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Abstract1

We applied structural equation modeling to conduct a genome-wide association study (GWAS)2

of the general factor measured by a neuroticism questionnaire administered to ∼380,000 partic-3

ipants in the UK Biobank. We categorized significant genetic variants as acting either through4

the neuroticism general factor, through other factors measured by the questionnaire, or through5

paths independent of any factor. Regardless of this categorization, however, significant vari-6

ants tended to show concordant associations with all items. Bioinformatic analysis showed that7

the variants associated with the neuroticism general factor disproportionately lie near or within8

genes expressed in the brain. Enriched gene sets pointed to an underlying biological basis as-9

sociated with brain development, synaptic function, and behaviors in mice indicative of fear10

and anxiety. Psychologists have long asked whether psychometric common factors are merely11

a convenient summary of correlated variables or reflect coherent causal entities with a partial12

biological basis, and our results provide some support for the latter interpretation. Further re-13

search is needed to determine the extent to which causes resembling common factors operate14

alongside other mechanisms to generate the correlational structure of personality.15
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1 Introduction23

The biological underpinnings of personality are far from being understood. Genome-wide asso-24

ciation studies (GWAS) can provide insight into personality’s biological etiology by indicating25

which genomic polymorphisms are significantly associated with a trait of interest. Most GWAS26

focus on single-nucleotide polymorphisms (SNPs), the most common type of genetic varia-27

tion. SNPs reaching statistical significance in GWAS often lie near protein-coding genes and28

non-coding functional regions. As many functions of genes and their tissue-specific patterns29

of expression have been experimentally elucidated or computationally predicted, researchers30

can then infer the biological processes that are likely to be responsible for variation in the trait.31

Unfortunately, GWAS of personality traits often lack sample sizes large enough to detect many32

significant loci (e.g., Lo et al., 2017).33

Studies focusing on neuroticism typically have been more successful (de Moor et al., 2015;34

Luciano et al., 2018; Nagel et al., 2018a; Okbay et al., 2016a; Smith et al., 2016). Neuroticism35

is one of the factors in the Big Five model of personality. Individuals who score highly in neu-36

roticism tend to experience diverse and relatively more intense negative emotions. The largest37

GWAS meta-analysis of neuroticism to date found 136 significant independent loci (Nagel et38

al., 2018a). Neuroticism was measured using the Eysenck Personality Questionnaire–Revised39

Short Form (EPQ) (Eysenck et al., 1985). In the present study, we further investigated the ge-40

netics and biology of neuroticism using the summary statistics of a companion study analyzing41

the individual items in the questionnaire (Nagel et al., 2018b).42

We also examined whether the significant SNPs act in accordance with the common-factor43

model, which is an important tool in the psychology of individual differences. McDonald (2003)44

suggested that a common factor might be regarded as a mental property with a non-physicalist45

interpretation, which nevertheless can be acted upon by physical causes: “the external variable46
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causes the common factor of the dependent variables, that is, acts to change the level of the47

psychological attribute common to them” (p. 221). Others have proposed that a common-factor48

model is merely a convenient summary of otherwise formidably high-dimensional data rather49

than a representation or approximation of a causal model (Cramer et al., 2012). Genetics now50

provides us with an unprecedented opportunity to test these ideas. If we could find candidate51

causal variables, such as SNPs in the human genome, that exert effects on the questionnaire52

items proportional to their factor loadings, then we would have powerful evidence that the53

common factor does indeed mediate biological causes and therefore cannot be dismissed as an54

artifact. That is, if the loadings of certain dependent variables on their common factor were λ1,55

λ2, and so forth, then a SNP with effects on those variables of βλ1, βλ2, and so forth would56

strongly suggest that the SNP has on effect of β on something very much like the common57

factor.58

Conversely, if the effects of the SNPs failed to accord with the factor loadings, this would59

suggest looking toward proposals such as “bonds” (Thomson, 1951) or network models (Cramer60

et al., 2012) for a superior causal model explaining the item covariation. Either way, identifi-61

cation of the biological mechanisms mediating the effects of the SNPs can provide insight into62

the nature of the higher-level objects in the hierarchy of explanation—whether those objects are63

common factors, “bonds,” networks, or something else entirely. A number of authors have pre-64

viously tested a similar idea with general intelligence (g) (Cox et al., 2019; Kievit et al., 2012;65

Lee et al., 2019). Their results were consistent with brain size being one of multiple factors that66

affect a unitary g.67

In this work we do not claim to resolve this issue conclusively. We claim merely that if we68

do find SNPs associated with all indicators to a degree corresponding roughly with their factor69

loadings, then we have evidence that common biological causes are one kind of mechanism70

contributing to the covariation “accounted for” by the common-factor model.71
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To conduct this analysis of the common factor neuroticism, we turned to Genomic SEM, a72

software tool for applying factor and path models to genetic data (Grotzinger et al., 2019). We73

classified the GWAS-identified SNPs as working either through the general factor, the group74

factors that happen to be present in this questionnaire, or none of the above (i.e., through “in-75

dependent pathways”). It is the SNPs in the latter category that might call into question the76

appropriateness of the common-factor model at a deeper biological level. We then used the77

bioinformatic software tool DEPICT (Pers et al., 2015) in an attempt to identify the tissues78

and biological mechanisms mediating the effects of the SNPs in these categories. In this way79

we not only tested the verisimilitude of the common-factor model at the genetic level, but also80

obtained mechanistic insight into the nature of the neuroticism factor. Eysenck (1992) in partic-81

ular stressed the importance of grounding the constructs of personality models genetically and82

biologically in order to further their validity.83

2 Methods84

2.1 Confirmatory factor analysis85

We used the software tool Genomic SEM (Grotzinger et al., 2019) to calculate the genetic86

covariance matrix of the neuroticism items in the Eysenck Personality Questionnaire–Revised87

Short Form, as administered to about 380,000 UK Biobank participants (Nagel et al., 2018b).88

The “genetic correlation” between two traits is the correlation between their heritable compo-89

nents. That is, if each trait is the sum of a genetic and environmental term, then the genetic90

correlation is the correlation between just the genetic terms. Genetic correlations tend to be91

close to their corresponding phenotypic correlations (Sodini et al., 2018), being slightly larger92

on average, and so should yield a similar factor-analytic solution (e.g., de la Fuente et al.,93

2021). To calculate the genetic correlation between two binary traits, estimates of the popula-94

tion prevalences (pass rates) are required. We used the estimates previously published (Nagel95
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et al., 2018b). Note that the genetic correlations are calculated over essentially all “common96

SNPs”—polymorphic sites where both alleles exceed a threshold frequency—regardless of sta-97

tistical significance.98

We adopted the three-factor model of the neuroticism questionnaire used in the original99

Genomic SEM publication by Grotzinger et al. (2019). In this model the items mood, misery,100

irritable, fed-up, and lonely are indicators of a factor that we will call depressed affect, after the101

largely similar group of items identified by hierarchical cluster analysis (Nagel et al., 2018b).102

The items nervous, worry, tense, and nerves are indicators of a factor that we will call worry,103

also after a similar cluster identified in the previous analysis. The group factors depressed affect104

and worry do not readily map onto aspects in the BFAS (DeYoung et al., 2007), but do arguably105

map onto the respective facets depression and anxiety in the NEO (Costa & McCrae, 1992).106

The items guilt, hurt, and embarrass are indicators of a third factor that we will call vulner-107

ability, after the largely similar group of items identified by exploratory factor analysis (Hill108

et al., 2020). We introduced a neuroticism general factor into this model by treating the three109

group factors as indicators of a hierarchical second-order factor. Unit-variance identification110

was employed.111

There is some evidence that participants in the UK Biobank tend to be slightly less neurotic112

than the rest of the population (Tyrrell et al., 2021; Young et al., 2022). Such selection bias can113

distort the factor structure of the measurements (Lee, 2012; Meredith, 1993). Our conjecture114

is that psychological traits most affecting participation in research are those related to educa-115

tion and social class, and neuroticism does not seem strongly related to such status markers116

(Demange et al., 2021; Mammadov, 2022; Poropat, 2009; Zell & Lesick, 2022). When the117

association between personality and research participation has been directly studied, no signif-118

icant correlations with neuroticism have been observed (Cheng et al., 2020; Marcus & Schütz,119

2005). Therefore we expect any impact of selection bias on our results to be modest.120
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2.2 Path modeling of SNP effects121

2.2.1 GWAS of the neuroticism general factor122

We performed a GWAS of the neuroticism general factor by specifying, in Genomic SEM, a123

path from the tested SNP to the second-order general factor (Fig. 1A). Any confounding with124

non-genetic variables is likely to be minimal because within-family GWAS of the neuroticism125

sum score have produced results very close to those of population GWAS (Howe et al., 2022;126

Young et al., 2022). We used the reference file supplied by Genomic SEM to retain only SNPs127

with a minor allele frequency (MAF) exceeding .005 in the 1000 Genomes European popula-128

tions. This left more than 7 million SNPs in the GWAS. Additional methodological details of129

both the original item-level GWAS and our GWAS at the latent level with Genomic SEM are130

given in the Supplementary Material.131

Because they are often highly correlated, nearby SNPs may not not represent independent132

association signals. We attempted to identify independently significant SNPs by using the133

“clump” function of the software tool PLINK (Chang et al., 2015; Purcell et al., 2007). In134

essence, clumping picks out local minima of the p-value sequence along the genome. We used135

the clump settings of the bioinformatics tool DEPICT (Pers et al., 2015), which calls PLINK136

to identify lead SNPs. The most important of these settings is the threshold p < 10−5 for the137

statistical significance of the association between SNP and trait. Although less stringent than138

the conventional GWAS significance threshold p < 5×10−8, this threshold is recommended by139

the DEPICT developers because the biological annotation provided by their tool (see below) is140

tolerant of false-positive SNPs.141

Note that the conventional GWAS threshold aspires to prevent even a single false positive142

from appearing among the SNPs significantly associated with a single trait. Although there may143

be at least one false positive among the SNPs in the range 10−5 > p ≥ 5× 10−8, many of these144

SNPs will be true positives in a well-powered GWAS with many SNPs reaching p < 5× 10−8.145
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Figure 1: Path diagrams portraying how a single-nucleotide polymorphism (SNP) might be
associated with the questionnaire items. A. The focal SNP (or a nearby highly correlated SNP)
acts through the neuroticism general factor. B. The focal SNP (or a nearby highly correlated
SNP) acts on the 12 items through “independent pathways.” Not shown is a model where the
SNP’s associations are with one or more of the three group factors.
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We subjected the candidate lead SNPs from the GWAS of the neuroticism general factor to146

further tests. We ran a “group-factor” model in which the three first-order group factors were147

regressed on each of the candidate lead SNPs. This model thus requires three path coefficients148

in the place of the one required by the general-factor model. The general-factor model is nested149

within the group-factor model, the former being obtained from the latter by making the three150

SNP effects proportional to the loadings of the group factors on the general factor. We then ran151

an “independent-pathway” model regressing all 12 items on each candidate lead SNP (Fig. 1B).152

The independent-pathway model thus estimates 12 path coefficients in the place of the three153

required by the group-factor model; the latter is nested within the former.154

The independent-pathway model is an operationalization of not only Thomson’s bonds155

model, but also the network model (Cramer et al., 2012); our Fig. 1 contrasting the common-156

factor and independent-pathway models is exactly parallel to Figure 7 of Cramer et al. (2012).157

These authors proposed that support for the independent-pathway model over the common-158

factor model would count as support for their network perspective. Taking the most significant159

SNPs in the GWAS of neuroticism sum scores published at that time, they carried out an anal-160

ysis similar to ours and claimed to find some evidence for the SNPs acting on individual items161

rather than the general factor. The only SNP-item association of theirs that we could attempt to162

look up and replicate was the one between rs12509930 and guilt. In the UK Biobank sample163

of roughly 380,000 individuals, this association is not significant (p = .70). We should not be164

surprised by this replication failure, in light of the small sample sizes of the GWAS at that time,165

and the authors themselves avowed the tentative and exploratory nature of their analysis. The166

important point is that we can now carry out their proposal of pitting the common-factor and167

network models against each other to a much greater extent than was possible a decade ago.168

To determine whether a candidate lead SNP identified in the GWAS of the neuroticism169

general factor is better regarded as acting through factors or independent pathways, one can170
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test the significance of the difference in χ2 between more and less parsimonious models. The171

Genomic SEM developers call this difference QSNP (Genomic SEM tutorial, accessed October172

2020). In one of their analyses, Grotzinger et al. (2019) used the threshold p > .005 for calling173

a QSNP value “low.” Following the suggestion of a reviewer, however, we carried out model174

selection using Akaike weights (Wagenmakers & Farrell, 2004). The sum of the weights equals175

one by construction, making them analogous to probabilities. The ratio of two weights can176

be interpreted as the relative likelihood of the model corresponding to the numerator (Royall,177

1997) times a factor penalizing that model if it has more estimated parameters. Such a penalty178

may be desirable if a sufficient increase in sample size will lead to the rejection of any simple179

model regardless of its qualitatively excellent fit. We treated any model with an Akaike weight180

exceeding 2/3 as the “correct” model for a given SNP, as this means at least twice as much181

support as any alternative. It is possible for no model to obtain this large a weight, meaning that182

the SNP’s associations with the items are not clearly fit best by any of the candidate models.183

Since calculating the model χ2 and AIC increased the computation time of a SNP associa-184

tion by roughly a factor of 10 in the version of Genomic SEM that we used (October 2020), we185

did not calculate these for all SNPs in the GWAS but rather only the lead SNPs, once for each of186

the three candidate models (general factor, group factor, independent pathway). Supplementary187

Fig. S1 provides an overview of our pipeline for the GWAS of the neuroticism general factor188

and subsequent classification of lead SNPs.189

2.2.2 GWAS of additional factors190

We also conducted GWAS of each group factor with nontrivial variance attributable to sources191

other than the neuroticism general factor (i.e., depressed affect and worry). The first step of192

our procedure was to conduct a GWAS with Genomic SEM, specifying directed edges from the193

SNP to all three group factors. We then examined each factor’s association results satisfying194
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p < 10−5. Of the lead SNPs identified by the clumping procedure, we discarded any already195

assigned to either the general-factor or independent-pathway model in the GWAS of the neu-196

roticism general factor (Supplementary Fig. S1). Since we were particularly interested in SNPs197

associated solely with the focal group factor, we tested each remaining lead SNP for association198

with that factor while setting to zero the coefficients of its paths to the other two factors. We199

also ran the independent-pathway model for each of these lead SNPs (Fig. 1B). As before, we200

used an Akaike weight exceeding 2/3 as the criterion for assigning a lead SNP to one of three201

competing models (all group factors, one group factor, independent pathways). Supplementary202

Fig. S2 provides an overview of our pipeline for the GWAS of the group factors and subsequent203

classification of lead SNPs.204

To convey the difference between this GWAS and the one outlined in Supplementary Fig. S1,205

we will give an example of a SNP that would be ascertained as significant in the former but not206

in the latter. Suppose that a SNP acts solely through the residual of a group factor. This SNP207

might be ascertained in the GWAS of the group factors, through a combination of a relatively208

large effect size and favorable sampling variation. It might not be ascertained in the GWAS of209

the general factor, despite this GWAS containing a follow-up step checking for association with210

the group factors, because it is less likely to become a lead SNP in the first step. This difference211

in the ascertainment scheme can be important for certain inferences, a matter to which we return212

in the Discussion.213

It is worthwhile to consider whether independent-pathway SNPs enrich any tissues or bio-214

logical pathways (see below), despite not acting through any common factors. To identify such215

SNPs, Grotzinger et al. (2019) conducted two GWAS, one of neuroticism in their single-factor216

model and the other of independent pathways, and calculated a form of the QSNP statistic for217

each SNP in the GWAS. At the time of our own analysis, this procedure was beyond the com-218

putational resources available to us. As a compromise, we took forward to DEPICT the union219
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of the lead SNPs from the GWAS of the common factors that qualified by virtue of their Akaike220

weights for the independent-pathway model.221

2.3 Genetic correlations222

Genomic SEM calls LD Score regression (LDSC) to calculate genetic correlations, and this223

method is known to be unbiased under fairly general conditions (Bulik-Sullivan et al., 2015;224

Lee et al., 2018a).225

A finding of genetic correlations similar to those calculated in previous studies of neuroti-226

cism observed scores would provide an affirmative quality-control check of our approach based227

on structural equation modeling. It would also support the validity of the common assumption228

that a correlation with an observed sum score primarily reflects a correlation with the scale’s229

general factor. The Supplementary Material lists the traits used in this analysis and accompa-230

nying references.231

We also calculated genetic correlations with the residuals of the group factors depressed af-232

fect and worry. Procedurally we used Genomic SEM to specify the bifactor model generalizing233

the hierarchical model displayed in Fig. 1 and then performed a GWAS of the group factors234

within the bifactor model. Supplementary Fig. S3 displays the factor and path model that we235

employed for this purpose. We used the resulting GWAS summary statistics to calculate the236

genetic correlations with depressed affect and worry.237

Supplementary Fig. S4 and Supplementary Table S1 present the results.238

2.4 Polygenic prediction239

At the request of a reviewer, we used the summary statistics from our GWAS of the common240

factors to calculate polygenic scores (PGS) and validate them in a new sample. Methodologi-241

cal details are given in the Supplementary Material, and Supplementary Table S2 presents the242
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results.243

2.5 Biological annotation244

2.5.1 DEPICT245

DEPICT (Data-driven Expression Prioritized Integration for Complex Traits) is a software tool246

that prioritizes likely causal genes affecting the trait, identifies tissues/cell types where the247

causal genes are highly expressed, and detects enrichment of gene sets. A “gene set” is a248

group of genes designated by database curators as sharing some common property, such as en-249

coding proteins that participate in the same biological function. A gene set shows “enrichment”250

if SNPs significantly associated with the trait fall in or near the set’s member genes more often251

than expected by chance. More complete descriptions of DEPICT can be found in previous252

publications (Okbay et al., 2016b; Pers et al., 2015).253

Our path modeling with Genomic SEM placed each lead SNP into a collection (e.g., SNPs254

associated with the neuroticism general factor). Each such collection of SNPs was supplied as255

input to DEPICT (https://github.com/perslab/DEPICT, release 194). DEPICT takes lead SNPs256

and merges them into loci potentially encompassing more than one lead SNP according to257

certain criteria (Pers et al., 2015). The genes overlapping these loci are the basis of the DEPICT258

analysis. The limitation of the DEPICT input to a subset of SNPs is an important strength in259

our application. A method that relies on genome-wide summary statistics is not straightforward260

to adapt if some SNPs in a GWAS of a common factor must be dropped for better fitting a more261

complex model (Fig. 1).262

To run DEPICT, we edited and then executed the template configuration file. We left in place263

all default parameter values except those affecting how the results are printed in the output files.264

We also used a collections file of the genes overlapping the locus around a given SNP based265

on 1000 Genomes phase 3 rather than 1000 Genomes pilot data; this file was given to us by266
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the DEPICT developers and is available along with the GWAS summary statistics generated for267

this study. Many tissues/cell types and gene sets in the DEPICT inventory are in fact duplicates268

despite having different identifiers; we adopted the pruned list of tissues/cell types used by269

Finucane et al. (2018) and excluded duplicated gene sets using the criteria set out by Lee et al.270

(2018b). Except where noted, we adopted the developer-recommended definition of statistical271

significance at the level of genes, tissues/cell types, and gene sets as a false discovery rate (FDR)272

below .05.273

The reconstitution of the gene sets was motivated by a desire to compensate for the lim-274

itations of existing bioinformatic databases, which suffer from both false positives and false275

negatives. The reader can consult Supplementary Table 28 of Lee et al. (2018b) for a demon-276

stration of the reconstitution procedure’s success in empowering detection of enrichment only277

in sets appropriate to the studied trait. The reconstitution procedure has also proven fruitful in278

other applications (Cvejic et al., 2013; Fehrmann et al., 2015).279

2.5.2 Stratified LD Score regression and PANTHER overrepresentation test280

At the request of a reviewer, we have calculated effect sizes in terms of fold enrichment to281

accompany the displays of statistically significant results in Figure 2 and Table 2. We used282

two different tools for this purpose. The first was stratified LD Score regression (S-LDSC),283

a standard method for testing enrichment of discrete gene sets (Finucane et al., 2015). The284

enrichment statistic calculated by S-LDSC is285

fraction of heritability contributed by SNPs mapped to the gene set
fraction of all SNPs mapped to the gene set

.

“Gene set” here can equally well mean a group of genes that are highly expressed in a given286

tissue/cell type. We employed the Finucane et al. (2018) procedure of taking the top 10 percent287

of genes in the DEPICT inventory belonging to a given gene set, mapping all SNPs lying within288

100 kb of a member gene to that set, and using the so-called baseline annotations and an any-289
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gene indicator as control variables. We used the 97 baseline annotations currently recommended290

by the developers (downloaded August 2023 from https://storage.googleapis.com/broad-alkesgroup-291

public-requester-pays/LDSCORE). We also used the precomputed stratified LD Scores for the292

DEPICT tissues/cell types supplied by the developers (“Franke dataset”). The developers state293

that they provide a gene-coordinate file so that users can calculate their own stratified LD Scores294

for novel gene sets (LD Score estimation tutorial, accessed August 2023), but this file seems not295

to have been transferred to their Google Cloud depository. To calculate stratified LD Scores for296

the reconstituted gene sets found to be significantly enriched in the standard DEPICT analysis,297

we used instead the latest version of the GENCODE coordinate file (downloaded August 2023),298

taking the row in this file assuming the value of gene in the feature column as providing the299

canonical start and stop coordinates of a given Ensembl identifier. The standard 1-centimorgan300

radius was used to calculate the stratified LD Scores.301

We tested the null hypothesis that the enrichment is equal to one. Previous experience with302

this method suggests that a 1.3-fold enrichment of a gene set should be regarded as a large effect303

size (Finucane et al., 2018; Kim et al., 2019; Lee et al., 2018b), although smaller non-null sets304

and sets specifically constructed to contain genes under strong purifying selection may yield305

higher values.306

Our second method for calculating fold enrichments was the PANTHER overrepresentation307

test, which has been implemented as a web-based tool (http:www.geneontology.org). The input308

to this method is a discrete list of genes supplied by the user. To increase statistical power, we309

used the Ensembl identifiers of all DEPICT-prioritized genes satisfying FDR < .20 as input.310

Standard FDR calculations assume that the alternative hypothesis is true in only a small pro-311

portion of cases, and a violation of this assumption leads to the FDR being conservative (Efron,312

2010). As there is almost certainly a causal gene near most lead SNPs, many genes falling in313

the interval .05 ≤ FDR < .20 are likely to be true positives. We used all default settings for314
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analyses launched from the front page of the Gene Ontology website.315

The null hypothesis in the PANTHER overrepresentation test is that the input gene list is a316

random sample of all genes in the reference gene list. The enrichment statistic is thus317

observed # of gene-set members in the input list
expected # of gene-set members in the input list

.

The PANTHER overrepresentation test has properties that complement those of S-LDSC.318

It is based on the discrete version of the gene set rather than the reconstituted version and thus319

provides a way to check the robustness of the latter. (The PANTHER database does not include320

the Mammalian Phenotype gene sets from the Mouse Genomics Institute.) Furthermore, it is321

arguably testing a hypothesis that is closer to the one being tested by the standard DEPICT322

analysis. In the latter approach, we are asking whether the lead SNPs at the current stage of a323

GWAS fall disproportionately within or near high-ranking members of a given gene set. The324

answer to this question may change as the GWAS increases in sample size and begins to add325

different types of SNPs. In contrast, S-LDSC is calculating a measure of enrichment that applies326

to the whole genome rather than a subset of SNPs. In theory, the S-LDSC enrichment statistic327

does not change as the GWAS progresses, although the standard error of its estimate hopefully328

grows smaller. The PANTHER overrepresentation test is closer in spirit to the standard DEPICT329

approach in that it focuses on genes that happen to encompass or lie near the current lead SNPs.330

3 Results331

3.1 Factor analysis of the neuroticism questionnaire332

We replicated the indices reported by Grotzinger et al. (2019) indicating a good fit of a model333

with three group factors (CFI = .969, SRMR = .054). We therefore regarded the three-factor334

model as satisfactory for purposes of SNP-level path modeling. The loading of the vulnera-335

bility group factor defined by guilt, hurt, and embarrass on the neuroticism general factor was336
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estimated to be nearly one (.97) (Supplementary Table S3). These items seem to have very337

little genetic variance shared in common other than what is attributable to neuroticism. For this338

reason we did not conduct a GWAS of this factor when trying to identify SNPs associated with339

group factors. Although our result here may seem to diverge from that of Hill et al. (2020), their340

bifactor model allowed correlations between group factors and thus qualitatively differed from341

our hierarchical model. As discussed in the Supplementary Material, we did by and large repli-342

cate the Hill et al. (2020) finding of markedly different genetic correlations of the neuroticism343

general factor and the residual worry factor with certain traits (Supplementary Fig. S4).344

3.2 GWAS of the neuroticism general factor345

Before examining the main results and downstream analyses of a GWAS, it is reasonable to346

assess the overall amount of signal present in its summary statistics. The product of the sample347

size and the heritability (e.g., as estimated by LD Score regression) is normally a good metric348

for this purpose, but it is inapplicable to a GWAS of a latent trait conducted with Genomic SEM349

because neither factor in this product is well defined (Mallard et al., 2022). We followed the350

recommendation of the Genomic SEM developers to use the mean χ2 statistic instead (Sup-351

plementary Table S4). The mean χ2 of our neuroticism GWAS was 1.63—very close to those352

of past groundbreaking GWAS of behavioral traits (Okbay et al., 2016b; Pers et al., 2016;353

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Our GWAS354

summary statistics seem to contain sufficient signal for meaningful downstream analyses. Note355

that an undefined heritability is not a problem in the use of LDSC to obtain genetic correlations356

and functional enrichments because of cancellations from numerator and denominator in the357

calculations of those quantities.358

Our GWAS of the neuroticism general factor identified 394 lead SNPs satisfying p < 10−5,359

in 296 distinct DEPICT-defined loci. We examined these SNPs for an improvement in model fit360
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upon increasing the number of paths. Thirty-five of the 394 SNPs were characterized by small361

negative values of the QSNP statistic when comparing the fit of the model where the SNP acts on362

the general factor (Fig. 1A) to that of the model where the SNP acts on the three group factors.363

Such negative values can arise when the two models under comparison are distinguished by few364

degrees of freedom, and they indicate an extremely good fit of the data to the more restrictive365

model (A. Grotzinger, personal communication). Of the 394 lead SNPs, 139 qualified by virtue366

of their Akaike weights for the general-factor model, 81 for the group-factor model, and 63 for367

the independent-pathway model. One hundred eleven SNPs had no Akaike weight greater than368

2/3, precluding for now their assignment to any model. Of these 111 indeterminate SNPs, a369

plurality of 54 attained their largest Akaike weight in the general-factor model.370

Supplementary Table S5 lists the 139 general-factor lead SNPs. Nineteen of these SNPs371

attained the strict genome-wide significance level p < 5×10−8 (Table 1). Of these 19 SNPs, 17372

reached strict genome-wide significance in the largest GWAS to date of an observed neuroticism373

score (Nagel et al., 2018a). Information about all significant SNPs regardless of classification374

can be found in the Supplementary Data.375

The most significant general-factor SNP was rs11090045 (p = 4.0 × 10−13). Its locus on376

chromosome 22 is a very gene-dense region, overlapping ZC3H7B (FDR < .05), TEF (FDR <377

.20), TOB2 (FDR < .20), CSDC2 (FDR < .20), EP300 (FDR < .20), PMM1, RANGAP1,378

XRCC6, CHADL, ACO2, L3MBTL2, PPDE2, PHF5A, and POLR3H. Although rs11090045379

itself is located in the 3′ untranslated region of ZC3H7B, the unusual number of candidates for380

causal genes in this locus may possibly be explained by the hypothesis of rs11090045 being a381

correlated proxy for multiple causal SNPs collectively acting through more than one gene.382

It is of interest to examine how the cutoffs defined by Akaike weights correspond to QSNP383

statistics. Upon treating any SNP with a negative QSNP statistic as having a p value of one, we384

found that the 139 SNPs assigned by their Akaike weights to the general-factor model were all385
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Table 1: Strictly genome-wide significant SNPs in the GWAS of the neuroticism general
factor with Akaike weight > 2/3 for the model in Fig. 1A.

SNP Coordinates MAF A1 A2 β p value Genes
rs631416 1:37164909 .22 T C −.0062 1.8× 10−9 CSF3R
rs4396680 2:10178236 .18 A G .0057 3.5× 10−8 KLF11, CYS1
rs59491086 2:157132879 .21 A G .0065 3.9× 10−10 NR4A2
rs10497655 2:185462041 .32 T C .0052 9.7× 10−9 ZNF804A
rs75701938 3:107172033 .11 A C .0081 1.0× 10−9

rs56324019 5:87752141 .15 C T .0061 3.8× 10−8 TMEM161B
rs198800 6:26139933 .48 C T −.0047 2.5× 10−8

rs2503775 6:98521600 .12 A G .0074 3.1× 10−9

rs1731951 7:137075847 .45 T A .0047 4.9× 10−8 DGKI
rs2407746 8:4937757 .29 C G −.0060 6.5× 10−11 CSMD1
rs75614054 9:98275789 .10 C T −.0107 1.3× 10−12 PTCH1
rs860626 10:119301703 .31 T G .0052 2.3× 10−8 EMX2
rs7338774 13:69344134 .30 A G −.0050 2.4× 10−8 ELL2P3
rs8039690 15:78136541 .30 A G −.0053 1.5× 10−8 LINGO1
rs3785237 16:7667131 .49 G C −.0056 2.8× 10−11 RBFOX1
rs56084168 17:79084574 .14 C T .0082 6.9× 10−12 BAIAP2, AATK
rs10460051 18:31413679 .48 C T −.0051 1.9× 10−9 ASXL3
rs11875397 18:39319278 .19 T A .0060 2.1× 10−8 PIK3C3
rs11090045 22:41753603 .31 G A −.0068 4.0× 10−13 See text

Coordinates, chromosome and base-pair position of the SNP according to GRCh37; MAF,
minor allele frequency; A1, A2, the two alleles segregating at the SNP; β, the regression
coefficient of allele A1. The Supplementary Material explains the scaling of β. The last
column gives all protein-coding genes in the DEPICT inventory overlapping the locus
centered on the lead SNP. The genes in bold were significantly prioritized by DEPICT at
the threshold FDR < .20.
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characterized by p > .28 (median p = .68) with respect to the null hypothesis of the general-386

factor model fitting better than the group-factor model. If we take the p < .05 criterion as387

standard, then our use of Akaike weights to define general-factor SNPs seems conservative.388

In contrast, for the 63 SNPs qualifying for the independent-pathway model, the QSNP p values389

with respect to the null hypothesis of the group-factor model fitting better than the independent-390

pathway model all met p < .02 (median p = .001).391

3.3 Significant tissues/cell types and gene sets392

The output of DEPICT provides insight into the biology associated with the SNPs appearing to393

act through the neuroticism general factor. Fig. 2 shows that there were 7 statistically significant394

tissues/cell types. All of these without exception bore the MeSH second-level term central395

nervous system. The most significant result was entorhinal cortex (p = 1.4 × 10−4). The396

entorhinal cortex is a way station connecting the neocortex, the hippocampus, and the amygdala,397

passing along signals critical for memory formation, navigation, and the perception of time398

(Maass et al., 2015; Tsao et al., 2018). The second most significant result was limbic system399

(p = 1.7 × 10−4), which refers to a collection of structures immediately below the medial400

temporal lobe that includes the entorhinal cortex and hippocampus. Overall, the neuroticism401

general factor showed the clear signature of a behavioral trait mediated by the brain.402

More revealing than these tissue-level results were the significantly enriched gene sets.403

There were 21 such sets, and Table 2 shows the 6 of these that are not protein-protein inter-404

action (PPI) subnetworks. Abnormal cued conditioning behavior (p = 6 × 10−6), increased405

anxiety-related response (p = 8.9 × 10−5), and decreased exploration in new environment406

(p = 9.1 × 10−5) are all taken from the Mouse Genome Informatics database and defined by407

fearful and anxious behavior when their member genes are perturbed in mice.408
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Figure 2: Tissues or cell types with significant expression of genes near SNPs associated with
the neuroticism general factor (relative to genes in random sets of loci). The tissues are arranged
along the x-axis by Medical Subject Heading (MeSH) first-level term. The y-axis represents
statistical significance on a − log10 scale. The height of the dashed horizontal line corresponds
to the p value yielding FDR < .05. See Supplementary Table S6 for complete results.
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Table 2: Reconstituted gene sets significantly enriched by lead SNPs for the neuroticism gen-
eral factor.

Gene set Description
Site of polarized growth Any part of a cell where anisotropic growth oc-

curs.
Growth cone The migrating tip of a growing neuron projec-

tion.
Abnormal cued conditioning behavior Anomaly in the ability of an animal to learn as-

sociations between aversive and neutral stimuli.
Impaired coordination Reduced ability to execute integrated move-

ments.
Abnormal neuron physiology Any functional anomaly of the cells that re-

ceive, conduct, and transmit nervous impulses.
Increased anxiety-related response Animals exhibit more responses thought to be

indicative of anxiety in behavioral tests.
Decreased exploration in new environ-
ment

Animals spend less time investigating a new lo-
cation.

Non-PPI reconstituted gene sets satisfying FDR < .05. See Supplementary Table S7 for
all significant results of the DEPICT gene-set analysis and Supplementary Table S8 for the
specific genes in the DEPICT-defined loci. The descriptions of the gene sets are adapted
from Gene Ontology and Mouse Genome Informatics (accessed December 2020). Gene
sets in bold also satisfy FDR < .05 for enrichment by lead SNPs categorized as acting
through independent pathways.
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3.4 GWAS of the group factors409

We now report our attempts to find SNPs associated with the group factor depressed affect.410

Recall that we conducted a GWAS with Genomic SEM, based on a model sending directed411

edges from the SNP to all three group factors. After discarding SNPs identified as general-factor412

or independent-pathway SNPs in previous analyses, we ended up with 317 lead SNPs. Of these413

317, 53 reached the strict genome-wide significance threshold p < 5 × 10−8. Interestingly,414

only 7 of the 317 lead SNPs were selected by the criterion of an Akaike weight greater than415

2/3 as having no associations with the other two group factors, and none of these 7 reached the416

stringent genome-wide significance threshold p < 5× 10−8. In contrast, 184 SNPs qualified by417

virtue of their Akaike weights for the group-factor model (nonzero effects on all three factors),418

64 for the independent-pathway model, and 62 for none of the above.419

The 184 SNPs qualifying for the group-factor model showed highly concordant effects on420

the three factors. In other words, despite being deemed a poor fit to the general-factor model, a421

SNP’s association with one factor was highly predictive of its associations with the two others.422

The sign concordance between SNP effects on depressed affect and worry was 100 percent.423

Each sign concordance between a major group factor and the vulnerability factor (with little424

non-neuroticism genetic variance) was 183/184.425

After running the analogous procedure, we identified 286 lead SNPs associated with worry.426

Of these 286, 14 reached p < 5 × 10−8. Only 4 of the 286 lead SNPs were associated solely427

with the residual group factor of worry, none of which attained p < 5× 10−8. Of the remaining428

SNPs, 184 qualified by virtue of their Akaike weights for the group-factor model, 54 for the429

independent-pathway model, and 43 for none of the above. The sign concordances were again430

either 100 percent or short of perfect by one SNP.431

Supplementary Table S9 lists the 11 total SNPs associated with the residual group factors.432

Such a small number of lead SNPs, particularly when few reach strict genome-wide signifi-433
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cance, leads to low statistical power with DEPICT (Turley et al., 2018). Therefore we did not434

conduct biological annotation of these 11 SNPs.435

The Supplementary Data contain information about all of the SNPs used in these analyses.436

3.5 Independent-pathway SNPs437

Our analyses of the common factors assigned a total of 181 lead SNPs to the independent-438

pathway model (Supplementary Table S10), and we proceeded to annotate these. The signif-439

icantly enriched tissues/cell types were, as expected, those of the nervous system, including440

limbic system (p = 4.7 × 10−4) and entorhinal cortex (p = 5.5 × 10−4) (Supplementary Ta-441

ble S11).442

There were 27 significantly enriched gene sets (Supplementary Table S12). As indicated443

in Table 2, many were shared with the neuroticism general factor (abnormal cued condition-444

ing behavior, impaired coordination, decreased exploration in new environment). One of the445

independent-pathway gene sets, abnormal contextual conditioning behavior, is also defined by446

the learning of fear and caution. The Mouse Genome Informatics database describes the rele-447

vant phenotype as an “anomaly in the ability of an animal to learn and remember an association448

between an aversive experience . . . and the neutral, unchanging environment” (accessed March449

2023).450

The other significant results pointed to the early development of the brain (e.g., central451

nervous system neuron axonogenesis) and synaptic activity in the behaving organism (e.g., glu-452

tamatergic synaptic transmission).453

The SNPs were grouped into 112 loci that in turn overlapped 324 genes (Supplementary454

Table S13). Thirty of these 324 genes were also among the 228 genes overlapping the loci en-455

compassing the lead SNPs for the neuroticism general factor. This modest intersection suggests456

that our inferences of enrichment by these two collections of SNPs were mostly independent.457
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The similarity of the biology implicated by general-factor and independent-pathway SNPs458

has two possible interpretations. First, the general factor and non-factor influences on the ques-459

tionnaire items may tend to act through similar biological mechanisms. Second, as suggested460

by the concordance of effect signs observed in the GWAS of the group factors, it may be that461

the general factor is in fact one of several mechanisms affected by an independent-pathway462

SNP, the other mechanisms being responsible for the departures from the strict predictions of463

the general-factor model (Fig. 1A). To investigate the latter possibility, we calculated sign con-464

cordances of the SNP effects on the 12 items. Of the 181 SNPs, 117 showed sign-concordant465

effects on all 12 items, 28 showed a deviant sign with respect to only one item, 15 showed466

deviant signs with respect to two items, 11 showed deviant signs with respect to three items,467

and 10 showed deviant signs with respect to four items. The overall impression is that many468

of these SNPs do not depart too radically from the general-factor model, despite a low Akaike469

weight for the precise predictions of that model.470

The Supplementary Data contain information about all of the SNPs used in these analyses.471

3.6 S-LDSC and PANTHER fold enrichment472

The apparent rarity of severe model failures among the more significant SNPs associated with473

the neuroticism general factor lends interpretability to genome-wide estimates of heritability en-474

richment, as calculated by S-LDSC, where there has been no screening of SNPs for conformity475

to the general-factor model (Fig. 1A).476

It is recommended that S-LDSC be used with a standard collection of control variables.477

The estimates associated with these variables can be interesting in their own right, and we give478

them in Supplementary Table S14. The most statistically significant enrichments were shown479

by annotations referring to evolutionary conservation, more recent mutational origin, and lower480

correlations with nearby SNPs. This pattern is typical of traits that have been studied in GWAS481
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(Finucane et al., 2015; Gazal et al., 2017). What the pattern means is that mutations affecting482

the neuroticism general factor (and other traits) tend to arise in functional regions of the genome,483

as evidenced by selection to maintain sequence similarity in distinct lineages, and once arisen484

tend to be deleterious.485

Fig. 3 displays the enrichment estimates for the reconstituted gene sets and tissues/cell types.486

We first discuss the colored data points representing the tissues/cell types. The top result by487

heritability enrichment, as by DEPICT p value, was entorhinal cortex (1.45-fold enrichment,488

p = 10−15). Furthermore, 11 of the 13 tissues/cell types clearing 1.3-fold enrichment bore489

the MeSH second-level term central nervous system. The two non-CNS tissues/cell types were490

neural stem cells (1.31-fold enrichment, p = 1.9 × 10−6) and retina (1.31-fold enrichment,491

p = 6.4× 10−6). These are not true exceptions. Neural progenitors are reasonably classified as492

neural despite differences in gene expression between progenitors and differentiated cells, and493

the retina is made up of layers of neurons.494

Before proceeding further, we point out that the any-gene control annotation typically showed495

roughly 1.03-fold enrichment with a standard error of .015, demonstrating that the S-LDSC es-496

timation procedure is well calibrated.497

We now turn to the reconstituted gene sets, which are represented by the dark data points at498

the far left of Fig. 3. All but abnormal neuron physiology (1.22-fold enrichment, p = 3.3×10−5)499

exceeded the benchmark effect size of 1.3. In particular, the gene sets defined in one way or500

another by fearful and anxious behavior in mice all met the threshold: increased anxiety-related501

response (1.41-fold enrichment, p = 4.1 × 10−11), decreased exploration in new environment502

(1.36-fold enrichment, p = 10−9), and abnormal cued conditioning behavior (1.35-fold enrich-503

ment, p = 3× 10−9).504

The PANTHER overrepresentation test also supported the results of the standard DEPICT505

analysis. Supplementary Table S16 shows that both growth cone (14.5-fold enrichment, p =506
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Figure 3: Heritability enrichment of reconstituted gene sets and tissues/cell types, as estimated
by stratified LD Score regression (S-LDSC) applied to the GWAS summary statistics of the
neuroticism general factor. The error bars are ±1-SE intervals. The height of the dashed hor-
izontal line corresponds to 1.3-fold enrichment, which we consider to be a “large” effect size.
Complete numerical results are given in Supplementary Table S15. GO, Gene Ontology; MP,
Mammalian Phenotype.

2.7× 10−5) and site of polarized growth (14.1-fold enrichment, p = 3.1× 10−5), the two gene507

sets in Table 2 related to axonogenesis, were among the top Gene Ontology (GO) cellular com-508

ponents. The theme of axonogenesis was reinforced by many of the significant GO biological509

processes (neuron projection morphogenesis, axonogenesis, axon development).510

Because our pipeline of DEPICT-prioritized genes to PANTHER did not require defining a511

single effect size for any given SNP, we were able to perform the PANTHER overrepresentation512

test on prioritized genes near independent-pathway SNPs. Supplementary Table S17 shows that513

many gene sets reaching statistical significance for the neuroticism general factor also did so for514

independent pathways (e.g., axon guidance, axon development, neuron projection). Many of the515

most strongly enriched gene sets for independent pathways were defined by synaptic function:516

e.g., presynapse assembly (70.9-fold enrichment, p = 9.7× 10−10), synaptic vesicle clustering517

(82.7-fold enrichment, p = 4.2 × 10−7), neuron to neuron synapse (7.6-fold enrichment, p =518
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6.9 × 10−8), postsynaptic density (7.2-fold enrichment, p = 1.6 × 10−6), GABA-ergic synapse519

(13.9-fold enrichment, p = 3.8 × 10−5) and glutamatergic synapse (5.2-fold enrichment, p =520

6.8× 10−5).521

4 Discussion522

The common-factor model need not be interpreted as a causal account of the correlations be-523

tween indicators in order to be scientifically and practically useful (Ashton & Lee, 2005; Mc-524

Donald, 1996, 2003). Nevertheless the extent to which factors do approximate underlying525

causes is a matter worthy of investigation.526

Our results suggest that the factor model of the neuroticism domain is not just a convenient527

summary of the correlations between items, but indeed a reasonable approximation to some528

part of the underlying causal system. For instance, neuroticism does not appear to be explained529

entirely by something like the bonds model (Thomson, 1951), which proposes the existence530

of many distinct causal elements, no single one of which affects all items in the domain. In531

Thomson’s model, items may overlap in what bonds affect them, and a greater overlap produces532

a greater correlation. A resulting positive correlation between each pair of items then gives the533

appearance of a single causal variable affecting all items when in fact there is no such variable.534

Bartholomew et al. (2009) suggested that polymorphic sites in the human genome might turn535

out to be the substantiation of the abstract bonds in Thomson’s model, but our results show that536

many SNPs identified in a GWAS of a neuroticism questionnaire are in fact associated with all537

items as if mediated by the common factors.538

Even upon rejecting a simpler model of mediation, we still found evidence for the approxi-539

mate correctness of such a model. SNPs ascertained through a GWAS of the three group factors540

were found to show sign-concordant effects on those factors. In summary, we have genetic evi-541

dence supporting the verisimilitude of the neuroticism general factor at a deep biological level.542
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This evidence weighs against network theories that deny the existence of broad factors influenc-543

ing many specific traits (Cramer et al., 2012), adding specific neurobiological reasons to other544

statistical and theoretical reasons to reject such models as sufficient explanations of personality545

structure (DeYoung & Krueger, 2018).546

We concede that our study cannot be absolutely definitive on this point. The filtering of547

SNPs by statistical significance in a GWAS at the latent level may induce an ascertainment bias548

that exaggerates the evidence for the approximate validity of the factor model. That is, SNPs549

departing very markedly from concordance of associations with all of the questionnaire items550

may be less likely to reach the threshold of statistical significance in a GWAS of the common551

factor. An example might be a SNP with positive effects on half of the items and negative effects552

on the other half. Such a SNP might have no net effect on the sum score and presumably would553

not reach significance in a GWAS of the factor, but it would be detected in a sufficiently power-554

ful GWAS of independent pathways. Future research may attend to this issue of ascertainment555

bias more carefully. Again, however, it is telling that most of the SNPs ascertained solely for556

significant association with just one group factor showed evidence of concordant association557

with the two others as well. Regardless of what we have failed to ascertain, it is clear that there558

are a sizable number of polymorphic sites across the genome that bear a striking resemblance559

to causes of the neuroticism general factor.560

A true GWAS of independent pathways, testing all common SNPs rather than those first561

attaining significance in a GWAS of a common factor, is likely to identify roughly as many lead562

SNPs as a GWAS of the general factor carried out on the same item-level summary statistics.563

For example, in their specification, Grotzinger et al. (2019) identified 118 lead SNPs for the564

neuroticism factor and 69 lead SNPs for independent pathways. Such a GWAS is also likely to565

identify more lead SNPs showing a failure of sign concordance across items. A tally of lead566

SNPs, however, may not suffice to weigh the relative importance of mechanisms. For example,567
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if many independent-pathway lead SNPs are associated with item-specific residuals, then such568

SNPs are not in fact contributing to the correlational structure of this personality domain. We569

do not propose a suitable comparative metric at the current time, leaving this problem to be570

addressed in future research.571

Previous studies have used multivariate twin modeling to pursue aims similar to our own.572

For example, Heath et al. (1989) showed that data from 1,800 pairs of like-sex monozygotic573

twins and 1,103 like-sex dizygotic twins were consistent with some personality scales being574

influenced by a general heritable factor. In their study this was true of extraversion and neuroti-575

cism, but not the third EPQ trait of psychoticism. This work may have contributed to the decline576

in support for the construct validity of psychoticism, showing the potential impact of genetic577

methods on personality theory. Even the fit of genetic correlations to a single factor, however,578

does not rule out a network or Thomson-like model. The power of the genomic approach lies579

in subjecting a factor model to an even more precise and hence riskier quantitative test of how580

directly measurable objects are related to the trait indicators (Meehl, 1978).581

We applied DEPICT in order to gain some clues to the biological processes mediating the582

effects of the general-factor SNPs on neuroticism. We found that these SNPs disproportionately583

fall within or near genes designated as high-ranking members of gene sets defined by responses584

to aversive or novel stimuli (Table 2). This result is remarkably fitting for the personality trait of585

neuroticism. Such gene sets became significantly enriched in GWAS of other behavioral traits586

as their sample sizes grew (e.g., Lee et al., 2018b), but it is perhaps meaningful that they are587

among the first to become significantly enriched in the GWAS of a trait defined by a tendency588

to experience fear and anxiety. Furthermore, the tendency of these genes to be highly expressed589

in the entorhinal cortex (Fig. 2) is consistent with research and theory linking anxiety and the590

mechanisms of anxiolytic drugs to the septo-hippocampal system (Allen & DeYoung, 2017;591

Gray & McNaughton, 2000)—a collection of structures that receive from the medial septal592
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nucleus the inhibitory GABAergic input inducing the theta rhythm, a neural oscillation associ-593

ated with learning and spatiotemporal encoding in many animals. The main components of the594

septo-hippocampal system are the hippocampus itself and the entorhinal cortex (Robinson et al.,595

2023). The Cybernetic Big Five Theory (DeYoung, 2015), drawing on Gray and McNaughton596

(2000), posits that neuroticism597

reflects the joint sensitivity of a behavioral inhibition system (BIS), which responds598

to threats in the form of conflicts between goals (e.g., approach-avoidance conflict599

or any conflict that generates uncertainty), and a fight-flight-freeze system (FFFS),600

which responds to threats without conflict—that is, when the only motivation is601

to escape or eliminate the threat. Much is known about the neurobiology of the602

BIS and FFFS in the brainstem, hypothalamus, and limbic system [a collection of603

structures including the hippocampus and entorhinal cortex], which can aid in the604

interpretation of existing research on [n]euroticism and inform hypotheses in future605

research. (Allen & DeYoung, 2017, p. 331)606

By and large, our biological-annotation results were consistent with previous analyses.607

For example, they were broadly consistent with those obtained with a different software tool,608

MAGMA (de Leeuw et al., 2015), in a GWAS of the questionnaire sum score (Nagel et al.,609

2018a). The three independently significant gene sets in this study were neurogenesis, be-610

havioral response to cocaine, and axon part. Biological annotation apparently tends to yield611

similar results regardless of whether it is applied to the general factor, the observed sum score,612

or a single factor in a simpler model. Perhaps such consistency is to be expected in light of our613

evidence for the existence, in some sense other than the psychometric one, of a general factor.614

A sum score will typically reflect a general factor indicated by all items more than any other615

source of variance. Indeed, on the basis of the phenotypic correlations between items reported616

by Nagel et al. (2018b), we calculated McDonald’s ωH (Revelle & Condon, 2019) of the EPQ617
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neuroticism scale to be .64.618

We have no explanation for the meager results obtained from the GWAS of the residual619

group factors. Our method for identifying SNPs associated with the residuals of the group620

factors in our hierarchical model was somewhat indirect (Supplementary Fig. S2), but a more621

direct approach based on a bifactor model would lead to more free parameters and an increase622

in estimation error (Murray & Johnson, 2013; Preacher et al., 2013). The study of group factors623

is an inherently difficult one, and those present in the EPQ neuroticism questionnaire require a624

greater GWAS sample size for their genetic elucidation. It would be premature to base conclu-625

sions about the construct validity of these group factors on the present results.626

5 Conclusion627

We used structural equation modeling to carry out a GWAS of the neuroticism general factor628

and identified 19 lead SNPs satisfying p < 5× 10−8. Even if deemed not to satisfy the predic-629

tions entailed by the hypothesis of acting solely through the general factor, hundreds of other630

SNPs attaining or approaching statistical significance in various analyses showed mostly sign-631

concordant effects on the questionnaire items. These findings do not settle the issue of the causal632

structure underlying the correlations between personality items. All we claim is that when we633

look for evidence of genetic effects on a causal intermediary very similar to the general factor634

of neuroticism, such evidence can be found. The SNPs acting through the general factor are635

found in or near genes highly expressed in the brain, and their pattern of gene-set enrichment is636

suggestive of neural development and synaptic function, particularly as these processes affect637

the learning of fear and caution in response to aversive stimuli.638
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