

1 **Elimination of subtelomeric repeat sequences exerts little**
2 **effect on telomere essential functions in *Saccharomyces***
3 ***cerevisiae***

4 Can Hu¹, Xue-Ting Zhu¹, Ming-Hong He¹, Yangyang Shao², Zhongjun Qin², Zhi-Jing Wu^{1,3*} and
5 Jin-Qiu Zhou^{1,3*}

6 ¹ The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell
7 Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences;
8 University of Chinese Academy of Sciences, Shanghai, 200031, China;

9 ² Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences,
10 Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University
11 of Chinese Academy of Sciences, Shanghai, 200032, China;

12 ³ Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for
13 Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.

14 *To whom correspondence should be addressed. Tel: +86-21-54921076; Fax: +86-21-
15 54921075; E-mail: jqzhou@sibcb.ac.cn or wuzhijing6@sibcb.ac.cn

16 ABSTRACT

17 Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome
18 stability and integrity in eukaryotes. In the baker's yeast *Saccharomyces cerevisiae*, the X- and
19 Y'-elements are subtelomeric repetitive sequences found in all thirty-two and seventeen
20 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells
21 lacking telomerase, the function of the X-elements remains unclear. This study utilized the *S.*
22 *cerevisiae* strain SY12, which has three chromosomes and six telomeres, to investigate the role
23 of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements
24 (SY12^{YΔ}), X-elements (SY12^{XYΔ+Y}), or both X- and Y'-elements (SY12^{XYΔ}) did not impact the
25 length of the terminal TG₁₋₃ tracks or telomere silencing. However, inactivation of telomerase in
26 SY12^{YΔ}, SY12^{XYΔ+Y}, and SY12^{XYΔ} cells resulted in cellular senescence and the generation of
27 survivors. These survivors either maintained their telomeres through homologous
28 recombination-dependent TG₁₋₃ track elongation or underwent microhomology-mediated intra-
29 chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric
30 X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null
31 cells and suggest that these elements may represent remnants of *S. cerevisiae* genome
32 evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise
33 telomere structures and offer potential models for future studies in telomere biology.

34 INTRODUCTION

35 Telomeres, specialized nucleoprotein structures located at the end of linear chromosomes in
36 eukaryotic cells, are crucial for maintaining genomic stability and protecting chromosomal ends
37 from being perceived as DNA breaks (Wellinger and Zakian, 2012). In the budding yeast
38 *Saccharomyces cerevisiae*, telomeric DNA consists of approximately $\sim 300 \pm 75$ base pairs of
39 $\text{C}_{1-3}\text{A}/\text{TG}_{1-3}$ repeats with a 3' G-rich single-stranded overhang (Wellinger and Zakian, 2012).
40 Adjacent to the telomeric TG_{1-3} repeats, there are subtelomeric repeat elements known as X-
41 and Y'-elements, which vary between telomeres, as well as strains (Chan and Tye, 1983a, b;
42 Louis, 1995). The Y'-elements, immediately internal to the telomeric repeats, are present as a
43 tandem array of zero to four copies, they fall into two major size classes, 6.7 kb Y'-long (Y'-L)
44 and 5.2 kb Y'-short (Y'-S) (Chan and Tye, 1983a, b). Y'-elements are highly conserved with
45 only $\sim 2\%$ divergence between strains (Louis and Haber, 1992). One entire Y'-element contains
46 two large open reading frames (ORFs), an ARS consensus sequence (ACS) and a STAR
47 element (Subtelomeric anti-silencing regions) consisting of binding sites for Tbf1 and Reb1
48 (Chan and Tye, 1983a, b; Fourel et al., 1999; Louis and Haber, 1992). The X-element, a much
49 more heterogeneous sequence abutting Y'-elements or telomeric repeats, contains the 473 bp
50 "core X" sequence and the subtelomeric repeats (STRs) A, B, C and D (Louis and Haber, 1991;
51 Louis et al., 1994). The STRs are found in some chromosome ends, while the "core X"
52 sequence is shared by all chromosomes. Recent long-read sequencing shows that
53 subtelomeric regions display high evolutionary plasticity and are rich in a various of structure

54 variants such as reciprocal translocations, transpositions, novel insertions, deletions and
55 duplications (O'Donnell et al., 2023).

56 Telomeric DNA elongation primarily relies on telomerase, an enzyme comprising a reverse

57 transcriptase, an RNA component, and accessory factors (Palm and de Lange, 2008; Wellinger

58 and Zakian, 2012). In *S. cerevisiae*, the telomerase holoenzyme consists of the reverse

59 transcriptase Est2, the RNA template TLC1, and accessory factors Est1, Est3,

60 Pop1/Pop6/Pop7 proteins (Lemieux et al., 2016; Lendvay et al., 1996; Lundblad and Szostak,

61 1989; Singer and Gottschling, 1994). In the absence of telomerase, homologous recombination

62 can take place to replicate telomeres, resulting in telomerase-deficient “survivors” (Lundblad

63 and Blackburn, 1993; Teng and Zakian, 1999). These survivors are broadly categorized into

64 Type I and Type II based on distinct telomere structures (Lundblad and Blackburn, 1993; Teng

65 and Zakian, 1999). Type I survivors possess tandem amplified Y'-elements (both Y'-L and Y'-

66 S) and very short TG₁₋₃ tracts, indicating that Y'-elements serve as substrates for homologous

67 recombination. Type II survivors display long heterogeneous TG₁₋₃ tracts. On solid medium,

68 approximately 90% of the survivors are Type I, while 10% are Type II (Teng et al., 2000).

69 However, in liquid culture, Type II survivors grow faster and eventually dominate the population

70 (Teng and Zakian, 1999). The proteins required for Type I and Type II survivor formation appear

71 to be different. Type I survivors depend on Rad51, Rad54, Rad55, Rad57, and Pif1 (Chen et

72 al., 2001; Hu et al., 2013; Le et al., 1999). while the formation of Type II survivors requires the

73 Mre11/Rad50/Xrs2 (MRX) complex, KEOPS complex, Rad59, Sgs1, and Rad6, most of which

74 are critical for DNA resection (Chen et al., 2001; He et al., 2019; Hu et al., 2013; Johnson et al.,

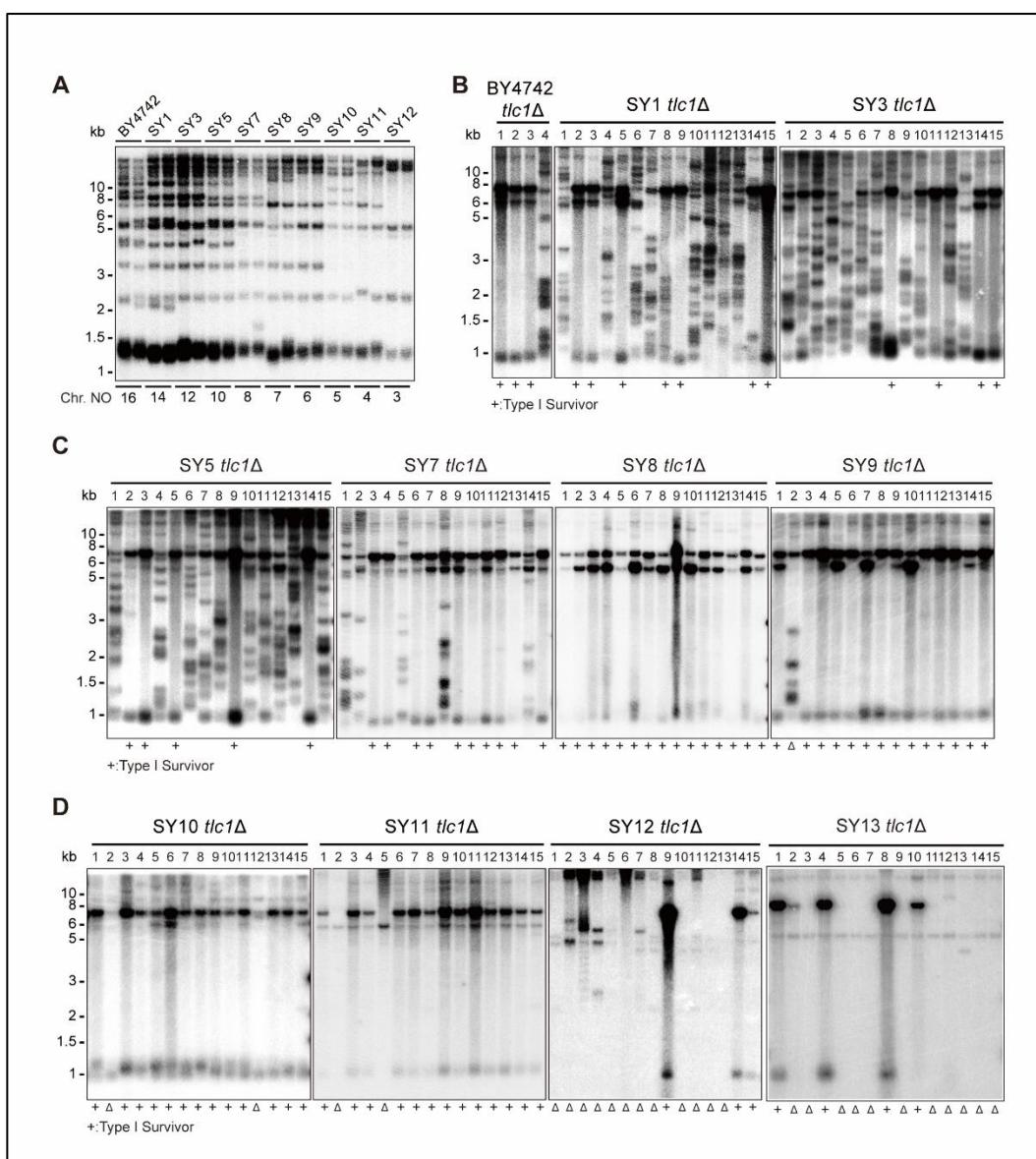
75 2001; Le et al., 1999; Louis, 2001; Nicolette et al., 2010; Teng et al., 2000; Wellinger and Zakian,
76 2012; Wu et al., 2017). Although Type I and Type II pathway are working independently, Kockler
77 et al. found that the proteins involved in each pathway can work together via two sequential
78 steps and contribute to a unified ALT (Alternative lengthening of telomeres) process (Kockler
79 et al., 2021).

80 The amplification of Y'-elements represents a significant feature of telomere recombination
81 in telomerase-null Type I survivors (Lundblad and Blackburn, 1993; Teng and Zakian, 1999),
82 and as a result, extrachromosomal Y' circular DNAs have been observed in Type I survivors
83 (Larrivee and Wellinger, 2006). Additionally, Y'-element acquisition has been observed in the
84 initiation step of pre-senescence, suggesting a potential role for Y'-elements in Type II survivor
85 formation (Churikov et al., 2014). Furthermore, Y'-elements are mobilized through a
86 transposition-like RNA-mediated process involving Ty1 activity in telomerase-negative
87 survivors (Maxwell et al., 2004). Y'-elements also express potential DNA helicases, Y'-Help, in
88 telomerase-null survivors (Yamada et al., 1998). Thus, Y'-elements play a significant role as
89 donors in homologous recombination-mediated telomere maintenance. The functions of X-
90 elements, on the other hand, are less clear. The "core X" sequence consists of an ACS element
91 and, in most cases, an Abf1 binding site (Louis, 1995), and acts as a protosilencer (Lebrun et
92 al., 2001). In contrast, STRs and Y'-STAR possess anti-silencing properties that limit the
93 spreading of heterochromatin (Fourel et al., 1999). Interestingly, a previous study demonstrated
94 that telomeres with X-only ends (containing only X-elements) were more efficiently elongated
95 compared to those with X-Y' ends (containing both X- and Y'-elements) in *tel1Δ rif1Δ* strains

96 (Craven and Petes, 1999). Moreover, subtelomeric elements (including X-elements) and
97 associated factors like Reb1 and Tbf1 antagonize telomere anchoring at the nuclear envelope
98 (Hediger et al., 2006). However, considering that X-elements are present in all telomeres while
99 Y'-elements are not, the specific functions of X- and Y'-elements in genome integrity after the
100 evolution of telomerase have long been a subject of questioning (Jager and Philippse, 1989;
101 Zakian and Blanton, 1988).

102 In wild-type yeast strain BY4742, there are eight Y'-S and eleven Y'-L elements at the thirty-
103 two telomere loci. Additionally, each telomere locus contains one X-element. The genetic
104 deletion of all X- and Y'-elements to directly investigate the roles of X- and Y'-elements in
105 genome integrity is a challenging and complex task. In this study, we utilized recently reported
106 chromosome-fused budding yeast strains (Shao et al., 2018) to eliminate both X- and Y'-
107 elements completely. This approach allows us to reinvestigate the roles of X- and Y'-elements
108 at telomeres.

109 **RESULTS**


110 **Telomere recombination in telomerase-null chromosome-fused yeast strains SY1 to**
111 **SY12**

112 The functions of Y'-elements have been previously linked to telomere recombination (Churikov
113 et al., 2014; Larrivee and Wellinger, 2006; Lundblad and Blackburn, 1993; Teng and Zakian,
114 1999). To further investigate the role of Y'-elements in telomere recombination, we utilized a
115 series of chromosome-fused budding yeast strains derived from the wild-type BY4742 strain,
116 including SY1, SY3, SY5, SY7, SY8, SY9, SY10, SY11, SY12 and SY13 (also referred to as

117 SYn for convenience) (Figure 1A) (Shao et al., 2018). The remaining subtelomeric elements in
118 SY8 to SY13 strains are listed in supplementary file 2. We excluded SY14 from these
119 experiments since the presence of circular chromosome was prominent in SY14 *tlc1Δ* cells
120 (one fused chromosome) (Wu et al., 2020). We generated haploid SYn *tlc1Δ TLC1* strains by
121 deleting the chromosomal copy of the *TLC1* gene and introducing a plasmid-borne wild-type
122 *TLC1* gene (pRS316-*TLC1*). Clones that lost the pRS316-*TLC1* plasmid (containing the *URA3*
123 marker) were identified upon counter-selection on 5'-fluoroorotic-acid (5'-FOA) plates and were
124 subsequently re-streaked on YPD plates for at least 9 cycles for survivor formation (referred to
125 as the "multiple-colony streaking assay" in Methods). The telomere patterns of the survivors
126 were then determined through Southern blotting assay (Figure 1B-D).

127 The canonical telomerase-independent survivors can be broadly categorized into two types:
128 Type I and Type II survivors, based on the restriction fragments generated after Xhol digestion
129 (Lundblad and Blackburn, 1993; Teng and Zakian, 1999). Type I survivors exhibit tandem
130 duplication of Y'-elements and very short TG₁₋₃ tracts, while Type II survivors contain long
131 heterogeneous TG₁₋₃ sequences. Consistent with previous reports, BY4742 *tlc1Δ* cells
132 generated both Type I (subtelomeric Y'-element recombination) and Type II (TG₁₋₃
133 recombination) survivors (Figure 1B) (Hu et al., 2013). Intriguingly, as the number of
134 chromosomes decreased, the frequency of Type II survivors gradually diminished, while Type
135 I survivors became the predominant type (Figure 1B-D). Furthermore, non-canonical survivors
136 with distinct patterns from Type I or Type II emerged in SY9 *tlc1Δ* (six chromosomes), SY10
137 *tlc1Δ* (five chromosomes), SY11 *tlc1Δ* (four chromosomes), SY12 *tlc1Δ* (three chromosomes)

138 and SY13 *tlc1Δ* (two chromosomes) (Figure 1C and 1D indicated by triangles at the bottom of
139 the panels). Notably, the Y'-telomere band of ~1.2 kb was not detected in two clones of SY11
140 *tlc1Δ* cells (clones 2 and 5), the majority of clones of SY12 *tlc1Δ* cells (except for clones 9, 14,
141 and 15), and the majority of clones of SY13 *tlc1Δ* cells (except for clones 1, 4, 8 and 10) (Figure
142 1D). We speculate that either the Y'-elements have eroded or the chromosomal ends containing
143 Y'-elements have fused with other ends in these non-canonical survivors. These findings
144 suggest that the ratio of survivor types is influenced by the number of chromosomes.

145

146

147 **Figure 1.** Telomere structures in SYn *tlc1Δ* survivors. Telomere Southern blotting assay was performed
148 to examine telomere structure. The genomic DNA extracted from BY4742 (wild type) and SYn strains
149 (labeled on top) was digested with Xhol and subjected to Southern hybridization with a TG₁₋₃ probe. **(A)**
150 Telomerase-proficient strains (labeled on top), whose chromosome numbers are labeled at the bottom.
151 Two independent clones of each strain were examined. **(B-D)** SYn *tlc1Δ* survivors generated on plates.
152 Four (BY4742 *tlc1Δ*) and fifteen (SYn *tlc1Δ*) individual survivor clones (labeled on top of each panel) of
153 each strain were examined. “+” at the bottom indicates Type I survivors. “Δ” marks the survivors which
154 are non-canonical Type I or Type II.

155

156 **Characterizing the survivor pattern in SY12**

157 To determine the chromosomal end structures of the non-canonical survivors shown in Figure
158 1, we selected SY12 *tlc1Δ* survivors for further analysis. In the SY12 strain, there are six
159 telomeres corresponding to the native chromosomes I-L, X-R, XIII-L, XI-R, XVI-L, and XIV-R.
160 We employed Southern blotting after NdeI digestion to validate the telomere and subtelomere
161 structures (Figure 2—figure supplement 1A). The results revealed that, in the SY12 strain used
162 in our study, only the XVI-L telomere contained a single copy of the Y'-element, while all
163 telomeres harbored X-elements (Figure 2—figure supplement 1B). For simplicity, we referred
164 to the chromosomes containing the original I, XIII, and XVI as chromosome 1, 2, and 3,
165 respectively (Figure 2A, left panel).

166 We conducted a re-examination of telomere recombination upon telomerase inactivation in
167 SY12 cells. Deletion of *TLC1* in SY12 cells resulted in cell senescence, and different clones
168 recovered at various time points in liquid medium (Figure 2B). Telomere Southern blotting
169 analysis showed progressive shrinking of the telomeric Xhol fragments over time, and TG₁₋₃
170 recombination occurred to maintain telomeres (Figure 2C). Since the liquid culture contained a
171 mixture of different colonies, we employed a multiple-colony streaking assay and Southern
172 blotting analysis to examine the telomere patterns of fifty independent SY12 *tlc1Δ* survivors
173 (Figure 2D and Figure 2—figure supplement 2). Among these survivors, eight clones (labeled
174 in red, 16% of the survivors tested) exhibited the typical Type I telomere structure characterized
175 by Y'-element amplification (Figure 2D and 2E). This was confirmed by Southern blotting
176 analysis using a Y' probe (Figure 2—figure supplement 2). The emergence of Type I survivor
177 in SY12 strain which only contain one Y'-element indicates that multiple Y'-elements in tandem
178 are not strictly required for Type I formation. Clone 1 (labeled in orange, 2% of the survivors
179 tested) displayed heterogeneous telomeric TG₁₋₃ tracts (Figure 2D and 2E), indicating it was a
180 Type II survivor. This was further confirmed by restoring the telomere length to the level
181 observed in SY12 cells through the re-introduction of the *TLC1* gene into one representative
182 clone (named SY12 *tlc1Δ-T1*) and subsequent passaging on yeast complete (YC) medium
183 lacking uracil (Ura-) for 20 cycles (Figure 2—figure supplement 3A).
184 Notably, ten of the examined clones (labeled in blue, 20% of the survivors tested) displayed
185 no telomere signals associated with canonical Type I or Type II survivors (Figure 2D and 2E).
186 Their hybridization patterns were strikingly similar to those of SY14 *tlc1Δ* survivors (Wu et al.,

187 2020), which survived through intra-chromosomal circularization. To investigate whether the
188 three chromosomes in these SY12 *tlc1Δ* survivors had undergone intra-chromosomal fusions,
189 we selected a clone, namely SY12 *tlc1Δ*-C1 and performed PCR-mapping assay to determine
190 the erosion points of each chromosome end, as previously described (Wu et al., 2020). A PCR
191 product of the predicted length would be obtained only if the corresponding chromosome region
192 was intact. The PCR-mapping assay precisely identified the borders of telomere erosion for the
193 three chromosomes in SY12 *tlc1Δ*-C1 cells. For chromosome 1 (Figure 2A, left panel), the
194 chromosome regions approximately 3.3 kb and 1.9 kb proximal to telomere I-L and X-R,
195 respectively, had been lost (Figure 2—figure supplement 4 and supplementary file 3).
196 Regarding chromosome 2, the terminal ~3.8 kb of telomere XIII-L and ~2.5 kb of telomere XI-
197 R remained intact (Figure 2—figure supplement 4 and supplementary file 3). For chromosome
198 3, the terminal ~0.1 kb of telomere XVI-L was intact, while the terminal ~3.4 kb of telomere XIV-
199 R was preserved (Figure 2—figure supplement 4 and supplementary file 3). To confirm the
200 chromosome fusion events, we performed PCR-sequencing analysis. If a given pair of primers,
201 oriented to different chromosome ends, produced PCR products, it indicated that the
202 corresponding arms had fused. The results revealed that the three chromosomes in SY12
203 *tlc1Δ*-C1 cells had undergone intra-chromosomal fusions through microhomology-mediated
204 end joining (MMEJ) (Wu et al., 2020), resulting in the formation of circular chromosomes (Figure
205 2F and supplementary file 3). Notably, the fusion junctions of the three chromosomes in SY12
206 *tlc1Δ*-C1 cells differed in nucleotide sequence and length (22 bp, 8 bp, and 5 bp in
207 chromosomes 1, 2, and 3, respectively). Moreover, the sequences involved in the ends-fusion

208 were not perfectly complementary (Figure 2F). For example, the fusion sequence of
209 chromosome 3 was 5 bp long and contained one mismatch. To further verify the chromosome
210 structure in the "circular survivors" SY12 *tlc1Δ-C1* (Figures 2F), we performed the pulsed-field
211 gel electrophoresis (PFGE) analysis. Control strains included SY12 (three linear chromosomes)
212 and SY15 (one circular chromosome). The PFGE result confirmed that like the single circular
213 chromosome in SY15 cells, the circular chromosome in the SY12 *tlc1Δ-C1* survivors couldn't
214 enter the gel, while the linear chromosomes in SY12 were separated into distinct bands, as
215 expected (Figure 2—figure supplement 5). Thus, the survivors shown in Figure 2D, which
216 displayed an identical hybridization pattern to the SY12 *tlc1Δ-C1* clone, were all likely "circular
217 survivors". Consistently, the telomere signals detected in the SY12 strain were still not observed
218 in the SY12 *tlc1Δ-C1* survivor after reintroducing a plasmid-borne wild-type *TLC1* gene (Figure
219 2—figure supplement 3B).

220 Twelve clones of SY12 *tlc1Δ* survivors (labeled in green, 24% of the survivors tested)
221 exhibited no Y'-telomere signals compared to SY12 cells but displayed different lengths of TG₁₋
222 3 tracts (Figure 2D and 2E). Due to their non-canonical telomere structures, characterized by
223 the absence of both Y'- amplification and superlong TG₁₋₃ sequences, we designated these
224 SY12 *tlc1Δ* survivors (labeled in green, Figure 2D) as Type X. In Type X survivors, the DNA
225 bands with sizes of approximately 2.3 kb, 5.1 kb, 15.3 kb, 18.5 kb, and 21.9 kb were roughly
226 comparable to the telomeres of XI-R, X-R, I-L, XIII-L, and XIV-R in SY12 cells (indicated on the
227 left in the panel). The newly emerged band at approximately 4.3 kb likely originated from the
228 XVI-L telomere (indicated by the red arrow on the right in the panel) (Figure 2D), where the Y'-

229 elements had been eroded, leaving only the TG₁₋₃ tracts at the very ends (Figure 2A, right
230 panel). It remains unclear whether Y'-element erosion is common in telomerase-null BY4742
231 type II survivors. However, in SY12 *tlc1Δ* cells, the remaining single copy of the Y'-element
232 couldn't find homology sequences to repair telomeres, whereas the multicopy X-element could
233 easily find homology sequences to repair telomeres and form the type X survivors. To verify
234 this notion, we reintroduced the *TLC1* gene into one representative clone (named SY12 *tlc1Δ-*
235 X1) and examined the telomere length. As expected, the telomeres of X-R and XI-R were
236 restored to the lengths observed in wild-type SY12 cells, and accordingly, the newly emerged
237 4.3 kb band was also elongated (Figure 2G). Given that the restriction fragments of telomeres
238 I-L (15.3 kb), XIII-L (18.5 kb), and XIV-R (21.9 kb) were quite long, detecting minor changes in
239 telomere length was challenging under the assay conditions of Southern blotting. To determine
240 the chromosomal end structure of the Type X survivor, we randomly selected a typical
241 Type X survivor, and performed PCR-sequencing analysis. The results revealed the intact
242 chromosome ends for I-L, X-R, XIII-L, XI-R, and XIV-R, albeit with some mismatches
243 compared with the *S. cerevisiae* S288C genome (<http://www.yeastgenome.org/>), which
244 possibly arising from recombination events that occurred during survivor formation. Notably,
245 the sequence of the Y'-element in XVI-L could not be detected, while the X-element
246 remained intact (Figure 2—figure supplement 6). These data indicated that Type X survivors
247 possess linear chromosomes with telomeres terminating in TG₁₋₃ repeats, while the Y'-element
248 has been eroded (Figure 2A, right panel). Consistently, no Y' signals were detected in these
249 twelve Type X survivors (labeled in green, Figure 2—figure supplement 2), suggesting that the

250 Y'-element has not been translocated to other telomeres and is not essential for yeast cell
251 viability.

252 In addition to the aforementioned Type I, Type II, circular, and Type X survivors, there were
253 some clones (labeled in black, 38% of the survivors tested) which exhibited non-uniform
254 telomere patterns and were not characterized (Figure 2D and Figure 2E). We speculated that
255 combinations of diverse mechanisms were occurring within each “uncharacterized survivor”.
256 For instance, in the case of two survivors (clones 9 and 18, Figure 2D) in which only one
257 hybridization signal could be detected, pointing to the possibility that two chromosomes
258 underwent intra-chromosomal fusions while one retained its ends through TG₁₋₃ recombination.
259 However, the sizes of the two telomere restriction fragments on the linear chromosome were
260 too close to be distinguished and separated, resulting in only one hybridization signal.
261 Alternatively, it is also plausible that three chromosomes experienced intra-chromosomal
262 fusions, with one fusion point containing TG₁₋₃ repeats. For the uncharacterized clones 4, 5, 7,
263 15, and 43, they exhibited significant amplification of TG₁₋₃ sequences, and the telomeres of
264 these survivors did not resolve into distinct bands (Figure 2D). We hypothesize that the
265 observed telomere patterns in these survivors could be attributed to extensive TG₁₋₃
266 recombination. However, we cannot exclude the possibility of coexisting diverse mechanisms
267 within a survivor, such as telomere elongation through TG₁₋₃ amplification, as well as intra- and
268 inter-chromosomal fusions. Since we couldn't figure out the telomere structures in these
269 survivors, we classified them as “uncharacterized survivors”.

270 To further determine the genetic requirements for survivors in SY12, we constructed the
271 SY12 *tlc1Δ rad52Δ* pRS316-*TLC1* strain. The plasmid-borne wild-type *TLC1* gene (pRS316-
272 *TLC1*) was counter-selected on 5'-FOA plates. SY12 *tlc1Δ rad52Δ* cells were measured by the
273 cell viability assay (see Materials and methods). The results showed double deletion of *TLC1*
274 and *RAD52* in SY12 strain could slightly accelerate senescence, and SY12 *tlc1Δ rad52Δ*
275 survivors could be generated but took much longer to recover than the SY12 *tlc1Δ* survivors
276 (Figure 2—figure supplement 7A), suggesting that Rad52 is not strictly required for survivor
277 generation in the SY12 strain in liquid. We also passaged SY12 *tlc1Δ rad52Δ* cells on solid
278 medium until survivor emerged. Southern blotting of twenty-five clones revealed that neither
279 Type I nor Type II survivors were found, and instead circular survivors except clone 20 were
280 obtained (labeled in blue, Figure 2—figure supplement 7B). We conclude that the formation of
281 circular survivors in the SY12 *tlc1Δ rad52Δ* strain is mediated by MMEJ as observed in the
282 SY14 *tlc1Δ rad52Δ* strain (Wu et al., 2020), but not *RAD52* mediate pathways. Since no Type
283 X survivor was detected in SY12 *tlc1Δ rad52Δ* strain, we constructed the SY12 *tlc1Δ rad51Δ*
284 pRS316-*TLC1* and SY12 *tlc1Δ rad50Δ* pRS316-*TLC1* strain to investigate on which pathway
285 the formation of the Type X survivor relied. After being counter-selected on 5'-FOA plates, cells
286 were passaged on solid medium until survivor arose. Southern blotting assay indicated the
287 emergence of Type X survivors even in the absence of Rad51 (labeled in green, clone 2, 5,
288 11 and 18, Figure 2—figure supplement 8A). In contrast, no Type X survivor was detected
289 in the SY12 *tlc1Δ rad50Δ* strain (Figure 2—figure supplement 8B). These data suggest that
290 the formation of the Type X survivor depends on Rad50-mediated Type II pathway.

291 Taken together, our results indicate that telomerase inactivation in SY12 cells leads to cell
 292 senescence and the emergence of survivors with diverse telomere patterns, including Y'-
 293 amplification (Type I), elongated TG₁₋₃ tracts (Type II), intra-chromosomal end-to-end joining
 294 (circular), Y'- loss (Type X), and uncharacterized.

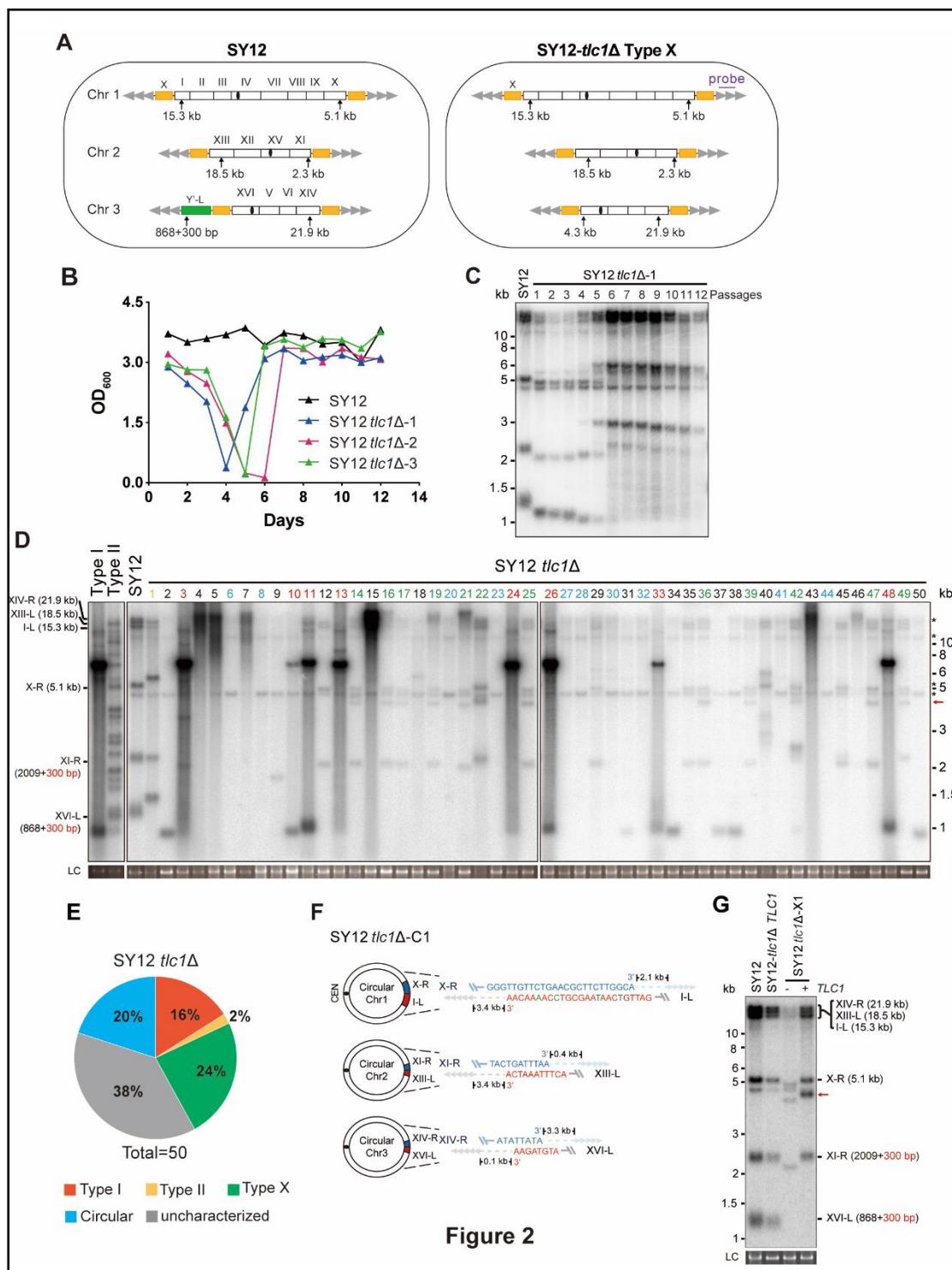


Figure 2

295

296

297 **Figure 2.** Survivor formation in SY12 *tlc1Δ* strain. **(A)** Schematic representation of chromosome (and
298 telomere) structures (not drawn to scale) in the SY12 strain (left panel) and the Type X survivor (right
299 panel). The Roman numerals, native chromosomes; the Arabic numerals on the left, chromosome
300 numbers of SY12; yellow box, X-element; green box, Y'-element; tandem grey triangles, telomeres;
301 black circles, centromere; vertical arrows and numbers, positions and lengths of the terminal Xhol
302 digestion fragments detected by the telomeric TG₁₋₃ probe. Chromosome numbers are omitted in the
303 Type X survivor (right panel). **(B)** Cell viability assay in liquid medium. The growth of SY12 (labeled in
304 black) and SY12 *tlc1Δ* (three clones labeled in blue, purple and green respectively) strains were
305 monitored every 24 hr for 12 days. **(C)** Telomeric Southern blotting assay of SY12 *tlc1Δ* survivors.
306 Genomic DNAs prepared from SY12 *tlc1Δ* survivors assayed in (B) were digested with Xhol and
307 subjected to Southern blotting with a TG₁₋₃ probe. **(D)** Telomere Southern blotting assay of SY12 *tlc1Δ*
308 survivors obtained on solid medium. Genomic DNA from fifty independent SY12 *tlc1Δ* clones (labeled on
309 top) was digested with Xhol and hybridized to a telomere-specific TG₁₋₃ probe. Type II survivors: in
310 orange; Type I survivors: in red; circular survivors: in blue; Type X survivors: in green; uncharacterized
311 survivors: in black. Theoretical telomere restriction fragments of the SY12 strain are indicated on the left.
312 The red arrows indicate the new band of about 4.3 kb emerged in Type X survivors. The asterisks
313 indicate the non-specific bands. Genomic DNA stained with Gelred was used as a relative loading
314 control (LC). **(E)** The ratio of survivor types in SY12 *tlc1Δ* strain. n=50; Type I, in red; Type II, in orange;
315 Type X, in green; uncharacterized survivor, in grey; circular survivor, in blue. **(F)** Schematic of three
316 circular chromosomes and fusion sequences in the SY12 *tlc1Δ*-C1 survivor. The sequence in blue

317 indicates the sequences of X-R, XI-R or XIV-R, the sequence in red indicates the sequences of I-L, XIII-
318 L or XVI-L. Bases in green are mis-paired. The numbers above or below the schematic line
319 (chromosome) indicate the distance to the corresponding telomeres. **(G)** Telomere Southern blotting
320 analysis of an SY12 *tlc1Δ* Type X survivor at the 20th re-streak after *TLC1* reintroduction. The red arrows
321 indicate the new band of about 4.3 kb emerged in Type X survivors. LC: loading control.

322 **Figure 2—figure supplement 1.** Characterization of SY12 strain. **(A)** Schematic representation of
323 chromosome (and telomere) structures (not drawn to scale) in the SY12 strain. The Roman numerals,
324 native chromosomes; the Arabic numerals on the left, chromosome numbers of SY12; yellow box, X-
325 element; green box, Y'-element; tandem grey triangles, telomeres; black circles, centromere; vertical
326 arrows and numbers, positions and lengths of the terminal NdeI digestion fragments detected by the
327 telomeric TG₁₋₃ probe. **(B)** Southern blotting analysis of telomere length in BY4742 and SY12 (labeled
328 on top) cells. Genomic DNA prepared from two independent clones of BY4742 and SY12 strains was
329 digested with NdeI, and then subjected to Southern blotting with a TG₁₋₃ probe (left panel). The numbers
330 in brackets indicate the telomere length of the corresponding chromosomes. The blot was then stripped
331 and reprobed with a Y' probe (right panel). The asterisk indicates the non-specific band.

332 **Figure 2—figure supplement 2.** Telomere Southern blot with a Y'-element probe examining SY12
333 *tlc1Δ* survivors. The blot in Figure 2D was then stripped and reprobed with a Y' probe.

334 **Figure 2—figure supplement 3.** Southern blotting results of reintroduce *TLC1* into SY12 *tlc1Δ*
335 survivors. **(A)** Southern blotting result of SY12 *tlc1Δ* Type II survivor at the 20th re-streaks after *TLC1*

336 reintroduction. LC: loading control. (B) Southern blotting result of SY12 *tlc1Δ* circular survivor at the 20th

337 re-streaks after *TLC1* reintroduction. LC: loading control.

338 **Figure 2—figure supplement 4.** Borders of erosion of the SY12 *tlc1Δ*-C1 survivor are defined by PCR

339 mapping. (A) Upper panel, a schematic diagram of the subtelomeric region of 0-60 kb proximal to I-L

340 telomere is shown. Primer pairs (No. 1^L to 17^L) are aligned and indicated at their corresponding

341 subtelomeric loci. Lower panel, the genotype is listed on the left, and primer pairs are listed on top; solid

342 circles mean positive PCR products and open circles mean no PCR products with corresponding primer

343 pairs. (B) Upper panel, a schematic diagram of the subtelomeric region of 0-50 kb proximal to X-R

344 telomeric TG₁₋₃ sequence is shown. Primer pairs (No. 1^R to 42^R) are aligned and indicated at their

345 corresponding subtelomeric loci. Lower panel, the genotype is listed on the left, and primer pairs are

346 listed on top. (C) Upper panel, a schematic diagram of the subtelomeric region of 0-10 kb proximal to

347 XIII-L telomeric TG₁₋₃ sequence is shown. Primer pairs (No. 1^L to 6^L) are aligned and indicated at their

348 corresponding subtelomeric loci. Lower panel, the genotype is listed on the left, and primer pairs are

349 listed on top. (D) Upper panel, a schematic diagram of the subtelomeric region of 0-65 kb proximal to XI-

350 R telomeric TG₁₋₃ sequence is shown. Primer pairs (No. 1^R to 25^R) are aligned and indicated at their

351 corresponding subtelomeric loci. Lower panel, the genotype is listed on the left, and primer pairs are

352 listed on top. (E) Upper panel, a schematic diagram of the subtelomeric region of 0-35 kb proximal to

353 XVI-L telomeric TG₁₋₃ sequence is shown. Primer pairs (No. 1^L to 29^L) are aligned and indicated at their

354 corresponding subtelomeric loci. Lower panel, the genotype is listed on the left, and primer pairs are

355 listed on top. (F) Upper panel, a schematic diagram of the subtelomeric region of 0-60 kb proximal to

356 XIV-R telomeric TG₁₋₃ sequence is shown. Primer pairs (No. 1^R to 21^R) are aligned and indicated at their

357 corresponding subtelomeric loci. Lower panel, the genotype is listed on the left, and primer pairs are

358 listed on top.

359 **Figure 2—figure supplement 5.** PFGE result of circular survivors. Chromosomal DNA analysis of

360 “circular survivors” SY12 *tlc1Δ*-C1, SY12^{YΔ} *tlc1Δ*-C1, SY12^{XYΔ} *tlc1Δ*-C1, SY12^{XYΔ+Y} *tlc1Δ*-C1 by PFGE.

361 The *S. cerevisiae* strain SY15 (with a single circular chromosome) was used as control. As marker, the

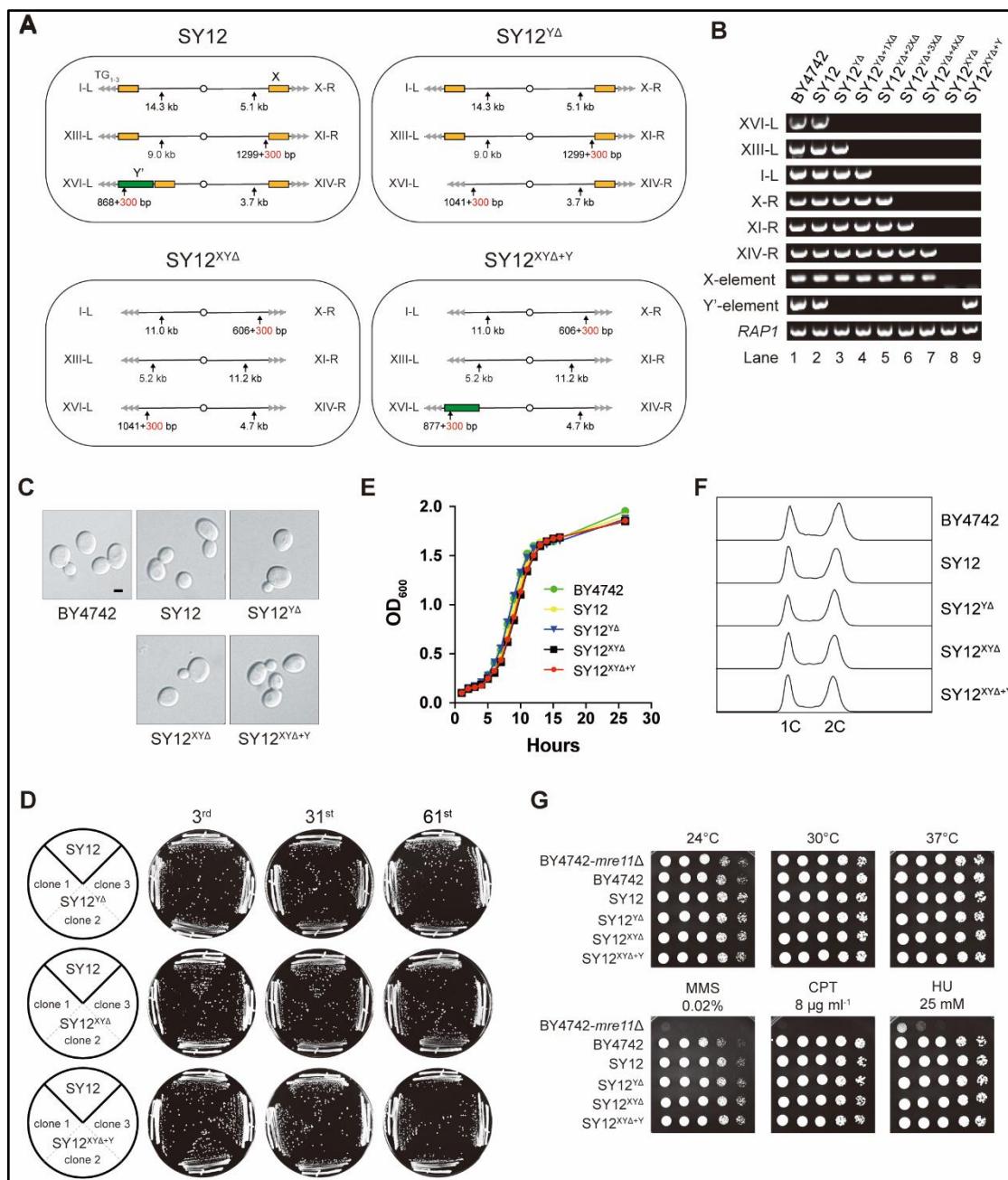
362 size of three chromosomes in wild type *S. pombe* strain is indicated on right.

363 **Figure 2—figure supplement 6.** Telomere structure determination of Type X survivor. Schematic
364 representation of chromosome (and telomere) structures (not drawn to scale) in the Type X survivor.
365 The Roman numerals, native chromosomes; the Arabic numerals on the left, chromosome numbers of
366 SY12; yellow box, X-element; green box, Y'-element; tandem grey triangles, telomeres; black circles,
367 centromere. The sequence in yellow box belongs to X-element. Bases in red are mis-paired. The dotted
368 line in green represents the sequence of Y'-element is lost.

369 **Figure 2—figure supplement 7.** Survivor formation in SY12 *tlc1Δ rad52Δ* strain. (A) Cell viability assay
370 in liquid culture. The growth of SY12 (labeled in black), SY12 *tlc1Δ* (two clones labeled in purple and
371 blue respectively) and SY12 *tlc1Δ rad52Δ* (three clones labeled in violet, pink and carmine respectively)
372 were monitored every 24 hr for 12 days. (B) Telomere Southern blotting assay of SY12 *tlc1Δ rad52Δ*
373 survivors obtained on solid medium. Genomic DNA from twenty-five independent clones (labeled on top)
374 was digested with Xhol and hybridized to a telomere-specific TG₁₋₃ probe. Circular survivors: in blue;
375 uncharacterized survivors: in black. Theoretical telomere restriction fragments of the SY12 strain are
376 indicated on the left. The asterisks indicate the non-specific bands. Genomic DNA stained with Gelred
377 was used as a relative loading control (LC).

378 **Figure 2—figure supplement 8.** Southern blotting result of SY12 *tlc1Δ rad51Δ* and SY12 *tlc1Δ rad50Δ*
379 survivors. (A) Genomic DNAs of twenty-five independent SY12 *tlc1Δ rad51Δ* clones were digested with
380 Xhol and subjected to Southern blotting with a TG₁₋₃ probe. Circular survivors: in blue; Type X survivors:
381 in green; uncharacterized survivors: in black. Theoretical telomere restriction fragments of the SY12
382 strain are indicated on the left. The red arrows indicate the new band of about 4.3 kb emerged in Type X
383 survivors. The asterisks indicate the non-specific bands. Genomic DNA stained with Gelred was used as
384 a relative loading control (LC). (B) Genomic DNAs of twenty-five independent SY12 *tlc1Δ rad50Δ* clones
385 were digested with Xhol and subjected to Southern blotting with a TG₁₋₃ probe. Type I survivors: in red;
386 Circular survivors: in blue; uncharacterized survivors: in black. Theoretical telomere restriction fragments
387 of the SY12 strain are indicated on the left.

388



389 **Deletion of all of the X- and Y'-elements in the SY12 strain**

390 We aimed to determine whether the subtelomeric X-elements are dispensable or not. In the
391 SY12 strain, there are six X-elements distributed among six telomeres (Figure 2A, left panel).
392 To precisely delete all X- and Y'-elements in SY12 strains, we employed a method that
393 combines the efficient CRISPR-Cas9 cleavage system with the robust homologous
394 recombination activity of yeast, as previously described (Shao et al., 2018; Shao et al., 2019).
395 Briefly, the Cas9 nuclease cleaved the unique DNA sequences adjacent to the subtelomeric
396 region (site S1) with the guidance of gRNA1. The resulting chromosome break was repaired
397 through homologous recombination (HR) using the provided chromosome ends which
398 excluding the X- and Y'-elements. Subsequently, the *URA3* marker and the guide RNA
399 expression plasmid (pgRNA) were eliminated by inducing gRNA2 expression on pCas9 using
400 galactose (Figure 3—figure supplement 1). This approach allowed us to initially delete the Y'-
401 element and X-element in XVI-L, generating the SY12^{YΔ} strain (Figure 3A and supplementary
402 file 4). Subsequently, through five successive rounds of deletions, we removed all remaining X-
403 elements, resulting in the SY12^{XYΔ} strain (Figure 3A and supplementary file 4). To confirm the
404 series of deletions, we performed PCR analysis using a primer located within the deletion region
405 and another primer annealing upstream of the region (indicated by purple arrows in Figure 3—
406 figure supplement 1). This analysis verified the complete deletion of the subtelomeric X- and
407 Y'-elements (Figure 3B, rows 3 to 7). Additionally, we conducted a separate PCR analysis using
408 primers specific to either X- or Y'-elements, which confirmed the absence of both X- and Y'-
409 elements in the SY12^{XYΔ} strain (Figure 3B, rows 8). Subsequently, we inserted a Y'-long
410 element (cloned from the native XVI-L sequence, which does not contain the centromere-

411 proximal short telomere sequence) into the left arm of chromosome 3 in the SY12^{XYΔ} strain,
 412 resulting in the SY12^{XYΔ+Y} strain containing a single Y'-element but no X-element (Figure 3A
 413 and supplementary file 4). The successful insertion was confirmed by PCR analysis (Figure 3B,
 414 lane 9).

415

416

417

418 **Figure 3.** Characterization of SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} strains. **(A)** Schematic of chromosome
419 structures in the SY12, SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} strains. Yellow box, X-element; green box, Y'-
420 element; tandem grey triangles, telomeres. Vertical arrows and numbers indicate the positions and sizes
421 of the sites and length of Xhol and Pael-digested terminal fragments. **(B)** PCR analyses of the
422 engineered sites of the individual telomeres (labeled on left) in BY4742, SY12, SY12^{YΔ}, SY12^{YΔ+1XΔ},
423 SY12^{YΔ+2XΔ}, SY12^{YΔ+3XΔ}, SY12^{YΔ+4XΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} strains (labeled on top). Primer
424 sequences for the PCR analyses are listed in supplementary file 1. *RAP1* was an internal control. **(C)**
425 Morphology of BY4742, SY12, SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} cells in the exponential growth phase
426 (30°C in YPD). Shown are DIC images. Scale bar, 2 μm. **(D)** Growth analysis of the SY12, SY12^{YΔ},
427 SY12^{XYΔ} and SY12^{XYΔ+Y} strains. Several clones of the SY12, SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} strains
428 were re-streaked on YPD plates 61 times at intervals of two days. Shown were the 3rd, 31st and 61st re-
429 streaks. **(E)** Growth analysis of BY4742, SY12, SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} cells in liquid culture.
430 Error bars represent standard deviation (s.d.), n = 3. **(F)** FACS analysis of DNA content of BY4742,
431 SY12, SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} cells. **(G)** Dotting assays on YPD plates at low (24°C) and high
432 (37°C) temperatures, or on YPD plates containing methyl methane sulfonate (MMS), camptothecin
433 (CPT) or hydroxyurea (HU) at the indicated concentrations. The BY4742 *mre11Δ* haploid strain serves
434 as a negative control because *Mre11* is involved in the repair of double-stranded breaks (Lewis et al.,
435 2004).

436 **Figure 3—figure supplement 1.** Schematics of CRISPR–Cas9-mediated deletion of X- and Y'-elements
437 on individual chromosomes in SY12 cells. The specific DNA sequences centromere-proximal to the

438 subtelomeric region (site S1) were cleaved by the Cas9 nuclease with the guidance of gRNA1.

439 Homologous recombination between the broken ends and the provided donors led to the deletion of X-

440 and Y'-elements. Galactose induction of gRNA2 on pCas9 caused the cleavage at site S2 and the *URA3*

441 marker was counter-selected on 5'-FOA plates. Deletion of X- and Y'-elements were determined by PCR

442 analysis with a primer located within the deletion region and another upstream of the region (indicated by

443 purple arrows).

444

445 **Subtelomeric X- and Y'-elements are dispensable for cell proliferation, various stress**

446 **responses, telomere length control and telomere silencing**

447 The SY12^{YΔ}, SY12^{XYΔ}, and SY12^{XYΔ+Y} cells, cultured in YPD medium at 30°C, exhibited the

448 same cell morphology as the parental strains SY12 and BY4742 (Figure 3C). To assess the

449 stability of their genomes, we restreaked several clones of SY12^{YΔ}, SY12^{XYΔ}, and SY12^{XYΔ+Y}

450 strains on YPD plates for a total of 61 times at two-day intervals (Figure 3D). Similar to the

451 SY12 strain, the progeny colonies of SY12^{YΔ}, SY12^{XYΔ}, and SY12^{XYΔ+Y} grew robustly on solid

452 medium (Figure 3D). Moreover, SY12^{YΔ}, SY12^{XYΔ}, and SY12^{XYΔ+Y} cells exhibited growth rates

453 comparable to those of SY12 and BY4742 cells in liquid medium (Figure 3E). FACS analysis

454 revealed that SY12^{YΔ}, SY12^{XYΔ}, and SY12^{XYΔ+Y} had the same 1C and 2C DNA content as wild-

455 type cells (Figure 3F), indicating that the X- and Y'-elements are not necessary for cell

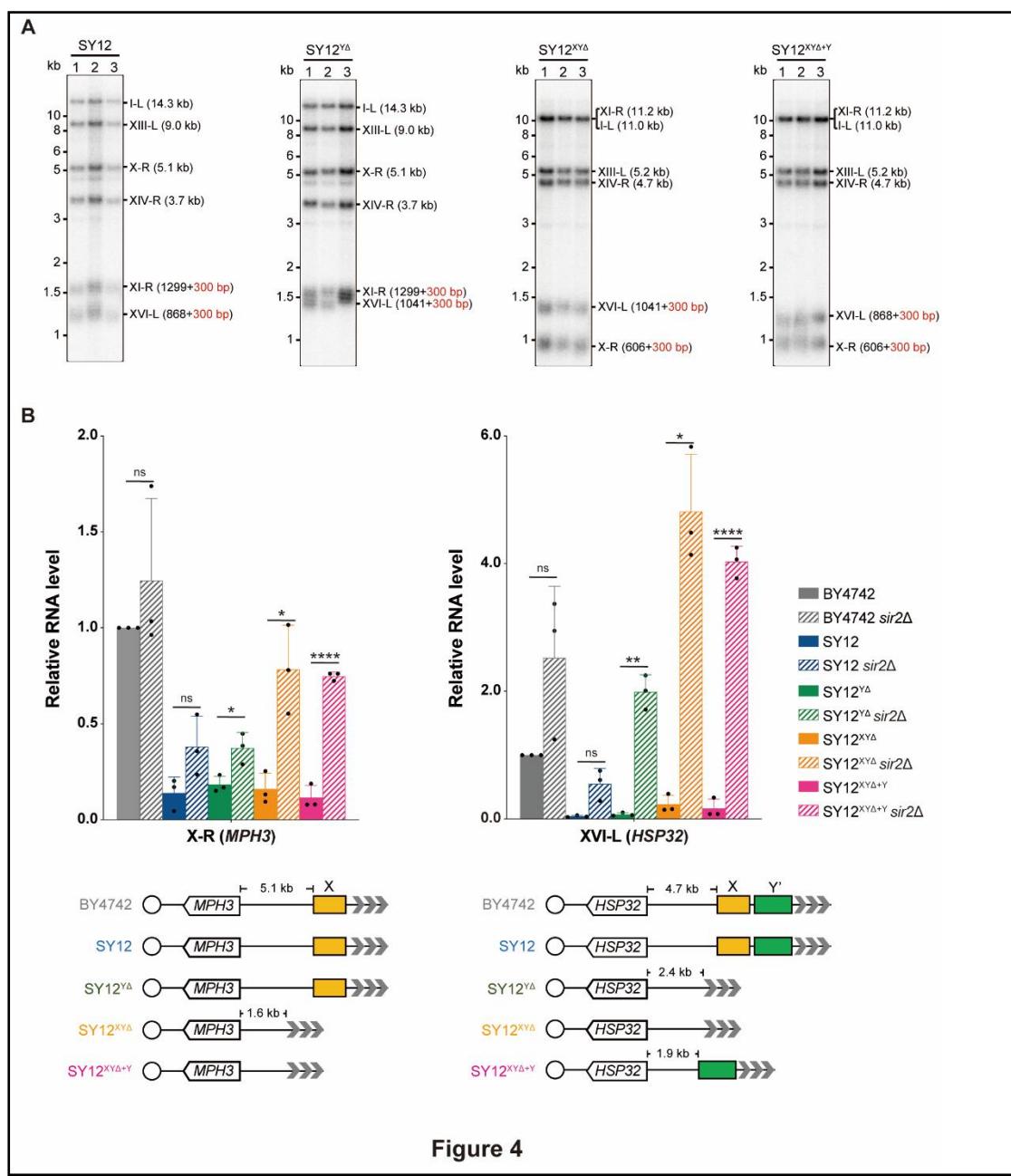
456 proliferation under normal conditions. Additionally, the growth of SY12^{YΔ}, SY12^{XYΔ}, and

457 SY12^{XYΔ+Y} cells at different temperatures (24 and 37°C) (Figure 3G, upper panel) closely

458 resembled that of SY12 and BY4742 cells. Furthermore, SY12^{YΔ}, SY12^{XYΔ}, SY12^{XYΔ+Y}, SY12,

459 and BY4742 cells exhibited similar sensitivities to various genotoxic agents, including
460 hydroxyurea (HU), camptothecin (CPT), and methyl methanesulfonate (MMS) (Figure 3G,
461 lower panel). These results indicate that the X- and Y'-elements are dispensable for cellular
462 responses to cold or heat treatment and DNA damage challenges, consistent with a recent
463 study of “synthetic yeast genome project”, namely Sc2.0, showing that thousands of genome-
464 wide edits, including the deletion of subtelomeric repetitive sequences, deletion of introns,
465 and relocation of tRNAs genes, yielded a strain that displays comparable growth with wild
466 type strain (Richardson et al., 2017; Zhao et al., 2023).

467 Next, we examined the effects of X- and Y'-element elimination on telomeres. Southern
468 blotting assay revealed that SY12^{YΔ}, SY12^{XYΔ}, and SY12^{XYΔ+Y} cells maintained stable telomeres
469 at a length of approximately 300 bp, comparable to that in SY12 cells (Figure 4A), indicating
470 that the X- and Y'-elements are not required for telomere length regulation. To determine
471 whether the deletion of X- and Y'-elements abolishes telomere silencing, we constructed
472 haploid strains of SY12^{YΔ} *sir2Δ*, SY12^{XYΔ} *sir2Δ*, SY12^{XYΔ+Y} *sir2Δ*, SY12 *sir2Δ*, and BY4742 *sir2Δ*.
473 We then performed real-time RT-PCR to quantify the expression of the *MPH3* and *HSP32*
474 genes, located near the subtelomeric region of X-R (X-only end) and XVI-L (X-Y' end),
475 respectively (Figure 4B), and found that the increase of the *MPH3* or *HSP32* expression upon
476 *SIR2* deletion in SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} strains was more significant than that in the
477 BY4742 or the SY12 strain, indicating that telomere silencing remains effective in the absence
478 of X-and Y'-elements (Figure 4B). These findings align with previous studies showing that
479 telomeres without an X- or Y'-element exert a position effect on the transcription of neighboring


480 genes (Aparicio et al., 1991), and that X- and Y'-elements function as modulators of TPE (Fourel

481 et al., 1999; Lebrun et al., 2001; Ottaviani et al., 2008).

482 In conclusion, the SY12^{YΔ}, SY12^{XYΔ}, and SY12^{XYΔ+Y} strains behave similarly to the wild-type

483 SY12 strain under all tested conditions (Figures 3 and 4). Their simplified telomere structure

484 makes them potentially useful tools for telomere studies.

485

486

487 **Figure 4.** Telomere length and telomere silencing analyses of SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} strains.

488 (A) Southern blotting analysis of telomere length in SY12, SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} (labeled on
489 top) cells. Genomic DNA prepared from three independent clones of SY12, SY12^{YΔ}, SY12^{XYΔ} and
490 SY12^{XYΔ+Y} strains were digested with Xhol and Pael, and then subjected to Southern blotting with a TG1-
491 β probe. The numbers in brackets indicate the telomere length of the corresponding chromosomes. (B)
492 Expressions of *MPH3* and *HSP32* in BY4742, SY12, SY12^{YΔ}, SY12^{XYΔ} and SY12^{XYΔ+Y} cells were
493 detected by qRT-PCR. The numbers above the schematic line (lower panels) indicate the distance to
494 the corresponding subtelomeric elements or telomeres. The RNA levels of *MPH3* and *HSP32* were
495 normalized by *ACT1*. The wild-type value is arbitrarily set to 1. Error bars represent standard deviation
496 (s.d.), n = 3. 'ns', p > 0.5 (Student's t-test); *, P < 0.05 (Student's t-test); **, P < 0.01 (Student's t-test).;
497 ****, P < 0.0001 (Student's t-test).

498

499 **Y'-elements are not strictly required for the formation of Type II survivors**

500 The BY4742 strain harbors nineteen Y'-elements distributed among seventeen telomere loci.
501 Numerous studies have emphasized the significance of Y'-elements in telomere recombination.
502 For instance, Type I survivors exhibit significant amplification of Y'-elements (Lundblad and
503 Blackburn, 1993; Teng and Zakian, 1999) and survivors show a marked induction of the
504 potential DNA helicase Y'-Help1 encoded by Y'-elements (Yamada et al., 1998). Additionally,
505 the acquisition of Y'-elements by short telomeres delays the onset of senescence (Churikov et
506 al., 2014).

507 To investigate the requirement of Y'-elements in survivor formation, we deleted *TLC1* in

508 SY12^{YΔ} cells and conducted a cell viability assay. The results demonstrated that three individual
509 colonies underwent senescence and subsequently recovered at different passages in liquid
510 media (Figure 5A). Further analysis through Southern blotting revealed that the telomeres of
511 SY12^{YΔ} *tlc1Δ* cells underwent progressive shortening with each passage until reaching critically
512 short lengths. Subsequently, TG₁₋₃ recombination occurred, leading to abrupt telomere
513 elongation (Figure 5B).

514 Next, we examined the telomere patterns of fifty independent SY12^{YΔ} *tlc1Δ* survivors using a
515 multiple-colony streaking assay and Southern blotting analysis. Out of the fifty clones analyzed,
516 no Type I survivors were detected due to the deletion of Y'-elements in SY12^{YΔ} strain (Figure
517 5C). Two clones (labeled in orange, 4% of the survivors tested) displayed heterogeneous
518 telomere tracts (Figure 5C and Figure 5D). Reintroduction of *TLC1* into a representative clone
519 (named SY12^{YΔ} *tlc1Δ-T1*) resulted in telomere length restoration similar to SY12^{YΔ} cells (Figure
520 5—figure supplement 1A), indicating their classification as Type II survivors. Twenty-six clones
521 (labeled in blue, 52% of the survivors tested) exhibited patterns identical to that of the SY12
522 *tlc1Δ* circular survivors (Figure 5C, Figure 5D and Figure 2D). Further mapping of erosion
523 borders and sequencing of fusion junctions (Figure 5E, Figure 5—figure supplement 2, and
524 supplementary file 3) confirmed that three chromosomes from a randomly selected clone
525 (named SY12^{YΔ} *tlc1Δ-C1*) underwent intra-chromosomal fusions mediated by microhomology
526 sequences. The erosion sites and fusion sequences differed from those observed in SY12
527 *tlc1Δ-C1* cells (Figure 2F), suggesting the stochastic nature of intra-chromosome end fusion by
528 MMEJ. As expected, the telomere Southern blotting pattern (Xhol digestion) of the SY12^{YΔ}

529 *tlc1Δ-C1* survivor remained unchanged following telomerase reintroduction (Figure 5—figure
530 supplement 1B). Further PFGE analysis confirmed that the chromosomes in SY12^{YΔ} *tlc1Δ-C1*
531 were circulated (Figure 2—figure supplement 5). Notably, a significant proportion of the
532 survivors displayed telomere signals that were different from those of either the Type II or
533 circular survivors (labeled in black, 44% of the survivors tested, Figure 5C and Figure 5D), and
534 they were uncharacterized survivors. Further deletion of *RAD52* in the SY12^{YΔ} *tlc1Δ* cells
535 affected, but did not eliminate, survivor generation (Figure 5—figure supplement 3A). Southern
536 blotting assay confirmed that most of the recovered clones were circular survivors, and two
537 were uncharacterized survivors (clone 9 and 16, labeled in black, Figure 5—figure supplement
538 3B) suggesting that survivor formation in SY12^{YΔ} *tlc1Δ* *rad52Δ* cells does not strictly rely on the
539 homologous recombination. Overall, these findings indicate that Y'-elements are not strictly
540 required for Type II survivor formation (Churikov et al., 2014).

541

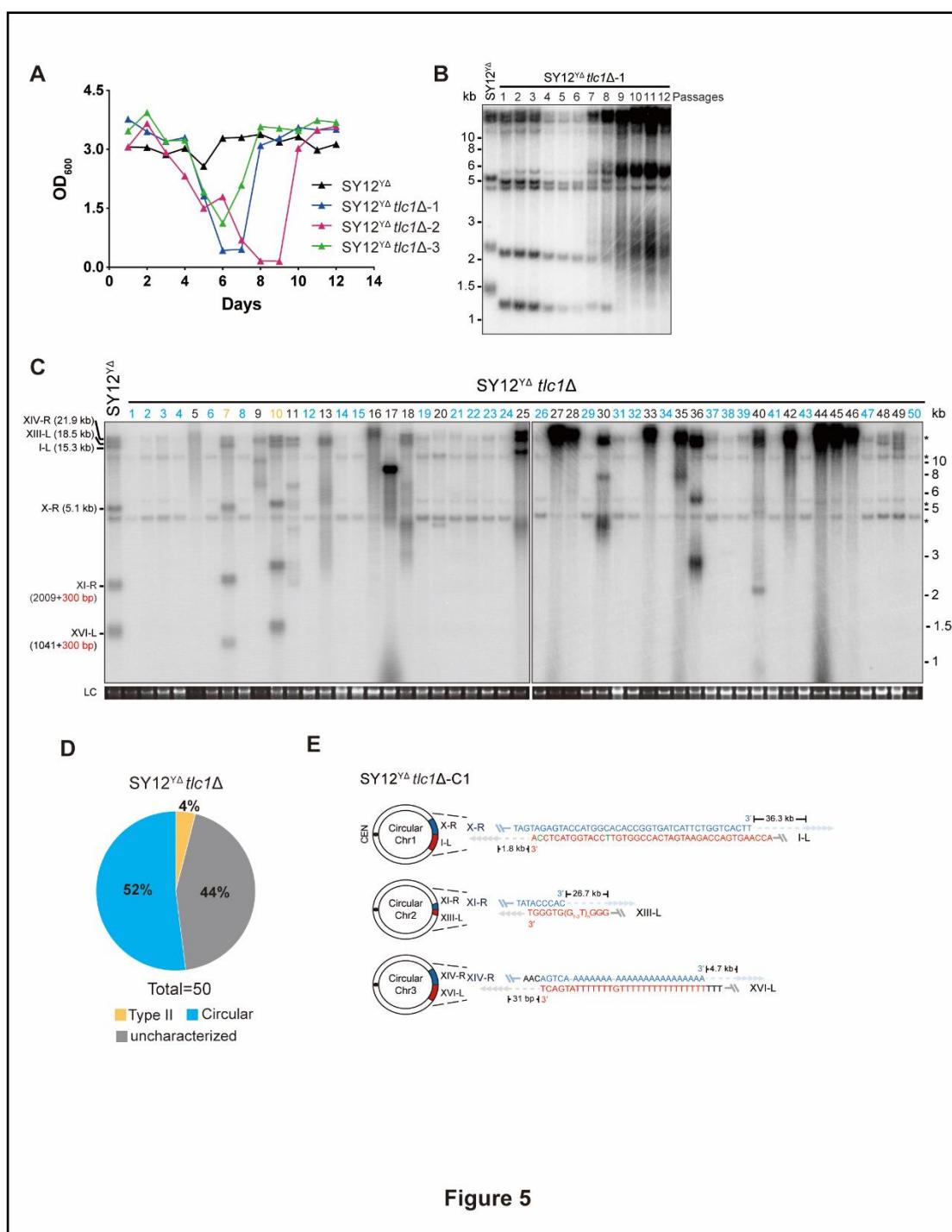


Figure 5

542

543

544 **Figure 5.** Survivor analysis of SY12^{YΔ} *tlc1Δ* strain. **(A)** Cell viability assay in liquid medium. The growth
 545 of SY12^{YΔ} (labeled in black) and SY12^{YΔ} *tlc1Δ* (three clones labeled in blue, purple and green
 546 respectively) strains were monitored every 24 hr for 12 days. **(B)** Telomeric Southern blotting assay of
 547 SY12^{YΔ} *tlc1Δ* survivors. Genomic DNAs prepared from SY12^{YΔ} *tlc1Δ* survivors assayed in (A) were

548 digested with Xhol and subjected to Southern blotting with a TG₁₋₃ probe. **(C)** Telomere Southern
549 blotting analysis of SY12^{YΔ} *tlc1Δ* survivors obtained on solid medium. Genomic DNAs of fifty
550 independent survivors (labeled 1 to 50 on top) were digested with Xhol and hybridized by a TG₁₋₃ probe.
551 Type II survivors: in orange; circular survivors: in blue; uncharacterized survivors: in black. Theoretical
552 telomere restriction fragments of the SY12^{YΔ} strain are indicated on left. LC: loading control. **(D)** The
553 ratio of survivor types in SY12^{YΔ} *tlc1Δ* strain. n=50; Type II, in orange; uncharacterized survivor, in grey;
554 circular survivor, in blue. **(E)** Schematic of three circular chromosomes and fusion sequences in the
555 SY12^{YΔ} *tlc1Δ*-C1 survivor. The sequence in blue indicates the sequences of X-R, XI-R or XIV-R, the
556 sequence in red indicates the sequences of I-L, XIII-L or XVI-L. Bases in green are mis-paired, dashes
557 are deleted. The numbers above or below the schematic line (chromosome) indicate the distance to the
558 corresponding telomeres.

559 **Figure 5—figure supplement 1.** Southern blotting results of reintroducing *TLC1* into SY12^{YΔ} *tlc1Δ*
560 survivors. **(A)** Southern blotting result of SY12^{YΔ} *tlc1Δ* Type II survivor at the 20th re-streaks after *TLC1*
561 reintroduction. LC: loading control. **(B)** Southern blotting result of SY12^{YΔ} *tlc1Δ* circular survivor at the
562 20th re-streaks after *TLC1* reintroduction. LC: loading control.

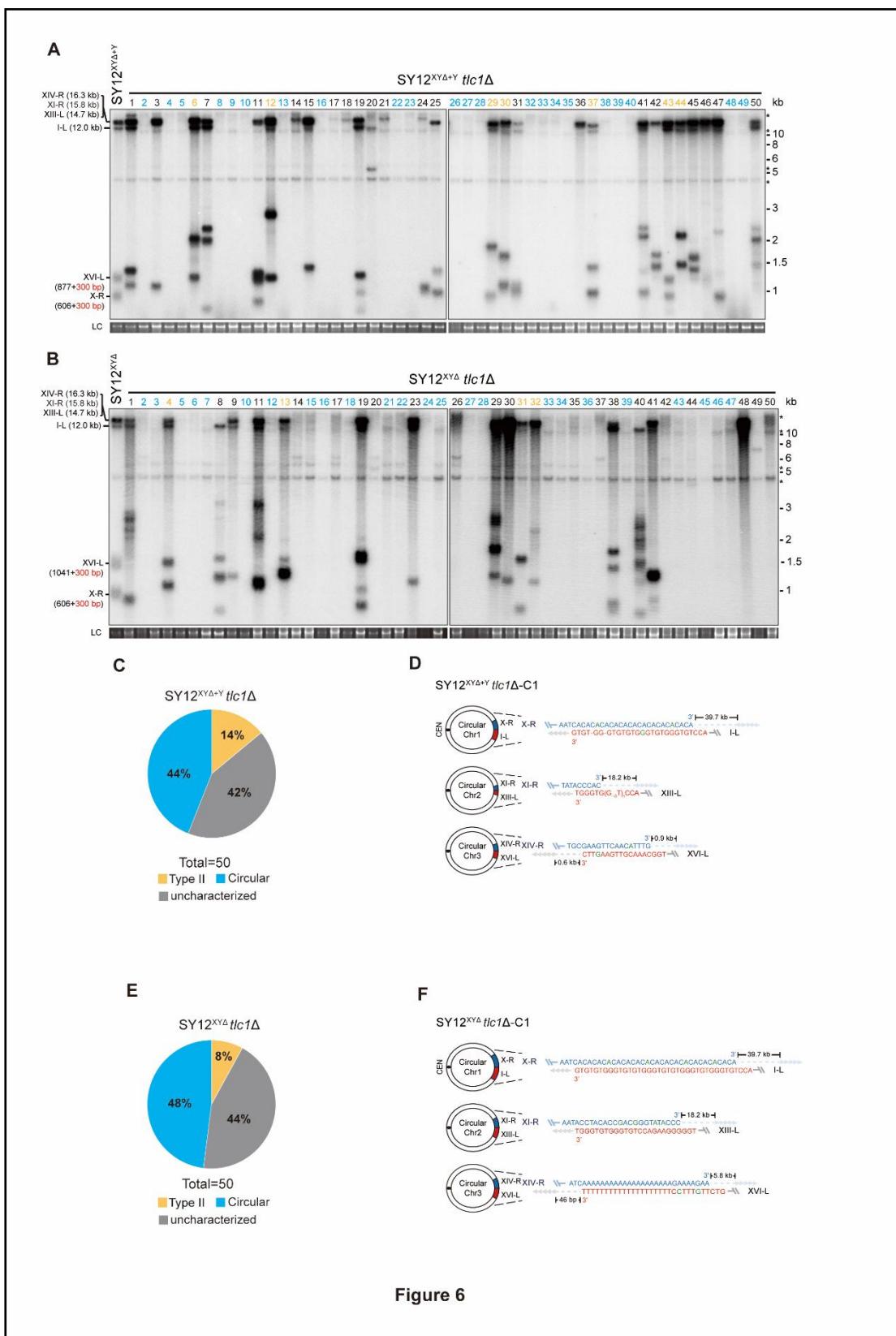
563 **Figure 5—figure supplement 2.** PCR mapping of the borders of erosion in SY12^{YΔ} *tlc1Δ*-C1 cell. Red
564 lines indicate the regions which have been deleted in the SY12^{YΔ} strain.

565 **Figure 5—figure supplement 3.** Survivor formation in SY12^{YΔ} *tlc1Δ rad52Δ* strain. **(A)** Cell viability
566 assay in liquid culture. The growth of SY12^{YΔ} (labeled in black), SY12^{YΔ} *tlc1Δ* (two clones labeled in
567 purple and blue respectively) and SY12^{YΔ} *tlc1Δ rad52Δ* (three clones labeled in violet, pink and carmine
568 respectively) strains were monitored every 24 hr for 12 days. **(B)** Telomere Southern blotting assay of
569 SY12^{YΔ} *tlc1Δ rad52Δ* survivors obtained on solid medium. Genomic DNA from twenty-five independent
570 clones (labeled on top) was digested with Xhol and hybridized to a telomere-specific TG₁₋₃ probe.
571 Circular survivors: in blue; uncharacterized survivors: in black. Theoretical telomere restriction fragments
572 of the SY12^{YΔ} strain are indicated on the left. The asterisks indicate the non-specific bands. Genomic
573 DNA stained with Gelred was used as a relative loading control (LC).

574

575 **X-elements are not strictly necessary for survivor generation**

576 To investigate the contribution of X-elements to telomere recombination, we employed the
577 SY12^{XYΔ+Y} strain, which contains only one Y'-element in the subtelomeric region, and the
578 SY12^{XYΔ} *tlc1Δ* strain, which lacks both the X- and Y'-elements. Subsequently, we deleted *TLC1*
579 in the SY12^{XYΔ+Y} and SY12^{XYΔ} strains and conducted a cell viability assay. Consistently, the
580 deletion of *TLC1* in SY12^{XYΔ+Y} and SY12^{XYΔ} resulted in telomere shortening, senescence, and
581 the formation of Type II survivors (Figure 6—figure supplement 1). Then, fifty independent
582 clones of SY12^{XYΔ+Y} *tlc1Δ* or SY12^{XYΔ} *tlc1Δ* survivors were examined using Southern blotting
583 (Figure 6A and 6B).


584 Among the SY12^{XYΔ+Y} survivors analyzed, twenty-two clones underwent chromosomal
585 circularization (labeled in blue, 44% of the survivors tested, Figure 6A and Figure 6C). We
586 randomly selected a clone named SY12^{XYΔ+Y} *tlc1Δ-C1*, and the results of erosion-border
587 mapping and fusion junction sequencing showed that it had undergone intra-chromosomal
588 fusions mediated by microhomology sequences (Figure 6D, Figure 6—figure supplement 2,
589 and supplementary file 3). Subsequently, Southern blotting revealed that the chromosome
590 structure of SY12^{XYΔ+Y} *tlc1Δ-C1* remained unchanged after *TLC1* reintroduction (Figure 6—
591 figure supplement 3), and PFGE analysis confirmed the circular chromosome structure in
592 SY12^{XYΔ+Y} *tlc1Δ-C1* (Figure 2—figure supplement 5). Additionally, seven clones utilized the
593 Type II recombination pathway and exhibited heterogeneous telomeric TG₁₋₃ tracts (labeled in
594 orange, 14% of the survivors tested, Figure 6A and Figure 6C). Reintroduction of *TLC1* into a

595 representative clone (named SY12^{XYΔ+Y} *tlc1Δ-T1*) restored the telomere length to normal
596 (Figure 6—figure supplement 3). These findings indicate that the majority of cells underwent
597 intra-chromosomal circularization or TG₁₋₃ recombination. While even though there is a Y'-
598 element, no Type I survivors were generated in SY12^{XYΔ+Y} *tlc1Δ* survivors (Figure 6A). We
599 speculated that the short TG₁₋₃ repeats located centromere-proximal to the Y'-elements play a
600 crucial role in strand invasion and subsequent Y'-recombination. This speculation is consistent
601 with a previous report stating that Type I events are virtually absent in the yeast strain Y55,
602 which lacks TG₁₋₃ repeats centromere-proximal to the Y'-element (Louis, 2001). We also
603 observed some clones displayed non-canonical telomere signals like SY12 *tlc1Δ*
604 "uncharacterized" survivors (labeled in black, 42% of the survivors tested, Figure 6A and Figure
605 6C). Overall, these data suggest that X-elements are not strictly necessary for survivor
606 formation.

607 Among the SY12^{XYΔ} survivors, twenty-four displayed a "circular survivor" pattern (labeled in
608 blue, 48% of the survivors tested, Figure 6B and Figure 6E). Additional PCR-sequencing
609 assays and PFGE analysis of the SY12^{XYΔ} *tlc1Δ-C1* cells confirmed the occurrence of intra-
610 chromosomal fusions mediated by microhomology sequences (Figure 6F, Figure 6—figure
611 supplement 4, supplementary file 3 and Figure 2—figure supplement 4). Reintroduction of *TLC1*
612 into a representative clone named SY12^{XYΔ} *tlc1Δ-C1* could restore its telomere length to WT
613 level (Figure 6—figure supplement 5A). Four of fifty survivors harbored Type II telomere
614 structure (labeled in orange, 8% of the survivors tested, Figure 6B and Figure 6E).
615 Reintroduction of *TLC1* into a representative clone named SY12^{XYΔ} *tlc1Δ-T1* could restore its

616 telomere length to WT level (Figure 6—figure supplement 5B). Some of the survivors (labeled
617 in black, 44% of the survivors tested, Figure 6B and Figure 6E) were not characterized. Like in
618 SY12 *tlc1Δ* cells, Rad52 is not strictly required for the formation of circular survivors in SY12^{XYΔ}
619 *tlc1Δ rad52Δ* and SY12^{XYΔ+Y} *tlc1Δ rad52Δ* strains (Figure 6—figure supplement 6A and B). To
620 investigate whether Type I-specific mechanisms are still utilized in the survivor formation in Y'-
621 less strain, we deleted *RAD51* in SY12^{XYΔ} *tlc1Δ*, and found that SY12^{XYΔ} *tlc1Δ rad51Δ* strain
622 was able to generate three types of survivors, including Type II survivor, circular survivor and
623 uncharacterized survivor (Figure 6—figure supplement 7A), similar to the observations in
624 SY12^{XYΔ} *tlc1Δ* strain (Figure 6B). Notably, the proportions of circular and uncharacterized
625 survivors in the SY12^{XYΔ} *tlc1Δ rad51Δ* strain were 36% (9/25) and 32% (8/25) (Figure 6—figure
626 supplement 7B and supplementary file 5), respectively, lower than 48% and 44% in the SY12^{XYΔ}
627 *tlc1Δ* strain (Figure 6E and supplementary file 5). Accordingly, the ratio of Type II survivor in
628 SY12^{XYΔ} *tlc1Δ rad51Δ* was (32% of the survivors tested, Figure 6—figure supplement 7B and
629 supplementary file 5) was higher than SY12^{XYΔ} *tlc1Δ* strain (8% of the survivors tested, Figure
630 6E and supplementary file 5), suggesting that Type I-specific mechanisms still contribute to the
631 survivor formation even in the Y'-less strain SY12^{XYΔ}. Collectively, the aforementioned data
632 suggest that X-elements, as well as Y'-elements, are not essential for the generation of Type II
633 survivors.

634

Figure 6

635

636

637 **Figure 6.** Survivor analysis of SY12^{XYΔ} *tlc1Δ* and SY12^{XYΔ+Y} *tlc1Δ* strains. **(A)** and **(B)** Telomere

638 Southern blotting analysis of SY12^{XYΔ+Y} *tlc1Δ* (A) and SY12^{XYΔ} *tlc1Δ* (B) survivors obtained on solid

639 medium. fifty independent survivors (labeled 1 to 50 on top) were randomly picked, and their genomic

640 DNAs were digested with Xhol and subjected to the Southern blotting assay with a TG₁₋₃ probe. Type II

641 survivors: in orange; circular survivors: in blue; uncharacterized survivors: in black. The sizes of

642 individual telomere restriction fragments of the SY12^{XYΔ+Y} and SY12^{XYΔ} strain are indicated on the left.

643 LC: loading control. **(C)** and **(E)** The percentage of survivor types in SY12^{XYΔ+Y} *tlc1Δ* (C) and SY12^{XYΔ}

644 *tlc1Δ* (E) strains. n=50; Type II, in orange; uncharacterized survivor, in grey; circular survivor, in blue.

645 **(D)** and **(F)** Schematic of three circular chromosomes and fusion sequences in the SY12^{XYΔ+Y} *tlc1Δ*-C1

646 (D) and SY12^{XYΔ} *tlc1Δ*-C1 (F) survivors, respectively. The sequence in blue indicates the sequences of

647 X-R, XI-R or XIV-R, the sequence in red indicates the sequences of I-L, XIII-L or XVI-L. Bases in green

648 are mis-paired, dashes are deleted. The numbers above or below the schematic line (chromosome)

649 indicate the distance to the corresponding telomeres.

650 **Figure 6—figure supplement 1.** SY12^{XYΔ+Y} *tlc1Δ* and SY12^{XYΔ} *tlc1Δ* strains form Type II survivors in

651 liquid culture. **(A)** Cell viability assay in liquid medium: The growth of SY12^{XYΔ+Y} (labeled in black) and

652 SY12^{XYΔ+Y} *tlc1Δ* (three clones labeled in blue, purple and green respectively) strains were monitored

653 every 24 hr for 12 days. **(B)** Telomeric Southern blotting assay of SY12^{XYΔ+Y} *tlc1Δ* survivors. Genomic

654 DNAs prepared from survivors in (A) were digested with Xhol and subjected to Southern blotting with a

655 TG₁₋₃ probe. **(C)** Cell viability assay in liquid medium: The growth of SY12^{XYΔ} (labeled in black) and

656 SY12^{XYΔ} *tlc1Δ* (three clones labeled in blue, purple and green respectively) strains were monitored every

657 24 hr for 12 days. **(D)** Telomeric Southern blotting assay of SY12^{XYΔ} *tlc1Δ* survivors. Genomic DNAs

658 prepared from survivors in (C) were digested with Xhol and subjected to Southern blotting with a TG₁₋₃

659 probe.

660 **Figure 6—figure supplement 2.** PCR mapping of the borders of erosion in SY12^{XYΔ+Y} *tlc1Δ-C1* cell.

661 Red lines indicate the regions which are absent in the SY12^{XYΔ+Y} strain.

662 **Figure 6—figure supplement 3.** Southern blotting results of an SY12^{XYΔ+Y} *tlc1Δ* circular survivor and

663 an SY12^{XYΔ+Y} *tlc1Δ* Type II survivor at the 20th re-streaks after *TLC1* reintroduction. LC: loading control.

664 **Figure 6—figure supplement 4.** PCR mapping of the borders of erosion in SY12^{XYΔ} *tlc1Δ-C1* cell. Red

665 lines indicate the regions which have been deleted in the SY12^{XYΔ} strain.

666 **Figure 6—figure supplement 5.** Southern blotting results of reintroducing *TLC1* into SY12^{XYΔ} *tlc1Δ*

667 survivors. (A) Southern blotting result of SY12^{XYΔ} *tlc1Δ* circular survivor at the 20th re-streaks after *TLC1*

668 reintroduction. LC: loading control. (B) Southern blotting result of SY12^{XYΔ} *tlc1Δ* Type II survivor at the

669 20th re-streaks after *TLC1* reintroduction. LC: loading control.

670 **Figure 6—figure supplement 6.** Survivor formation in SY12^{XYΔ+Y} *tlc1Δ rad52Δ* and SY12^{XYΔ} *tlc1Δ*

671 *rad52Δ* strains. (A) Cell viability assay in liquid culture. The growth of SY12^{XYΔ+Y} (labeled in black),

672 SY12^{XYΔ+Y} *tlc1Δ* (two clones labeled in purple and blue respectively) and SY12^{XYΔ+Y} *tlc1Δ rad52Δ* (three

673 clones labeled in violet, pink and carmine respectively) strains shown in the left panel; the survivor

674 formation in SY12^{XYΔ} (labeled in black), SY12^{XYΔ} *tlc1Δ* (two clones labeled in purple and blue

675 respectively) and SY12^{XYΔ} *tlc1Δ rad52Δ* (three clones labeled in violet, pink and carmine respectively)

676 strains shown in the right panel. They were monitored every 24 hr for 12 days. (B) Telomere Southern

677 blotting assay of SY12^{XYΔ+Y} *tlc1Δ rad52Δ* (upper) and SY12^{XYΔ} *tlc1Δ rad52Δ* (lower) survivors obtained

678 on solid medium. Genomic DNA from twenty-five independent clones (labeled on top) was digested with

679 Xhol and hybridized to a telomere-specific TG₁₋₃ probe. Circular survivors: in blue; uncharacterized

680 survivors: in black. Theoretical telomere restriction fragments of each strain are indicated on the left.

681 The asterisks indicate the non-specific bands. Genomic DNA stained with Gelred was used as a relative

682 loading control (LC).

683 **Figure 6—figure supplement 7.** Survivor formation in SY12^{XYΔ} *tlc1Δ rad51Δ* strain. (A) Southern

684 blotting result of SY12^{XYΔ} *tlc1Δ rad51Δ* strain. Twenty-five independent survivors (labeled 1 to 25 on top)

685 were randomly picked, and their genomic DNAs were digested with Xhol and subjected to the Southern

686 blotting assay with a TG₁₋₃ probe. Type II survivors: in orange; circular survivors: in blue;

687 uncharacterized survivors: in black. (B) The percentage of survivor types in SY12^{XYΔ} *tlc1Δ rad51Δ*
688 strain. n=25; Type II, in orange; uncharacterized survivor, in grey; circular survivor, in blue.

689

690 **Discussion**

691 The wild-type yeast strain BY4742, commonly used in laboratories, possesses nineteen Y'-
692 elements at seventeen telomere loci and thirty-two X-elements at thirty-two telomere loci. This
693 abundance of Y'-elements and X-elements poses challenges for loss-of-function studies,
694 highlighting the need for a strain lacking all Y'-elements and X-elements. Fortunately, we have
695 previously constructed the single-chromosome yeast strain SY14, which contains only one copy
696 of Y'-element and two copies of X-element (Shao et al., 2018), and could have been an ideal
697 tool. However, the telomerase-null survivors of SY14 mainly bypassed senescence through
698 chromosomal circularization, providing limited insights into the roles of Y'- and X-elements in
699 telomere maintenance (Wu et al., 2020). Therefore, in this study, we employed the SY12 strain,
700 which has three chromosomes, to investigate the functions of Y'- and X-elements at telomeres
701 (Figure 2A, left panel).

702 We constructed the SY12^{YΔ}, SY12^{XYΔ+Y}, and SY12^{XYΔ} strains, which lack the Y'-element, X-
703 elements, and both X- and Y'-elements, respectively (Figure 3A). Surprisingly, the SY12^{YΔ},
704 SY12^{XYΔ}, and SY12^{XYΔ+Y} strains exhibited minimal defects in cell proliferation, genotoxic
705 sensitivity, and telomere homeostasis (Figures 3 and 4). These results demonstrate, for the first
706 time, that both X- and Y'-elements are dispensable for cellular functions. Thus, the SY12^{YΔ},

707 SY12^{XYΔ}, and SY12^{XYΔ+Y} strains established in this study, with their simplified telomere
708 structures, are valuable resources for telomere biology research.

709 Subtelomeric regions are known to be highly variable and often contain species-specific
710 homologous DNA sequences. In the case of fission yeast, subtelomeric regions consist of
711 subtelomeric homologous (SH) and telomere-distal sequences. Previous studies have shown
712 that subtelomeric homologous sequences in fission yeast do not significantly impact telomere
713 length, mitotic cell growth, or stress responses. However, they do play a role in buffering against
714 the spreading of silencing signals from the telomere (Tashiro et al., 2017). Though the "core X"
715 sequence acts as a protosilencer (Lebrun et al., 2001), the X-STRs and Y'-STAR possess anti-
716 silencing properties that limit the spreading of heterochromatin in budding yeast (Fourel et al.,
717 1999), the telomere position effect remains effective in the strains that lack both X- and Y'-
718 elements (Figure 4B). Given the remarkable differences in both sequence and size between
719 the subtelomeric regions of budding yeast and fission yeast, it is difficult to compare the extent
720 to which subtelomeric elements affect telomere silencing.

721 Amplification of Y'-element(s) is a characteristic feature of canonical Type I survivors. Type I
722 survivor emerged in SY12 strain indicating that multiple Y'-elements in tandem is not strictly
723 required for type I recombination (Figure 2D). Interestingly, the telomerase-null SY12^{YΔ} and
724 SY12^{XYΔ} cells, lacking Y'-elements, failed to generate Type I survivors but could generate Type
725 II survivors, indicating that the acquisition of Y'-elements is not a prerequisite for Type II survivor
726 formation (Figure 5C and Figure 6B). These observations support the notion that Type I and
727 Type II survivors form independently, although both may utilize a common alternative telomere-

728 lengthening pathway (Kockler et al., 2021). Moreover, a subset of SY12 *tlc1Δ*, SY12^{YΔ} *tlc1Δ*,
729 SY12^{XYΔ+Y} *tlc1Δ*, and SY12^{XYΔ} *tlc1Δ* cells could escape senescence and become survivors
730 through microhomology-mediated intra-chromosomal end-to-end fusion (chromosome
731 circularization) (Figure 2D, Figure 5C, Figure 6A and 6B, labeled in blue). Notably, the survivors
732 with all circular chromosomes were readily recovered from the telomerase-null SY11 to SY14,
733 but not SY1 to SY10 cells (Figure 1). Several reasons could account for this. First, a smaller
734 number of telomeres provides fewer recombination donors and acceptors, resulting in less
735 efficient inter-chromosomal homologous recombination (e.g., TG₁₋₃ tracts recombination or Y'-
736 element acquisition). Second, the continuously shortened telomeres of linear chromosomes
737 may trigger another round of senescence, while survivors with circular chromosomes do not
738 encounter end-replication problems and therefore exhibit greater stability. Third, the presence
739 of homologous sequences at both chromosome ends appears to be a minimum requirement
740 for microhomology-mediated intra-chromosomal end-to-end fusion. With fewer homologous
741 sequences, the probability of chromosome circularization decreases, and with more
742 chromosomes, the likelihood of circularizing each chromosome within a cell diminishes. Fourth,
743 in cells with fewer telomeres, intra-chromosomal telomere fusions are more likely to occur, while
744 lethal inter-chromosomal fusions are competed out. However, we can speculate that in
745 telomerase-null cells with eroded chromosome ends, stochastic repair mechanisms such as
746 homologous recombination, microhomology-mediated end joining, and inter- and intra-
747 chromosomal fusions operate simultaneously. Only those survivors that maintain a relatively
748 stable genome and robust growth can be experimentally recovered.

749 *Saccharomyces cerevisiae* (budding yeast) and *Schizosaccharomyces pombe* (fission yeast)

750 are the most commonly used laboratory systems, separated by approximately 1 Gya (billion

751 years ago) according to molecular-clock analyses (Hedges, 2002). Despite both species having

752 genomes are both over 12 megabases in length, haploid *S. cerevisiae* contains 16

753 chromosomes, while *S. pombe* has only 3 chromosomes (Forsburg, 2005). The telomerase-

754 independent mechanisms for maintaining chromosome ends differ between these two yeasts.

755 In budding yeast, homologous recombination is the primary mode of survival in telomerase-

756 deficient cells, resulting in the generation of Type I or Type II survivors (McEachern and Haber,

757 2006). Telomerase- and recombination-deficient cells occasionally escape senescence through

758 the formation of palindromes at chromosome ends in the absence of *EXO1* (Maringele and

759 Lydall, 2004). Fission yeast cells lacking telomerase can also maintain their chromosome

760 termini by recombining persistent telomere sequences, and survivors with all intra-circular

761 chromosomes (Nakamura et al., 1998) or intermolecular fusions (Tashiro et al., 2017; Wang

762 and Baumann, 2008) have been observed. In our research, some SY12 *tlc1Δ* cells, which have

763 three chromosomes, also bypassed senescence by circularizing their chromosomes (Figure

764 2D), suggesting that a lower chromosome number increases the likelihood of recovering

765 survivors containing circular chromosomes.

766 While most eukaryotes employ telomerase for telomere replication, some eukaryotes lack

767 telomerase and utilize recombination as an alternative means to maintain telomeres

768 (Biessmann and Mason, 1997). In *Drosophila*, telomeres are replicated through a

769 retrotransposon mechanism (Levis et al., 1993; Louis, 2002). The structure and distribution of

770 Y'-elements in *S. cerevisiae* suggest their origin from a mobile element (Jager and Philipsen,
771 1989; Louis and Haber, 1992), and Y'-elements can be mobilized through a transposition-like
772 RNA-mediated process (Maxwell et al., 2004). In telomerase-deficient yeast cells, homologous
773 recombination can acts as a backup mechanism for telomere replication (Lundblad and
774 Blackburn, 1993), and the reintroduction of telomerase efficiently inhibits telomere
775 recombination and dominates telomere replication (Chen et al., 2009; Peng et al., 2015; Teng
776 and Zakian, 1999). These findings suggest that subtelomeric region amplification mediated by
777 recombination and/or transposition may represent ancient telomere maintenance mechanisms
778 predating the evolution of telomerase (de Lange, 2004). Therefore, subtelomeric X- and Y'-
779 elements might be considered as evolutionary “fossils” in the *S. cerevisiae* genome, and their
780 elimination has little impact on telomere essential functions and genome stability.

781 MATERIALS AND METHODS

782 Yeast strains and plasmids

783 Yeast strains used in this study are listed in supplementary file 6. The plasmids for gene deletion
784 and endogenous expression of *TLC1* were constructed based on the pRS series as described
785 previously (Sikorski and Hieter, 1989). We use PCR to amplify the upstream and downstream
786 sequence adjacent to the target gene, and then the PCR fragments were digested with different
787 restriction enzymes and inserted into pRS plasmids. Plasmids were introduced into budding
788 yeast by standard procedures, and transformants were selected on auxotrophic medium (Orr-
789 Weaver et al., 1981).

790 **Multiple-colony streaking assay**

791 Single clones of indicated yeast strains were randomly picked and streaked on extract-peptone-
792 dextrose (YPD) plates. Thereafter, several clones of their descendants were passaged by
793 successive re-streaks at 30°C. This procedure was repeated dozens of times every two days.

794 **Telomere Southern blotting**

795 Southern blotting was performed as previously described (Hu et al., 2013). Yeast genomic DNA
796 was extracted by a phenol chloroform method. Restriction fragments were separated by
797 electrophoresis in 1% agarose gel, transferred to Amersham Hybond-N⁺ membrane (GE
798 Healthcare) and hybridized with α -³²P dCTP labeled probe.

799 **Cell viability assay**

800 Cell viability assay was performed as previously described with few modifications (Le et al.,
801 1999). Three independent single colonies of indicated strains were grown to saturation at 30°C.
802 Then the cell density was measured every 24 hours by spectrometry (OD₆₀₀), and the cultures
803 were diluted to the density at OD₆₀₀ = 0.01. This procedure was repeated several times to allow
804 the appearance of survivors. The genomic DNA samples at indicated time points were
805 harvested for telomere length analysis.

806 **Molecular analysis of circular chromosomes**

807 Fusion events were determined by PCR amplification and DNA sequencing. Genomic DNA was
808 extracted by phenol chloroform. First, we use primers pairs located at different sites of each

809 chromosome arm at an interval of 1 kb (listed in Supplementary file 1) to determine the erosion
810 site of each chromosome; PCR was performed as standard procedures in 10 μ l reactions by
811 TaKaRa Ex Taq. To amplify the sequence of fusion junction we use pairs of primers oriented
812 to different arm of each chromosome; PCR was performed as standard procedures in 50 μ l
813 reactions by TaKaRa LA Taq. The fragments were purified by kit (QINGEN), then they were
814 sequenced directly or cloned into the pMD18-T Vector (TaKaRa) for sequencing.

815 **CRISPR-Cas9 mediated X- and Y'-elements deletion**

816 X- and Y'-elements were deleted as described (Shao et al., 2018; Shao et al., 2019). Briefly,
817 pgRNA and a DNA targeting cassette, containing a selection marker, a homology arm (DR1),
818 a direct repeat (DR2), and telomeric repeats, were co-introduced into indicated cells harboring
819 pCas9. pCas9 nuclease was directed to a specific DNA sequence centromere-proximal to the
820 subtelomeric region with the guidance of gRNA1, where it induces a double-stranded break.
821 Homologous recombination between the broken chromosome and the provided DNA targeting
822 cassette caused the deletion of X- and Y'-elements. The positive transformants identified by
823 PCR were transferred into the galactose-containing liquid medium, which induces the
824 expression of the gRNA2 on pCas9 to cut at the target site near the *URA3* gene and on the
825 backbone of pgRNA. Then the culture was plated on the medium containing 5'-FOA to select
826 for eviction of the *URA3* marker.

827 **Cell growth assay**

828 Three individual colonies of the indicated strains were inoculated into 5 ml liquid medium and

829 incubated at 30°C. The cell cultures were then diluted in 30 ml of fresh YPD medium to the
830 density at OD₆₀₀ = 0.1. Then the density of cells was measured by spectrometry (OD₆₀₀) hourly.

831 **Fluorescence-activated cell sorting (FACS) assay**

832 The FACS analysis was performed as previously described (He et al., 2019). Yeast cells were
833 cultured at 30°C until the log phase, and then 1 ml of the cells was harvested. The cells were
834 washed with cold sterile ddH₂O and fixed with 70% ethanol overnight at 4°C. The following day,
835 the cells were washed with 50 mM sodium citrate buffer (pH 7.2) and then digested with 0.25
836 mg/ml RNase A at 37°C for 2-3 hours, followed by 0.2 mg/ml Protease K at 50°C for 1 hour.
837 Both RNase A and Protease K were diluted in sodium citrate buffer. The cells were
838 resuspended in 500 µl sodium citrate buffer and then sonicated for 45 seconds at 100% power.
839 The DNA of the cells was stained with 20 µg/ml propidium iodide (PI) at 4°C overnight or at
840 room temperature for 1 hour. FACS analysis was performed on a BD LSRII instrument.

841 **Serial dilution assay**

842 A single colony per strain was inoculated into 3 ml liquid medium and incubated at 30°C. The
843 cell cultures were then adjusted to a concentration of OD₆₀₀ ~0.5. Five-fold serially diluted cells
844 were spotted on the indicated plates. The plates were incubated at 30°C for the appropriate
845 time prior to photography.

846 **RNA extraction and RT-qPCR**

847 Three independent single colonies of indicated strains were grown to log phase at 30°C. Yeast
848 pellets from a 1 ml cell culture were digested with Zymolyase 20 T (MP Biomedicals, LLC) to

849 obtain spheroplasts. RNA was extracted with RNeasy mini kit (Qiagen) followed by reverse
850 transcription using the Fastquant RT kit (Tiangen). Real-time PCR was carried out using
851 SYBR Premix Ex TaqTM II (Takara) on the Applied Biosystems StepOne Real-Time PCR
852 System. Primer pairs used in RT-qPCR were listed in supplementary file 1. The gene
853 expression levels were normalized to that of *ACT1* and the wild-type value is arbitrarily set to
854 1.

855 **Pulsed-field gel electrophoresis (PFGE) analysis**

856 DNA plugs for pulse-field gel electrophoresis (PFGE) were prepared according to the
857 manufacturer's instructions (Bio-Rad) and Ishii et al (Ishii et al., 2008). Fresh yeast cells were
858 inoculated in 50 ml YPD and incubated at 30°C until the OD600 reached approximately 1.0.
859 The cells were subsequently harvested, washed twice with cold EDTA buffer (50 mM, pH 8.0),
860 and resuspended in 300 µl of CSB buffer (10 mM pH 7.2 Tris-Cl, 20 mM NaCl, 100 mM pH 8.0
861 EDTA, 4 mg/ml lyticase) and blended with 300 µl of 2% low-melt agarose (Bio-Rad). Then, 100
862 µl of resuspended cells were added to each plug and incubated at 4°C for 30 min until the
863 agarose plugs were solidified. The solidified agarose plugs were incubated in lyticase buffer
864 (10 mM pH 7.2 Tris-Cl, 100 mM pH 8.0 EDTA, 1 mg/ml lyticase) at 37°C for 3 hours, followed
865 by incubation in Proteinase K Reaction Buffer (100 mM pH 8.0 EDTA, 0.2% sodium
866 deoxycholate, 1% sodium lauryl sarcosine) containing 1 mg/ml Proteinase K at 50°C for 12
867 hours. The plugs were washed four times in 25 ml of wash buffer (20 mM Tris, pH 8.0, 50 mM
868 EDTA) for 1 hour each time at room temperature with gentle agitation. The plugs were then
869 fixed into a pulsed field agarose gel (Bio-Rad), and the CHEF-DR II Pulsed Field

870 Electrophoresis System (Bio-Rad) was used for gel electrophoresis. The electrophoresis
871 conditions for separation were as follows: 0.8% agarose gel, 1×TBE buffer, 14°C temperature,
872 first run: initial switch time 1200 s; final switch time 1200 s; run time 24 hours; voltage gradient
873 2 V/cm; angle 96°; second run: initial switch time 1500 s; final switch time 1500 s; run time 24
874 hours; voltage gradient 2 V/cm; angle 100°; third run: initial switch time 1800 s; final switch time
875 1800 s; run time 24 hours; voltage gradient 2 V/cm; angle 106°. The gel was stained with
876 GelstainRedTM nucleic acid dye (US EVERBRIGHT), and PFGE Gels were imaged by Tanon
877 2500.

878 **ACKNOWLEDGMENTS**

879 We thank members of Zhou lab for discussions and suggestions for this project.

880 **AUTHOR CONTRIBUTIONS**

881 Conceptualization: Zhi-Jing Wu, Jin-Qiu Zhou.

882 Funding acquisition: Jin-Qiu Zhou.

883 Investigation: Can Hu, Zhi-Jing Wu, Xue-Ting Zhu.

884 Methodology: Zhi-Jing Wu, Yangyang Shao, Zhongjun Qin.

885 Supervision: Jin-Qiu Zhou.

886 Writing-original draft: Zhi-Jing Wu.

887 Writing-review & editing: Zhi-Jing Wu, Can Hu, Xue-Ting Zhu, Ming-Hong He, Jin-Qiu Zhou.

888 **CONFLICT OF INTEREST**

889 The authors declare that they have no conflict of interest.

890 **REFERENCES**

891 Aparicio, O.M., Billington, B.L., and Gottschling, D.E. (1991). Modifiers of position effect are shared
892 between telomeric and silent mating-type loci in *S. cerevisiae*. *Cell* 66, 1279-1287.

893 Biessmann, H., and Mason, J.M. (1997). Telomere maintenance without telomerase. *Chromosoma* 106,
894 63-69.

895 Chan, C.S.M., and Tye, B.K. (1983a). A Family of *Saccharomyces-Cerevisiae* Repetitive Autonomously
896 Replicating Sequences That Have Very Similar Genomic Environments. *Journal of Molecular Biology*
897 168, 505-523.

898 Chan, C.S.M., and Tye, B.K. (1983b). Organization of DNA-Sequences and Replication Origins at Yeast
899 Telomeres. *Cell* 33, 563-573.

900 Chen, Q., Ijpmma, A., and Greider, C.W. (2001). Two survivor pathways that allow growth in the absence
901 of telomerase are generated by distinct telomere recombination events. *Mol Cell Biol* 21, 1819-1827.

902 Chen, X.F., Meng, F.L., and Zhou, J.Q. (2009). Telomere recombination accelerates cellular aging in
903 *Saccharomyces cerevisiae*. *PLoS Genet* 5, e1000535.

904 Churikov, D., Charifi, F., Simon, M.N., and Geli, V. (2014). Rad59-facilitated acquisition of Y' elements
905 by short telomeres delays the onset of senescence. *PLoS Genet* 10, e1004736.

906 Craven, R.J., and Petes, T.D. (1999). Dependence of the regulation of telomere length on the type of
907 subtelomeric repeat in the yeast *Saccharomyces cerevisiae*. *Genetics* 152, 1531-1541.

908 de Lange, T. (2004). T-loops and the origin of telomeres. *Nat Rev Mol Cell Biol* 5, 323-329.

909 Forsburg, S.L. (2005). The yeasts *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe*:
910 models for cell biology research. *Gravit Space Biol Bull* 18, 3-9.

911 Fourel, G., Revardel, E., Koering, C.E., and Gilson, E. (1999). Cohabitation of insulators and silencing
912 elements in yeast subtelomeric regions. *Embo Journal* 18, 2522-2537.

913 He, M.H., Liu, J.C., Lu, Y.S., Wu, Z.J., Liu, Y.Y., Wu, Z., Peng, J., and Zhou, J.Q. (2019). KEOPS
914 complex promotes homologous recombination via DNA resection. *Nucleic Acids Res* 47, 5684-5697.

915 Hedges, S.B. (2002). The origin and evolution of model organisms. *Nat Rev Genet* 3, 838-849.

916 Hediger, F., Berthiau, A.S., van Houwe, G., Gilson, E., and Gasser, S.M. (2006). Subtelomeric factors
917 antagonize telomere anchoring and Tel1-independent telomere length regulation. *EMBO J* 25, 857-867.

918 Hu, Y., Tang, H.-B., Liu, N.-N., Tong, X.-J., Dang, W., Duan, Y.-M., Fu, X.-H., Zhang, Y., Peng, J.,
919 Meng, F.-L., et al. (2013). Telomerase-null survivor screening identifies novel telomere recombination
920 regulators. *PLoS genetics* 9, e1003208.

921 Ishii, K., Ogiyama, Y., Chikashige, Y., Soejima, S., Masuda, F., Kakuma, T., Hiraoka, Y., and Takahashi,
922 K. (2008). Heterochromatin integrity affects chromosome reorganization after centromere dysfunction.
923 *Science* 321, 1088-1091.

924 Jager, D., and Philipsen, P. (1989). Many Yeast Chromosomes Lack the Telomere-Specific Y'
925 Sequence. *Molecular and Cellular Biology* 9, 5754-5757.

926 Johnson, F.B., Marciniak, R.A., McVey, M., Stewart, S.A., Hahn, W.C., and Guarente, L. (2001). The
927 *Saccharomyces cerevisiae* WRN homolog Sgs1p participates in telomere maintenance in cells lacking
928 telomerase. *EMBO J* 20, 905-913.

929 Kockler, Z.W., Comeron, J.M., and Malkova, A. (2021). A unified alternative telomere-lengthening
930 pathway in yeast survivor cells. *Molecular cell* 81, 1816-1829 e1815.

931 Larrivee, M., and Wellinger, R.J. (2006). Telomerase- and capping-independent yeast survivors with
932 alternate telomere states. *Nat Cell Biol* 8, 741-747.

933 Le, S., Moore, J.K., Haber, J.E., and Greider, C.W. (1999). RAD50 and RAD51 define two pathways that
934 collaborate to maintain telomeres in the absence of telomerase. *Genetics* 152, 143-152.

935 Lebrun, E., Revardel, E., Boscheron, C., Li, R., Gilson, E., and Fourel, G. (2001). Protosilencers in
936 *Saccharomyces cerevisiae* subtelomeric regions. *Genetics* 158, 167-176.

937 Lemieux, B., Laterre, N., Perederina, A., Noel, J.F., Dubois, M.L., Krasilnikov, A.S., and Wellinger,
938 R.J. (2016). Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase
939 MRP. *Cell* 165, 1171-1181.

940 Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996). Senescence
941 mutants of *Saccharomyces cerevisiae* with a defect in telomere replication identify three additional EST
942 genes. *Genetics* 144, 1399-1412.

943 Levis, R.W., Ganeshan, R., Houtchens, K., Tolar, L.A., and Sheen, F.M. (1993). Transposons in place of
944 telomeric repeats at a *Drosophila* telomere. *Cell* 75, 1083-1093.

945 Lewis, L.K., Storici, F., Van Komen, S., Calero, S., Sung, P., and Resnick, M.A. (2004). Role of the
946 nuclease activity of *Saccharomyces cerevisiae* Mre11 in repair of DNA double-strand breaks in mitotic
947 cells. *Genetics* 166, 1701-1713.

948 Louis (2001). SGS1 is required for telomere elongation in the absence of telomerase.

949 Louis, E.J. (1995). The chromosome ends of *Saccharomyces cerevisiae*. *Yeast* 11, 1553-1573.

950 Louis, E.J. (2002). Are *Drosophila* telomeres an exception or the rule? *Genome biology* 3,
951 REVIEWS0007.

952 Louis, E.J., and Haber, J.E. (1991). Evolutionarily recent transfer of a group I mitochondrial intron to
953 telomere regions in *Saccharomyces cerevisiae*. *Curr Genet* 20, 411-415.

954 Louis, E.J., and Haber, J.E. (1992). The structure and evolution of subtelomeric Y' repeats in
955 *Saccharomyces cerevisiae*. *Genetics* 131, 559-574.

956 Louis, E.J., Naumova, E.S., Lee, A., Naumov, G., and Haber, J.E. (1994). The chromosome end in
957 yeast: its mosaic nature and influence on recombinational dynamics. *Genetics* 136, 789-802.

958 Lundblad, V., and Blackburn, E.H. (1993). An alternative pathway for yeast telomere maintenance
959 rescues est1- senescence. *Cell* 73, 347-360.

960 Lundblad, V., and Szostak, J.W. (1989). A mutant with a defect in telomere elongation leads to
961 senescence in yeast. *Cell* 57, 633-643.

962 Maringele, L., and Lydall, D. (2004). Telomerase- and recombination-independent immortalization of
963 budding yeast. *Genes Dev* 18, 2663-2675.

964 Maxwell, P.H., Coombes, C., Kenny, A.E., Lawler, J.F., Boeke, J.D., and Curcio, M.J. (2004). Ty1
965 mobilizes subtelomeric Y' elements in telomerase-negative *Saccharomyces cerevisiae* survivors. *Mol
966 Cell Biol* 24, 9887-9898.

967 McEachern, M.J., and Haber, J.E. (2006). Break-induced replication and recombinational telomere
968 elongation in yeast. *Annu Rev Biochem* 75, 111-135.

969 Nakamura, T.M., Cooper, J.P., and Cech, T.R. (1998). Two modes of survival of fission yeast without
970 telomerase. *Science* 282, 493-496.

971 Nicolette, M.L., Lee, K., Guo, Z., Rani, M., Chow, J.M., Lee, S.E., and Paull, T.T. (2010). Mre11-Rad50-
972 Xrs2 and Sae2 promote 5' strand resection of DNA double-strand breaks. *Nat Struct Mol Biol* 17, 1478-
973 1485.

974 O'Donnell, S., Yue, J.-X., Saada, O.A., Agier, N., Caradec, C., Cokelaer, T., De Chiara, M., Delmas, S.,
975 Dutreux, F., Fournier, T., *et al.* (2023). Telomere-to-telomere assemblies of 142 strains characterize the
976 genome structural landscape in *Saccharomyces cerevisiae*. *Nat Genet* 55, 1390-1399.

977 Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. (1981). Yeast transformation: a model system for
978 the study of recombination. *Proc Natl Acad Sci U S A* 78, 6354-6358.

979 Ottaviani, A., Gilson, E., and Magdinier, F. (2008). Telomeric position effect: from the yeast paradigm to
980 human pathologies? *Biochimie* 90, 93-107.

981 Palm, W., and de Lange, T. (2008). How shelterin protects mammalian telomeres. *Annu Rev Genet* 42,
982 301-334.

983 Peng, J., He, M.H., Duan, Y.M., Liu, Y.T., and Zhou, J.Q. (2015). Inhibition of telomere recombination by
984 inactivation of KEOPS subunit Cgi121 promotes cell longevity. *PLoS Genet* 11, e1005071.

985 Richardson, S.M., Mitchell, L.A., Stracquadanio, G., Yang, K., Dymond, J.S., DiCarlo, J.E., Lee, D.,
986 Huang, C.L.V., Chandrasegaran, S., Cai, Y., *et al.* (2017). Design of a synthetic yeast genome. *Science*
987 (New York, NY) 355, 1040-1044.

988 Shao, Y., Lu, N., Wu, Z., Cai, C., Wang, S., Zhang, L.L., Zhou, F., Xiao, S., Liu, L., Zeng, X., *et al.*
989 (2018). Creating a functional single-chromosome yeast. *Nature* 560, 331-335.

990 Shao, Y.Y., Lu, N., Xue, X.L., and Qin, Z.J. (2019). Creating functional chromosome fusions in yeast
991 with CRISPR-Cas9. *Nat Protoc* 14, 2521-2545.

992 Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for
993 efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics* 122, 19-27.

994 Singer, M.S., and Gottschling, D.E. (1994). TLC1: template RNA component of *Saccharomyces*
995 *cerevisiae* telomerase. *Science* 266, 404-409.

996 Tashiro, S., Nishihara, Y., Kugou, K., Ohta, K., and Kanoh, J. (2017). Subtelomeres constitute a
997 safeguard for gene expression and chromosome homeostasis. *Nucleic Acids Res* 45, 10333-10349.

998 Teng, S.C., Chang, J., McCowan, B., and Zakian, V.A. (2000). Telomerase-independent lengthening of
999 yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process.
1000 *Molecular cell* 6, 947-952.

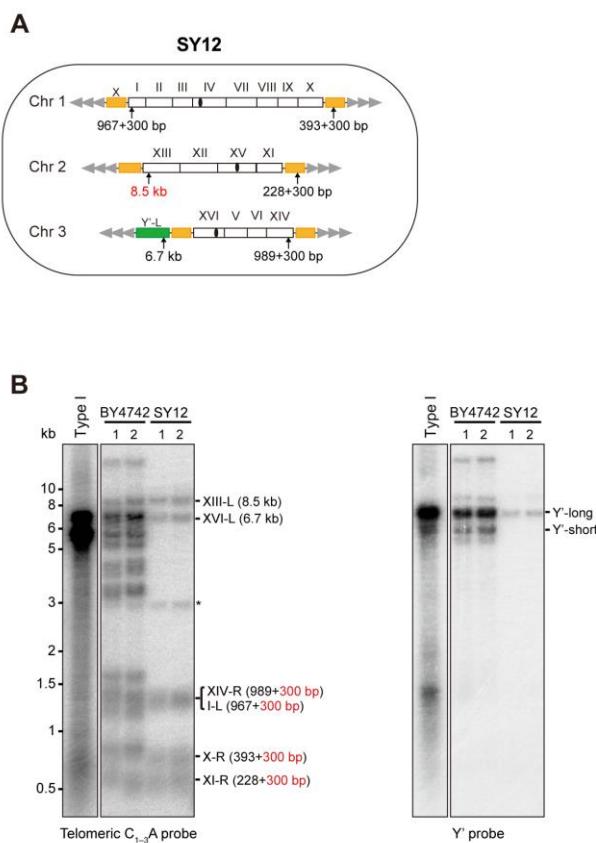
1001 Teng, S.C., and Zakian, V.A. (1999). Telomere-telomere recombination is an efficient bypass pathway
1002 for telomere maintenance in *Saccharomyces cerevisiae*. *Molecular and Cellular Biology* 19, 8083-8093.

1003 Wang, X., and Baumann, P. (2008). Chromosome fusions following telomere loss are mediated by
1004 single-strand annealing. *Molecular cell* 31, 463-473.

1005 Wellinger, R.J., and Zakian, V.A. (2012). Everything you ever wanted to know about *Saccharomyces*
1006 *cerevisiae* telomeres: beginning to end. *Genetics* 191, 1073-1105.

1007 Wu, Z., Liu, J., Zhang, Q.D., Lv, D.K., Wu, N.F., and Zhou, J.Q. (2017). Rad6-Bre1-mediated H2B
1008 ubiquitination regulates telomere replication by promoting telomere-end resection. *Nucleic Acids Res* 45,
1009 3308-3322.

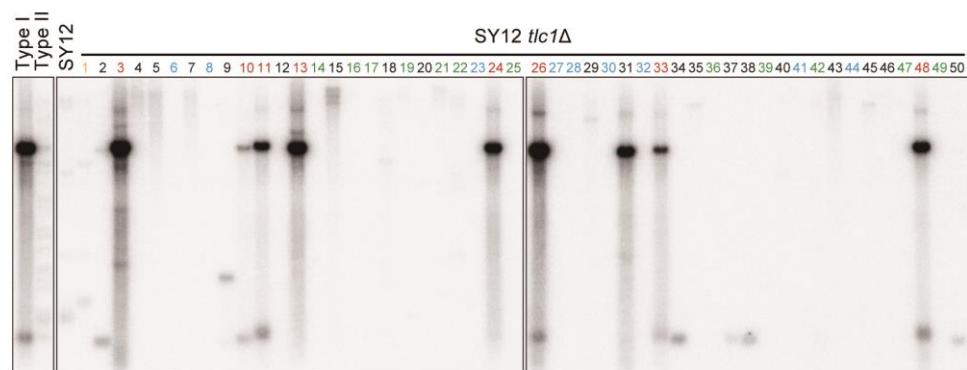
1010 Wu, Z.J., Liu, J.C., Man, X., Gu, X., Li, T.Y., Cai, C., He, M.H., Shao, Y., Lu, N., Xue, X., *et al.* (2020).
1011 Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. *Elife* 9.


1012 Yamada, M., Hayatsu, N., Matsuura, A., and Ishikawa, F. (1998). Y'-Help1, a DNA helicase encoded by
1013 the yeast subtelomeric Y' element, is induced in survivors defective for telomerase. *J Biol Chem* 273,
1014 33360-33366.
1015 Zakian, V.A., and Blanton, H.M. (1988). Distribution of telomere-associated sequences on natural
1016 chromosomes in *Saccharomyces cerevisiae*. *Mol Cell Biol* 8, 2257-2260.
1017 Zhao, Y., Coelho, C., Hughes, A.L., Lazar-Stefanita, L., Yang, S., Brooks, A.N., Walker, R.S.K., Zhang,
1018 W., Lauer, S., Hernandez, C., *et al.* (2023). Debugging and consolidating multiple synthetic
1019 chromosomes reveals combinatorial genetic interactions. *Cell* 186, 5220-5236 e5216.

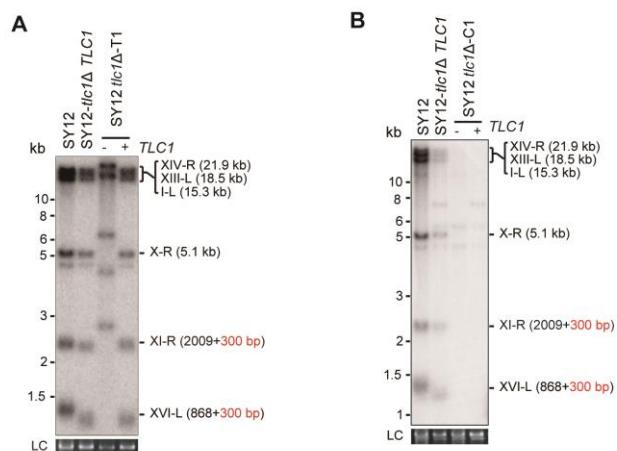
1020

1021

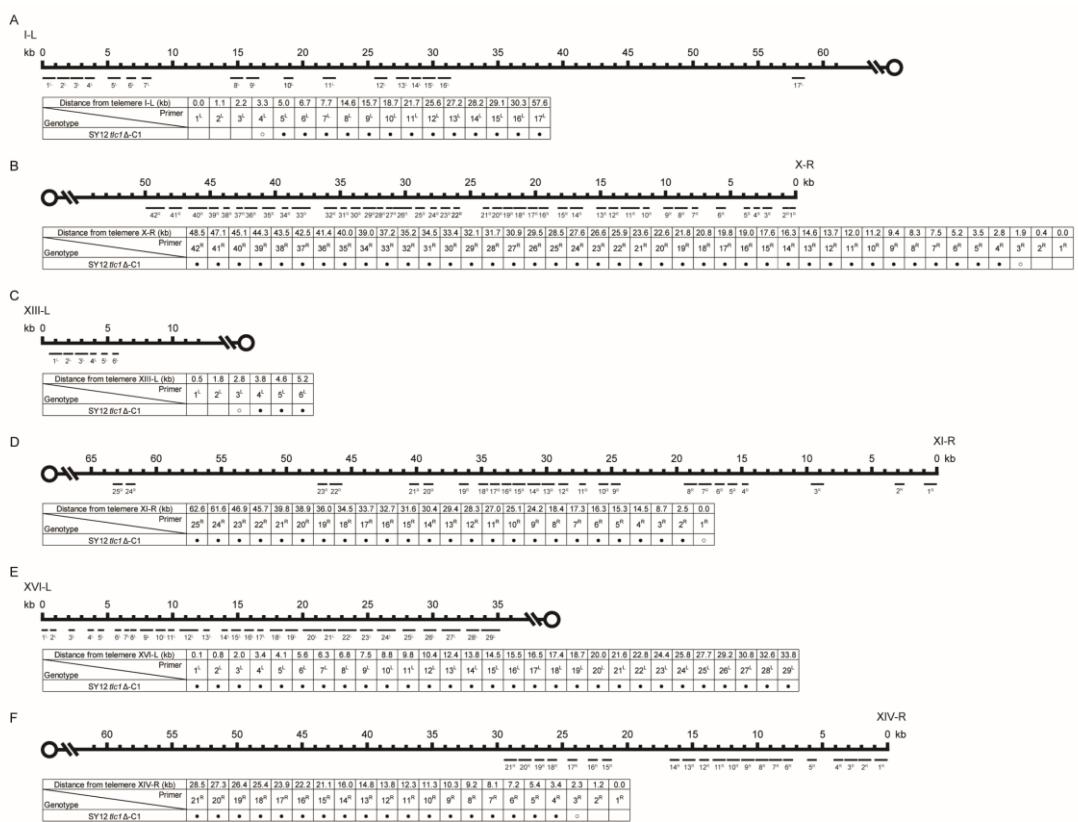
1022 **Figure supplements**


1023

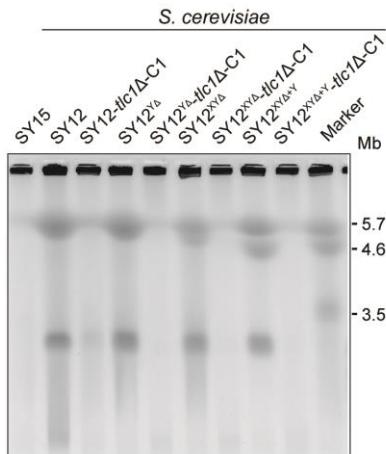
1024


1025 **Figure 2-figure supplement 1.**

1026


1027

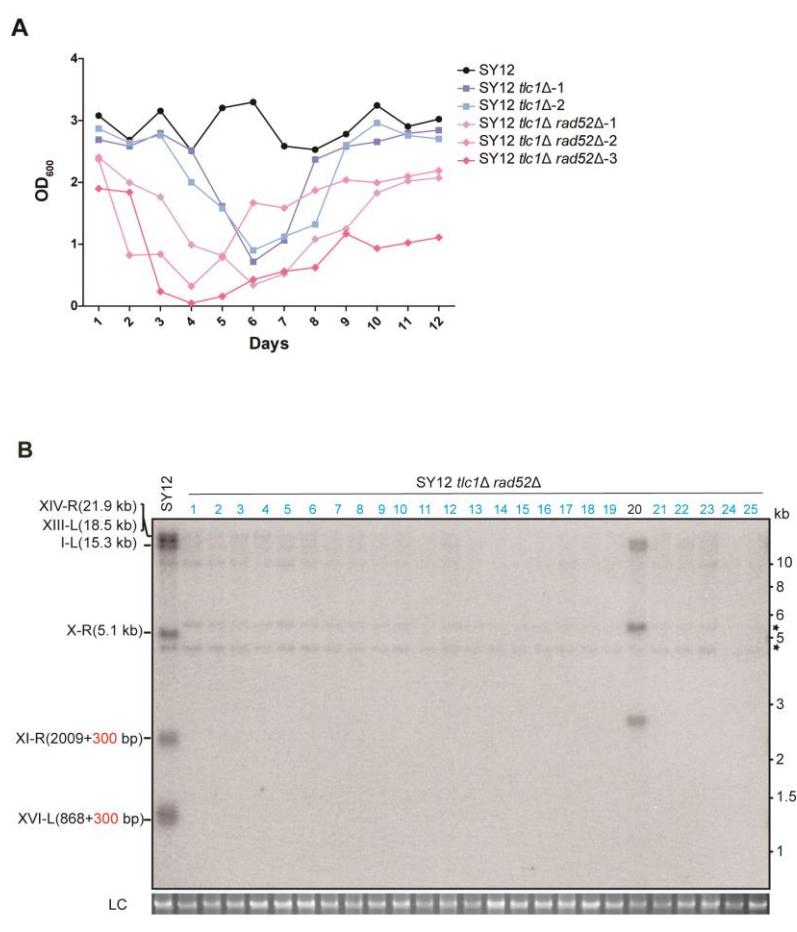
1028 **Figure 2-figure supplement 2**


1029

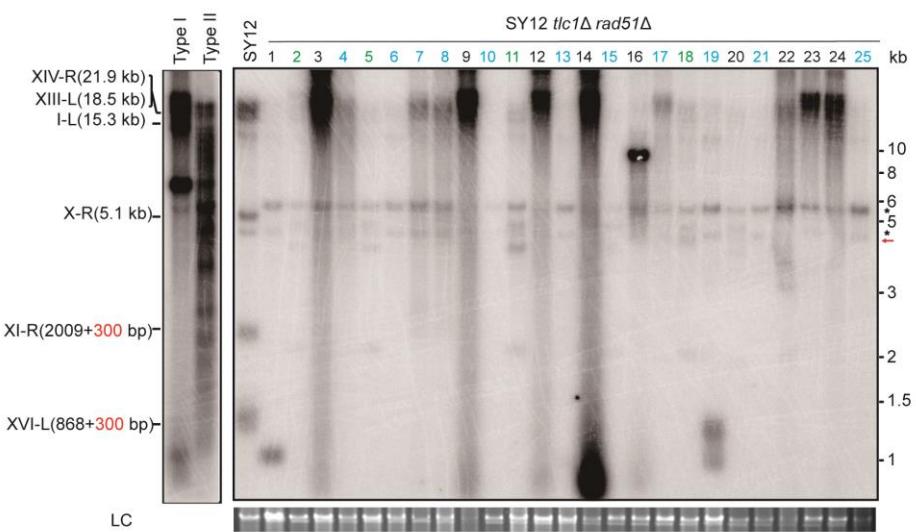
1030 **Figure 2-figure supplement 3**

1031

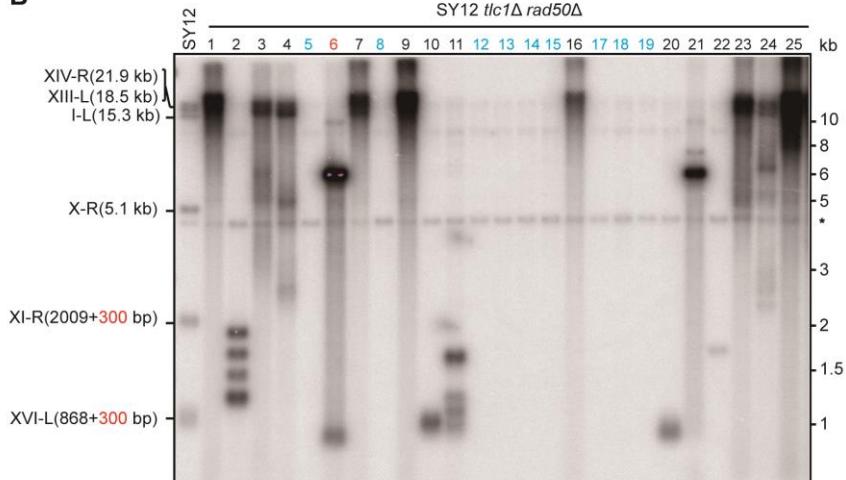
1032 Figure 2-figure supplement 4


1033

1034 Figure 2-figure supplement 5


1035

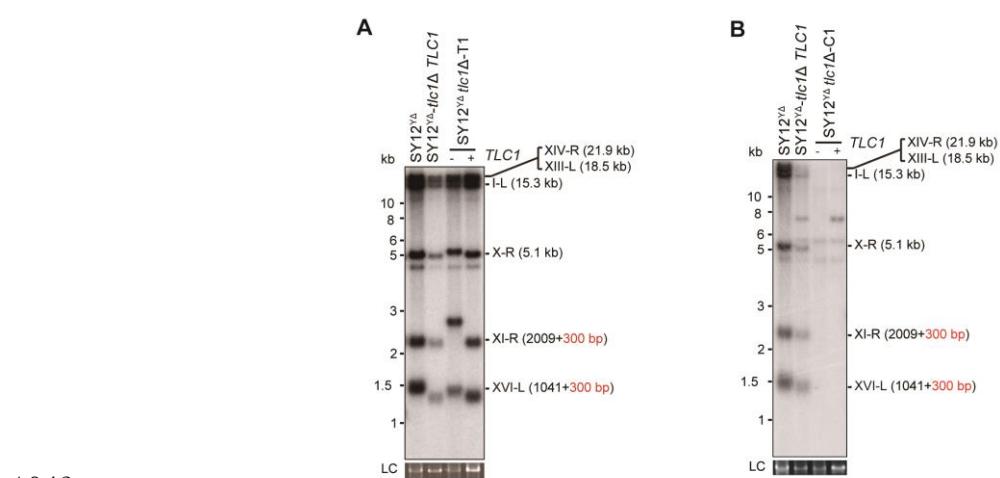
1036 **Figure 2-figure supplement 6**



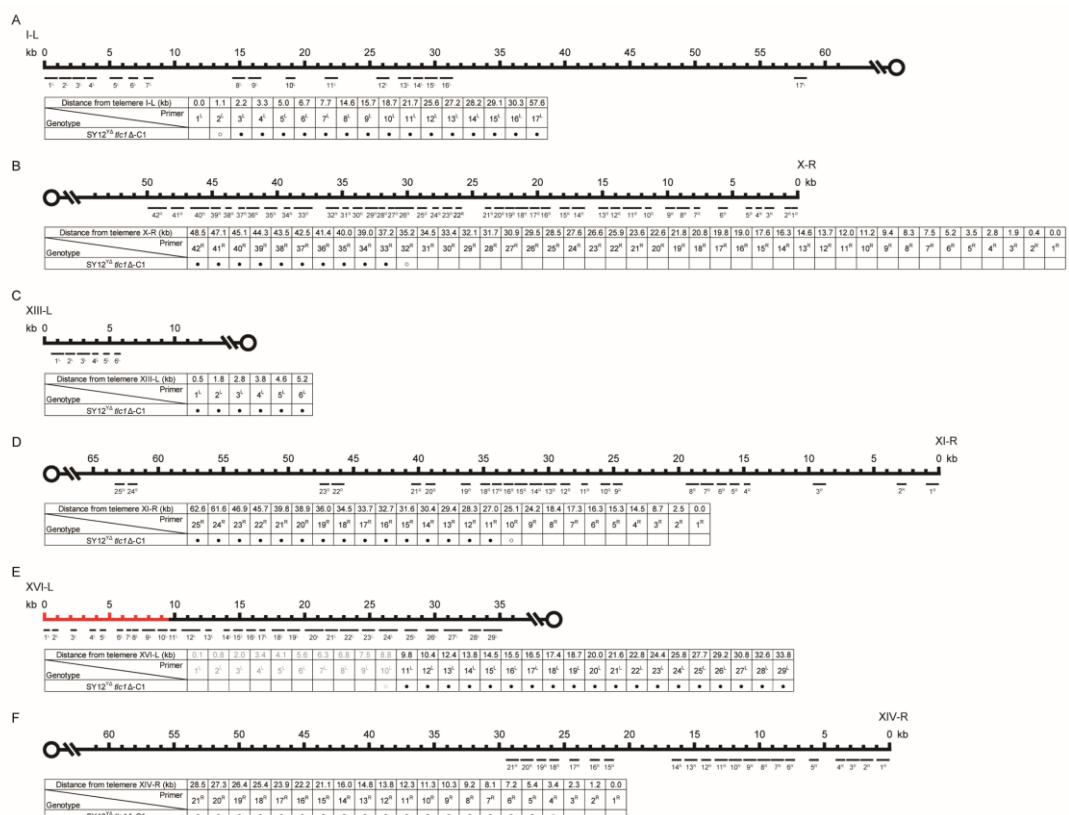
1038 **Figure 2-figure supplement 7**

A

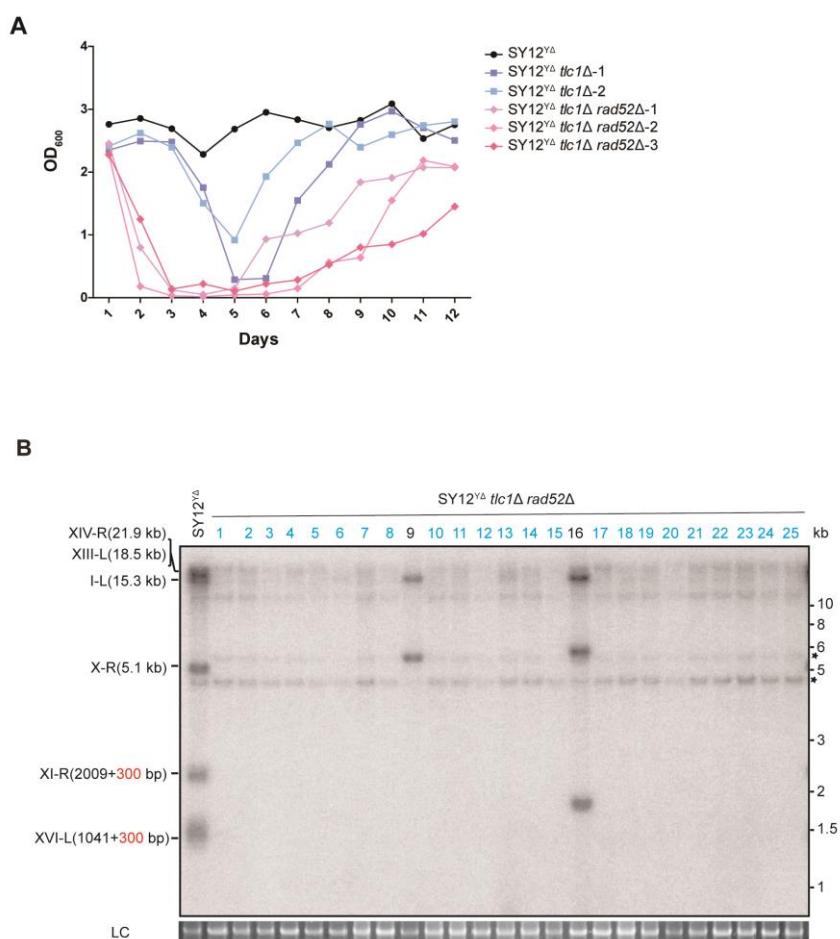
B



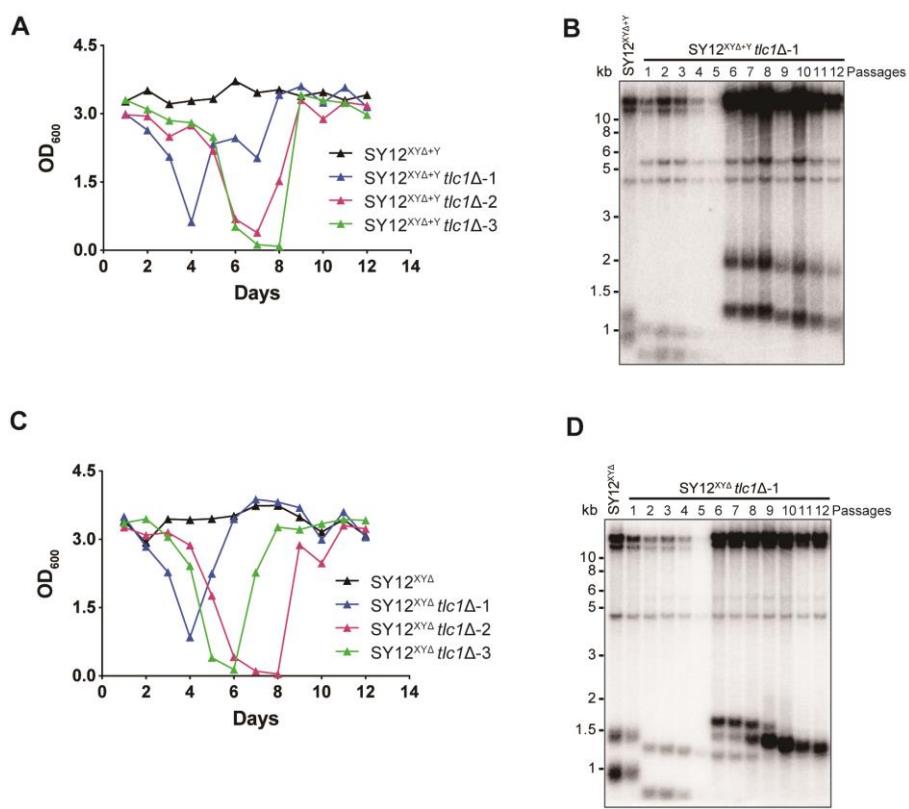
1039


1040 **Figure 2-figure supplement 8**

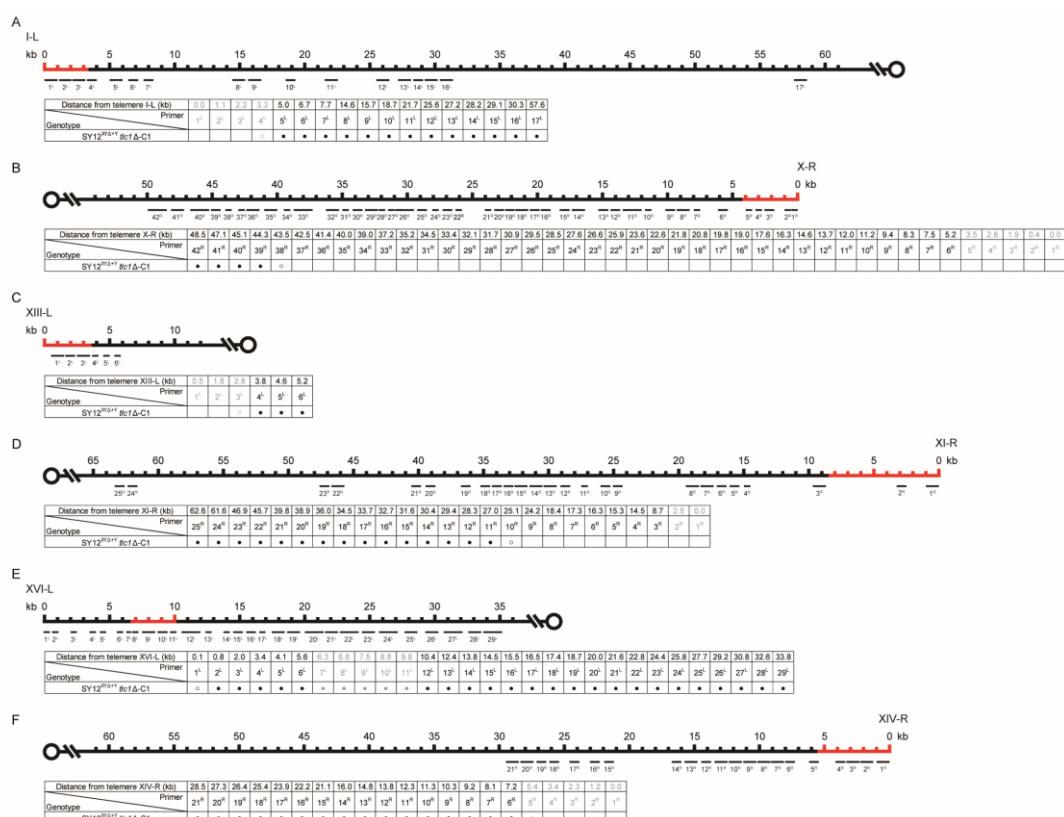
1042 **Figure 3-figure supplement 1**



1044 **Figure 5-figure supplement 1**

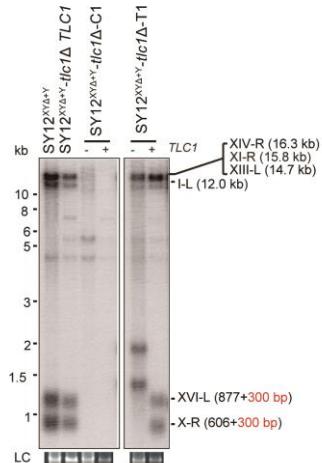

1045

1046 **Figure 5-figure supplement 2**

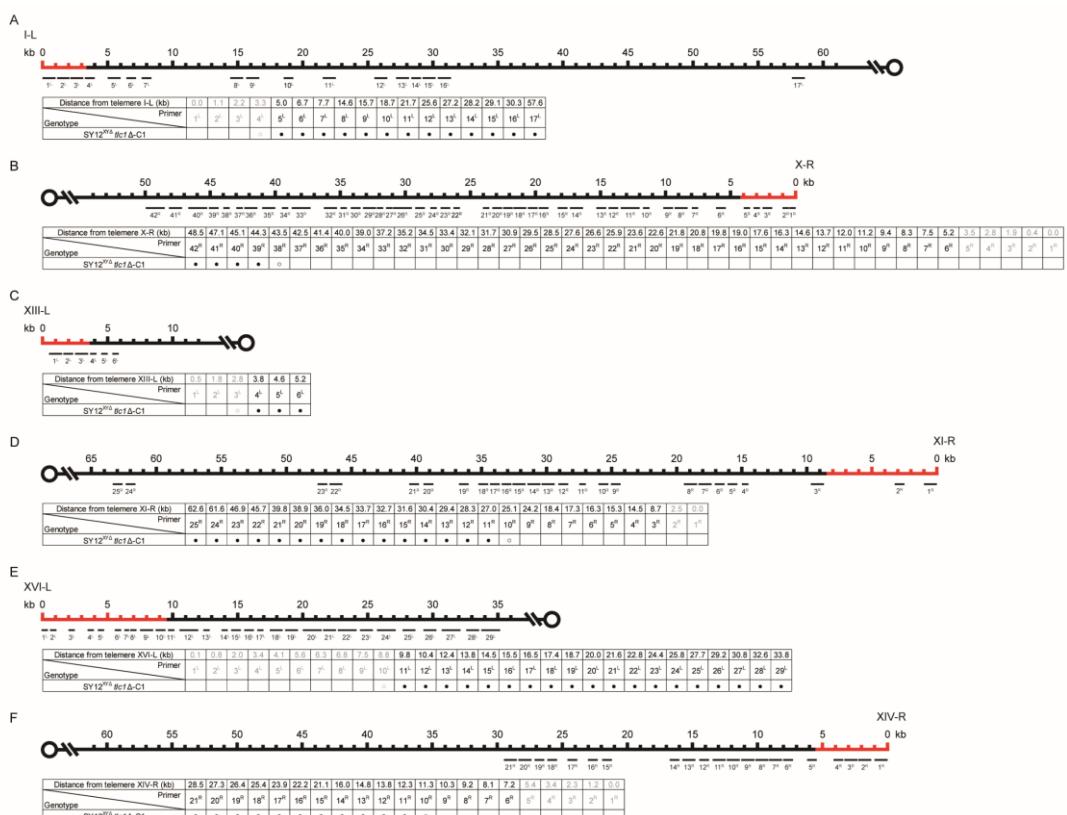


1047

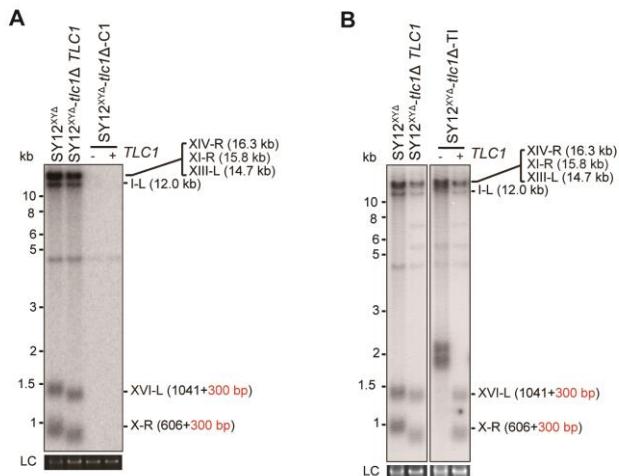
1048 **Figure 5-figure supplement 3**



1050 **Figure 6-figure supplement 1**

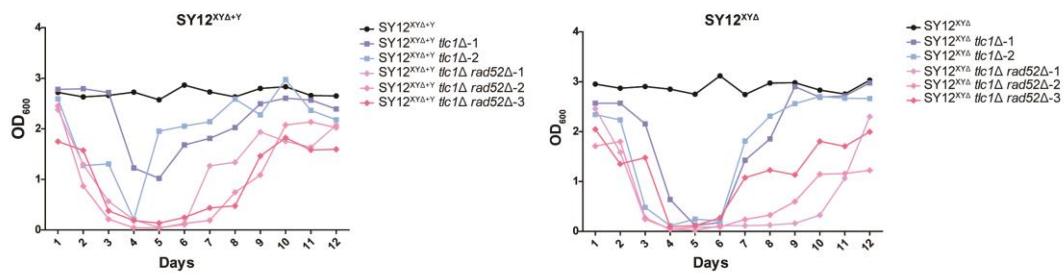

1051

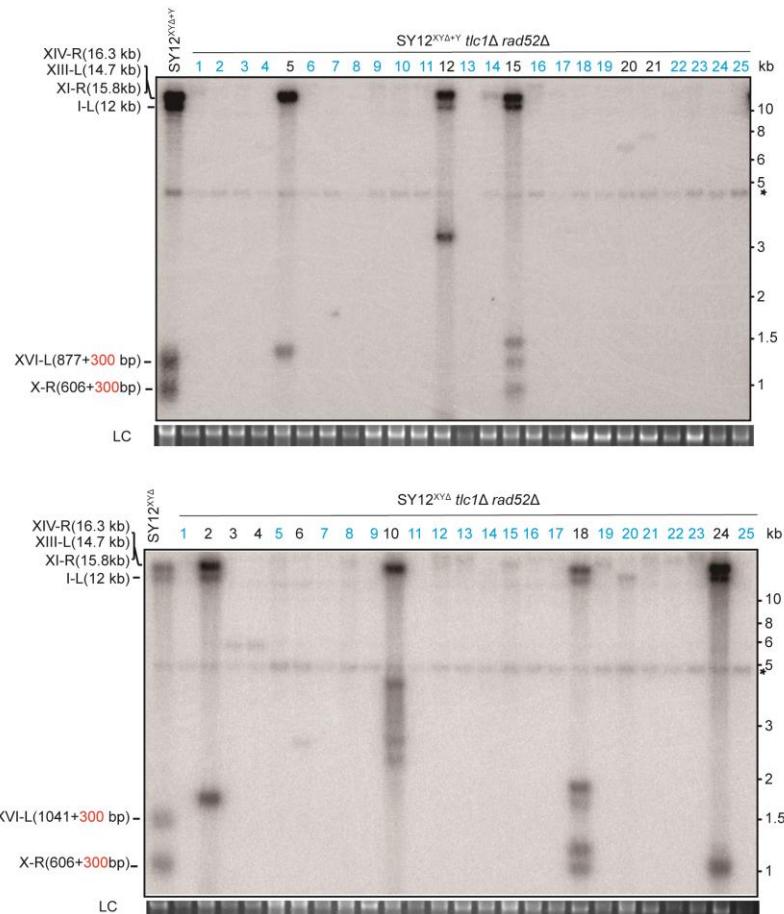
1052 Figure 6-figure supplement 2


1053

1054 Figure 6-figure supplement 3

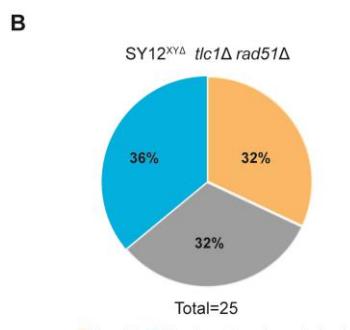
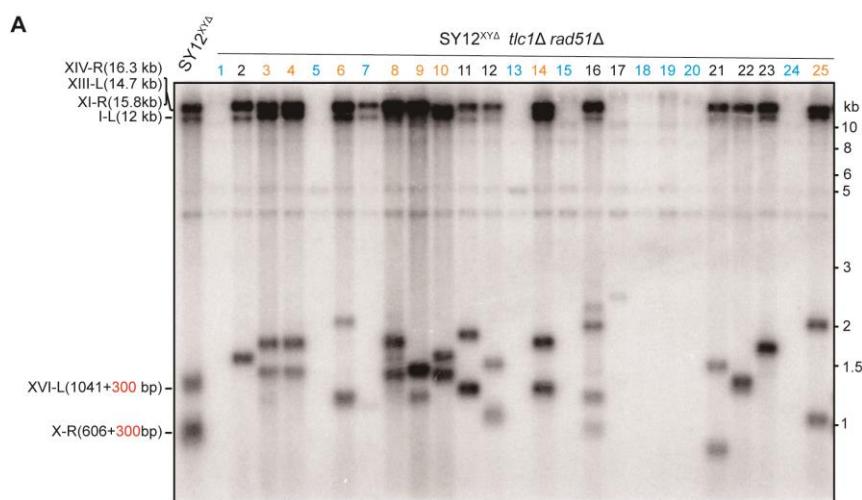
1055


1056 **Figure 6-figure supplement 4**


1057

1058 **Figure 6-figure supplement 5**

A

B

1059

1060 **Figure 6-figure supplement 6**

1061

1062 **Figure 6-figure supplement 7**

1063