

Genetic and neural bases of the neuroticism general factor

Yuri Kim*, Gretchen R. B. Saunders, Alexandros Giannelis,
Emily A. Willoughby, Colin G. DeYoung, James J. Lee

Department of Psychology
University of Minnesota Twin Cities
75 East River Road
Minneapolis, MN 55455, USA

*To whom correspondence should be addressed;
E-mail: yurikim127@gmail.com

Abstract

2 We applied structural equation modeling to conduct a genome-wide association study (GWAS)
3 of the general factor measured by a neuroticism questionnaire administered to ~380,000 partic-
4 ipants in the UK Biobank. We categorized significant genetic variants as acting either through
5 the neuroticism general factor, through other factors measured by the questionnaire, or through
6 paths independent of any factor. Regardless of this categorization, however, significant vari-
7 ants tended to show concordant associations with all items. Bioinformatic analysis showed that
8 the variants associated with the neuroticism general factor disproportionately lie near or within
9 genes expressed in the brain. Enriched gene sets pointed to an underlying biological basis as-
10 sociated with brain development, synaptic function, and behaviors in mice indicative of fear
11 and anxiety. Psychologists have long asked whether psychometric common factors are merely
12 a convenient summary of correlated variables or reflect coherent causal entities with a partial
13 biological basis, and our results provide some support for the latter interpretation. Further re-
14 search is needed to determine the extent to which causes resembling common factors operate
15 alongside other mechanisms to generate the correlational structure of personality.

16

17 *Keywords:*

18 neuroticism

19 genome-wide association study

20 factor analysis

21 construct validity

22 biology

23 1 Introduction

24 The biological underpinnings of personality are far from being understood. Genome-wide asso-
25 ciation studies (GWAS) can provide insight into personality's biological etiology by indicating
26 which genomic polymorphisms are significantly associated with a trait of interest. Most GWAS
27 focus on single-nucleotide polymorphisms (SNPs), the most common type of genetic varia-
28 tion. SNPs reaching statistical significance in GWAS often lie near protein-coding genes and
29 non-coding functional regions. As many functions of genes and their tissue-specific patterns
30 of expression have been experimentally elucidated or computationally predicted, researchers
31 can then infer the biological processes that are likely to be responsible for variation in the trait.
32 Unfortunately, GWAS of personality traits often lack sample sizes large enough to detect many
33 significant loci (e.g., Lo et al., 2017).

34 Studies focusing on neuroticism typically have been more successful (de Moor et al., 2015;
35 Luciano et al., 2018; Nagel et al., 2018a; Okbay et al., 2016a; Smith et al., 2016). Neuroticism
36 is one of the factors in the Big Five model of personality. Individuals who score highly in neu-
37 roticism tend to experience diverse and relatively more intense negative emotions. The largest
38 GWAS meta-analysis of neuroticism to date found 136 significant independent loci (Nagel et
39 al., 2018a). Neuroticism was measured using the Eysenck Personality Questionnaire-Revised
40 Short Form (EPQ) (Eysenck et al., 1985). In the present study, we further investigated the ge-
41 netics and biology of neuroticism using the summary statistics of a companion study analyzing
42 the individual items in the questionnaire (Nagel et al., 2018b).

43 We also examined whether the significant SNPs act in accordance with the common-factor
44 model, which is an important tool in the psychology of individual differences. McDonald (2003)
45 suggested that a common factor might be regarded as a mental property with a non-physicalist
46 interpretation, which nevertheless can be acted upon by physical causes: "the external variable

47 causes the common factor of the dependent variables, that is, acts to change the level of the
48 psychological attribute common to them” (p. 221). Others have proposed that a common-factor
49 model is merely a convenient summary of otherwise formidably high-dimensional data rather
50 than a representation or approximation of a causal model (Cramer et al., 2012). Genetics now
51 provides us with an unprecedented opportunity to test these ideas. If we could find candidate
52 causal variables, such as SNPs in the human genome, that exert effects on the questionnaire
53 items proportional to their factor loadings, then we would have powerful evidence that the
54 common factor does indeed mediate biological causes and therefore cannot be dismissed as an
55 artifact. That is, if the loadings of certain dependent variables on their common factor were λ_1 ,
56 λ_2 , and so forth, then a SNP with effects on those variables of $\beta\lambda_1$, $\beta\lambda_2$, and so forth would
57 strongly suggest that the SNP has an effect of β on *something* very much like the common
58 factor.

59 Conversely, if the effects of the SNPs failed to accord with the factor loadings, this would
60 suggest looking toward proposals such as “bonds” (Thomson, 1951) or network models (Cramer
61 et al., 2012) for a superior causal model explaining the item covariation. Either way, identifi-
62 cation of the biological mechanisms mediating the effects of the SNPs can provide insight into
63 the nature of the higher-level objects in the hierarchy of explanation—whether those objects are
64 common factors, “bonds,” networks, or something else entirely. A number of authors have pre-
65 viously tested a similar idea with general intelligence (g) (Cox et al., 2019; Kievit et al., 2012;
66 Lee et al., 2019). Their results were consistent with brain size being one of multiple factors that
67 affect a unitary g .

68 In this work we do not claim to resolve this issue conclusively. We claim merely that if we
69 do find SNPs associated with all indicators to a degree corresponding roughly with their factor
70 loadings, then we have evidence that common biological causes are one kind of mechanism
71 contributing to the covariation “accounted for” by the common-factor model.

72 To conduct this analysis of the common factor neuroticism, we turned to Genomic SEM, a
73 software tool for applying factor and path models to genetic data (Grotzinger et al., 2019). We
74 classified the GWAS-identified SNPs as working either through the general factor, the group
75 factors that happen to be present in this questionnaire, or none of the above (i.e., through “in-
76 dependent pathways”). It is the SNPs in the latter category that might call into question the
77 appropriateness of the common-factor model at a deeper biological level. We then used the
78 bioinformatic software tool DEPICT (Pers et al., 2015) in an attempt to identify the tissues
79 and biological mechanisms mediating the effects of the SNPs in these categories. In this way
80 we not only tested the verisimilitude of the common-factor model at the genetic level, but also
81 obtained mechanistic insight into the nature of the neuroticism factor. Eysenck (1992) in partic-
82 ular stressed the importance of grounding the constructs of personality models genetically and
83 biologically in order to further their validity.

84 2 Methods

85 2.1 Confirmatory factor analysis

86 We used the software tool Genomic SEM (Grotzinger et al., 2019) to calculate the genetic
87 covariance matrix of the neuroticism items in the Eysenck Personality Questionnaire-Revised
88 Short Form, as administered to about 380,000 UK Biobank participants (Nagel et al., 2018b).
89 The “genetic correlation” between two traits is the correlation between their heritable compo-
90 nents. That is, if each trait is the sum of a genetic and environmental term, then the genetic
91 correlation is the correlation between just the genetic terms. Genetic correlations tend to be
92 close to their corresponding phenotypic correlations (Sodini et al., 2018), being slightly larger
93 on average, and so should yield a similar factor-analytic solution (e.g., de la Fuente et al.,
94 2021). To calculate the genetic correlation between two binary traits, estimates of the popula-
95 tion prevalences (pass rates) are required. We used the estimates previously published (Nagel

96 et al., 2018b). Note that the genetic correlations are calculated over essentially all “common
97 SNPs”—polymorphic sites where both alleles exceed a threshold frequency—regardless of sta-
98 tistical significance.

99 We adopted the three-factor model of the neuroticism questionnaire used in the original
100 Genomic SEM publication by Grotzinger et al. (2019). In this model the items *mood*, *misery*,
101 *irritable*, *fed-up*, and *lonely* are indicators of a factor that we will call depressed affect, after the
102 largely similar group of items identified by hierarchical cluster analysis (Nagel et al., 2018b).
103 The items *nervous*, *worry*, *tense*, and *nerves* are indicators of a factor that we will call worry,
104 also after a similar cluster identified in the previous analysis. The group factors depressed affect
105 and worry do not readily map onto aspects in the BFAS (DeYoung et al., 2007), but do arguably
106 map onto the respective facets depression and anxiety in the NEO (Costa & McCrae, 1992).
107 The items *guilt*, *hurt*, and *embarrass* are indicators of a third factor that we will call vulner-
108 ability, after the largely similar group of items identified by exploratory factor analysis (Hill
109 et al., 2020). We introduced a neuroticism general factor into this model by treating the three
110 group factors as indicators of a hierarchical second-order factor. Unit-variance identification
111 was employed.

112 There is some evidence that participants in the UK Biobank tend to be slightly less neurotic
113 than the rest of the population (Tyrrell et al., 2021; Young et al., 2022). Such selection bias can
114 distort the factor structure of the measurements (Lee, 2012; Meredith, 1993). Our conjecture
115 is that psychological traits most affecting participation in research are those related to educa-
116 tion and social class, and neuroticism does not seem strongly related to such status markers
117 (Demange et al., 2021; Mammadov, 2022; Poropat, 2009; Zell & Lesick, 2022). When the
118 association between personality and research participation has been directly studied, no signif-
119 icant correlations with neuroticism have been observed (Cheng et al., 2020; Marcus & Schütz,
120 2005). Therefore we expect any impact of selection bias on our results to be modest.

121 2.2 Path modeling of SNP effects

122 2.2.1 GWAS of the neuroticism general factor

123 We performed a GWAS of the neuroticism general factor by specifying, in Genomic SEM, a
124 path from the tested SNP to the second-order general factor (Fig. 1A). Any confounding with
125 non-genetic variables is likely to be minimal because within-family GWAS of the neuroticism
126 sum score have produced results very close to those of population GWAS (Howe et al., 2022;
127 Young et al., 2022). We used the reference file supplied by Genomic SEM to retain only SNPs
128 with a minor allele frequency (MAF) exceeding .005 in the 1000 Genomes European popula-
129 tions. This left more than 7 million SNPs in the GWAS. Additional methodological details of
130 both the original item-level GWAS and our GWAS at the latent level with Genomic SEM are
131 given in the Supplementary Material.

132 Because they are often highly correlated, nearby SNPs may not represent independent
133 association signals. We attempted to identify independently significant SNPs by using the
134 “clump” function of the software tool PLINK (Chang et al., 2015; Purcell et al., 2007). In
135 essence, clumping picks out local minima of the *p*-value sequence along the genome. We used
136 the clump settings of the bioinformatics tool DEPICT (Pers et al., 2015), which calls PLINK
137 to identify lead SNPs. The most important of these settings is the threshold $p < 10^{-5}$ for the
138 statistical significance of the association between SNP and trait. Although less stringent than
139 the conventional GWAS significance threshold $p < 5 \times 10^{-8}$, this threshold is recommended by
140 the DEPICT developers because the biological annotation provided by their tool (see below) is
141 tolerant of false-positive SNPs.

142 Note that the conventional GWAS threshold aspires to prevent even a single false positive
143 from appearing among the SNPs significantly associated with a single trait. Although there may
144 be at least one false positive among the SNPs in the range $10^{-5} > p \geq 5 \times 10^{-8}$, many of these
145 SNPs will be true positives in a well-powered GWAS with many SNPs reaching $p < 5 \times 10^{-8}$.

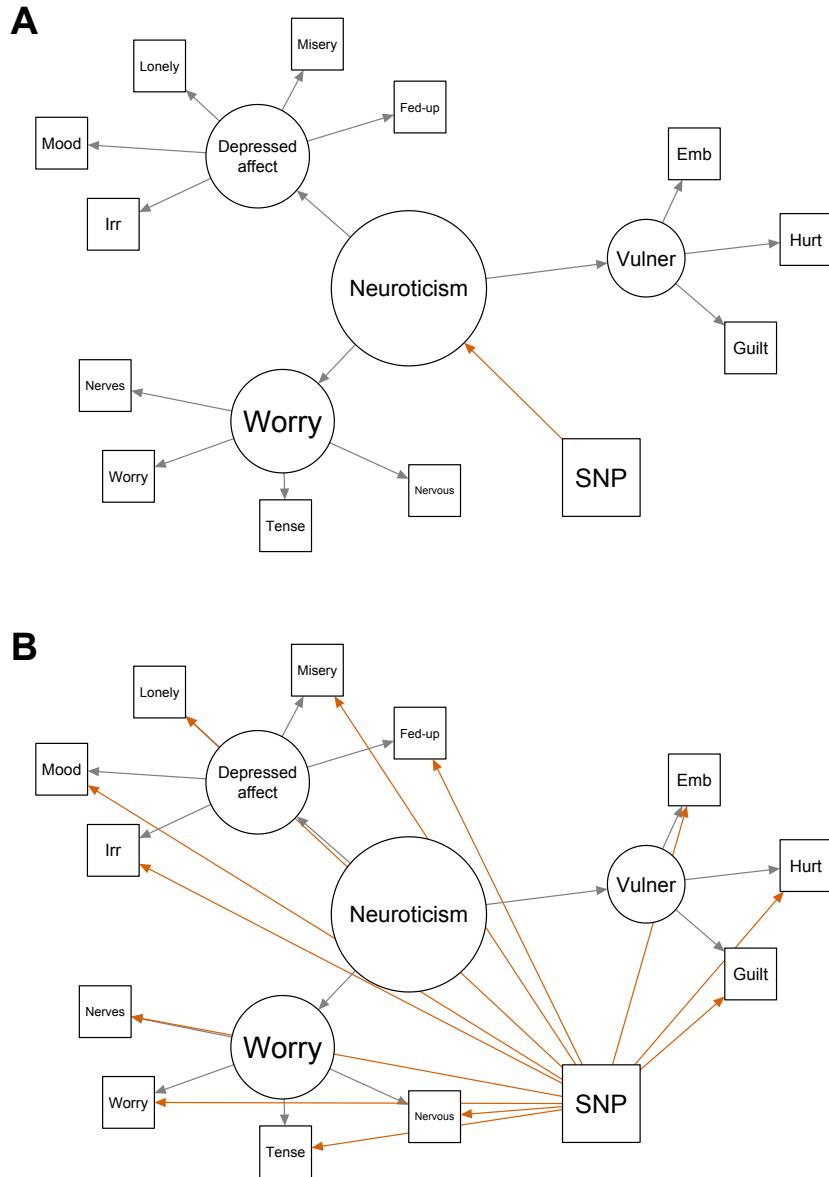


Figure 1: Path diagrams portraying how a single-nucleotide polymorphism (SNP) might be associated with the questionnaire items. A. The focal SNP (or a nearby highly correlated SNP) acts through the neuroticism general factor. B. The focal SNP (or a nearby highly correlated SNP) acts on the 12 items through “independent pathways.” Not shown is a model where the SNP’s associations are with one or more of the three group factors.

146 We subjected the candidate lead SNPs from the GWAS of the neuroticism general factor to
147 further tests. We ran a “group-factor” model in which the three first-order group factors were
148 regressed on each of the candidate lead SNPs. This model thus requires three path coefficients
149 in the place of the one required by the general-factor model. The general-factor model is nested
150 within the group-factor model, the former being obtained from the latter by making the three
151 SNP effects proportional to the loadings of the group factors on the general factor. We then ran
152 an “independent-pathway” model regressing all 12 items on each candidate lead SNP (Fig. 1B).
153 The independent-pathway model thus estimates 12 path coefficients in the place of the three
154 required by the group-factor model; the latter is nested within the former.

155 The independent-pathway model is an operationalization of not only Thomson’s bonds
156 model, but also the network model (Cramer et al., 2012); our Fig. 1 contrasting the common-
157 factor and independent-pathway models is exactly parallel to Figure 7 of Cramer et al. (2012).
158 These authors proposed that support for the independent-pathway model over the common-
159 factor model would count as support for their network perspective. Taking the most significant
160 SNPs in the GWAS of neuroticism sum scores published at that time, they carried out an anal-
161 ysis similar to ours and claimed to find some evidence for the SNPs acting on individual items
162 rather than the general factor. The only SNP-item association of theirs that we could attempt to
163 look up and replicate was the one between rs12509930 and *guilt*. In the UK Biobank sample
164 of roughly 380,000 individuals, this association is not significant ($p = .70$). We should not be
165 surprised by this replication failure, in light of the small sample sizes of the GWAS at that time,
166 and the authors themselves avowed the tentative and exploratory nature of their analysis. The
167 important point is that we can now carry out their proposal of pitting the common-factor and
168 network models against each other to a much greater extent than was possible a decade ago.

169 To determine whether a candidate lead SNP identified in the GWAS of the neuroticism
170 general factor is better regarded as acting through factors or independent pathways, one can

171 test the significance of the difference in χ^2 between more and less parsimonious models. The
172 Genomic SEM developers call this difference Q_{SNP} ([Genomic SEM tutorial](#), accessed October
173 2020). In one of their analyses, Grotzinger et al. (2019) used the threshold $p > .005$ for calling
174 a Q_{SNP} value “low.” Following the suggestion of a reviewer, however, we carried out model
175 selection using Akaike weights (Wagenmakers & Farrell, 2004). The sum of the weights equals
176 one by construction, making them analogous to probabilities. The ratio of two weights can
177 be interpreted as the relative likelihood of the model corresponding to the numerator (Royall,
178 1997) times a factor penalizing that model if it has more estimated parameters. Such a penalty
179 may be desirable if a sufficient increase in sample size will lead to the rejection of any simple
180 model regardless of its qualitatively excellent fit. We treated any model with an Akaike weight
181 exceeding 2/3 as the “correct” model for a given SNP, as this means at least twice as much
182 support as any alternative. It is possible for no model to obtain this large a weight, meaning that
183 the SNP’s associations with the items are not clearly fit best by any of the candidate models.

184 Since calculating the model χ^2 and AIC increased the computation time of a SNP associa-
185 tion by roughly a factor of 10 in the version of Genomic SEM that we used (October 2020), we
186 did not calculate these for all SNPs in the GWAS but rather only the lead SNPs, once for each of
187 the three candidate models (general factor, group factor, independent pathway). Supplementary
188 Fig. S1 provides an overview of our pipeline for the GWAS of the neuroticism general factor
189 and subsequent classification of lead SNPs.

190 2.2.2 GWAS of additional factors

191 We also conducted GWAS of each group factor with nontrivial variance attributable to sources
192 other than the neuroticism general factor (i.e., depressed affect and worry). The first step of
193 our procedure was to conduct a GWAS with Genomic SEM, specifying directed edges from the
194 SNP to all three group factors. We then examined each factor’s association results satisfying

195 $p < 10^{-5}$. Of the lead SNPs identified by the clumping procedure, we discarded any already
196 assigned to either the general-factor or independent-pathway model in the GWAS of the neu-
197 roticism general factor (Supplementary Fig. S1). Since we were particularly interested in SNPs
198 associated solely with the focal group factor, we tested each remaining lead SNP for association
199 with that factor while setting to zero the coefficients of its paths to the other two factors. We
200 also ran the independent-pathway model for each of these lead SNPs (Fig. 1B). As before, we
201 used an Akaike weight exceeding 2/3 as the criterion for assigning a lead SNP to one of three
202 competing models (all group factors, one group factor, independent pathways). Supplementary
203 Fig. S2 provides an overview of our pipeline for the GWAS of the group factors and subsequent
204 classification of lead SNPs.

205 To convey the difference between this GWAS and the one outlined in Supplementary Fig. S1,
206 we will give an example of a SNP that would be ascertained as significant in the former but not
207 in the latter. Suppose that a SNP acts solely through the residual of a group factor. This SNP
208 might be ascertained in the GWAS of the group factors, through a combination of a relatively
209 large effect size and favorable sampling variation. It might not be ascertained in the GWAS of
210 the general factor, despite this GWAS containing a follow-up step checking for association with
211 the group factors, because it is less likely to become a lead SNP in the first step. This difference
212 in the ascertainment scheme can be important for certain inferences, a matter to which we return
213 in the Discussion.

214 It is worthwhile to consider whether independent-pathway SNPs enrich any tissues or bio-
215 logical pathways (see below), despite not acting through any common factors. To identify such
216 SNPs, Grotzinger et al. (2019) conducted two GWAS, one of neuroticism in their single-factor
217 model and the other of independent pathways, and calculated a form of the Q_{SNP} statistic for
218 each SNP in the GWAS. At the time of our own analysis, this procedure was beyond the com-
219 putational resources available to us. As a compromise, we took forward to DEPICT the union

220 of the lead SNPs from the GWAS of the common factors that qualified by virtue of their Akaike
221 weights for the independent-pathway model.

222 **2.3 Genetic correlations**

223 Genomic SEM calls LD Score regression (LDSC) to calculate genetic correlations, and this
224 method is known to be unbiased under fairly general conditions (Bulik-Sullivan et al., 2015;
225 Lee et al., 2018a).

226 A finding of genetic correlations similar to those calculated in previous studies of neuroti-
227 cism observed scores would provide an affirmative quality-control check of our approach based
228 on structural equation modeling. It would also support the validity of the common assumption
229 that a correlation with an observed sum score primarily reflects a correlation with the scale's
230 general factor. The Supplementary Material lists the traits used in this analysis and accompa-
231 nying references.

232 We also calculated genetic correlations with the residuals of the group factors depressed af-
233 fect and worry. Procedurally we used Genomic SEM to specify the bifactor model generalizing
234 the hierarchical model displayed in Fig. 1 and then performed a GWAS of the group factors
235 within the bifactor model. Supplementary Fig. S3 displays the factor and path model that we
236 employed for this purpose. We used the resulting GWAS summary statistics to calculate the
237 genetic correlations with depressed affect and worry.

238 Supplementary Fig. S4 and Supplementary Table S1 present the results.

239 **2.4 Polygenic prediction**

240 At the request of a reviewer, we used the summary statistics from our GWAS of the common
241 factors to calculate polygenic scores (PGS) and validate them in a new sample. Methodologi-
242 cal details are given in the Supplementary Material, and Supplementary Table S2 presents the

243 results.

244 **2.5 Biological annotation**

245 **2.5.1 DEPICT**

246 DEPICT (Data-driven Expression Prioritized Integration for Complex Traits) is a software tool
247 that prioritizes likely causal genes affecting the trait, identifies tissues/cell types where the
248 causal genes are highly expressed, and detects enrichment of gene sets. A “gene set” is a
249 group of genes designated by database curators as sharing some common property, such as en-
250 coding proteins that participate in the same biological function. A gene set shows “enrichment”
251 if SNPs significantly associated with the trait fall in or near the set’s member genes more often
252 than expected by chance. More complete descriptions of DEPICT can be found in previous
253 publications (Okbay et al., 2016b; Pers et al., 2015).

254 Our path modeling with Genomic SEM placed each lead SNP into a collection (e.g., SNPs
255 associated with the neuroticism general factor). Each such collection of SNPs was supplied as
256 input to DEPICT (<https://github.com/perslab/DEPICT>, release 194). DEPICT takes lead SNPs
257 and merges them into loci potentially encompassing more than one lead SNP according to
258 certain criteria (Pers et al., 2015). The genes overlapping these loci are the basis of the DEPICT
259 analysis. The limitation of the DEPICT input to a subset of SNPs is an important strength in
260 our application. A method that relies on genome-wide summary statistics is not straightforward
261 to adapt if some SNPs in a GWAS of a common factor must be dropped for better fitting a more
262 complex model (Fig. 1).

263 To run DEPICT, we edited and then executed the template configuration file. We left in place
264 all default parameter values except those affecting how the results are printed in the output files.
265 We also used a collections file of the genes overlapping the locus around a given SNP based
266 on 1000 Genomes phase 3 rather than 1000 Genomes pilot data; this file was given to us by

267 the DEPICT developers and is available along with the GWAS summary statistics generated for
268 this study. Many tissues/cell types and gene sets in the DEPICT inventory are in fact duplicates
269 despite having different identifiers; we adopted the pruned list of tissues/cell types used by
270 Finucane et al. (2018) and excluded duplicated gene sets using the criteria set out by Lee et al.
271 (2018b). Except where noted, we adopted the developer-recommended definition of statistical
272 significance at the level of genes, tissues/cell types, and gene sets as a false discovery rate (FDR)
273 below .05.

274 The reconstitution of the gene sets was motivated by a desire to compensate for the lim-
275 itations of existing bioinformatic databases, which suffer from both false positives and false
276 negatives. The reader can consult Supplementary Table 28 of Lee et al. (2018b) for a demon-
277 stration of the reconstitution procedure's success in empowering detection of enrichment only
278 in sets appropriate to the studied trait. The reconstitution procedure has also proven fruitful in
279 other applications (Cvejic et al., 2013; Fehrman et al., 2015).

280 **2.5.2 Stratified LD Score regression and PANTHER overrepresentation test**

281 At the request of a reviewer, we have calculated effect sizes in terms of fold enrichment to
282 accompany the displays of statistically significant results in Figure 2 and Table 2. We used
283 two different tools for this purpose. The first was stratified LD Score regression (S-LDSC),
284 a standard method for testing enrichment of discrete gene sets (Finucane et al., 2015). The
285 enrichment statistic calculated by S-LDSC is

$$\frac{\text{fraction of heritability contributed by SNPs mapped to the gene set}}{\text{fraction of all SNPs mapped to the gene set}}.$$

286 “Gene set” here can equally well mean a group of genes that are highly expressed in a given
287 tissue/cell type. We employed the Finucane et al. (2018) procedure of taking the top 10 percent
288 of genes in the DEPICT inventory belonging to a given gene set, mapping all SNPs lying within
289 100 kb of a member gene to that set, and using the so-called baseline annotations and an any-

290 gene indicator as control variables. We used the 97 baseline annotations currently recommended
291 by the developers (downloaded August 2023 from <https://storage.googleapis.com/broad-alkesgroup-public-requester-pays/LDSCORE>). We also used the precomputed stratified LD Scores for the
292 DEPICT tissues/cell types supplied by the developers (“Franke dataset”). The developers state
293 that they provide a gene-coordinate file so that users can calculate their own stratified LD Scores
294 for novel gene sets ([LD Score estimation tutorial](#), accessed August 2023), but this file seems not
295 to have been transferred to their Google Cloud depository. To calculate stratified LD Scores for
296 the reconstituted gene sets found to be significantly enriched in the standard DEPICT analysis,
297 we used instead the latest version of the [GENCODE](#) coordinate file (downloaded August 2023),
298 taking the row in this file assuming the value of *gene* in the *feature* column as providing the
299 canonical start and stop coordinates of a given Ensembl identifier. The standard 1-centimorgan
300 radius was used to calculate the stratified LD Scores.

302 We tested the null hypothesis that the enrichment is equal to one. Previous experience with
303 this method suggests that a 1.3-fold enrichment of a gene set should be regarded as a large effect
304 size (Finucane et al., 2018; Kim et al., 2019; Lee et al., 2018b), although smaller non-null sets
305 and sets specifically constructed to contain genes under strong purifying selection may yield
306 higher values.

307 Our second method for calculating fold enrichments was the PANTHER overrepresentation
308 test, which has been implemented as a web-based tool (<http://www.geneontology.org>). The input
309 to this method is a discrete list of genes supplied by the user. To increase statistical power, we
310 used the Ensembl identifiers of all DEPICT-prioritized genes satisfying $FDR < .20$ as input.
311 Standard FDR calculations assume that the alternative hypothesis is true in only a small pro-
312 portion of cases, and a violation of this assumption leads to the FDR being conservative (Efron,
313 2010). As there is almost certainly a causal gene near most lead SNPs, many genes falling in
314 the interval $.05 \leq FDR < .20$ are likely to be true positives. We used all default settings for

315 analyses launched from the front page of the Gene Ontology website.

316 The null hypothesis in the PANTHER overrepresentation test is that the input gene list is a
317 random sample of all genes in the reference gene list. The enrichment statistic is thus

$$\frac{\text{observed } \# \text{ of gene-set members in the input list}}{\text{expected } \# \text{ of gene-set members in the input list}}.$$

318 The PANTHER overrepresentation test has properties that complement those of S-LDSC.

319 It is based on the discrete version of the gene set rather than the reconstituted version and thus
320 provides a way to check the robustness of the latter. (The PANTHER database does not include
321 the Mammalian Phenotype gene sets from the Mouse Genomics Institute.) Furthermore, it is
322 arguably testing a hypothesis that is closer to the one being tested by the standard DEPICT
323 analysis. In the latter approach, we are asking whether the lead SNPs at the current stage of a
324 GWAS fall disproportionately within or near high-ranking members of a given gene set. The
325 answer to this question may change as the GWAS increases in sample size and begins to add
326 different types of SNPs. In contrast, S-LDSC is calculating a measure of enrichment that applies
327 to the whole genome rather than a subset of SNPs. In theory, the S-LDSC enrichment statistic
328 does not change as the GWAS progresses, although the standard error of its estimate hopefully
329 grows smaller. The PANTHER overrepresentation test is closer in spirit to the standard DEPICT
330 approach in that it focuses on genes that happen to encompass or lie near the current lead SNPs.

331 **3 Results**

332 **3.1 Factor analysis of the neuroticism questionnaire**

333 We replicated the indices reported by Grotzinger et al. (2019) indicating a good fit of a model
334 with three group factors ($CFI = .969$, $SRMR = .054$). We therefore regarded the three-factor
335 model as satisfactory for purposes of SNP-level path modeling. The loading of the vulnera-
336 bility group factor defined by *guilt*, *hurt*, and *embarrass* on the neuroticism general factor was

337 estimated to be nearly one (.97) (Supplementary Table S3). These items seem to have very
338 little genetic variance shared in common other than what is attributable to neuroticism. For this
339 reason we did not conduct a GWAS of this factor when trying to identify SNPs associated with
340 group factors. Although our result here may seem to diverge from that of Hill et al. (2020), their
341 bifactor model allowed correlations between group factors and thus qualitatively differed from
342 our hierarchical model. As discussed in the Supplementary Material, we did by and large repli-
343 cate the Hill et al. (2020) finding of markedly different genetic correlations of the neuroticism
344 general factor and the residual worry factor with certain traits (Supplementary Fig. S4).

345 **3.2 GWAS of the neuroticism general factor**

346 Before examining the main results and downstream analyses of a GWAS, it is reasonable to
347 assess the overall amount of signal present in its summary statistics. The product of the sample
348 size and the heritability (e.g., as estimated by LD Score regression) is normally a good metric
349 for this purpose, but it is inapplicable to a GWAS of a latent trait conducted with Genomic SEM
350 because neither factor in this product is well defined (Mallard et al., 2022). We followed the
351 recommendation of the Genomic SEM developers to use the mean χ^2 statistic instead (Sup-
352 plementary Table S4). The mean χ^2 of our neuroticism GWAS was 1.63—very close to those
353 of past groundbreaking GWAS of behavioral traits (Okbay et al., 2016b; Pers et al., 2016;
354 Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Our GWAS
355 summary statistics seem to contain sufficient signal for meaningful downstream analyses. Note
356 that an undefined heritability is not a problem in the use of LDSC to obtain genetic correlations
357 and functional enrichments because of cancellations from numerator and denominator in the
358 calculations of those quantities.

359 Our GWAS of the neuroticism general factor identified 394 lead SNPs satisfying $p < 10^{-5}$,
360 in 296 distinct DEPICT-defined loci. We examined these SNPs for an improvement in model fit

361 upon increasing the number of paths. Thirty-five of the 394 SNPs were characterized by small
362 negative values of the Q_{SNP} statistic when comparing the fit of the model where the SNP acts on
363 the general factor (Fig. 1A) to that of the model where the SNP acts on the three group factors.
364 Such negative values can arise when the two models under comparison are distinguished by few
365 degrees of freedom, and they indicate an extremely good fit of the data to the more restrictive
366 model (A. Grotzinger, personal communication). Of the 394 lead SNPs, 139 qualified by virtue
367 of their Akaike weights for the general-factor model, 81 for the group-factor model, and 63 for
368 the independent-pathway model. One hundred eleven SNPs had no Akaike weight greater than
369 2/3, precluding for now their assignment to any model. Of these 111 indeterminate SNPs, a
370 plurality of 54 attained their largest Akaike weight in the general-factor model.

371 Supplementary Table S5 lists the 139 general-factor lead SNPs. Nineteen of these SNPs
372 attained the strict genome-wide significance level $p < 5 \times 10^{-8}$ (Table 1). Of these 19 SNPs, 17
373 reached strict genome-wide significance in the largest GWAS to date of an observed neuroticism
374 score (Nagel et al., 2018a). Information about all significant SNPs regardless of classification
375 can be found in the Supplementary Data.

376 The most significant general-factor SNP was rs11090045 ($p = 4.0 \times 10^{-13}$). Its locus on
377 chromosome 22 is a very gene-dense region, overlapping *ZC3H7B* (FDR < .05), *TEF* (FDR <
378 .20), *TOB2* (FDR < .20), *CSDC2* (FDR < .20), *EP300* (FDR < .20), *PMM1*, *RANGAP1*,
379 *XRCC6*, *CHADL*, *ACO2*, *L3MBTL2*, *PPDE2*, *PHF5A*, and *POLR3H*. Although rs11090045
380 itself is located in the 3' untranslated region of *ZC3H7B*, the unusual number of candidates for
381 causal genes in this locus may possibly be explained by the hypothesis of rs11090045 being a
382 correlated proxy for multiple causal SNPs collectively acting through more than one gene.

383 It is of interest to examine how the cutoffs defined by Akaike weights correspond to Q_{SNP}
384 statistics. Upon treating any SNP with a negative Q_{SNP} statistic as having a p value of one, we
385 found that the 139 SNPs assigned by their Akaike weights to the general-factor model were all

Table 1: Strictly genome-wide significant SNPs in the GWAS of the neuroticism general factor with Akaike weight $> 2/3$ for the model in Fig. 1A.

SNP	Coordinates	MAF	A_1	A_2	β	p value	Genes
rs631416	1:37164909	.22	T	C	-.0062	1.8×10^{-9}	<i>CSF3R</i>
rs4396680	2:10178236	.18	A	G	.0057	3.5×10^{-8}	<i>KLF11, CYS1</i>
rs59491086	2:157132879	.21	A	G	.0065	3.9×10^{-10}	<i>NR4A2</i>
rs10497655	2:185462041	.32	T	C	.0052	9.7×10^{-9}	<i>ZNF804A</i>
rs75701938	3:107172033	.11	A	C	.0081	1.0×10^{-9}	
rs56324019	5:87752141	.15	C	T	.0061	3.8×10^{-8}	<i>TMEM161B</i>
rs198800	6:26139933	.48	C	T	-.0047	2.5×10^{-8}	
rs2503775	6:98521600	.12	A	G	.0074	3.1×10^{-9}	
rs1731951	7:137075847	.45	T	A	.0047	4.9×10^{-8}	<i>DGKI</i>
rs2407746	8:4937757	.29	C	G	-.0060	6.5×10^{-11}	<i>CSMD1</i>
rs75614054	9:98275789	.10	C	T	-.0107	1.3×10^{-12}	<i>PTCH1</i>
rs860626	10:119301703	.31	T	G	.0052	2.3×10^{-8}	<i>EMX2</i>
rs7338774	13:69344134	.30	A	G	-.0050	2.4×10^{-8}	<i>ELL2P3</i>
rs8039690	15:78136541	.30	A	G	-.0053	1.5×10^{-8}	<i>LINGO1</i>
rs3785237	16:7667131	.49	G	C	-.0056	2.8×10^{-11}	<i>RBFOX1</i>
rs56084168	17:79084574	.14	C	T	.0082	6.9×10^{-12}	<i>BAIAP2, AATK</i>
rs10460051	18:31413679	.48	C	T	-.0051	1.9×10^{-9}	<i>ASXL3</i>
rs11875397	18:39319278	.19	T	A	.0060	2.1×10^{-8}	<i>PIK3C3</i>
rs11090045	22:41753603	.31	G	A	-.0068	4.0×10^{-13}	See text

Coordinates, chromosome and base-pair position of the SNP according to GRCh37; MAF, minor allele frequency; A_1 , A_2 , the two alleles segregating at the SNP; β , the regression coefficient of allele A_1 . The Supplementary Material explains the scaling of β . The last column gives all protein-coding genes in the DEPICT inventory overlapping the locus centered on the lead SNP. The genes in bold were significantly prioritized by DEPICT at the threshold FDR $< .20$.

386 characterized by $p > .28$ (median $p = .68$) with respect to the null hypothesis of the general-
387 factor model fitting better than the group-factor model. If we take the $p < .05$ criterion as
388 standard, then our use of Akaike weights to define general-factor SNPs seems conservative.
389 In contrast, for the 63 SNPs qualifying for the independent-pathway model, the Q_{SNP} p values
390 with respect to the null hypothesis of the group-factor model fitting better than the independent-
391 pathway model all met $p < .02$ (median $p = .001$).

392 3.3 Significant tissues/cell types and gene sets

393 The output of DEPICT provides insight into the biology associated with the SNPs appearing to
394 act through the neuroticism general factor. Fig. 2 shows that there were 7 statistically significant
395 tissues/cell types. All of these without exception bore the MeSH second-level term *central*
396 *nervous system*. The most significant result was *entorhinal cortex* ($p = 1.4 \times 10^{-4}$). The
397 entorhinal cortex is a way station connecting the neocortex, the hippocampus, and the amygdala,
398 passing along signals critical for memory formation, navigation, and the perception of time
399 (Maass et al., 2015; Tsao et al., 2018). The second most significant result was *limbic system*
400 ($p = 1.7 \times 10^{-4}$), which refers to a collection of structures immediately below the medial
401 temporal lobe that includes the entorhinal cortex and hippocampus. Overall, the neuroticism
402 general factor showed the clear signature of a behavioral trait mediated by the brain.

403 More revealing than these tissue-level results were the significantly enriched gene sets.
404 There were 21 such sets, and Table 2 shows the 6 of these that are not protein-protein inter-
405 action (PPI) subnetworks. *Abnormal cued conditioning behavior* ($p = 6 \times 10^{-6}$), *increased*
406 *anxiety-related response* ($p = 8.9 \times 10^{-5}$), and *decreased exploration in new environment*
407 ($p = 9.1 \times 10^{-5}$) are all taken from the Mouse Genome Informatics database and defined by
408 fearful and anxious behavior when their member genes are perturbed in mice.

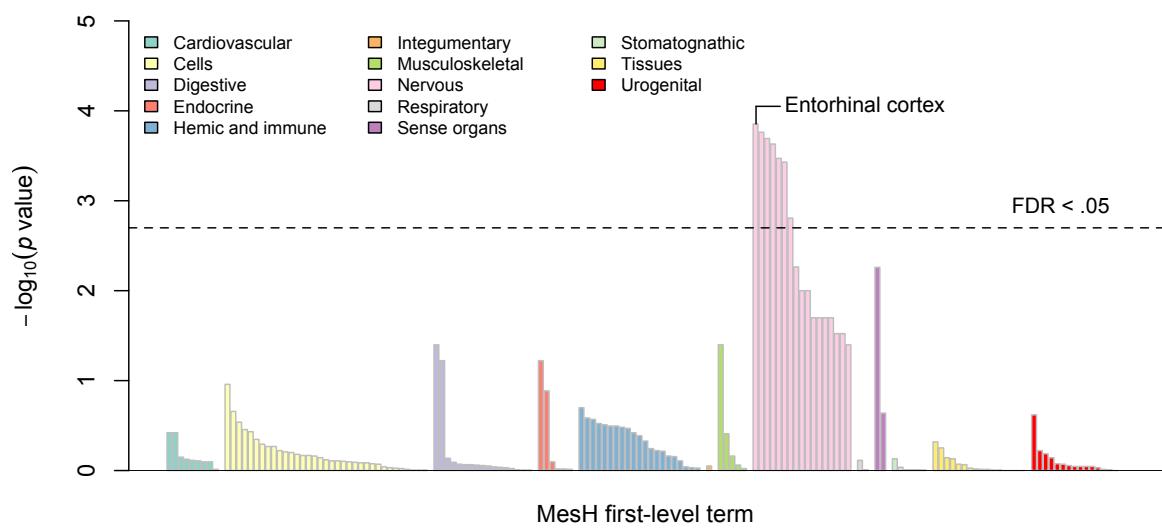


Figure 2: Tissues or cell types with significant expression of genes near SNPs associated with the neuroticism general factor (relative to genes in random sets of loci). The tissues are arranged along the x -axis by Medical Subject Heading (MeSH) first-level term. The y -axis represents statistical significance on a $-\log_{10}$ scale. The height of the dashed horizontal line corresponds to the p value yielding $\text{FDR} < .05$. See Supplementary Table S6 for complete results.

Table 2: Reconstituted gene sets significantly enriched by lead SNPs for the neuroticism general factor.

Gene set	Description
Site of polarized growth	Any part of a cell where anisotropic growth occurs.
Growth cone	The migrating tip of a growing neuron projection.
Abnormal cued conditioning behavior	Anomaly in the ability of an animal to learn associations between aversive and neutral stimuli.
Impaired coordination	Reduced ability to execute integrated movements.
Abnormal neuron physiology	Any functional anomaly of the cells that receive, conduct, and transmit nervous impulses.
Increased anxiety-related response	Animals exhibit more responses thought to be indicative of anxiety in behavioral tests.
Decreased exploration in new environment	Animals spend less time investigating a new location.

Non-PPI reconstituted gene sets satisfying $FDR < .05$. See Supplementary Table S7 for all significant results of the DEPICT gene-set analysis and Supplementary Table S8 for the specific genes in the DEPICT-defined loci. The descriptions of the gene sets are adapted from [Gene Ontology](#) and [Mouse Genome Informatics](#) (accessed December 2020). Gene sets in bold also satisfy $FDR < .05$ for enrichment by lead SNPs categorized as acting through independent pathways.

409 **3.4 GWAS of the group factors**

410 We now report our attempts to find SNPs associated with the group factor depressed affect.
411 Recall that we conducted a GWAS with Genomic SEM, based on a model sending directed
412 edges from the SNP to all three group factors. After discarding SNPs identified as general-factor
413 or independent-pathway SNPs in previous analyses, we ended up with 317 lead SNPs. Of these
414 317, 53 reached the strict genome-wide significance threshold $p < 5 \times 10^{-8}$. Interestingly,
415 only 7 of the 317 lead SNPs were selected by the criterion of an Akaike weight greater than
416 $2/3$ as having no associations with the other two group factors, and none of these 7 reached the
417 stringent genome-wide significance threshold $p < 5 \times 10^{-8}$. In contrast, 184 SNPs qualified by
418 virtue of their Akaike weights for the group-factor model (nonzero effects on all three factors),
419 64 for the independent-pathway model, and 62 for none of the above.

420 The 184 SNPs qualifying for the group-factor model showed highly concordant effects on
421 the three factors. In other words, despite being deemed a poor fit to the general-factor model, a
422 SNP's association with one factor was highly predictive of its associations with the two others.
423 The sign concordance between SNP effects on depressed affect and worry was 100 percent.
424 Each sign concordance between a major group factor and the vulnerability factor (with little
425 non-neuroticism genetic variance) was 183/184.

426 After running the analogous procedure, we identified 286 lead SNPs associated with worry.
427 Of these 286, 14 reached $p < 5 \times 10^{-8}$. Only 4 of the 286 lead SNPs were associated solely
428 with the residual group factor of worry, none of which attained $p < 5 \times 10^{-8}$. Of the remaining
429 SNPs, 184 qualified by virtue of their Akaike weights for the group-factor model, 54 for the
430 independent-pathway model, and 43 for none of the above. The sign concordances were again
431 either 100 percent or short of perfect by one SNP.

432 Supplementary Table S9 lists the 11 total SNPs associated with the residual group factors.
433 Such a small number of lead SNPs, particularly when few reach strict genome-wide signifi-

434 cancer, leads to low statistical power with DEPICT (Turley et al., 2018). Therefore we did not
435 conduct biological annotation of these 11 SNPs.

436 The Supplementary Data contain information about all of the SNPs used in these analyses.

437 3.5 Independent-pathway SNPs

438 Our analyses of the common factors assigned a total of 181 lead SNPs to the independent-
439 pathway model (Supplementary Table S10), and we proceeded to annotate these. The signif-
440 icantly enriched tissues/cell types were, as expected, those of the nervous system, including
441 *limbic system* ($p = 4.7 \times 10^{-4}$) and *entorhinal cortex* ($p = 5.5 \times 10^{-4}$) (Supplementary Ta-
442 ble S11).

443 There were 27 significantly enriched gene sets (Supplementary Table S12). As indicated
444 in Table 2, many were shared with the neuroticism general factor (*abnormal cued condition-
445 ing behavior, impaired coordination, decreased exploration in new environment*). One of the
446 independent-pathway gene sets, *abnormal contextual conditioning behavior*, is also defined by
447 the learning of fear and caution. The Mouse Genome Informatics database describes the rele-
448 vant phenotype as an “anomaly in the ability of an animal to learn and remember an association
449 between an aversive experience . . . and the neutral, unchanging environment” (accessed March
450 2023).

451 The other significant results pointed to the early development of the brain (e.g., *central
452 nervous system neuron axonogenesis*) and synaptic activity in the behaving organism (e.g., *glu-
453 tamatergic synaptic transmission*).

454 The SNPs were grouped into 112 loci that in turn overlapped 324 genes (Supplementary
455 Table S13). Thirty of these 324 genes were also among the 228 genes overlapping the loci en-
456 compassing the lead SNPs for the neuroticism general factor. This modest intersection suggests
457 that our inferences of enrichment by these two collections of SNPs were mostly independent.

458 The similarity of the biology implicated by general-factor and independent-pathway SNPs
459 has two possible interpretations. First, the general factor and non-factor influences on the ques-
460 tionnaire items may tend to act through similar biological mechanisms. Second, as suggested
461 by the concordance of effect signs observed in the GWAS of the group factors, it may be that
462 the general factor is in fact one of several mechanisms affected by an independent-pathway
463 SNP, the other mechanisms being responsible for the departures from the strict predictions of
464 the general-factor model (Fig. 1A). To investigate the latter possibility, we calculated sign con-
465 cordances of the SNP effects on the 12 items. Of the 181 SNPs, 117 showed sign-concordant
466 effects on all 12 items, 28 showed a deviant sign with respect to only one item, 15 showed
467 deviant signs with respect to two items, 11 showed deviant signs with respect to three items,
468 and 10 showed deviant signs with respect to four items. The overall impression is that many
469 of these SNPs do not depart too radically from the general-factor model, despite a low Akaike
470 weight for the precise predictions of that model.

471 The Supplementary Data contain information about all of the SNPs used in these analyses.

472 **3.6 S-LDSC and PANTHER fold enrichment**

473 The apparent rarity of severe model failures among the more significant SNPs associated with
474 the neuroticism general factor lends interpretability to genome-wide estimates of heritability en-
475 richment, as calculated by S-LDSC, where there has been no screening of SNPs for conformity
476 to the general-factor model (Fig. 1A).

477 It is recommended that S-LDSC be used with a standard collection of control variables.
478 The estimates associated with these variables can be interesting in their own right, and we give
479 them in Supplementary Table S14. The most statistically significant enrichments were shown
480 by annotations referring to evolutionary conservation, more recent mutational origin, and lower
481 correlations with nearby SNPs. This pattern is typical of traits that have been studied in GWAS

482 (Finucane et al., 2015; Gazal et al., 2017). What the pattern means is that mutations affecting
483 the neuroticism general factor (and other traits) tend to arise in functional regions of the genome,
484 as evidenced by selection to maintain sequence similarity in distinct lineages, and once arisen
485 tend to be deleterious.

486 Fig. 3 displays the enrichment estimates for the reconstituted gene sets and tissues/cell types.
487 We first discuss the colored data points representing the tissues/cell types. The top result by
488 heritability enrichment, as by DEPICT p value, was *entorhinal cortex* (1.45-fold enrichment,
489 $p = 10^{-15}$). Furthermore, 11 of the 13 tissues/cell types clearing 1.3-fold enrichment bore
490 the MeSH second-level term *central nervous system*. The two non-CNS tissues/cell types were
491 *neural stem cells* (1.31-fold enrichment, $p = 1.9 \times 10^{-6}$) and *retina* (1.31-fold enrichment,
492 $p = 6.4 \times 10^{-6}$). These are not true exceptions. Neural progenitors are reasonably classified as
493 neural despite differences in gene expression between progenitors and differentiated cells, and
494 the retina is made up of layers of neurons.

495 Before proceeding further, we point out that the any-gene control annotation typically showed
496 roughly 1.03-fold enrichment with a standard error of .015, demonstrating that the S-LDSC es-
497 timation procedure is well calibrated.

498 We now turn to the reconstituted gene sets, which are represented by the dark data points at
499 the far left of Fig. 3. All but *abnormal neuron physiology* (1.22-fold enrichment, $p = 3.3 \times 10^{-5}$)
500 exceeded the benchmark effect size of 1.3. In particular, the gene sets defined in one way or
501 another by fearful and anxious behavior in mice all met the threshold: *increased anxiety-related*
502 *response* (1.41-fold enrichment, $p = 4.1 \times 10^{-11}$), *decreased exploration in new environment*
503 (1.36-fold enrichment, $p = 10^{-9}$), and *abnormal cued conditioning behavior* (1.35-fold enrich-
504 *ment*, $p = 3 \times 10^{-9}$).

505 The PANTHER overrepresentation test also supported the results of the standard DEPICT
506 analysis. Supplementary Table S16 shows that both *growth cone* (14.5-fold enrichment, $p =$

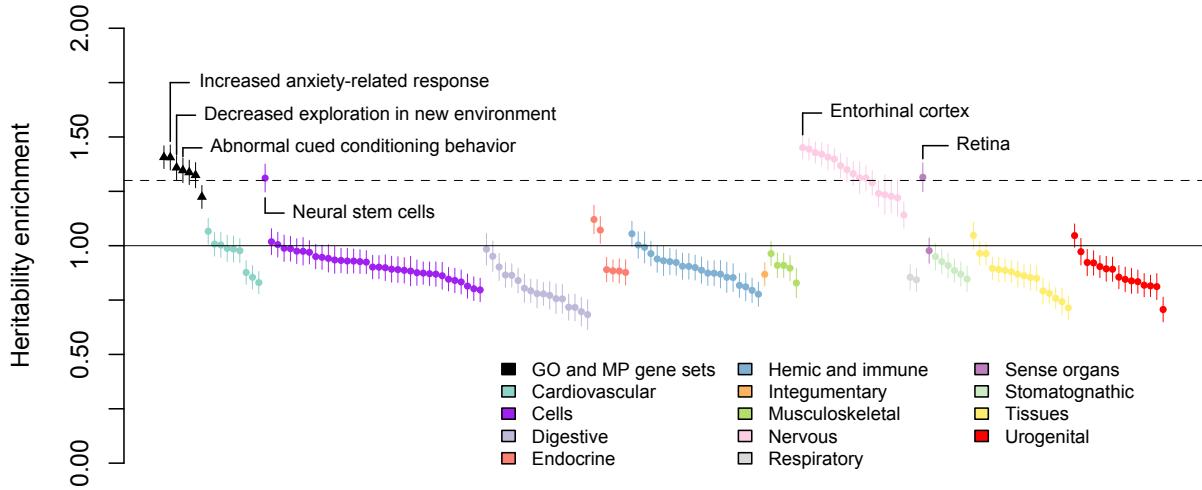


Figure 3: Heritability enrichment of reconstituted gene sets and tissues/cell types, as estimated by stratified LD Score regression (S-LDSC) applied to the GWAS summary statistics of the neuroticism general factor. The error bars are ± 1 -SE intervals. The height of the dashed horizontal line corresponds to 1.3-fold enrichment, which we consider to be a “large” effect size. Complete numerical results are given in Supplementary Table S15. GO, Gene Ontology; MP, Mammalian Phenotype.

507 2.7×10^{-5}) and *site of polarized growth* (14.1-fold enrichment, $p = 3.1 \times 10^{-5}$), the two gene
 508 sets in Table 2 related to axonogenesis, were among the top Gene Ontology (GO) cellular com-
 509 ponents. The theme of axonogenesis was reinforced by many of the significant GO biological
 510 processes (*neuron projection morphogenesis, axonogenesis, axon development*).

511 Because our pipeline of DEPICT-prioritized genes to PANTHER did not require defining a
 512 single effect size for any given SNP, we were able to perform the PANTHER overrepresentation
 513 test on prioritized genes near independent-pathway SNPs. Supplementary Table S17 shows that
 514 many gene sets reaching statistical significance for the neuroticism general factor also did so for
 515 independent pathways (e.g., *axon guidance, axon development, neuron projection*). Many of the
 516 most strongly enriched gene sets for independent pathways were defined by synaptic function:
 517 e.g., *presynapse assembly* (70.9-fold enrichment, $p = 9.7 \times 10^{-10}$), *synaptic vesicle clustering*
 518 (82.7-fold enrichment, $p = 4.2 \times 10^{-7}$), *neuron to neuron synapse* (7.6-fold enrichment, $p =$

519 6.9×10^{-8}), *postsynaptic density* (7.2-fold enrichment, $p = 1.6 \times 10^{-6}$), *GABA-ergic synapse*
520 (13.9-fold enrichment, $p = 3.8 \times 10^{-5}$) and *glutamatergic synapse* (5.2-fold enrichment, $p =$
521 6.8×10^{-5}).

522 4 Discussion

523 The common-factor model need not be interpreted as a causal account of the correlations be-
524 tween indicators in order to be scientifically and practically useful (Ashton & Lee, 2005; Mc-
525 Donald, 1996, 2003). Nevertheless the extent to which factors do approximate underlying
526 causes is a matter worthy of investigation.

527 Our results suggest that the factor model of the neuroticism domain is not just a convenient
528 summary of the correlations between items, but indeed a reasonable approximation to some
529 part of the underlying causal system. For instance, neuroticism does not appear to be explained
530 entirely by something like the bonds model (Thomson, 1951), which proposes the existence
531 of many distinct causal elements, no single one of which affects all items in the domain. In
532 Thomson's model, items may overlap in what bonds affect them, and a greater overlap produces
533 a greater correlation. A resulting positive correlation between each pair of items then gives the
534 appearance of a single causal variable affecting all items when in fact there is no such variable.
535 Bartholomew et al. (2009) suggested that polymorphic sites in the human genome might turn
536 out to be the substantiation of the abstract bonds in Thomson's model, but our results show that
537 many SNPs identified in a GWAS of a neuroticism questionnaire are in fact associated with all
538 items as if mediated by the common factors.

539 Even upon rejecting a simpler model of mediation, we still found evidence for the approxi-
540 mate correctness of such a model. SNPs ascertained through a GWAS of the three group factors
541 were found to show sign-concordant effects on those factors. In summary, we have genetic evi-
542 dence supporting the verisimilitude of the neuroticism general factor at a deep biological level.

543 This evidence weighs against network theories that deny the existence of broad factors influenc-
544 ing many specific traits (Cramer et al., 2012), adding specific neurobiological reasons to other
545 statistical and theoretical reasons to reject such models as sufficient explanations of personality
546 structure (DeYoung & Krueger, 2018).

547 We concede that our study cannot be absolutely definitive on this point. The filtering of
548 SNPs by statistical significance in a GWAS at the latent level may induce an ascertainment bias
549 that exaggerates the evidence for the approximate validity of the factor model. That is, SNPs
550 departing very markedly from concordance of associations with all of the questionnaire items
551 may be less likely to reach the threshold of statistical significance in a GWAS of the common
552 factor. An example might be a SNP with positive effects on half of the items and negative effects
553 on the other half. Such a SNP might have no net effect on the sum score and presumably would
554 not reach significance in a GWAS of the factor, but it would be detected in a sufficiently power-
555 ful GWAS of independent pathways. Future research may attend to this issue of ascertainment
556 bias more carefully. Again, however, it is telling that most of the SNPs ascertained solely for
557 significant association with just one group factor showed evidence of concordant association
558 with the two others as well. Regardless of what we have failed to ascertain, it is clear that there
559 are a sizable number of polymorphic sites across the genome that bear a striking resemblance
560 to causes of the neuroticism general factor.

561 A true GWAS of independent pathways, testing all common SNPs rather than those first
562 attaining significance in a GWAS of a common factor, is likely to identify roughly as many lead
563 SNPs as a GWAS of the general factor carried out on the same item-level summary statistics.
564 For example, in their specification, Grotzinger et al. (2019) identified 118 lead SNPs for the
565 neuroticism factor and 69 lead SNPs for independent pathways. Such a GWAS is also likely to
566 identify more lead SNPs showing a failure of sign concordance across items. A tally of lead
567 SNPs, however, may not suffice to weigh the relative importance of mechanisms. For example,

568 if many independent-pathway lead SNPs are associated with item-specific residuals, then such
569 SNPs are not in fact contributing to the correlational structure of this personality domain. We
570 do not propose a suitable comparative metric at the current time, leaving this problem to be
571 addressed in future research.

572 Previous studies have used multivariate twin modeling to pursue aims similar to our own.
573 For example, Heath et al. (1989) showed that data from 1,800 pairs of like-sex monozygotic
574 twins and 1,103 like-sex dizygotic twins were consistent with some personality scales being
575 influenced by a general heritable factor. In their study this was true of extraversion and neuroti-
576 cism, but not the third EPQ trait of psychoticism. This work may have contributed to the decline
577 in support for the construct validity of psychoticism, showing the potential impact of genetic
578 methods on personality theory. Even the fit of genetic correlations to a single factor, however,
579 does not rule out a network or Thomson-like model. The power of the genomic approach lies
580 in subjecting a factor model to an even more precise and hence riskier quantitative test of how
581 directly measurable objects are related to the trait indicators (Meehl, 1978).

582 We applied DEPICT in order to gain some clues to the biological processes mediating the
583 effects of the general-factor SNPs on neuroticism. We found that these SNPs disproportionately
584 fall within or near genes designated as high-ranking members of gene sets defined by responses
585 to aversive or novel stimuli (Table 2). This result is remarkably fitting for the personality trait of
586 neuroticism. Such gene sets became significantly enriched in GWAS of other behavioral traits
587 as their sample sizes grew (e.g., Lee et al., 2018b), but it is perhaps meaningful that they are
588 among the first to become significantly enriched in the GWAS of a trait defined by a tendency
589 to experience fear and anxiety. Furthermore, the tendency of these genes to be highly expressed
590 in the entorhinal cortex (Fig. 2) is consistent with research and theory linking anxiety and the
591 mechanisms of anxiolytic drugs to the septo-hippocampal system (Allen & DeYoung, 2017;
592 Gray & McNaughton, 2000)—a collection of structures that receive from the medial septal

593 nucleus the inhibitory GABAergic input inducing the theta rhythm, a neural oscillation associ-
594 ated with learning and spatiotemporal encoding in many animals. The main components of the
595 septo-hippocampal system are the hippocampus itself and the entorhinal cortex (Robinson et al.,
596 2023). The Cybernetic Big Five Theory (DeYoung, 2015), drawing on Gray and McNaughton
597 (2000), posits that neuroticism

598 reflects the joint sensitivity of a behavioral inhibition system (BIS), which responds
599 to threats in the form of conflicts between goals (e.g., approach-avoidance conflict
600 or any conflict that generates uncertainty), and a fight-flight-freeze system (FFFS),
601 which responds to threats without conflict—that is, when the only motivation is
602 to escape or eliminate the threat. Much is known about the neurobiology of the
603 BIS and FFFS in the brainstem, hypothalamus, and limbic system [a collection of
604 structures including the hippocampus and entorhinal cortex], which can aid in the
605 interpretation of existing research on [n]euroticism and inform hypotheses in future
606 research. (Allen & DeYoung, 2017, p. 331)

607 By and large, our biological-annotation results were consistent with previous analyses.
608 For example, they were broadly consistent with those obtained with a different software tool,
609 MAGMA (de Leeuw et al., 2015), in a GWAS of the questionnaire sum score (Nagel et al.,
610 2018a). The three independently significant gene sets in this study were *neurogenesis*, *be-*
611 *havioral response to cocaine*, and *axon part*. Biological annotation apparently tends to yield
612 similar results regardless of whether it is applied to the general factor, the observed sum score,
613 or a single factor in a simpler model. Perhaps such consistency is to be expected in light of our
614 evidence for the existence, in some sense other than the psychometric one, of a general factor.
615 A sum score will typically reflect a general factor indicated by all items more than any other
616 source of variance. Indeed, on the basis of the phenotypic correlations between items reported
617 by Nagel et al. (2018b), we calculated McDonald's ω_H (Revelle & Condon, 2019) of the EPQ

618 neuroticism scale to be .64.

619 We have no explanation for the meager results obtained from the GWAS of the residual
620 group factors. Our method for identifying SNPs associated with the residuals of the group
621 factors in our hierarchical model was somewhat indirect (Supplementary Fig. S2), but a more
622 direct approach based on a bifactor model would lead to more free parameters and an increase
623 in estimation error (Murray & Johnson, 2013; Preacher et al., 2013). The study of group factors
624 is an inherently difficult one, and those present in the EPQ neuroticism questionnaire require a
625 greater GWAS sample size for their genetic elucidation. It would be premature to base conclu-
626 sions about the construct validity of these group factors on the present results.

627 5 Conclusion

628 We used structural equation modeling to carry out a GWAS of the neuroticism general factor
629 and identified 19 lead SNPs satisfying $p < 5 \times 10^{-8}$. Even if deemed not to satisfy the predic-
630 tions entailed by the hypothesis of acting solely through the general factor, hundreds of other
631 SNPs attaining or approaching statistical significance in various analyses showed mostly sign-
632 concordant effects on the questionnaire items. These findings do not settle the issue of the causal
633 structure underlying the correlations between personality items. All we claim is that when we
634 look for evidence of genetic effects on a causal intermediary very similar to the general factor
635 of neuroticism, such evidence can be found. The SNPs acting through the general factor are
636 found in or near genes highly expressed in the brain, and their pattern of gene-set enrichment is
637 suggestive of neural development and synaptic function, particularly as these processes affect
638 the learning of fear and caution in response to aversive stimuli.

639 Declaration of Competing Interest

640 The authors declare that the research was conducted in the absence of any commercial or finan-
641 cial relationships that could be construed as a potential conflict of interest.

642 Data Availability

643 The Supplementary Data archive contains R code, several files containing limited portions of
644 the Genomic SEM output, and a DEPICT configuration file. The original item-level GWAS
645 summary statistics are available at https://ctg.cncr.nl/software/summary_statistics. The GWAS
646 summary statistics generated for this paper and the DEPICT collections file used in our analyses
647 are available at XXX.

648 References

649 Allen, T. A., & DeYoung, C. G. (2017). Personality neuroscience and the Five-Factor Model.
650 In T. A. Widiger (Ed.), *The Oxford handbook of the Five Factor Model* (pp. 319–349).
651 Oxford University Press. <https://doi.org/10.1093/oxfordhb/9780199352487.013.26>

652 Ashton, M. C., & Lee, K. (2005). A defence of the lexical approach to the study of personality
653 structure. *European Journal of Personality*, 19(1), 5–24. <https://doi.org/10.1002/per.541>

654 Bartholomew, D. J., Deary, I. J., & Lawn, M. (2009). A new lease of life for Thomson's bonds
655 model of intelligence. *Psychological Review*, 116(3), 567–579. <https://doi.org/10.1037/a0016262>

656 Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R., ReproGen
657 Consortium, Psychiatric Genomics Consortium, Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3, Duncan, L., Perry, J. R. B.,
658 Patterson, N., Robinson, E. B., Daly, M. J., Price, A. L., & Neale, B. M. (2015). An
659 atlas of genetic correlations across human diseases and traits. *Nature Genetics*, 47(11),
660 1236–1241. <https://doi.org/10.1038/ng.3406>

661 Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J.
662 (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets.
663 *GigaScience*, 4, 7. <https://doi.org/10.1186/s13742-015-0047-8>

666 Cheng, A., Zamarro, G., & Orriens, B. (2020). Personality as a predictor of unit nonresponse in
667 an Internet panel. *Sociological Methods and Research*, 49(3), 672–698. <https://doi.org/10.1177/0049124117747305>

669 Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The
670 NEO Personality Inventory. *Psychological Assessment*, 4(1), 5–13. <https://doi.org/10.1037/1040-3590.4.1.5>

672 Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M., & Deary, I. J. (2019). Structural
673 brain imaging correlates of general intelligence in UK Biobank. *Intelligence*, 76,
674 101376. <https://doi.org/10.1016/j.intell.2019.101376>

675 Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H.,
676 Kendler, K. S., & Borsboom, D. (2012). Dimensions of normal personality as networks
677 in search of equilibrium: You can't like parties if you don't like people. *European Journal of
678 Personality*, 26(4), 414–431. <https://doi.org/10.1002/per.1866>

679 Cvejic, A., Haer-Wigman, L., Stephens, J. C., Kostadima, M., Smethurst, P. A., Frontini, M.,
680 Akker, E. v. d., Bertone, P., Bielczyk-Maczyńska, E., Farrow, S., Fehrman, R. S. N.,
681 Gray, A., Haas, M. d., Haver, V. G., Jordan, G., Karjalainen, J., Kerstens, H. H. D.,
682 Kiddle, G., Lloyd-Jones, H., ... Albers, C. A. (2013). *SMIM1* underlies the *Vel* blood
683 group and influences red blood cell traits. *Nature Genetics*, 45(5), 542–545. <https://doi.org/10.1038/ng.2603>

685 de la Fuente, J., Davies, G., Grotzinger, A. D., Tucker-Drob, E. M., & Deary, I. J. (2021).
686 A general dimension of genetic sharing across diverse cognitive traits inferred from
687 molecular data. *Nature Human Behaviour*, 5(1), 49–58. <https://doi.org/10.1038/s41562-020-00936-2>

689 de Moor, M. H. M., Berg, S. M. v. d., Verweij, K. J. H., Krueger, R. F., Luciano, M., Vasquez,
690 A. A., Matteson, L. K., Derringer, J., Esko, T., Amin, N., Gordon, S. D., Hansell, N. K.,
691 Hart, A. B., Seppälä, I., Huffman, J. E., Konte, B., Lahti, J., Lee, M., Miller, M., ...
692 Boomsma, D. I. (2015). Meta-analysis of genome-wide association studies for neuroticism,
693 and the polygenic association with major depressive disorder. *JAMA Psychiatry*,
694 72(7), 642–650. <https://doi.org/10.1001/jamapsychiatry.2015.0554>

695 de Leeuw, C. A., Mooij, J. M., Heskes, T., & Posthuma, D. (2015). MAGMA: Generalized
696 gene-set analysis of GWAS data. *PLOS Computational Biology*, 11(4), e1004219. <https://doi.org/10.1371/journal.pcbi.1004219>

698 Demange, P. A., Malanchini, M., Mallard, T. T., Biroli, P., Cox, S. R., Grotzinger, A. D.,
699 Tucker-Drob, E. M., Abdellaoui, A., Arseneault, L., Bergen, E., Boomsma, D. I., Caspi,
700 A., Corcoran, D. L., Domingue, B. W., Harris, K. M., Ip, H. F., Mitchell, C., Moffitt,
701 T. E., Poulton, R., ... Nivard, M. G. (2021). Investigating the genetic architecture of
702 noncognitive skills using GWAS-by-subtraction. *Nature Genetics*, 53(1), 35–44. <https://doi.org/10.1038/s41588-020-00754-2>

704 DeYoung, C. G. (2015). Cybernetic Big Five Theory. *Journal of Research in Personality*, 56,
705 33–58. <https://doi.org/10.1016/j.jrp.2014.07.004>

706 DeYoung, C. G., & Krueger, R. F. (2018). Understanding psychopathology: Cybernetics and
707 psychology on the boundary between order and chaos. *Psychological Inquiry*, 29(3),
708 165–174. <https://doi.org/10.1080/1047840X.2018.1513690>

709 DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: 10 aspects
710 of the Big Five. *Journal of Personality and Social Psychology*, 93(5), 880–896. <https://doi.org/10.1037/0022-3514.93.5.880>

712 Efron, B. (2010). *Large-scale inference: Empirical Bayes methods for estimation, testing, and
713 prediction*. Cambridge University Press.

714 Eysenck, H. J. (1992). Four ways five factors are not basic. *Personality and Individual Differences*, 13(6), 667–673. [https://doi.org/10.1016/0191-8869\(92\)90237-j](https://doi.org/10.1016/0191-8869(92)90237-j)

716 Eysenck, S. B. G., Eysenck, H. J., & Barrett, P. (1985). A revised version of the Psychoticism
717 scale. *Personality and Individual Differences*, 6(1), 21–29. [https://doi.org/10.1016/0191-8869\(85\)90026-1](https://doi.org/10.1016/0191-8869(85)90026-1)

719 Fehrman, R. S. N., Karjalainen, J., Krajewska, M., Westra, H.-J., Maloney, D., Simeonov, A.,
720 Pers, T. H., Hirschhorn, J. N., Jansen, R. C., Schultes, E. A., van Haagen, H. H. H. B. M.,
721 de Vries, E. G. E., te Meerman, G. J., Wijmenga, C., van Vugt, M. A. T. M., & Franke,
722 L. (2015). Gene expression analysis identifies global gene dosage sensitivity in cancer.
723 *Nature Genetics*, 47(2), 115–125. <https://doi.org/10.1038/ng.3173>

724 Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., Anttila, V.,
725 Xu, H., Zang, C., Farh, K., Ripke, S., Day, F. R., Purcell, S. M., Stahl, E. A., Lindström,
726 S., Perry, J. R. B., Okada, Y., Raychaudhuri, S., Daly, M. J., ... Price, A. L. (2015). Partitioning
727 heritability by functional annotation using genome-wide association summary
728 statistics. *Nature Genetics*, 47(11), 1228–1235. <https://doi.org/10.1038/ng.3404>

729 Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., Gazal, S.,
730 Loh, P.-R., Lareau, C., Shores, N., Genovese, G., Saunders, A., Macosko, E., Pollack,
731 S., Brainstorm Consortium, Perry, J. R. B., Buenrostro, J. D., Bernstein, B. E., Ray-
732 chaudhuri, S., ... Price, A. L. (2018). Heritability enrichment of specifically expressed
733 genes identifies disease-relevant tissues and cell types. *Nature Genetics*, 50(4), 621–629.
734 <https://doi.org/10.1038/s41588-018-0081-4>

735 Gazal, S., Finucane, H. K., Furlotte, N. A., Loh, P.-R., Palamara, P. F., Liu, X., Schoech, A.,
736 Bulik-Sullivan, B., Neale, B. M., Gusev, A., & Price, A. L. (2017). Linkage disequilibrium-
737 dependent architecture of human complex traits shows action of negative selection. *Nature
738 Genetics*, 49(10), 1421–1427. <https://doi.org/10.1038/ng.3954>

739 Gray, J. A., & McNaughton, N. (2000). *The neuropsychology of anxiety: An enquiry into the
740 functions of the septo-hippocampal system* (2nd ed.). Oxford University Press.

741 Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J., Mallard, T. T., Hill, W. D.,
742 Ip, H. F., Marioni, R. E., McIntosh, A. M., Deary, I. J., Koellinger, P. D., Harden, K. P.,
743 Nivard, M. G., & Tucker-Drob, E. M. (2019). Genomic structural equation modelling
744 provides insights into the multivariate genetic architecture of complex traits. *Nature
Human Behaviour*, 3(5), 513–525. <https://doi.org/10.1038/s41562-019-0566-x>

745

746 Heath, A. C., Eaves, L. J., & Martin, N. G. (1989). The genetic structure of personality III. Multi-
747 variate genetic item analysis of the EPQ scales. *Personality and Individual Differences*,
748 10(8), 877–888. [https://doi.org/10.1016/0191-8869\(89\)90023-8](https://doi.org/10.1016/0191-8869(89)90023-8)

749

750 Hill, W. D., Weiss, A., Liewald, D. C., Davies, G., Porteous, D. J., Hayward, C., McIntosh,
751 A. M., Gale, C. R., & Deary, I. J. (2020). Genetic contributions to two special factors of
752 neuroticism are associated with affluence, higher intelligence, better health, and longer
753 life. *Molecular Psychiatry*, 25(11), 3034–3052. [https://doi.org/10.1038/s41380-019-0387-3](https://doi.org/10.1038/s41380-019-
0387-3)

754

755 Howe, L. J., Nivard, M. G., Morris, T. T., Hansen, A. F., Rasheed, H., Cho, Y., Chittoor, G.,
756 Ahlskog, R., Lind, P. A., Palviainen, T., van der Zee, M. D., Cheesman, R., Mangino, M.,
757 Wang, Y., Li, S., Klaric, L., Ratliff, S. M., Bielak, L. F., Nygaard, M., ... Davies, N. M.
758 (2022). Within-sibship genome-wide association analyses decrease bias in estimates of
759 direct genetic effects. *Nature Genetics*, 54(5), 581–592. [https://doi.org/10.1038/s41588-022-01062-7](https://doi.org/10.1038/s41588-
022-01062-7)

760

761 Kievit, R. A., van Rooijen, H., Wicherts, J. M., Waldorp, L. J., Kan, K.-J., Scholte, H. S., &
762 Borsboom, D. (2012). Intelligence and the brain: A model-based approach. *Cognitive
Neuroscience*, 3(2), 89–97. <https://doi.org/10.1080/17588928.2011.628383>

763

764 Kim, S. S., Dai, C., Hormozdiari, F., van de Geijn, B., Gazal, S., Park, Y., O'Connor, L., Amar-
765 iuta, T., Loh, P.-R., Finucane, H. K., Raychaudhuri, S., & Price, A. L. (2019). Genes
766 with high network connectivity are enriched for disease heritability. *American Journal
of Human Genetics*, 104(5), 896–913. <https://doi.org/10.1016/j.ajhg.2019.03.020>

767

768 Lee, J. J. (2012). Correlation and causation in the study of personality (with discussion). *European
Journal of Personality*, 26(4), 372–412. <https://doi.org/10.1002/per.1863>

769

770 Lee, J. J., McGue, M., Iacono, W. G., & Chow, C. C. (2018a). The accuracy of LD Score regres-
771 sion as an estimator of confounding and genetic correlations in genome-wide association
772 studies. *Genetic Epidemiology*, 42(8), 783–795. <https://doi.org/10.1002/gepi.22161>

773

774 Lee, J. J., McGue, M., Iacono, W. G., Michael, A. M., & Chabris, C. F. (2019). The causal
775 influence of brain size on human intelligence: Evidence from within-family phenotypic
776 associations and GWAS modeling. *Intelligence*, 75, 48–58. [https://doi.org/10.1016/j.intell.2019.01.011](https://doi.org/10.1016/j.
intell.2019.01.011)

777

778 Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bow-
779 ers, P., Sidorenko, J., Linnér, R. K., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R.,

778 Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., ... Cesarini, D. (2018b).
779 Gene discovery and polygenic prediction from a genome-wide association study of edu-
780 cational attainment in 1.1 million individuals. *Nature Genetics*, 50(8), 1112–1121. <https://doi.org/10.1038/s41588-018-0147-3>

782 Lo, M.-T., Hinds, D. A., Tung, J. Y., Franz, C., Fan, C. C., Wang, Y., Smeland, O. B., Schork, A.,
783 Holland, D., Kauppi, K., Sanyal, N., Escott-Price, V., Smith, D. J., O'Donovan, M. C.,
784 Stefansson, H., Bjornsdottir, G., Thorgeirsson, T. E., Stefansson, K., McEvoy, L. K., ...
785 Chen, C.-H. (2017). Genome-wide analyses for personality traits identify six genomic
786 loci and show correlations with psychiatric disorders. *Nature Genetics*, 49(1), 152–156.
787 <https://doi.org/10.1038/ng.3736>

788 Luciano, M., Hagenaars, S. P., Davies, G., Hill, W. D., Clarke, T.-K., Shirali, M., Harris, S. E.,
789 Marioni, R. E., Liewald, D. C. M., Fawns-Ritchie, C., Adams, M. J., Howard, D. M.,
790 Lewis, C. M., Gale, C. R., McIntosh, A. M., & Deary, I. J. (2018). Association analysis
791 in over 329,000 individuals identifies 116 independent variants influencing neuroticism.
792 *Nature Genetics*, 50(1), 6–11. <https://doi.org/10.1038/s41588-017-0013-8>

793 Maass, A., Berron, D., Libby, L. A., Ranganath, C., & Düüzel, E. (2015). Functional subregions
794 of the human entorhinal cortex. *eLife*, 4, e06426. <https://doi.org/10.7554/elife.06426>

795 Mallard, T. T., Linnéér, R. K., Grotzinger, A. D., Sanchez-Roige, S., Seidlitz, J., Okbay, A.,
796 Vlaming, R. d., Meddents, S. F. W., Bipolar Disorder Working Group of the Psychiatric
797 Genomics, Palmer, A. A., Davis, L. K., Tucker-Drob, E. M., Kendler, K. S., Keller,
798 M. C., Koellinger, P. D., & Harden, K. P. (2022). Multivariate GWAS of psychiatric
799 disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic
800 liabilities. *Cell Genomics*, 2(6), 100140. <https://doi.org/10.1016/j.xgen.2022.100140>

801 Mammadov, S. (2022). Big Five personality traits and academic performance: A meta-analysis.
802 *Journal of Personality*, 90(2), 222–255. <https://doi.org/10.1111/jopy.12663>

803 Marcus, B., & Schütz, A. (2005). Who are the people reluctant to participate in research? per-
804 sonality correlates of four different types of nonresponse as inferred from self- and ob-
805 server ratings. *Journal of Personality*, 73(4), 959–984. <https://doi.org/10.1111/j.1467-6494.2005.00335.x>

807 McDonald, R. P. (1996). Consensus emergens: A matter of interpretation. *Multivariate Behav-
808 ioral Research*, 31(4), 663–672. https://doi.org/10.1207/s15327906mbr3104_19

809 McDonald, R. P. (2003). Behavior domains in theory and in practice. *Alberta Journal of Edu-
810 cational Research*, 49(3), 212–230. <https://doi.org/10.11575/ajer.v49i3.54980>

811 Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow
812 progress of soft psychology. *Journal of Consulting and Clinical Psychology*, 46(4), 806–
813 834. <https://doi.org/10.1037/0022-006X.46.4.806>

814 Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. *Psychometrika*, 58(4), 525–543. <https://doi.org/10.1007/BF02294825>

815

816 Murray, A. L., & Johnson, W. (2013). The limitations of model fit in comparing the bi-factor
817 versus higher-order models of human cognitive ability structure. *Intelligence*, 41(5),
818 407–422. <https://doi.org/10.1016/j.intell.2013.06.004>

819 Nagel, M., Jansen, P. R., Stringer, S., Watanabe, K., de Leeuw, C. A., Bryois, J., Savage,
820 J. E., Hammerschlag, A. R., Skene, N. G., Muñoz-Manchado, A. B., 23andMe Research
821 Team, White, T., Tiemeier, H., Linnarsson, S., Hjerling Leffler, J., Polderman, T. J. C.,
822 Sullivan, P. F., van der Sluis, S., & Posthuma, D. (2018a). Meta-analysis of genome-
823 wide association studies for neuroticism in 449,484 individuals identifies novel genetic
824 loci and pathways. *Nature Genetics*, 50(7), 920–927. <https://doi.org/10.1038/s41588-018-0151-7>

825

826 Nagel, M., Watanabe, K., Stringer, S., Posthuma, D., & van der Sluis, S. (2018b). Item-level
827 analyses reveal genetic heterogeneity in neuroticism. *Nature Communications*, 9(1),
828 905. <https://doi.org/10.1038/s41467-018-03242-8>

829 Okbay, A., Baselmans, B. M. L., De Neve, J.-E., Turley, P., Nivard, M. G., Fontana, M. A.,
830 Meddents, S. F. W., Linnér, R. K., Rietveld, C. A., Derringer, J., Gratten, J., Lee, J. J.,
831 Liu, J. Z., de Vlaming, R., Ahluwalia, T. S., Buchwald, J., Cavadino, A., Frazier-Wood,
832 A. C., Furlotte, N. A., ... Cesarini, D. (2016a). Genetic variants associated with subjective
833 well-being, depressive symptoms, and neuroticism identified through genome-wide
834 analyses. *Nature Genetics*, 48(6), 624–630. <https://doi.org/10.1038/ng.3552>

835 Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Tur-
836 ley, P., Chen, G.-B., Emilsson, V., Meddents, S. F. W., Oskarsson, S., Pickrell, J. K.,
837 Thom, K., Timshel, P., de Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J.,
838 Baumbach, C., ... Benjamin, D. J. (2016b). Genome-wide association study identifies
839 74 loci associated with educational attainment. *Nature*, 533(7604), 539–542. <https://doi.org/10.1038/nature17671>

840

841 Pers, T. H., Karjalainen, J., Chan, Y., Westra, H.-J., Wood, A. R., Yang, J., Lui, J. C., Svedan-
842 tam, S., Gustafsson, S., Esko, T., Frayling, T. M., Speliotes, E. K., Boehnke, M., Ray-
843 chaudhuri, S., Fehrman, R. S. N., Hirschhorn, J. N., & Franke, L. (2015). Biological
844 interpretation of genome-wide association studies using predicted gene functions. *Nature
845 Communications*, 6, 5890. <https://doi.org/10.1038/ncomms6890>

846 Pers, T. H., Timshel, P., Ripke, S., Lent, S., Schizophrenia Working Group of the Psychiatric
847 Genomics Consortium, Sullivan, P. F., O'Donovan, M. C., Franke, L., & Hirschhorn,
848 J. N. (2016). Comprehensive analysis of schizophrenia-associated loci highlights ion
849 channel pathways and biologically plausible candidate causal genes. *Human Molecular
850 Genetics*, 25(6), 1247–1254. <https://doi.org/10.1093/hmg/ddw007>

851 Poropat, A. E. (2009). A meta-analysis of the five-factor model of personality and academic per-
852 formance. *Psychological Bulletin*, 135(2), 322–338. <https://doi.org/10.1037/a0014996>

853 Preacher, K. J., Zhang, G., Kim, C., & Mels, G. (2013). Choosing the optimal number of factors
854 in exploratory factor analysis: A model selection perspective. *Multivariate Behavioral
855 Research*, 48(1), 28–56. <https://doi.org/10.1080/00273171.2012.710386>

856 Purcell, S. M., Neale, B. M., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D.,
857 Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A
858 tool set for whole-genome association and population-based linkage analyses. *American
859 Journal of Human Genetics*, 81, 559–575. <https://doi.org/10.1086/519795>

860 Revelle, W., & Condon, D. M. (2019). Reliability from α to ω : A tutorial. *Psychological As-
861 sessment*, 31(12), 1395–1411. <https://doi.org/10.1037/pas0000754>

862 Robinson, J. C., Wilmot, J. H., & Hasselmo, M. E. (2023). Septo-hippocampal dynamics and
863 the encoding of space and time. *Trends in Neurosciences*, 46(9), 712–725. [https://doi.org/10.1016/j.tins.2023.06.004](https://doi.
864 org/10.1016/j.tins.2023.06.004)

865 Royall, R. M. (1997). *Statistical evidence: A likelihood paradigm*. Chapman and Hall/CRC.

866 Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological
867 insights from 108 schizophrenia-associated genetic loci. *Nature*, 511(7510), 421–427.
868 <https://doi.org/10.1038/nature13595>

869 Smith, D. J., Escott-Price, V., Davies, G., Bailey, M. E. S., Colodro-Conde, L., Ward, J., Ved-
870 ernikov, A., Marioni, R., Cullen, B., Lyall, D., Hagenaars, S. P., Liewald, D. C. M.,
871 Luciano, M., Gale, C. R., Ritchie, S. J., Hayward, C., Nicholl, B., Bulik-Sullivan, B.,
872 Adams, M., ... O'Donovan, M. C. (2016). Genome-wide analysis of over 106000 indi-
873 viduals identifies 9 neuroticism-associated loci. *Molecular Psychiatry*, 21(6), 749–757.
874 <https://doi.org/10.1038/mp.2016.49>

875 Sodini, S. M., Kemper, K. E., Wray, N. R., & Trzaskowski, M. (2018). Comparison of genotypic
876 and phenotypic correlations: Cheverud's conjecture in humans. *Genetics*, 209(3), 941–
877 948. <https://doi.org/10.1534/genetics.117.300630>

878 Thomson, G. H. (1951). *The factorial analysis of human ability* (5th ed.). Houghton Mifflin.

879 Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., & Moser, E. I. (2018).
880 Integrating time from experience in the lateral entorhinal cortex. *Nature*, 561(7721),
881 57–62. <https://doi.org/10.1038/s41586-018-0459-6>

882 Turley, P., Walters, R. K., Maghzian, O., Okbay, A., Lee, J. J., Fontana, M. A., Nguyen-Viet,
883 T. A., Wedow, R., Zacher, M., Furlotte, N. A., 23andMe Research Team, Social Sci-
884 ence Genetic Association Consortium, Magnusson, P., Oskarsson, S., Johannesson, M.,
885 Visscher, P. M., Laibson, D. I., Cesaroni, D., Neale, B. M., & Benjamin, D. J. (2018).
886 Multi-trait analysis of genome-wide association study summary statistics using MTAG.
887 *Nature Genetics*, 50(2), 229–237. <https://doi.org/10.1038/s41588-017-0009-4>

888 Tyrrell, J., Zheng, J., Beaumont, R., Hinton, K., Richardson, T. G., Wood, A. R., Davey Smith,
889 G., Frayling, T. M., & Tilling, K. (2021). Genetic predictors of participation in optional
890 components of UK biobank. *Nature Communications*, 12(1), 886. <https://doi.org/10.1038/s41467-021-21073-y>

892 Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. *Psychonomic Bulletin and Review*, 11(1), 192–196. <https://doi.org/10.3758/bf03206482>

894 Young, A. I., Nehzati, S. M., Benonisdottir, S., Okbay, A., Jayashankar, H., Lee, C., Cesarini,
895 D., Benjamin, D. J., Turley, P., & Kong, A. (2022). Mendelian imputation of parental
896 genotypes improves estimates of direct genetic effects. *Nature Genetics*, 54(6), 897–
897 905. <https://doi.org/10.1038/s41588-022-01085-0>

898 Zell, E., & Lesick, T. L. (2022). Big five personality traits and performance: A quantitative
899 synthesis of 50+ meta-analyses. *Journal of Personality*, 90(4), 559–573. <https://doi.org/10.1111/jopy.12683>

900