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Spatially resolved single-cell atlas of the lung in fatal Covid19 in an African population
reveals a distinct cellular signature and an interferon gamma dominated response
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ABSTRACT

Postmortem single-cell studies have transformed understanding of lower respiratory tract
diseases (LRTD) including Covid19 but there is almost no data from African settings where
HIV, malaria and other environmental exposures may affect disease pathobiology and
treatment targets. We used histology and high-dimensional imaging to characterise fatal
lung disease in Malawian adults with (n=9) and without (n=7) Covid19, and generated
single-cell transcriptomics data from lung, blood and nasal cells. Data integration with other
cohorts showed a conserved Covid19 histopathological signature, driven by contrasting
immune and inflammatory mechanisms: in the Malawi cohort, by response to interferon-
gamma (IFN-y) in lung-resident alveolar macrophages, in USA, European and Asian cohorts
by type I/lll interferon responses, particularly in blood-derived monocytes. HIV status had
minimal impact on histology or immunopathology. Our study provides data resources and
highlights the importance of studying the cellular mechanisms of disease in
underrepresented populations, indicating shared and distinct targets for treatment.

Introduction

There has been significant progress towards creation of a human cell atlas utilising SCRNA-
sequencing (scRNA-seq) and high-dimensional cellular imaging data™*. The human cell atlas
is transforming our understanding of cells and their states in health and disease and is
rapidly becoming a major resource for the development of novel treatments and vaccines”.
Yet, data within this atlas is heavily biased towards populations in the Northern hemisphere.
Populations in sub—Saharan Africa (SSA) are particularly underrepresented”. Genetic and
environmental factors may lead to important differences in cell development and cell-
compositions in different organs, thus effecting cellular responses to diseases, vaccines and
therapies™®. Capturing data from SSA populations is critical to assure that everyone can
benefit from the treatment advances derived from the human cell atlas.

Immunomodulation plays a critical role in Covid19 outcomes. Single-cell data from lung
tissue facilitated identification of specific immunomodulatory targets®”**. Apart from our
high-dimensional imaging study from a Brazilian cohort* these data are, thus far,
exclusively from populations in Northern hemisphere, similar to most clinical trial data
validating their efficacy. For future waves or epidemics of SARS-CoV2 or related viruses, this
knowledge gap needs to be addressed. Indeed, given minimal intensive care, the benefit of
preventing progression to or deterioration from severe disease by immunomodulation is
even more important in SSA. While immunomodulatory therapies can be lifesaving, they can
also be harmful™. Immunomodulation has focused on two opposing strategies: augmenting

the inflammatory response to aid viral clearance or attenuating inflammatory response to
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reduce pathogenic hyperinflammation. Extensive studies in northern hemisphere cohorts
have established that, by the time patients present with life threatening illness, viral loads
are declining, hyperinflammation generally predominates and thus anti-inflammatory

14,15

interventions are more effective™ ™. Given evidence that repeated exposure to malaria and

other parasitic infections can induce immune tolerance'®*®, we hypothesised that the
balance may be different in patients in SSA where these infections are more prevalent.
While sometimes this clinical context may be protective, in those who progress to severe
disease, a tolerance-skewed response might blunt immune-mediated viral clearance,
leading to a more viral-driven pathology. However, the reverse is also possible. High
pathogen exposure can induce an accelerated inflammatory response on re-exposure to
pathogens®. Either scenario might impact cellular responses driving pathogenesis in the lung
and have important implications for informing which therapy may be effective in SSA

populations.

To address some of these knowledge gaps we conducted an autopsy study in well-
characterised patients at a large public hospital in Malawi, a low-income country in SSA with
high rates of malaria, TB and HIV. We undertook detailed histopathological analysis and
scRNA-seq on lung, blood and nasal cells and imaging mass cytometry (IMC) to spatially
resolve the immune landscape of the lung (Fig.1a). We conducted all tissue processing, cell
dissociation and scRNA-seq library preparation on site in Malawi, with much of the data
prepared on fresh samples. There are so far no studies from any settings that included
characterisation across all these modalities. Thus, to fully understand the context of our
data in contrast to other populations, we needed to use data from patient cohorts from
different regions of the world to enable comparisons (Fig.1b). Taken together, our data
highlight how Covid19 has a similar histopathological pattern in our SSA cohort to other
Northern and Southern Hemisphere cohorts. However, we found a contrasting immune
response signature in the SSA cohort, driven by proliferation of lung-resident alveolar
macrophages and interferon gamma (IFN-Yy).

Results

Clinical and histopathological analysis identifies a conserved histopathological signature
of Covid19 in patients from SSA, in agreement with other Covid19 cohorts

We recruited patients with fatal illness aged 45-75 admitted to Queen Elizabeth Central
Hospital, Blantyre (October 2020 and July 2021) and stratified into three groups based on
clinical characteristics: 1) Covid19 acute respiratory distress syndrome (ARDS) (n=9), 2)
lower respiratory tract disease (LRTD) (n=5) with ARDS of diverse non-Covid19 aetiology, 3)
non-LRTD (n=2) (Fig.1b, Extended Data Table 1, see methods). Like other cohorts, fatal
Covid19 cases were generally overweight or obese (78%) and several cases had type 2
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diabetes (44%), whereas LRTD and non-LRTD cases were generally underweight. HIV was
common across all groups. No new diagnoses of HIV were made, and all infected cases had
been on highly active anti-retroviral treatment until stopping treatment during the
pandemic, reflecting challenges with access to healthcare and in keeping with low CD4
counts (median 134cells/mm?).

Autopsies were conducted through minimally invasive tissue sampling (MITs)* using wide-
bore needle-biopsies. Lung, liver and brain samples were obtained in all 16 cases, bone
marrow in 15 cases and spleen in 8 cases. A pathologist (S.K.) read haematoxylin and eosin-
stained tissue slides alongside patients' history and antemortem lab results, per standard
clinical practice. In the lung in the Malawi Covid19 cohort the pathologist identified classical
features of Covid19 described in other cohorts?®*’, which were absent or less frequentin
LRTD cases {(Supplemental Data Fig.1). In contrast, in other organs there were no Covid19
specific changes {(Supplemental Data Table 1), focusing our further investigations on the
lung. Then, two additional pathologists (V.H., C.A.), blinded to diagnosis, scored the lung
pathology in all sixteen patients using more detailed semi-quantitative criteria developed by
us previously™. Within our Covid19 cases, type Il pneumocyte hyperplasia, vascular
congestion, syncytia, granulation of tissue and lymphocyte infiltration were all significantly
more common and severe than in the non-Covid19 LRTD group; in contrast neutrophils
were more numerous in LRTD cases (Extended Data Fig.1a). There was no significant

difference in histopathology due to HIV status (Extended data Fig.1b).

Unfortunately, a lack of international consensus criteria for assessing Covid19 lung
pathology, and of studies with systematic scoring, prevented quantitative comparison with
other cohorts to assess similarities and differences. Therefore, we compared proportions of
different pulmonary lesion types with a study that combined cohorts from Europe and the
USA?", and with our published Brazilian cohort™ (Fig.1c). Acute alveolar changes, defined by
neutrophil infiltration and fibrin-deposition were more frequent in the Malawi and Brazil
cohorts than the USA cohort. “Chronic” alveolar changes with monocytes, macrophages or
fibrosis were detected more frequently in the USA and Malawi cohort. In the Malawi cohort,
“chronic” disease was predominantly characterized by macrophage and monocytes and
there was less fibrosis than in the USA and Brazil cohorts. The detection of macrophages by
histology in a high proportion of Malawi cases, despite a very short duration of illness, fits
with studies that observed inflammatory monocyte/macrophage populations in fatal

82829 . . .. .
*“>2% indicating a departure from classical

Covid19 cases with a short durations of iliness
“acute” to “chronic” changes. Thus, despite a short duration from iliness to death, and
demographic differences, cases in our Malawi cohort exhibited classical Covid19 lung

pathology.

High-plex imaging highlights that Covid19 immunopathology is associated with alveolar
macrophages whereas LRTD is associated with neutrophils.
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To give cellular context to the histopathological features we made tissue microarrays,
identifying 130 representative regions of interest containing specific pathological lesions or
normal lung areas (9 Covid, 3 LRTD, 2 Non-LRTD cases). Tissue samples were analysed by
IMC using a 39 metal-conjugated antibody panel (Supplemental information) that we
previously optimised for staining in a Brazil cohort®®, an anti-SARS-CoV2 Spike (SARS-CoV2-S)
antibody validated in lung tissue™°. After cell-segmentation and quality control, we
annotated 76,369 cells. Cells were divided into major subtypes and then subtypes classified
based on markers of activation, differentiation, proliferation and apoptosis (Fig.2a,
Extended data Fig.2a).

In our Malawi cohort, neutrophils (CD66b”°CD11bP**CD14"¥'°*%) were significantly more
numerous in the LRTD cases (49.6%) than in the non-LRTD (21.1%) or Covid19 cases (16.1%,
adjusted p=<0.001) (Fig.2b,d, Extended Data Table2 and Fig.2e). Reciprocally, macrophages
were increased in Covid19 (44.1%) compared to LRTD (30.4%) and non-LRTD cases (23.6%;
adjusted p=<0.0001, Fig.2b,c, Extended Data Table 2). In contrast to data in prior published
USA and European cohorts®®?°, these were predominantly alveolar macrophages
(CD206""CD163"E"ba1"MHCII®“CD14"€) with a lower number of monocyte derived
CD14"&"" cells,

There were no consistent differences in T-cell numbers between the Covid19, LRTD and
non-LRTD disease groups, but among Covid19 cases there was an expansion in Tregs and
proliferating T-cells and a decrease in the ratio of effector memory (CD45R0"®") to naive
(CD45R0'") CD8 T-cells (Fig.2b, Extended data Table 2). B-cell numbers were not markedly
different in Covid19, although we had few B-cell markers (Fig.2b). Consistent with vascular
pathology visualised by histology (fibrin deposition and thrombosis), there was increased
endothelial cell activation in Covid19 compared with LRTD and non-LRTD cases (Fig.2b,
Extended data Table2). Alveolar macrophages were the most common SARS-CoV2-S+
immune cell, followed by Arg"&" neutrophils and interstitial macrophages (Fig.2b, Extended
data Table 2). In the stromal compartment type 2 pneumocytes (AT2) and epithelial cells
were the most frequent SARS-CoV2-S+ cells. We found no SARS-CoV2-S+ endothelial cells or
fibroblasts. Surprisingly, total numbers of SARS-CoV2-S+ cells were lower in HIV+ cases

(Extended data Fig.3c and Table 2).

Exploiting the spatial resolution of IMC and regions of interest selected based on a
dominant pathological lesion, we characterised cellular compositions of lesion-types
(Extended data Fig.2f), then quantified lesion-type levels by group (Fig.2e). Type Il
pneumocyte hyperplasia was specific to the Covid19 group. Diffuse alveolar damage
occurred in both LRTD and Covid19 but had different compositions indicating different
pathological processes. In LRTD, diffuse alveolar damage was mainly associated with
neutrophil-driven fibrinopurulent inflammation; in Covid19, it had a more heterogenous
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immune-cell composition, dominated by the presence of macrophages, except fibrin-
containing lesions which were neutrophilic. Together these implicate macrophages in
alveolar damage and lung parenchymal processes and neutrophils in coagulopathic
processes.

Integration of high-plex data across Covid19 cohorts highlights shared different myeloid
compositions and low levels of cells containing SARS-CoV2 antigen in Malawi cases

To systematically compare how the cell composition, degree of inflammation and amount of
virus differed between our Malawi cohort and other cohorts we integrated data from
Covid19 cases in our cohort (n=9) with two other cohorts that used IMC (Fig.2f): our Brazil
cohort (n=11) that employed the same antibody panel*” and a USA cohort®® (n=10) that
used several of the same markers including the same SARS-CoV2-S antibody. There were
many similarities in cell proportions between the three cohorts but also significant
differences (Fig2g,h). In the myeloid compartment there was a predominance of tissue-
resident myeloid cells in the Malawi cohort versus infiltrating cells in the USA cohort, the
Brazil cohort showed an intermediate phenotype. The USA cohort had the highest
proportion of neutrophils (26.28%; adjusted p=2.64x10"%), and Malawi cohort the fewest
(7.9%, Brazil 19%). Monocyte/macrophages were more frequent in the Brazil (58.5%) and
Malawi (55.1%) than USA cohort (35.1%). Notably, the Malawi cohort had a high proportion
of apoptotic alveolar macrophages (12.9%) which were absent in the other two cohorts,
indicating that there may be specific macrophage responses in the Malawi cohort.
Endothelial activation was prominent in the Brazil and Malawi cohorts, and virtually absent
in the USA cohort (Fig.2h). In the stromal compartments there was a lower proportion of
fibroblasts in the Malawi cohort, in keeping with lower levels of fibrosis on histology.

SARS-CoV-2-S antigen gives an indication of the quantity of viral material, although does not
distinguish cells with replicating virus. We hypothesised that a tolerance-skewed immune
response might lead to higher levels of virus in Malawi cases but did not find evidence of
this. The USA cohort had the highest number of SARS-CoV2+ immune cells (25.7%, Malawi
13.9, Brazil 5%), These were principally monocytes and neutrophils in the USA cohort versus
alveolar and interstitial macrophages in the Brazil and Malawi cohorts (Fig.2g, Extended
Data Table 4). In the stromal compartment SARS-CoV2-S was detected in epithelial cells in
all three cohorts but were significantly lower in the Malawi (Fig.2h)(6.3%, p=1.18x10"°)
compared to Brazil (13.1%) and USA (12.1%) cohorts.

We found no evidence of blunted immune response or higher viral loads in the Malawi
versus Brazil and USA cohort. The immune response signatures identified resident
macrophages in the Malawi cohort versus neutrophil and monocyte infiltration in the USA
cohort. A distinct apoptotic alveolar macrophage population in the Malawi cohort, together
with the prominence of alveolar macrophages in lung lesions (Fig.2e), led us to consider
whether these cells have differences in their inflammatory response in the Malawi cohort.
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Pulmonary cell scRNA-seq reveals low levels of viral RNA and an IFN-y dominated
response in the Malawi cohort

To explore cellular responses in the lung at greater depth in our Malawi cohort, including in
alveolar macrophages, we utilized scRNA-seq and single nuclei-sequencing (snRNA-seq)
from 4 Covid19 cases, 3 LRTD cases and 1 non-LRTD case. Integrating 78,000 cells resulted in
16 cell clusters composed of a mixture of immune and stromal cells (Fig.3a).

SARS-CoV?2 transcripts have been detected in scRNA-seq data in other postmortem
cohorts”®. We detected few SARS-CoV2 reads suggesting that at time of death there was
minimal replicating virus (Extended data Fig.3). This is contrary to our initial prediction of
tolerance and viral escape predominating in SSA populations but is consistent with our
other data supporting inflammatory rather than direct viral-driven pathogenetic
mechanisms.

We then undertook finer annotation of immune (Fig.3b) and stromal/vascular cell pools
(Fig3c). We identified alveolar and interstitial macrophages and monocyte-derived-
macrophages, consistent with monocyte/macrophage populations identified by IMC
(Fig.2a,d). Both mature and immature neutrophils were present. Stromal cells included
adventitial and alveolar fibroblasts as well as type | and Il pneumocytes (AT1, AT2) and
basal, secretory and ciliated epithelial cells. Cell proportions should be interpreted with
caution given few cases per group, but they showed cell diversity expansion in the Covid19
and LRTD groups not observed or absent in the LRTD group (Extended data Fig.4a,b).

Principal differences in Covid19 compared to LRTD were in myeloid cells, particularly
alveolar macrophages (Fig.3d,e), while few genes were expressed at higher levels in
lymphocytes, dendritic cells or stromal cells (Extended data Table 3). In alveolar
macrophages top differentially regulated genes included markers of tissue residency (C1QC,
C1QB)*" and factors shown to mediate lung fibrosis (CCL18)** and apoptosis (51006)** and
activation and recruitment of other myeloid cells (SPP13%. IFN-Y response protein (IFI30) and
MHC proteins (HLA-DRA, HLA-DRB1) were all upregulated, indicating response to IFN-y.
SPP1 in alveolar macrophages is also linked with smoke-induced lung damage through IFN-
v induction®”.

This IFN-y dominant response contrasts with Type | and Il dominant interferon responses
shown to be critical in pathogenesis in Northern hemisphere Covid19 cohorts***®. Given our
IMC data indicating a prominence of alveolar macrophages in the immune response and in
alveolar damage we analysed alveolar macrophage interferon response modules: IFN-y
response pathways were strongly upregulated in Covid19 compared to LRTD. IFN-3, IFN-A
and TNF responses were also upregulated but to a lesser degree. Across other myeloid cell
IFN responses were heterogenous and TNF response was upregulated in the LRTD group in
CD4 T-cells (Extended Data Fig.4c).
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Integration with Human Lung Cell Atlas (HLCA): IFN-y driven responses in Malawi cohort
and type /11l interferon responses in other cohorts

To validate the IFN-y response in the Malawi cohort compared to type | and Ill interferon
and IL1-dominant responses described in Northern hemisphere cohorts, and to understand
the implications for distinct therapeutic approaches we integrated our single cell data with
multi-cohort Covid19 (5 cohorts, 60 cases), LRTD (1 cohort, 13 cases) and non-LRTD (23
cohorts, 178 cases) data from the human lung cell atlas'® (HLCA)(Fig.4a)(cohorts
summarised Fig.1b).

We used pathway analysis to profile cellular response differences between our cohort and
cohorts in the HLCA (Fig.4b). Pathways indicative of IFN-y response were increased across all
cell types in the Malawi cohort (Fig.4b orange arrow). Furthermore, IFNG (IFN-y gene) was
specifically increased in the Malawi cohort in CD4 and CD8 T-cells versus HLCA Covid19 and
Non-LRTD groups (Extended data Fig.5), suggesting that macrophages are responding to
IFN-y produced by T-cells. Other inflammatory pathways showed a mixture of up and
downregulation in the Malawi cohort compared to HLCA cohorts, including IL6/JAK/STAT
(Fig.4b, green arrow) and TNF-NFKB (Fig.4b, blue arrow), key targets for therapies being
used in Covid19. Many of the other interferon-response genes were more upregulated in
the HLCA cohorts or had a heterogenous distribution across cells (Extended data Fig.5)
although notably monocyte-derived macrophages generally had a higher interferon
response in HLCA Covid19 cohorts (Extended data Fig.5).

These data show many shared inflammatory pathways between Malawi and HLCA cohorts
but with an amplified IFN-y response in the Malawi cohort, highlighting IFN-y production
from CD4/CD8 T-cells and response in alveolar macrophages.

Single-cell analysis of nasal cells may be a useful proxy for lung parenchymal responses

While lung is the principal organ involved in severe and fatal Covid19 disease, lung samples
are not easily accessible during life. For future Covid19 waves or other emerging diseases it
would be invaluable to predict lung responses using nasal or blood samples that can readily
be obtained.

We performed scRNA-seq on nasal cells in 8 cases (5 Covid; 2 LRTD and 1 non-LRTD) and
peripheral blood mononuclear cells in 7 individuals (4 Covid19, 2 LRTD and 1 non-LRTD). We
recovered 8,098 nasal cells which mapped to ten clusters composing immune and stromal
cells and 13,350 blood cells (Fig.5a,b). Nasal macrophages had several similar differentially
expressed genes in the Covid19 versus LRTD cases that mirrored lung alveolar macrophage
responses including SPP1 and C1QB, genes indicative of proliferation (LGALS1, TMSB10) and
MHCII genes (HLA-DPB1, HLA-DQA1) (Fig.5c). HLA-D upregulation is a canonical response to
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IFN—\(37 and consistent with this there was IFNG (IFN-y gene) upregulation in T-cells in the
Covid19 cases in comparison to LRTD cases (Fig.5d). Pathway analysis showed higher levels
of IFN-y response in macrophages and T-cells, further validating an IFN-y response in these
cells (Fig.5e). Blood monocytes in Covid19 versus LRTD cases had upregulation of the
alarmin S100A12 and of genes involved in inflammation (AREG) and vascular damage
(NDRG1) but not in genes indicative of IFN-y response and IFNG was not upregulated in T-
cells (Fig.5f). Hence in our small cohort nasal cells better paralleled lung response than
blood cells, supporting previous Covid19°**° and non-Covid19* studies that highlighted the
utility of nasal cells for understanding respiratory immune responses.

Since scRNA-seq is not available in most setting we assessed the extent to which cytokine
responses (Luminex) in plasma or nasal fluid could distinguish the inflammatory or IFN-

v response in Covid19 versus LRTD cases. In nasal fluid there was a trend towards several
cytokines being higher in Covid19 cases than in LRTD cases, but none significant and no clear
difference for IFN-y (Extended data Fig.6a). There was no clear blood circulating cytokine
response pattern, and no circulating cytokine levels were significantly higher in Covid19
compared to other groups (Extended data Fig.6b). A pseudobulk sequencing approach in
blood, nasal and lung cells also did not distinguish a clear IFN-y or any other specific
inflammatory cytokine signature between Covid19 and LRTD cases (Extended data Fig.6¢-
e). Single-cell methods identified an interferon signature and T-cell-macrophage axis, bulk
cytokine and gene expression approaches did not. Given very small numbers per group this
is perhaps unsurprising. It may stem from greater discriminatory power of single-cell
methods and is supportive of the value of single-cell approaches, particularly in small
cohorts.

Stromal cellular interactions are driven by macrophages and vascular interactions by
neutrophils

To validate our findings of the role of IFN-y responding alveolar macrophages in lung
parenchymal pathology and neutrophil interactions in vascular pathology, and to predict
novel molecular interactions to target therapeutically we used cell interaction methods.
First, unbiased receptor-ligand analysis of our scRNA-seq data highlighted that a large
proportion of the imputed interactions in the lung involved alveolar macrophages,
interacting with fibroblasts, epithelial cells and other immune cells including CD4 T-cells
(Fig.6a), in keeping with our findings from cell proportions, cellular histology and scRNA-seq.

To validate these interactions in a spatial context we used neighbourhood enrichment
analysis of IMC data to identify cells located close to each other with greater than expected
frequency as an indicator of their likelihood to be interacting (Fig.6b,c). In the non-LRTD
there were no significant interactions (Extended Data Fig.7). The LRTD group was
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completely dominated by neutrophil interactions (Fig.6b). In the Covid19 group several
neighbourhood enrichments were prominent — principally alveolar macrophages (with and
without SARS-CoV2-S and apoptosis) with apoptotic fibroblasts and to a lesser extent type Il
pneumocytes (Fig.6c¢). This supports the role in pathogenesis of alveolar macrophages
including the apoptotic population present in Malawi but not USA or Brazil cohorts. In
contrast the most prominent neighbourhood enrichment for neutrophils was between
SARS-CoV2-S+,Arg™" neutrophils and activated endothelial cells implicating neutrophils in
endothelial/vascular pathology.

We then looked at validated interactions in Covid19 in closer detail in sScRNA-seq data.
Macrophage interactions were frequently from ligands on type Il pneumocytes to receptors
on alveolar macrophages (Fig.6d), in keeping with type Il pneumocytes cells generally being
a principle infected cell*!
factor (MIF) from type Il pneumocytes with CD74, CD44 and CXCR4 on macrophages, a
classical response chain in macrophages and a key initiator of proliferation, chemotaxis and
activation®. ICAM-1 on type Il pneumocytes was predicted to signal to integrins (ITGB2-
ITGAM) on alveolar macrophages, an interaction involved in cellular attachment during

. Several of these interactions involved macrophage inhibitory

recruitment. Another strong predicted interaction was IL-34-CSF1R, involved in triggering
macrophage activation and chemotaxis. Reciprocally there were several interactions
between alveolar macrophages and epithelial cells consistent with our IMC data that
indicate their role in alveolar pathology. These included SPP1 and TGF[3 with type II
pneumonocyte integrins (ITGB6) (Fig.6e), interactions implicated in lung pathology and
34358 We identified multiple neutrophil interactions with endothelial cells indicating
processes involved in neutrophils attachment to the vascular wall (e.g., ITGAL-ICAM-1) and
of activation by neutrophil granule proteins (GRN-TNFRSF1A) (Fig.6f,g), providing molecular
validation supporting their role in coagulation, endothelial activation and vascular pathology
indicated by IMC.

fibrosis

These data highlight the value of a combined scRNA-seq and IMC approach. They provide
spatial and receptor-ligand validation for roles of alveolar macrophages in molecular
processes that are plausibly involved in alveolar damage and lung fibrosis, and for
neutrophils in endothelial activation. The data predict specific molecular interactions
involved in these processes. If validated by further work, some of these interactions may be
plausible targets for intervention, e.g., MIF for which several small molecules are in clinical
development for therapy in inflammatory disorders*.

Discussion

We conducted minimally invasive autopsies on fatal Covid19 and other LRTD and non-LRTD
cases in a Malawian population and characterised pulmonary, blood and nasal immune
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responses using scRNA-seq and IMC. While other studies have used these techniques for
Covid19 investigations in other settings, this is the first such study in a SSA population and
to our knowledge some of the first scRNA-seq data from lung samples in any SSA
population. Our de-identified data are provided open access, including tools for visualising
single-cell and histology data, making an important resource for furthering the global
understanding of Covid19 pathogenesis, immune responses in SSA populations and more
widely for the human cell atlas.

Given that many parasitic infections induce immune tolerance we hypothesised that there
might be an attenuated immune response in SSA populations, blunting immune-mediated
viral clearance and leading to high viral-loads in individuals who present with life-
threatening disease. If so, pathology might be driven by direct-viral effects rather than
hyperinflammation, indicating a need for different treatment approaches from Northern
hemisphere cohorts. In fact, we found a robust immune response and comparatively low
levels of virus, surprisingly even in highly immunosuppressed cases with HIV. Our data
indicate that pathology is driven by inflammation, with many similarities to other non-
African cohorts, in both histopathology and immunology. These similarities are reassuring,
indicating that many principles for diagnosis and treatment can likely be extrapolated from
more extensively investigated populations. However, there were also differences that may
have implications for therapy, in particular IFN-y responses were upregulated in comparison
to a large multi-country integrated HLCA dataset. IFN-y was produced by T-cells, with
alveolar macrophages the principle responding cells. Using IMC, we showed that these
resident macrophages were the dominant cell in pathological lesions. Spatially-resolved IMC
interaction analysis and scRNA-seq receptor-ligand analysis orthogonally validated these
processes. In contrast IL6 and TNF responses were not as prominent. scRNA-seq of nasal
cells also identified IFNG upregulation in T-cells and evidence of IFN-y response in
macrophages in a sample type that is readily accessible, supporting prior data on the utility
of nasal cells as an accessible proxy for lung responses.

There is cross-over between the responses of different interferons and IFN-y signal has been
detected previously in Covid19 lung’, yet it is interesting to consider why there was such a
marked upregulation in our cohort compared to the large integrated HCLA dataset. IFN-y
response has been shown to be a key component of effective immunity to malaria and is
augmented in malaria exposed individuals, in part through epigenetic changes termed
trained immunity"’. Increased IFN-y response was a key difference in SSA (Gabon) versus
European individuals exposed to controlled human malaria infection and a correlate of
protection®®. While type I/1ll interferons are more typically involved in clearance of SARS-
CoV2 and other respiratory viruses™, IFN-v also plays a role, particularly in macrophages™”.
Considering our data with these prior studies we propose that trained immune responses to
prior infections may favour an accelerated macrophage IFN-y response. We hypothesise
that this may be a double-edged sword in Covid19 in SSA: such an accelerated trained
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response may generally be protective (through more rapid viral clearance), but in a subset
of patients it may lead to accelerated hyperinflammation and collateral tissue damage. This
hypothesis is supported by the short time between symptom onset and death in our cohort
already with a clear hyperinflammatory response. Further exploration of macrophage
responses in both SSA and non-SSA populations is therefore warranted.

Considering the potential for translation the existing therapies for Covid19 target JAK/STAT
(Barcitimib), IL6 (Toculimazab/sarilumab) or TNF (infliximab)'**>. JAK/STAT signalling is a
conserved pathway for interferon responses including IFN—y45. Thus our data, if
corroborated, support potential efficacy of Baricitinib over other treatments. Barcitinib is a
small molecule (tablet) and thus highly suited to wide distribution.

Our data have several limitations. Our cohort was small and in a single centre. Although
single-cell methods have a higher capacity to resolve complex data in small sample sizes,
many analyses in our study were underpowered. It is thus unclear how representative our
data are of the wider Malawi or other SSA populations. Studies in other settings and ideally
large multi-centre studies, are needed. While this would be a complex undertaking, we have
demonstrated that single-cell methods are feasible in a SSA setting, and our study provides
useful templates. While lung samples cannot readily be obtained in live patients,
postmortem studies have limitations: cells may change or degrade; pathological processes
present early in disease are likely missed. Yet, postmortem studies in northern hemisphere
settings with longer postmortem intervals identified validated targets’. While minimally
invasive autopsy is more feasible and acceptable than traditional open autopsy, blind
sampling may attenuate the identification and sampling of areas of pathology. However,
except for large airway pathology, which was not sampled, most Covid19 features were
identified. The studies that we used for comparisons had significant variation in methods
and demographics from ours which may induce noise and bias. We used data-integration
methods which reduce but do not eliminate this. Reassuringly findings were validated both
by comparison to Human Lung Cell Atlas and orthogonal IMC data.

Our data establish the feasibility and utility of single-cell analyses in postmortem studies in a
SSA setting and provide a resource of lung, blood and nasal cells alongside histology and
spatial characterisation on a population not yet represented in the human cell atlas. Our
work indicates differences in the Covid19 inflammatory response among a Malawian cohort
compared to other non-African cohorts, highlighting IFN-y as a potential target for
intervention and supporting the utility of sScRNA-seq of nasal samples to assess respiratory-
tract immunology in LRTD.
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Online Methods

Ethics and sensitisation

The study protocol was approved by the National Health Scientific Research Committee
(NHSRC) in Malawi (Protocol number 07/09/1913) and by the Medical Veterinary Life
Sciences ethics committee in Glasgow (protocol number 200190041). Informed consent was
taken from the families of deceased patients. We underwent a full sensitisation process for
the study with all staff on the recruiting wards in our hospital to discuss the study and
consider the best way of sensitively conducting recruitment and informed consent. This
work was led by two social scientists (L.S., D.N.) one with specialised in Bioethics (D.N.).
Details of our approach and considerations for recruitment are published separately (/n
press).

Patients

We recruited patients aged 45-75 admitted to Queen Elizabeth Central Hospital, Blantyre
between October 2020 and July 2021 during which there were two epidemiological waves
driven by different SARS-CoV2 variants: Beta (Dec 2020-Feb 2021) and Delta (May-July
2021). Patients admitted with respiratory signs were routinely tested for SARS-CoV2 at
QECH. We recruited cases into three groups based on clinical criteria: 1) a Covid19 group
(n=9) with clinical features suggesting acute respiratory distress (ARDS, oxygen requirement
and either respiratory signs on clinical examination or chest x-ray changes or both) and who
had at least one nasal swab positive for SARS-CoV2 on admission; 2) A non-Covid19 LRTD
(lower respiratory tract disease) group (n=5) who had clinical signs of ARDS but were
negative for SARS-CoV-2 on admission and during hospitalization; 3) a no LRTD, COVID-19
negative group (n=2) who had no oxygen requirement and no clinical signs of LRTD and for
whom the admission and any subsequent nasal swabs were negative for SARS-CoV2 on PCR
(Fig.1b, Extended Data Table 1). The study only recruited cases who died between 12
midnight and 12 noon to minimise the postmortem interval and to avoid doing any
autopsies at night.

Minimally invasive autopsy

We used minimally invasive sampling to conduct autopsies with large-bore needle biopsies
of organ samples rather than full autopsy™. Being more culturally acceptable, MITS is widely
used to determine cause of death in paediatric studies'****®, showing good concordance
with full autopsy*®. From our ongoing paediatric MITs studies in Malawi, we adapted
protocols for adult patients with Covid19 to obtain tissue suitable for single cell RNA-
sequencing (scRNA-sequencing) and IMC. Based on CHAMPS but with adaptations. In
particular, a larger calibre needle (11 gauge) was used for biopsies to obtain larger tissue
samples. Samples were taken from the brain from supraorbital sampling from both left and

right sides. From each lung samples were taken from lower middle and upper zones from a
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single entry-point, angling the needle to sample different areas. Nasal cells were collected
from the nasal inferior turbinate using curettes (ASL Rhino-Pro, Arlington Scientific). Two
curettes were collected from each nostril and the cells placed immediately into ice cold
Hypothermosol (StemCell). Cells were transported on ice in a cold box immediately to the
lab and were spun at 300g for 5mins either for immediate processing for scRNA-seq or were
stored in Cryostor 10 (see below). Nasal fluid was collected using matrix strips
(Nasosorption, Hunt Developments). One strip was used per nostril.

PPE was worn by all staff involved in the autopsies and for all work in the lab. Lab work on
samples was done in vented laminar flow hoods.

Processing of Storage of samples

Biopsies from each organ were collected in three different ways for different downstream
workflows: 1) for paraffin embedding for histology and IMC put in 10% neutral buffered
formalin, 2) for viable cells put in ice cold hypothermosol (StemCell) for transport to the lab
and then slow frozen in Cryostor 10 (StemCell), 3) for snap frozen cells put in cryovials which
were then sealed and immediately submerged in liquid nitrogen.

Biopsies were fixed in 10% neutrophil buffered formalin for 4 - 8 hours, rinsed in water and
then embedded in paraffin blocks. Samples for viable cells were rinsed and cut into pieces of
approximately 20mm — 50mm and then put into ice cold cryostor for 15 — 30 mins before
transfer to a -80°c freezer in a chilled cryogenic storage container (CoolCell, Corning).

Blood cells collected into sodium heparin tubes were separated from plasma by spinning at
400g for 10 minutes. Plasma was then removed and spun for an additional 10 minutes at
1500g and plasma frozen in aliquots at -80°c. Cells were resuspended in 10% fetal bovine
serum in PBS and PBMCs were separated using ficoll histopaque with a 27min spin at 450g
and either used immediately for scRNA-seq or pelleted and resuspended in ice cold Cryostor
10 and then moved to a -80°c freezer in a chilled cryogenic storage container (CoolCell,
Corning). The following day samples were moved from the -80°c freezer to liquid nitrogen
for long term storage. Snap frozen samples were transferred in a liquid nitrogen dewar and
then moved to liquid nitrogen storage tanks for long-term storage.

Pathology and organ specific scoring

Formalin-fixed tissues were paraffin embedded (FFPE) for lung, bone marrow, brain, spleen,
and liver to make blocks. FFPE blocks were sectioned at 2-4 um thickness, mounted on glass
slides and stained with haematoxylin and eosin (H&E). A medical pathologist (S.K.) reviewed
tissue slides, alongside patients' history and antemortem lab results, per standard clinical
practice and also completed an organ specific scoring proforma that included Covid19
features (Supplemental table 1). Then, for a non-biased assessment, two additional
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pathologists, blinded to diagnosis, scored the lung pathology in all patients using systematic
scoring criteria®. Lung tissue was scored independently by two additional pathologists (C.A.
and V.H.), who were blinded to patient history and previous diagnoses. Following individual
scoring, any discrepancies were agreed by joint review of the slides until a consensus was
reached. The lung scoring was semiquantitative for the parameters indicated in Extended
data, Fig.1a-c. Subsequently, we characterised each sample with a dominant histological
characteristic, e.g., fibrinopurulent inflammation/pneumonia in case the neutrophil
infiltration with fibrin-extravasation was marked next to a mild infiltrate of lymphocytes,
plasma cells and macrophages. Whole tissue slides from lung samples in our 9 Covid19 cases
can be accessed in their entirety, and visualised at various magnifications, as if they were
observed under a microscope using our virtual microscope tool: https://covid-
atlas.cvr.gla.ac.uk (de-identified slides will be uploaded and publicly viewable on
publication).

After scoring, in each lung biopsy, the most representative areas were manually selected
based on the scoring performed on the H&E-stained section to create the tissue microarrays
(TMA) with cores of Imm in diameter using the TMA Grand Master (3Dhistech, USA) and
CaseViewer software (version 2.4.0119028). At least 8 regions of interest were taken from
each case (4 left, 4 right). From the newly created TMA-FFPE-blocks, 4 um thick sections
were cut and used for downstream imaging mass cytometry (IMC).

Cause of death attribution

A panel consisting of the pathologist who reviewed the cases, respiratory physician,
intensive care physician, infectious disease physician and two trainee doctors reviewed all
the cases to assign a cause of death. Codes assigning death were given according to ICD
codes and using the standard coding system used for death certification. The review
consisted of a review of the clinical notes, pre and post mortem lab results and the
pathology report. Each member reviewed the documents independently and reached an
individual verdict. When there was discrepancies a consensus was reached through
discussion.

Multiparameter Cytokine Assay

Cytokine levels were measured in plasma and nasal fluid samples using Luminex with the
Inflammation 20-Plex Human ProcartaPlex™ Panel (Thermofisher, EPX200-12185-901)
according to the manufacturers protocol and levels measured with a Luminex MagPix
device. Data were transformed with a log2 and for the visualistion with ComplexHeatmap in
R with a Z-score by gene. For the statistical tests of genes associated with the IFN-y pathway
we used a Welch Two Sample t-test. No significant differences for those genes was found
between the Covid-19 and LTRD samples.
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Imaging mass cytometry (IMC)

Sections from tissue micro arrays underwent deparaffinisation, followed by antigen retrieval
at 96°C for 30 min in Tris-EDTA at pH 8.5. Non-specific binding was blocked with 3% bovine
serum albumin for 45 min, followed by incubation with lanthanide-conjugated primary
antibodies (overnight at 4°C) which were diluted in PBS with 0.5% BSA (Table of antibodies
in Supplemental information). Antibodies were conjugated with metals using Maxpar
Antibody Labeling Kits (Standard BioTools) and were validated with positive control tissue
(tonsil and spleen for immune-targeted antibodies). Slides were then washed with 0.1%
Triton-X100 in PBS, followed by nuclear staining with iridium (1:400, Intercalator-Ir,
Standard Bio Tools) for 30 minutes at RT, and finally briefly (10 s) washed with ultrapure
water and air-dried. Images were acquired on a Hyperion imaging mass cytometer as per
manufacturer’s instructions {Standard BioTools). Each TMA core was imaged in a separate
region of interest.

Imaging Mass Cytometry (IMC) analysis.
Preprocessing, imaging denoise, cell sesgmentation and extraction of single-cell features
were performed using a combination of Python and R packages, such as

30,51 . . 13
I”*>" as described previously™.

ImcSegmentationPipeline, IMC-Denoise® and DeepCel
Briefly, for the single-cell analysis, the annotated data object was generated, protein
expression raw measurements were normalized at the 99th percentile to remove outliers. In
Scanpy (Single-Cell Analysis in Python v 1.9.1)>* PCA, batch-correction and harmony data
integration was performed to compute and plot the UMAP embeddings (umap-learn Python
package, v 0.5.3). Next, automated cell type assignment using the Python package Astir
(ASsignmenT of single-cell pRoteomics v 0.1.4)>, was applied to identify the major cell types
expected to be found in the lung tissue according to the antibody panel utilized. For cell
assignment with Astir, the following information to label cells based on a broad ontogeny
(metaclusters and major cell types) and the proteins (lineage markers) to be most expressed
in each expected cell type were used. Metaclusters and major cell types: (a) myeloid:
macrophage, neutrophil; (b) lymphoid: CD8 T cells, CD4 T cells, B cells; (c) vascular:
Endothelium, red blood cells (RBCs); (d) stromal: fibroblast, smooth muscle cell, epithelial.
Cell types: (a) macrophage: CD163, CD206, CD14, CD16, CD68, CD11c, Ibal; (b) neutrophil:
CD66b, Arginasel; (c) CD8 T cells: CD3, CDS8; (d) CD4 T cells: CD3, CD4; (E) B cells: CD20; (f)
endothelium: CD31; (g) fibroblast: Collagen1; (h) smooth muscle cell (SMC): SMA; epithelial:
PanCK; RBCs: CD235ab.

After cell assignment, cells labelled as “other” or “unknown” were filtered out from
downstream analysis, the annotated data object was subset into the major cell types
identified, i.e., macrophages, neutrophils, lymphoid, vascular, epithelial and stromal and
Phenograph Louvain clustering (with 200 nearest neighbors)>® was performed for each cell
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population separately using a small set of specific lineage marker and functional proteins, as
previously described™. The finer cell type annotation was used to evaluate the frequency
and absolute counts of cell types across clinical groups, histopathological lesions and HIV
status. Differential abundance analysis was also performed using the scanpro and scCODA
Python’s packages® and miloR R package (v 1.4.0)*. Spatial statistics analysis based on the
coordinates of the cells in the ROIs, were performed using the Python packages Squidpy
(Spatial Quantification of Molecular Data in Python v. 1.2.2)*°. Building of the spatial graph,
calculatin and plotting of the neighborhood enrichment scores were performed as
previously described®.

Integration of Malawi IMC data with other available IMC COVID-19 lung data.

IMC COVID-19 data from post-mortem lung samples from a Brazilian'® and US™® fatal cohort
were integrated with the Malawi IMC dataset. First, datasets were concatenated in Scanpy
taking the "inner" (intersection) of all common protein markers in the panels across the 3
IMC datasets. Then, with scvi-tools®” we applied different integration methods, such as
harmony and variational autoencoder (VAE)-based methods, such as scVI and scANVI.
Analysis of the UMAP embedding of the integrated versus non-integrated data showed that
harmony and scANVI performed better and in downstream analysis we used harmony-
integrated output. Next, cell identities were standardized (label harmonization), which
refers to a process of checking that labels are consistent across the datasets that are being
integrated. Finally, cell frequencies in the post-mortem lung across all 3 cohorts were
plotted and differential abundance analysis was performed using scanpro
(https://github.com/loosolab/scanpro) and scCODA Python’s packages™ and miloR R
package (v 1.4.0)>.

Dissociation of lung cells from frozen samples and single nuclei preparation.

Lung samples were dissociated both from fresh samples and from slow frozen samples that
had been stored in liquid nitrogen. Slow frozen cells were defrosted using a defrosting
protocol described previously’. Fresh or defrosted frozen cells were then dissociated
adapting methods developed previously®®. Briefly cells were dissociated in a buffer
containing 400ug/mL of Liberase DL (Sigma), 32U/ml of DNAse | (Roche) and 1.5% BSA in
PBS (without calcium and magnesium). The tissue was put in buffer (4 times weight:volume)
in a GentleMACS C-tube (Miltenyi 130-096-334) minced with scissors and then run on a
GentleMACS dissociator (130-093-235) on programme “C-lung 01_02". Dissociation was
achieved by warming tissue on an orbital shaker in a chamber at 37C for 30 mins and
running “C-lung 01_02" twice more; once at 15 mins and once at 30mins. Enzyme was
neutralised by diluting with 10ml of ice cold 20% FBS with 32u/ml of DNase and the sample
was filtered through a 100uM strainer (352360) and samples were subsequently kept on ice
with all centrifuge and antibody incubation steps at 4c. Cells were pelleted by spinning at
300g for 5 mins and red cells removed by incubation with ACK buffer for 5mins. For frozen
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cells debris were removed using a debris removal solution {Miltenyi, 130-109-398) according
to the manufacturers protocol. Single nuclei were prepared from snap frozen lung samples
as described previously’. Briefly, frozen lung tissue was kept on dry ice/ liquid nitrogen until
processing was started. Tissue was added to a gentle MACS C-tube containing 2ml of freshly
prepared nuclei extraction buffer which contained RNAse inhibitors; 0.2 U/uL RNaselN Plus
RNAse inhibitor (Promega) and 0.1 U/uL SUPERasin RNAse inhibitor (Thermofisher
scientific). Dissociation was achieved by running the C-tube on GentleMACs dissociator on
program “m_spleen_01" for 1 minute. The sample was then filtered using a 40 uM strainer.
The C-tube and strainer were rinsed using a buffer containing 0.1% enzymatics RNAse
inhibitor (Enzymatics). Sample was then pelleted by spinning at 500g for 10 minutes at 4°C.
Pellet was then resuspended in 500ul of 1xST without RNAse Inhibitor. The sample was then
filtered using 35uM strainer, a 10 pL volume was loaded on haemocytometer for counting.

Single cell and single nuclei partitioning and library preparation
10x 3’ 3v chemistry was used for all samples. For fresh lung samples we loaded 10,000 cells

into one channel of a 10x chip (1000120). For fresh nasal and blood samples we labelled the
nasal and blood samples with different hashtags and pooled them at a 1:1 ratio and loaded
10,000 — 20,000 cells. For frozen nuclei and single cell samples we pooled samples from 3 —
6 different cases aiming for equal ratios and loaded 20,000 — 40,000 cells/nuclei. Libraries
were prepared according to the manufacturers protocol and sequenced with an lllumina
NextSeq2000. To make these data available for analysis by others, reads were submitted to
ArrayExpress (E-MTAB-13544).

Analysis of single cell data

The reads were mapped using Cellranger (version 7, including introns) to a combined
reference of human, Covid19. For mixed genotypes, samples were separated using
SoupOrCell®®, and for hashtag oligonucleotide labelled mixes of nasal and blood samples
from the same patient, the CiteSeq protocol was followed. Data analysis was conducted in R
version 4.2.1, utilizing Seurat® for data integration within each tissue and with the Human
Lung Cell Atlas (HLCA) using Harmony. Differential expression analysis was performed with
MAST, and cell-cell interactions were assessed using multinichenetR
(https://www.biorxiv.org/content/10.1101/2023.06.13.544751v1). All figures were
generated in R. The different datasets are accessible on the Glasgow Cell Atlas website:
http://cellatlas.mvls.gla.ac.uk/. See additional details in supplemental information.
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Data Availability Statement

scRNA-Seq: Raw data and processed count matrices are deposited at the EBI ArrayExpress
(Accession number E-MTAB-13544 (private until publication). Fully processed .RDS objects
of the scRNA-seq analysis and IMC can be found through the GitHub repository (see Code
Availabilty Statement). The atlases are browsable using the cellxgeneVIP platform hosted by
the University of Glasgow at the following URLs:

Lung Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC Lung Atlas.h5ad/
Lung Immune Atlas - https://cellatlas-

cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC Lung Immune Atlas.h5ad/

Lung Stromal Atlas - https://cellatlas-

cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC Lung Stromal Atlas.h5ad/

Nasal Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC Nasal Atlas.h5ad/
Blood Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC Blood Atlas.h5ad/
Histopathology slides on virtual microscope: https://covid-atlas.cvr.gla.ac.uk

Metadata for the cases (without identifying information) is provided in Extended Table 1.
IMC - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_IMC_Lung.h5ad/
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All R scripts for the scRNA-Seq analysis and figure generation can found at
(https://github.com/olympiahardy/COSMIC Malawi Covid Atlas). Python scripts to process
the imaging mass cytometry and figure generation can also be found at the above
repository.
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Figure Legends — Main Figures

Figure 1 | Study overview, overview of our cohort and comparator cohorts and histological
lesion comparison with other cohorts.

A) Overview of study approach, image created using BioRender; B) Summary of the
characteristics of our Malawi cohort versus published cohorts that we have used for
different comparisons. C) Heatmap shows the proportion of cases in the three cohorts
(USA/European; Malawi; Brazil) that have each given lesion type.

Abbreviations:

SS to death = symptom start to death in days.

Path = Pathology. indicates the number of cases included in each cohort in which
postmortem pathological features are described.

Sys. Hist. = Systematic histopathology, denotes the number of cases included in each cohort
with scoring of the frequency and severity of different lesions scored based on pre-defined
criteria.

IMC = Imaging Mass Cytometry, number of cases with data for this.

Lung sc = lung cell single-cell RNA-seq, denotes the number of cases with scRNA-seq data
from lung tissue.

nasal sc = Nasal cell single-cell RNA-seq, denotes the number of cases with scRNA-seq data
from nasal tissue.

blood sc = blood cell single-cell RNA-seq, number of cases with this data
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Figure 2 | Imaging Mass Cytometry (IMC) reveals an immunopathological landscape of
Covid19 in Malawi cases driven by alveolar macrophages

A) UMAP embedding of the cell types identified in the lung samples by IMC, after supervised
assignment to major cell types. Each major cell type was clustered and resulting clusters
were annotated and merged to extract the final set of cell types. Colour key for cell types is
on right hand side of B. B) Frequency of the immune cell types identified in the post-
mortem lung samples by IMC according to clinical groups. The stacked bar plot shows the
averaged frequency of the cell types by grouping the values from regions of interest (ROls)
according to the clinical groups. Dashed lines highlight principle differences in major cell
populations between COVID-19 and other respiratory disease groups. C) Representative
denoised IMC images from COVID19 case shows high levels of CD206" macrophages (yellow)
and lower levels of neutrophils (CD66b, red) and monocytes (CD14, purple). D)
Representative denoised IMC images from LRTD case shows high levels of high levels of
neutrophils (CD66b, red) and low levels of CD206" macrophages (yellow). E) Frequency of
histopathological lesions based on matched H&E and IMC analysis of post-mortem lung
samples from the different clinical groups. The cellular composition and frequency of
different cell types is indicated in Extended data Fig. 3F. F) UMAP embedding of the
integrated IMC lung data from the Brazil, USA and Malawi COVID-19 cohorts. G) Comparison
of immune cell frequencies in IMC data from Brazil, Malawi and USA cohorts after
integration shown in F, some major cell group differences are highlighted by dotted lines.
Dashed box highlights apopototic alveolar macrophages which are only present in the
Malawi cohort. H) Comparison of stromal cell frequencies in IMC data from Brazil, Malawi
and USA cohorts after integration shown in F.

Figure 3 | Lung single cell atlas highlights IFN-yresponse in alveolar macrophages

A) UMAP visualisation of 66,882 lung cells across our cohort, coloured by broad cell types.
Outer circos tracks denote the proportion of each cell type across our three disease groups
(COVID-19 orange, LRTD blue and No-LRTD green) and whether the cells belong to patients
that are HIV positive/negative (blue and red respectively). B) UMAP visualisation of 33,504
lung cells reclustered at a higher resolution to characterise the immune landscape, coloured
by cell type. C) UMAP visualisation of 33,378 lung cells reclustered at a higher resolution to
characterise the stromal landscape, coloured by cell type. To note, cells assigned ‘soup’
were not able to be clearly defined by canonical cell type markers and were indicative of
multiplets/low quality cells. D) Volcano plot showing top differentially expressed genes in
alveolar macrophages in COVID-19 compared to LRTD with a significant adjusted p-value
(<0.05) and a log-fold change of more than 0.5. E) Violin plots showing the gene module
score across alveolar macrophages in gene sets associated with the gamma, alpha, beta,
lambda and TNF response in COVID-19 compared to LRTD. Black lines indicate the median
value across all cells, with asterisks to denote the significance level {ns = non-significant,
**E* = p <=0.0001).

Figure 4 | Integration with Human Lung Cell Atlas Covid19 cohorts highlights dominant T-cell
macrophage IFN-yaxis in Malawi Covid19 cases

A) UMAP visualisation of 147,935 lung cells deriving from integrating cells from Covid19,
LRTD and non-LRTD cases from our cohort with cells from the HLCA from non-LRTD, LRTD
and Covid19 cases. Clusters are coloured by cell type. B) Heatmap showing pathway analysis
for differentially expressed genes in our COVID-19 cohort compared to the HLCA COVID-19
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cohort. Shown are the 50 canonical hallmark gene sets (for list see Supplemental
information) coloured by the normalised enrichment score for each cell type. Gene ontology
pathways of interest are indicated by arrows (IL6 JAK STAT3 SIGNALING, green, TNFA
SIGNALING VIA NFKB, blue, INTERFERON GAMMA RESPONSE, orange). C) Dot plot showing
the average expression of top differentially expressed genes in the lung alveolar
macrophages that contribute the highest in the hallmark gene set “INTERFERON GAMMA
RESPONSE” pathway in our COVID-19 cohort compared to the HLCA COVID-19 cohort.

Figure 5 | scRNA-seq of nasal and blood cells: nasal but not blood cells parallel lung IFN-y
response.

A) UMAP visualisation of 8,098 nasal cells across our cohort, coloured by broad cell types.
Outer circos tracks denote the proportion of each cell type across our three disease groups
(COVID-19 orange, LRTD blue and No-LRTD green) and whether the cells belong to patients
that are HIV positive/negative (blue and red respectively). B) UMAP visualisation of 13,350
peripheral blood cells across our cohort, coloured by broad cell types. Outer circos tracks
denote the proportion of each cell type across our three disease groups (COVID-19 orange,
LRTD blue and No-LRTD green) and whether the cells belong to patients that are HIV
positive/negative (blue and red respectively). C-D) Volcano plots showing top differentially
expressed genes in nasal macrophages and T-cells in COVID-19 compared to LRTD with a
significant adjusted p-value (<0.05) and a log-fold change of more than 0.5. E-F) Volcano
plots showing top differentially expressed genes in peripheral blood monocytes and CD4+ T
cells respectively in COVID-19 compared to LRTD with a significant adjusted p-value (<0.05)
and a log-fold change of more than 0.5.

Figure 6 | Spatially resolved cell interaction analysis predicts molecular mechanisms of
alveolar and endothelial pathology

A) Circos plot showing the top 50 differentially expressed interactions upregulated in our
COVID-19 cohort compared to LRTD. Segments are coloured by cell type with ligands and
receptors labelled on the outside. Direction of the arrows show the senders of
communications i.e. expression of ligand, and receiver of communications. Inner tracks on
sender segments are coloured by the receiving cell type for ease of interpretation. B-C)
Heatmaps showing co-localised cell types as shown by the IMC providing insight into
potentially interacting cell types in the lung. D) Heatmap showing up/down-regulated
interactions in COVID-19 compared to LRTD driven by AT2 pneumonocytes to alveolar
macrophages. Coloured boxes indicate cell type with the ligand-expressing cell type
followed by the receptor-expressing cell type. E) Heatmap showing up/down-regulated
interactions in COVID-19 compared to LRTD driven by lung alveolar macrophages to lung
epithelial cells and interstitial macrophages. Coloured boxes indicate cell type with the
ligand-expressing cell type followed by the receptor-expressing cell type. F) Heatmap
showing up/down-regulated interactions in COVID-19 compared to LRTD driven by lung
endothelium to neutrophils. Coloured boxes indicate cell type with the ligand-expressing
cell type followed by the receptor-expressing cell type. G) Heatmap showing up/down-
regulated interactions in COVID-19 compared to LRTD driven by neutrophils to lung
endothelium. Coloured boxes indicate cell type with the ligand-expressing cell type followed
by the receptor-expressing cell type.
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Figure legends — Extended data

Extended data Figure 1 | The histopathology of fatal Covid19 versus fatal non-Covid19
LRTD and non-LRTD in Malawian cases.

Histopathology in the left and right lungs of the 16 cases was scored systematically using
pre-defined criteria by two pathologists who were blinded to clinical information. We used
identical scoring to a Brazil cohort that we have published on separately. A—C are
histograms of the scoring: A) Comparsion of Covid19 (n=9) and non-Covid19 fatal lower
respiratory tract disease (LRTD) cases (n=5). B) Comparison of histological features between
HIV+ Covid19 cases (n=5) and HIV- Covid19 cases (n=4). C) Comparison of Covid19 cases
from Malawi cohort (n=9) with cases from Brazil cohort (n=20). A two sided T-test was used
to compare lesion frequencies with no correction for multiple comparisions *=p=<0.05. D)
PCA of cases split by groups. E) UMAP of same data, including HIV status

Extended data Figure 2 | Cell atlas and phenotype of cell types identified in the post-mortem
lung tissue determined by Imaging Mass Cytometry (IMC).

A) Phenotype representation of each cell type identified in the lung samples. The heatmap
shows the mean expression of each protein marker in the IMC panel in each cell type
identified in the post-mortem lung tissue. B) Frequency of the immune cell types identified
in the post-mortem lung samples by IMC according to clinical groups and according to HIV
status within the COVID-19 group. C) Frequency of the stromal cell types identified in the
post-mortem lung samples by IMC according to clinical groups and according to HIV status
within the COVID-19 group. D) Frequency and absolute numbers of SARS-CoV-2 Ag+ cells in
the myeloid and epithelial compartments, determined by IMC, in the post-mortem lung
samples according to HIV status within the COVID-19 group. E) Cell type enrichment analysis
of the cell populations identified in Malawi lung IMC data. The comparison shown is
between COVID-19 versus LRTD cases. To correct for multiple testing, the spatial false
discovery rate (FDR) was calculated and only dots with spatialFDR < 0.05 are shown. F)
Cellular landscape of histopathological lesions based on matched H&E and IMC analysis of
post-mortem lung samples from the different clinical groups. The lesions were pooled and
the graph shows the average proportion of each cell type in each lesion type. Colour key is
as for Fig.2a,b.

Extended data Figure 3 | Minimal SARS-CoV2 reads in single-cell data of lung, nasal and
blood cells

(A) Lung reference as in Fig 3a. (B-D) UMAPs indicate the cells in which we found reads that
mapped to the SARS-CoV2 genome, coloured by case. D) Table showing absolute cell
numbers per case that contain expression of valid UMI to the SARS-CoV2 genome in the
lung, peripheral blood and nasal compartment.

Extended data figure 4 | Lung cell proportions and gene module scores

A-B) Cell type proportion bar plots of lung cell types in A) Immune cells and B) Stromal cells
corresponding with Fig 3B and Fig 3C, grouped by disease group. C) Heatmap showing the
mean gene module score across cells in gene sets associated with the alpha, beta, gamma,
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lambda and TNF response. Cell types have been grouped by COVID-19 and LRTD to show the
difference in response and module score values have been scaled between -1 and 1.

Extended data Figure 5 | Heatmap of interferon response genes in lung

Heatmaps showing the log fold change of up/down-regulated interferon response genes
taken from immunologic gene sets involved in the immune response. Comparisons include
the change in interferon response in cells from the HLCA COVID-19 cohort compared to the
control cases (A), our COVID-19 cohort compared to control cases from the HLCA (B) and
interferon responses from our COVID-19 cohort compared to the HLCA COVID-19 cohort (C).

Extended data Figure 6 | Bulk approaches to explore gene signatures

Heatmaps showing cytokine signatures in different tissues. Values are plotted as z-score
(grey mean not measured). Samples are grouped by their disease type. Luminex data of
Nasal (A) and Plasma (B). Data were transformed with a log2 and for the visualistion with
ComplexHeatmap in R with a Z-score by gene. For the statistical tests we compared levels of
IFN-y, IL6, IL8, TNF and IL1b in nasal fluid and plasma between the Covid-19 and LTRD
samples using a Welch Two Sample t-test which was non-significant for all comparisons, we
did not correct for multiple comparisons. {(C-E) Pseudobulk heatmaps showing cytokines
included in the Luminex panel on the transcriptomic level in the peripheral blood, lung and
nasal compartment per patient. As for Luminex we compared levels of IFN-y, IL6, IL8, TNF
and IL1b in nasal, blood and lung cells between the Covid-19 and LTRD samples using a
Welch Two Sample t-test which was non-significant for all comparisons, we did not correct
for multiple comparisons.

Extended data Fig 7 | Cell-cell interactions in the IMC datasets

(A) Heatmaps for the non-LRTD group showing co-localised cell types as shown by the IMC
providing insight into potentially interacting cell types in the lung, shown for comparison
with the same data from LRTD cases Fig.5b and Covid19 cases Fig5¢ (main figures) (B-D)
Cellular maps showing the spatial location of specific immune cells and the potential of cell-
cell interactions — highlighting spatially enriched macrophage interactions identified in
Fig.5b (main figure). (B) shows interactions between alveolar macrophages (purple),
apoptotic alveolar macrophages (blue) and apoptotic alveolar macrophages (yellow). C)
shows interactions between apoptotic alveolar macrophages (yellow) fibroblast (lilach) and
SARSCoV2+ Epithelial cells (purple) (D) shows interactions between activated endothelial
cells (blude) and SARSCoV2+ Neutrophils (green)

Extended data Table 1 | Characteristics of the patients

Summary table of cases recruited into our study.

Abbreviations:

PMI = post mortem interval in hours

Obese/ Underweight indicates nutritional status, determined by a combination of
abdominal circumference measurements and mid-arm circumference measurements and
based on reference data for men and women in African populations : 1 = overweight; ™1
= obese; MM = morbidly obese; | = underweight; 4 = severely underweight
Pre-morbidity: DM2 = type Il diabetes mellitus, HT = hypertension
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S.S. to death = symptom start to death, indicating the number of days between the first
symptoms consistent with Covid19 (fever, cough, headache etc) and death.

Lung IMC = Imaging Mass Cytometry, Lung sc = lung cell single-cell RNA-seq, nasal sc = Nasal
cell single-cell RNA-seq, blood sc = blood cell single-cell RNA-seq, Nasal Lx — Nasal Luminex,
is for Multiplexed cytokine array on nasal fluid. A dot for each of these parameters indicates
that data are available for that assay for that case.

Extended data Table 2 | Comparison of cell proportions in IMC data

The table is divided into three sections. The top section shows the proportion of different
immune, stromal and vascular cells in the three groups in the Malawi cohort: Covid19, LRTD
and non-LRTD and statistical comparison between the groups. The middle section shows
comparison between HIV positive and HIV negative Covid19 cases. The bottom section
shows comparison between the three IMC cohorts after integration: Brazil, USA and Malawi.

Extended data Table 3 | Differential gene expression in single-cell data by cell type
Differential gene expression analysis results from all cell types in the lung, nasal and blood
tissue compartments. The table is organised with each comparison of cell types in the
Malawi cohort in Covid-19 compared to LRTD in the three tissues and includes comparisons
between lung cells in the Malawi cohort compared to the HLCA cohort. The table contains
the average log fold change (avg_log2FC) along with the p-value (p_val) and multiple-test
corrected p-values (p_val_adj).
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