 [0.690, 0.703]
Right T _{1w}	117	0.470 (0.017)	4.486 (0.07)	5.570 (0.082)	0.688 [0.681, 0.694]
T _{1w}	234	0.504 (0.015)	4.339 (0.073)	5.403 (0.079)	0.710 [0.704, 0.716]
Left dMRI	840	0.560 (0.014)	4.043 (0.072)	4.993 (0.072)	0.745 [0.739, 0.751]
Right dMRI	840	0.573 (0.014)	3.961 (0.065)	4.925 (0.061)	0.757 [0.751, 0.763]
dMRI	1680	0.597 (0.013)	3.845 (0.069)	4.815 (0.058)	0.773 [0.767, 0.778]
Left multimodal	957	0.608 (0.016)	3.782 (0.016)	4.696 (0.094)	0.778 [0.773, 0.784]
Right multimodal	957	0.613 (0.016)	3.746 (0.095)	4.664 (0.098)	0.785 [0.780, 0.790]
Multimodal	1914	0.633 (0.017)	3.653 (0.085)	4.577 (0.080)	0.798 [0.793, 0.803]

960 **15 Tuned hyperparameters for sex stratified brain**
961 **age models**

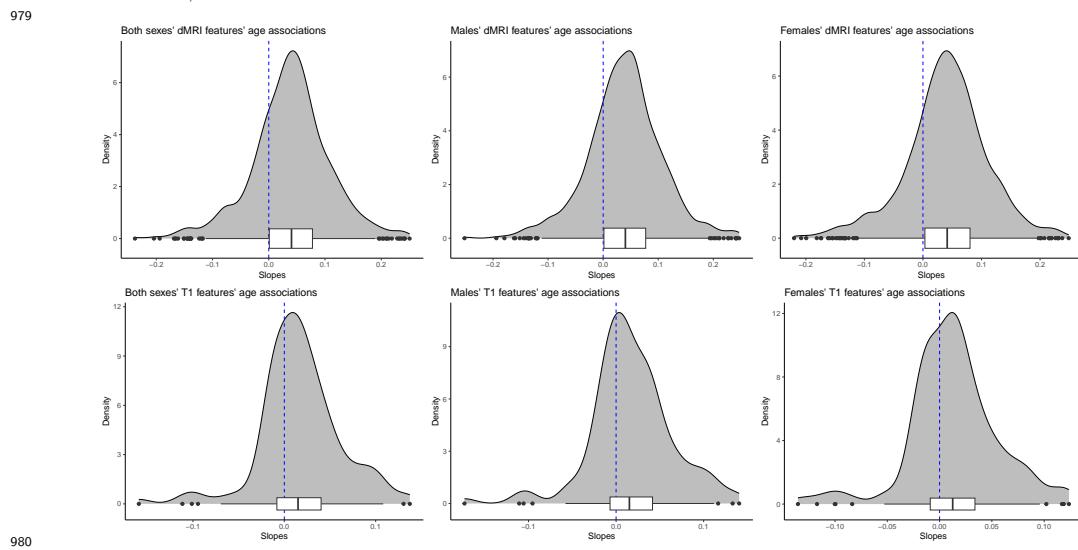
962 Overview of the tuned hyperparameters for each of the sex-specific brain age models.

Males				
Modality	Hemisphere	Learning Rate	Maximum Depth	Number of Trees
Multimodal	Both	0.1	6	140
Multimodal	Left	0.1	5	140
Multimodal	Right	0.1	4	180
dMRI	Both	0.1	5	140
dMRI	Left	0.1	4	180
dMRI	Right	0.05	5	180
T ₁ w	Both	0.1	5	60
T ₁ w	Left	0.1	4	180
T ₁ w	Right	0.1	4	180

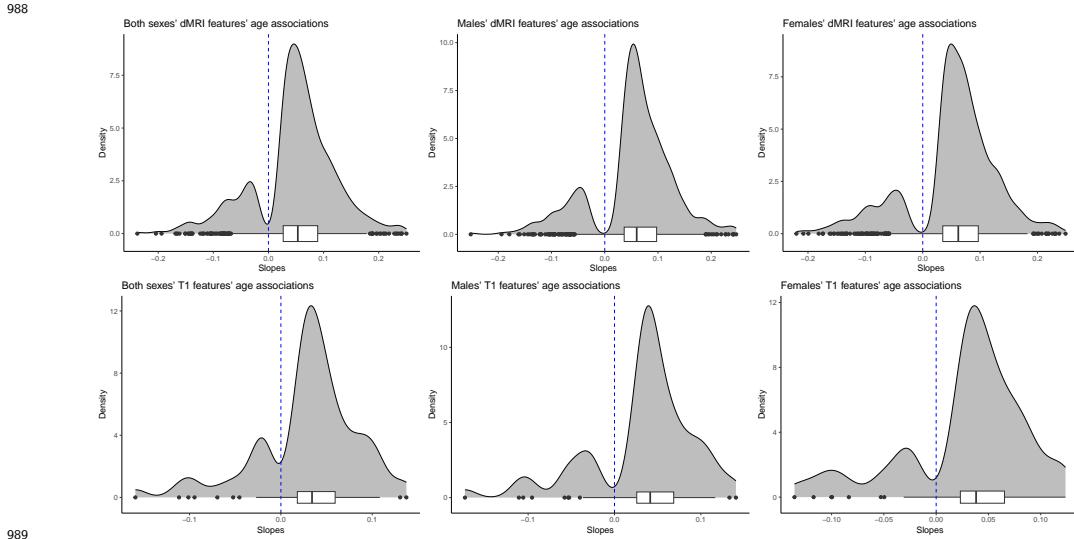


Females				
Modality	Hemisphere	Learning Rate	Maximum Depth	Number of Trees
Multimodal	Both	0.1	4	180
Multimodal	Left	0.05	8	180
Multimodal	Right	0.05	6	180
dMRI	Both	0.05	7	180
dMRI	Left	0.05	7	140
dMRI	Right	0.05	8	180
T ₁ w	Both	0.1	5	140
T ₁ w	Left	0.05	6	180
T ₁ w	Right	0.1	5	180

SUPPLEMENTARY FIGURES

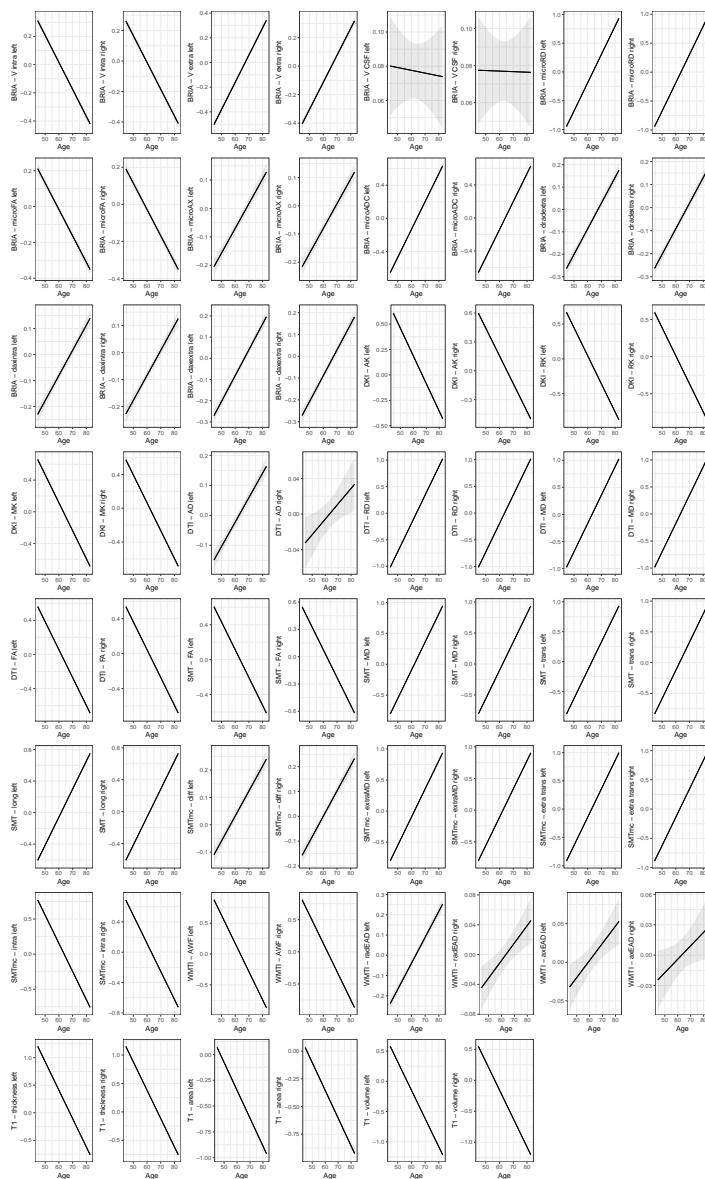

1 Uncorrected mean values' age curves

Uncorrected standardized and zero-centered age curves and lines for mean values of grey and white and grey matter features by age per hemisphere. For line fitting, first, a cubic smooth function (s) with $k = 4$ knots was applied to plot the relationship between age and brain features (F): $age = s(F)$. Second, a linear model was applied of the following form: $age = \beta_0 + \beta_1 \times F$. Models used restricted maximum likelihood (REML). Extreme outliers defined by Mean \pm 9SD were removed for visualisation purposes.

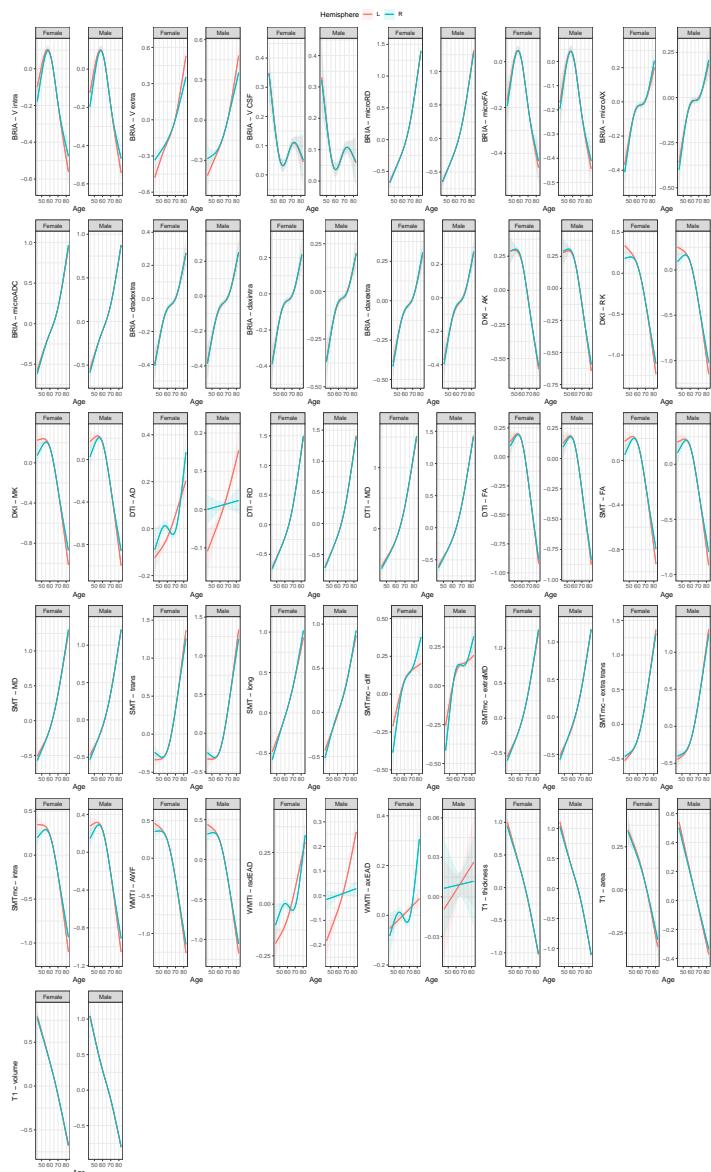

972 2 Distribution of the *significant and*
973 *non-significant* slopes of age-related laterality
974 indexed grey and white matter features

975 We estimated the absolute laterality index ($|LI|$) for each regional feature to assess the overall directional-
976 ity of asymmetry-age associations. The distributions of age-relationship of $|LI|$ are displayed with the six
977 panels showing the distributions for the modality-specific features (T₁-weighted and diffusion-weighted)
978 for both sexes, males and females.

981 3 Distribution of the *significant* slopes of
982 age-related laterality indexed grey and white
983 matter features

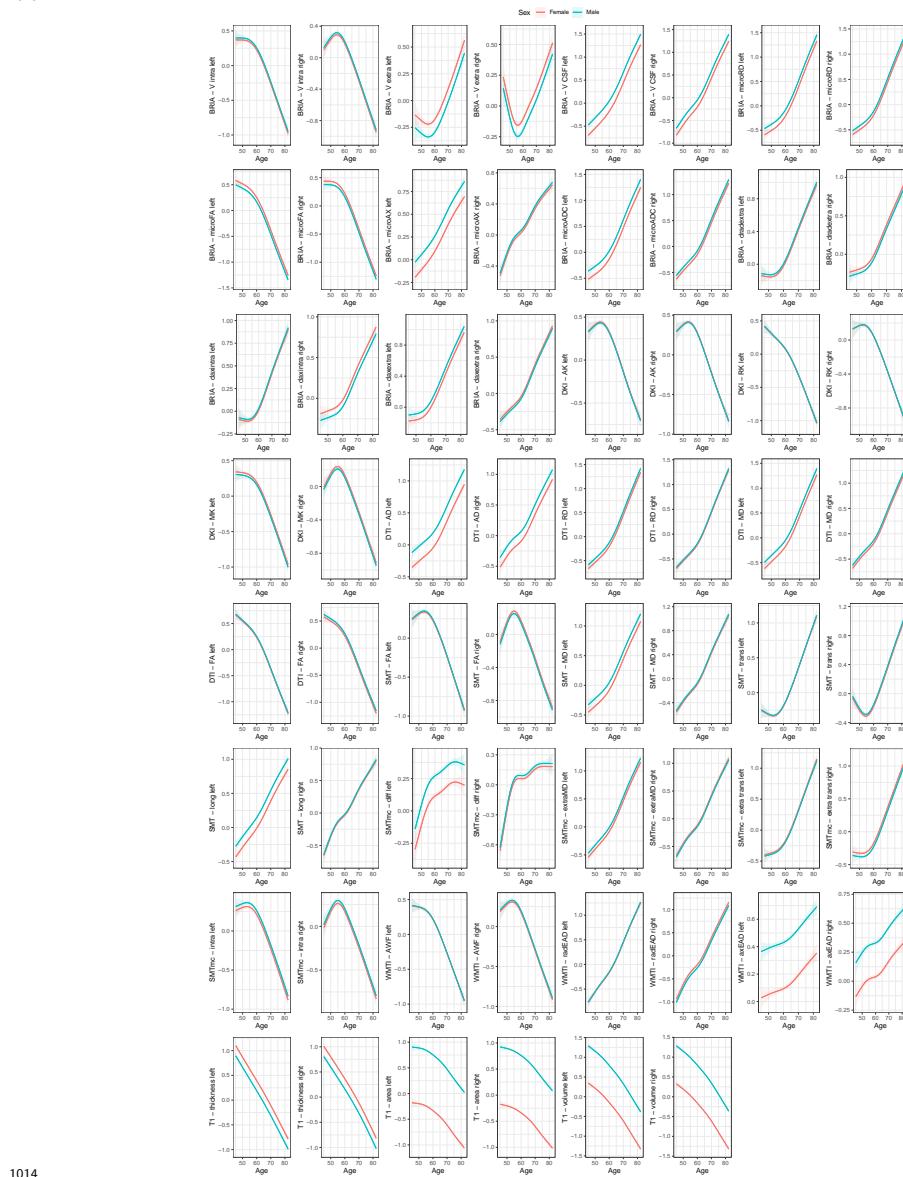

984 We estimated the absolute laterality index ($|LI|$) for each regional feature to assess the overall directional-
985 ity of asymmetry-age associations. The distributions of age-relationship of $|LI|$ are displayed with the six
986 panels showing the distributions for the modality-specific features (T₁-weighted and diffusion-weighted)
987 for both sexes, males and females.

989

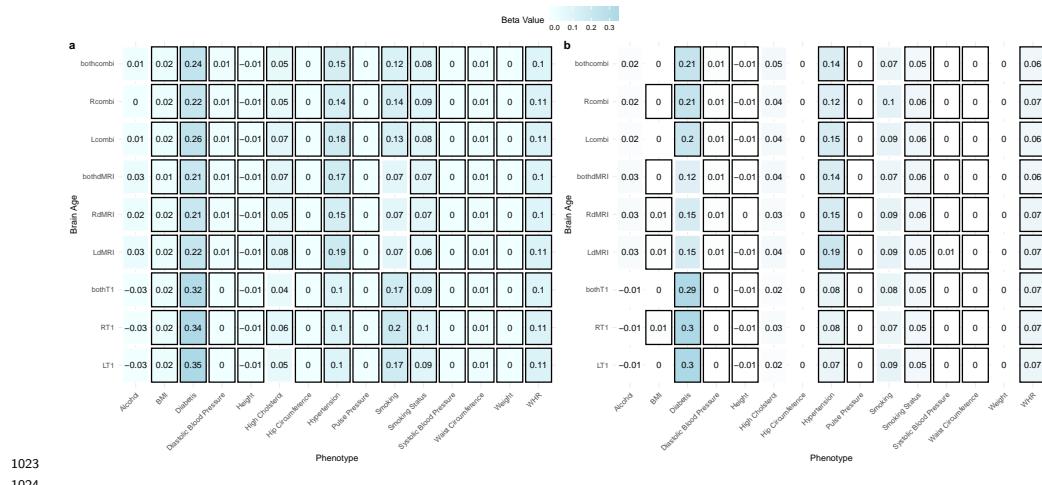

4 Linear, adjusted hemispheric mean values' age associations

992 Corrected standardized and zero-centered linear age relationships for mean hemispheric val-
 993 ues of grey and white matter features by age per hemisphere. Modelling was done using Eq. 2:
 994 $age = \beta_0 + \beta_1 \times F + \beta_2 \times Sex + \beta_3 \times Site$, where F is the respective brain feature.
 995

997 5 Adjusted mean values' hemisphere-specific age
998 associations by sex

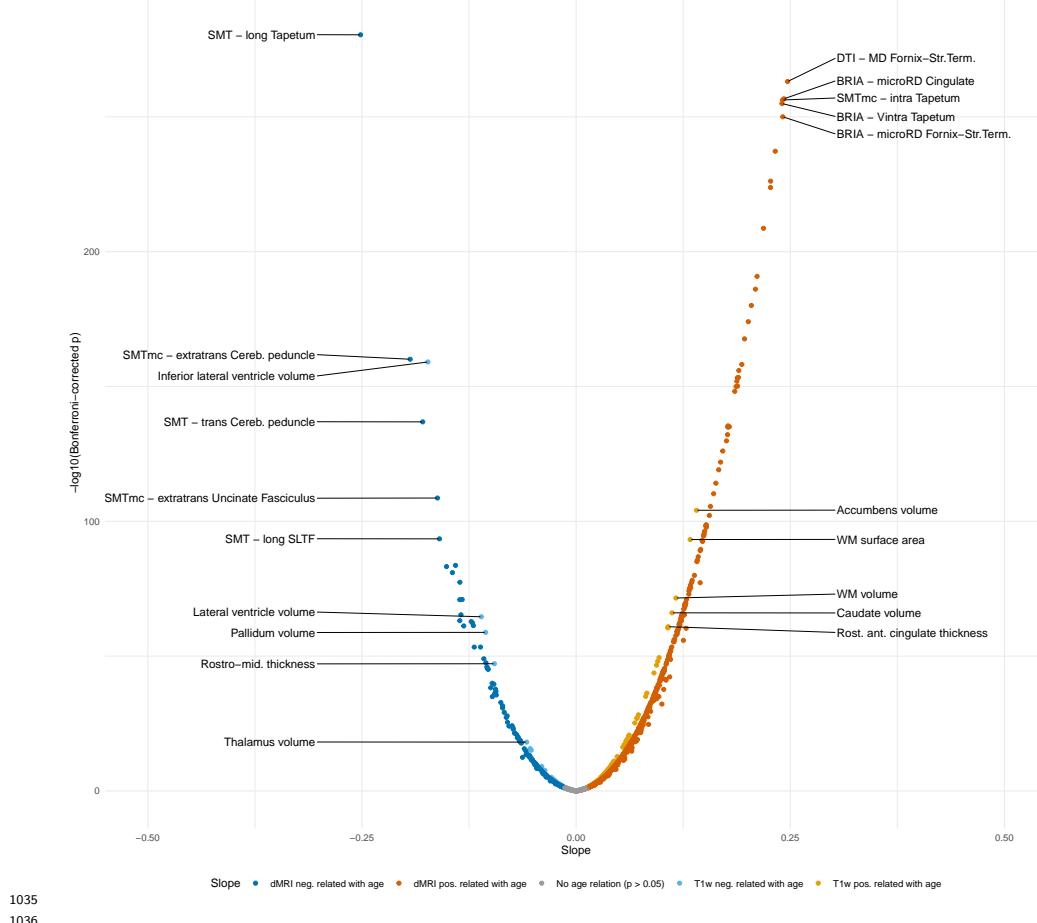

999 Age curves of standardized and zero-centered mean values of GM and WM features per hemisphere and by
1000 sex. A cubic smooth function (s) with $k = 4$ knots was applied to plot the relationship between age and
1001 brain features correcting for sex and scanner site (F): $age = s(F) + sex + site$ using restricted maximum
1002 likelihood (REML). The grey shaded area indicates the 95% CI. All age-relationships were significant
1003 ($p_{adj} < .05$).
1004

1005


1006 6 Adjusted mean values' sex-specific age 1007 associations by hemisphere

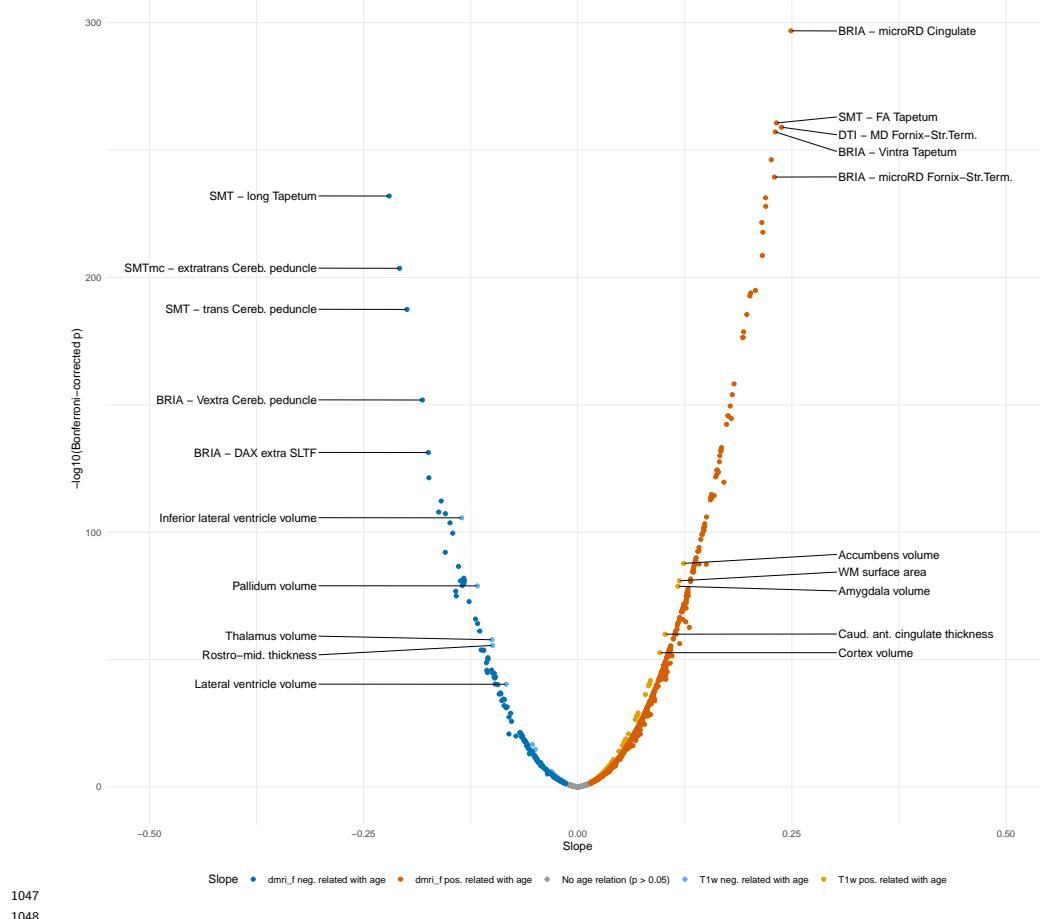
1008 Age curves of standardized and zero-centered mean values of GM and WM features per hemisphere and by
1009 sex. A cubic smooth function (s) with $k = 4$ knots was applied to plot the relationship between age and
1010 brain features correcting for sex and scanner site (F): $age = s(F) + sex + site$ using restricted maximum
1011 likelihood (REML). The grey shaded area indicates the 95% CI. All age-relationships were significant
1012 ($p_{adj} < .05$).
1013

1015 7 **Association between general**
 1016 **health-and-lifestyle phenotypes and brain age**
 1017 **estimated from different modalities, left, right**
 1018 **and both hemispheres by sex**

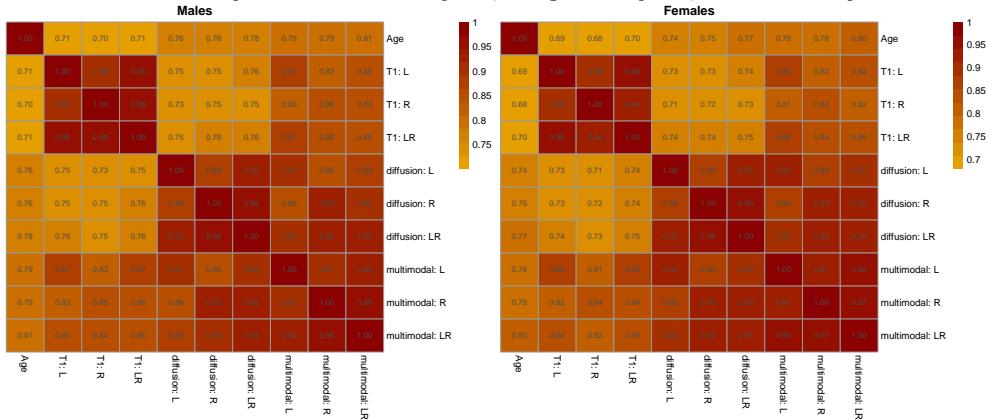

1019 Eq. 9 was used (yet stratifying by sex) and standardized slopes are presented. For simplicity, standardized
 1020 slopes with $|\beta| < 0.005$ were rounded down to $\beta = 0$. Panel a) males, panel b) females. L: left hemisphere,
 1021 R: right hemisphere, LR: both hemispheres, BMI: body mass index, WHR: waist-to-hip ratio. Bonferroni-
 1022 adjusted $p < .05$ is marked by a black frame.

1023
 1024

1025 **8 Males' T₁-weighted and dMRI features**
1026 **asymmetry-age-associations**


1027 T₁-weighted and dMRI features linear asymmetry-age-associations. The plot presents the standard-
1028 ized, site-corrected regression slopes versus Bonferroni-adjusted -log₁₀ p-values for males. Modelling
1029 was done using a sex-stratified version of Eq. 2: $\text{age} = \beta_0 + \beta_1 \times F + \beta_2 \times \text{Site}$, where F is the
1030 respective brain feature. Labelling was done separately for T₁-weighted and dMRI indicating the 10
1031 most significantly associated features (five for $\beta > 0$ and five for $\beta < 0$). Cereb.Peduncle = cerebral
1032 peduncle, Rostro-mid. thickness = rostro-middle thickness, SLFT = superior longitudinal fasciculus
1033 (temporal part), Fornix-Str.Term. = fornix-stria terminalis tract, Rost. ant. cingulate = rostral anterior
1034 cingulate. Full tables are available at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age/.

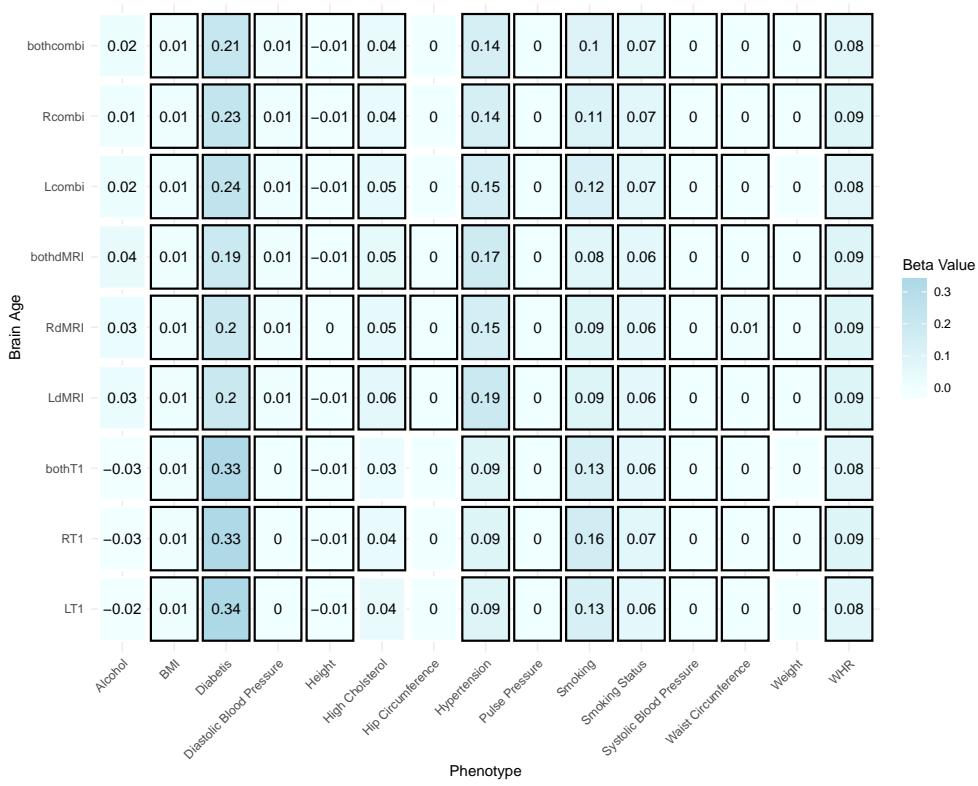
1035
1036


1037 9 Females' T₁-weighted and dMRI features 1038 asymmetry-age-associations

1039 T₁-weighted and dMRI features linear asymmetry-age-associations. The plot presents the stan-
1040 dardized, site-corrected regression slopes versus Bonferroni-adjusted -log₁₀ p-values for females.
1041 Modelling was done using a sex-stratified version of Eq. 2: $\text{age} = \beta_0 + \beta_1 \times F + \beta_2 \times \text{Site}$,
1042 where F is the respective brain feature. Labelling was done separately for T₁-weighted and
1043 dMRI indicating the 10 most significantly associated features (five for $\beta > 0$ and five for
1044 $\beta < 0$). Cereb.Peduncle = cerebral peduncle, Rostro-mid. thickness = rostro-middle thickness,
1045 SLFL = superior longitudinal fasciculus, Sup.front.occ.Fasc. = superior fronto-occipital fasci-
1046 culus. Full tables are available at https://github.com/MaxKorbmacher/Hemispheric_Brain_Age/.

1049 10 Pearson correlation coefficients between
1050 chronological and predicted ages for
1051 T1-weighted, diffusion, and multimodal MRI
1052 for left, right and both hemispheres for sex
1053 stratified brain age models

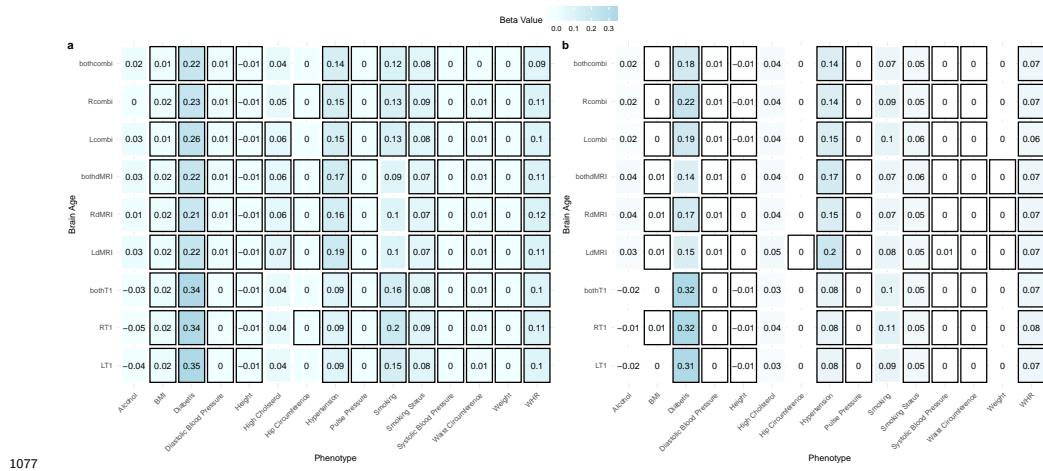
1054 All Bonferroni-corrected $p < .001$. L: left hemisphere, R: right hemisphere, LR: both hemispheres.



1055

1056

1057 11 Association between general
 1058 health-and-lifestyle phenotypes and sex-specific
 1059 trained brain age estimated from different
 1060 modalities, left, right and both hemispheres


1061 Eq. 9 was used (yet stratifying by sex) and standardized slopes are presented. For brain age prediction, we
 1062 used models which were trained separately for males and females, respectively. For simplicity, standardized
 1063 slopes with $|\beta| < 0.005$ were rounded down to $\beta = 0$. L: left hemisphere, R: right hemisphere, LR: both
 1064 hemispheres, BMI: body mass index, WHR: waist-to-hip ratio. Bonferroni-adjusted $p < .05$ is marked by a
 1065 black frame.

1066
 1067

1068 12 **Association between general health-and-
1069 lifestyle phenotypes and sex-specific trained
1070 brain age estimated from different modalities,
1071 left, right and both hemispheres by sex**

1072 Eq. 9 was used (yet stratifying by sex) and standardized slopes are presented. For brain age prediction, we
1073 used models which were trained separately for males and females, respectively. For simplicity, standardized
1074 slopes with $|\beta| < 0.005$ were rounded down to $\beta = 0$. Panel a) males, panel b) females. L: left hemisphere,
1075 R: right hemisphere, LR: both hemispheres, BMI: body mass index, WHR: waist-to-hip ratio. Bonferroni-
1076 adjusted $p < .05$ is marked by a black frame.

1077
1078