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) Abstract

2 We applied structural equation modeling to conduct a genome-wide association study (GWAS)
s of the general factor measured by a neuroticism questionnaire administered to ~380,000 partic-
s+ ipants in the UK Biobank. We categorized significant genetic variants as acting either through
s the neuroticism general factor, through other factors measured by the questionnaire, or through
s paths independent of any factor. Regardless of this categorization, however, significant vari-
7 ants tended to show concordant associations with all items. Bioinformatic analysis showed that
s the variants associated with the neuroticism general factor disproportionately lie near or within
s genes expressed in the brain. Enriched gene sets pointed to an underlying biological basis as-
10 sociated with brain development, synaptic function, and behaviors in mice indicative of fear
11 and anxiety. Psychologists have long asked whether psychometric common factors are merely
12 a convenient summary of correlated variables or reflect coherent causal entities with a partial
13 biological basis, and our results provide some support for the latter interpretation. Further re-
12 search is needed to determine the extent to which causes resembling common factors operate

15 alongside other mechanisms to generate the correlational structure of personality.
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» 1 Introduction

24 The biological underpinnings of personality are far from being understood. Genome-wide asso-
25 ciation studies (GWAS) can provide insight into personality’s biological etiology by indicating
26 which genomic polymorphisms are significantly associated with a trait of interest. Most GWAS
27 focus on single-nucleotide polymorphisms (SNPs), the most common type of genetic varia-
28 tion. SNPs reaching statistical significance in GWAS often lie near protein-coding genes and
29 non-coding functional regions. As many functions of genes and their tissue-specific patterns
s of expression have been experimentally elucidated or computationally predicted, researchers
31 can then infer the biological processes that are likely to be responsible for variation in the trait.
32 Unfortunately, GWAS of personality traits often lack sample sizes large enough to detect many
33 significant loci (e.g., Lo et al., 2017).

34 Studies focusing on neuroticism typically have been more successful (de Moor et al., 2015;
s Luciano et al., 2018; Nagel et al., 2018a; Okbay et al., 2016a; Smith et al., 2016). Neuroticism
s 1S one of the factors in the Big Five model of personality. Individuals who score highly in neu-
37 roticism tend to experience diverse and relatively more intense negative emotions. The largest
s  GWAS meta-analysis of neuroticism to date found 136 significant independent loci (Nagel et
s al., 2018a). Neuroticism was measured using the Eysenck Personality Questionnaire—Revised
s Short Form (EPQ) (Eysenck et al., 1985). In the present study, we further investigated the ge-
41 netics and biology of neuroticism using the summary statistics of a companion study analyzing
22 the individual items in the questionnaire (Nagel et al., 2018b).

43 We also examined whether the significant SNPs act in accordance with the common-factor
s model, which is an important tool in the psychology of individual differences. McDonald (2003)
45 suggested that a common factor might be regarded as a mental property with a non-physicalist

s interpretation, which nevertheless can be acted upon by physical causes: “the external variable
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47 causes the common factor of the dependent variables, that is, acts to change the level of the
a8 psychological attribute common to them” (p. 221). Others have proposed that a common-factor
s model is merely a convenient summary of otherwise formidably high-dimensional data rather
so than a representation or approximation of a causal model (Cramer et al., 2012). Genetics now
st provides us with an unprecedented opportunity to test these ideas. If we could find candidate
s2 causal variables, such as SNPs in the human genome, that exert effects on the questionnaire
ss items proportional to their factor loadings, then we would have powerful evidence that the
s« common factor does indeed mediate biological causes and therefore cannot be dismissed as an
ss artifact. That is, if the loadings of certain dependent variables on their common factor were A,
s6 Ao, and so forth, then a SNP with effects on those variables of S\;, 5)\,, and so forth would
s7 strongly suggest that the SNP has on effect of 5 on something very much like the common
ss factor.

59 Conversely, if the effects of the SNPs failed to accord with the factor loadings, this would
s suggest looking toward proposals such as “bonds” (Thomson, 1951) or network models (Cramer
st et al., 2012) for a superior causal model explaining the item covariation. Either way, identifi-
&2 cation of the biological mechanisms mediating the effects of the SNPs can provide insight into
e3 the nature of the higher-level objects in the hierarchy of explanation—whether those objects are
s« common factors, “bonds,” networks, or something else entirely. A number of authors have pre-
es viously tested a similar idea with general intelligence (g) (Cox et al., 2019; Kievit et al., 2012;
e Lee etal., 2019). Their results were consistent with brain size being one of multiple factors that
e7 affect a unitary g.

68 In this work we do not claim to resolve this issue conclusively. We claim merely that if we
e do find SNPs associated with all indicators to a degree corresponding roughly with their factor
70 loadings, then we have evidence that common biological causes are one kind of mechanism

71 contributing to the covariation “accounted for” by the common-factor model.


https://doi.org/10.1101/2023.03.08.531776
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.08.531776; this version posted September 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

72 To conduct this analysis of the common factor neuroticism, we turned to Genomic SEM, a
73 software tool for applying factor and path models to genetic data (Grotzinger et al., 2019). We
74 classified the GWAS-identified SNPs as working either through the general factor, the group
75 factors that happen to be present in this questionnaire, or none of the above (i.e., through “in-
76 dependent pathways”). It is the SNPs in the latter category that might call into question the
77 appropriateness of the common-factor model at a deeper biological level. We then used the
78 bioinformatic software tool DEPICT (Pers et al., 2015) in an attempt to identify the tissues
7o and biological mechanisms mediating the effects of the SNPs in these categories. In this way
so we not only tested the verisimilitude of the common-factor model at the genetic level, but also
st obtained mechanistic insight into the nature of the neuroticism factor. Eysenck (1992) in partic-
&2 ular stressed the importance of grounding the constructs of personality models genetically and

g3 biologically in order to further their validity.

« 2 Methods

s 2.1 Confirmatory factor analysis

ss  We used the software tool Genomic SEM (Grotzinger et al., 2019) to calculate the genetic
&7 covariance matrix of the neuroticism items in the Eysenck Personality Questionnaire—Revised
ss  Short Form, as administered to about 380,000 UK Biobank participants (Nagel et al., 2018b).
ss The “genetic correlation” between two traits is the correlation between their heritable compo-
90 nents. That is, if each trait is the sum of a genetic and environmental term, then the genetic
o1 correlation is the correlation between just the genetic terms. Genetic correlations tend to be
92 close to their corresponding phenotypic correlations (Sodini et al., 2018), being slightly larger
o3 on average, and so should yield a similar factor-analytic solution (e.g., de la Fuente et al.,
94 2021). To calculate the genetic correlation between two binary traits, estimates of the popula-

95 tion prevalences (pass rates) are required. We used the estimates previously published (Nagel
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o et al.,, 2018b). Note that the genetic correlations are calculated over essentially all “common
o7 SNPs”—polymorphic sites where both alleles exceed a threshold frequency—regardless of sta-
s tistical significance.

99 We adopted the three-factor model of the neuroticism questionnaire used in the original
100 Genomic SEM publication by Grotzinger et al. (2019). In this model the items mood, misery,
w1 irritable, fed-up, and lonely are indicators of a factor that we will call depressed affect, after the
102 largely similar group of items identified by hierarchical cluster analysis (Nagel et al., 2018b).
13 The items nervous, worry, tense, and nerves are indicators of a factor that we will call worry,
104 also after a similar cluster identified in the previous analysis. The group factors depressed affect
105 and worry do not readily map onto aspects in the BFAS (DeYoung et al., 2007), but do arguably
106 map onto the respective facets depression and anxiety in the NEO (Costa & McCrae, 1992).
17 The items guilt, hurt, and embarrass are indicators of a third factor that we will call vulner-
s ability, after the largely similar group of items identified by exploratory factor analysis (Hill
100 et al., 2020). We introduced a neuroticism general factor into this model by treating the three
110 group factors as indicators of a hierarchical second-order factor. Unit-variance identification
111 was employed.

112 There is some evidence that participants in the UK Biobank tend to be slightly less neurotic
113 than the rest of the population (Tyrrell et al., 2021; Young et al., 2022). Such selection bias can
11 distort the factor structure of the measurements (Lee, 2012; Meredith, 1993). Our conjecture
115 1s that psychological traits most affecting participation in research are those related to educa-
116 tion and social class, and neuroticism does not seem strongly related to such status markers
17 (Demange et al., 2021; Mammadov, 2022; Poropat, 2009; Zell & Lesick, 2022). When the
118 association between personality and research participation has been directly studied, no signif-
119 icant correlations with neuroticism have been observed (Cheng et al., 2020; Marcus & Schiitz,

120 2005). Therefore we expect any impact of selection bias on our results to be modest.
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21 2.2 Path modeling of SNP effects
122 2.2.1 GWAS of the neuroticism general factor

123 We performed a GWAS of the neuroticism general factor by specifying, in Genomic SEM, a
124 path from the tested SNP to the second-order general factor (Fig. IA). Any confounding with
125 non-genetic variables is likely to be minimal because within-family GWAS of the neuroticism
126 sum score have produced results very close to those of population GWAS (Howe et al., 2022;
127 Young et al., 2022). We used the reference file supplied by Genomic SEM to retain only SNPs
128 with a minor allele frequency (MAF) exceeding .005 in the 1000 Genomes European popula-
120 tions. This left more than 7 million SNPs in the GWAS. Additional methodological details of
130 both the original item-level GWAS and our GWAS at the latent level with Genomic SEM are
131 given in the Supplementary Material.

132 Because they are often highly correlated, nearby SNPs may not not represent independent
133 association signals. We attempted to identify independently significant SNPs by using the
13a “clump” function of the software tool PLINK (Chang et al., 2015; Purcell et al., 2007). In
135 essence, clumping picks out local minima of the p-value sequence along the genome. We used
136 the clump settings of the bioinformatics tool DEPICT (Pers et al., 2015), which calls PLINK
137 to identify lead SNPs. The most important of these settings is the threshold p < 10~° for the
138 statistical significance of the association between SNP and trait. Although less stringent than
130 the conventional GWAS significance threshold p < 5 x 1078, this threshold is recommended by
120 the DEPICT developers because the biological annotation provided by their tool (see below) is
141 tolerant of false-positive SNPs.

142 Note that the conventional GWAS threshold aspires to prevent even a single false positive
113 from appearing among the SNPs significantly associated with a single trait. Although there may
s be at least one false positive among the SNPs in the range 107> > p > 5 x 10~%, many of these

145 SNPs will be true positives in a well-powered GWAS with many SNPs reaching p < 5 x 1078,
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Figure 1: Path diagrams portraying how a single-nucleotide polymorphism (SNP) might be
associated with the questionnaire items. A. The focal SNP (or a nearby highly correlated SNP)
acts through the neuroticism general factor. B. The focal SNP (or a nearby highly correlated
SNP) acts on the 12 items through “independent pathways.” Not shown is a model where the
SNP’s associations are with one or more of the three group factors.
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146 We subjected the candidate lead SNPs from the GWAS of the neuroticism general factor to
17 further tests. We ran a “group-factor” model in which the three first-order group factors were
14s regressed on each of the candidate lead SNPs. This model thus requires three path coefficients
129 in the place of the one required by the general-factor model. The general-factor model is nested
150 within the group-factor model, the former being obtained from the latter by making the three
151 SNP effects proportional to the loadings of the group factors on the general factor. We then ran
152 an “independent-pathway” model regressing all 12 items on each candidate lead SNP (Fig. 1B).
153 The independent-pathway model thus estimates 12 path coefficients in the place of the three
1sa required by the group-factor model; the latter is nested within the former.

155 The independent-pathway model is an operationalization of not only Thomson’s bonds
156 model, but also the network model (Cramer et al., 2012); our Fig. 1 contrasting the common-
157 factor and independent-pathway models is exactly parallel to Figure 7 of Cramer et al. (2012).
15 These authors proposed that support for the independent-pathway model over the common-
159 factor model would count as support for their network perspective. Taking the most significant
160 SNPs in the GWAS of neuroticism sum scores published at that time, they carried out an anal-
161 ysis similar to ours and claimed to find some evidence for the SNPs acting on individual items
12 rather than the general factor. The only SNP-item association of theirs that we could attempt to
16a  look up and replicate was the one between rs12509930 and guilt. In the UK Biobank sample
16« Of roughly 380,000 individuals, this association is not significant (p = .70). We should not be
15 surprised by this replication failure, in light of the small sample sizes of the GWAS at that time,
1es and the authors themselves avowed the tentative and exploratory nature of their analysis. The
167 important point is that we can now carry out their proposal of pitting the common-factor and
1es  network models against each other to a much greater extent than was possible a decade ago.

169 To determine whether a candidate lead SNP identified in the GWAS of the neuroticism

170 general factor is better regarded as acting through factors or independent pathways, one can
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171 test the significance of the difference in y? between more and less parsimonious models. The
172 Genomic SEM developers call this difference Qsnp (Genomic SEM tutorial, accessed October
172 2020). In one of their analyses, Grotzinger et al. (2019) used the threshold p > .005 for calling
172 a Qsnp value “low.” Following the suggestion of a reviewer, however, we carried out model
175 selection using Akaike weights (Wagenmakers & Farrell, 2004). The sum of the weights equals
176 one by construction, making them analogous to probabilities. The ratio of two weights can
177 be interpreted as the relative likelihood of the model corresponding to the numerator (Royall,
176 1997) times a factor penalizing that model if it has more estimated parameters. Such a penalty
179 may be desirable if a sufficient increase in sample size will lead to the rejection of any simple
180 model regardless of its qualitatively excellent fit. We treated any model with an Akaike weight
181 exceeding 2/3 as the “correct” model for a given SNP, as this means at least twice as much
1.2 support as any alternative. It is possible for no model to obtain this large a weight, meaning that
1ea  the SNP’s associations with the items are not clearly fit best by any of the candidate models.

184 Since calculating the model x? and AIC increased the computation time of a SNP associa-
15 tion by roughly a factor of 10 in the version of Genomic SEM that we used (October 2020), we
186 did not calculate these for all SNPs in the GWAS but rather only the lead SNPs, once for each of
157 the three candidate models (general factor, group factor, independent pathway). Supplementary
188 Fig. S1 provides an overview of our pipeline for the GWAS of the neuroticism general factor

180 and subsequent classification of lead SNPs.
10 2.2.2 GWAS of additional factors

191 We also conducted GWAS of each group factor with nontrivial variance attributable to sources
192 other than the neuroticism general factor (i.e., depressed affect and worry). The first step of
193 our procedure was to conduct a GWAS with Genomic SEM, specifying directed edges from the

1e4  SNP to all three group factors. We then examined each factor’s association results satisfying

10
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15 p < 107°. Of the lead SNPs identified by the clumping procedure, we discarded any already
196 assigned to either the general-factor or independent-pathway model in the GWAS of the neu-
197 roticism general factor (Supplementary Fig. S1). Since we were particularly interested in SNPs
198 associated solely with the focal group factor, we tested each remaining lead SNP for association
199 with that factor while setting to zero the coefficients of its paths to the other two factors. We
200 also ran the independent-pathway model for each of these lead SNPs (Fig. 1B). As before, we
201 used an Akaike weight exceeding 2/3 as the criterion for assigning a lead SNP to one of three
202 competing models (all group factors, one group factor, independent pathways). Supplementary
203 Fig. S2 provides an overview of our pipeline for the GWAS of the group factors and subsequent
204 classification of lead SNPs.

205 To convey the difference between this GWAS and the one outlined in Supplementary Fig. S1,
206 we will give an example of a SNP that would be ascertained as significant in the former but not
207 1in the latter. Suppose that a SNP acts solely through the residual of a group factor. This SNP
208 might be ascertained in the GWAS of the group factors, through a combination of a relatively
200 large effect size and favorable sampling variation. It might not be ascertained in the GWAS of
210 the general factor, despite this GWAS containing a follow-up step checking for association with
211 the group factors, because it is less likely to become a lead SNP in the first step. This difference
212 in the ascertainment scheme can be important for certain inferences, a matter to which we return
213 1n the Discussion.

214 It is worthwhile to consider whether independent-pathway SNPs enrich any tissues or bio-
215 logical pathways (see below), despite not acting through any common factors. To identify such
216 SNPs, Grotzinger et al. (2019) conducted two GWAS, one of neuroticism in their single-factor
217 model and the other of independent pathways, and calculated a form of the Qsnp statistic for
218 each SNP in the GWAS. At the time of our own analysis, this procedure was beyond the com-

219 putational resources available to us. As a compromise, we took forward to DEPICT the union

11
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220 Of the lead SNPs from the GWAS of the common factors that qualified by virtue of their Akaike

221 weights for the independent-pathway model.

2 2.3 (Genetic correlations

223 Genomic SEM calls LD Score regression (LDSC) to calculate genetic correlations, and this
224 method is known to be unbiased under fairly general conditions (Bulik-Sullivan et al., 2015;
25 Lee etal., 2018a).

226 A finding of genetic correlations similar to those calculated in previous studies of neuroti-
227 cism observed scores would provide an affirmative quality-control check of our approach based
228 on structural equation modeling. It would also support the validity of the common assumption
229 that a correlation with an observed sum score primarily reflects a correlation with the scale’s
230 general factor. The Supplementary Material lists the traits used in this analysis and accompa-
231 nying references.

232 We also calculated genetic correlations with the residuals of the group factors depressed af-
233 fect and worry. Procedurally we used Genomic SEM to specify the bifactor model generalizing
234 the hierarchical model displayed in Fig. 1 and then performed a GWAS of the group factors
235 within the bifactor model. Supplementary Fig. S3 displays the factor and path model that we
235 employed for this purpose. We used the resulting GWAS summary statistics to calculate the
237 genetic correlations with depressed affect and worry.

238 Supplementary Fig. S4 and Supplementary Table S1 present the results.

20 2.4 Polygenic prediction

240 At the request of a reviewer, we used the summary statistics from our GWAS of the common
241 factors to calculate polygenic scores (PGS) and validate them in a new sample. Methodologi-

22 cal details are given in the Supplementary Material, and Supplementary Table S2 presents the

12
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243 results.

2 2.5 Biological annotation
25 2.5.1 DEPICT

26 DEPICT (Data-driven Expression Prioritized Integration for Complex Traits) is a software tool
247 that prioritizes likely causal genes affecting the trait, identifies tissues/cell types where the
248 causal genes are highly expressed, and detects enrichment of gene sets. A ‘“gene set” is a
249 group of genes designated by database curators as sharing some common property, such as en-
250 coding proteins that participate in the same biological function. A gene set shows “enrichment”
251 if SNPs significantly associated with the trait fall in or near the set’s member genes more often
252 than expected by chance. More complete descriptions of DEPICT can be found in previous
253 publications (Okbay et al., 2016b; Pers et al., 2015).

254 Our path modeling with Genomic SEM placed each lead SNP into a collection (e.g., SNPs
255 associated with the neuroticism general factor). Each such collection of SNPs was supplied as
256 input to DEPICT (https://github.com/perslab/DEPICT, release 194). DEPICT takes lead SNPs
257 and merges them into loci potentially encompassing more than one lead SNP according to
258 certain criteria (Pers et al., 2015). The genes overlapping these loci are the basis of the DEPICT
259 analysis. The limitation of the DEPICT input to a subset of SNPs is an important strength in
260 our application. A method that relies on genome-wide summary statistics is not straightforward
261 to adapt if some SNPs in a GWAS of a common factor must be dropped for better fitting a more
262 complex model (Fig. 1).

263 To run DEPICT, we edited and then executed the template configuration file. We left in place
264 all default parameter values except those affecting how the results are printed in the output files.
265 We also used a collections file of the genes overlapping the locus around a given SNP based

266 on 1000 Genomes phase 3 rather than 1000 Genomes pilot data; this file was given to us by

13
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267 the DEPICT developers and is available along with the GWAS summary statistics generated for
268 this study. Many tissues/cell types and gene sets in the DEPICT inventory are in fact duplicates
269 despite having different identifiers; we adopted the pruned list of tissues/cell types used by
270 Finucane et al. (2018) and excluded duplicated gene sets using the criteria set out by Lee et al.
2 (2018b). Except where noted, we adopted the developer-recommended definition of statistical
272 significance at the level of genes, tissues/cell types, and gene sets as a false discovery rate (FDR)
273 below .05.

274 The reconstitution of the gene sets was motivated by a desire to compensate for the lim-
275 itations of existing bioinformatic databases, which suffer from both false positives and false
276 negatives. The reader can consult Supplementary Table 28 of Lee et al. (2018b) for a demon-
277 stration of the reconstitution procedure’s success in empowering detection of enrichment only
278 in sets appropriate to the studied trait. The reconstitution procedure has also proven fruitful in

279 other applications (Cvejic et al., 2013; Fehrmann et al., 2015).
250 2.5.2 Stratified LD Score regression and PANTHER overrepresentation test

281 At the request of a reviewer, we have calculated effect sizes in terms of fold enrichment to
252 accompany the displays of statistically significant results in Figure 2 and Table 2. We used
283 two different tools for this purpose. The first was stratified LD Score regression (S-LDSC),
28« a standard method for testing enrichment of discrete gene sets (Finucane et al., 2015). The
285 enrichment statistic calculated by S-LDSC is

fraction of heritability contributed by SNPs mapped to the gene set

fraction of all SNPs mapped to the gene set
286 “‘Gene set” here can equally well mean a group of genes that are highly expressed in a given
257 tissue/cell type. We employed the Finucane et al. (2018) procedure of taking the top 10 percent
233 of genes in the DEPICT inventory belonging to a given gene set, mapping all SNPs lying within

289 100 kb of a member gene to that set, and using the so-called baseline annotations and an any-
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200 gene indicator as control variables. We used the 97 baseline annotations currently recommended
201 by the developers (downloaded August 2023 from https://storage.googleapis.com/broad-alkesgroup-
202 public-requester-pays/LDSCORE). We also used the precomputed stratified LD Scores for the
203 DEPICT tissues/cell types supplied by the developers (“Franke dataset”). The developers state
204 that they provide a gene-coordinate file so that users can calculate their own stratified LD Scores
205 for novel gene sets (LD Score estimation tutorial, accessed August 2023), but this file seems not
206 to have been transferred to their Google Cloud depository. To calculate stratified LD Scores for
207 the reconstituted gene sets found to be significantly enriched in the standard DEPICT analysis,
208 we used instead the latest version of the GENCODE coordinate file (downloaded August 2023),
299 taking the row in this file assuming the value of gene in the feature column as providing the
s0 canonical start and stop coordinates of a given Ensembl identifier. The standard 1-centimorgan
a1 radius was used to calculate the stratified LD Scores.

302 We tested the null hypothesis that the enrichment is equal to one. Previous experience with
a3 this method suggests that a 1.3-fold enrichment of a gene set should be regarded as a large effect
so4 size (Finucane et al., 2018; Kim et al., 2019; Lee et al., 2018b), although smaller non-null sets
ss and sets specifically constructed to contain genes under strong purifying selection may yield
s higher values.

307 Our second method for calculating fold enrichments was the PANTHER overrepresentation
ss test, which has been implemented as a web-based tool (http:www.geneontology.org). The input
a9 to this method is a discrete list of genes supplied by the user. To increase statistical power, we
a0 used the Ensembl identifiers of all DEPICT-prioritized genes satisfying FDR < .20 as input.
a1 Standard FDR calculations assume that the alternative hypothesis is true in only a small pro-
a2 portion of cases, and a violation of this assumption leads to the FDR being conservative (Efron,
a3 2010). As there is almost certainly a causal gene near most lead SNPs, many genes falling in

a4 the interval .05 < FDR < .20 are likely to be true positives. We used all default settings for
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a5 analyses launched from the front page of the Gene Ontology website.
316 The null hypothesis in the PANTHER overrepresentation test is that the input gene list is a

sz random sample of all genes in the reference gene list. The enrichment statistic is thus

observed # of gene-set members in the input list

expected # of gene-set members in the input list -

318 The PANTHER overrepresentation test has properties that complement those of S-LDSC.
a9 It is based on the discrete version of the gene set rather than the reconstituted version and thus
a0 provides a way to check the robustness of the latter. (The PANTHER database does not include
321 the Mammalian Phenotype gene sets from the Mouse Genomics Institute.) Furthermore, it is
a2 arguably testing a hypothesis that is closer to the one being tested by the standard DEPICT
a3 analysis. In the latter approach, we are asking whether the lead SNPs at the current stage of a
a2« GWAS fall disproportionately within or near high-ranking members of a given gene set. The
a5 answer to this question may change as the GWAS increases in sample size and begins to add
a6 different types of SNPs. In contrast, S-LDSC is calculating a measure of enrichment that applies
327 to the whole genome rather than a subset of SNPs. In theory, the S-LDSC enrichment statistic
a8 does not change as the GWAS progresses, although the standard error of its estimate hopefully
a0 grows smaller. The PANTHER overrepresentation test is closer in spirit to the standard DEPICT

a0 approach in that it focuses on genes that happen to encompass or lie near the current lead SNPs.

= 3 Results

2 3.1 Factor analysis of the neuroticism questionnaire

a3 We replicated the indices reported by Grotzinger et al. (2019) indicating a good fit of a model
s« with three group factors (CFI = .969, SRMR = .054). We therefore regarded the three-factor
a5 model as satisfactory for purposes of SNP-level path modeling. The loading of the vulnera-

ase  bility group factor defined by guilt, hurt, and embarrass on the neuroticism general factor was
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a7 estimated to be nearly one (.97) (Supplementary Table S3). These items seem to have very
s little genetic variance shared in common other than what is attributable to neuroticism. For this
a9 reason we did not conduct a GWAS of this factor when trying to identify SNPs associated with
a0 group factors. Although our result here may seem to diverge from that of Hill et al. (2020), their
a1 bifactor model allowed correlations between group factors and thus qualitatively differed from
a2 our hierarchical model. As discussed in the Supplementary Material, we did by and large repli-
a3 cate the Hill et al. (2020) finding of markedly different genetic correlations of the neuroticism

a4 general factor and the residual worry factor with certain traits (Supplementary Fig. S4).

ss 3.2  GWAS of the neuroticism general factor

s Before examining the main results and downstream analyses of a GWAS, it is reasonable to
a7 assess the overall amount of signal present in its summary statistics. The product of the sample
as  size and the heritability (e.g., as estimated by LD Score regression) is normally a good metric
a9 for this purpose, but it is inapplicable to a GWAS of a latent trait conducted with Genomic SEM
30 because neither factor in this product is well defined (Mallard et al., 2022). We followed the
1 recommendation of the Genomic SEM developers to use the mean y? statistic instead (Sup-
2 plementary Table S4). The mean 2 of our neuroticism GWAS was 1.63—very close to those
a3 of past groundbreaking GWAS of behavioral traits (Okbay et al., 2016b; Pers et al., 2016;
ss4  Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Our GWAS
355 summary statistics seem to contain sufficient signal for meaningful downstream analyses. Note
ss6  that an undefined heritability is not a problem in the use of LDSC to obtain genetic correlations
357 and functional enrichments because of cancellations from numerator and denominator in the
sss  calculations of those quantities.

359 Our GWAS of the neuroticism general factor identified 394 lead SNPs satisfying p < 1072,

s0 1n 296 distinct DEPICT-defined loci. We examined these SNPs for an improvement in model fit
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st upon increasing the number of paths. Thirty-five of the 394 SNPs were characterized by small
sz negative values of the QJsnp statistic when comparing the fit of the model where the SNP acts on
sss the general factor (Fig. 1A) to that of the model where the SNP acts on the three group factors.
ss¢ Such negative values can arise when the two models under comparison are distinguished by few
ss degrees of freedom, and they indicate an extremely good fit of the data to the more restrictive
sss model (A. Grotzinger, personal communication). Of the 394 lead SNPs, 139 qualified by virtue
s7 of their Akaike weights for the general-factor model, 81 for the group-factor model, and 63 for
ss  the independent-pathway model. One hundred eleven SNPs had no Akaike weight greater than
w9 2/3, precluding for now their assignment to any model. Of these 111 indeterminate SNPs, a
s plurality of 54 attained their largest Akaike weight in the general-factor model.

a7t Supplementary Table S5 lists the 139 general-factor lead SNPs. Nineteen of these SNPs
s2  attained the strict genome-wide significance level p < 5 x 1078 (Table 1). Of these 19 SNPs, 17
a3 reached strict genome-wide significance in the largest GWAS to date of an observed neuroticism
a4 score (Nagel et al., 2018a). Information about all significant SNPs regardless of classification
a5 can be found in the Supplementary Data.

376 The most significant general-factor SNP was rs11090045 (p = 4.0 x 107'?). Its locus on
a7 chromosome 22 is a very gene-dense region, overlapping ZC3H7B (FDR < .05), TEF (FDR <
ars .20), TOB2 (FDR < .20), CSDC2 (FDR < .20), EP300 (FDR < .20), PMMI, RANGAPI,
sns XRCC6, CHADL, ACO2, L3MBTL2, PPDE2, PHF5A, and POLR3H. Although rs11090045
aso itself is located in the 3’ untranslated region of ZC3H7B, the unusual number of candidates for
ss1  causal genes in this locus may possibly be explained by the hypothesis of rs11090045 being a
a2 correlated proxy for multiple causal SNPs collectively acting through more than one gene.

383 It is of interest to examine how the cutoffs defined by Akaike weights correspond to Qsnp
ss« statistics. Upon treating any SNP with a negative Qsnp statistic as having a p value of one, we

sss found that the 139 SNPs assigned by their Akaike weights to the general-factor model were all
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Table 1: Strictly genome-wide significant SNPs in the GWAS of the neuroticism general
factor with Akaike weight > 2/3 for the model in Fig. 1 A.

SNP Coordinates MAF A; A, £ p value Genes
rs631416 1:37164909 22 T C —.0062 1.8x10™Y CSF3R
rs4396680  2:10178236 A8 A G 0057 3.5x10°% KLFII, CYSI
rs59491086 2:157132879 21 A G 0065 3.9 x 1071 NR4A2
rs10497655 2:185462041 32 T C 0052 9.7x107° ZNF804A
rs75701938 3:107172033 A1 A C 0081 1.0 x 107

rs56324019 5:87752141 A5 € T 0061 3.8x10% TMEMIG6IB
rs198800 6:26139933 48 C T —.0047 25x10°8

rs2503775  6:98521600 A2 A G 0074 3.1 x107°

rs1731951  7:137075847 45 T A 0047 4.9x10"® DGKI
rs2407746  8:4937757 29 C G —.0060 6.5x107Y CSMDI
rs75614054 9:98275789 J0 C T —.0107 1.3x107'* PTCHI
rs860626 10:119301703 31 T G 0052 2.3x107% EMX2
rs7338774  13:69344134 30 A G —.0050 2.4 x10® ELL2P3
rs8039690  15:78136541 30 A G —.0053 1.5x10"% LINGOI
rs3785237  16:7667131 49 G C —-.0056 28x10"' RBFOXI
rs56084168 17:79084574 14 C T 0082 6.9 x 10712 BAIAP2, AATK
rs10460051 18:31413679 48 C T —.0051 19x107 ASXL3
rs11875397 18:39319278 A9 T A 0060 2.1 x10°% PIK3C3
rs11090045 22:41753603 31 G A —.0068 4.0x107'% See text

Coordinates, chromosome and base-pair position of the SNP according to GRCh37; MAF,
minor allele frequency; A;, As, the two alleles segregating at the SNP; 3, the regression
coefficient of allele A;. The Supplementary Material explains the scaling of 5. The last
column gives all protein-coding genes in the DEPICT inventory overlapping the locus
centered on the lead SNP. The genes in bold were significantly prioritized by DEPICT at

the threshold FDR < .20.
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sss characterized by p > .28 (median p = .68) with respect to the null hypothesis of the general-
sz factor model fitting better than the group-factor model. If we take the p < .05 criterion as
sss  standard, then our use of Akaike weights to define general-factor SNPs seems conservative.
as9 In contrast, for the 63 SNPs qualifying for the independent-pathway model, the QQsnp p values
a0 with respect to the null hypothesis of the group-factor model fitting better than the independent-

s91  pathway model all met p < .02 (median p = .001).

2 3.3 Significant tissues/cell types and gene sets

sss  The output of DEPICT provides insight into the biology associated with the SNPs appearing to
se4 act through the neuroticism general factor. Fig. 2 shows that there were 7 statistically significant
aes  tissues/cell types. All of these without exception bore the MeSH second-level term central
s nervous system. The most significant result was entorhinal cortex (p = 1.4 x 10~*). The
se7 entorhinal cortex is a way station connecting the neocortex, the hippocampus, and the amygdala,
s passing along signals critical for memory formation, navigation, and the perception of time
a9 (Maass et al., 2015; Tsao et al., 2018). The second most significant result was limbic system
wo (p = 1.7 x 10~%), which refers to a collection of structures immediately below the medial
a0t temporal lobe that includes the entorhinal cortex and hippocampus. Overall, the neuroticism
a2 general factor showed the clear signature of a behavioral trait mediated by the brain.

403 More revealing than these tissue-level results were the significantly enriched gene sets.
a4 There were 21 such sets, and Table 2 shows the 6 of these that are not protein-protein inter-
ws action (PPI) subnetworks. Abnormal cued conditioning behavior (p = 6 x 107°), increased
ws anxiety-related response (p = 8.9 x 107°), and decreased exploration in new environment
w (p = 9.1 x 1079) are all taken from the Mouse Genome Informatics database and defined by

a8 fearful and anxious behavior when their member genes are perturbed in mice.
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Figure 2: Tissues or cell types with significant expression of genes near SNPs associated with
the neuroticism general factor (relative to genes in random sets of loci). The tissues are arranged
along the z-axis by Medical Subject Heading (MeSH) first-level term. The y-axis represents
statistical significance on a — log, scale. The height of the dashed horizontal line corresponds
to the p value yielding FDR < .05. See Supplementary Table S6 for complete results.
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Table 2: Reconstituted gene sets significantly enriched by lead SNPs for the neuroticism gen-
eral factor.

Gene set Description

Site of polarized growth Any part of a cell where anisotropic growth oc-
curs.

Growth cone The migrating tip of a growing neuron projec-
tion.

Abnormal cued conditioning behavior = Anomaly in the ability of an animal to learn as-
sociations between aversive and neutral stimuli.

Impaired coordination Reduced ability to execute integrated move-
ments.

Abnormal neuron physiology Any functional anomaly of the cells that re-
ceive, conduct, and transmit nervous impulses.

Increased anxiety-related response Animals exhibit more responses thought to be

indicative of anxiety in behavioral tests.
Decreased exploration in new environ- Animals spend less time investigating a new lo-
ment cation.

Non-PPI reconstituted gene sets satisfying FDR < .05. See Supplementary Table S7 for
all significant results of the DEPICT gene-set analysis and Supplementary Table S8 for the
specific genes in the DEPICT-defined loci. The descriptions of the gene sets are adapted
from Gene Ontology and Mouse Genome Informatics (accessed December 2020). Gene
sets in bold also satisfy FDR < .05 for enrichment by lead SNPs categorized as acting
through independent pathways.
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o 3.4 GWAS of the group factors

40 We now report our attempts to find SNPs associated with the group factor depressed affect.
a1 Recall that we conducted a GWAS with Genomic SEM, based on a model sending directed
sz edges from the SNP to all three group factors. After discarding SNPs identified as general-factor
a3 or independent-pathway SNPs in previous analyses, we ended up with 317 lead SNPs. Of these
ms 317, 53 reached the strict genome-wide significance threshold p < 5 x 10~°. Interestingly,
s15 only 7 of the 317 lead SNPs were selected by the criterion of an Akaike weight greater than
s6 2/3 as having no associations with the other two group factors, and none of these 7 reached the
s7  stringent genome-wide significance threshold p < 5 x 1078, In contrast, 184 SNPs qualified by
s18 virtue of their Akaike weights for the group-factor model (nonzero effects on all three factors),
419 64 for the independent-pathway model, and 62 for none of the above.

420 The 184 SNPs qualifying for the group-factor model showed highly concordant effects on
21 the three factors. In other words, despite being deemed a poor fit to the general-factor model, a
a2 SNP’s association with one factor was highly predictive of its associations with the two others.
s23 The sign concordance between SNP effects on depressed affect and worry was 100 percent.
s2¢ Each sign concordance between a major group factor and the vulnerability factor (with little
425 non-neuroticism genetic variance) was 183/184.

426 After running the analogous procedure, we identified 286 lead SNPs associated with worry.
w27 Of these 286, 14 reached p < 5 x 1078, Only 4 of the 286 lead SNPs were associated solely
28 with the residual group factor of worry, none of which attained p < 5 x 1078, Of the remaining
229 SNPs, 184 qualified by virtue of their Akaike weights for the group-factor model, 54 for the
a0 independent-pathway model, and 43 for none of the above. The sign concordances were again
s31 either 100 percent or short of perfect by one SNP.

432 Supplementary Table S9 lists the 11 total SNPs associated with the residual group factors.

s Such a small number of lead SNPs, particularly when few reach strict genome-wide signifi-
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s34 cance, leads to low statistical power with DEPICT (Turley et al., 2018). Therefore we did not
a3 conduct biological annotation of these 11 SNPs.

436 The Supplementary Data contain information about all of the SNPs used in these analyses.

= 3.5 Independent-pathway SNPs

a3 Our analyses of the common factors assigned a total of 181 lead SNPs to the independent-
a9 pathway model (Supplementary Table S10), and we proceeded to annotate these. The signif-
a0 1cantly enriched tissues/cell types were, as expected, those of the nervous system, including
an limbic system (p = 4.7 x 10~%) and entorhinal cortex (p = 5.5 x 10~*) (Supplementary Ta-
a2 ble S11).

443 There were 27 significantly enriched gene sets (Supplementary Table S12). As indicated
24 1n Table 2, many were shared with the neuroticism general factor (abnormal cued condition-
a5 ing behavior, impaired coordination, decreased exploration in new environment). One of the
«s independent-pathway gene sets, abnormal contextual conditioning behavior, is also defined by
a7 the learning of fear and caution. The Mouse Genome Informatics database describes the rele-
4s  vant phenotype as an “anomaly in the ability of an animal to learn and remember an association
a9 between an aversive experience ...and the neutral, unchanging environment” (accessed March
50 2023).

451 The other significant results pointed to the early development of the brain (e.g., central
a2 mervous system neuron axonogenesis) and synaptic activity in the behaving organism (e.g., glu-
453 tamatergic synaptic transmission).

454 The SNPs were grouped into 112 loci that in turn overlapped 324 genes (Supplementary
ss5s  Table S13). Thirty of these 324 genes were also among the 228 genes overlapping the loci en-
a6 compassing the lead SNPs for the neuroticism general factor. This modest intersection suggests

57 that our inferences of enrichment by these two collections of SNPs were mostly independent.
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458 The similarity of the biology implicated by general-factor and independent-pathway SNPs
ss9  has two possible interpretations. First, the general factor and non-factor influences on the ques-
s0 tionnaire items may tend to act through similar biological mechanisms. Second, as suggested
st by the concordance of effect signs observed in the GWAS of the group factors, it may be that
a2 the general factor is in fact one of several mechanisms affected by an independent-pathway
a3 SNP, the other mechanisms being responsible for the departures from the strict predictions of
a4 the general-factor model (Fig. 1A). To investigate the latter possibility, we calculated sign con-
a5 cordances of the SNP effects on the 12 items. Of the 181 SNPs, 117 showed sign-concordant
w6 effects on all 12 items, 28 showed a deviant sign with respect to only one item, 15 showed
s7 deviant signs with respect to two items, 11 showed deviant signs with respect to three items,
ss and 10 showed deviant signs with respect to four items. The overall impression is that many
a0 Of these SNPs do not depart too radically from the general-factor model, despite a low Akaike
a0 weight for the precise predictions of that model.

art The Supplementary Data contain information about all of the SNPs used in these analyses.

72 3.6 S-LDSC and PANTHER fold enrichment

a3 The apparent rarity of severe model failures among the more significant SNPs associated with
474 the neuroticism general factor lends interpretability to genome-wide estimates of heritability en-
475 richment, as calculated by S-LDSC, where there has been no screening of SNPs for conformity
476 to the general-factor model (Fig. 1A).

477 It is recommended that S-LDSC be used with a standard collection of control variables.
a7s The estimates associated with these variables can be interesting in their own right, and we give
a79  them in Supplementary Table S14. The most statistically significant enrichments were shown
a0 by annotations referring to evolutionary conservation, more recent mutational origin, and lower

st correlations with nearby SNPs. This pattern is typical of traits that have been studied in GWAS
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a2 (Finucane et al., 2015; Gazal et al., 2017). What the pattern means is that mutations affecting
ss3 the neuroticism general factor (and other traits) tend to arise in functional regions of the genome,
ss4 as evidenced by selection to maintain sequence similarity in distinct lineages, and once arisen
a5 tend to be deleterious.

486 Fig. 3 displays the enrichment estimates for the reconstituted gene sets and tissues/cell types.
a7 We first discuss the colored data points representing the tissues/cell types. The top result by
ass  heritability enrichment, as by DEPICT p value, was entorhinal cortex (1.45-fold enrichment,
w9 p = 1071%). Furthermore, 11 of the 13 tissues/cell types clearing 1.3-fold enrichment bore
a0 the MeSH second-level term central nervous system. The two non-CNS tissues/cell types were
a1 neural stem cells (1.31-fold enrichment, p = 1.9 x 107°) and retina (1.31-fold enrichment,
w2 p = 6.4 x 1075). These are not true exceptions. Neural progenitors are reasonably classified as
s93 neural despite differences in gene expression between progenitors and differentiated cells, and
s94 the retina is made up of layers of neurons.

495 Before proceeding further, we point out that the any-gene control annotation typically showed
a9 roughly 1.03-fold enrichment with a standard error of .015, demonstrating that the S-LDSC es-
497 timation procedure is well calibrated.

498 We now turn to the reconstituted gene sets, which are represented by the dark data points at
a0 the far left of Fig. 3. All but abnormal neuron physiology (1.22-fold enrichment, p = 3.3x107°)
so0 exceeded the benchmark effect size of 1.3. In particular, the gene sets defined in one way or
so1 another by fearful and anxious behavior in mice all met the threshold: increased anxiety-related
s2  response (1.41-fold enrichment, p = 4.1 x 10~!), decreased exploration in new environment
s3  (1.36-fold enrichment, p = 10~?), and abnormal cued conditioning behavior (1.35-fold enrich-
so4 ment,p = 3 x 1079).

505 The PANTHER overrepresentation test also supported the results of the standard DEPICT

sos analysis. Supplementary Table S16 shows that both growth cone (14.5-fold enrichment, p =
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Figure 3: Heritability enrichment of reconstituted gene sets and tissues/cell types, as estimated
by stratified LD Score regression (S-LDSC) applied to the GWAS summary statistics of the
neuroticism general factor. The error bars are +1-SE intervals. The height of the dashed hor-
izontal line corresponds to 1.3-fold enrichment, which we consider to be a “large” effect size.
Complete numerical results are given in Supplementary Table S15. GO, Gene Ontology; MP,
Mammalian Phenotype.
so7 2.7 x 107°) and site of polarized growth (14.1-fold enrichment, p = 3.1 x 107°), the two gene
sos sets in Table 2 related to axonogenesis, were among the top Gene Ontology (GO) cellular com-
soo ponents. The theme of axonogenesis was reinforced by many of the significant GO biological
st0  processes (neuron projection morphogenesis, axonogenesis, axon development).
511 Because our pipeline of DEPICT-prioritized genes to PANTHER did not require defining a
stz single effect size for any given SNP, we were able to perform the PANTHER overrepresentation
s13  test on prioritized genes near independent-pathway SNPs. Supplementary Table S17 shows that
514 Mmany gene sets reaching statistical significance for the neuroticism general factor also did so for
s15  independent pathways (e.g., axon guidance, axon development, neuron projection). Many of the
stie  most strongly enriched gene sets for independent pathways were defined by synaptic function:

517 e.g., presynapse assembly (70.9-fold enrichment, p = 9.7 x 10710, synaptic vesicle clustering

si5 (82.7-fold enrichment, p = 4.2 x 10~7), neuron to neuron synapse (7.6-fold enrichment, p =
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si9. 6.9 X 107%), postsynaptic density (7.2-fold enrichment, p = 1.6 x 107%), GABA-ergic synapse
s20 (13.9-fold enrichment, p = 3.8 x 10~°) and glutamatergic synapse (5.2-fold enrichment, p =

521 6.8 X 10_5).

= 4 Discussion

s23  The common-factor model need not be interpreted as a causal account of the correlations be-
s24 tween indicators in order to be scientifically and practically useful (Ashton & Lee, 2005; Mc-
s2s Donald, 1996, 2003). Nevertheless the extent to which factors do approximate underlying
s26 causes is a matter worthy of investigation.

527 Our results suggest that the factor model of the neuroticism domain is not just a convenient
s2s  summary of the correlations between items, but indeed a reasonable approximation to some
529 part of the underlying causal system. For instance, neuroticism does not appear to be explained
ss0 entirely by something like the bonds model (Thomson, 1951), which proposes the existence
ss1 - of many distinct causal elements, no single one of which affects all items in the domain. In
s22. Thomson’s model, items may overlap in what bonds affect them, and a greater overlap produces
ss3  a greater correlation. A resulting positive correlation between each pair of items then gives the
ss¢  appearance of a single causal variable affecting all items when in fact there is no such variable.
sss  Bartholomew et al. (2009) suggested that polymorphic sites in the human genome might turn
s3s out to be the substantiation of the abstract bonds in Thomson’s model, but our results show that
s7 - many SNPs identified in a GWAS of a neuroticism questionnaire are in fact associated with all
sss  items as if mediated by the common factors.

539 Even upon rejecting a simpler model of mediation, we still found evidence for the approxi-
ss0 mate correctness of such a model. SNPs ascertained through a GWAS of the three group factors
ss1  were found to show sign-concordant effects on those factors. In summary, we have genetic evi-

se2  dence supporting the verisimilitude of the neuroticism general factor at a deep biological level.
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se3 This evidence weighs against network theories that deny the existence of broad factors influenc-
se4  1ng many specific traits (Cramer et al., 2012), adding specific neurobiological reasons to other
ss5  statistical and theoretical reasons to reject such models as sufficient explanations of personality
se6  structure (DeYoung & Krueger, 2018).

547 We concede that our study cannot be absolutely definitive on this point. The filtering of
sss SNPs by statistical significance in a GWAS at the latent level may induce an ascertainment bias
se9  that exaggerates the evidence for the approximate validity of the factor model. That is, SNPs
ss0 departing very markedly from concordance of associations with all of the questionnaire items
ss1 - may be less likely to reach the threshold of statistical significance in a GWAS of the common
ss2  factor. An example might be a SNP with positive effects on half of the items and negative effects
ss3  on the other half. Such a SNP might have no net effect on the sum score and presumably would
ss«  not reach significance in a GWAS of the factor, but it would be detected in a sufficiently power-
ss5 ful GWAS of independent pathways. Future research may attend to this issue of ascertainment
ss6  bias more carefully. Again, however, it is telling that most of the SNPs ascertained solely for
ss7  significant association with just one group factor showed evidence of concordant association
sss with the two others as well. Regardless of what we have failed to ascertain, it is clear that there
ss9 are a sizable number of polymorphic sites across the genome that bear a striking resemblance
se0 to causes of the neuroticism general factor.

561 A true GWAS of independent pathways, testing all common SNPs rather than those first
se2 attaining significance in a GWAS of a common factor, is likely to identify roughly as many lead
sss SNPs as a GWAS of the general factor carried out on the same item-level summary statistics.
se« For example, in their specification, Grotzinger et al. (2019) identified 118 lead SNPs for the
ses neuroticism factor and 69 lead SNPs for independent pathways. Such a GWAS is also likely to
ses 1dentify more lead SNPs showing a failure of sign concordance across items. A tally of lead

ss7 SNPs, however, may not suffice to weigh the relative importance of mechanisms. For example,
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ses 1f many independent-pathway lead SNPs are associated with item-specific residuals, then such
se9  SINPs are not in fact contributing to the correlational structure of this personality domain. We
s70 do not propose a suitable comparative metric at the current time, leaving this problem to be
s71 addressed in future research.

572 Previous studies have used multivariate twin modeling to pursue aims similar to our own.
s73 For example, Heath et al. (1989) showed that data from 1,800 pairs of like-sex monozygotic
s7+  twins and 1,103 like-sex dizygotic twins were consistent with some personality scales being
s75  influenced by a general heritable factor. In their study this was true of extraversion and neuroti-
s76  cism, but not the third EPQ trait of psychoticism. This work may have contributed to the decline
s77 1n support for the construct validity of psychoticism, showing the potential impact of genetic
s7s methods on personality theory. Even the fit of genetic correlations to a single factor, however,
s79  does not rule out a network or Thomson-like model. The power of the genomic approach lies
ss0 1N subjecting a factor model to an even more precise and hence riskier quantitative test of how
ss1  directly measurable objects are related to the trait indicators (Meehl, 1978).

582 We applied DEPICT in order to gain some clues to the biological processes mediating the
sss effects of the general-factor SNPs on neuroticism. We found that these SNPs disproportionately
ss« fall within or near genes designated as high-ranking members of gene sets defined by responses
se5 to aversive or novel stimuli (Table 2). This result is remarkably fitting for the personality trait of
sss neuroticism. Such gene sets became significantly enriched in GWAS of other behavioral traits
se7 as their sample sizes grew (e.g., Lee et al., 2018b), but it is perhaps meaningful that they are
sss among the first to become significantly enriched in the GWAS of a trait defined by a tendency
ss9  to experience fear and anxiety. Furthermore, the tendency of these genes to be highly expressed
se0 1n the entorhinal cortex (Fig. 2) is consistent with research and theory linking anxiety and the
sor  mechanisms of anxiolytic drugs to the septo-hippocampal system (Allen & DeYoung, 2017;

se Gray & McNaughton, 2000)—a collection of structures that receive from the medial septal
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nucleus the inhibitory GABAergic input inducing the theta rhythm, a neural oscillation associ-
ated with learning and spatiotemporal encoding in many animals. The main components of the
septo-hippocampal system are the hippocampus itself and the entorhinal cortex (Robinson et al.,
2023). The Cybernetic Big Five Theory (DeYoung, 2015), drawing on Gray and McNaughton

(2000), posits that neuroticism

reflects the joint sensitivity of a behavioral inhibition system (BIS), which responds
to threats in the form of conflicts between goals (e.g., approach-avoidance conflict
or any conflict that generates uncertainty), and a fight-flight-freeze system (FFFS),
which responds to threats without conflict—that is, when the only motivation is
to escape or eliminate the threat. Much is known about the neurobiology of the
BIS and FFES in the brainstem, hypothalamus, and limbic system [a collection of
structures including the hippocampus and entorhinal cortex], which can aid in the
interpretation of existing research on [n]euroticism and inform hypotheses in future

research. (Allen & DeYoung, 2017, p. 331)

By and large, our biological-annotation results were consistent with previous analyses.
For example, they were broadly consistent with those obtained with a different software tool,
MAGMA (de Leeuw et al., 2015), in a GWAS of the questionnaire sum score (Nagel et al.,
2018a). The three independently significant gene sets in this study were neurogenesis, be-
havioral response to cocaine, and axon part. Biological annotation apparently tends to yield
similar results regardless of whether it is applied to the general factor, the observed sum score,
or a single factor in a simpler model. Perhaps such consistency is to be expected in light of our
evidence for the existence, in some sense other than the psychometric one, of a general factor.
A sum score will typically reflect a general factor indicated by all items more than any other
source of variance. Indeed, on the basis of the phenotypic correlations between items reported

by Nagel et al. (2018b), we calculated McDonald’s wy (Revelle & Condon, 2019) of the EPQ
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s1s neuroticism scale to be .64.

619 We have no explanation for the meager results obtained from the GWAS of the residual
s20 group factors. Our method for identifying SNPs associated with the residuals of the group
e21  factors in our hierarchical model was somewhat indirect (Supplementary Fig. S2), but a more
s22 direct approach based on a bifactor model would lead to more free parameters and an increase
e23 1n estimation error (Murray & Johnson, 2013; Preacher et al., 2013). The study of group factors
s+ 1s an inherently difficult one, and those present in the EPQ neuroticism questionnaire require a
e2s greater GWAS sample size for their genetic elucidation. It would be premature to base conclu-

e26 sions about the construct validity of these group factors on the present results.

= 5 Conclusion

e2s  We used structural equation modeling to carry out a GWAS of the neuroticism general factor
s20 and identified 19 lead SNPs satisfying p < 5 x 1078, Even if deemed not to satisfy the predic-
ss0 tions entailed by the hypothesis of acting solely through the general factor, hundreds of other
ss1  SNPs attaining or approaching statistical significance in various analyses showed mostly sign-
ss2 concordant effects on the questionnaire items. These findings do not settle the issue of the causal
ess  structure underlying the correlations between personality items. All we claim is that when we
sa+ look for evidence of genetic effects on a causal intermediary very similar to the general factor
sss  of neuroticism, such evidence can be found. The SNPs acting through the general factor are
sss found in or near genes highly expressed in the brain, and their pattern of gene-set enrichment is
a7 suggestive of neural development and synaptic function, particularly as these processes affect

sss the learning of fear and caution in response to aversive stimuli.
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