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Abstract 26 

Cephalopods are emerging animal models and include iconic species for studying the link between 27 

genomic innovations and physiological and behavioral complexities. Coleoid cephalopods possess the 28 

largest nervous system among invertebrates, both for cell counts and brain-to-body ratio. Octopus 29 

vulgaris has been at the center of a long-standing tradition of research into diverse aspects of cephalopod 30 

biology, including behavioral and neural plasticity, learning and memory recall, regeneration, and 31 

sophisticated cognition. However, no chromosome-scale genome assembly is available for O. vulgaris to 32 

aid in functional studies. To fill this gap, we sequenced and assembled a chromosome-scale genome of 33 

the common octopus, O. vulgaris. The final assembly spans 2.8 billion basepairs, 99.34% of which are in 34 

30 chromosome-scale scaffolds. Hi-C heatmaps support a karyotype of 1n=30 chromosomes. 35 

Comparisons with other octopus species’ genomes show a conserved octopus karyotype, and a pattern of 36 

local genome rearrangements between species. This new chromosome-scale genome of O. vulgaris will 37 

further facilitate research in all aspects of cephalopod biology, including various forms of plasticity and 38 

the neural machinery underlying sophisticated cognition, as well as an understanding of cephalopod 39 

evolution. 40 

Introduction 41 

Coleoid cephalopods (cuttlefish, squid, and octopus) comprise about 800 extant species 42 

characterized by highly diversified lifestyles, body plans, and adaptations. Cephalopod-specific traits, 43 

such as complex nervous systems (Young 1964; Hochner et al. 2006; Hochner 2012; Fiorito et al. 2014; 44 

Wang and Ragsdale 2019; Ponte et al. 2021), advanced learning abilities (reviewed in Marini et al. 2017), 45 

and the richness in body patterning considered to be involved in camouflaging and communication 46 

(Borrelli et al. 2006; Chiao and Hanlon 2019) have made this taxon ideal for studying evolutionary 47 

novelties. The neural plasticity of cephalopod brains and the existence of evidence for functionally 48 

analogous structures shared with mammalian brains have made cephalopods into a model comparative 49 

clade for neurophysiology research (Shigeno et al. 2018; Styfhals et al. 2022).  50 

Despite the technical difficulties of sequencing their typically large and repetitive genomes, the 51 

available cephalopod genomes have given insights into the genomic basis for the evolution of novelty  52 

(Albertin et al. 2015, 2022; Jiang et al. 2022; Kim et al. 2018; Li et al. 2020; Marino et al. 2022; 53 

Schmidbaur et al. 2022). The first-published cephalopod genome, that of Octopus bimaculoides (Albertin 54 

et al. 2015), made it clear that cephalopod genomic novelties were not attributable to whole-genome 55 

duplication, as occurred in the vertebrate ancestor (Meyer and Schartl 1999; Dehal and Boore 2005). 56 

Comparisons of recently available chromosome-scale genome assemblies, including those of the Boston 57 

market squid Doryteuthis pealeii (Albertin et al. 2022) and the Hawaiian bobtail squid Euprymna 58 

scolopes (Schmidbauer et al. 2022), have shown the impact of genome reorganization on novel regulatory 59 

units in coleoid cephalopods. Still, it is not yet known how these units are made in terms of their gene 60 

content or their evolution in separate squid and octopus lineages. In this respect, it is crucial that the 61 

growing cephalopod genomics resources and approaches help obtain high-quality genomes for the 62 

established experimental species.  63 

The common octopus, Octopus vulgaris, has long been used as a model for the study of learning 64 

and cognitive capabilities in invertebrates (reviewed in: Young 1964; Marini et al. 2017), and is also used 65 

as a comparative system in the study of neural organization and evolution (Shigeno et al. 2018; Ponte et 66 

al. 2022). Furthermore, recent advances in the culture of this species’ early life stages have increased its 67 

suitability for molecular approaches and have provided important developmental staging information 68 

(Deryckere et al. 2020). 69 

One bottleneck to studying O. vulgaris is the lack of a chromosome-scale genome assembly. 70 

While the reported karyotype of O. vulgaris is 1n=28 (Inaba 1959; Vitturi et al. 1982) or 1n=30 (Gao & 71 

Natsukari, 1990), to date there is no definitive answer. Existing genomic resources for O. vulgaris include 72 

a short read-based genome assembly (Zarrella et al. 2019), and a genome annotation based on the closely 73 
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related O. sinensis genome that is supported with PacBio Iso-Seq reads and FLAM-seq curation (Styfhals 74 

et al. 2022; Zolotarov et al. 2022). These resources have been valuable in characterizing the molecular 75 

and cellular diversity of the developing brain (Styfhals et al. 2022), the evolution of cephalopod brains 76 

(Zolotarov et al. 2022), and the non-coding RNA repertoire unique to cephalopods (Petrosino et al. 2022). 77 

Further improvements to the O. vulgaris genome assembly and genome annotation will provide a 78 

valuable resource to the cephalopod and neuroscience communities. 79 

Here we describe a chromosome-scale genome assembly and annotation of the common octopus, 80 

O. vulgaris. We have validated our assembly using available chromosome-scale genomes of octopus 81 

species (Li et al. 2020, Albertin et al. 2022; Jiang et al. 2022). Our analyses reveal large-scale 82 

chromosomal homologies, yet a pattern of local rearrangement within chromosomes between species. 83 

 84 
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Materials and methods 86 

Sample Collection 87 

One adult male Octopus vulgaris (780 g body weight, specimen tube3-27.05.21-GP, BioSamples 88 

ERS14895525 and ERS14895526) was collected in the Gulf of Naples, Italy (40°48'04.1"N 89 

14°12'32.7"E) by fishermen in May 2021. The animal was immediately sacrificed humanely following 90 

EU guidelines and protocols for collection of tissues from wild animals (Andrews et al. 2013; Fiorito et 91 

al. 2015) (see Data Availability for animal welfare information). The central brain masses (optic lobes, 92 

OL; supra-, SEM; sub-esophageal, SUB) were dissected out (ERS14895525), and the spermatophores 93 

(ERS14895526) were collected as described in Zarrella et al. (2019). All dissections were carried out on a 94 

bed of ice in seawater, and the excised tissues were then weighed and flash-frozen in liquid nitrogen. 95 

 96 

High Molecular Weight Genomic DNA Extraction 97 

High molecular weight genomic DNA (HMW gDNA) was extracted from frozen spermatophore 98 

sample (160 mg) (ERS14895526) using a salt-extraction protocol at the Stazione Zoologica Anton Dohrn 99 

(Italy) following Albertin et al. 2022. Briefly, two cryopreserved sample aliquots were each lysed for 3 100 

hours at 55°C in separate tubes of 3 mL lysis buffer containing proteinase K. Then 1 mL of NaCl (5M) 101 

was added to each tube. The tubes were mixed by inversion then spun down for 15 minutes at 10,000 rcf. 102 

The supernatants were then transferred to a new tube and 2 volumes of cold ethanol (100%) was added. 103 

The DNA precipitate was then spooled, washed, resuspended in elution buffer (10 mM Tris, 0.1 mM 104 

EDTA, pH 8.5), and stored at 4ºC. The DNA concentration was quantified using a Qubit DNA BR Assay 105 

kit (Thermo Fisher Scientific), and the purity was evaluated using Nanodrop 2000 (Thermo Fisher 106 

Scientific) UV/Vis measurements. 107 

 108 

10X Genomics Library Preparation and Sequencing 109 

A 10 ng aliquot of the spermatophore HMW DNA was used to prepare a 10X Genomics Chromium 110 

library (Weisenfeld et al. 2017) at the National Center for Genomic Analysis (Centre Nacional d'Anàlisi 111 

Genòmica - CNAG, Spain) using the Chromium Controller instrument (10X Genomics) and Genome 112 

Reagent Kits v2 (10X Genomics) following the manufacturer’s protocol. The library was indexed with 113 

both P5 and P7 indexing adaptors. The resulting sequencing library was checked that the insert size 114 

matched the protocol specifications on an Agilent 2100 BioAnalyzer with the DNA 7500 assay (Agilent). 115 

The library was sequenced at CNAG with an Illumina NovaSeq 6000 with a read length of 2x151bp, 116 

and was demultiplexed with dual indices (Supplementary Data 1). 117 

 118 
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Long-read Whole Genome Library Preparation and Sequencing  120 

The spermatophore HMW DNA was also used to prepare one Oxford Nanopore Technologies (ONT) 121 

1D sequencing library (kit SQK-LSK110) at CNAG. Briefly, 2.0 μg of the HMW DNA was treated with 122 

the NEBNext FFPE DNA Repair Mix (NEB) and the NEBNext UltraII End Repair/dA-Tailing Module 123 

(NEB). ONT sequencing adaptors were then ligated to the DNA, then the DNA was purified with 0.4X 124 

AMPure XP Beads and eluted in Elution Buffer. 125 

Two sequencing runs were performed at CNAG on an ONT PromethIon 24 using ONT R9.4.1 FLO-126 

PRO 002 flow cells. The libraries were sequenced for 110 hours. The quality parameters of the 127 

sequencing runs were monitored by the MinKNOW platform version 21.05.8 (Oxford Nanopore 128 

Technologies)  and base called with Guppy, version 5.0.11 (available through 129 

https://community.nanoporetech.com) (Supplementary Data 1). 130 

 131 

Omni-C Library Preparation and Sequencing 132 

A DoveTail Genomics Omni-C library was prepared at SciLifeLab (Solna, Sweden) using the flash-133 

frozen brain tissue from the same individual used to generate the ONT long reads and 10X Genomics 134 

chromium reads (ERS14895525). One hundred milligrams of brain tissue were pulverized to a fine 135 

powder using a mortar and pestle under liquid nitrogen. Two 20 mg aliquots of the pulverized tissue were 136 

fixed in PBS with formaldehyde and disuccinimidyl glutarate (DSG), and were prepared according to the 137 

manufacturer’s protocol as two separate libraries. To increase the final complexity, the two libraries 138 

bound to streptavidin beads were pooled together into a single tube prior to P7 indexing PCR. The 139 

amplified library was sequenced at SciLifeLab on an Illumina NovaSeq 6000 with a read length of 2x150 140 

bp, and was demultiplexed with one index (Supplementary Data 1). 141 

 142 

Nuclear Genome Assembly 143 

Sequencing produced 77Gb of ONT WGS reads (27.5x coverage) and 230.25 Gb of 10X Genomics 144 

linked reads (77.7x coverage). These data were assembled with the CNAG Snakemake assembly pipeline 145 

v1.0 (https://github.com/cnag-aat/assembly_pipeline) to obtain an optimal base assembly for further Hi-C 146 

scaffolding. In brief, this pipeline first preprocessed the 10X reads with LongRanger basic v2.2.2 147 

(https://github.com/10XGenomics/longranger) and filtered the ONT reads with FiltLong v0.2.0 148 

(https://github.com/rrwick/Filtlong), and then the ONT reads were assembled with both Flye v2.9 149 

(Kolmogorov et al. 2019) and NextDenovo v2.4.0 (Hu et al. 2023). The following evaluations were run on 150 

both assemblies and after each subsequent step of the pipeline: BUSCO v5.2.2 (Manni et al. 2021) with 151 

metazoan_odb10 and Merqury v1.1 (Rhie et al. 2020) to estimate the consensus accuracy (QV) and k-mer 152 

statistics, and fasta-stats.py for contiguity statistics. The best contig assembly was obtained with 153 

NextDenovo (see assembly metrics Supplementary Data 2), so the remaining steps of the pipeline were 154 

run on this assembly (Supplementary Figure 1 and Supplementary Data 2). 155 

The assembly was polished with 10X Illumina and ONT reads using Hypo v1.0.3 (Kundu et al. 156 

2019); collapsed with purge_dups v1.2.5 (Guan et al. 2020); then scaffolded with the 10X chromium 157 

reads using Tigmint v1.2.4 (Jackman et al. 2018), ARKS v1.2.2 (Coombe et al. 2018) and LINKS v1.8.6 158 

(Warren et al. 2015) following the Faircloth’s Lab protocol (http://protocols.faircloth-159 

lab.org/en/latest/protocols-computer/assembly/assembly-scaffolding-with-arks-and-links.html). The 160 

specific parameters and versions used to assemble the O. vulgaris specimen are listed in Supplementary 161 
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Data 3. Finally, 310 scaffolds shorter than 1 Kb were removed from the assembly. This assembly was 162 

used for scaffolding with Omni-C data. 163 

 164 

Omni-C Scaffolding 165 

The Omni-C reads (863.85 million read pairs) were then mapped to the assembly (Supplementary 166 

Data 4) using the recommended procedure from Dovetail Genomics  (https://omni-167 

c.readthedocs.io/en/latest/fastq_to_bam.html). In short, the reads were mapped to the reference using bwa 168 

mem v0.7.17-r1188 (Li 2013) with flags -5SP -T0, converted to a sorted .bam file, and filtered to reads 169 

with a minimum mapping quality of 30 with samtools v1.9 (Li et al. 2009) with htslib v1.9, and filtered to 170 

keep uniquely mapping pairs with pairtools v0.3.0 (Open2C et al. 2023).  The minimum mapping quality 171 

threshold of 30 was used to accommodate for the organism’s heterozygosity and repetitiveness (1.22% 172 

and 68.68%, respectively. see supplementary table Supplementary Data 5). After excluding PCR 173 

duplicates and improperly mated reads with pairtools, 231.59 million Hi-C read pairs were used to 174 

scaffold the assembly with YaHS v1.1 (Zhou et al. 2023) in the default mode, thus initially detects and 175 

corrects errors in contigs, introducing breaks at misjoins. 176 

 177 

Generation of the Hi-C Heatmaps and Manual Curation 178 

 179 

We then manually curated the scaffolded assembly using an editable Hi-C heatmap to improve the 180 

assembly’s quality and to correct misassemblies. The process described below was repeated for five 181 

rounds until there were no obvious improvements to make based on the Hi-C heatmap signal. 182 

Chromap v0.2.3 (Zhang et al. 2021) was used to align the Omni-C reads to the genome with a read 183 

alignment quality cutoff of Q0. The resulting .pairs file (quality cutoffs: 2,10) was converted using awk v 184 

4.2.1(Aho et al. 1988) to a .longp file, a format used by Juicebox Assembly Tools (Dudchenko et al. 185 

2018). We ran the script run-assembly-visualizer.sh from the 3D-DNA pipeline (Dudchenko et al. 2017)  186 

on the  .longp file to generate  a .hic file. The generate-assembly-file-from-fasta.awk script from the 3D-187 

DNA pipeline (Dudchenko et al. 2017), and the assembly-from-fasta.py from the Artisanal pipeline 188 

(Bredeson et al. 2022) were used to generate the .assembly files necessary to curate the .hic heatmap file 189 

in Juicebox Assembly Tools (Dudchenko et al. 2018).  190 

The resulting  .hic heatmap file was visualized using the visualization tool Juicebox v1.11.08 (Durand 191 

et al. 2016). Using the signal in the Hi-C heatmap we corrected the order and orientation of contigs within 192 

the chromosome-scale scaffolds, and placed small contigs and scaffolds onto the chromosome-scale 193 

scaffolds. A new .fasta assembly was generated from the corrected .assembly file by using the assembly-194 

to-fasta.py script from the Artisanal pipeline. 195 

The corrected assembly was aligned to the chromosome-scale O. sinensis (GCA_006345805.1) (Li et 196 

al. 2020), O. bimaculoides (GCA_001194135.2) (Albertin et al. 2022), and A. fangsiao (Jiang et al. 2022) 197 

genomes using minimap2 v2.24 (Li, 2018), snakemake v7.19.1-3.11.1 (Köster and Rahmann 2012) and 198 

the snakemake script GAP_dgenies_prep (https://doi.org/10.5281/zenodo.7826771). The resulting .paf 199 

file was visualized with D-GENIES v1.4.0 (Cabanettes and Klopp 2018). Regions of the  O. vulgaris 200 

chromosome-scale scaffolds that had ambiguous Hi-C heatmap signal, or regions that had no obvious 201 

homology to other Octopus spp. chromosome-scale scaffolds were removed from the chromosome-scale 202 

scaffolds and retained as smaller scaffolds at the end of the genome assembly .fasta file. Scaffolds were 203 

renamed based on homology with O. bimaculoides chromosomes. 204 

 205 
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Decontamination 206 

After curation, we ran the BlobToolKit INSDC pipeline (Challis et al. 2020), using the NCBI nt 207 

database (updated on December 2022) and the following BUSCO odb10 databases: eukaryota, fungi, 208 

bacteria, metazoa and mollusca. This analysis identified 226 scaffolds either matching the phylum 209 

Mollusca or having no-hit in the database (Supplementary Figure 2). A total of 47 small scaffolds 210 

matching other phyla (Supplementary Data 6 and Supplementary Figure 3) were considered contaminants 211 

and removed from the assembly. This scaffolded and decontaminated assembly was then carried forward 212 

for annotation and comparative analyses, and is available at https://denovo.cnag.cat/octopus and the 213 

INSDC (ENA, NCBI, and DDBJ) accession number GCA_951406725.1. 214 

Nuclear Genome Annotation 215 

The gene annotation of the octopus genome assembly was obtained by combining transcript 216 

alignments, protein alignments, and ab initio gene predictions as described below. A flowchart of the 217 

annotation process is shown in Supplementary Figure 4. 218 

Repeats present in the genome assembly were annotated with RepeatMasker v4-1-2 (Smit et al. 2013-219 

2015) using the custom repeat library available for Mollusca. Moreover, a new repeat library specific to 220 

the assembly was made with RepeatModeler v1.0.11. After excluding repeats from the resulting library 221 

that were part of repetitive protein families by performing a BLAST (Altschul et al. 1990) search against 222 

Uniprot, RepeatMasker was rerun with this new library to annotate species-specific repeats. 223 

PacBio Iso-Seq reads from several developmental stages were downloaded from NCBI 224 

(PRJNA718058, PRJNA791920, PRJNA547720) (García-Fernández et al. 2019; Deryckere et al. 2021; 225 

Zolotarov et al. 2022). Bulk RNA-seq from an adult octopus (Petrosino et al. 2022) was downloaded from 226 

the ArrayExpress database under accession number E-MTAB-3957. The short and long reads were 227 

aligned to the genome using STAR v-2.7.2a (Dobin et al. 2013) and minimap2 v2.14 (Li, 2018) with the 228 

option -x splice:hq. Transcript models were subsequently generated using Stringtie v2.1.4 (Pertea et al. 229 

2015)  on each .bam file, and then all the transcript models were combined using TACO v0.6.3 (Niknafs 230 

et al. 2017). High-quality junctions to be used during the annotation process were obtained by running 231 

Portcullis v1.2.0 (Mapleson et al. 2018) after mapping with STAR and minimap2. Finally, PASA 232 

assemblies were produced with PASA v2.4.1 (Haas et al. 2008). The TransDecoder program, part of 233 

the PASA package, was run on the PASA assemblies to detect coding regions in the transcripts.  234 

The complete proteomes of O. vulgaris, O. bimaculoides, and Sepia pharaonis were downloaded 235 

from UniProt in October 2022 and aligned to the genome using Spaln v2.4.03 (Iwata and Gotoh 2012).  236 

Ab initio gene predictions were performed on the repeat-masked assembly with two different 237 

programs: Augustus v3.3.4 (Stanke et al. 2006) and Genemark-ES v2.3e (Lomsadze et al. 2014) with and 238 

without incorporating evidence from the RNA-seq data. Before gene prediction, Augustus was trained 239 

with octopus-specific evidence. The gene candidates used as evidence for training Augustus were 240 

obtained after selecting Transdecoder annotations that were considered complete and did not overlap 241 

repeats, clustering them into genes, and selecting only one isoform per gene. These candidates were 242 

aligned to the Swissprot NCBI database with blastp v2.7.1 (Altschul et al. 1990) to select only those with 243 

homology to proteins. The final list of candidate genes was made of 1764 genes with BLAST hits to 244 

known proteins with e-values smaller than 10
-9

 and greater than 55% identity.  245 

Finally, all the data were combined into consensus CDS models using EvidenceModeler v1.1.1 246 

(EVM) (Haas et al. 2008). Additionally, UTRs and alternative splicing forms were annotated via two 247 

rounds of PASA annotation updates.  Functional annotation was performed on the annotated proteins with 248 
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Blast2go v1.3.3 (Conesa et al. 2005). First, a DIAMOND v2.0.9 blastp (Buchfink et al. 2021) search was 249 

made against the nr database. Furthermore, Interproscan v5.21-60.0 (Jones et al. 2014) was run to detect 250 

protein domains on the annotated proteins. All these data were combined by Blast2go v1.3.3, which 251 

produced the final functional annotation results.  252 

Identification of long non-coding RNAs (lncRNAs) was done by first filtering the set of PASA-253 

assemblies that had not been included in the annotation of protein-coding genes to retain those longer than 254 

200bp and not covered more than 80% by repeats. The resulting transcripts were clustered into genes 255 

using shared splice sites or significant sequence overlap as criteria for designation as the same gene. 256 

 257 

Nuclear Genome and Annotation Completeness Assessment 258 

The final O. vulgaris genome assembly, the annotated transcripts, the proteins from the annotated 259 

transcripts, and the other available octopus genomes were assessed for completeness using BUSCO 260 

databases as described above (Materials and Methods - Genome Assembly). To compare the qualities of 261 

each assembly, we used fasta_stats (Chapman et al. 2011) shown in (Table 1). We calculated the 262 

percentage of bases in the chromosome-scale scaffolds (Table 1) with bioawk v1.0 263 

(https://github.com/lh3/bioawk).264 
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Mitogenome Assembly and Annotation 265 

To assemble the mitochondrial genome we employed a strategy that uses a reference bait to select the 266 

mitochondrial nanopore reads, assembles those reads into a single circular contig, and then performs two 267 

rounds of polishing. To obtain the mitochondrial sequences, all ONT reads with a mean quality of ≥10 268 

were mapped with minimap2 v2.24 (Li 2018) against the circular complete, 15,744 bp mitochondrial 269 

genome of another specimen of O. vulgaris (NC_006353.1)  (Yokobori 2004) with the minimap2 270 

parameter -ax map-ont. We retained all reads with a mapping quality ≥ 13. Approximately 5,000 ONT 271 

reads passed these filters including 15 reads accounting for 181,644 total basepairs (12x coverage) with a 272 

mean length of 12,112 bp. 273 

All the retained ONT reads were assembled with Flye v2.9 (Kolmogorov et al. 2019) using the 274 

options flye  --scaffold -i 2 -g 15744 --nano-raw --min-overlap 7000. This produced one circular contig. 275 

The -i 2 option specified for flye caused this contig to be polished twice with the input ONT reads. After 276 

polishing the length of the circular contig was 15,651 bp, and a web blastn search revealed that it spanned 277 

the length of the NC_006353.1 mitochondrial genome. The circular mitogenome contig was rotated and 278 

oriented as follows. First, we annotated the contig using MITOS v2.1.3 (Bernt et al. 2013) with 279 

parameters -c 5 --linear --best -r refseq81m. Second, we use the coordinates in the results.bed file to 280 

orient the mitogenome, so it starts with the conventional tRNA Phenyl-Alanine (trnF) (Formenti et al. 281 

2021). 282 

To evaluate the assembly accuracy, we first aligned the selected ONT reads back to the assembly with 283 

minimap2 and visually inspected the alignment with IGV v2.14.1 (Robinson et al. 2023). Finally, the 284 

xcOctVulg1 mitogenome was aligned against the mitogenome of other species using DNAdiff v1.3 from 285 

mummer package v3.23 (Kurtz et al. 2004). These species included the mitogenomes of another specimen 286 

of O. vulgaris (NC_006353.1), O. sinensis (NC_052881.1), O. bimaculoides (NC_029723.1), and A. 287 

fangsiao (AB240156.1). From these pairwise alignments, we calculated the percent identity. 288 

Results and Discussion 289 

DNA Sequencing 290 

Sequencing the ONT WGS library yielded 8.3 million ONT PromethIon reads containing 82.57 291 

billion base pairs (Gbp) with 29.47x coverage per library. Sequencing of the 10X Genomics Chromium 292 

library yielded 762 million read pairs containing  228.69 Gbp with 81.64x coverage per library. The 293 

Omni-C library sequencing yielded 863.85 million read pairs, containing 259.16 Gbp of data with 33.02X 294 

coverage. Details about sequence data can be found in Supplementary Data 1. 295 

 296 

Manual Curation and Decontamination of the Assembly 297 

Manually curating the genome assembly improved the quality of the final assembly, as 495 scaffolds 298 

were placed in the chromosome-scale scaffolds, and 47 additional scaffolds were removed through the 299 

contamination analysis (Table 1). The final 2.80 Gb assembly, xcOctVulg1.1, has a scaffold N50 of 118.9 300 

Mb, an N90 of 18.2 Mb, QV39 and gene completeness estimated using BUSCO v5.3.2 with 301 

mollusca_odb10 of C:86.5% [S:85.8%, D:0.7%], F:3.4%, M:10.1%, n:5295 (Fig. 1C). The BUSCO score 302 

with metazoa_odb10 for the final assembly is C:92.3% [S:91.8%, D:0.5%], F:2.7%, M:5.0% (Table 2). 303 

The statistics for all intermediate assemblies are shown in Supplementary Data 2. Also, in Supplementary 304 

Figure 3 we show that the final assembly has been properly decontaminated. 305 

 306 
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The Octopus Karyotype 307 

 The genome assembly from this study contains 30 large scaffolds with Hi-C heatmap signal (Fig. 308 

1D) that is consistent with each scaffold representing a single chromosome and resembles the Hi-C 309 

heatmaps of other chromosome-scale octopus genome assemblies (Li et al. 2020; Albertin et al. 2022; 310 

Jiang et al. 2022). The first reported O. vulgaris karyotypes from Japan and Italy were 1n=28 311 

chromosomes (Inaba 1959; Vitturi et al. 1982), but later studies also using O. vulgaris individuals 312 

sampled in Japan reported at 1n=30 (Gao and Natsukari 1990). The karyotype 1n=30 has been reported in 313 

four other octopus species: Callistoctopus minor, Amphioctopus fangsiao, Cistopus sinensis, and 314 

Amphioctopus areolatus (Gao and Natsukari 1990; Adachi et al. 2014; Wang and Zheng 2017). The only 315 

exception is Hapalochlaena maculosa which does not have a confirmed karyotype, but 47 linkage groups 316 

were suggested for this species (Whitelaw et al. 2022). 317 

In light of the recent taxonomic designation of a new species O. sinensis  (East Asian Common 318 

Octopus) from the previously synonymous O. vulgaris (Gleadall 2016; Amor et al. 2017, 2019; Amor  319 

2023), this suggests that the reported O. vulgaris karyotypes probably belong to O. sinensis. Dot plot 320 

analyses, described below, show that O. vulgaris and O. sinensis share 30 homologous, largely collinear, 321 

chromosomes (Fig. 2). 322 

The final version of the O. vulgaris genome was aligned to the genomes of three octopus species, O. 323 

sinensis, O. bimaculoides, and A. fangsiao (Fig. 2). O. vulgaris and O. sinensis have a less diverged 324 

genome sequence and few inversions between homologous, collinear chromosomes. General 325 

chromosomal collinearity was also observed in comparison to O. bimaculoides (Fig. 2). We have found 326 

large-scale inversions (megabase-scaled, larger than 1Mb) throughout the genomes of two species. The 327 

overall sequence similarity is lower compared to the previous pair, and a greater number of chromosomal 328 

rearrangements are present, confirming that they are more diverged. This is expected considering that O. 329 

bimaculoides and the O. vulgaris-O. sinensis clade diverged around 34 million years ago (mya) (Jiang et 330 

al. 2022), while O. sinensis and O. vulgaris diverged just 2.5 mya (Amor et al. 2019). In Figure 2, the 331 

collinearity between O. vulgaris and A. fangsiao chromosomes is visible. As expected, as A. fangsiao is 332 

the most distant to O. vulgaris of the compared species, the genomes are even more rearranged. 333 

Our whole-genome alignment analyses support the hypothesis that O. vulgaris, O. sinensis, O. 334 

bimaculoides, and A. fangsiao share 30 homologous chromosomes (Fig. 2). Given the divergence time of 335 

these species, these results suggest that the karyotype of the common ancestor of this clade, and perhaps 336 

the common ancestor of octopuses, also had 30 chromosomes that still exist in extant species. 337 

Karyotype stability was described in the squid lineage (Decapodiformes) on loliginid and sepiolid 338 

squids (Albertin et al. 2022). This study has suggested that the smaller karyotype found in octopuses 339 

(1n=30) compared to squids (1n=46) results from secondary fusions of a more ancestral squid 340 

chromosomal complement. Recently, it has been suggested that chromosomal fusions impact 341 

recombination, as well as chromosomal nuclear occupancy, in mice (Vara et al. 2021). Therefore, 342 

chromosomal fusions in the common ancestor of the octopus lineage might be one of the drivers of 343 

diversification, as this changes the chromosomal interactions and is hypothesized to lead to the formation 344 

of novel regulatory units (Vara et al. 2021). Such events are important in light of understanding the 345 

emergence of octopus-specific traits. We infer from the genome-genome comparisons that a similar 346 

pattern of intrachromosomal rearrangements with the conservation of individual chromosomes is seen in 347 

octopus species, as described in squids (Albertin et al. 2022). However, the loliginids and sepiolids are 348 

estimated to have diverged 100 mya (Albertin et al. 2022), while the genera Octopus and Amphioctopus 349 

are estimated to have diverged 44 mya (Jiang et al. 2022). Therefore, a more-distant species chromosome-350 
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scale genome is needed to claim karyotype stasis in Octopodiformes. Nevertheless, future comparative 351 

studies of the genomes of these closely-related species will shed light on the evolutionary history of 352 

octopuses as a separate lineage of coleoid cephalopods. In addition to this, O. vulgaris is a model animal 353 

in neurobiological studies, and having a high-quality genome will facilitate further studies of the 354 

cephalopod brain. 355 

 356 

Nuclear Genome Annotation 357 

In total, we annotated 23,423 protein-coding genes that produce 31,799 transcripts (1.36 transcripts 358 

per gene) and encode 30,121 unique protein products. We were able to assign functional labels to 53.5% 359 

of the annotated proteins. The annotated transcripts contain 8.42 exons on average, with 87% of them 360 

being multi-exonic (Table 3). In addition, 1,849 long non-coding transcripts have been annotated. The 361 

number of protein-coding genes annotated here is slightly lower than those reported for other octopus 362 

genome assemblies, like O. sinensis (Li et al. 2020). After checking the general statistics of both 363 

annotations (Table 3), we can observe that the genes annotated here tend to be longer (both in the number 364 

of exons and global length). After comparing both methods, the main difference that we believe is 365 

responsible for this difference in length is the source of the transcriptomic data, the inclusion of long-read 366 

Iso-seq data in the annotation process is known to result in less fragmented and longer annotations.  367 

 368 

Nuclear Genome and Annotation Completeness Assessment 369 

The BUSCO score was calculated for the O. vulgaris, O. bimaculoides, O. sinensis, and A. fangsiao 370 

genomes. For the chromosome-scale O. vulgaris genome, the BUSCO score for a whole-genome 371 

nucleotide sequence using the metazoan reference dataset was 92.3% for complete genes (954 core 372 

genes). The full score can be seen in Table 2. This is an improvement considering the BUSCO score of 373 

the previous O. vulgaris genome assembly (GCA_003957725.1) for complete genes was 63.1% (Zarrella 374 

et al. 2019). Additionally, we assessed the completeness of the annotated proteome and transcriptome by 375 

calculating the BUSCO score against the metazoa_odb10 and mollusca_odb10 databases (Supplementary 376 

Data 2). 377 

 378 

Mitogenome Assembly and Annotation 379 

The mitogenome assembly of the O. vulgaris specimen (xcOctVulg1) has a length of 15,651 bp and 380 

contains 13 protein-coding, 23 ncRNA, 2 rRNA, and 21 tRNA genes. The ONT read alignment to the 381 

mitogenome shows a high consensus support for each nucleotide except for 16 positions (Supplementary 382 

Figure 5). These 16 positions are single nucleotide polymorphisms, not indels, and the base at each 383 

position is the base with the highest coverage in the reads at that position (Supplementary Figure 6). 384 

Therefore, the mitochondrial genome has a high per-base accuracy. 385 

The percentages of identity (See Supplementary Data 7) between the O. vulgaris and other octopus 386 

mitochondrial genome sequences are consistent with the phylogeny topology (Fig. 2, Supplementary Data 387 

7), and previous research on octopus taxonomy. The mitochondrial genome of the specimen collected in 388 

Japan and identified as O. vulgaris (NC_006353.1) shows a higher identity to O. sinensis (99.85%) than 389 

to our O. vulgaris specimen (96.79%). The 3.21% difference between the mitogenomes of the specimen 390 

from this study and NC_006353.1 is close to the estimated divergence rate (~2% divergence/million years 391 

(Arbogast and Slowinski 1998)) for O. vulgaris and O. sinensis (estimated time of divergence: 2.5mya 392 

(Amor et al. 2019).  These results suggest that the specimen collected in Japan and identified as O. 393 

vulgaris (NC_006353.1) is more likely to be O. sinensis. This possibility is consistent with recent 394 
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morphological, molecular, and geographic delimitations made between the O. sinensis and O. vulgaris 395 

species complex (Gleadall 2016; Amor et al. 2017, 2019; Amor  2023). 396 

 397 

Conclusion 398 

Octopus vulgaris is an important emerging model in comparative neuroscience, cognition research, 399 

and evolutionary studies of cephalopods. The chromosome-scale genome assembly and annotation 400 

reported here provide an improved reference for single-cell multiomics and the study of non-coding 401 

regions and gene regulatory networks, that require the context of chromosome-scale sequences. This 402 

assembly and annotation will also facilitate many avenues of cephalopod research, in particular analyses 403 

of genome evolutionary trends in octopus and cephalopods within invertebrates. Furthermore, the 404 

chromosome-scale O. vulgaris genome assembly will allow the estimation of chromosome rearrangement 405 

rates, the emergence of novel coding and non-coding genes among octopuses, and the turnover rates of 406 

putative regulatory regions. The scientific interest in O. vulgaris as a model animal in many fields 407 

including (evolutionary) developmental biology and neuroscience will be facilitated by the availability of 408 

a high-quality genome. 409 

These efforts may help bridge the traditional O. vulgaris research on neurobiology, behavior, and 410 

development to the molecular determinants involved in these fields. 411 

 412 

 413 

 414 

 415 

  416 
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 417 

Main Manuscript Figures 418 

419 
Figure 1 |  Octopus vulgaris assembly statistics and quality control. (A) A specimen of O. vulgaris. (B) A cladogram showing 420 
the phylogenetic relationship between the compared species and the family Argonautidae as an outgroup (Taite et al. 2023). 421 
Chromosome-scale genome assemblies are available for the starred species (*). (C) The snail plot shows that the final version of 422 
the chromosome-scale O. vulgaris assembly has N50 of 119Mb, the longest scaffold is 225Mb long, and a BUSCO score for 423 
complete genes of 86.6% against the mollusca_odb10 database. (D) The Hi-C heatmap of the final genome assembly shows 30 424 
chromosome-scale scaffolds with very few sequences in unplaced scaffolds. Photography credit © Antonio, Valerio Cirillo 425 
(BEOM SZN),  2023 (A). 426 

  427 
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 428 
 429 

Figure 2 | Comparative analyses of available chromosome-scale Octopodidae genomes. The figure shows the inferred 430 
phylogenetic relationship (Amor et al. 2017; Jiang et al. 2022; Taite et al. 2023) and the inferred divergence times (Amor et al. 431 
2019; Jiang et al. 2022)  of four octopus species. The diagrams show genome-genome alignments for each species compared to 432 
O. vulgaris.  433 
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Main Manuscript Tables 434 

Table 1 | Octopus genome assembly statistics.  435 

Assembly Number of 

scaffolds 

Number of contigs Scaffold sequence 

total 

Scaffold N50/L50 Number of 

scaffolds > 50 KB 

% of the bases in 

chromosome- 

scaled scaffolds 

Final chromosome-

scale O. vulgaris 

genome 

226 2758 2800.4 MB 118.9 MB/9 57 99.34 

Pre-curation 

scaffolded assembly 

O. vulgaris 

768 2776 2801.6 MB 118.3 MB/9 296 95.82 

Chromosome-scale O. 

bimaculoides 

(Albertin et al. 2022) 

145326 713915 2342.5 MB 96.9 MB/9 85 95.46 

Chromosome-scale O. 

sinensis (Li et al., 

2020) 

13516 20491 2719.2 MB 105.9 MB/10 1800 86.09 

Chromosome-scale A. 

fangsiao  

(Jiang et al. 2022) 

6409 9099 4341.1 MB 169.7 MB/10 1769 93.05 

  436 
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 437 

Table 2 | Octopus metazoa_odb10  BUSCO scores.  438 

Genome Complete 

BUSCO 

Single 

BUSCO 

Duplicated 

BUSCO 

Fragmented 

BUSCO 

Missing BUSCO 

Chromosome-scale O. vulgaris 92.3%  

[881] 

91.8% 

[876] 

0.5% 

[5] 

2.7% 

[25] 

5.0% 

[48] 

Contig-level O. vulgaris  

(Zarrella et al. 2019) 

63.1% 

[602] 

62.6% 

[597] 

0.5% 

[5] 

24.8% 

[237] 

12.1% 

[115] 

Chromosome-scale O. 

bimaculoides 

(Albertin et al. 2022) 

94.6% 

[903] 

94.2% 

[899] 

0.4% 

[4] 

3.2% 

[31] 

2.2% 

[20] 

Chromosome-scale O. sinensis (Li 

et al., 2020) 

95.7% 

[913] 

90.5% 

[863] 

5.2% 

[50] 

2.6% 

[25] 

1.7% 

[16] 

Chromosome-scale A. fangsiao 

(Jiang et al. 2022) 

93.5% 

[892] 

91.6% 

[874] 

1.9% 

[18] 

3.5% 

[33] 

3.0% 

[29] 

 439 

  440 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2023. ; https://doi.org/10.1101/2023.05.16.540928doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.16.540928
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

Table 3 | Genome annotation statistics.  441 

 OctVul6B annotation Osinensis 
ASM634580v1 
(Li et al. 2020) 

Number of protein-coding genes 23,423 31,676 

Median gene length (bp) 20,288 4,403 
Number of transcripts 31,799 31,676 
Number of exons  168,570 184,658 
Number of coding exons 161,430 180,943 
Median UTR length (bp) 1,255 441 
Median intron length (bp) 2,467 1,520 
Exons/transcript 8.42 5.83 
Transcripts/gene 1.36 1 
Multi-exonic transcripts  87% 81% 
Gene density (gene/Mb) 8.36 11.7 
 442 

  443 
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Data Availability Statement 444 

The data are available at https://denovo.cnag.cat/octopus. On the INDSC databases (ENA, NCBI, 445 

DDBJ) the genome is available at accession GCA_951406725.1, and the data in BioProject PRJEB61268. 446 

Euthanizing cephalopods solely for tissue removal does not require authorization from the National 447 

Competent Authority under Directive 2010/63/EU and its transposition into National Legislation. 448 

Samples were taken from local fishermen, and humane killing followed principles detailed in Annex IV 449 

of Directive 2010/63/EU as described in the Guidelines on the Care and Welfare of Cephalopods (Fiorito 450 

et al. 2015). The sampling of octopuses from the wild included in this study was authorized by the 451 

Animal Welfare Body of Stazione Zoologica Anton Dohrn (Ethical Clearance: case 06/2020/ec AWB-452 

SZN). Genomes of O. sinensis (GCA_006345805.1) (Li et al., 2020) and O. bimaculoides 453 

(GCA_001194135.2) (Albertin et al. 2022) were downloaded from NCBI, while the A. fangsiao genome 454 

(Jiang et al. 2022) was downloaded from Figshare (https://figshare.com/s/fa09f5dadcd966f020f3).  455 
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Supplementary Figures 756 

 757 

Supplementary Figure 1 | Genome assembly pipeline. Snakemake workflow is used to generate the scaffolded Octopus 758 
genome assembly.  759 
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 760 

Supplementary Figure 2 | Contamination analysis of the manually curated genome. The original manually curated assembly 761 
had some sequences belonging to other phyla. These fragments were found in the unplaced scaffolds in the assembly.  762 
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 763 

Supplementary Figure 3 | Contamination analysis of the final version of O. vulgaris genome. Decontamination of the 764 
assembly was successful, as the molluscan and no-hit sequences were kept. This is the final version of the chromosome-scale 765 
genome that was generated. 766 
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 767 

Supplementary Figure 4 | Annotation workflow. Combined data of protein sequences from different cephalopod species, and 768 
RNA sequences generated from adult and embryonic tissue were used to annotate the genome. This resulted in the annotation of 769 
CDS, UTRs, and alternative splice variants for the genome. 770 

771 
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 772 

Supplementary Figure 5 | Alignment of ONT reads to the O. vulgaris mitochondrial genome. The ONT reads aligned to the 773 
mitochondrial genome support the consensus of each position except for 16 nucleotides (see vertical coloured bars along the 774 
coverage track).   775 
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 776 

Supplementary Figure 6 | Coverage of ambiguous positions in the mitochondrial genome. The 16 positions that were 777 
polymorphic were single-nucleotide differences. The consensus sequence is that with the highest frequency in the reads. One 778 
example is shown here, with the G in the mitogenome appearing in most of the reads except one with an A. 779 
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