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Abstract: DNA methylation mediates silencing of transposable elements and genes in part via
recruitment of the Arabidopsis MBDS5/6 complex, which contains the methyl-CpG-binding
domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO
(SLN). Here we characterize two additional complex members: a-crystalline domain containing
proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to
the complex, and promote higher order multimerization of MBD5/6 complexes within
heterochromatin. These complexes are also highly dynamic, with the mobility of complex
components regulated by the activity of SLN. Using a dCas9 system, we demonstrate that
tethering the ACDs to an ectopic site outside of heterochromatin can drive massive accumulation
of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and
ACD21 are critical components of gene silencing complexes that act to drive the formation of
higher order, dynamic assemblies.

One-Sentence Summary: Arabidopsis ACD21 and ACD15 drive accumulation of MBD5/6
complex silencing assemblies at methyl-CG sites and recruit SLN to maintain protein mobility in
these assemblages.
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Main Text

Eukaryotic organisms must properly localize macromolecules within cells to maintain
homeostasis. Membrane bound organelles serve this purpose, but recent discoveries have
revealed the existence of membrane-less organelles or compartments(/—3). Often referred to as
biological condensates, liquid-liquid phase separated (LLPS) condensates, or supramolecular
assemblies, these compartments such as stress granules, p-granules, heterochromatin, and the
nucleolus concentrate proteins and nucleic acids to facilitate specific and efficient processes(4—
7). If not properly controlled, the accumulation of these protein assemblies can lead to aggregates
with detrimental impacts on cellular homeostasis and disease, yet how cells regulate these
assemblies remains unclear(3, 8, 9). Molecular chaperones, such as heat shock proteins (HSPs),
serve highly conserved roles to regulate the solubility, folding, and aggregation of proteins
within cells, making them obvious candidates for the regulation of biological condensates(/0—
14). Small HSPs (sHSPs) use their conserved a-crystalline domains (ACD) to form dimers which
then create large and dynamic oligomeric assemblies that act as first line of defense against
protein aggregation via a “holdase” activity(/4). sHSPs further recruit J-domain containing
proteins (JDPs) which act as co-chaperones for HSP70 proteins to maintain protein homeostasis
(14—-17). Both sHSPs and JDP/HSP70 pairs have been shown to associate with and regulate
disease related cellular condensates across species(/8—21).

In Arabidopsis thaliana, pericentromeric heterochromatin is organized into compartments
called chromocenters that are chromatin dense regions containing most of the DNA methylated
and constitutively silenced TEs and genes, as well as heterochromatic proteins such as DNA
methylation binding complexes (13, 22—26). Previous work has shown that multiple Arabidopsis
DNA methylation binding complexes silence or promote expression of genes through
recruitment of molecular chaperones with unknown functions (27-29). For example, MBDS5 and
MBD6 redundantly silence a subset of TEs and promoter-methylated genes via recruitment of
SLN, a JDP. MBD5/6 also interact with two ACD containing proteins called ACD15.5/RDS2
and ACD21.4/RDSI1, hereafter referred to as ACD15 and ACD21(29-31). While ACD15 and
ACD21 have been implicated in silencing of a transgene reporter, their specific chromatin
functions remain unknown (37). Here we demonstrate that ACD15 and ACD21 are necessary
and sufficient for the accumulation of high density MBD6 at methylated CG sites to silence
genes and TEs, while also bridging SLN to MBDS5/6 to maintain the high mobility of all complex
components. We further demonstrate that MBDS5/6 complex assemblies can be formed at discrete
foci outside of chromocenters, in an ACD15 and ACD21 dependent manner, to cause gene
silencing.

ACD1S5 and ACD21 colocalize with MBDS and MBD6 genome-wide and are essential for
silencing.
We previously observed that MBDS, MBD6 and SLN pulled-down two ACD containing proteins
named ACD15 and ACD21 (29). To investigate their binding patterns on chromatin, we
performed Chromatin Immunoprecipitation sequencing (ChIP-seq) of FLAG-tagged ACD15 and
ACD21. We observed that all five proteins colocalized genome-wide, and none of them appeared
to have truly unique ChIP-seq peaks, suggesting that they could be recruited to DNA together as
a complex (Fig. 1A-B, S1A). Furthermore, ACD15 and ACD21 showed a non-linear correlation
with meCG density similar to MBD6 and SLN(29) suggesting that MBDS5/6 complex members
all accumulate preferentially at high density meCG sites (Fig. 1C).

To test whether ACD15 and ACD21 are required for silencing we generated acd/5 and
acd?] single mutants, an acdl5 acd?1 double mutant, and an acdl5 acd2?1 sin triple mutant via
CRISPR/Cas9 (fig. S1B). RNA-seq analysis revealed that all mutants showed very similar
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91 transcriptional derepression patterns at DNA methylated genes and TEs as compared to mbd5

92 mbdo6 and sln mutants (Fig. 1D-F, S1C-D). This includes the FWA gene which was previously

93 shown to be silenced by the MBD5/6 complex (Fig. 1F) (29). These results demonstrate that

94 ACDI15 and ACD21 are critical components of the MBDS5/6 complex required for silencing.

95

96 ACD1S5 and ACD21 bridge SLN to MBDS and MBD6.

97 To determine the specific organization of the MBD5/6 complex, we performed IP-MS

98 experiments using FLAG-tagged transgenic lines for each complex component in different

99 mutant backgrounds (Fig. 2A, Table S1). In the wild type Col0 background, ACD15 and ACD21
100 pulled-down each other, MBD5, MBD6, SLN, and the same HSP70 proteins that were found to
101 interact with the MBDS5/6 complex previously (29) (Fig. 2A, Table S1). MBDS and MBD6
102 pulled down peptides of ACD15 and ACD21 in the absence of SLN, while SLN did not pull
103 down MBDS5 and MBD6 in the absence of ACD15 and ACD21, suggesting that ACD15 and
104 ACD21 bridge the interaction between MBD5/6 and SLN (Fig. 2A-B). Consistent with this
105 model, ACD15 and ACD21 pulled down MBDS5 and MBD6 in the s/n mutant background, and
106 SLN pulled down ACD15 and ACD21 in the mbd5 mbd6 mutant background (Fig. 2A). ACD15
107 also pulled-down MBD5 and MBD6 but not SLN in the absence of ACD21, while ACD21 did
108 not pull down MBDS5 and MBD6 in the absence of ACD15 (Fig. 2A). These results suggest that
109 the MBD5/6 complex is organized such that MBDS5 or MBD6 interact with ACD15, ACD15
110 interacts with ACD21, and ACD21 interacts with SLN (29) (Fig. 2B).
111 To further study the organization and localization of MBD5/6 complex components we
112 used live confocal imaging of root tips to determine the cellular localization of fluorescent-
113 protein-tagged ACD15, ACD21, SLN, and MBD6. In wild-type plants, ACD15, ACD21, and
114 SLN all showed clear nuclear localization which correlated strongly with nuclear MBD6 (Fig.
115 2C-E and S2A-C). ACD21, ACD15, and SLN all showed an increase in cytosolic signal in mbd5
116 mbd6 mutant plants which was rescued by coexpressing MBD6, demonstrating that all members
117 of the complex require genetically redundant MBDS5 or MBD6 for proper nuclear localization
118 (Fig. 2C-E). The reduction of nuclear localization of SLN is also consistent with previous ChIP-
119 seq experiments showing loss of chromatin bound SLN in the absence of MBDS5 and MBD6(29).
120 ACDI15 maintained nuclear localization and correlation with MBD6 in acdl5 acd21 and sin
121 mutant plants whereas ACD21 lost nuclear localization and correlation with MBD6 in acdl5 and
122 acdl5 acd? 1 mutants, but not in the s/n mutant (Fig. 2C-D, S2D-G). Finally, SLN nuclear
123 localization and correlation with MBD6 decreased in acdl5, acd?1, and acdl5 acd?1, mutant
124 plants (Fig. 2E, S2H,I). These results demonstrate that ACD21 requires ACD15 for proper
125 nuclear localization, while SLN requires both ACD15 and ACD21, consistent with the complex
126 organization model suggested by IP-MS experiments (Fig. 2B).
127 We used the protein folding algorithm AlphaFold Multimer to predict protein-protein
128 interactions within the MBD5/6 complex(32, 33). AlphaFold Multimer confidently predicted that
129 ACD15 interacts with MBD6 (or MBDS), that ACDI15 interacts with ACD21, and that ACD21
130 interacts with SLN, all consistent with our experimental data from IP-MS and confocal
131 microscopy (Fig. 2F). When given two copies of each member of the complex (MBD6, ACD15,
132 ACD21, and SLN), AlphaFold Multimer also confidently predicted that ACD15 and ACD21
133 form a dimer of two heterodimers in the middle of the structure, suggesting that the MBDS5/6
134 complex likely contains at least two copies of each protein (fig. S2J-L). This is consistent with
135 previous results showing dimer formation by other ACD containing sHSPs (34). Given the
136 genetic redundancy of MBDS and MBD6, the complex would be predicted to contain a
137 minimum of two MBD35s, two MBD6s, or one MBDS plus one MBD6 (fig. S2L). In line with

138 this prediction, we found that MBD5 and MBD6 pull-down each other in I[P-MS data in wild-
3
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139 type, but not in the acd5 acd?1 double mutant background, indicating that ACD15/ACD21

140 facilitate interaction between two MBD5/6 proteins (Fig. 2A, S2L).

141

142 ACD15, ACD21, and SLN regulate heterochromatic localization, accumulation, and

143 dynamics of the MBD5/6 complex.

144 Given the known role of molecular chaperones in the regulation of protein complexes and

145 aggregates (35), we hypothesized that ACD15, ACD21, and SLN may regulate the dynamics of
146 MBD5/6 nuclear complexes. To test this, we measured the nuclear localization and mobility of
147 MBD®6 in root cells using live-cell, fluorescence, confocal microscopy. In wild-type and mbd5
148 mbd6 mutant plants, MBD6 formed foci, which colocalized with ACD15, ACD21, and SLN foci
149 (Fig. 3A-B, S3A). MBDG6 foci also overlapped with DAPI-staining chromocenters, as previously
150 shown when MBD6 was overexpressed in leaf cells (fig. S3B) (36). To measure the mobility of
151 MBD®6 protein we used fluorescence recovery after photobleaching (FRAP) experiments (37).
152 FRAP in wild-type plants revealed that MBD6 moves rapidly within nuclei with a FRAP

153 recovery half time (t12) of ~3.60 seconds back into chromocenters after bleaching (Fig. 3C-D,
154 S3D).

155 We next tested whether MBD6 nuclear distribution or mobility was altered in s/n

156 mutants. Although MBD6 formed a similar number of nuclear foci in s/n compared to wild-type
157 plants, these foci showed somewhat reduced fluorescence intensity, suggesting that MBD6 was
158 accumulating less efficiently within heterochromatin (Fig. 3A, E, F). FRAP of MBD6 in s/n

159 mutant plants revealed a dramatic reduction in mobility and a lack of full recovery of signal post
160 bleaching (Fig. 3C-D and S3D). Similar FRAP experiments on ACD15 and ACD21 nuclear foci
161 showed that both were highly mobile in wild-type (ti2 of 3.63 and 4.30 seconds respectively),
162 but were much less mobile and failed to recover full signal in s/» mutant plants (Figure S3D-H),
163 and also showed decreased fluorescence intensity of foci in s/n compared to wild-type (fig. S31-
164 J). SLN thus regulates the mobility, and to a lesser extent the accumulation of the MBD5/6

165 complex.

166 Given the IP-MS, microscopy, and structure prediction results showing that ACD15 and
167 ACD21 bridge the interaction between MBD6 and SLN we expected acdl5 acd2 1 mutants to
168 alter the FRAP mobility of MBD6 in a manner similar to s/n mutants. However, we found that
169 the number of MBD6 foci were dramatically lower in acdl5 acd?1 mutant plants compared to
170 wild-type plants, with only occasional MBD6 foci observed (Fig. 3A, B, E). Instead, MBD6

171 nuclear signal in acdl5 acd21 mutant plants was more diffusely distributed across nuclei

172 compared to either wild-type or s/n plants (Fig. 3A). A decreased number of MBD6 foci and a
173 lack of overlap of these foci with DAPI stained chromocenters was also observed in acd!35,

174 acd2?1, and acdl5 acd2?l sln mutant plants (Fig. 3A, fig. S3C). Thus, ACD15 and ACD21 are
175 required for MBD®6 to efficiently concentrate into nuclear foci. This effect was specific to

176 ACD15 and ACD21 since loss of IDM3 (LIL), an ACD protein in the MBD7 complex (2§), did
177 not affect the MBD6 nuclear foci (fig. S3K-L).

178 We performed ChIP-seq on MBD6 in acdl5 acd21 mutant plants to quantify the impact
179 on MBD6 chromatin localization. In wild-type plants, MBD6 localized to previously published
180 MBD6 peaks(29) and showed a non-linear correlation with meCG density, displaying strong

181 enrichment at highly dense methylated regions (Fig. 3G-I). However, MBD6 chromatin

182 enrichment in acdl5 acd21 mutant plants, although not abolished, was decreased dramatically
183 and showed much less preference for binding to high density meCG sites (Fig. 3G-I). Thus,

184 while ACD15/ACD21 are not necessary for MBD6 to bind meCG sites, they are needed for high
185 accumulation of MBD6 at high density meCG sites, which is consistent with the decrease of

186 observable MBD®6 foci in acd mutants (Fig. 3A-B).
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187 Taken together, these results demonstrate that ACD15 and ACD21 are required for high
188 level accumulation of MBD5/6 complexes in chromocenters and at high density meCG sites,

189 while SLN regulates the mobility of these complexes to maintain dynamic recycling of proteins.
190

191 The StkyC domain of MBD6 is required for gene silencing and recruits ACD15 to the

192 complex.

193 The AlphaFold-predicted structure of MBD6 reveals two structured domains, the MBD and a C-
194 terminal domain of unknown function, as well as two intrinsically disordered regions (IDRs)

195 (Figure 4A, and S4A). The C-terminal folded domain shares amino acid similarity with the C-
196 terminus of two related MBD proteins, MBDS5 and MBD7 (fig. S4B). This region of MBD7 has
197 been termed the StkyC domain, and is the proposed binding site for the ACD containing IDM3
198 protein, which belongs to the same family as ACD15 and ACD21(28). This suggests that the

199 StkyC of MBD6 would interact with ACD15, and indeed this interaction is confidently predicted
200 by AlphaFold Multimer (Fig. 2F, S2J-K, S4A).

201 To experimentally determine what domains of MBDG6 are necessary for gene silencing
202 and chaperone interactions we first truncated the N-terminus (MBD6N2 (leaving amino acids 66-
203 224)) or the C-terminus of MBD6 (MBD6%* (leaving amino acids 1-146)) (fig. S4C). To test if
204 these mutants are functional for silencing, we performed RT-qPCR of the FWA gene, a target of
205 the MBD5/6 complex (Fig. 1F)(29), in mbd5 mbd6 mutant plants expressing full-length or

206 truncated MBDG6 alleles. FWA derepression in mbd5 mbd6 plants was rescued by full length

207 MBD6-RFP or MBD6NA-RFP, but not by MBD6“A-RFP, showing that the middle IDR and/or the
208 StkyC domain are required for MBD6 function (fig. S4D). MBD6 also showed a dramatic

209 reduction in nuclear foci compared to full length MBD6, a phenotype similar to that observed in
210 acdl5 acd? 1 mutants and consistent with loss of the ACD15 binding site (Fig. 4B-C, S4E).

211 To test if the StkyC domain was critical, we added back the StkyC domain (amino acids
212 167-224) to MBD6% (MBD6CAS%C) MBD6AS%C was able to rescue MBD6 nuclear foci

213 counts, and complemented the derepression of FWA in the mbd5 mbd6 mutant (Fig. 4B-E).

214 Importantly, MBD6A*S%C expressed in acdl5 acd2 mutant plants formed very few nuclear
215 foci, similar to the low number of MBD62 foci in wild-type plants, demonstrating that foci

216 localization rescue by the StkyC domain requires ACD15 and ACD21 (Fig. 4D).

217 To determine if the StkyC domain is responsible for localizing ACD15 and ACD21 to the
218 MBD5/6 complex, we performed fluorescent protein colocalization experiments by co-

219 expressing ACD21-CFP or ACD15-YFP with MBD6-RFP, MBD62-RFP, or MBD6CA Stk C

220 RFP in mbd5 mbd6 mutants. ACD15 and ACD21 both strongly correlated with full length

221 MBD6 (Pearson correlation coefficient () of 0.96 and 0.86 respectively) and overlapped well
222 with MBD6 signal across root nuclei, whereas ACD15 and ACD21 showed much weaker

223 correlations with MBD6%* (r = 0.67 and 0.46, respectively) and lost overlap with MBD6*

224 nuclear signal (Fig. 4F-G and S4F-G). ACD15 and ACD21 also showed visibly higher cytosolic
225 signal and lower nuclear signal when co-expressed with MBD6“2 in mbd5 mbd6 (Fig. 4F-G and
226 S4F-G). The addition of the StkyC domain (MBD6AS%C) restored the correlation of ACD15
227 and ACD21 with MBD6 (r = 0.94 and 0.84 respectively), restored the overlap of ACD15 and
228 ACD21 with MBD6 nuclear signal, and reversed the cytosolic localization of ACD15 and

229 ACD21 (Fig. 4F-G and S3F-Q).

230 To further test if ACD15 is needed for ACD21 to associate with MBD6CATSKYC e

231 colocalized ACD15 and ACD21 with MBD6CA™S%C in wild-type or acdl5 acd21 double mutant
232 plants (Fig. 4H). ACD21 showed a reduced correlation with MBD6A*S%C in ged15 acd21 plants
233 compared to wild type (0.48 vs 0.79), a reduction of colocalization with MBD6 across nuclei,
234 and a visible increase in ACD21 cytosolic localization, suggesting that ACD21 requires ACD15

5
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235 to associate properly with MBD6CA™S%C (Fig 41 and S4H-I). On the other hand, ACD15

236 correlated strongly with MBD6CA*S%C in acd15 acd21 plants (r = 0.92), maintained strong

237 nuclear signal, and directly overlapped with nuclear MBD6, demonstrating that ACD15 does not
238 require ACD21 for proper localization with MBD6A*S%C (Fig. 4H and S4J). These experiments
239 demonstrate that the StkyC domain of MBD6 is required for the function of the MBD5/6

240 complex, is needed for proper localization of ACD15 and ACD21, and mediates the

241 accumulation of MBD6 at heterochromatic foci through ACD15 and ACD21.

242

243 ACD1S5 and ACD21 can mediate functional and targeted gene silencing foci.

244 Some ACD containing sHSP proteins are known to form dynamic oligomeric assemblies as part
245 of their function in maintaining protein homeostasis (/6), which could explain how

246 ACDI15/ACD21 drive high levels of MBD5/6 complex accumulation at meCG dense

247 heterochromatin. To further explore this concept, we created a system to target MBDS5/6

248 complexes to a discrete genomic location outside of pericentromeric heterochromatin. We

249 utilized the SunTag system(38), composed of a dead Cas9 protein (dCas9) fused to ten single-
250 chain variable fragment (scFv) binding sites, targeted to the promoter of the euchromatic FWA
251 gene (39). To nucleate MBDS5/6 foci at the dCas9 binding site we fused the scFv to the StkyC
252 domain of MBD6 and to GFP, to visualize the nuclear distribution of the fusion proteins (Fig.
253 5A).

254 If ACDI15 and ACD21 drive higher order multimerization of MBDS5/6 complexes, we

255 would expect to observe discrete GFP foci in nuclei representing the dCas9 binding sites, as well
256 as other foci corresponding to chromocenters since the scFv-GFP-StykC fusion would likely be
257 recruited into multimerized MBD5/6 complexes at heterochromatin sites (Fig. SA). Indeed, we
258 observed an average of 6.4 GFP foci per nucleus in SunTagS*%¢ expressing wild-type plants (Fig.
259 5B, C), some of which overlapped with DAPI staining chromocenters and others that did not

260 (fig. S5A). We also transformed SunTag3"C into the mbd5 mbd6 mutant, which would be

261 predicted to eliminate recruitment of the scFv-GFP-StykC fusion protein into chromocenters by
262 elimination of meCG bound endogenous MBD5/6 complexes. As predicted, we now observed
263 an average of only two foci per nucleus (Fig. 5B, C), likely corresponding to the FWA alleles on
264 the two homologous chromosomes. Consistent with these foci representing dCas9 bound to

265 euchromatic FWA (39), these foci did not overlap with DAPI staining chromocenters (fig. S5B).
266 Notably, the volume of SunTagS"® foci were increased in mbd5 mbd6 (Fig. 5D), with the vast
267 majority of nuclear GFP signal accumulating at the two nuclear bodies (Fig. 5B), suggesting that
268 excess scFv-GFP-StykC fusion protein shifted from heterochromatic regions to the dCas9

269 binding sites.

270 We also expressed the SunTagSC system in acdl5 acd2] mutants to determine if

271 ACD15 and ACD21 are required for foci formation. Indeed, SunTagS** now only displayed
272 diffuse nucleoplasmic GFP signal, lacking detectable foci (Fig. 5B, C). This pattern was similar
273 to control plants expressing a SunTag-TET1 system(40), in which the scFv was fused to GFP
274 and the human TET1 protein, suggesting that the GFP foci observed in SunTag3%¢is not a

275 general property or artifact of the SunTag system (fig. S5C). We also introduced the SunTagS%¢
276 system into the s/n genetic background and observed GFP foci counts and localization similar to
277 the wild-type plants, showing around 6.1 foci per nucleus (Fig. 5B,C). These results demonstrate
278 that ACD15/21 are necessary and sufficient to drive high level accumulation of MBD5/6

279 complexes at discrete foci.

280 We next tested if the foci formed by the SunTag5*Y¢ system are capable of gene

281 silencing. The FWA gene is normally methylated and silent in wild-type plants. However, stably

282 unmethylated and expressed fiwa epigenetic alleles exist that cause a later flowering phenotype
6
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283 (41, 42). This allowed us to test if the SunTagS"C system could silence FWA by introducing the
284 system into the fwa epigenetic background. Indeed, we found a significant suppression of FIWA
285 expression compared to fwa control plants (Fig. 5SE). fwa plants expressing SunTag5*¢ also

286 flowered earlier on average, showing a decrease in the number of leaves produced before

287 flowering compared to fwa mutant plants (Fig. SF-G). Correlation of fwa expression with leaf
288 counts for fwa SunTagS*C plants showed a strong positive correlation as expected (fig. S5D).
289 Lastly, we tested whether the SunTag>%* system could complement the FIWA

290 derepression phenotype of MBD5/6 complex mutants (Fig. 1E)(29). Interestingly, SunTagS*yC
291 was able to silence FWA in mbd5 mbd6 mutant plants demonstrating that the tethering function
292 of MBD6 could be largely replaced by targeting with the StkyC domain, and that silencing can
293 occur without the methyl binding proteins (fig. SSE). Surprisingly, SunTag5*¢ could also

294 partially complement FWA derepression in the s/n mutant background, while SunTag3% could
295 not complement FWA derepression in the acdl5 acd?] mutant background (fig. S5F,G). These
296 results demonstrate that the SunTag5*C system maintains some gene silencing capability

297 without SLN, suggesting that ACD15 and ACD21 alone possess silencing ability.

298

299 Concluding remarks

300 Our results provide evidence for distinct mechanistic roles for ACD15, ACD21, and SLN in the
301 formation and regulation of the meCG specific MBD5/6 silencing complex (fig. S6). ACD15 and
302 ACD21 function to both drive the formation of higher order MBDS5/6 complex assemblies, and
303 bridge SLN to the complex. In contrast, the main role of SLN appears to be regulation of the
304 dynamics of protein mobility within these complex assemblies. The activity of both ACD15/21
305 and SLN are clearly required for proper silencing function of the complex. The accumulation of
306 multiple MBD5/6 proteins into higher order complex assemblies can explain why these

307 complexes preferentially localize to high density meCG sites in the genome, likely via

308 cooperative binding to closely spaced meCG sites.

309 ACD domain containing small HSPs are found in all eukaryotic lineages and are most
310 well known for their role in regulating the aggregation of proteins (14, 15, 17, 34, 43). In the
311 MBD5/6 complex however, the oligomerization capacities of ACD15 and ACD21 are

312 specifically co-opted to control complex multimerization and silencing function. It seems likely
313 that ACD proteins in other systems may also play important roles outside of general protein

314 homeostasis.
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541
542 Fig. 1. ACD1S5 and ACD21 are required for silencing.
543 (A) Heatmap of FLAG-tagged MBDS5, MBD6, SLN, ACD15, and ACD21 ChIP-seq enrichment
544 (log2FC over no-FLAG Col0 control) centered at all merged peaks. (B) Genome browser image
545 of ChIP-seq data showing two methylated loci co-bound by all MBD5/6 complex members.
546 (C) Loess curves showing correlation between ChIP-seq enrichment for a representative
547 replicate and CG methylation density. (D) Violin plots showing mature pollen RNA-seq data for
548 the indicated mutants, at mbd5 mbd6 upregulated transcripts (6 replicates per genotype). (E)
549 Comparison between genotypes of the number of RNA-seq differentially expressed genes
550 (DEGs) with >40% CG methylation levels around the TSS. (F) Genome browser image of RNA-
551 seq data at the FWA locus in the indicated genotypes. Wild-type BS-seq data is shown as
552 reference.
553
554
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557 Fig. 2. ACD15 and ACD21 bridge SLN to MBD5/6.
558 (A) IP-MS of flag-tagged MBD5/6 complex members in the indicated genetic backgrounds
559 (MS/MS counts). (B) MBD5/6 complex organization as predicted by IP-MS. Created with
560 BioRender.com (C-E) 3D reconstruction of root meristems of plants expressing fluorescently
561 tagged ACD15, ACD21, or SLN in wild-type (Col0) and mutant backgrounds. Scale bar = 20
562 pum. (F) Predicted structure of MBD5/6 complex from AlphaFold Multimer (33). MBD6=Blue,
563 ACDI15=magenta, ACD21=maroon, SLN=gold.
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567 Fig. 3. ACD15, ACD21, and SLN regulate MBD6 accumulation and mobility.
568 (A) Representative MBD6-RFP nuclear images in mutant backgrounds. Scale bar = 2uM. (B) 3D
569 reconstruction of MBD6-RFP root meristem z-stacks. Scale bar = 20uM. (C) FRAP recovery
570 curves comparing MBD6 signal in WT and s/n plants. Shaded area: 95% confidence interval of
571 FRAP data (N=25 from 5 plants lines), dots: mean values, line: fitted one-phase, non-linear
572 regression. (D) Representative image of FRAP experiment. White circles indicate foci chosen for
573 bleaching. Scale bars = 2uM (E) MBD6 foci counts across 50 slice Z-stacks of root meristems
574 from five plant lines per genotype. Welch’s ANOVA and Dunnet’s T3 multiple comparisons test
575 (**: P<0.01, NS: P>=0.05). (F) Box plots of mean intensity values of MBD6 foci (5 individual
576 plants per genotype). Two-tailed t-test (****: P<0.0001). (G) Heatmaps and metaplots of
577 MBD6-RFP ChIP-seq signal (log2 ratio over no-FLAG Col0 control) at peaks called in “MBD6-
578 RFP in wild-type” dataset. (H) Loess curves showing correlation between MBD6-RFP ChIP-seq
579 enrichment and CG methylation density. (I) Genome browser tracks showing an example of a
580 high density meCG site bound by MBD6-RFP (ChIP-Seq). Wild-type BS-seq data is shown as
581 reference.
582
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584 Nuctear istance (i) = Nuciear Distance (M) = Nuclear Distance (u) mbd5 mbd6 +
585 Fig. 4. StkyC domain of MBD6 is necessary for function and localization of MBD6.
586 (A) Graphical description of MBD6 mutant constructs. (B) Representative nuclei showing
587 MBD6-RFP signal. Scale bar = 2 uM. (C-D) Number of MBD®6 nuclear foci (5 different plants
588 lines per sample, Z-stack of 50 slices). Brown-Forsythe ANOVA with Tukey’s multiple
589 corrections test (****: P<0.0001, NS: P>=0.05). (E) FWA expression from RT-qPCR of flower
590 bud RNA. Brown-Forsythe ANOVA with Dunnet’s multiple corrections test (*: P<0.05, NS:
591 P>=0.05). (F-H) Representative images and nuclear profile plots of MBD6-RFP mutants with
592 either ACD15-YFP or ACD21-CFP. White lines indicate the region plotted in the graphs
593 (“nuclear distance”). Scale bars = 10uM.
594
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598 Fig. 5. ACD15 and ACD21 drive the formation of MBD5/6 multimeric assemblies.
599 (A) Graphical representation of SunTag5*YC system and the hypothesized result. Created with
600 BioRender.com. (B) Representative nuclear images of SunTag3%* in different mutant
601 backgrounds. (C) SunTagS"¢ GFP foci counts per nucleus (N=100 per genotype). Compared
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using Welch’s ANOVA Dunnett’s T3 multiple comparisons test (****: P<0.0001, NS: P>=0.05).
Scale bar = 2uM. (D) Volume of SunTagS"C GFP foci from 5 plant lines per genotype (WT:
n=1461, mbd5 mbd6: n=1371). Two tailed t-test (****: P<0.0001, NS: P>=0.05). (E) RT-qPCR
showing FFWA expression in leaf tissue from T1 or control plants. Brown-Forsythe ANOVA with
Tukey’s multiple corrections test (**: P<0.01, NS: P>=0.05). (F) Leaf counts post flowering of
T1 fwa rdr-6 SunTagS*C plants. Brown-Forsythe ANOVA with Dunnett’s multiple comparisons
test (****: P<0.0001). (G) Representative image of early flowering T2 fwa rdr-6 plants
expressing SunTagS*yC,
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