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ABSTRACT

The long term goal of this work is to develop powerful tools
for brain network analysis in order to study structural and func-
tional connectivity abnormalities in psychiatric disorders like
schizophrenia. Graph convolutional neural networks (GCNN)
are quite effective for learning complex discriminate features
in graph-structured data. Here, we explore the GCNN to learn
the discriminating features in multimodal human brain con-
nectomes for the purpose of schizophrenia disorder classifica-
tion. In particular, we train and validate a network using both
structural connectivity graphs obtained from diffusion tensor
imaging data and functional connectivity from functional mag-
netic resonance imaging data.We compare the GCNN method
with a support vector machine based classifier and other pop-
ular classification benchmarks. We demonstrate that the pro-
posed graph convolution method has the best performance
compared to existing benchmarks with F1 scores of 0.75 for
schizophrenia classification. This demonstrates the potential
of this approach for multimodal diagnosis and prognosis in
mental health disorders.

Index Terms— Brain connectivity, schizophrenia disorder,
classification, deep learning, graph convolutional network.

1. INTRODUCTION

Schizophrenia is a severe psychiatric disorder which causes
impairments in memory, attention, and other high-order cog-
nitive dysfunctions. Recent advances in magnetic resonance
imaging (MRI) have made it possible to examine the changes
in white and grey matter in the brain of patients suffering from
schizophrenia. Various functional neuroimaging techniques
are also being used to understand the abnormalities in neu-
ral activities of schizophrenia patients. A recent promising
research direction in context of neuroimaging analysis is the
conceptualization of a particular disorder as a dysconnectivity
syndrome [1]. Experimental studies have shown the evidence
of alterations in both structural and functional brain connec-
tivity of schizophrenia patients [2, 3]. In fact, a thorough
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characterization of the structural and functional connectome
is of importance to the development of novel biomarkers both
for prediction and treatment of schizophrenia [4]. Having such
biomarkers in schizophrenia could lead to clinically useful
tools for establishing both diagnosis and prognosis of the dis-
ease. From a methodology perspective, the choice of biomark-
ers can be addressed as a feature selection problem. The aim is
to capture relevant features enabling us to differentiate patients
from control subjects accurately.

Deep learning methods have been recently used to analyze
the whole brain connectome or neuroimaging data for various
brain disorders analysis [5, 6, 7, 8]. Ktena et al [5] proposed a
graph neural network to analyze brain functional connectivity
networks for autism classification. A multi-scale graph convo-
lutional network (MMTGCN) was introduced for brain connec-
tivity based analysis. In particular, it was employed for classi-
fication of multiple disorders - attention-deficit/hyperactivity
disorder (ADHD), mild cognitive impairment (MCI) and cere-
bral small vessel disease (cSVD). Zhang et al. [9] proposed
a graph neural network using multiple modalities of brain im-
ages in relationship prediction which is useful for distinguish-
ing Parkinson’s disease (PD) cases from controls. A multi-
class classifier for classification of subjects on the Alzheimer’s
disease (AD) spectrum using structural connectivity graphs
based on diffusion tensor imaging (DTI) in [1]. We note that
not much effort has been made in machine learning based
classification of schizophrenia disorder. Authors in [10] pro-
posed a support vector classifier (SVC) based classifier that
aims to classify brain connectomes by maximizing the margin
between classes of healthy subjects and schizophrenia patients.
They also investigated the performance of the classifier for
connectomes with different resolutions.

In this paper, we propose a graph convolutional neural
network which learns to distinguish between brain networks
of schizophrenia patients and healthy controls. From a concep-
tual view of graph network, we use a structural connectome as
the underlying graph structure and the concerned input graph
signal is derived from the functional connectomes. In partic-
ular, the graph signal at each node is the vector containing
functional similarity to rest of the nodes in brain.
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This paper is organized as follows. In Section 2, we in-
troduce the basics of the GCNN, it’s implementation, and the
steps of dataset preparation. In Section 3, we present the re-
sults of schizophrenia classification performance along with
the details of quality metrics used for evaluation. Finally, we
conclude our findings in Section 4.

2. METHOD

2.1. Graph Convolution on Brain Network

Human brain networks are known to depict activity patterns
within the brain, and these connectivity patterns have a unique
graph architectures at the whole brain scale. Nodes in a graph
can represent region-of-interests (ROIs) accompanied by a set
of features. To learn the topological attributes of both brain
structural and functional connectivity networks, we explore
the unique nature of graph convolutional neural networks. In
particular, the idea is to learn the functional characteristics
of the brain via convolutional deep network defined on the
structural graph. Visual examples of cohort level connectomes
are shown in Figs. 1 and 2. Notice the subtle differences
between each pairs. All four connectomes are from a public
dataset [11]. Each connectome has 83 ROIs out of which 68
ROIs are in cortical and rest 15 ROIs are in sub-cortical regions
of the brain.

We construct the graph G from structural connectome S’;
where the number of nodes [V is the number of ROIs in the
connectome. Each edge weight in G is given by the connection
strength between a pair of ROIs. The normalized Laplacian is
defined as:

L=(I-D 28D~ ?%), (1)

where the degree matrix D = diag, [ > S’Z-j] is obtained from
the structural connectome. Graph signal at each node is derived
from the functional connectome F = [fi, f2,..., fx]%. In
other words, the input graph signal at node ¢ is given by z; =
fi,¥i=1{1,2,..., N}. The spectral convolution at k£*" layer
is defined on graph G as follows:

X*+D = ReLU(W h(L)X"), )

where W is a learnable weight matrix of the layer and £ is
arbitrary function. Suppose h(L) = Uh(A)U”, where U
is the matrix whose columns are eigenvectors and A is a di-
agonal matrix with eigenvalues of L . For the sake of com-
pleteness, the input graph signal at the 0" layer is given by
X% =[f1, fa, ..., fn]*. To overcome the computational bot-
tleneck of computing the eigenvectors of L, authors in [12],
proposed Chebyshev polynomial approximation of the spectral
filtering:

K
h(L) =Y 6, Ti(L), 3)
k=0

where L = (2L /Moo — I). Furthermore, the Chebyshev
polynomial can be computed recursively. Therefore, there
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Fig. 1. Cohort-level structural (DTI) connectomes.

(a) Control.

(b) Schizophrenia.

Fig. 2. Cohort-level functional (fMRI) connectomes.

is no need of computing the eigen decomposition. Finally,
the trainable variables are weight matrix ¥V and Chebyshev
coefficients vector 6 of length (K + 1).

2.2. Proposed Deep Architecture

Our proposed deep network is shown in Fig. 3. As the
theme of research suggests, the core component of the pro-
posed architecture is a graph convolutional neural network
is in (2). The network contained five layers including three
graph convolutional layers (denoted GCN) and two fully con-
nected layers, each followed by a rectified linear unit (denoted
ReLU). Finally we have a softmax output layer computing
class-membership probabilities. We use cross-entropy loss
to guide the learning of the proposed classification network.
Note that our deep network is relatively low-weighted. In fact,
we refer [13] which reported a study the effect of numbers of
graph convolutional layers in autism prediction.

2.3. Data Augmentation

Availability of sufficient amount of data to adequately train
a deep network is often a real concern in brain image anal-
ysis. Data augmentation is a process to create new artificial
data by inducing artificial perturbation to the available data
set. It is known in the literature to be effective for increasing
robustness and even performance boosting. Driven by the
symmetric nature of brain connectomes, we propose to add
random Gaussian noise (symmetric) as follows:

F:F+g(n+nT), @)
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Fig. 3. Architecture of our deep learning model to classify schizophrenia (SCHZ) patients and healthy control (CTRL) subjects.
The step of multimodal brain connectome integration is also demonstrated using color-coding. Notice that the graph signal (light
brown) in the input comes from functional brain connectome. On the other hand, the graph structure (light blue) i.e. edge weights

are constructed from structural connectome data.

where n is a N x N matrix whose entries are drawn from
N(0,1). We basically perform augmentation only on the
functional data. However, no perturbation is performed on the
graph structure.

2.4. Dataset

The dataset used in our experiments are downloaded from [11].
The cohort consists of a schizophrenic group of 27 subjects
and a control group of 27 healthy subjects. All of the data
was collected at the Service of General Psychiatry at the Lau-
sanne University Hospital. The schizophrenic patients were
diagnosed with schizophrenic and schizo-affective disorders
after meeting the DSM-1IV criteria. Control subjects had no
history of neurological disease. All 54 subjects had given writ-
ten consent following the institutional guidelines approved by
the Ethics Committee of Clinical Research of the Faculty of
Biology and Medicine, University of Lausanne, Switzerland.

2.5. Data Preparation

A 3 Tesla Siemens Trio scanner with a 32-channel head coil
was used for scanning all subjects. The data collection protocol
consisted of three imaging modalities: (A) a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence
sensitive to white/gray matter contrast (1-mm in-plane resolu-
tion, 1.2-mm slice thickness), (B) a diffusion spectrum imaging
(DSI) sequence (128 diffusion-weighted volumes and a sin-
gle b0 volume, maximum b-value 8,000 s/mmz2, 2.2x2.2x3.0
mm voxel size), and (B) a gradient echo planar imaging (EPI)
sequence sensitive to BOLD contrast (3.3-mm in-plane reso-
lution and slice thickness with a 0.3-mm gap, TE 30 ms, TR
1,920 ms, resulting in 280 images per participant).

Structural connectivity matrices were computed using de-
terministic streamline tractography on reconstructed DSI data.
The pipeline was initiated with 32 streamline propagations per
diffusion direction, per white matter voxel. Structural con-
nectivity between pairs of regions was measured in terms of
fiber density between each pair of ROIs. We note that fiber
density is defined as the number of streamlines between the

two regions, normalized by the average length of the stream-
lines and average surface area of the two regions. Functional
connectomes were estimated from fMRI BOLD time-series.
In particular, the absolute value of the Pearson correlation was
computed between individual brain regions’ time-courses.

3. RESULT

3.1. Evaluation Metric and Benchmarks

We examine the effectiveness of our multimodal classification
method on a public dataset of schizophrenia [11]. We perform
3-fold cross validation in the training process. Specifically,
we randomly select 1/3 of the sample size from each class
as the testing dataset, while the remaining 2/3 of the subjects
are treated as the training dataset. This way we successfully
utilize the existing available subjects to produce an unbiased
performance. To evaluate the classification performance, We
use six different metrics as follows: accuracy (ACC), sensi-
tivity (SENS), specificity (SPEC), positive predictive values
(PPV), negative predictive values (NPV) and F} score.

We compare the classification performance of our method
with three conventional learning-based methods: K-nearest
neighbour (KNN), logistic regression, and K-means clustering.
Finally, we compare with the state-of-the-art method [10] for
schizophrenia in the literature.

3.2. Classification Performance

Our deep learning model was trained and tested using the
TensorFlow python platform. During training, we use cross-
entropy loss function which was minimized using the stochas-
tic gradient descent (SGD) with momentum algorithm. The
algorithm parameters are as follows: learning rate 0.001, batch
size 18, decay rate 0.998, momentum 0.95 and 800 training
epochs.

We start with baseline and competing approaches to evalu-
ate the classification performance. For all six quality metrics,
a higher value indicates better classification performance. We
present the summary of our experimental results in Table 1.
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Table 1. Comparison of schizophrenia classification.

Method ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%) "

KNN 583+ 6.1 66.4 +9.1 54.0 £ 8.8 59.5+6.0 63.8 +94 0.608
Logistic Reg. 70.2 £3.9 68.8 + 6.4 72.2 £ 5.6 71.7£5.2 704 £ 5.1 0.695
K-means 519+ 6.6 496 £ 1.1 54.5+9.38 53.4 £ 8.1 51.1£70 0.525
SVC[10] 70.0 £ 6.4 724+ 64 70.0+7.3 71.0£5.9 71.8 £5.2 0.678
Proposed 73.1 £ 4.6 78.2 + 5.8 68.1 £ 8.1 71.5+£53 74.5 + 5.1 0.751

We report the mean and standard deviation of each entry after
performing 30 realizations. It is evident that our proposed
method offers the highest classification accuracy when com-
pared with the other four methods. Notice that the F score
obtained by our method is significantly better. We highlight
the improvement over the SVC based method [10] designed
for schizophrenia analysis.

4. CONCLUSION

In this paper, we proposed a graph neural network method from
multimodal human connectome to develop a robust biomarker
for the identification of subjects with schizophrenia. As inher-
ent in deep learning, we perform an automatic feature selection
from the input aiming to retrieve more meaningful biomarkers
performing accurately on the identification of schizophrenia
versus healthy controls. By efficiently integrating both struc-
tural and functional connectivity matrices as a multi-modal
representation of connectomes, our method was able to achieve
more accurate schizophrenia classification. In future research,
we plan to further improve our method by combining multi-
scaled higher resolution connectomes within our deep model.
In a different direction, we plan to explore deeper understand-
ing of clinical relevance. This would also include address-
ing the question whether the alteration of structural or func-
tional connectomes play a more important role for the task of
schizophrenia classification.
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